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Abstract The ability to model search in a constraint solver can be an essential asset for solv-
ing combinatorial problems. However, existing infrastructure for defining search heuristics
is often inadequate. Either modeling capabilities are extremely limited or users are faced
with a general-purpose programming language whose features are not tailored towards writ-
ing search heuristics. As a result, major improvements in performance may remain unex-
plored.

This article introduces search combinators, a lightweight and solver-independent method
that bridges the gap between a conceptually simple modeling language for search (high-
level, functional and naturally compositional) and an efficient implementation (low-level,
imperative and highly non-modular). By allowing the user to define application-tailored
search strategies from a small set of primitives, search combinators effectively provide a
rich domain-specific language (DSL) for modeling search to the user. Remarkably, this DSL
comes at a low implementation cost to the developer of a constraint solver.

The article discusses two modular implementation approaches and shows, by empirical
evaluation, that search combinators can be implemented without overhead compared to a
native, direct implementation in a constraint solver.

Tom Schrijvers · Pieter Wuille
Universiteit Gent, Belgium
E-mail: {tom.schrijvers,pieter.wuille}@ugent.be

Guido Tack
National ICT Australia (NICTA) and Monash University, Victoria, Australia
E-mail: guido.tack@monash.edu

Pieter Wuille
Katholieke Universiteit Leuven, Belgium
E-mail: pieter.wuille@cs.kuleuven.be

Horst Samulowitz
IBM Research, New York, USA
E-mail: samulowitz@us.ibm.com

Peter J. Stuckey
National ICT Australia (NICTA) and University of Melbourne, Victoria, Australia
E-mail: pjs@cs.mu.oz.au



2 Tom Schrijvers et al.

1 Introduction

Search heuristics often make all the difference between effectively solving a combinato-
rial problem and utter failure. Heuristics make a search algorithm efficient for a variety of
reasons, e.g., incorporation of domain knowledge, or randomization to avoid heavy-tailed
runtimes. Hence, the ability to swiftly design search heuristics that are tailored towards a
problem domain is essential for performance. This article introduces search combinators, a
versatile, modular, and efficiently implementable language for expressing search heuristics.

1.1 Status Quo

In CP, much attention has been devoted to facilitating the modeling of combinatorial prob-
lems. A range of high-level modeling languages, such as OPL [31], Comet [29], or Zinc [14],
enable quick development and exploration of problem models. But there is substantially less
support for high-level specification of accompanying search heuristics. Most languages and
systems, e.g. ECLiPSe [20], Gecode [25], Comet [29], or MiniZinc [15], provide a set of pre-
defined heuristics “off the shelf”. Many systems also support user-defined search based on
a general-purpose programming language (e.g., all of the above systems except MiniZinc).
The former is clearly too confining, while the latter leaves much to be desired in terms of
productivity, since implementing a search heuristic quickly becomes a non-negligible effort.
This also explains why the set of predefined heuristics is typically small: it takes a lot of
time for CP system developers to implement heuristics, too – time they would much rather
spend otherwise improving their system.

1.2 Contributions

In this article we show how to resolve this stand-off between solver developers and users,
by introducing a domain-specific modular search language based on combinators, as well as
a modular, extensible implementation architecture.

For the user, we provide a modeling language for expressing complex search heuristics
based on an (extensible) set of primitive combinators. Even if the users are only pro-
vided with a small set of combinators, they can already express a vast range of combi-
nations. Moreover, using combinators to program application-tailored search is vastly
more productive than resorting to a general-purpose language.

For the system developer, we show how to design and implement modular combinators.
The modularity of the language thus carries over directly to modularity of the imple-
mentation. Developers do not have to cater explicitly for all possible combinator com-
binations. Small implementation efforts result in providing the user with a lot of expres-
sive power. Moreover, the cost of adding one more combinator is small, yet the return in
terms of additional expressiveness can be quite large.

We believe that there is potential for an additional group of beneficiaries, although this
still has to be proven in practice.

For the community, we propose that search combinators are an ideal starting point for a
standard search language. The reason is that they have a low implementation complex-
ity, and are not closely tied to the underlying solver architecture. Most CP systems have
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the ability to program arbitrary search, but in many cases this is an endeavour only for
experts, and for each new system one must learn a new way to build a search strategy.
Search combinators are expressive yet simple enough to add to a well-supported mod-
elling language like MiniZinc [15] giving us a basis for a search language supported by
multiple systems.

The technical challenge is to bridge the gap between a conceptually simple search lan-
guage and an efficient implementation, which is typically low-level, imperative and highly
non-modular. This is where existing approaches are weak; either the expressiveness is lim-
ited, or the approach to search is tightly tied to the underlying solver infrastructure.

The contribution is therefore the novel design of an expressive, high-level, composi-
tional search language with an equally modular, extensible, and efficient implementation
architecture.

1.3 Approach

We overcome the modularity challenge by implementing the primitives of our search lan-
guage as mixin components [4]. As in Aspect-Oriented Programming [10], mixin compo-
nents neatly encapsulate the cross-cutting behavior of primitive search concepts, which are
highly entangled in conventional approaches. Cross-cutting means that a mixin component
can interfere with the behavior of its sub-components (in this case, sub-searches). The com-
bination of encapsulation and cross-cutting behavior is essential for systematic reuse of
search combinators. Without this degree of modularity, minor modifications require rewrit-
ing from scratch.

An added advantage of mixin components is extensibility. We can add new features to
the language by adding more mixin components. The cost of adding such a new component
is small, because it does not require changes to the existing ones. Moreover, experimental
evaluation bears out that this modular approach has no significant overhead compared to the
traditional monolithic approach. Finally, our approach is solver-independent and therefore
makes search combinators a potential standard for designing search.

This article is an extended version of a paper [22] that appeared in the proceedings of the
17th International Conference on Principles and Practice of Constraint Programming (CP)
2011. That paper further developed the ideas laid out in our earlier paper [19], which was
presented at ModRef 2010.

1.4 Plan of the Article

The rest of the article is structured as follows. The next section discusses the motivation and
challenges involved in defining search combinators. Sect. 3 defines the high-level search
language in terms of basic heuristics and combinators. Sect. 4 shows how the modular lan-
guage is mapped to a modular design of the combinator implementations. Sect. 5 presents
two concrete implementation approaches for combinators and gives an overview of how we
integrate search combinators into the MiniZinc toolchain. Sect. 6 verifies that combinators
can be implemented with low overhead. Finally, Sect. 7 discusses related approaches, and
Sect. 8 concludes the article.
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2 Background and Motivation

This section motivates the need for a search language, gives an overview of our approach,
the main challenges and contributions, and introduces some terminology used in this article.

2.1 Problems and Importance

Choosing a good search heuristic is an important aspect of solving many combinatorial
problems, and many works in the literature are devoted to designing and evaluating search
heuristics. Despite this awareness, most CP systems offer relatively little support for search
heuristics. They usually offer one or both of the following two options.

1. The system offers a small number of predefined search heuristics.
2. The system offers users a general purpose programming language (e.g., C++ or Prolog)

to program their own search heuristics.

Systems that combine both approaches are, for instance, Gecode and many CLP sys-
tems (e.g., ECLiPSe [20] or B-Prolog [33]). The former provides a few search engines and
branchers and allows the user to program new ones in C++. The latter provide a limited set
of search heuristics and enable the programmer to write their own search from scratch in
Prolog.

Both approaches have substantial disadvantages. The first one puts a substantial imple-
mentation burden on the system developer. Implementing and maintaining a new search
heuristic is a non-negligible task. This means that there is often little incentive for providing
more than a handful of the most commonly used search heuristics. This is of course very
confining for the system’s users. Novice and intermediate users are not aware of potentially
better alternatives than what the system offers and expert users simply do not access them.
The second approach fares little better. It puts the burden on the user. Clearly, implementing
their own search heuristics is beyond novice users, and poses a high threshold for interme-
diate users as well. Even for expert users, implementing a new search heuristic can be a
time-consuming activity.

Both approaches hamper widespread adoption and reduce the potential impact of (even
established) research results. Moreover, they prevent a wide range of search heuristics being
considered and evaluated for a particular constraint problem. Hence, feasible or better solu-
tions are potentially not found. Moreover, models that rely on particular search heuristics,
are not portable across systems and, based on the current state-of-the-art, standardization of
search support is not to be expected in the near future. This exacerbates a general issue that
users face. If they need two uncommon system features (e.g., particular global constraints
or search heuristics) for solving their model, they often cannot find a system that provides
both and have to make do with a suboptimal solution.

In summary, the high cost of developing and maintaining search heuristics has far-
reaching consequences for many CP systems and users.

2.2 Approach

The general objective of search combinators is to reduce the effort of developing imple-
mentations of search heuristics. For that purpose, the search combinators approach applies
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well-known and widely researched tools from the fields of programming languages and soft-
ware engineering: modularity and reuse. Modularity means that different aspects of a system
can be developed (implemented, compiled, maintained) independently in software artifacts
called modules or components. Components interact with one another through well-defined
interfaces. If interfaces are sufficiently general and the means to compose components into
systems are sufficiently flexible, the same component can be reused in different configura-
tions to build different systems.

