
ANNUAL JOURNAL OF ELECTRONICS,  2013,  ISSN 1314-0078 

72 

Comparing Dual-Core SMP/AMP Performance on a 
Telecom Architecture 

 
Nico De Witte, Robbie Vincke, Sille Van Landschoot, Eric Steegmans and 

Jeroen Boydens 
 

Abstract – In the embedded world, symmetric multiproces-
sing architectures are currently most popular, however more 
embedded hardware platforms are being developed with 
asymmetric multiprocessor architectures. These may enable 
higher performance and provide cleaner separation of subsys-
tems. Telecom applications are typically designed applying a 
planar architecture pattern. The goal of our experiments is to 
compare the performance and cross-plane influence in dual-
core symmetric and asymmetric multiprocessing environ-
ments. Next to a pronounced performance difference, a cross-
influence between the different planes has been verified. 
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I. INTRODUCTION 

 
 While high performance computers and personal com-
puters are already benefiting from multi-core processors, 
the transition from singlecore to multi-core processors is 
still in progress for embedded systems. Moore's Law [1] 
which states that every 18 months the number of transistors 
on a single chip doubles, is reaching its physical limits. On 
the other hand, Amdahl's Law [2], which shows that the 
performance of parallel software can be increased by rais-
ing the number of processor cores, is becoming more and 
more important. Multi-core software is harder to manage 
and requires a different development approach. The in-
creasing demand for functionality and higher performance 
of embedded applications pushes these singlecore systems 
towards multi-core systems [3]. 
 When migrating software from a singlecore to a mul-
ti-core environment, a hierarchical design pattern ap-
proach [4] depicted in  
FIGURE 1 can be used. 

 
 

FIGURE 1. PARALLEL DESIGN PATTERN HIERARCHY 
 Section II describes typical telecom and multi core archi-
tectures. In Section III gives an overview of the most im-
portant characteristics of the test platform. Section IV de-
scribes the test setup. Next, Section V gives an overview of 
the different tests, while Section VI lists the test results. 
Section VII describes possible future experiments. Finally, 
a conclusion is formulated in Section VIII based on our test 
results. 
 

II. BACKGROUND 
 
A. Telecom Applications 
 
 Typically telecom systems are designed applying a pla-
nar architecture pattern [5], as shown in  
FIGURE 2. On a lower level this is based on the Task Decom-
position pattern [6]. Software is divided into different 
planes based on their processing requirements. 
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FIGURE 2. TELECOM NETWORK PLANES 
 

 The management plane (MP) is responsible for the gen-
eral management of the system (handling alarms, counters, 
etc.). The control plane (CP) contains several functions 
concerning communication initialization, such as codec 
negotiation. The user plane (UP) provides the actual data 
processing and packet forwarding. 
 Non-functional requirements, such as high throughput 
and low latency, are extremely critical in case of the user 
plane. The control plane is less critical in terms of latency. 
Performance requirements for the management plane are 
even less stringent. Small execution delays are acceptable. 
 
B. Multi-Core Architectures 
 
 A typical multi-core system is build using a symmetric 
multiprocessing (SMP) architecture [7], consisting of a 
single operating system (OS) managing all processor cores. 
This setup gives good hardware abstraction and allows for 
easy system management while providing integrated core 
load balancing. 
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 On the other hand an asymmetric multiprocessing (AMP) 
architecture allows each processor core to run its own in-
stance of an operating system. Different cores can run dif-
ferent operating systems or even run only a baremetal ap-
plication (freestanding). This way, legacy singlecore appli-
cations can be reused and run in full isolation without need 
for refactoring or redesign to perform migration from a 
singlecore system to a multi-core system. Whenever appli-
cations running on different cores need communication 
facilities inter-core communication (ICC) techniques such 
as message passing are required. A specific API such as 
MCAPI (Multi-Core Communications Application Pro-
gramming Interface) [8] may be required. 
 

III. PLATFORM 
 
 For our experiments we used a Freescale P2020RDB 
based platform with a dual-core P2020 system-on-chip 
(SoC) communications processors of the QorIQ family. 
 The P2020 CPU contains two identical Power Architec-
ture e500v2 cores each equipped with 32KB instruction and 
data cache. Next to their own L1 cache, the SoC also con-
tains 512KB shared L2 cache. 
 

