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Abstract

Formal reasoning in proof assistants, also known as mechaniza-
tion, has high development costs. Building modular reusable com-
ponents is a key issue in reducing these costs. A stumbling block
for reuse is that inductive definitions and proofs are closed to ex-
tension. This is a manifestation of the expression problem that has
been addressed by the Meta-Theory a la Carte (MTC) framework
in the context of programming language meta-theory. However,
MTC'’s use of extensible Church-encodings is unsatisfactory.

This paper takes a better approach to the problem with datatype-
generic programming (DGP). It applies well-known DGP tech-
niques to represent modular datatypes, to build functions from
functor algebras with folds and to compose proofs from proof alge-
bras by means of induction. Moreover, for certain functionality and
proofs our approach can achieve more reuse than MTC: instead of
composing modular components we provide a single generic defi-
nition once and for all.

Categories and Subject Descriptors D.2.13 [Reusable Software]:
Reusable libraries

General Terms Languages

Keywords datatype-generic programming, fixed points, modular-
ity, mechanized meta-theory

1. Introduction

Meta-theory of programming languages is a core topic of computer
science that concerns itself with the formalization of propositions
about programming languages, their semantics and related systems
like type systems. Mechanizing formal meta-theory in proof assis-
tants is crucial, both for the increased confidence in complex de-
signs and as a basis for technologies such as proof-carrying code.

The POPLMARK challenge [6] identified component reuse as
one of several key issues of formal mechanization of programming
language meta-theory. Reuse is crucial because formalizations have
high costs. Unfortunately the current practice to achieve reuse is to
copy an existing formalization and to change the existing defini-
tions manually to integrate new features and to subsequently patch
up the proofs to cater for the changes.

The recent work on Meta-Theory a la Carte (MTC) [11] is the
first to improve this situation. It is a Coq framework for defin-
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ing and reasoning about extensible modular datatypes and exten-
sible modular functions thereby gaining modular component reuse.
MTC builds on Datatypes a la Carte (DTC) [26], a Haskell solution
to the expression problem, to achieve modularity. Besides writing
modular algebras for expressing semantic functions as folds, MTC
also supports writing generally recursive functions using mixins
and bounded fixed points. On top of that MTC presents techniques
for modularly composing proofs by induction for structurally recur-
sive functions and step-bounded induction for generally recursive
functions.

The transition from the Haskell setting of DTC to a proof-
assistant like Coq comes with two major hurdles. DTC relies on
a general fixed point combinator to define fixed points for arbitrary
functors and uses a generic fold operation that is not structurally
recursive. To keep logical consistency, Coq applies conservative
restrictions and rejects both: a) DTC’s type level fixed-points be-
cause it cannot see that the definition is always strictly-positive,
and b) DTC’s fold operator because it cannot determine termina-
tion automatically.

MTC solves both problems by using extensible Church-encodings
instead. Yet, this solution leaves much to be desired.

1. By using Church-encodings MTC is forced to rely on Coq’s
impredicative-set option, which is known to be inconsistent
with some standard axioms of classical mathematics.

2. The fixpoint combinator provided by Church-encodings
admits too many functors. For inductive reasoning, only
strictly-positive functors are valid, i.e, those functors whose
fixpoints are inductive datatypes. Yet, Church-encodings do
not rule out other functors. Hence, in order to reason only
about inductive values, MTC requires a witness of induc-
tivity: the universal property of folds. Since every value
comes with its own implementation of the fold operator,
MTC needs to keep track of a different such witness for ev-
ery value. It does so by decorating the value with its witness.
This decoration obviously impairs the readability of the
code. Moreover, since proofs are opaque in Cog, it also
causes problems for equality of terms. Finally, the deco-
ration makes it unclear whether MTC adequately encodes
fixpoints.

3. Church-encodings do not support proper induction prin-
ciples. MTC relies on a poor-man’s induction principle
instead and requires the user to provide additional well-
formedness proofs. Even though these can be automated
with proof tactics, they nevertheless complicate the use of
the framework.

This paper applies well-known techniques from datatype-
generic programming (DGP) to overcome all of the above prob-
lems. For this purpose, it extends Schwaab and Siek’s Agda-based
approach [25] to encompass all of MTC’s features in Coq.

Our specific contributions are:

e We show how to solve the expression problem in the re-

stricted setting of Coq. We build modular datatypes, modular



functions and modular proofs from well-studied DGP repre-
sentations of fixpoints for different classes of functors.

In particular, we consider polynomial functors like Schwaab
and Siek, but also the more expressive container types which
are useful for modelling MTC’s lambda binders that are
based on (parametric) higher-order abstract syntax.

e QOur approach avoids impredicativity in Coq and adequately
encodes fixpoints. It achieves these properties by exploiting
DGP approaches that capture only strictly-positive functors.

e We show how to obtain more reuse than MTC by comple-
menting modular definitions with generic definitions.

e We show how to apply MTC’s automatic construction of fix-
points for datatypes, relations and proofs to the DGP setting
and thus improve over Schwaab and Siek’s manual fixpoint
construction.

Code and Notational Conventions While all the code underlying
this paper has been developed in Coq, the paper adopts a terser
syntax for its many code fragments. For the computational parts,
this syntax exactly coincides with Haskell syntax, while it is an
extrapolation of Haskell syntax style for propositions and proof
concepts. The Coq code is available at https://github.ugent.
be/skeuchel/gdtc.

2. Constructions a la Carte

This section reviews the core ideas behind DTC and MTC and
presents the infrastructure for writing modular functions over mod-
ular datatypes. In the next section we discuss our adapted approach
that works in the restricted Coq setting.