The above tools are obviously very abstract and apply to software systems in general.
The key challenge is to make them concrete in the setting of the paper, search heuristics.
Obviously, this paper is not the first to have observed the above problems and applied ideas
of modularity and reuse to it. The essential difference lies in the degrees of granularity and
orthogonality of modules. This paper provides a finer degree of modularity and a higher
degree of orthogonality. Finer granularity means that modules are smaller, which lowers
development and maintenance cost, and they capture more fine-grained concepts, which
increases their potential for reuse and increases the number of meaningful configurations
that can be built from the same number of given modules. Increased orthogonality means
that the dependency on other system aspects is decreased, which lowers the effort of porting
modules between systems and increases again the number of possible configurations that
can be obtained with little effort.

A particularly important form of modularity that search combinators practice is compo-
sitionality. Compositionality means building a new component that implements a particular
interface from other components that implement the same interface. If the logic of such a
composition can be encapsulated in a separate component, that component is called a com-
binator. 1 Search combinators are combinators for building search heuristics. Combinators
are very attractive for two reasons.

1. Theoretically, a system with n different roles and m different components implementing
each role has mn different possible configurations. If we consider only a single role, then
m components yield only m different configurations.
However, when components are compositional, we need only a few primitive compo-
nents and a few combinators to obtain an infinite number of possible configurations.
While in practice the number of useful combinations is clearly not infinite, m composi-
tional components are much more cost-effective than non-compositional ones.

2. By encapsulating the logic of combining components into combinators, the configura-
tion of components becomes very easy. This means concretely that users can be gradu-
ally exposed to search heuristics: novices only use predefined configurations, intermedi-
ate users construct their own configurations, while expert users write new components.
Note that by leveraging compositionality, even this last aspect becomes easier: only the
missing functionality needs to be written, while existing functionality can be added by
composition.
An interesting result of combinators is that, with a little syntactic support, they have
the look and feel of a special-purpose programming language, also known as a domain-
specific programming language (DSL). The notable difference from traditional approaches
to programming language design is the modularity. Traditional languages are designed
and implemented as a whole, while the combinator approach is inherently extensional.
This means that adding a new “language feature” has a very low cost, as it does not
affect the implementations of the existing ones.

1 Combinator is a term from functional programming; in object-oriented programming it is known as the
Composite design pattern.
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2.3 Technical Challenges and Contributions

Many previous works (e.g., Perron [16], IBM ILOG CP Optimizer, and Comet [29]) have
realized that modularity and compositionality are key features for supporting CP tree search.
In fact, nearly all systems, even the traditional CLP systems, offer two basic combinators:
conjunction and disjunction. However, beyond that, there are few other combinators pro-
vided. Moreover, the general thrust is towards modularity only: a “textbook” search heuristic
is written from scratch in a single module and can be reused many times. Finally, the design
details of existing approaches are closely tied to a particular implementation platform and
CP system, or simply not given (e.g., for closed-source systems).

The main contribution of this paper is a modular design that factorizes search heuristics
into finer-grained less interdependent components than existing approaches. Arriving at such
a highly compositional design is also the main technical challenge.

Although it is not always obvious, many search heuristics have common aspects that
have a potential of being factorized out. For instance, iterative deepening, limited discrep-
ancy search and restarting branch-and-bound and dichotomic search all share the aspect of
repeatedly restarting their search. The reason why such commonality is not always appar-
ent, and also why it is technically challenging to factor it out, is that their code is intermixed
with that of other aspects of the search heuristics and not easily disentangled. In software
engineering terms, such aspects are called cross-cutting. Obviously all existing systems can
express in some way or another all search heuristics, the essential question here is whether
they do so with the same degree of factorization. This paper claims that it goes further than
existing work: Section 3 presents a set of search combinator components and shows how
they can be combined into a range of well-known search heuristics, Section 4 explains the
underlying modular design of the components and Section 7 provides a detailed comparison
with related work.

The degree of orthogonality is another important aspect. The search combinator ap-
proach makes minimal assumptions on the other aspects of the system or the underlying
implementation platform.2 This means that it can be integrated with relatively little effort in
many existing systems and on many different platforms.3 For different systems on the same
implementation platform, it is often even possible to share the same search combinators im-
plementation. Moreover, if multiple systems implement the search combinator approach on
different platforms, it becomes easy to exchange definitions of search heuristics. In contrast,
existing approaches do not consider the benefits of orthogonality and explicitly target only
a single system. To support these claims, Section 5 summarizes different implementations
of the search combinator approach and Section 6 shows that these implementations have
competitive performance.

2.4 Scope and Terminology

The words “search” and “search heuristic” are generally highly overloaded. In this paper
they have a particular meaning.

Firstly, the kind of search that search combinators address is CP tree search. There are
other important forms of CP search like local search and large neighborhood search. Each
kind of search has its own strengths and weaknesses and for that reason some CP systems,
like Comet, offer multiple forms of search.

2 E.g., first-class continuations like those used in Comet are not needed.
3 E.g., on top of Comet continuations and Search Controllers.
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s ::= prune | ifthenelse(cond,s1,s2)
prunes the node perform s1 until cond is false, then perform s2

| base_search(vars,var-select,domain-split) | and([s1,s2, . . . ,sn])
label perform s1, on success s2 otherwise fail, . . .

| let(v,e,s) | or([s1,s2, . . . ,sn])
introduce new variable v with perform s1, on termination start s2, . . .
initial value e, then perform s | portfolio([s1,s2, . . . ,sn])

| assign(v,e) perform s1, if not exhaustive start s2, . . .
assign e to variable v and succeed | restart(cond,s)

| post(c,s) restart s as long as cond holds
post constraint c at every node during s

Fig. 1: Catalog of primitive search heuristics and combinators

Secondly, the word search heuristic refers to varying aspects of the dynamic traversal of
a CP tree. Search combinators distinguish three different aspects:

1. The labeling strategy is concerned with splitting a node of the search tree into child
nodes to enable further propagation on a set of constraint variables. Because it has a
significant impact on the efficiency of search, labeling has already been widely studied
in the literature and is often factored into variable and value selection strategies.
This paper considers labeling strategies as primitive search heuristics, and builds on
established results for them. As such, their particulars are not important for this paper.

2. The queueing strategy is concerned with the selection of a previously generated node of
the search tree for further expansion. The best known and most widely applied queueing
strategy is depth-first search. Alternatives are breadth-first search and best-first search.
This paper is not concerned with the choice of a particular queueing strategy. The main
point of interest is that search heuristics are orthogonal to the choice of queueing strat-
egy. This means that a system is free to choose it or leave that choice to the user.

3. The search heuristic proper is a controlling entity on top of one or more labeling strate-
gies. It decides what nodes is processed by what labeling strategy, what node is pro-
cessed again in possibly altered circumstances, and what node is not processed at all
(i.e., is pruned). As parts of its business, it keeps track of all manner of information of
the search process.

It is this last notion that is the central topic of interest of this paper.
Note that traditionally known search heuristics are made up of two or three of the above

concepts. For instance, the traditional notion of limited discrepancy search (LDS) combines
a specific queueing strategy with a control aspect that repeatedly expands a search tree from
the root in a particular pattern. Search combinators enable the control aspect of LDS to be
defined as a search heuristic and to be used with other queueing strategies.

3 High-Level Search Language

This section introduces the syntax of our high-level search language and illustrates its ex-
pressive power and modularity by means of examples. The rest of the article then presents
an architecture that maps the modularity of the language down to the implementation level.

The search language is used to define a search heuristic, which a search engine applies
to each node of the search tree. For each node, the heuristic determines whether to continue
search by creating child nodes, or to prune the tree at that node. The queuing strategy, i.e., the
strategy by which new nodes are selected for further search (such as depth-first traversal), is
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determined separately by the search engine, it is thus orthogonal to the search language. The
search language features a number of primitives, listed in the catalog of Fig. 1. These are
the building blocks in terms of which more complex heuristics can be defined, and they can
be grouped into basic heuristics (base_search and prune), combinators (ifthenelse, and, or,
portfolio, and restart), and state management (let, assign, post). This section introduces the
three groups of primitives in turn.

For many users, the given primitives will represent a simple and at the same time suffi-
ciently expressive language that allows them to implement complex, problem-specific search
heuristics. The examples in this section show how versatile this base language is. However,
we emphasize that the catalog of primitives is open-ended. Advanced users may need to add
new, problem-specific primitives, and Sect. 4 explains how the language implementation
explicitly supports this.

The concrete syntax we chose for presentation uses simple nested terms, which makes
it compatible with the annotation language of MiniZinc [15]. Sect. 5.3 discusses our imple-
mentation of MiniZinc with combinator support. However, other concrete syntax forms are
easily supported (e.g., we support C++ and Haskell).

