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Approximate Solutions to Ordinary Differential
Equations Using Least Squares Support Vector

Machines
Siamak Mehrkanoon, Tillmann Falck and Johan A. K. Suykens

Abstract—In this paper a new approach based on Least Squares
Support Vector Machines (LS-SVMs) is proposed for solving
linear and nonlinear ordinary differential equations (ODEs). The
approximate solution is presented in closed form by means of LS-
SVMs, whose parameters are adjusted to minimize an appropriate
error function. For the linear and nonlinear cases, these parameters
are obtained by solving a system of linear and nonlinear equations
respectively. The method is well suited for solving mildly stiff, non-
stiff and singular ordinary differential equations with initial and
boundary conditions. Numerical results demonstrate the efficiency
of the proposed method over existing methods.

Index Terms—Least squares support vector machines, ordinary
differential equations, closed form approximate solution, Colloca-
tion method.

I. INTRODUCTION

D IFFERENTIAL equations can be found in the mathemati-
cal formulation of physical phenomena in a wide variety of

applications especially in science and engineering. Depending
upon the form of the boundary conditions to be satisfied by the
solution, problems involving ODEs can be divided into two main
categories, namely initial value problems (IVPs) and boundary
value problems (BVPs). Analytic solutions for these problems
are not generally available and hence numerical methods must
be applied.

Many methods have been developed for solving initial value
problems of ODEs, such as Runge-Kutta, finite difference,
predictor-corrector and collocation methods [1]–[4]. Generally
speaking numerical methods for approximating the solution of
the boundary value problems fall into two classes: the difference
methods (e.g. shooting method) and weighted residual or series
methods. In the shooting method, one tries to reduce the
problem to initial value problems by providing a sufficiently
good approximation of the derivative values at the initial point.

Concerning higher order ODEs, the most common approach
is the reduction of the problem to a system of first-order
differential equations and then solve the system by employing
one of the available methods, which notably has been studied
in the literature, see [2], [5], [6]. However, as some authors
have remarked, this approach wastes a lot of computer time
and human effort [7], [8].

Most of the traditional numerical methods provide the solu-
tion, in the form of an array, at specific preassigned mesh points
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in the domain (discrete solution) and they need an additional
interpolation procedure to yield the solution for the whole
domain. On the other hand in order to have an accurate solution
one either has to increase the order of the method or decrease
the step size. This however, increases the computational cost.

To overcome these drawbacks, attempts have been made to
develop new approaches to not only solve the higher order ODEs
directly without reducing it to a system of first-order differential
equations, but also to provide the approximate solution in closed
form (i.e. continuous and differentiable) hereby avoiding an
extra interpolation procedure. One of these classes of methods
is based on the use of neural network models see [9]–[15].
Lee and Kang [10] used Hopfield neural networks models to
solve first order differential equations. The authors in [16]
introduced a method based on feedforward neural networks
to solve ordinary and partial differential equations. In that
model, the approximate solution was chosen such that it, by
construction, satisfied the supplementary conditions. Therefore
the model function was expressed as a sum of two terms. The
first term, which contains no adjustable parameters, satisfied
the initial/boundary conditions and the second term involved
a feedforward neural network to be trained. An unsupervised
kernel least mean square algorithm is developed for solving
ordinary differential equations in [17].

Despite the fact that the classical neural networks have nice
properties such as universal approximation, they still suffer
from having two persistent drawbacks. The first problem is the
existence of many local minima solutions. The second problem
is how to choose the number of hidden units.

Support Vector Machines (SVMs) are a powerful method-
ology for solving pattern recognition and function estimation
problems [18], [19]. In this method one maps data into a high
dimensional feature space and there solves a linear regression
problem. It leads to solving quadratic programming problems.
LS-SVMs for function estimation, classification, problems in
unsupervised learning and others has been investigated in [20],
[21] and [22]. In this case, the problem formulation involves
equality instead of inequality constraints. The training for re-
gression and classification problems is then done by solving a
set of linear equations. It is the purpose of this paper to introduce
a new approach based on LS-SVMs for solving ODEs.

The paper uses the following notation. Vector valued variables
are denoted in lowercase boldface whereas variables that are
neither boldfaced nor capitalized are scalar valued. Matrices
are denoted in capital. Euler Script (euscript) font is used for
operators.
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This paper is organized as follows. In Section II the problem
statement is given. In Section III we formulate our least squares
support vector machines method for the solution of linear differ-
ential equations. Section IV is devoted to the formulation of the
method for nonlinear first order ODEs. Model selection and the
practical implementation of the proposed method are discussed
in Section V. Section VI describes the numerical experiments,
discussion and comparison with other known methods.

II. PROBLEM STATEMENT

This section describes the problem statement. After that, in
subsection A, a short introduction to LS-SVMs for regression
is given to highlight the difference to the problem considered
in this paper. Finally some operators that will be used in the
following sections are defined.

Consider the general m-th order linear ordinary differential
equation with time varying coefficients of the form

L[y] ≡

m∑

`=0

f`(t)y
(`)(t) = r(t), t ∈ [a, c] (1)

where L represents an m-th order linear differential operator,
[a, c] is the problem domain and r(t) is the input signal. f`(t)
are known functions and y(`)(t) denotes the `-th derivative of
y with respect to t. The m − 1 necessary initial or boundary
conditions for solving the above differential equations are:
IVP:

ICµ[y(t)] = pµ, µ = 0, ..., m − 1;

BVP:
BCµ[y(t)] = qµ, µ = 0, ..., m− 1,

where ICµ are the initial conditions (all constraints are applied
at the same value of the independent variable i.e. t = a) and
BCµ are the boundary conditions (the constraints are applied at
multiple values of the independent variable t, typically at the
ends of the interval [a, c] in which the solution is sought). pµ

and qµ are given scalars.
A differential equation (1) is said to be stiff when its

exact solution consists of a steady state term that does not
grow significantly with time, together with a transient term
that decays exponentially to zero. Problems involving rapidly
decaying transient solutions occur naturally in a wide variety of
applications, including the study of damped mass spring system
and the analysis of control systems (see [2] for more details).

If the coefficient functions f`(t) of (1) fail to be analytic at
point x = a, then (1) is called singular ordinary differential
equation.

The approaches given in [16], [17], define a trial solution to
be a sum of two terms i.e. y(t) = H(t) + F (t, N(t, P )). The
first term H(t), which has to be defined by the user and in
some cases is not straightforward, satisfies the initial/boundary
conditions and the second term F (t, N(t, P )) is a single-
output feed forward neural network with input t and parameters
P . In contrast with the approaches given in [16], [17], we
build the model by incorporating the initial/boundary conditions
as constraints of an optimization problem. This significantly
reduces the burden placed on the user as a potentially difficult
problem is handled automatically by the proposed technique.