IV. TEST SETUP 
 
A. Tools 
 
 The primary tool used in the different test setups is Ip-
erf [9]. A popular tool for testing network performance. 
Iperf is capable of generating as well UDP as  TCP packets, 
while allowing to measure bitrate and packet rate with dif-
ferent payload sizes. 
 
B. Test Automation 
 
 The most important requirements of testing are repeat-
ability and consistency. Because of these requirements we 
decided to work with automated tests. Next to consistency, 
test automation also minimizes test setup errors and lessens 
the need for human interaction while allowing faster result 
analysis. 
 Several performance characteristics such as packet rate, 
bitrate, CPU usage, interrupt rate, ... have to be measured 
on different devices. Therefore the test scripts were written 
in Python, a platform independent scripting language. The 
test scripts were modeled following a client-server architec-
ture [10]. 
 The statistics measured are retrieved directly from kernel 
mapped files instead of using output from system tools such 
as vmstat or mpstat. This minimizes overhead during proc-
ess startup and teardown. 
 
C. Data Terminal Equipment 
 
 For all tests the device under test (DUT) was placed 
between a packet generator device (data terminal equipment 
or DTE) and a packet sink device (DTE). 
 In order to get maximum performance out of the DTEs 
power management and dynamic CPU frequency scaling 
were disabled. Send and receive socket buffer sizes were 

increased to support maximum bitrates. Ethernet interfaces 
were configured to support MTUs (Maximum Transmission 
Unit) up to 9000 bytes (also known as Jumbo Frames [11]). 
 To maximize the throughput of the DTEs the test tools 
(such as Iperf) were scheduled [10] with raised extended 
scheduler priorities, available in Linux [12]. 
 

V. MEASUREMENTS 
 
A. Packet Processing Levels 
 
 Our first setup, further called the kernel space routing 
setup, shown in  
FIGURE 3, allows the device under test to perform the routing 
function by enabling IPv4 packet forwarding. This func-
tionality is fully embedded in the Linux kernel and does not 
require the packet payload to be brought to user space. 
Therefore the results of these tests served as a reference for 
the performance capabilities of the system. 
 

 
 

FIGURE 3. KERNEL SPACE ROUTING TEST SETUP 
 

 The second test setup, called the user space passthrough, 
was based on practical telecom applications. For these tests 
a user plane application was written in C to bring the pay-
load data to user space, process it and forward it to the end 
DTE, as depicted in  
FIGURE 4. The user space passthrough application only for-
wards traffic from the ingress interface to the egress inter-
face. Therefore, a return link for Iperf was created from the 
sink DTE to the generator DTE. 
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FIGURE 4. USER SPACE PASSTHROUGH TEST SETUP 
 
 To test cross-plane influence between user plane applica-
tions and management plane applications the response time 
of a computational intensive CGI script was measured in 
both test configurations. This allowed us to determine the 
effect of a heavy loaded user plane on the performance of 
the management plane and vice versa. 
 
B. Dual-Core SMP 
 
 In the dual-core SMP case all hardware components were 
assigned to a single operating system, as shown in Figure 5. 
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This allowed the operating system to manage all hardware 
and schedule processes as needed. 
 

 
FIGURE 5. DUAL-CORE SMP SYSTEM 

 The user plane packet processing was handled by the 
kernel space routing process or by the user space 
passthrough program. The management plane was in turn 
emulated by the CGI script. All tests were run with Ethernet 
interrupt priorities divided between the available cores [10]. 
 
C. Dual-Core AMP 
 
 In the dual-core AMP case the goal was to isolate the 
user plane from the control and management plane applica-
tions, minimizing the chance of cross-plane influence ef-
fects. All hardware components were divided between the 
available operating systems. Each operating system repre-
sented a different plane and was hosted on a separate core. 
 In case of the P2020RDB system used for this study 
however, there were only two cores available. One was 
used to host the user plane while the other core served the 
control and management plane as indicated in  
FIGURE 6. 