2.1 Fixed points

In DTC extensible datatypes are represented as fixed points of
signature functors.

data Fizp f = Inp {outp :: f (Fizp f)}

For example the functors Arithr and Logicy are signatures for
arithmetic and boolean expressions.

data Arithr e = Lit Int | Add e e
data Logicp e = BLit Bool | If e e e

For example Arithp is a type that features only arithmetic expres-
sions.

type Arithp = Fizp Arithp

Different features can be combined modularly by taking the co-
product of the signatures before taking the fixed point.

data (®) f ga=1Inl(f a)| Inr (g a)
type Ezpp = Fizp (Arithg @® Logicy)

2.2 Automated injections

Combining signatures makes writing expressions difficult. For ex-
ample the arithmetic expression 3 + 4 is represented as the term

exl! :: Fizp (Arithr ® Logicy)

exl = Inp (Inl (Add
(Inp (Inl (Lt 3)))
(Inp (Inl (Lit 4)))))

Writing such expressions manually is too cumbersome and unread-
able. Moreover, if we extend the datatype with a new signature
other injections are needed.

To facilitate writing expressions and make reuse possible we use
the sub-functor f <: g relation shown in Figure 1. The member
function inj injects the sub-functor f into the super-functor g. In

class f <: g where
mnj “fa—ga
prj g a = Maybe (f a)
ing_prj :Va (ga::ga) (fa:: f a).
prj ga = Just fa — ga = inj fa
prij_ing ::Va (fa:: f a).
prj (inj fa) = Just fa
inject :: (f <: g) = f (Fizp g) = Fizp g
inject x = Fizp $inj x
project :: (f <: g) = Fizp g — Maybe (f (Fizp g))
project x = prj $ unFiz x

Figure 1. Sub-functor relation

our case we need injections of functors into coproducts which are
automated using type class machinery. !

instance (f <: f) where
inj = id

instance (f <: g) = (f <: (¢ ® h)) where
inj = Inl

instance (f <: h) = (f <: (9 ® h)) where
ing = Inr

The inject function is a variation of 4nj that additionally applies
the constructor of the fixpoint type. Using the sub-functor relation
we can define smart constructors for arithmetic expressions

lit :: (Arithp <: f) = Int — Fizp f

lit i = inject (Lit 1)

add :: (Arithp <: f) = Fizp f — Fizp f — Fizp f
add a b = inject (Add a b)

that construct terms of any abstract super-functor f of Arithp.
This is essential for modularity and reuse. We can define terms
using the smart-constructors, but constructing a value of a specific
fixpoint datatype is delayed. With these smart constructors the
above example term becomes

exl’ :: (Arithp <: f) = Fizp f
exl’ = lit 3‘add‘ lit 4

The prj member function is a partial inverse of inj. With it
we can test if a specific sub-functor was used to build the top
layer of a value. This operation fails if another sub-functor was
used. The type class also includes proofs that witness the partial
inversion. The project function is a variation of prj that strips
the constructor of the fixpoint type. Similarly to injections, we
can automate projections for coproducts by adding corresponding
definitions to the instances above.

2.3 Semantic functions

In this section we define evaluation for arithmetic and boolean ex-
pressions modularly. We use another modular datatype to represent
values. Its signatures and smart-constructors are given in Figure 2.
The signature Stuck ValueF' represents a sentinel value to signal
type errors during evaluation.

If f is a functor, we can fold over any value of type Fizp f as
follows:

'Coq’s type-class mechanism performs backtracking. These instances do
not properly work in Haskell. See [26] for a partial solution.



data NatValueF v = VInt Int
data BoolValueF v = VBool Bool
data StuckValueF v = VStuck

vint :: (NatValueF' <: vof) = Int — Fizp vf
vint © = ingect (VInt i)

vbool :: (BoolValueF <: vf) = Bool — Fizp vf
vbool b = ingject (VBool b)

vstuck :: (StuckValueF <: vf) = Fizp uf
vstuck = inject VStuck

Figure 2. Modular value datatype

class FAlgebra name f a where
f-algebra :: name — Algebra f a

algebraPlus :: Algebra f a — Algebra g a —
Algebra (f ® g) a

algebraPlus f g (Inl a) = f a

algebraPlus f g (Inr a) =g a

instance (FAlgebra name f a, FAlgebra name g a) =
FAlgebra name (f ® g) a where
f-algebra name = algebraPlus
(f -algebra name)
(f -algebra name)

Figure 3. Function algebra infrastructure

type Algebra f a =f a — a
foldp :: Functor f = Algebra f a — Fizp f — a
foldp f (Inp z) = f (fmap (foldp f) z)

An algebra specifies one step of recursion that turns a value of type
f a into the desired result type a. The fold uniformly applies this
operation to an entire term. All semantic functions over a modular
datatype are written as folds of an algebra.

Using type classes, we can define and assemble algebras in a
modular fashion. The class FAlgebra in Figure 3 carries an algebra
for a functor f and carrier type a. It is additionally indexed over a
parameter name to allow definitions of distinct functions with the
same carrier. For instance, functions for calculating the size and the
height of a term can both be defined using Int as the carrier.

We use the name Fwval to refer to the evaluation algebra.

data Fval = Eval

The evaluation algebras are parameterized over an abstract super-
functor vf for values. In case of Arithr we require that integral
values are part of vf and for Logic . we require that boolean values
are part of vf.

In the case of an Add in the evaluation algebra for arithmetic
expressions we need to project the results of the recursive calls to
test whether integral values were produced. Otherwise a type error
occurrs and the stuck value is returned.

instance (NatValueF <: vf, StuckValueF <: vf) =
FAlgebra Eval Arithp (Fizp uf) where
f-algebra Eval (Lit i) = vint i
f-algebra Eval (Add a b) =
case (project a, project b) of

(Just (VInt a), Just (VInt b)) — vint (a + b)
_ — vstuck

Similarly, we have to test the result of the recursive call of the
condition of an If term for boolean values.

instance (BoolValueF <: vf, StuckValueF <: vf) =
FAlgebra Eval Logicy (Fizp vf) where
f-algebra Eval (BLit b) = vbool b
f-algebra Eval (If cte)=
case project ¢ of
Just (VBool b) — if b then ¢ else e

Function algebras for different signatures can be combined together
to get an algebra for their coproduct. The necessary instance decla-
ration is also given in Figure 3. Finally, we can define an evaluation
function for terms given an FAlgebra instance for Fval.