A. LS-SVM regression

Let us consider a given training set {xi, yi}
N
i=1 with input

data xi ∈ R and output data yi ∈ R. For the purpose of this
paper we only use an one-dimensional input space. The goal
in a regression problem is to estimate a model of the form
y(x) = wT ϕ(x) + b.

The primal LS-SVM model for regression can be written as
follows [21]

minimize
w,b,e

1

2
wT w +

γ

2
eT e

subject to yi = wT ϕ(xi) + b + ei, i = 1, ..., N,

(2)

where γ ∈ R
+, b ∈ R, w ∈ R

h. ϕ(·) : R → R
h is the feature

map and h is the dimension of the feature space. The dual
solution is then given by


 Ω + IN/γ 1N

1N
T 0




[
α

b

]
=

[
y

0

]

where Ωij = K(xi, xj) = ϕ(xi)
T ϕ(xj) is the ij-th entry

of the positive definite kernel matrix. 1N = [1, . . . , 1]T ∈
R

N , α = [α1, . . . , αN ]T , y = [y1, . . . , yN ]T and IN is
the identity matrix. The model in the dual form becomes:
y(x) =

∑N
i=1 αiK(x, xi) + b. It should be noted that if b = 0,

for an explicitly known and finite dimensional feature map ϕ

the problem could be solved in primal (ridge regression) by
eliminating e and then w would be the only unknown. But
in the LS-SVM approach the feature map ϕ is not explicitly
known in general and can be infinite dimensional. Therefore
the kernel trick is used and the problem is solved in dual [20].
When we deal with differential equations, the target values yi

are not available directly anymore so the regression approach
does not directly apply. Nevertheless we can incorporate the
underlying differential equation in the learning process to find
an approximation for the solution.

Let us assume an explicit model ŷ(t) = wT ϕ(t) + b as
an approximation for the solution of the differential equation.
Since there are no data available in order to learn from the
differential equation, we have to substitute our model into
the given differential equation. Therefore we need to define
the derivative of the kernel function. Making use of Mercer’s
Theorem [19], derivatives of the feature map can be written in
terms of derivatives of the kernel function [23]. Let us define the
following differential operator which will be used in subsequent
sections

∇m
n ≡

∂n+m

∂un∂vm
. (3)

If ϕ(u)T ϕ(v) = K(u, v), then one can show that

[ϕ(n)(u)]T ϕ(m)(v) =∇m
n [ϕ(u)T ϕ(v)]

=∇m
n [K(u, v)] =

∂n+mK(u, v)

∂un∂vm
. (4)

Using formula (4), it is possible to express all derivatives of the
feature map in terms of the kernel function itself (provided that
the kernel function is sufficiently differentiable). For instance
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the following relations hold,

∇0
1[K(u, v)] =

∂(ϕ(u)T ϕ(v))

∂u
= ϕ(1)(u)T ϕ(v),

∇1
0[K(u, v)] =

∂(ϕ(u)T ϕ(v))

∂v
= ϕ(u)T ϕ(1)(v),

∇0
2[K(u, v)] =

∂2(ϕ(u)T ϕ(v))

∂u2
= ϕ(2)(u)T ϕ(v).

III. FORMULATION OF THE METHOD FOR THE LINEAR ODE
CASE

Let us assume that a general approximate solution to (1) is of
the form of ŷ(t) = wT ϕ(t) + b, where w and b are unknowns
of the model that have to be determined. To obtain the optimal
value of these parameters, collocation methods can be used
[24] which assume a discretization of the interval [a, c] into a
set of collocation points Υ =

{
a = t1 < t2 < ... < tN = c

}
.

Therefore the w and b are to be found by solving the following
optimization problem:

For the IVP Case:

minimize
ŷ

1

2

N∑

i=1

[
(L[ŷ] − r)(ti)

]2

subject to ICµ[ŷ(t)] = pµ, µ = 0, ..., m − 1.

(5)

For the BVP case:

minimize
ŷ

1

2

N∑

i=1

[
(L[ŷ] − r)(ti)

]2

subject to BCµ[ŷ(t)] = qµ, µ = 0, ..., m − 1,

(6)

where N is the number of collocation points (which is equal
to the number of training points) used to undertake the learn-
ing process. In what follows we formulate the optimization
problem in the LS-SVM framework for solving linear ordinary
differential equations. For notational convenience let us list the
following notations which are used in the following sections,

[∇m
n K](t, s) = [∇m

n K(u, v)]


u=t,v=s

,

[Ωm
n ]i,j = ∇m

n [K(u, v)]


u=ti,v=tj

=
∂n+mK(u, v)

∂un∂vm


u=ti,v=tj

,

[Ω0
0]i,j = ∇0

0[K(u, v)]


u=ti,v=tj

= K(ti, tj).

Where [Ωm
n ]i,j denotes the (i, j)-th entry of matrix Ωm

n . The
notation Mk:l,m:n is used for selecting a submatrix of matrix
M consisting of rows k to l and columns m to n. Mi,: denotes
the i-th row of matrix M . M:,j denotes the j-th column of
matrix M .

A. First order IVP

As a first example consider the following first order initial
value problem,

y′(t) − f1(t)y(t) = r(t), y(a) = p1, a ≤ t ≤ c. (7)

In the LS-SVM framework the approximate solution can be
obtained by solving the following optimization problem,

minimize
w,b,e

1

2
wT w +

γ

2
eT e

subject to wT ϕ′(ti) = f1(ti)

[
wT ϕ(ti) + b

]
+

r(ti) + ei, i = 2, ..., N,

wT ϕ(t1) + b = p1.

(8)

This problem is obtained by combining the LS-SVM cost func-
tion with constraints constructed by imposing the approximate
solution ŷ(t) = wT ϕ(t) + b, given by the LS-SVM model,
to satisfy the given differential equation with corresponding
initial condition at collocation points {ti}

N
i=1. Problem (8) is a

quadratic minimization under linear equality constraints, which
enables an efficient solution.