3.1 Basic Heuristics

Let us first discuss the two basic primitives, base_search and prune.

base_search. The most widely used method for specifying a basic heuristic for a constraint
problem is to define it in terms of a variable selection strategy which picks the next variable
to constrain, and a domain splitting strategy which splits the set of possible values of the
selected variable into two (or more) disjoint sets. Common variable selection strategies are:

– firstfail: select the variable with the smallest current domain,
– smallest: select the variable which can take the smallest possible value,
– domwdeg [2]: select the variable with smallest ratio of size of current domain and num-

ber of failures the variable has been involved in, and
– impact [18]: select the variable that will (based on past experience) reduce the raw search

space of the problem the most.

Common domain splitting strategies are:

– min: set the variable to its minimum value or greater than its minimum,
– max: set the variable to its maximum value or less than its maximum,
– median: set the variable to its median value, or not equal to this value, and
– split: constrain the variable to the lower half of its range of possible values, or its upper

half.

The CP community has spent a considerable amount of work on defining and exploring
the above and many other variable selection and domain splitting heuristics. The provision
of a flexible language for defining new basic searches is an interesting problem in its own
right, but in this article we concentrate on search combinators that combine and modify
basic searches.

To this end, our search language provides the primitive base_search(vars, var-select,
domain-split), which specifies a systematic search. If any of the variables vars are still not
fixed at the current node, it creates child nodes according to var-select and domain-split as
variable selection and domain splitting strategies respectively.
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Note that base_search is a CP-specific primitive; other kinds of solvers provide their
own search primitives. The rest of the search language is essentially solver-independent.
While the solver provides few basic heuristics, the search language adds great expressive
power by allowing these to be combined arbitrarily using combinators.

prune. The second basic primitive, prune, simply cuts the search tree below the current
node. Obviously, this primitive is useless on its own, but we will see shortly how prune can
be used together with combinators.

3.2 Combinators

The expressive power of the search language relies on combinators, which combine search
heuristics (which can be basic or themselves constructed using combinators) into more com-
plex heuristics.

and/or. Probably the most widely used combination of heuristics is sequential composition.
For instance, it is often useful to first label one set of problem variables before starting to
label a second set. The following heuristic uses the and combinator to first label all the xs
variables using a first-fail strategy, followed by the ys variables with a different strategy:

and([base_search(xs,firstfail,min),
base_search(ys,smallest,max)])

As you can see in Fig. 1, the and combinator accepts a list of searches s1, . . . ,sn, and
performs their and-sequential composition. And-sequential means, intuitively, that solutions
are found by performing all the sub-searches sequentially down one branch of the search
tree, as illustrated in Fig. 2.1.

The dual combinator, or([s1, . . . ,sn]), performs a disjunctive combination of its sub-
searches – a solution is found using any of the sub-searches (Fig. 2.2), trying them in the
given order.

Statistics and ifthenelse. The ifthenelse combinator is centered around a conditional ex-
pression cond. As long as cond is true for the current node, the sub-search s1 is used. Once
cond is false, s2 is used for the complete subtree below the current node (see Fig. 2.3).

We do not specify the expression language for conditions in detail, we simply assume
that it comprises the typical arithmetic and comparison operators and literals that require
no further explanation. It is notable though that the language can refer to the constraint
variables and parameters of the underlying model. Additionally, a condition may refer to one
or more statistics variables. Such statistics are collected for the duration of a subsearch until
the condition is met. For instance ifthenelse(depth < 10,s1,s2) maintains the search depth
statistic during subsearch s1. At depth 10, the ifthenelse combinator switches to subsearch
s2.

We distinguish two forms of statistics: Local statistics such as depth and discrepancies
express properties of individual nodes. Global statistics such as number of explored nodes,
encountered failures, solution, and time are computed for entire search trees.

It is worthwhile to mention that developers (and advanced users) can also define their
own statistics, just like combinators, to complement any predefined ones. In fact, Sect. 4 will
show that statistics can be implemented as a subtype of combinators that can be queried for
the statistic’s value.
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s1

s2

and([s1, s2]) or([s1, s2])

s1 s2

if(c, s1, s2)

¬c

s2

s1

c

c

c

s1 s1

s1

s1 s2

portfolio([s1, s2, s3])

s s s s

c c c c

restart(c, s)

s s s

c c c ¬c

1) 2)

3) 4)

5)

Fig. 2: Primitive combinators

Abstraction. Our search language draws its expressive power from the combination of
primitive heuristics using combinators. An important aspect of the search language is ab-
straction: the ability to create new combinators by effectively defining macros in terms of
existing combinators.

For example, we can define the limiting combinator limit(cond,s) to perform s while
condition cond is satisfied, and otherwise cut the search tree using prune:

limit(cond,s)≡ ifthenelse(cond,s,prune)

The once(s) combinator, well-known in Prolog as once/1, is a special case of the limiting
combinator where the number of solutions is less than one. This is simply achieved by
maintaining and accessing the solutions statistic:

once(s)≡ limit(solutions < 1,s)

Exhaustiveness and portfolio/restart. The behavior of the final two combinators, portfo-
lio and restart, depends on whether their sub-search was exhaustive. Exhaustiveness simply
means that the search has explored the entire subtree without ever invoking the prune prim-
itive.

The portfolio([s1, . . . ,sn]) combinator performs s1 until it has explored the whole subtree.
If s1 was exhaustive, i.e., if it did not call prune during the exploration of the subtree, the
search is finished. Otherwise, it continues with portfolio([s2, . . . ,sn]). This is illustrated in
Fig. 2.4, where the subtree of s1 represents a non-exhaustive search, s2 is exhaustive and
therefore s3 is never invoked.

An example for the use of portfolio is the hotstart(cond,s1,s2) combinator. It performs
search heuristic s1 while condition cond holds to initialize global parameters for a second
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search s2. This heuristic can for example be used to initialize the widely applied Impact
heuristic [18]. Note that we assume here that the parameters to be initialized are maintained
by the underlying solver, so we omit an explicit reference to them.

hotstart(cond,s1,s2)≡ portfolio([limit(cond,s1),s2])

The restart(cond,s) combinator repeatedly runs s in full. If s was not exhaustive, it is
restarted, until condition cond no longer holds. Fig. 2.5 shows the two cases, on the left
terminating with an exhaustive search s, on the right terminating because cond is no longer
true.

The following implements random restarts, where search is stopped after 1000 failures
and restarted with a random strategy:

restart(true, limit(failures < 1000,base_search(xs, randomvar, randomval)))

Clearly, this strategy has a flaw: If it takes more than 1000 failures to find the solution,
the search will never finish. We will shortly see how to fix this by introducing user-defined
search variables.

The prune primitive is the only source of non-exhaustiveness. Combinators propagate
exhaustiveness in the obvious way:

– and([s1, . . . ,sn]) is exhaustive if all si are
– or([s1, . . . ,sn]) is exhaustive if all si are
– portfolio([s1, . . . ,sn]) is exhaustive if one si is
– restart(cond,s) is exhaustive if the last iteration is
– ifthenelse(cond,s1,s2) is exhaustive if, whenever cond is true, then s1 is, and, whenever

cond is false, then s2 is

3.3 State Access and Manipulation

The remaining three primitives, let, assign, and post, are used to access and manipulate the
state of the search:

– let(v,e,s) introduces a new search variable v with initial value of the expression e and
visible in the search s, then continues with s. Note that search variables are distinct from
the decision variables of the model.

– assign(v,e): assigns the value of the expression e to search variable v and succeeds.
– post(c,s): provides access to the underlying constraint solver, posting a constraint c at

every node during s. If s is omitted, it posts the constraint and immediately succeeds.

These primitives add a great deal of expressiveness to the language, as the following
examples demonstrate.

Random restarts: Let us reconsider the example using random restarts from the previous
section, which suffered from incompleteness because it only ever explored 1000 failures. A
standard way to make this strategy complete is to increase the limit geometrically with each
iteration:

geom_restart(s)≡ let(maxfails,100,
restart(true,portfolio([limit(failures < maxfails,s),

and([assign(maxfails,maxfails∗1.5),
prune])]))
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The search initializes the search variable maxfails to 100, and then calls search s with
maxfails as the limit. If the search is exhaustive, both the portfolio and the restart combi-
nators are finished. If the search is not exhaustive, the limit is multiplied by 1.5, and the
search starts over. Note that assign succeeds, so we need to call prune afterwards in order
to propagate the non-exhaustiveness of s to the restart combinator.

Branch-and-bound: A slightly more advanced example is the branch-and-bound optimiza-
tion strategy:

bab(obj,s)≡ let(best,∞, post(obj< best,and([s,assign(best,obj)])))

It introduces a variable best that initially takes value ∞ (for minimization). In every node, it
posts a constraint to bound the objective variable by best. Whenever a new solution is found,
the bound is updated accordingly using assign.

The bab example demonstrates how search variables (like best) and model variables4

(like obj) can be mixed in expressions. This makes it possible to remember the state of the
search between invocations of a heuristic. All of the following combinators make use of this
feature.