[-] :: (Functor f, FAlgebra Eval f (Fizp vf)) =
Fizp f — Fizp of
[-] = foldp (f-algebra Eval)

3. Reasoning a la Carte

In Section 2 we focused on programming in Haskell. In this Section
we turn our attention towards performing modular constructions of
datatypes, functions and inductive proofs in a proof-assistant like
Coq.

3.1 Modular Definitions in Coq

Unfortunately, we cannot directly translate the definitions of Sec-
tion 2. Coq requires all inductive definitions to be strictly-positive.
We define strictly positive types (SPT) by using the following gen-
erative grammar [1]:

Tu=X|0|1|74+7|7x7T|K—=71]|pXT

where X ranges over type variables and K ranges over constant
types, i.e. an SPT with no free type variables. The constants 0 and
1 represent the empty and unit types, the operators +, X, — and
w represent coproduct, cartesian product, exponentiation and least
fixed point construction.

For Fizp f to be strictly positive this means that the argument
functor f has to be strictly-positive, i.e. it corresponds to a term
built with the above grammar with one free type variable.

As a counter example, inlining the non-strictly positive functor
X — (X — Int) — Int into Fizp yields the invalid datatype
definition

data NSP = NSP ((NSP — Int) — Int)

It does not satisfy the positivity requirements and is rejected by
Coq. While Coq can automatically determine the positivity for any
concrete functor by inspecting its definition, it cannot do so for an
abstract functor like the one that appears in the definition of Fizp.
Hence, Coq also rejects Fixp.

Of course, we have no intention of using non-strictly positive
functors for our application and would like to provide the evidence
of strict-positivity to the fixpoint type constructor. Mini-Agda [2]
for example allows programmers to annotate strictly-positive and
negative positions of type constructors. Unfortunately, Coq does
not provide us with this possibility and a different approach is
needed. To this end, we define the SPF type class in Figure 4 which
serves as a declarative specification of our requirements on functors
and which carries the required evidence.

While we need the existence of a fixed point type of abstract
super-functors, it is inessential how it is constructed. This means
that instead of providing a generic fixpoint type constructor like
Fizp we can alternatively provide a witness of the existence of a



class Functor f = PFunctor f where
type All ::Va.(a — Prop) — f a — Prop
type PAlgebra f a (alg :: Algebra f a) (p:: a — Prop) =
PFunctor f = V(zs:: f a).All p zs — p (alg zs)
class PFunctor f = SPF (f :: * — x) where
-- Programming interface

type Fizr ok

ng = f (Fizp f) — Fizp f

oulp = Figp [ — f (Fizp f)

fold :: Algebra f a — Fizp f — a

-- Reasoning interface
in_out_inverse  ::Ve.inp (outr €) = e
out_in_inverse  ::Ve.outp (inr €) = e
fold_uniqueness
Va (alg :: Algebra f a) h.
(Ve.h (inp €) = alg (fmap h e)) —
Vz.h x = fold alg z
fold_computation ::
Va (alg :: Algebra f a) (z :: a),
fold alg (inp z) = alg (fmap (fold alg) x)
nd i
Vp.PAlgebra inp p — Vz.p x

Figure 4. Strictly-positive functor class

valid fixpoint in the type class, i.e. we make the fixpoint an associ-
ated type of the SPF type class. We thereby delay the problem of
defining it to the specific functors. SPF also includes the functions
inr and outr as members that fold/unfold one layer of the fixpoint.

The fold operator from Section 2 also causes problems in Coq.
SPF is a sub-class of Functor so we would like to define a generic
fold operator similar to foldp.

foldp :: SPF f = Algebra f a — Fizr f — a
foldr alg = alg o fmap (foldr alg) o outr

Unfortunately, this definition is not structurally recursive and Coq
is not able to determine its termination automatically. Hence, this
definition is rejected. This is similar to the problem of F'izr. For
any concrete functor we can inline the definition of fmap to let
foldr pass the termination check, but again we are working with
an abstract functor f and an abstract functorial mapping fmap.
Similarly, we resolve this by including a witness for the existence
of a valid fold operator in the SPF class.

3.2 Modular inductive reasoning

The SPF typeclass also provides an interface for reasoning. It
includes proof terms that witness that folding/unfolding of the
fixpoint type form inverse operations and that the provided fold
operators satisfies the universal property of folds. The last missing
piece for reasoning is to have an induction principle available.

Consider the induction principle inda for arithmetic expres-
sion.

inda :Vp :: (Arith — Prop).
Vhi :: (Vn. p (inp (Lit n))).
Vha:: (VY y.pz — py— p (inr (Add z y))).
Ve.p x

It takes a proposition p as parameter and inductive steps hl and

ha for each case of the initial algebra. We say that hl and ha
together form a proof algebra of p. An inductive step consists of

showing p for an application of the initial algebra given proofs of p
for all recursive positions. In case of a literal we have no recursive
positions and in case of addition we have two. Proof algebras for
other datatypes differ in the number of cases and the number of
recursive positions.

In the following we develop a uniform representation of proof
algebras to allow their modularization. We use an all modality [7]
for functors to capture the proofs of recursive positions. Informally,
the all modality of a functor f and a predicate p :: a — Prop is
anew type All a p:: f a — Prop that says that the predicate p
holds for each z :: a in an f a. The following type Arithay is an
example of an all modality for arithmetic expressions.

data Arithay a p :: Arithr a — Prop where
ALt :: Arithan a p (Lit n)
AAdd ::px — py — Arithay a p (Add z y)

We introduce a new typeclass PFunctor that carries the associated
all modality type and make SPF a subclass of it. Using the all
modality definition we can write ind 4 equivalently as

ind al ::Vp :: (Arith — Prop).
Vh o (Vos. Arithay p xs — p (inp xs)).
Vr.px

The proof algebra is now a single parameter h. Note that h
shows that p holds for an application of the initial algebra ing.
In the modular setting however, we only want to provide proofs
for sub-algebras of the initial algebra that correspond to specific
signatures and combine these proof sub-algebras to a complete
proof algebra for the initial algebra. To this end, we define proof
algebras in Figure 4 more generally over arbitrary algebras. As a
last member of SPF we introduce ind that is an induction principle
for the fixpoint type Fixp. It takes a proof algebra of a property
p for the initial algebra and constructs a proof for every value of
F ’ixp.