Lemma III.1. Given a positive definite kernel function K :
R × R → R with K(t, s) = ϕ(t)T ϕ(s) and a regularization
constant γ ∈ R

+, the solution to (8) is obtained by solving the
following dual problem:




K + IN−1/γ hp1
−f1

hp1

T 1 1

−f1
T 1 0







α

β
b


 =




r

p1

0


 (9)

with

α = [α2, . . . , αN ]T , f1 = [f1(t2), . . . , f1(tN )]T ∈ R
N−1,

r = [r(t2), . . . , r(tN )]T ∈ R
N−1,

K = Ω̃1
1 − D1Ω̃

0
1 − Ω̃1

0D1 + D1Ω̃
0
0D1,

hp1
= [Ω1

0]
T
1,2:N − D1[Ω

0
0]

T
1,2:N .

D1 is a diagonal matrix with the elements of f1 on the
main diagonal. [Ωm

n ]1,2:N = [[Ωm
n ]1,2, . . . , [Ω

m
n ]1,N ] and Ω̃m

n =
[Ωm

n ]2:N,2:N for n, m = 0, 1. Also note that K ∈ R
(N−1)×(N−1)

and hp1
∈ R

N−1.

Proof: The Lagrangian of the constrained optimization
problem (8) becomes

L(w, b, ei, αi, β) =

1

2
wT w +

γ

2
eT e −

N∑

i=2

αi

[
wT

(
ϕ′(ti) − f1(ti)ϕ(ti)

)

− f1(ti)b − ri − ei

]
− β

(
wT ϕ(t1) + b − p1

)

where
{
αi

}N

i=2
and β are Lagrange multipliers and ri = r(ti)

for i = 2, ..., N . Then the Karush-Kuhn-Tucker (KKT) optimal-
ity conditions are as follows,
∂L
∂w

= 0 → w =
∑N

i=2 αi

(
ϕ′(ti) − f1(ti)ϕ(ti)

)
+

βϕ(t1),
∂L
∂b = 0 →

∑N
i=2 αif1(ti) − β = 0, ∂L

∂ei
= 0 → ei =

−αi

γ , i = 2, ..., N, ∂L
∂αi

= 0 → wT

(
ϕ′(ti) − f1(ti)ϕ(ti)

)
−

f1(ti)b−ei = ri, i = 2, ..., N, ∂L
∂β = 0 → wT ϕ(t1)+b = p1.
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After elimination of the primal variables w and {ei}
N
i=2 and

making use of Mercer’s Theorem, the solution is given in the
dual by





ri =

N∑

j=2

αj

[
[Ω1

1]j,i − f1(ti)

(
[Ω0

1]j,i − f1(tj)[Ω
0
0]j,i

)

−f1(tj)[Ω
1
0]j,i

]
+ β

(
[Ω1

0]1,i − f1(ti)[Ω
0
0]1,i

)

+αi

γ − f1(ti)b, i = 2, ..., N,

p1 =
N∑

j=2

αj

(
[Ω0

1]j,1 − f1(tj)[Ω
0
0]j,1

)
+ β [Ω0

0]1,1 + b,

0 =

N∑

j=2

αjf1(tj) − β

and writing these equations in matrix form gives the linear
system in (9).

The model in the dual form becomes

ŷ(t) =

N∑

i=2

αi

(
[∇0

1K](ti, t) − f1(ti)[∇
0
0K](ti, t)

)

+ β [∇0
0K](t1, t) + b (10)

where K is the kernel function.

B. Second order IVP and BVP

IVP case:
Let us consider a second order IVP of the form,

y′′(t) = f1(t)y
′(t) + f2(t)y(t) + r(t), t ∈ [a, c]

y(a) = p1, y′(a) = p2.

The approximate solution, ŷ(t) = wT ϕ(t)+ b, is then obtained
by solving the following optimization problem,

minimize
w,b,e

1

2
wT w +

γ

2
eT e (11)

subject to wT ϕ′′(ti) = f1(ti)w
T ϕ′(ti)+

f2(ti)[w
T ϕ(ti) + b] + r(ti) + ei, i = 2, ..., N,

wT ϕ(t1) + b = p1,

wT ϕ′(t1) = p2.

Lemma III.2. Given a positive definite kernel function K :
R × R → R with K(t, s) = ϕ(t)T ϕ(s) and a regularization
constant γ ∈ R

+, the solution to (11) is obtained by solving the
following dual problem:




K + IN−1/γ hp1
hp2

−f2

hp1

T 1 0 1

hp2

T 0 [Ω1
1]1,1 0

−f2
T 1 0 0







α

β1

β2

b




=




r

p1

p2

0




(12)

where

α = [α2, . . . , αN ]T , f1 = [f1(t2), . . . , f1(tN )]T ∈ R
N−1,

f2 = [f2(t2), . . . , f2(tN )]T ∈ R
N−1,

r = [r(t2), . . . , r(tN )]T ∈ R
N−1,

K = Ω̃2
2 − D1Ω̃

1
2 − D2Ω̃

0
2 − Ω̃2

1D1 − Ω̃2
0D2

+ D1Ω̃
1
1D1 + D1Ω̃

1
0D2 + D2Ω̃

0
1D1 + D2Ω̃

0
0D2,

hp1
= [Ω2

0]
T
1,2:N − D1[Ω

1
0]

T
1,2:N − D2[Ω

0
0]

T
1,2:N ,

hp2
= [Ω2

1]
T
1,2:N − D1[Ω

1
1]

T
1,2:N − D2[Ω

0
1]

T
1,2:N .

D1 and D2 are diagonal matrices with the elements of
f1 and f2 on the main diagonal respectively. Note that
K ∈ R

(N−1)×(N−1) and hp1
, hp2

∈ R
N−1. [Ωm

n ]1,2:N =
[[Ωm

n ]1,2, . . . , [Ω
m
n ]1,N ] for n = 0, 1 and m = 0, 1, 2. Ω̃m

n =
[Ωm

n ]2:N,2:N for m, n = 0, 1, 2.