Restarting branch-and-bound: This is a twist on regular branch-and-bound that restarts
whenever a solution is found.

restart_bab(obj,s)≡ let(best,∞, restart(true, and([post(obj< best),once(s),
assign(best,obj)])))

Radiotherapy treatment planning: The following search heuristic can be used to solve ra-
diotherapy treatment planning problems [1]. The heuristic minimizes a variable k using
branch-and-bound (bab), first searching the variables N, and then verifying the solution
by partitioning the problem along the rowi variables for each row i one at a time (expressed
as a MiniZinc array comprehension). Failure on one row must be caused by the search on
the variables in N, and consequently search never backtracks into other rows.

This behavior is similar to the once combinator defined above. However, when a sin-
gle solution is found, the search should be considered exhaustive. We therefore need a
committed-choice variant of once that is exhaustive when a solution is found. This exhaus-
tive variant can be implemented by replacing prune with post(false):

exh_once(s)≡ ifthenelse(solutions < 1,s,post(false))

This allows us to express the entire search strategy for radiotherapy treatment planning:5

bab(k, and([base_search(N, . . .)]++
[exh_once(base_search(rowi, . . .)) | i in 1..n]))

For: The for loop construct (v ∈ [l,u]) can be defined as:

for(v, l,u,s)≡ let(v, l, restart(v≤ u,
portfolio([s,and([assign(v,v+1),prune])])))

It simply runs u− l + 1 times the search s, which of course is only sensible if s makes
use of side effects or the loop variable v. As in the geom_restart combinator above, prune
propagates the non-exhaustiveness of s to the restart combinator.

4 They are typeset in typewrite font to distinguish them from search variables.
5 ++ denotes list concatenation.
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Limited discrepancy search [8] with an upper limit of l discrepancies for an underlying
search s.

lds(l,s)≡ for(n, 0, l, limit(discrepancies≤ n,s))

The for construct iterates the maximum number of discrepancies n from 0 to l, while limit
executes s as long as the number of discrepancies is smaller than n. The search makes use
of the discrepancies statistic that is maintained by the search infrastructure. The original
LDS [8] visits the nodes in a specific order. The search described here visits the same nodes
in the same order of discrepancies, but possibly in a different individual order – as this is
determined by the global queuing strategy.

The following is a combination of branch-and-bound and limited discrepancy search
for solving job shop scheduling problems, as described in [8]. The heuristic searches the
Boolean variables prec, which determine the order of all pairs of tasks on the same ma-
chine. As the order completely determines the schedule, we then fix the start times using
exh_once.

bab(makespan, lds(∞,and([base_search(prec, . . .),
exh_once(base_search(start, . . .))])))

Fully expanded, this heuristic consists of 17 combinators and is 11 combinators deep.

Iterative deepening [11] for an underlying search s is a particular instance of the more
general pattern of restarting with an updated bound, which we have already seen in the
geom_restart example. Here, we generalize this idea:

id(s)≡ ir(depth,0,+,1,∞,s)
ir(p, l,⊕, i,u,s)≡ let(n, l, restart(n≤ u,and([assign(n,n⊕ i),

limit(p≤ n,s)])))

With let, bound n is initialized to l. Search s is pruned when statistic p exceeds n, but itera-
tively restarted by restart with n updated to n⊕ i. The repetition stops when n exceeds u or
when s has been fully explored. The bound increases geometrically, if we supply ∗ for ⊕, as
in the restart_flip heuristic:

restart_flip(p, l, i,u,s1,s2)≡let(flip,1, ir(p, l,∗, i,u,and([assign(flip,1−flip),
ifthenelse(flip = 1,s1,s2)])))

The restart_flip search alternates between two search heuristics s1 and s2. Using this as its
default strategy in the free search category, the lazy clause generation solver Chuffed scored
most points in the 2010, 2011, and 2012 MiniZinc Challenges.6

Probe search: Try out two searches s1 and s2 to a limited extent defined by condition cond.
Then, for the remainder, use the search that resulted in the best solution so far.

probe(cond,obj,s1,s2)≡ let(best1,∞,
let(best2,∞,

portfolio([ limit(cond,and([s1,assign(best1,obj)]))
limit(cond,and([s2,assign(best2,obj)]))
ifthenelse(best1 ≤ best2,s1,s2)])))

6 http://www.g12.csse.unimelb.edu.au/minizinc/

http://www.g12.csse.unimelb.edu.au/minizinc/
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Dichotomic search [26] solves an optimization problem by repeatedly partitioning the in-
terval in which the possible optimal solution can lie. It can be implemented by restarting as
long the lower bound has not met the upper bound (line 2), computing the middle (line 3),
and then using an or combinator to try the lower half (line 5). If it succeeds, obj−1 is the
new upper bound, otherwise, the lower bound is increased (line 6).

dicho(s,obj, lb,ub)≡let(l, lb, let(u,ub,
restart(l < u,

let(h, l + d(u− l)/2e,
once(or([

and([post(l ≤ obj≤ h),s,assign(u,obj−1)]),
and([assign(l,h+1),prune])]))

))))

4 Modular Combinator Design

The previous section caters for the user’s needs, presenting a high-level modular syntax for
our combinator-based search language. To cater for advanced users’ and system developers’
needs, this section goes beyond modularity of syntax, introducing modularity of design.

Modularity of design is the one property that makes our approach practical. Each combina-
tor corresponds to a separate module that has a meaning and an implementation independent
of the other combinators. This enables us to actually realize the search specifications defined
by modular syntax.

Modularity of design also enables growing a system from a small set of combinators
(e.g., those listed in Fig. 1), gradually adding more as the need arises. Advanced users can
complement the system’s generic combinators with a few application-specific ones. Com-
pared to creating new heuristics by just combining primitives, adding new combinators of
course requires a deeper insight into the implementation details and therefore comes at a
higher development cost. We believe that our architecture strikes the right balance with the
split into a simple high-level language that caters for most users’ needs, and a more complex
but still compositional implementation for advanced users and system developers.

Solver independence is another notable property of our approach. While a few combinators
access solver-specific functionality (e.g., base_search and post), the approach as such and
most combinators listed in Fig. 1 are in fact generic (solver- and even CP-independent); their
design and implementation is reusable.

The solver-independence of our approach is reflected in the minimal interface that solvers
must implement. This interface consists of an abstract type State which represents a state
of the solver (e.g., the variable domains and accumulated constraint propagators) which
supports state restoration. Truly no more is needed for the approach or all of the primitive
combinators in Fig. 1, except for base_search and post which require CP-aware operations
for querying variable domains, solver status and posting constraints, and possibly interact-
ing with statistics maintained by the solver. Note that state restoration can be implemented
either by means of copying for copying solvers, or by means of recomputation techniques
[16] for trailing-based solvers. Hence, there need not be a 1-to-1 correspondence between
an implementation of the abstract State type and the solver’s actual state representation.
We have implementations of the interface based on both copying and trailing.
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exit(p,status)
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init(p,c)

start(r)

Fig. 3: The modular message protocol

In the following we explain our design in detail by means of code implementations of most
of the primitive combinators we have covered in the previous section.

4.1 The Message Protocol

To obtain a modular design of search combinators we step away from the idea that the be-
havior of a search combinator, like the and combinator, forms an indivisible whole; this
leaves no room for interaction. The key insight here is that we must identify finer-grained
steps, defining how different combinators interact at each node in the search tree. Interleav-
ing these finer-grained steps of different combinators in an appropriate manner yields the
composite behavior of the overall search heuristic, where each combinator is able to cross-
cut the others’ behavior.

Considering the diversity of combinators and the fact that not all units of behavior are ex-
plicitly present in all of them, designing this protocol of interaction is non-trivial. It requires
studying the intended behavior and interaction of combinators to isolate the fine-grained
units of behavior and the manner of interaction. The contribution of this section is an ele-
gant and conceptually uniform design that is powerful enough to express all the combinators
presented in this article.

The Messages We present this design in the form of a message protocol. The protocol spec-
ifies a set of messages (i.e., an interface with one procedure for each fine-grained step) that
have to be implemented by all combinators. In pseudo-code, this protocol for combinators
consists of four different messages:

protocol combinator
start(rootNode);
enter(currentNode);
exit(currentNode,status);
init(parentNode,childNode);
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The protocol concerns the dynamic behavior of a search combinator. A single static
occurrence of a search combinator in a search heuristic may have zero or more dynamic life
cycles. During a life cycle, the combinator observes and influences the search of a particular
subtree of the overall search tree.

– The message start(rootNode) starts up a new life cycle of a combinator for the
subtree rooted at rootNode. The typical implementation of this message allocates and
initializes data for the life cycle.

– The message enter(currentNode) notifies the combinator that the node currentNode
of its subtree is currently active. At this point the combinator may for instance decide to
prune it.

– The message exit(currentNode,status) informs the combinator that the cur-
rently active node currentNode is a leaf node of its subtree. The node’s status is one
of failure, success or abort which denote respectively an inconsistent node, a
solution and a pruned node.

– The message init(parentNode,childNode) registers with the combinator the
node childNode as a child node of the currently active node parentNode.