3.3 Composing features

In Section 2 we have shown how to modularly compose signatures
and semantic functions. These definitions carry over to Coq without
any problems. We now turn to modularly composing proofs.

The PFunctor class also has the nice property of being closed
under coproducts.

instance (PFunctor f, PFunctor g) =
PFunctor (f @ g) where
type All a p xs = case zs of
Inl zs — All a p xs
Inr zs — All a p xs

As for function algebras, we can use a type class to define and
assemble proof algebras in a modular fashion.

class ProofAlgebra f a alg p where
palgebra :: PAlgebra f a alg p

instance (ProofAlgebra f a falg p,
ProofAlgebra g a galg p) =
ProofAlgebra (f @ a) a
(algebraPlus falg galg) p where
palgebra (Inl xs) azs = palgebra xs azs
palgebra (Inr zs) axs = palgebra xs axs

When instantiating modular functions to a specific set of signa-
tures, we need an SPF instance for the coproduct of that set. As
with algebras we would like to derive an instance for f & g given
instances for f and g as we cannot expect the programmer to pro-
vide an instance for every possible set of signatures. Unfortunately,
SPF does not include enough information about the functors to do



data Cont where
(p)u(su*x) = (ps— %) — Cont

shape (s> p) =s

pos (s>p)=p

data Ezt (¢ :: Cont) (a:: x) where
Ext :: (s :: shape ¢) — (pos ¢ s — a) — Ezt c a

Figure 5. Container extension

this in a constructive way. What we need is a refinement of SPF
that allows us to perform this construction.

4. Containers

This paper uses techniques from datatype-generic programming
(DGP) to get a compositional refinement of SPF. The problem
of defining fixpoints for a class of functors also arises in many
approaches to DGP and we can use the same techniques in our
setting.

In a dependently-typed setting it is common to use a universe for
generic programming [4, 7]. A universe consists of two important
parts:

1. A set Code of codes that represent types in the universe.
2. An interpretation function Ezt that maps codes to types.

There is a large number of approaches to DGP that vary in the
class of types they can represent and the generic functions they
admit. For our application we choose the universe of containers [1].

In this section we review containers for generic programming
and show how to resolve the problem of implementing folds and
induction in a modular way by using generic implementations.

An important property of this universe is that all strictly-positive
functors can be represented as containers [1]. In this respect we do
not loose any expressivity.

4.1 Universe

The codes of the container universe are of the form S > P where
S denotes a type of shapes and P :: S — * denotes a family of
position types indexed by S. The extension FExt c of a container ¢
in Figure 5 is a functor. A value of the extensions Fxt ¢ a consists
of a shape s :: shape c and for each position p :: pos ¢ s of the
given shape we have a value of type a. We can define the functorial
mapping gfmap generically for any container.

gfmap :: (a — b) — Ext c a — Ext ¢ b
gfmap f (Ext s pf) = Ext s (\p — f (pf p))

The functor Arithr for arithmetic expressions can be repre-
sented as a container functor using the following shape and position

type.

data Ariths = Lits Int | Adds
data Arithp :: Ariths — swhere
Addp; :: Arithp Addg
Addps :: Arithp Adds
type Arithc = Ariths > Arithp

The shape of an Arithr value is either a literal Lit with some
integer value or it is an addition Add. In case of Add we have
two recursive positions Addp; and Addpz. Lit does not have any
recursive positions.

The isomorphism between Arithr and Ext Arithc is wit-
nessed by the following two conversion functions.

class Container (f :: * — %) where

cont  :: Cont
from :fa— Extca
to wFExtca—fa

fromTo ::Vz.from (to z) = x
toFrom ::Vz.to (from z) = x

Figure 6. Container functor class

from :: Arithp a — Ext Arithc a
from (Lit i) = Ext (Lits i) (Ap — case p of )
from (Add z y) = Exzt Adds pf
where pf :: Arithp Adds — a
pf Addp; =z
pf Addpz =y
to :: Ext Arithe a — Arithr a
to (Ext (Lits i) pf) = Lit 1
to (Ext Adds pf) = Add (pf Addp:) (pf Addps)

Literals do not have recursive positions and hence we cannot come
up with a value. In Coq one needs to refute the position value
p :: Arithp (Lit i) as its type is uninhabited. We use a case
distinction without alternatives as an elimination.

4.2 Fixpoints and folds

The universe of containers allows multiple generic constructions.
First of all, the fixpoint of a container is given by its W-type.

data W (c:: Cont) = Sup {unSup :: Ext ¢ (W ¢)}

The definition of Ext is known at this point and Coq can see that the
W c s strictly positive for any container ¢ and hence the definition
of W is accepted.

Furthermore, we define a fold operator generically.

gfold :: Algebra (Ext ¢) a — W ¢ — a
gfold alg (Sup (Ext s pf)) =
alg (Ext s (A\p — gfold alg (pf p)))

Note that this definition is essentially the same as the definition
of foldp from Section 2. Because of the generic implementation
of gfmap we can inline it to expose the structural recursion. Coq
accepts this definition, since the recursive call gfold alg (pf p) is
performed on the structurally smaller argument pf p.