Proof: Consider the Lagrangian of problem (11):

L(w, b, ei, αi, β1, β2) = (13)

1

2
wT w +

γ

2
eT e −

N∑

i=2

αi

[
wT

(
ϕ′′(ti) − f1(ti)ϕ

′(ti)−

f2(ti)ϕ(ti)

)
− f2(ti)b − ri − ei

]
− β1

(
wT ϕ(t1) + b − p1

)

− β2

(
wT ϕ′(t1) − p2

)

where
{
αi

}N

i=2
, β1 and β2 are Lagrange multipliers. The

Karush-Kuhn-Tucker (KKT) optimality conditions are as fol-
lows,
∂L
∂w

= 0 → w =
∑N

i=2 αi

(
ϕ′′

i − f1(ti)ϕ
′
i − f2(ti)ϕi

)
+

β1ϕ1 + β2ϕ
′
1,

∂L
∂b = 0 →

∑N
i=2 αif2(ti) − β1 = 0, ∂L

∂ei
= 0 →

ei = −αi

γ , i = 2, ..., N, ∂L
∂αi

= 0 → wT

(
ϕ′′

i − f1(ti)ϕ
′
i −

f2(ti)ϕi

)
− f2(ti)b − ei = ri, i = 2, ..., N, ∂L

∂β1
= 0 →

wT ϕ1 + b = p1,
∂L
∂β2

= 0 → wT ϕ′
1 = p2, where ϕi = ϕ(ti),

ϕ′
i = ϕ′(ti) and ϕ′′

i = ϕ′′(ti) for i = 1, . . . , N .
Applying the kernel trick and eliminating w and {ei}

N
i=2

leads to





ri =

N∑

j=2

αj

[
[Ω2

2]j,i

−f1(ti)

(
[Ω1

2]j,i − f1(tj)[Ω
1
1]j,i − f2(tj)[Ω

1
0]j,i

)

−f2(ti)

(
[Ω0

2]j,i − f1(tj)[Ω
0
1]j,i − f2(tj)[Ω

0
0]j,i

)

−f1(tj)[Ω
2
1]j,i − f2(tj)[Ω

2
0]j,i

]

+β1

(
[Ω2

0]1,i − f1(ti)[Ω
1
0]1,i − f2(ti)[Ω

0
0]1,i

)

+β2

(
[Ω2

1]1,i − f1(ti)[Ω
1
1]1,i − f2(ti)[Ω

0
1]1,i

)

+αi

γ − f2(ti)b , i = 2, ..., N,
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p1 =

N∑

j=2

αj

(
[Ω0

2]j,1 − f1(tj)[Ω
0
1]j,1 − f2(tj)[Ω

0
0]j,1

)

+β1[Ω
0
0]1,1 + β2[Ω

0
1]1,1 + b,

p2 =

N∑

j=2

αj

(
[Ω1

2]j,1 − f1(tj)[Ω
1
1]j,1 − f2(tj)[Ω

1
0]j,1

)

+β1[Ω
1
0]1,1 + β2[Ω

1
1]1,1,

0 =

N∑

j=2

αjf2(tj) − β1.

Finally writing these equations in matrix form will result in the
linear system (12).

The LS-SVM model for the solution and its derivative in the
dual form become:

ŷ(t) =

N∑

i=2

αi

(
[∇0

2K](ti, t) − f1(ti)[∇
0
1K](ti, t)−

f2(ti)[∇
0
0K](ti, t)

)
+ β1 [∇0

0K](t1, t)+

β2[∇
0
1K](t1, t) + b,

dŷ(t)

dt
=

N∑

i=2

αi

(
[∇1

2K](ti, t) − f1(ti)[∇
1
1K](ti, t)−

f2(ti)[∇
1
0K](ti, t)

)
+ β1[∇

1
0K](t1, t)+

β2[∇
1
1K](t1, t).

BVP case:
Consider the second order boundary value problem of ODEs of
the form

y′′(t) = f1(t)y
′(t) + f2(t)y(t) + r(t), t ∈ [a, c]

y(a) = p1, y(c) = q1.

Then the parameters of the closed form approximation of the
solution can be obtained by solving the following optimization
problem

minimize
w,b,e

1

2
wT w +

γ

2
eT e

subject to wT ϕ′′(ti) = f1(ti)w
T ϕ′(ti)+

f2(ti)[w
T ϕ(ti) + b] + r(ti) + ei, i = 2, ..., N − 1,

wT ϕ(t1) + b = p1,

wT ϕ(tN ) + b = q1.
(14)

The same procedure can be applied to derive the Lagrangian and
afterward the KKT optimality conditions. Then one can show
that the solution to the problem (14) is obtained by solving the
following linear system



K + IN−2/γ hp1
hq1

−f2

hp1

T 1 [Ω0
0]N,1 1

hq1

T [Ω0
0]1,N 1 1

−f2
T 1 1 0







α

β1

β2

b




=




r

p1

q1

0




where

α = [α2, . . . , αN−1]
T , f1 = [f1(t2), . . . , f1(tN−1)]

T ∈ R
N−2,

f2 = [f2(t2), . . . , f2(tN−1)]
T ∈ R

N−2,

r = [r(t2), . . . , r(tN−1)]
T ∈ R

N−2,

K = Ω̃2
2 − D1Ω̃

1
2 − D2Ω̃

0
2 − Ω̃2

1D1 − Ω̃2
0D2

+ D1Ω̃
1
1D1 + D1Ω̃

1
0D2 + D2Ω̃

0
1D1 + D2Ω̃

0
0D2,

hp1
= [Ω2

0]
T
1,2:N−1 − D1[Ω

1
0]

T
1,2:N−1 − D2[Ω

0
0]

T
1,2:N−1,

hq1
= [Ω2

0]
T
N,2:N−1 − D1[Ω

1
0]

T
N,2:N−1 − D2[Ω

0
0]

T
N,2:N−1.

D1 and D2 are diagonal matrices with the elements
of f1 and f2 on the main diagonal respectively. Note
that K ∈ R

(N−2)×(N−2) and hp1
, hq1

∈ R
N−2.

[Ωm
n ]1,2:N−1 = [[Ωm

n ]1,2, . . . , [Ω
m
n ]1,N−1] and [Ωm

n ]N,2:N−1 =
[[Ωm

n ]N,2, . . . , [Ω
m
n ]N,N−1] for n = 0, 1 and m = 0, 1, 2.

Ω̃m
n = [Ωm

n ]2:N−1,2:N−1 for m, n = 0, 1, 2.
The LS-SVM model for the solution and its derivative are

expressed in dual form as

ŷ(t) =
N−1∑

i=2

αi

(
[∇0

2K](ti, t) − f1(ti)[∇
0
1K](ti, t)−

f2(ti)[∇
0
0K](ti, t)

)
+ β1 [∇0

0K](t1, t)+

β2[∇
0
0K](tN , t) + b,

dŷ(t)

dt
=

N−1∑

i=2

αi

(
[∇1

2K](ti, t) − f1(ti)[∇
1
1K](ti, t)−

f2(ti)[∇
1
0K](ti, t)

)
+ β1[∇

1
0K](t1, t)+

β2[∇
1
0K](tN , t).

C. m-th order linear ODE

Let us now consider the general m-th order IVP of the
following form:

y(m)(t) −

m∑

i=1

fi(t)y
(m−i)(t) = r(t), t ∈ [a, c]

{
y(a) = p1,
y(i−1)(a) = pi, i = 2, ..., m.