Typically, during a life cycle, a combinator sees every node three times. The first time the
node is included in the life cycle, either as a root with start or as the child of another
node with init. The second time the node is processed with enter. The last time the node
processing has determined that the node is either a leaf with exit or the parent of one or
more other nodes with init.

The Nodes All of the message signatures specify one or two search tree nodes as param-
eters. Each such node keeps track of a solver State and the information associated by
combinators to that State.

We observe three different access patterns of nodes:

1. In keeping with the solver independence stipulated above, we will see that most combi-
nators only query and update their associated information and do not access the under-
lying solver State at all.

2. Restarting-based combinators, like restart and portfolio, copy nodes. This means
copying the solver’s State representation and all associated information for later restora-
tion.

3. Finally, selected solver-specific combinators like base_search do perform solver-
specific operations on the underlying State, like querying variable domains and post-
ing constraints.

The Calling Hierarchy In addition to the message signatures, the protocol also stipulates
in what order the messages are sent among the combinators (see Fig. 3). While in general
a combinator composition is tree-shaped, the processing of any single search tree node p
only involves a stack of combinators. For example, given or([and1([s1,s2]),and2([s3,s4])]),7

p is included in life cycles of [or,and1,s1], [or,and1,s2], [or,and2,s3] or [or,and2,s4]. We
also say that the particular stack is active at node p. The picture shows this stack of active
combinators on the left.

Every combinator in the stack has both a super-combinator above and a sub-combinator
below, except for the top and the bottom combinators. The bottom is always a basic heuristic

7 The left and right and are subscripted to distinguish them.
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(base_search, prune, assign, or post). The important aspect to take away from the picture
is the direction of the four different messages, either top-down or bottom-up.

The protocol initializes search by sending the start(root) message, where root
is the root of the overall search tree, to the topmost combinator. This topmost combinator
decides what child combinator to forward the message to, that child combinator propagates
it to one of its children and so on, until a full stack of combinators is initialized.

Next, starting from the root node, nodes are processed in a loop. The enter(node)
message is passed down through the stack of combinator stack to the primitive heuristic at
the bottom, which determines whether the node is a leaf or has children. In the former case,
the primitive heuristic passes the exit(node,status) message up. In the latter case, it
passes the init(node,child) message down from the top for each child. These child
nodes are added to the queue that fuels the loop. At any point, intermediate combinators can
decide not to forward messages literally, but to alter them instead (e.g., to change the status
of a leaf from success to abort), or to initiate a different message flow (e.g. to start a
new subtree).

4.2 Basic Setup

Before we delve into the interesting search combinators, we first present an example imple-
mentation of the basic setup consisting of a base search (base_search) and a search engine
(dfs). This allows us to express overall search specifications of the form:
dfs(base_search(vars,var-select,domain-split)).

Base Search. We do not provide full details on a base_search combinator, as it is not the
focus of this article. However, we will point out the aspects relevant to our protocol.

The first line of base_search’s implementation expresses two facts. Firstly, base_search
implements the combinator protocol. Secondly, its constructor has three parameters (vars,
var-select, domain-select) that can be referred to in its message implementations.

In the enter message, the node’s solver state is propagated. Subsequently, the condi-
tion isLeaf(c,vars) checks whether the solver state is unsatisfiable or there are no more
variables to assign. If either is the case, the exit status (respectively failure or success)
is sent to the parent combinator. For now, the parent combinator is just the search en-
gine, but later we will see how how other combinators can be inserted between the search
engine and the base search.

If neither is the case, the search branches depending on the variable selection and domain
splitting strategies. This involves creating a child node for each branch, determining the
variable and value for that child and posting the assignment to the child’s state. Then, the
top combinator (i.e., the engine) is asked to initialize the child node. Finally the child node
is pushed onto the search queue.

combinator base_search(vars,var-select,domain-select)
enter(c):

c.propagate
if isLeaf(c,vars)

parent.exit(c,leafstatus(c))
pos = ... // from vars based on var-select
for each child: // based on domain-select

val = ... // from values of var based on domain-select
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child.post(vars[pos]=val)
top.init(c,child)
queue.push(child)

Note that, as the base_search combinator is a base combinator, its exit message is im-
material (there is no child heuristic of base_search that could ever call it). The start and
init messages are empty. Many variants on and generalizations of the above implementa-
tion are possible.

Depth-first search engine. The engine dfs serves as a pseudo-combinator at the top of a
combinator expression heuristic and serves as the heuristic’s immediate parent as
well. It maintains the queue of nodes, a stack in this case. The search starts from a given
root node by starting the heuristic with that node and then entering it. Each time
a node has been processed, new nodes may have been pushed onto the queue. These are
popped and entered successively.

combinator dfs(heuristic)
start(root):

top=this
heuristic.parent=this
queue=new stack()
heuristic.start(root)
heuristic.enter(root)
while not queue.empty

heuristic.enter(queue.pop())

init(n,c):
heuristic.init(n,c)

The engine’s exit message is empty, the enter message is never called and the init
message delegates initialization to the heuristic.

Other engines may be formulated with different queuing strategies.

4.3 Combinator Composition

The idea of search combinators is to augment a base_search. We illustrate this with a very
simple print combinator that prints out every solution as it is found. For simplicity we assume
a solution is just a set of constraint variables vars that is supplied as a parameter. Hence, we
obtain the basic search setup with solution printing with:

dfs(print(vars,base_search(vars,strategy)))

Print. The print combinator is parametrized by a set of variables vars and a search combi-
nator child. Implicitly, in a composition, that child’s parent is set to the print instance.
The same holds for all following search combinators with one or more children.

The only message of interest for print is exit. When the exit status is success, the
combinator prints the variables and propagates the message to its parent.
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combinator print (vars,child)
exit(c,status):

if status==success
print c.vars

parent.exit(c,status)

The other messages are omitted. Their behavior is default: they all propagate to the child.
The same holds for the omitted messages of following unary combinators.

4.4 Binary Combinators

Binary combinators are one step up from unary ones. They combine two complete search
heuristics into a composite one. The most basic binary combinator is the binary version of
and. For instance, if we need to label two sets of variables, we can do so with

and(base_search(vars1,...),base_search(vars2,...))

The principle shown here easily generalizes to n-ary combinators.

And. The (binary) and combinator has two children, left and right. In order to keep
track of what child combinator is handling a particular node, the and combinator associates
with every node an inLeft Boolean variable. The local keyword indicates that every
node has its own instance of that variable. We denote the instance of the inLeft variable
associated with node c as c.inLeft.

When entering a node, it is delegated to the left or right combinator based on
inLeft. At the start, the root node is delegated to the left combinator, so its inLeft
variable is set to true. The value of inLeft is inherited in init from the current node
to its children. Upon a successful exit for left, the leaf node becomes the root of a new
subtree that is further handled by the right combinator.

combinator and(left,right) {
local bool inLeft

start(root):
root.inLeft=true
left.start(root)

enter(c):
if c.inLeft

left.enter(c)
else

right.enter(c)

exit(c,status):
if c.inLeft and status==success

c.inLeft=false
right.start(c)
right.enter(c)
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else
parent.exit(c,status)

init(p,c):
c.inLeft=p.inLeft
if c.inLeft

left.init(p,c)
else

right.init(p,c)

Note that the right combinator is started repeatedly, once for each leaf node of
left. In general, each combinator can be managing multiple subtrees of the search.

Multiple and combinators may be handling a search node at the same time. For instance
in a heuristic of the form and(and(s1,s2),s3), two and combinators are active at the same
time. The scoping of the associated variables works in such a way that each and has its own
instance of inLeft for each node.

4.5 Reusable Combinators

Now we show how a monolithic combinator can be decomposed into more primitive com-
binators that can be reused for other purposes.

Monolithic Combinator. We start from the following limitsolutions combinator that prunes
the search after cutoff solutions have been found. One new concept is the notion of a
global variable associated with a (sub)tree: all descendants of root (implicitly) share the
same instance of count. Hence, any update of count by one node is seen by all other
nodes in the (sub)tree.

combinator limitsolutions(cutoff,child)
global int count

start(root):
root.count = 0
child.start(root)

enter(c):
if count == cutoff

parent.exit(abort)
else

child.enter(c)

exit(c,status):
if status==success

c.count++
parent.exit(c,status)
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Fig. 4: The decomposition of the limitsolutions combinator

Decomposition. We can split up the above limitsolutions combinator into three different
combinators: ifthenelse, solutionslimit and prune. They form a directed acyclic graph as
depicted in Figure 4 or denoted as an expression with sharing below:

limitsolutions(cutoff,s) = ifthenelse(s’,s’,prune)

where the same heuristic object s’ = solutionslimit(cutoff,s) is shared between the
first and a second parameter of ifthenelse.

Here, s’ is the heuristic s augmented with solutionslimit to monitor how many solutions
are left to find until cutoff is reached. It is in the capacitiy of a heuristic that s’ occurs
in the second parameter position of ifthenelse: Initially, ifthenelse makes s’ is active child
heuristic. If the cutoff is reached, then ifthenelse switches to prune as its active child,
which discards the remaining nodes in the tree. This involves s’ in its capacity as the first
parameter of ifthenelse, where it tells ifthenelse how to evaluate its condition, namely by
querying the solutionslimit object.