4.3 Coproducts

Given two containers S; > P; and S2 > P» we can construct a
coproduct. The shape of the coproduct is given by the coproducts
of the shape and the family of position types delegates the shape to
the families P; and P.

type Sy = FEither S1 Ss
type Py (Left s) = Pr s
type Py (Right s) = P2 s
The injection functions on the extensions are given by
inl :: BExt (S1 > Pl) — Eaxt (S+ > P+)
inl (Ext s pf) = Ext (Left s) pf
inr :: Ext (So > Pp) — Ext (S > Py)
inr (Ext s pf) = Ext (Right s) pf

4.4 Induction

To define an induction principle for container types we proceed in
the same way as in Section 3.2 by defining proof algebras using an



class IFunctor i (f :: (i — Prop) — i — Prop) where
ifmap ::¥(a :: i — Prop) (b:: ¢ — Prop) (j :: 4).
(Vjaj—bj)—>faj—fbj
class IFunctor i f =
ISPF i (f :: (¢« = Prop) — i — Prop) where
type IFizx :: i — Prop

inp =V(ji).f (IFix f i) — IFiz f i
outr 2V(j i) IFiz f i — f ([Fiz f i)
ifold wIAlgebra i f a > Vj.IFix fj— aj

Figure 7. Indexed strictly-positive functor class

all modality [7]. The all modality on containers is given generically
by a II-type that asserts that ¢ holds at all positions.

GAll:: (q:: a — Prop) — Ext ¢ a — Prop
GAll q (Ext s pf) =V(p :: pos ¢ s).q (pf p)

As with the implementation of the generic fold operations, enough
structure is exposed to write a valid induction function: gind calls
itself recursively on the structurally smaller values pf p to establish
the proofs of the recursive positions before applying the proof
algebra palg.

gind ::¥(c  :: Cont) —
Y(q :: W ¢— Prop) —
V(palg :: Vas. GAll g zs — q (Sup zs)) —
Vx.q x
gind ¢ q palg (Sup (Ext s pf)) =
palg (Ap — gind c q palg (pf p))

4.5 Container functor class

Directly working with the container representation is cumbersome
for the user. As a syntactic convenience we allow the user to use any
conventional functor of type * — * as long as it is isomorphic to a
container functor. The type class Container in Figure 6 witnesses
this isomorphism. The class contains the functions from and to
that perform the conversion between a conventional functor and a
container functor and proofs that these conversions are inverses.

Via the isomorphisms from and to we can import all the generic
functions to concrete functors and give instances for Functor,
PFunctor and SPF.

instance Container f = Functor f where
fmap f = too gfmap f o from

instance Container f = PFunctor f where
All @ = GAIll Q o from

instance Container f = SPF f where

FiIF = W S P
ng = sup o from
outr = to o unSup

fold alg = gfold (alg o to)

The important difference to the SPF class is that we can generi-
cally build the instance for the coproduct of two Container func-
tors by using the coproduct of their containers.

instance (Container f, Container g) =
Container (f @ g)

4.6 Extensible logical relations

Many properties are expressed as logical relations over datatypes.
These relations are represented by inductive families where a con-
structor of the family corresponds to a rule defining the relation.

When using logical relations over extensible datatypes the set of
rules must be extensible as well. For instance, a well-typing relation
of values WTValue :: (Value, Type) — Prop must be extended
with new rules when new cases are added to Value.

Extensibility of inductive families is obtained in the same way
as for inductive datatypes by modularly building inductive families
as fixpoints of functors between inductive families. The following
indexed functor WTNatr covers the rule that a natural number
value has a natural number type.

data WTNatp (wfv :: (Fizp of, Fizr tf) — Prop) :
(Value, Type) — Prop where
WTNat :: (NatValueF <: vf, NatTypeF <: tf) =
WTNat wfv (vi n, tnat)

MTC constructs fixed points of indexed functors also by means
of Church-encodings. The indexed variants of algebras and fixed
points are

type IAlgebra i (f :: (1 — Prop) — i — Prop) a =
V(i) faj—aj

type IFizy @ (f :: (1 — Prop) — ¢ — Prop) j =
Va.IAlgebra i f a — a j

For type-soundness proofs we perform folds over proof-terms in
order to establish propositions on the indices and hence make use
of the fold operation provided by Church-encodings. However,
contrary to inductive datatypes we do not make use of propositions
on proof-terms and hence do not need an induction principle for
them. This also means that we do not need to keep track of the
universal property of folds for proof-terms. Figure 7 defines the
type class ISPF that collects the necessary functions for modularly
building logical relations.

Alternatively we can use a universe of indexed containers [5].
An i-indexed container is essentially a container together with an
assignment of indices for each shape and each position of that
shape.

More formally, an ¢-indexed container S > P > R is given by
a family of shapes S :: ¢ — =« and family of position types
P:(j=i) - S j — = and an assignment R :: (j :: 4) —
(s:: 8 37) = P j s — iof indices for positions. Figure 8 gives
the definition of the extension and the fixed point of an indexed
container. Similarly to containers, one can generically define a fold
operator for all indexed containers and construct the coproduct of
two indexed containers.

Fixed points and fold operators can be defined generically on
that universe similarly to Section 4.2. Indexed containers are also
closed under coproducts and indexed algebras can be modularly
composed using type classes.

5. Polynomial functors

In the previous section we have implemented generic functions for
functorial mappings, fixed points, folds and generic proofs about
their properties.

Other common functionality can be treated with generic imple-
mentations as well. In this section we look at a generic implemen-
tation of equality testing and proofs about its correctness. These
functions are used for example in the MTC framework in the imple-
mentation of a modular type-checker that tests if both branches of
an if expression have the same type and that the function and argu-
ment type of a function application are compatible. Furthermore for
reasoning about functions that use equality testing we need proofs



data ICont i where
(o> )u(sui— %) —
(p:Vjsg—x)—
(r=Vjspjs—i)— ICont i
ishape (s>pp>7r)=3s
1pos (spbppr)=0p
irec (spppr)=r
data IEzt (c:: ICont 1)
(a:: 1 — Prop) (j :: 1) :: Prop where
IEzt :: (s :: ishape c j) —
(pf :: Y(p::ipos cj s).a (irec cj s p)) —
IExt c a j
data IW (c:: ICont 3) (5 :: 1) :: Prop where
ISup :: IExt ¢ IW j — IW ¢ j

Figure 8. i-indexed containers

class Fq a where
eq ::a — a — Bool
eqTrue ::Vz y. eq x y = True — xs = ys
eqFalse ::Vzr y. eq x y = False — zs # ys

Figure 9. Equality type class

about its correctness. We thus include the equality function and the
properties in an equality type class that is shown in Figure 9.