(15)

The approximate solution can be obtained by solving the
following optimization problem,

minimize
w,b,e

1

2
wT w +

γ

2
eT e

subject to wT ϕ(m)(ti) = wT

[ m∑

k=1

fk(ti)ϕ
(m−k)
i

]

+ fm(ti)b + r(ti) + ei, i = 2, ..., N,

wT ϕ(t1) + b = p1,

wT ϕ(i−1)(t1) = pi, i = 2, ..., m.

(16)

Lemma III.3. Given a positive definite kernel function K :
R × R → R with K(t, s) = ϕ(t)T ϕ(s) and a regularization
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constant γ ∈ R
+, the solution to (16) is obtained by solving the

following dual problem:




K + IN−1/γ Kin −fm

KT
in ∆ C

−fm
T CT 0







α

β

b


 =




r

p

0


 (17)

with

fk = [fk(t2), . . . , fk(tN )]T ∈ R
N−1, k = 1, ..., m ,

hp`
= [Ωm

`−1]
T
1,2:N −

m∑

k=1

Dk[Ωm−k
`−1 ]T1,2:N , ` = 1, ..., m.

Kin = [hp1
, . . . , hpm

] ∈ R
(N−1)×m, hp`

∈ R
(N−1),

p = [p1, . . . , pm]T ∈ R
m, C = [1, 0, . . . , 0]T ∈ R

m,

r = [r(t2), . . . , r(tN )]T ∈ R
N−1, α = [α2, . . . , αN ]T ,

β = [β1, . . . , βm]T , Ω̄1 = [Ω̃0
m, . . . , Ω̃m−1

m ]T ,

D̄ = [Dm, . . . , D1], Ω̄ =




Ω̃0
0 · · · Ω̃0

m−1
...

. . .
...

Ω̃m−1
0 · · · Ω̃m−1

m−1




K = Ω̃m
m − D̄ Ω̄1 − Ω̄T

1 D̄T + D̄ Ω̄ D̄T ,

∆ =




[Ω0
0]1,1 · · · [Ω0

m−1]1,1

...
. . .

...[
Ωm−1

0

]
1,1

· · · [Ωm−1
m−1]1,1




m×m

.

{Di}
m
i=1 are diagonal matrices with the elements of {fi}

m
i=1

on the main diagonal respectively. Also Ω̄1, Ω̄ and D̄ are block
matrices. Ω̃m

n = [Ωm
n ]2:N,2:N . Note that K ∈ R

(N−1)×(N−1).

Proof: The Lagrangian for (16) is given by

L(w, b, ei, αi, βi) =

1

2
wT w +

γ

2
eT e −

N∑

i=2

αi

[
wT

(
ϕm(ti) −

m∑

k=1

fk(ti)

ϕ(m−k)(ti)

)
− fm(ti)b − ri − ei

]
− β1

(
wT ϕ(t1) + b − p1

)

− β2

(
wT ϕ′(t1) − p2

)
− · · · − βm

(
wT ϕm−1(t1) − pm

)
.

Eliminating w and {ei}
N
i=2 from the corresponding KKT opti-

mality conditions yields the following set of equations





ri =
N∑

j=2

αj

[
[Ωm

m]j,i

−
∑m

`=1 f`(ti)

(
[Ωm−`

m ]j,i −
∑m

k=1 fk(tj)[Ω
m−`
m−k]j,i

)

−
∑m

k=1 fk(tj)[Ω
m
m−k]j,i

+
∑m

`=1 β`

(
[Ωm

`−1]1,i −
∑m

k=1 fk(ti)[Ω
m−k
`−1 ]1,i

)

+αi

γ − fm(ti)b, i = 2, ..., N,





p1 =

N∑

j=2

αj

(
[Ω0

m]j,1 −

m∑

k=1

fk(tj)[Ω
0
m−k]j,1

)

+
∑m

k=1 βk[Ω0
k−1]1,1 + b,

...

pm =

N∑

j=2

αj

(
[Ωm−1

m ]j,1 −

m∑

k=1

fk(tj)[Ω
m−1
m−k]j,1

)

+
∑m

k=1 βk[Ωm−1
k−1 ]1,1,

0 =

N∑

j=2

αjfm(tj) − β1.

Rewriting the above system in matrix form will result in (17).

The LS-SVM model for the solution and its derivatives can
be expressed in dual form as follows

ŷ(t) =

N∑

i=2

αi

(
[∇0

mK](ti, t) −

m∑

k=1

fk(ti)[∇
0
m−kK](ti, t)

)

+

m∑

k=1

βk [∇0
k−1K](t1, t) + b,

dp ŷ(t)

dtp
=

N∑

i=2

αi

(
[∇p

mK](ti, t) −

m∑

k=1

fk(ti)[∇
p
m−kK](ti, t)

)

+

m∑

k=1

βk [∇p
k−1K](t1, t) , p = 1, ..., m− 1.

Lemma III.4. The matrix K is positive semi-definite.

Proof: Let D̃ = [D̄,−IN−1] and

Ω̃ =

[
Ω̄ Ω̄1

Ω̄T
1 Ωm

m

]
.

Then the matrix K can be written as D̃Ω̃D̃T . To show that
xTKx ≥ 0 for any x, it is sufficient to show that x̃T Ω̃x̃ ≥
0 for any x̃ because x = D̃x̃ is included as a special case.
Now consider matrices of evaluations of the feature map and its
derivatives Φ(i) = [ϕ(i)(t2), . . . , ϕ

(i)(tN )] for i = 0, . . . , m−1
and denote their concatenation as Φ̃ = [Φ(0), . . . , Φ(m−1)]. Then
‖Φ̃x̃‖2

2 = x̃T Φ̃T Φ̃x̃ = x̃T Ω̃x̃ holds, where the last equality
follows from an application of the kernel trick. With the property
that the norm of any vector is a non negative real number, ‖Φ̃x̃‖2

is greater than or equal to zero. Therefore also its squared form
x̃T Ω̃x̃ is non-negative, which concludes the proof.