Note that the sharing in this example is somewhat odd at first sight, but perfectly nat-
ural on second thought. It is due to the generality of ifthenelse: its condition need not be
determined by the topmost combinator of its then-child. Instead, the condition can be de-
rived from a combination of sources in the active combinator stack. Hence, the condition
parameter needs to specify how the condition value is obtained. In order to facilitate the
common case of sharing for end users of the combinators, the sharing is easily hidden by
more convenient syntax such as ifthenelse(solutions <= cutoff,s,prune) (e.g., see
the examples in Section 3).

In the following we discuss the individual primitives in more detail.

Prune. The prune combinator is a minimal base combinator that immediately exits every
node with the abort status. The start message is empty, and the exit and init mes-
sages are never called.

combinator prune ()
enter(c):

parent.exit(c,abort)

Solutions Count. The solutionslimit combinator below illustrates how statistics gathering
combinators are implemented. It implements both the combinator protocol and the addi-
tional condition protocol with an extra message eval that queries the current Boolean
value:
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protocol condition
eval(currentNode);

In the case of solutionslimit, the returned Boolean value is whether a particular number
(cutoff) of solutions has not yet been reached by its child. For this purpose it maintains
the number of solutions found so far in a global variable.

combinator & condition solutionslimit(cutoff,child)
global int count

start(root):
root.count = 0
child.start(root)

exit(c,status):
if status==success

c.count++
parent.exit(c,status)

eval(c):
return c.count <= cutoff

Ifthenelse. The ifthenelse combinator is parametrized by one condition and two child
combinators. It associates with every node whether it is handled by the left child (inLeft);
this is the case for the root node. Whenever a node c is entered that is inLeft, the condi-
tion is checked. If the condition fails, c becomes the root of a subtree that is further handled
by right.

combinator ifthenelse(cond,left,right)
local bool inLeft

start(root):
root.inLeft=true
left.start(root)

enter(c):
if not c.inLeft

right.enter(c)
else if cond.eval()

left.enter(c)
else

c.inLeft=false
right.start(c)
right.enter(c)

init(p,c):
c.inLeft=p.inLeft
if c.inLeft

left.init(p,c)
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else
right.init(p,c)

4.6 Restarting Combinators

Restarting the search is common to several combinators; the mechanic is illustrated below
in the portfolio combinator.

Portfolio. Like the ifthenelse and and combinators, the portfolio combinator switches be-
tween child combinators. Only the logic for switching is more complex. In order to simplify
presentation, we again restrict the code to the binary case; the n-ary variant is a straightfor-
ward generalization.

Firstly, portfolio keeps track of a global “reference” count ref of unprocessed nodes
to be handled by the s1 child. This count is incremented whenever a new child node is
initialized, and decremented whenever a node is entered for actual processing.

When the last node of s1 exits (witnessed by the reference count being 0) and the search
was not exhaustive, the search starts over from the root, but now with the s2 child. In order
to decide about exhaustiveness, the portfolio combinator registers whether any exit with
status abort occurred. At the same time it converts an abort inside s1 into a failure,
because the s2 combinator may still perform an exhaustive search and avoid overall non-
exhaustiveness. In order to restart from the root, a copy of the root node is made at the
start.

Upon a successful exit, the leaf node becomes the root of a new subtree that is further
handled by the s2 combinator.

combinator portfolio(s1,s2)
global node copy
global bool inLeft
global bool exhaustive
global int ref

start(root):
copy=root.copy()
root.inLeft=true
root.exhaustive=true
root.ref=1
s1.start(root)

enter(c):
if c.inLeft

ref--
s1.enter(c)

else
s2.enter(c)

exit(c,status):
if not c.inLeft
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parent.exit(c,status)
else

if status==abort
status=failure
c.exhaustive=false

if c.ref==0
if c.exhaustive

parent.exit(c,status)
else

copy.inLeft=false
s2.start(copy)
self.enter(copy)

else
parent.exit(c,status)

init(p,c):
ref++;
if c.inLeft

s1.init(p,c)
else

s2.init(p,c)

5 Modular Combinator Implementation

The message-based combinator approach lends itself well to different implementation strate-
gies. In the following we briefly discuss two diametrically opposed approaches we have
explored:

Dynamic composition implements combinators as objects that can be combined arbitrarily
at runtime. It therefore acts like an interpreter. This is a lightweight implementation, it
can be ported quickly to different platforms, and it does not involve a compilation step
between the formulation and execution of a search heuristic.

Static composition uses a code generator to translate an entire combinator expression into
executable code. It is therefore a compiler for search combinators. This approach lends
itself better to various kinds of analysis and optimization.

As both approaches are possible, combinators can be adapted to the implementation choices
of existing solvers. Sect. 6 shows that both implementation approaches have competitive
performance.

5.1 Dynamic Composition

To support dynamic composition, we have implemented our combinators as C++ classes
whose objects can be allocated and composed into a search specification at runtime. The
protocol events correspond to virtual method calls between these objects. For the delegation
mechanism from one object to another, we explicitly encode a form of dynamic inheritance
called open recursion or mixin inheritance [4]. In contrast to the OOP inheritance built into
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C++ and Java, this mixin inheritance provides two essential abilities: 1) to determine the in-
heritance graph at runtime and 2) to use multiple copies of the same combinator class at
different points in the inheritance graph. In contrast, C++’s built-in static inheritance provides
neither.

The C++ library currently builds on top of the Gecode constraint solver [25]. However, the
solver is accessed through a layer of abstraction that is easily adapted to other solvers (e.g.,
we have a prototype interface to the Gurobi MIP solver). The complete library weighs in at
around 2500 lines of code, which is even less than Gecode’s native search and branching
components.

5.2 Static Composition

In a second approach, also on top of Gecode, we statically compile a search specification to
a tight C++ loop. Again, every combinator is a separate module independent of other com-
binator modules. A combinator module now does not directly implement the combinator’s
behavior. Instead it implements a code generator (in Haskell), which in turn produces the
C++ code with the expected behavior.

Hence, our search language compiler parses a search specification, and composes (in
mixin-style) the corresponding code generators. Then it runs the composite code generator
according to the message protocol. The code generators produce appropriate C++ code frag-
ments for the different messages, which are combined according to the protocol into the
monolithic C++ loop. This C++ code is further post-processed by the C++ compiler to yield a
highly optimized executable.

As for dynamic composition, the mixin approach is crucial, allowing us to add more
combinators without touching the existing ones. At the same time we obtain with the press
of a button several 1000 lines of custom low-level code for the composition of just a few
combinators. In contrast, the development cost of hand crafted code is prohibitive.

As the experiments in the next section will show, compiling the entire search specifica-
tion into an optimised executable achieves better performance than dynamic composition.
However, the dynamic approach has the big advantage of not requiring a compilation step,
which means that search specifications can be constructed at runtime, as exemplified by the
following application.

5.3 MiniZinc with Combinators

As a proof of concept and platform for experiments, we have integrated search combinators
into a complete MiniZinc toolchain. It translates a MiniZinc model together with a search
annotation into FlatZinc, which is then interpreted and executed.

Our toolchain comprises a pre-compiler, which is necessary to support arbitrary expres-
sions in annotations, such as the condition expressions for an ifthenelse. The expressions are
translated into standard MiniZinc annotations that are understood by the FlatZinc interpreter.
User-defined variables have type-inst svar int and can be introduced using the standard
MiniZinc let construct. The annotation construct of MiniZinc has been extended to
support simple function definitions. The following example shows a MiniZinc version of
the restart-based branch-and-bound heuristic from Sect. 3.3:
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annotation limit(var bool: cond, ann: s) =
ifthenelse(cond,s,prune);

annotation once(ann: s) = limit(solutions < 1, s);

annotation rbab(var int: obj, ann: s) =
let { svar int: best = MAXINT } in
restart(true, and([

post(obj < best),
once(s),
assign(best,obj)]));

solve ::rbab(x,int_search(y,input_order,assign_lb)) satisfy;

The pre-compiler translates this code as follows:

solve :: sh_let(sh_letvar("best"), sh_int(MAXINT),
sh_restart(sh_cond_true, sh_and([

sh_post_succeed(sh_cond_lt(sh_intvar(objective),
sh_letvar("best"))),

sh_let(sh_letvar("solutioncount"), 0,
sh_ifthenelse(sh_cond_lt(sh_letvar("solutioncount"),

sh_int(1)),
sh_solutioncount(sh_letvar("solutioncount"),

sh_int_search(x, sh_var_input_order,
sh_val_assign_lb)),

sh_prune)),
sh_assign(sh_letvar("best"), sh_intvar(objective))])))
satisfy;

All literals are quoted (e.g. sh_int(1)), user-defined search variables are turned into
quoted strings (sh_letvar("best")), expressions like obj < best are translated into
annotation terms (sh_cond_lt . . . ), and statistics are made explicit, introducing search
variables and special combinators (sh_solutioncount). The result of the pre-compilation
is valid, well-typed MiniZinc, which is then passed through the standard mzn2fzn transla-
tor to produce FlatZinc ready for solving. We intend to incorporate the translations done by
the pre-compiler into the standard mzn2fzn in the future.