When choosing an approach to generic programming there is
a trade-off between the expressivity of the approach, i.e. the col-
lection of types it covers, and the functionality that can be im-
plemented generically using this approach. The container universe
is a very expressive universe for which we have generically im-
plemented folds and hence is well-suited as a solution for modu-
larly defining datatypes and functions. However, it is too expressive
for implementing equality generically as it also includes function
types.

So instead we restrict ourselves to the universe of polynomial
functors to implement equality generically.

5.1 Universe

The codes Poly and interpretation Eztp of the polynomial functor
universe are shown in Figure 10. A polynomial functor is either
the constant unit functor U, the identity functor /, a coproduct
C' p1 p2 of two functors, or the cartesian product P p; p2 of two
functors. The interpretation Fxtp is defined as an inductive family
indexed by the codes.

As an example consider the functor Fun Type that can represent
function types of an object language.

data FunType a = TArrow a a

It has a single constructor with two recursive positions for the do-
main and range types. Hence it can be represented by the code
P I 1. The conversion functions between the generic and con-
ventional representation are given by

fromFunType :: FunType a — Extp (P 1 1) a
fromFunType (TArrow z y) = EP (EI z) (EI y)

toFunType :: Extp (P I I) a — FunType a
toFunType (EP (EI z) (EI y)) = TArrow = y

data Poly = U | I | C Poly Poly | P Poly Poly

data Extp (c:: Poly) (a:: %) where
EU :: Extp U a
El ::a— Extp I a
EL :: Extp ¢ a — Eztp (C ¢ d) a
ER :: Extp d a — Extp (C ¢ d) a
EP ::Extp ca — Ezxtp d a — Extp (P cd) a

class Polynomial f where

pcode :: Poly
pto :: Bxtp pcode a — f a
pfrom :: f a — FEaxtp pcode a

ptoFromInverse :: Va.pto (pfrom a) = a
pfromTolnverse :: Va.pfrom (pto a) = a

Figure 10. Polynomial functors

As before we define a type-class Polynomial that carries the con-
version functions and isomorphism proofs. The definition of the
class is also given in Figure 10. An instance for FunType is the
following, with proofs omitted:

instance Polynomial FunType where

pcode =PI

pto = toFunType
pfrom = fromFun Type
ptoFromlInverse = ..
pfromTolnverse = ...

5.2 Universe embedding

To write modular functions for polynomial functors we proceed
in the same way as in Section 4 by showing that Polynomial is
closed under coproducts and building the functionality of the SPF
type class generically.

However, that would duplicate the generic functionality and
would prevent us from using polynomial functors with containers.
Since containers are closed under products and coproducts we
can embed the universe of polynomial functors in the universe of
containers. In order to do this, we have to derive a shape type from
the code of a polynomial functor and a family of position types for
each shape. We can compute the shape by recursing over the code.

polys :: Poly — %

polys U =()

polys I =()

polys (C' ¢ d) = polys ¢ + polys d
polys (P ¢ d) = (polys ¢, polys d)

The constant unit functor and the identity functor have only one
shape which is represented by a unit type. As in section 4.3 the
shape of a coproduct is the coproduct of the shapes of the sum-
mands and the shape of a product is the product of shapes of the
factors. The definition of positions also proceeds by recursing over
the code.

polyp :: (¢ :: Poly) — polys ¢ — *

polyp U 0 = Empty
polyp I 0 =0

polyp (C ¢ d) (Left s) = polyp ¢ s
polyp (C ¢ d) (Right s) = polyp d s
polyp (P c d) (s1,52) =

Either (polyp ¢ s1) (polyp d s2)



The constant unit functor does not have any positions and the iden-
tity functor has exactly one position. For coproducts the positions
are the same as the ones of the chosen summand and for a prod-
uct we take the disjoint union of the positions of the shapes of the
components.

The next essential piece for completing the universe embedding
are conversions between the interpretations of the codes. The func-
tion ptoUnary converts the polynomial interpretation to the con-
tainer intepretation.

ptoUnary :: (¢ :: Poly) —

Eztp ¢ a — Ext (polys ¢ > polyp ¢) a
ptoUnary U EU = Ezxt () (A\p — case p of )
ptoUnary I (EI'a) =Ezt() (A) — a)
ptoUnary (C ¢ d) (ELz) = Ext (Left s) pf

where Fxt s pf = ptoUnary c
ptoUnary (C ¢ d) (ERy) = Ext (Right s) pf
where Ext s pf = ptoUnary c y
ptoUnary (P ¢ d) (EP z y) = Ezt (s1,52)
(Ap — case p of
Leftp — pfip
Right p — pf2 p)
where Ext s1 pfl = ptoUnary c z
Ext s2 pf2 = ptoUnary d y

Similarly we define the function pfromUnary that performs the
conversion in the opposite direction. We omit the implementation.

pfromUnary ::
(¢ :: Poly) — Ext (polys ¢ > polyp ¢) a — Extp ¢ a

To transport properties across these conversion functions we need
to prove that they are inverses. These proofs proceed by inducting
over the code; we omit them here.

As the last step we derive an instance of Container from an
instance of Polynomial. This way all the generic functionality of
containers is also available for polynomial functors.

instance Polynomial f = Container f where

cont = polys pcode > polyp pcode
from = ptoUnary pcode o pfrom
to = pto o pfromUnary pcode
fromTo = ...

toFrom = ...

