
Software framework for robot application development:
a constraint-based task programming approach

Dominick Vanthienen, Tinne De Laet, Joris De Schutter, Herman Bruyninckx

I. INTRODUCTION

When creating a new robot application, how many tasks
and platforms are involved that are similar or the same to
the ones you used before? Wouldn’t it be easy if you could
reuse the related parts of the software with minor effort?

In order to address this need, two things are required:
first a systematic approach for the specification of tasks,
and second a modular software framework. The instanta-
neous Task Specification and estimation using Constraints
(iTaSC) methodology [2] fulfills the first requirement. This
paper presents the iTaSC software framework that fulfills the
second requirement.

The iTaSC methodology is a generalization of constraint-
based programming that introduces particular sets of auxil-
iary coordinates to express task constraints and model geo-
metric uncertainty. iTaSC composes multiple tasks, involving
robots and objects, into a composite task using weights and
priorities. It further describes a composite task as an opti-
mization problem consisting of a set of constraints, possibly
expressed in different spaces (different reference frames), and
one or more objective functions. Solving the optimization
problem results in the desired joint values, which are sent
to the lower-level robot controllers and hardware, e.g. joint
velocities or accelerations. The iTaSC methodology results
in a structured workflow to create constraint-based programs
for robot applications [3].

The software framework presented in this paper allows a
developer to implement an application following the work-
flow of the iTaSC methodology. In order to obtain modularity
and hence reusability, the software framework divides the
software needed for an application along two ‘orthogonal
directions’: (i) First, it separates the concerns following the
principle of the 5C’s [4]–[6] separating the communication,
computation, coordination, configuration, and composition
functionality; (ii) Second, it regards a robot application at
three levels: application, iTaSC, and task level, each of which
consist of several components.

The application level includes the iTaSC level, as well
as other parts that are outside the iTaSC formalism. The
iTaSC level consists of the elements that form an iTaSC
specification, and includes the task level, which consists of
the functionalities that together form a single task.

All authors are with the Department of Mechanical
Engineering, KU Leuven, Belgium. Corresponding author:
dominick.vanthienen@mech.kuleuven.be

II. METHODS

This section describes the different parts of the iTaSC
software framework.

A. Computation

The following paragraphs explain the levels. Each level
can be regarded as a composite component, as shown in
figure 1. The implementation of the described component
layout uses the Orocos component framework [7].

The application level components include:
• Drivers deliver hardware interfaces.
• Setpoint generators deliver desired values for the con-

trollers of iTaSC.
The iTaSC level consists of the following components:
• Robots and objects contain the kinematic and dynamic

models of the robots and objects involved in a robot
application. Robots, unlike objects, have controllable
degrees-of-freedom (DOF). Their coordinates are de-
noted q.

• The task level tasks, as explained in the next paragraph.
• The solver is the component that solves the optimization

problem consisting of a set of task constraints and one
or more objective functions, resulting in the desired
values for the low-level robot controllers.

• The scene forms the core of the iTaSC composite
component, keeping track of the position of the robots
and objects in the scene, and between which object
frames the tasks are defined.

At task level, a task consists of two components:
• The Virtual Kinematic Chain (VKC) contains the model

of the space between pairs of object frames, defined
on robots and objects. It calculates the state of the
VKC, the auxiliary (feature) coordinates χf , which are
required by the constraint-controller.

• The Constraint-Controller (CC) implements the output
equation y = f(χf , q) and the control law that enforces
the desired setpoint on the output.

In order to ensure modularity and reusability the compo-
nents at iTaSC and task level have a fixed structure and port
interface, inherited from a base class per type.

B. Coordination

Each level has a state machine that coordinates the be-
havior at that level. These state machines share the same
structure, as shown in figure 2. Each state can be a state
machine on its own, as shown for the Run state. Together the
state machines of all levels form a hierarchical state machine.



Scene Description

Constraint - Controller (CC)

Virtual Kinematic Chain (VKC)

Task

Driver

Hardware

iTaSC

Application

Scene
Robot

Object

Solver

Setpoint Generator

Fig. 1. Computation component layout using sysML flow ports [1]. Stacked boxes refer to possibly multiple components of that type.