IV. FORMULATION OF THE METHOD FOR THE NONLINEAR
ODE CASE

In this section we formulate an optimization problem based
on least squares support vector machines for solving nonlinear
first order ordinary differential equations of the following form

y′ = f(t, y), y(a) = p1, a ≤ t ≤ c. (18)

One starts with assuming the approximate solution to be of
the form ŷ(t) = wT ϕ(t) + b. Additional unknowns yi are
introduced to keep the constraints linear in w. This yields the
following nonlinear optimization problem:
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minimize
w,b,e,ξ,yi

1

2
wT w +

γ

2
eT e +

γ

2
ξT ξ

subject to wT ϕ′(ti) = f(ti, yi) + ei, i = 2, ..., N,

wT ϕ(t1) + b = p1,

yi = wT ϕ(ti) + b + ξi, i = 2, ..., N.

(19)

The Lagrangian of the constrained optimization problem (19)
becomes

L(w, b, ei, ξi, yi, αi, ηi, β) =

1

2
wT w +

γ

2
eT e +

γ

2
ξT ξ −

N∑

i=2

αi

(
wT ϕ′(ti)−

f(ti, yi) − ei

)
− β

(
wT ϕ(t1) + b − p1

)
−

N∑

i=2

ηi

(
yi − wT ϕ(ti) − b − ξi

)
.

After obtaining KKT optimality conditions, and elimination of
the primal variables w, {ei}

N
i=2 and {ξi}

N
i=2 and making use

of Mercer’s Theorem, the solution is obtained in the dual by
solving the following nonlinear system of equations




Ω̂1
1 Ω̃1

0 h1
T 0N−1 0(N−1)×(N−1)

(Ω̃1
0)

T Ω̂0
0 h0

T 1N−1 −IN−1

h1 h0 [Ω0
0]1,1 1 0T

N−1

0T
N−1 1T

N−1 1 0 0T
N−1

D(y) IN−1 0N−1 0N−1 0(N−1)×(N−1)







α

η

β
b
y




=




f(y)
0N−1

p1

0
0N−1




(20)

where

Ω̂1
1 = Ω̃1

1 + IN−1/γ, Ω̂0
0 = Ω̃0

0 + IN−1/γ,

D(y) = diag(f ′(y))

f(y) = [f(t2, y2), . . . , f(tN , yN)]T ,

f ′(y) = [
∂f(t, y)

∂y


t=t2,y=y2

, . . . ,
∂f(t, y)

∂y


t=tN ,y=yN

],

α = [α2, . . . , αN ]T , η = [η2, . . . , ηN ]T ,

y = [y2, . . . , yN ]T , Ω̃0
0 = [Ω0

0]2:N,2:N

Ω̃1
1 = [Ω1

1]2:N,2:N , Ω̃1
0 = [Ω1

0]2:N,2:N

h0 =
[
[Ω0

0]1,2, . . . , [Ω
0
0]1,N

]

h1 =
[
[Ω1

0]1,2, . . . , [Ω
1
0]1,N

]

0N−1 = [0, . . . , 0]T ∈ R
N−1.

The nonlinear system (20), which consists of 3N − 1 equations
with 3N − 1 unknowns (α, η, β, b, y), is solved by Newton’s

method. The model in the dual form becomes

ŷ(t) =
N∑

i=2

αi[∇
0
1K](ti, t) +

N∑

i=2

ηi[∇
0
0K](ti, t)+

β [∇0
0K](t1, t) + b. (21)

V. PRACTICAL IMPLEMENTATION AND MODEL SELECTION

A. Solution on long time Interval

Consider now the situation where a given differential equation
has to be solved for a large time interval [a, c]. It should be noted
that in order to improve the accuracy (or maintain the same order
of accuracy on the whole domain) we then need to increase the
number of collocation points. This approach however leads to
a larger system of equations.

In order to implement the proposed method for solving
problems involving large time intervals efficiently, the domain
decomposition technique is applied [25]. At first the domain
Ξ = [a, c] is decomposed into S segments as Ξ =

⋃S
k=1 Ξk.

We assume that the approximate solution on the k-th segment
has the form ŷk(t) = wT

k ϕ(t)+ bk. Then the problem is solved
in each sub-domain Ξk using the described method in previous
sections. The computed approximate solution at the final point
in the sub-domain Ξk is used as starting point (initial value) for
the consecutive sub-domain Ξk+1.

Utilizing this approach will result in solving S smaller sys-
tems of equations, which is computationally more efficient than
solving a very large system of equations obtained by considering
the whole domain Ξ (with the same total number of collocation
points). The procedure is outlined in Algorithm 1.

Algorithm 1 Approximating the solution on a large interval
1: Decompose the domain Ξ = [a, c] into S sub-domains.
2: set Γ = (c − a)/S, tin := a, yin := p1, tf := tin + Γ.
3: for k = 1 to S do
4: Obtain a LS-SVM model for the k-th segment [tin, tf ]

i.e. ŷk(t) = wT
k ϕk(t) + bk.

5: set tin := tf , yin := ŷ(tf ), tf := tin + Γ
6: end for
7: For a given test point t:

• Check to which segment it belongs,
• Use the corresponding model to compute the approxi-

mate solution at the given point.

B. Parameter tuning

The performance of the LS-SVM model depends on the
choice of the tuning parameters. In this paper for all experi-
ments the Gaussian RBF kernel is used. Therefore a model is
determined by the regularization parameter γ and the kernel
bandwidth σ.

It should be noted that unlike the regression case, we do
not have target values and consequently we do not have noise.
Therefore a quite large value should be taken for the regular-
ization constant γ so that the error e is sharply minimized or
equivalently the constraints are well satisfied.
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In all the experiments the chosen value for γ was 1010, except
for the problem with large interval for which γ is set to 105 in
order to avoid ill conditioning.

Therefore the only parameter left that has to be tuned is
the kernel bandwidth. In this work, the optimal values of σ
are obtained by evaluating the performance of the model on a
validation set using a meaningful range of possible (σ). The
validation set is defined to be the set of midpoints V ≡ {vi =
(ti+ti+1)

2 , i = 1, ..., N − 1} where {ti}
N
i=1 are training points.

The values that minimize the mean squared error (MSE) on this
validation set are then selected.

Remark V.1. In some cases, an extremely large value for γ,
normally greater than 107, can make the matrix in (9) close to
singular.

VI. NUMERICAL RESULTS

In this section, we have tested the performance of the pro-
posed method on seven problems, four first order and three
second order ODEs. For the first three problems and problem
5.5, a comparison is made between the solutions obtained in
[17] and our computed solutions. The numerical results of the
problems 5.4 and 5.6 are compared with those given in [16].
Problem 5.7 which has no analytic solution and is a singular
problem is solved and the computed solution is compared
with that reported in [26]. In order to show the approximation
and generalization capabilities of the proposed method, we
compare the exact solution with the computed solution inside
and outside of the domain of consideration. Furthermore the
proposed method is successfully applied to solve problem 5.1
for a very large time interval. For all the experiments, the RBF
kernel is used, K(u, v) = exp(− (u−v)2

σ2 ), so the following
relations hold,

∇0
1[K(u, v)] = −

2(u − v)

σ2
K(u, v),

∇1
0[K(u, v)] =

2(u − v)

σ2
K(u, v),

∇0
2[K(u, v)] =

[
4(u − v)2

σ4
−

2

σ2

]
K(u, v).