 
 

FIGURE 6. DUAL-CORE AMP SYSTEM 
 

VI. RESULTS 
 
 The first test results, shown in Figure 7, are these of the 
kernel space routing tests. The graph indicates the resulting 
throughput of the SMP and AMP systems in function of the 
payload size. In both cases the tests were conducted with 
and without management requests. The graph also shows 
the difference percentage between the SMP and AMP 
throughput without management requests. 

 The results indicate that the AMP system was not able to 
process as much packets per second as the SMP in case of 
smaller payloads. Once the payload became higher than 564 
bytes the AMP configuration was able to catch up to the 
SMP system. 

 
FIGURE 7. KERNEL SPACE ROUTING TEST RESULTS 

 The test results show no explicit cross-plane influence 
from the management plane to the user plane in case of 
SMP. There is however a noticeable performance differ-
ence for the AMP case. The introduction of the manage-
ment requests seem to have a negative effect on the 
throughput of the user plane application. 
 The next test results, given in  
FIGURE 8, are those from the user space passthrough con-
figuration. Again both systems (SMP and AMP) were 
tested with and without management requests. 

 
 

FIGURE 8. USER SPACE PASSTHROUGH TEST RESULTS 
 
 The throughput is a lot lower for both systems in case of 
smaller payloads (< 1064 bytes). The test results show that 
the throughput of the SMP system is noticeably higher than 
that of the AMP system. SMP is almost able to utilize the 
full bandwidth, while the AMP setup seems to saturate at a 
bitrate of about 600Mb/s. 
 The AMP configuration displays a clear indication of 
cross-plane influence from the management plane to the 
user plane. Even while the applications were hosted on 
separate cores. 
 In case of the SMP system the load of the management 
plane has almost no impact on the throughput of the user 
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plane. The response time of the management requests does 
however suffer under the processing load of the user plane 
traffic, especially when the payload is processed in user 
space, as can be seen in  
FIGURE 9. In some cases the requests resulted in timeouts 
(60s in graph). 

 
 

FIGURE 9. SMP MANAGEMENT PLANE REQUEST TEST RESULTS 
 
 The cross-influence effect in the AMP configuration is 
even better pronounced when comparing the base response 
times of the management requests to the response times 
with user plane traffic processing, as was done in  
FIGURE 10. 

 
 

FIGURE 10. AMP MANAGEMENT REQUEST TEST RESULTS 
 

VII. FUTURE WORK 
 
 Both operating systems were isolated on separate cores in 
an AMP configuration. However, shared hardware re-
sources such as L2 cache and memory could introduce 
cross-plane influence effects. The exact cause of this effect 
could not be determined and requires further investigation. 
 Throughput and response time are important parameters, 
but so are delay and jitter, especially in a telecommunica-
tion system. These characteristics could not be accurately 
measured using Iperf and should be measured using an 
external hardware analyzer capable of high precision time-
stamping. 
 The throughput of the AMP user plane application may 
be increased by load balancing the application across mul-

tiple operating systems. This strategy was not implemented 
as we only had a dual-core platform at our disposal. 
 Typically the control plane monitors and configures the 
user plane. This was not implemented in this case study and 
would effectively require an ICC (Inter-Core Communica-
tion) API for the AMP configuration to enable communica-
tion between both planes. 
 

VIII. CONCLUSION 
 
 From the tests performed with the dual-core P2020RDB 
based platform it we conclude that in this case the dual-core 
SMP outperforms the dual-core AMP configuration. Espe-
cially when the telecommunication system requires user 
space traffic manipulation. This is due to the fact that in 
case of AMP only one core was available to process 
Ethernet interrupts and serve the user plane application. In 
case of SMP it was however crucial that Ethernet interrupt 
affinities and user plane process scheduling were modified 
based on the performance requirements of the system. 
 Cross-plane influence was present in both setups. While 
the SMP bitrate does not suffer under the extra management 
load, the AMP throughput did. This was not expected since 
both planes were handled by separated systems hosted on 
separated processor cores. The exact cause of this cross-
influence has not yet been determined up until this point, 
but is likely to be found with a shared resource such as L2 
cache or memory. 
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