5.3 Generic equality

Performing the conversions between polynomial functors and con-
tainers in the definition of recursive functions makes it difficult to
convince the termination checker to accept these definitions. So in-
stead of using the generic fixed point provided by the container
universe we define a generic fixed point on the polynomial functor
universe directly.

data Fizp (c:: Poly) = Fizp (Extp ¢ (Fizp c))

We define the generic equality function geq mutually recursively
with go that recurses over the codes and forms an equality function
for a partially constructed fixed point.

geq :: (¢ :: Poly) — Fizp ¢ — Fizp ¢ — Bool
geq ¢ (Fizp x) (Fizp y) =goczy
where
0::(d :: Poly) —
Extp d (Fizp ¢) — Eztp d (Fizp ¢) — Bool

go U EU EU = True
go I (BI'z) (Ely) =geqzy
o(Ccd)(ELz) (ELy) =goczy

go(Ccd)(ELz) (ERy) = False
go(C cd)(ERz) (ELy) = Fulse
go(Ccd)(ERz) (ERy) =godzy
go(Pcd) (EPzx") (EPyy') =

goczyAgodaxy

In the same vein we can prove the properties of the Eq type class
for this equality function using mutual induction over fixed points
and partially constructed fixed points.

Of course Fizp ¢ and Fizr (polys c > polyp c) are isomor-
phic and we can transport functions and their properties across this
isomorphism to get a generic equality function on the fixed point
defined by containers for a conventional polynomial functor which
can be used to instantiate the Eq type class in Figure 9.

instance Polynomial f = Eq (Fizr f)

6. Case study

As a demonstration of the advantages of our approach over MTC’s
Church-encoding based approach, we have ported the case study
from [11].

The study consists of five reusable language features with
soundness and continuity? proofs in addition to typing and eval-
uation functions. Figure 11 presents the syntax of the expressions,
values, and types provided by the features; each line is annotated
with the feature that provides that set of definitions.

=N]e+e Arith

| B | if e then e else e Bool

| case e of {z = e ; S n = e}  NatCase
|lamx:Te\ee|x Lambda

| fix x : T.e Recursion
V=N Arith T ::= nat Arith
| B Bool | bool Bool

| closure e V. Lambda | T = T Lambda

Figure 11. mini-ML expressions, values, and types

In this section we discuss the benefits and trade-offs we have
experienced while porting the case study to our approach.

Code size By the move to a datatype-generic approach the un-
derlying modular framework grew from about 2500 LoC to about
3500 LoC. This includes both the universe of containers and poly-
nomial functors and the generic implementations of fold, induction
and equality.

The size of the implementation of the modular feature compo-
nents is roughly 1100 LoC per feature in the original MTC case
study. By switching from Church-encodings to a datatype-generic
approach we stripped away on average 70 LoC of additional proof
obligations needed for reasoning with Church-encodings per fea-
ture. However, instantiating the MTC interface amounts to roughly
40 LoC per feature while our approach requires about 100 LoC per
feature for the instances.

By using the generic equality and generic proofs about its prop-
erties we can remove the specific implementations from the case
study. This is about 40 LoC per feature. In total we could reduce
the average size of a feature implementation to 1050 LoC.

2 of step-bounded evaluation functions



Impredicative sets  The higher-rank type in the definition of Fizas
Fizpy (f :: Set — Set) =V(a:: Set).Algebra f a — a

causes Fizy f to be in a higher universe level than the domain of
f.Hence to use Fizs f as a fixpoint of f we need an impredicative
sort. MTC uses Coq’s impredicative-set option for this which is
known to lead to logical inconsistencies.

When constructing the fixpoint of a container we do not need to
raise the universe level and can thus avoid using impredicative sets.

Induction principles Church encodings have problems support-
ing proper induction principles, like the induction principle for
arithmetic expressions inda in Section 3.2. MTC uses a poor-
man’s induction principle ind? instead.

ind% =
Y(p :: (Arith — Prop)).
V(hl :: (Vn.p (InMTC (Lit n)))).
V(ha:: Vzypz—py—p (InMTC (Add z y)))).
Algebra Arithp (3a.p a)

The induction principle uses a dependent sum type to turn a proof
algebras into a regular algebra. The algebra builds a copy of the
original term and a proof that the property holds for the copy. The
proof for the copy can be obtained by folding with this algebra. In
order to draw conclusions about the original term two additional
well-formedness conditions have to be proven.

1. The proof-algebra has to be well-formed in the sense that it
really builds a copy of the original term instead of producing
an arbitrary term. This proof needs to be done only once for
every induction principle of every functor and is about 20
LoC per feature. The use of this well-formedness proof is
completely automated using type-classes and hence hidden
from the user.

2. The fold operator used to build the proof using the algebra
needs to be a proper fold operator, i.e. it needs to satisfy the
universal property of folds.

foldMTC :: Algebra f a — Fizxy f — a
foldMTC alg fa = fa alg

type UniversalProperty (f :: % — *) (e :: Fiza f)
=Va (alg :: Algebra f a) (h:: Fizy f — a).
(Ve.h (inMTC €) = alg h ) —
h e = foldMTC alg e

In an initial algebra representation of an inductive datatype,
we have a single implementation of a fold operator that can
be proven correct. In MTC’s approach based on Church-
encodings however, each term consists of a separate fold
implementation that must satisfy the universal property.

Hence, in order to enable reasoning MTC must provide a proof
of the universal property of folds for every value of a modular
datatype that is used in a proof. This is mostly done by packaging
a term and the proof of the universal property of its fold in a
dependent sum type.

type FizUP f = 3(z :: Fizy f). UniversalProperty f

Equality of terms Packaging universal properties with terms ob-
fuscates equality of terms when using Church-encodings. The proof
component may differ for the same underlying term.

This shows up for example in type-soundness proofs in MTC.
An extensible logical relation WT Value (v, t) is used to represent
well-typing of values. The judgement ranges over values and types.
The universal properties are needed for inversion lemmas and thus
the judgement needs to range over the variants that are packaged
with the universal properties.

However, knowing that WTValue (v,t) and projl t =
proj1 t' does not directly imply WT Value (v, t') because of the
possibly distinct proof component. To solve this situation auxiliary
lemmas are needed that establish the implication. Other logical
relations need similar lemmas. Every feature that introduces new
rules to the judgements must also provide proof algebras for these
lemmas.