These state machines are pure event processors, indepen-
dent of the software component framework used. They are
modeled in rFSM [6], a light-weight, Lua-based statechart
model and use the rFSM Orocos framework implementation.
Each state machine is loaded in a supervisor component.
The supervisor communicates the events of the state machine
with the components of that level, and the supervisors of the
lower- and higher-level.

C. Configuration, communication and composition

Each of the other concerns needs configuration. The
configuration is stored in xml format files and loaded at
configuration time.

Ports of the Orocos component framework communicate
data and events.

The composition is divided in two parts: a first script
itasc composition describes the iTaSC and task level
composition, and a second script composes the components
at application level.

III. EXPERIMENTS

An iTaSC application is scalable in terms of number
of tasks, robots and objects. An experiment validates this
scalability, the modularity, and the reusability. To this end a
new application was built consisting of a solver, tasks, robots,
and objects already used in earlier published work, such
as the human-robot co-manipulation presented at SYROCO
in 2012 [3]. The software of the framework and videos of
experiments can be found on [8].

IV. CONCLUSIONS

This paper presents a modular software framework for
constraint-based programming of robot applications, based
on the iTaSC methodology. In order to achieve modularity
and reusability, it separates concerns following the 5C’s
approach and separates each of the concerns in independent
parts. The paper further presents a reference implementation
using the Orocos component framework and rFSM state
charts. An experiment validates the scalability, modularity,
and reusability.

Future work includes the further decoupling of the iTaSC
methodology to a software framework independent library,
as well as the development of a Domain Specific Language
(DSL) that models an iTaSC based robot application. The

Configure

Stop Start

Run

Fig. 2. General structure of a finite state machine.

DSL will result in an application, soft-and hardware inde-
pendent programming language for robotics.

ACKNOWLEDGMENT
All authors gratefully acknowledge the financial support

by the Flemish FWO project G040410N, KU Leuven’s Con-
certed Research Action GOA/2010/011, and European FP7
projects RoboHow (FP7-ICT-288533), BRICS (2008-ICT-
231940), and Rosetta (2008-ICT-230902). Tinne De Laet is
a PostDoctoral Fellow of the Research Foundation - Flanders
(FWO) in Belgium.

REFERENCES

[1] Object Management Group, “OMG,” http://www.omg.org.
[2] J. De Schutter, T. De Laet, J. Rutgeerts, W. Decré, R. Smits, E. Aert-

beliën, K. Claes, and H. Bruyninckx, “Constraint-based task specifica-
tion and estimation for sensor-based robot systems in the presence of
geometric uncertainty,” Int. J. Robotics Research, vol. 26, no. 5, pp.
433–455, 2007.

[3] D. Vanthienen, T. D. Laet, W. Decré, H. Bruyninckx, and J. D. Schutter,
“Force-sensorless and bimanual human-robot comanipulation,” in 10th
IFAC Symposium on Robot Control (SYROCO), vol. 10, Dubrovnik,
Croatia, September, 5–7 2012.

[4] M. Radestock and S. Eisenbach, “Coordination in evolving systems,” in
Trends in Distributed Systems. CORBA and Beyond. Springer-Verlag,
1996, pp. 162–176.

[5] E. Prassler, H. Bruyninckx, K. Nilsson, and A. Shakhimardanov,
“The use of reuse for designing and manufacturing robots,”
Robot Standards project, Tech. Rep., 2009, http://www.robot-
standards.eu//Documents RoSta wiki/whitepaper reuse.pdf.

[6] M. Klotzbuecher and H. Bruyninckx, “Coordinating robotic tasks and
systems with rFSM Statecharts,” J. Software Engin Robotics, vol. 3,
no. 1, pp. 28–56, 2012.

[7] H. Bruyninckx and P. Soetens, “Open RObot COntrol Software (ORO-
COS),” http://www.orocos.org/, 2001, last visited March 2013.

[8] D. Vanthienen, T. De Laet, R. Smits, and H. Bruyninckx, “itasc
software,” http://www.orocos.org/itasc, 2011, last visited March 2013.