We extended the Gecode FlatZinc interpreter to parse the search combinator annota-
tion and construct the corresponding heuristic using the Dynamic Composition approach
described above. The three tools, pre-compiler, mzn2fzn, and the modified FlatZinc inter-
preter thus form a complete toolchain for solving MiniZinc models using search combina-
tors. The source code including examples can be downloaded from
http://www.gecode.org/flatzinc.html. If developers for other systems that sup-
port MiniZinc can be persuaded to implement search combinators for their system, which we
believe is not too difficult, then we can see search combinators as a basis for standardizing
MiniZinc search.

http://www.gecode.org/flatzinc.html
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5.4 Further Implementations

We are in the process of implementing the search combinators approach on two more plat-
forms:

Prolog Our Tor library [23] implements a subset of the search message protocol in Prolog.
The library is currently available for SWI-Prolog [32] and B-Prolog [33], and extends the
capabilities of their respective finite domain solver libraries. Among others, it provides all
the search heuristics of ECLiPSe Prolog’s [20] search/6 predicate, but in a fully compo-
sitional way. The library implements the dynamic approach supplemented with load-time
program specialization.

Scala Desouter [6] has implemented a preliminary library of search combinators for Scala [5]
on the Java Virtual Machine. His implementation exploits Scala’s built-in mixin mechanism
(called traits) to further factorize the combinator implementations. The library’s current
backend is the JaCoP solver [12].

6 Experiments

This section evaluates the performance of the dynamic and static implementations. It es-
tablishes that a search heuristic specified using combinators is competitive with a custom
implementation of the same heuristic, exploring exactly the same tree.

Sect. 4.1 introduced a message protocol that defines the communication between the
different combinators for one node of the search tree. Any overhead of a combinator-based
implementation must therefore come from the processing of each node using this protocol.
All combinators discussed earlier process each message of the protocol in constant time
(except for the base_search combinators, of course). Hence, we expect at most a constant
overhead per node compared to a native implementation of the heuristic.

In the following, two sets of experiments confirm this expectation. The first set consists
of artificial benchmarks designed to expose the overhead per node. The second set consists
of realistic combinatorial problems with complex search strategies.

The experiments were run on a 2.26 GHz Intel Core 2 Duo running Mac OS X. The
results are the means of 10 runs, with a coefficient of deviation less than 1.5%.

Stress Test. The first set of experiments measures the overhead of calling a single combina-
tor during search. We ran a complete search of a tree generated by 7 variables with domain
{0, . . . ,6} and no constraints (1 647 085 nodes). To measure the overhead, we constructed a
basic search heuristic s and a stack of n combinators:

portfolio([portfolio([. . .portfolio([s,prune]) . . . ,prune]),prune])
where n ranges from 0 to 20 (realistic combinator stacks, such as those from the examples
in this article, are usually not deeper than 10). The numbers in the following table report
the runtime with respect to using the plain heuristic s, for both the static and the dynamic
approach:

n 1 2 5 10 20
static % 106.6 107.7 112.0 148.3 157.5
dynamic % 107.3 117.6 145.2 192.6 260.9
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A single combinator generates an overhead of around 7%, and 10 combinators add 50% for
the static and 90% for the dynamic approach. In absolute runtime, however, this translates
to an overhead of around 17 ms (70 ms) per million nodes and combinator for the static
(dynamic) approach. Note that this is a worst-case experiment, since there is no constraint
propagation and almost all the time is spent in the combinators.

Benchmarks. The second set of experiments shows that in practice, this overhead is dwarfed
by the cost of constraint propagation and backtracking. Note that the experiments are not
supposed to demonstrate the best possible search heuristics for the given problems, but that
a search heuristic implemented using combinators is just as efficient as a native implemen-
tation.

Fig. 5 compares Gecode’s optimization search engines with branch-and-bound imple-
mented using combinators. The column Compiled shows the absolute runtime of the Static
Composition approach. The column Interpreted is the relative runtime of the Dynamic Com-
position approach compared to Compiled. The column Gecode is the relative runtime of the
native Gecode search engines (i.e., not using combinators at all), compared to Compiled.
For each problem instance, all three approaches use exactly the same search strategy and
explore the same trees.

On the well-known Golomb Rulers problem, both dynamic combinators and native
Gecode are slightly slower than static combinators. Native Gecode uses dynamically com-
bined search heuristics, but is much less expressive. That is why the static approach with its
specialization yields better results.

On the radiotherapy problem (see Sect. 3.3), the dynamic combinators show an over-
head of 6–11%. For native Gecode, exh_once must be implemented as a nested search,
which performs similarly to the dynamic combinators. However, in instances 5 and 6, the
compiled combinators lose their advantage over native Gecode. This is due to the processing
of exh_once: As soon as it is finished, the combinator approach processes all nodes of the
exh_once tree that are still in the search queue, which are now pruned by exh_once. The na-
tive Gecode implementation simply discards the tree. We will investigate how to incorporate
this optimization into the combinator approach.

The job shop scheduling examples, using the combination of branch-and-bound and
discrepancy limit discussed in Sect. 3.3, show similar behavior. In ABZ1-5 and mt10, the
interpreted combinators show much less overhead than in the short-running instances. This
is due to more expensive propagation and backtracking in these instances, which spend al-
most 70% more time per node than the short-running instances. Therefore, as the absolute
time spent per combinator per node is constant, the relative overhead of executing the com-
binators is much lower.

In summary, the experiments show that the expressiveness and flexibility of a rich
combinator-based search language can be achieved without any runtime overhead in the
case of the static approach, and little overhead for the dynamic version.

7 Related Work

This section explores and discusses previous work that is closely related to search combina-
tors as presented in this article.
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Compiled Interpreted Gecode
Golomb 10 0.61 s 101.8% 102.5%
Golomb 11 12.72 s 102.9% 101.8%
Golomb 12 125.40 s 100.6% 101.9%
Radiotherapy 1 71.13 s 105.9% 107.3%
Radiotherapy 2 6.22 s 110.9% 110.1%
Radiotherapy 3 11.78 s 108.3% 108.1%
Radiotherapy 4 16.44 s 107.5% 106.9%
Radiotherapy 5 69.89 s 108.1% 98.7%
Radiotherapy 6 106.04 s 109.2% 99.1%
Job Shop G2 7.25 s 146.3% 101.2%
Job-Shop G4 6.96 s 164.0% 107.75%
Job-Shop H1 38.05 s 153.1% 103.81%
Job Shop H3 52.02 s 162.5% 102.8%
Job Shop H5 20.88 s 153.2% 107.0%
Job Shop ABZ1-5 2319.00 s 103.7% 100.1%
Job Shop mt10 2181.00 s 104.5% 99.9%

Fig. 5: Experimental results

7.1 MCP

This work directly extends our earlier work on Monadic Constraint Programming (MCP)
[21]. MCP introduces stackable search transformers, which are a simple form of search
combinators, but only provide a much more limited and low level form of search control. In
trying to overcome its limitations we arrived at search combinators.

7.2 Constraint Logic Programming

Constraint logic programming languages such as ECLiPSe [20] and SICStus Prolog [28]
provide programmable search via the built-in search of the paradigm, allowing the user to
define goals in terms of conjunctive or disjunctive sub-goals.

Prolog’s limitation is that it does not permit cross-cutting between goals. For instance,
disjunctions inside goals are too well encapsulated to observe them or interfere with them
from outside that goal. Hence, combinators that inject additional behavior in disjunctions,
i.e. to observe and/or prune the number of branches, cannot be expressed in a modular
way. In contrast, cross-cutting is a crucial feature of our combinator approach, where a
combinator higher up in the stack can interfere with a sub-combinator, while remaining
fully compositional. In summary, apart from conjunction and disjunction, Prolog’s goal-
based heuristics cannot be combined arbitrarily.

ECLiPSe copes with this limitation by combining a limited number of search heuristics
into a monolithic search/6 predicate. With various parameters the user controls which of
the heuristics is enabled (e.g., depth-bounded, node-bounded or limited discrepancy search).
A fixed number of compositions are supported, such as changing strategy when the depth
bound finishes. The labeling itself is user programmable. If a user is not happy with the set
of supported heuristics in search/6, they have to program his own from scratch.
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7.3 Node Evaluators, Search Selectors and Search Limits

Perron [16] describes a compositional approach to search where search heuristics are called
goals. In addition to basic user-defined goals, he proposes five predefined combinators.
These five combinators consist of the conventional binary And and Or combinators, as well
as the unary combinators Apply, SelectSearch and LimitSearch. The three unary
ones are parameterized by respectively a node evaluator, a search selector and a search
limit:

– A node evaluator influences the position of the node in the queue.
– A search selector combines three roles: 1) management of branch-&-bound minimiza-

tion, 2) determining whether a node is feasible, and 3) selection of solutions.
– A search limit (time or failure limit) aborts the remaining search when a global limit is

exceeded.