In the case study two logical relations need this kind of auxiliary
lemmas: the relation for well-typing and a sub-value relation for
continuity. Both of these relations are indexed by two modular
types and hence need two lemmas each. The proofs of these four
lemmas, the declaration of abstract proof algebras and the use of
the lemmas amounts to roughly 30 LoC per feature.

In our approach we never package proofs together with terms
and hence this problem never appears. We thereby gain better
readability of proofs and a small reduction in code size.

Adequacy Adequacy of definitions is an important problem in
mechanizations. One concern is the adequate encoding of fixpoints.
MTC relies on a side-condition to show that for a given functor
f the folding inMTC :: f (Fizy f) — Fizy f and unfolding
outMTC :: Fizy f — f (Fizm f) are inverse operations,
namely, that all appearing Fixps f values need to have the universal
property of folds. This side-condition raises the question if Fizy f
is an adequate fixpoint of f. The pairing of terms together with
their proofs of the universal property do not form a proper fixpoint
either, because of the possibility of different proof components for
the same underlying terms.

Our approach solve this adequacy issue. The SPF type class
from Figure 4 requires that in and out are inverse operations
without any side conditions on the values and containers give rise
to proper SPF instances.

7. Related and Future Work

DGP in proof-assistants Datatype-generic programming started
out as a form of language extension such as PolyP [12] or Generic
Haskell [17]. Yet Haskell has turned out to be powerful enough
to implement datatype-generic programming in the language itself
and over the time a vast number of DGP libraries for Haskell
have been proposed [8, 10, 14, 19, 21, 24, 29]. Compared with
a language extension, a library is much easier to develop and
maintain.

Using the flexibility of dependent-types there are multiple pro-
posals for performing datatype-generic programming in proof as-
sistants [3, 5, 7, 18, 27]. This setting not only allows the imple-
mentation of generic functions, but also of generic proofs. The ap-
proaches vary in terms of how strictly they follow the positivity or
termination restrictions imposed by the proof assistant. Some cir-
cumvent the type-checker at various points to simplify the develop-
ment or presentation while others put more effort in convincing the
type-checker and termination checker of the validity [23]. However,
in all of the proposals there does not seem to be any fundamental
problem caused by the restrictions.

DGP for modular proofs Modularly composing semantics and
proofs about the semantics has also been addressed by [25] in
the context of programming language meta-theory. They perform
their development in Agda and similar to our approach they also
use a universe approach based on polynomial functors to represent
modular datatypes. They split relations for small-step operational
semantics and well-typing on a feature basis. However, the final
fixed points are constructed manually instead of having a generic
representation of inductive families.

Using Coq’s type classes both MTC and our approach also
allow for more automation in the final composition of datatypes,
functions and proofs. Agda features instance arguments that can



be used to replace type classes in various cases. However, the
current implementation does not perform recursive resolution and
as a result Agda does not support automation of the composition to
the extent that is needed for DTC-like approaches.

Combining different DGP approaches We have shown an em-
bedding of the universe of polynomial functors into the universe of
containers. Similar inclusions between universes have been done
in the literature [22]. Magalhdes and Loh [20] have ported several
popular DGP approaches from Haskell to Agda and performed a
formal comparison by proving inclusion relations between the ap-
proaches.

DGP approaches differ in terms of the class of datatypes they
capture and the set of generic functions that can be implemented
for them. Generic functions can be transported from a universe into
a sub-universe. However, we are not aware of any DGP library with
a systematic treatment of universes where each generic function is
defined on the most general universe that supports that function.

DGP for abstract syntax We have shown how to obtain more
reuse by complementing modular definitions with a generic equal-
ity function and generic proofs of its properties. Of course more
generic functionality like traversals, pretty-printing, parsing etc.
can be covered by means of datatype-generic programming.

One very interesting idea is to use datatype-generic program-
ming to handle variable binding [9, 28]. Variable binding is an
ubiquitous aspect of programming languages. Moreover, a lot of
functionality like variable substitutions and free variable calcula-
tions is defined for many languages. Licata and Harper [16] and
Keuchel and Jeuring [13] define universes for datatypes with bind-
ing in Agda. Lee et al. [15] develop a framework for first-order
representations of variable binding in Coq that is based on the uni-
verse of regular tree types [23] and that provides many of the so-
called infrastructure lemmas required when mechanizing program-
ming language meta-theory.

An interesting direction for future work is to extend these ap-
proaches to capture variable binding in the indices of relations on
abstract syntax and use this as the underlying representation of ex-
tensible datatypes and extensible logical relations and thereby com-
plementing modular functions with generic proofs about variable
binding.

Automatic derivation of instances Most, if not all, generic pro-
gramming libraries in Haskell use Template Haskell to derive the
generic representation of user-defined types and to derive the con-
version functions between them.

The GMeta [15] framework includes a standalone tool that also
performs this derivation for Coq. Similarly we also like to be able
to derive instances for the Container and Polynomial classes
automatically.

8. Conclusion

Formally mechanizing proofs can be very tedious and the amount
of work required for larger developments is excruciating. Meta-
Theory a la Carte is a framework for modular reusable components
for use in mechanizations. It builds on the Datatypes a la Carte
approach to solve an extended version of the expression problem.
MTC allows modular definitions of datatypes, semantic functions
and logical relations and furthermore modular inductive proofs.
MTC uses extensible Church-encodings to overcome conser-
vative restrictions imposed by the Coq proof-assistant. This ap-
proach has shortcomings in terms of confidence in the definitions
and in terms of usability. This paper addresses these shortcom-
ings by using datatype-generic programming techniques to replace
Church-encodings as the underlying representation of type-level
fixed points. Our approach avoids impredicativity, adequately en-

codes fixed points and leads to stronger induction principles by ex-
ploiting DGP approaches that capture only strictly-positive func-
tors.

Working with generic structure representation has the added
benefit that we can implement generic functions like equality and
generic proofs once and for all.
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