Matlab 2010b is used to implement the code and all computa-
tions were carried out on a windows 7 system with Intel(R)-
core(TM) i7 CPU and 4.00GB RAM.

A. First order ODEs

Problem 5.1: Consider the following first order ODE [17,
Example 2]:

d

dt
y(t) + 2y(t) = sin(t), y(0) = 1, t ∈ [0, 10].

The approximate solution obtained by the proposed method is
compared with the true solution and results are depicted in Fig
1. From the obtained results, it is apparent that our method
outperforms the method in [17] in terms of accuracy (see [17,
Fig 6]), although training was performed using much less
number of points (one fourth). In addition we also considered
points outside the training interval, and Fig 1 (d) and (e) show
that the extrapolation error remains low for the points near

the domain of equation. As it was expected by increasing the
number of mesh points (training points), the error decreases
both inside and outside of the training interval. Fig 1 (c) and
(f) indicate the performance of the method when non-uniform
partitioning is used for creating training points.

Problem 5.2: First order differential equation with nonlinear
sinusoidal excitation [17, Example 3] :

d

dt
y(t) + 2y(t) = t3 sin(t/2), y(0) = 1, t ∈ [0, 10].

The interval [0,10] is discretized into N = 20 points
t1 = 0, ..., t20 = 10 using the grid ti = (i − 1)h, i = 1, ..., N ,
where h = 10

N−1 . In Fig 2(a), we compare the exact solution
with the computed solution at grid points (circles) as well as
for other points inside and outside the domain of equation.
The obtained absolute errors for points inside and outside
the domain [0,10] are tabulated in Table I. It is clear that
the solution is of higher accuracy compared to the solution
obtained in [17] despite the fact that much less number of
training points are used. (Note that in [17], 100 equidistant
points are used for training and the maximum absolute error
shown in [17, Fig 13] is approximately 25 × 10−2).

Problem 5.3: Consider the following nonlinear first order
ODE which has no analytic solution [17, Example 6]:

d

dt
y(t) = y(t)2 + t2, y(0) = 1, t ∈ [0, 0.5].

Twenty equidistant points in the given interval are used for
the training process. The obtained approximate solution by
the proposed method and the solution obtained by MATLAB
built-in solver ode45 are displayed in Fig 2(b). The obtained
absolute errors for points inside and outside the domain [0,0.5]
are tabulated in Table I. The proposed method shows a better
performance in comparison with the described method in [17]
in terms of accuracy despite the fact that much less number
of training points are used. (Note that in [17] the problem is
solved over domain [0, 0.2] by using 100 equidistant training
points and the maximum absolute error shown in [17, Fig 22]
is approximately 4 × 10−2).

Problem 5.4: Consider the following first order ODE with
time varying coefficient [16, Problem 1]:

d

dt
y(t) +

(
t +

1 + 3t2

1 + t + t3

)
y(t) = t3 + 2t + t2

1 + 3t2

1 + t + t3
,

y(0) = 1, t ∈ [0, 1].

In order to have a fair comparison with the results reported
in [16], ten equidistant points in the given interval are used
for the training process. The analytic solution and obtained
solution via our proposed method are displayed in Fig 2(c).
The obtained absolute errors for points inside and outside
the domain [0,1] are recorded in Table I, which shows the
superiority of the proposed method over the described method
in [16]. (Note that in [16, Fig 2] the maximum absolute error
outside the domain [0, 1] is approximately 12× 10−2).
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Fig. 1. Numerical results for Problem 5.1. (a) 10 equidistant points in [0, 10] are used for training. (b) 25 equidistant points in [0, 10] are used for training.
(c) Non-uniform partitions of [0,10] using 10 points which are used for training. (d) Obtained absolute errors on the interval [0, 12] when [0, 10] is discretized
into 9 equal parts. (e) Obtained absolute errors on the interval [0, 12] when [0, 10] is discretized into 24 equal parts. (f) Obtained absolute errors on the interval
[0, 12] when [0, 10] is discretized into 9 non-uniform parts.
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Fig. 2. (a) Numerical results for Problem 5.2. Twenty equidistant points in [0,10] are used for training. (b) Numerical results for Problem 5.3. Twenty equidistant
points in [0,0.5] are used for training. (c) Numerical results for Problem 5.4. Ten equidistant points in [0,1] are used for training.

B. Second order ODEs

Problem 5.5: Consider the following second order boundary
value problem with time-varying input signal [17, Example 4]:

d2

dt2
y(t) + y(t) = 2 + 2 sin(4t) cos(3t),

y(0) = 1, y(1) = 0.

Ten equidistant points in the given interval are used for
the training process. The analytic solution and the obtained
solution via our proposed method are displayed in Fig 3(a).
The obtained absolute errors for points inside and outside
the domain [0,1] are recorded in Table II which shows the
superiority of the proposed method over the described method
in [17]. (Note that in [17], 100 equidistant points are used for
training and the maximum absolute error shown in [17, Fig 17]
is approximately 5 × 10−1).

Problem 5.6: Consider the following second order ODE with
time-varying input signal [16, Problem 3] :

d2

dt2
y(t) +

1

5

d

dt
y(t) + y(t) = −

1

5
e(−t/5) cos(t),

y(0) = 1, y′(0) = 1.

Ten equidistant points in the interval [0,2] are used for the
training process. The analytic solution and the obtained solution
by the proposed method are shown in Fig 3(b). The obtained
absolute errors for points inside and outside the domain [0,2]
are tabulated in Table II, which again shows the improvement
of the proposed method over the described method in [16].
(Note that in [16, Fig 4] the maximum absolute error outside
the domain [0, 2] is 8 × 10−4).

Problem 5.7: Consider the following singular second order
ODE which has no analytical closed form solution [26, Example
1]:

d2

dt2
y(t) +

1

t

d

dt
y(t) −

1

t
cos(t) = 0, y(0) = 0, y′(0) = 1.

Exact solution: y(t) =

∫ t

0

sin(x)

x
dx.