This design is less uniform than our search combinators approach as it assigns different
tasks to more specialized entities. At the same time, this approach does not seem intended
to support additional combinators, such as our ifthenelse and restart, which enable random
restarting and restarting branch-&-bound among others. The approach consequently does
not cover aspects such as exhaustiveness which allow distinguishing between or and portfo-
lio, which is necessary for restart. There is very little detail given about the implementation
of the approach, and in particular how combinators interact.

Finally, this approach [16] caters specifically for depth-first search, based on trailing
and recomputation, with a particular priority queue. Our approach is orthogonal to these
choices. Nevertheless, it would be interesting to explore his concept of interaction between
combinator and queue in the search combinator setting.

7.4 IBM ILOG CP Optimizer

The CP Optimizer C++ library [9] of IBM ILOG offers support for fully programmable
search in three different ways.

1. At one level, search heuristics are called IlcGoal. Programmers can write their own
primitive IlcGoals and the library provides two combinators, IlcAnd and IlcOr,
similar to our and and portfolio combinators.

2. At another level, search heuristics are called IloGoal. Again programmers can write
their own primitive instances. The library also offers a number of primitives for la-
belling, including one based on dichotomic search. There are also three combinators,
the counterparts of and, portfolio and limit.

3. Finally, there are search monitors (IlcSearchMonitor), that hook into the search and
are notified of events (somewhat like our protocol messages). These search monitors are
primarily meant to collect statistics about the search.

There are a two notable differences with search combinators. Firstly, by distinguishing
between goals and search monitors, this approach lacks the uniformity of search combina-
tors. Hence, the design is more complex than necessary. Secondly, the system aims at a very
limited form of compositionality. Only three combinators are provided and extension is only
promoted at the level of primitive goals. For instance, dichotomic search is presented as a
primitive goal rather than as a combinator – moreover, it is written as a monolithic entity
rather than as a composition.
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The fact that the library has not been designed with much compositionality in mind
obviously does not mean that compositionality cannot be achieved. On the contrary, we
believe that all the necessary ingredients are available to implement the search combinator
design.

7.5 The Comet Language

The Comet [29] system features fully programmable search [30], built upon the basic con-
cept of continuations, which make it easy to capture the state of the solver and write non-
deterministic code.

The Comet library provides abstractions like the non-deterministic primitives try and
tryall that split the search specification in two (orthogonal) parts: 1) the specification
of the search tree which corresponds to our to our base_search heuristics, and 2) the ex-
ploration of that search tree by means of a search controller. In terms of our approach,
the search controller determines both the queueing strategy and the behavior of the search
heuristic (minus the base search) within a single entity. In other words, it defines what to do
when starting or ending a search, failing, or adding a new choice.

Complex heuristics can be constructed as custom controllers, either by inheriting from
existing controllers or implementing them from scratch.

Albeit at a different level of abstraction (e.g., compare the Comet definition of depth-
bounded search in Figure 6 to the combinator definition dbs(n,s) ≡ limit(depth ≤ n,s)),
search controllers are quite similar to combinators as presented in this article. However,
there is one essential difference. Our combinators are meant to be compositional, whereas
search controllers are not. This difference in spirit is clearly reflected in 1) the design of the
interface and its associated protocol, and 2) the instances:

1. The design of search controllers is simpler than that of search combinators because it
does not take compositionality into account. While many of the messages in the two ap-
proaches are similar in spirit, the search combinator approach also stipulates the flow of
messages within a search combinator composition. Notably, while most of the messages
propagate top-down through a combinator stack, it is vital to compositionality that the
exit message proceeds in a bottom-up manner. For instance, this bottom-up flow en-
ables the inner and combinator in the composition and(and(s1,s2),s3) to intercept leaf
nodes of s1 and start s2 before its parent starts s3. The other way around would clearly
exhibit an undesirable semantics.
In Comet, this compositional protocol is entirely absent. All messages are directed at
the single search controller.

2. In terms of instantiation, because of their compositional nature, we promote many “small”
combinator instances that each capture a single primitive feature. This approach provides
us with a high-level modeling language for search, as the primitive combinators are con-
veniently assembled into many different search heuristics. In contrast, all Comet search
controller instances we are aware of8 are essentially monolithic implementations of a
particular search heuristic; none of them takes other search controllers as arguments.
Through a common abstract base class the instances share some basic infrastructure, but
to implement a new search controller one basically starts from scratch.

8 i.e., those published in papers and shipped with the Comet library.
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class DBS extends AbstractSearchController {
stack{Continuation} s;
int limit;
DBS(SearchSolver so, int n) : AbstractSearchController(so) {

s = new stack{Continuation}();
limit = n;

}
void startTry() {

if (s.getSize() > limit) fail();
}
void addChoice(Continuation f) {

s.push(f);
}
void fail() {

if (s.empty())
exit();

else
call(s.pop());

}
}

Fig. 6: Definition of depth-bounded search in Comet.

The fact that search controllers have not been designed with compositionality in mind
obviously does not mean that compositionality cannot be achieved in Comet. On the con-
trary, we believe that it is most easily achieved by integrating search controllers with the
compositional design of our search combinators. In fact, because of Comet’s powerful prim-
itives for non-determinism, this would lead to a particularly elegant implementation.

7.6 Other Systems

The Salsa [13] language is an imperative domain-specific language for implementing search
algorithms on top of constraint solvers. Its center of focus is a node in the search process.
Programmers can write custom Choice strategies for generating next nodes from the current
one; Salsa provides a regular-expression-like language for combining these Choices into
more complex ones. In addition, Salsa can run custom procedures at the exits of each node,
right after visiting it. We believe that Salsa’s Choice construct is orthogonal to our approach
and could be incorporated. Custom exit procedures show similarity to combinators, but no
support is provided for arbitrary composition.

Oz [27] was the first language to truly separate the definition of the constraint model
from the exploration strategy [24]. Computation spaces capture the solver state and the pos-
sible choices. Strategies such as DFS, BFS, LDS, Branch and Bound and Best First Search
are implemented by a combination of copying and recomputation of computation spaces.
The strategies are monolithic, there is no notion of search combinators.

Choi et al [3] describe a compositional framework for search that relies on composing
search engines. A search engine is a constraint store transformer which given an initial
constraint store outputs a stream of constraint stores in a demand driven way. These are
composed by plugging one search engine into another. This allows composition, and also
simple filtering such as first solution (once) or last solution (e.g. in optimization to return
only the best solution).
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Zinc/MiniZinc [14,15] lets the user specify search in its annotation language. There is
a proposal for a more expressive search language for MiniZinc [19], but it is limited to basic
variable ordering and domain splitting strategies. For Zinc, a language extension is available
for implementing variable selection and domain splitting [17] but again it does not address
more than basic search.

The original versions of the constraint modeling language OPL [31] provided pro-
grammable search using a try construct that creates the search tree. The tree could then
be explored with a programmed strategy, or a built-in strategy such as DFS, LDS, BFS or
Best First Search. Exploration strategies could be modified by limit strategies, which were
effectively combinators.

7.7 Autonomous Search

Autonomous search (AS) [7] addresses the challenge of providing complex application-
tailored search heuristics in a different way. Rather than leaving the specification and tuning
of search heuristics to the programmer, AS promotes systems that autonomously self-tune
their performance while solving problems. Hence, while search combinators make writing
search heuristics easier, AS takes it out of the hands of the programmer altogether. Well-
known instances of this approach are Impact Based Search [18] or the weighted degree
heuristic [2].

AS has advantages for 1) smaller problems where it produces a decent heuristic without
programmer investment, and for 2) novice users who don’t know how to obtain a decent
heuristic. However, loss of programmer control is a liability for hard problems where AS
can be ineffective and often only expert knowledge makes the difference.

8 Conclusion

We have shown how combinators provide a powerful high-level language for modeling com-
plex search heuristics. To make this approach useful in practice, we devised an architecture
in which the modularity of the language is matched by the modularity of the implemen-
tation. This relieves system developers from a high implementation cost and yet, as our
experiments show, imposes no runtime penalty. Because the language is high-level and easy
to implement, we believe it is an excellent starting point for standardizing search.

For future work, parallel search on multi-core hardware fits perfectly in our combina-
tor framework. We have already performed a number of preliminary experiments and will
further explore the benefits of search combinators in a parallel setting. We will also explore
potential optimizations (such as the short-circuit of exh_once from Sect. 6) and different
compilation strategies (e.g., combining the static and dynamic approaches from Sect. 5).

In addition we will consider applying search combinators in other problem domains
like Mixed Integer Programming (MIP) and A∗ where search strategies have a major impact
on performance and no dominant default search exists. A combinator approach to local
search and/or large area neighbourhood search is also possible, but since these searches
typically require the description of nearly arbitrary functions on the solver state to specify
neighbourhoods and evaluate moves it seems hard to avoid using a near full programming
language
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Finally, we note that combinators need not necessarily be heuristics that control the
search. They may also monitor search, e.g., by gathering statistics or visualizing the search
tree.
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