Ten equidistant points in the interval [0,1] are used as training
points and the obtained result are shown in Fig 3(c) and recorded
in Table II. The obtained maximum absolute error outside the
domain [0, 1] is 6.51 × 10−2 which is smaller than 14 × 10−1

shown in [26, Fig 6].
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Fig. 3. (a) Numerical results for Problem 5.5. Ten equidistant points in [0,1] are used for training, (b) Numerical results for Problem 5.6. Ten equidistant points
in [0,2] are used for training. (c) Numerical results for Problem 5.7. Ten equidistant points in [0,1] are used for training.

TABLE I
NUMERICAL RESULTS OF THE PROPOSED METHOD FOR SOLVING PROBLEMS 5.2, 5.3

AND 5.4.

Problem Domain ‖y − ŷ‖∞ MSE STD

5.2 Inside 4.56 × 10−3 1.47 × 10−6 1.16 × 10−3

Outside 4.62 × 10−1 3.85 × 10−2 1.56 × 10−1

5.3 Inside 5.43 × 10−3 8.94 × 10−6 1.60 × 10−3

Outside 8.46 × 10−2 1.49 × 10−3 2.27 × 10−2

5.4 Inside 1.46 × 10−4 8.15 × 10−9 3.90 × 10−5

Outside 6.76 × 10−2 5.53 × 10−4 2.20 × 10−2

Note: MSE is the mean squared error and STD is the stand deviation.

TABLE II
NUMERICAL RESULTS OF THE PROPOSED METHOD FOR SOLVING PROBLEMS 5.5, 5.6

AND 5.7.

Problem Domain Variable ‖y − ŷ‖∞ MSE STD

5.5 Inside y 1.14 × 10−6 4.16 × 10−13 6.43 × 10−7

y′ 4.81 × 10−5 6.78 × 10−11 8.21 × 10−6

Outside y 4.20 × 10−2 2.64 × 10−4 1.26 × 10−2

y′ 1.00 × 10−1 3.27 × 10−3 3.87 × 10−2

5.6 Inside y 5.88 × 10−6 1.49 × 10−11 1.63 × 10−6

y′ 7.34 × 10−6 2.18 × 10−11 3.28 × 10−6

Outside y 3.96 × 10−4 2.39 × 10−8 1.19 × 10−4

y′ 5.15 × 10−4 7.11 × 10−8 1.74 × 10−4

5.7 Inside y 6.64 × 10−9 2.01 × 10−16 4.07 × 10−9

y′ 8.41 × 10−8 1.30 × 10−15 3.59 × 10−8

Outside y 6.51 × 10−2 3.90 × 10−4 1.65 × 10−2

y′ 7.80 × 10−2 7.31 × 10−4 2.15 × 10−2

Note: MSE is the mean squared error and STD is the stand deviation.

C. Sensitivity of the solution w.r.t the parameter

In order to illustrate the sensitivity of the result with respect
to the parameter of the model (σ), for two examples we
have plotted the MSE, on the validation set, versus the kernel
bandwidth on logarithmic scales in Fig 4. From this figure, it
is apparent that there exist a range of σ for which the MSE on
the validation set is quite small.

D. Large interval

Let us consider problem 5.1 when the time interval is [0, 105].
It is known in advance that the solution of this problem is
oscillating. The problem is solved by decomposing the given
domain of interest into S sub-domains. Then the problem is
solved on each sub-domain using N number of local collocation
points. The execution time and the mean square error (MSE) for
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Fig. 4. Sensitivity of the obtained result with respect to model parameter σ.
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10
(MSE) vs. log

10
σ is plotted for Problems 5.2 and 5.6.

the training and test sets

MSEtrain =

∑N×S
i=1 (y(ti) − ŷ(ti))

2

N × S
,

MSEtest =

∑M
i=1(y(ti) − ŷ(ti))

2

M
,

where N × S is the total number of collocation points and
M is the total number of test points over the interval [0, 105],
are tabulated in Table III. The test set is the same for all the
cases and it consists of M = 5 × 105 points. It is apparent
that when S is fixed and N increases, the accuracy is improved
whereas the execution time is increased. The same pattern is
observed when N is fixed and S increases. Fig 5 (a) and (b)
show the residual error et = y(t) − ŷ(t) when Problem 5.1 is
solved over the interval [0, 105], using N = 50 local collocation
points, S = 5000 sub-domains and N = 500, collocation points,
S = 500 sub-domains respectively. It should be noted that the
result depicted in Fig. 5(a) is obtained much faster than that
shown in Fig. 5(b).

In Table IV, we analyze the situation where the total number
of collocation points i.e. N ×S in the given interval [0, 4000] is
fixed. It can be seen that as the number of sub-domains increases
(number of collocation points in each sub-domain increases)
the computational time decreases without losing the order of
accuracy. In this case the test set consists of M = 2 × 104

points.

VII. CONCLUSION AND FUTURE WORK

In this paper, a new method based on least squares support
vector machines is developed for solving general linear m-th
order ODEs and also first order nonlinear ODE. On the tested
problems the method proposed in this paper is more efficient
compared to methods described in [16] and [17]. Also the
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TABLE III
NUMERICAL RESULT OF THE PROPOSED METHOD FOR SOLVING PROBLEM 5.1 WITH

TIME INTERVAL [0, 105]. N IS THE NUMBER OF LOCAL COLLOCATION POINTS AND S

IS THE NUMBER SUB-DOMAINS.

MSE
N S CPU time Training Test

20 1000 5.5 2.4 × 10−2 7.2 × 10−2

2000 10.6 1.3 × 10−3 3.3 × 10−3

5000 29.5 8.4 × 10−8 2.3 × 10−7

30 1000 6.6 2.2 × 10−2 5.9 × 10−2

2000 13.4 4.1 × 10−6 1.3 × 10−5

5000 37.1 8.2 × 10−9 2.7 × 10−8

40 1000 9.6 5.8 × 10−4 1.4 × 10−3

2000 20.1 1.7 × 10−7 5.8 × 10−7

5000 54.2 2.3 × 10−9 8.1 × 10−9

Note: The execution time is in seconds.
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Fig. 5. (a) Residual y(t) − ŷ(t) when problem 5.1 is solved on the interval
[0, 105], by using 5000 sub-intervals and 50 local collocation points. (b)
Obtained residual y(t)− ŷ(t) for the same problem by using 500 sub-intervals
and 500 local collocation points.

proposed method is able to solve a differential equation for
a large time interval while predicting the solution with high
accuracy.

The proposed method may be extended to solve a system of
ordinary differential equations and partial differential equations
which can be considered as future challenges.
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