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Abstract 

Within this paper we demonstrate the capability of the sliding plate configuration of the 

flexure-based microgap rheometer (FMR) to absolutely determine slip velocities of a yield 

stress fluid. The sensitivity of the compound flexures of the FMR in combination with the 

possibility to achieve precise gap settings down to 1 µm allows to accurately determining slip 

velocities down to 1 µm/s. We further show how the obtained non-linear relation of the slip 

velocity to the constant stresses of the plane Couette flow in the sliding plate configuration of 

the FMR allows predicting and explaining the inhomogeneous stress distribution and partial 

yielding behaviour in a rotational cone-and-plate geometry. 

Introduction 

The slip of sheared simple and complex fluids in the vicinity of a solid wall has been the 

subject of intensive studies since the first introduction of this phenomenon by Navier in the 

early 19
th

 century (Navier 1823; Piau and Piau 2005). Next to the discussions of the origin of 

slip depending on the structure of the liquid and surface (Neto et al. 2005; Barnes 1995), and 

the effects of slip on the processing and applications of these fluids (Laun 2004; Kalika and 

Denn 1987), it is in particular the precise determination of the actual slip that has been the 

focus of experimental rheologists (Barnes 1995). 



The amount of slip in a sheared fluid is generally experimentally determined with a Couette or 

plate-and-plate (PP) geometry on a rotational rheometer using the Mooney analysis (Mooney 

1931; Yoshimura and Prudhomme 1988). In case that the slip velocity sv  of the bulk fluid 

against a wall can be considered to be a function of the stress σ , it is possible to determine sv  

with the Mooney analysis from the distribution of slip velocity and bulk shear rate bγ&  from 

the nominal total shear rate 2γ γ= +& &
n b sv h  with measurements at different gap distances h  

but the same stress level σ (Yoshimura and Prudhomme 1988). Such a change in the 

measurement gap distance h  can be achieved for a rotational rheometer with Couette type 

geometries of different cup or bob diameters. However, the availability such different 

geometries is normally limited and thus also the analysis of the slip. The use of a rotational PP 

geometry enables in principle an easy adjustment of the gap to different levels, however, the 

shear rate and thus the stress are in this type of geometry not constant but vary in radial 

direction. A slip analysis using a rotational PP geometry is thus inherently operating with 

averaged values and the error induced is in particular large for systems that show a strong 

dependence of the slip velocity on the applied stress.  

In order to obtain an unambiguous determination of slip, there have been several attempts to 

directly measure slip. Approaches include direct marking and visualization of the free sample 

interface in rotational geometries (Princen and Kiss 1986; Kalyon et al. 1993), heterodyne 

dynamic light scattering (Salmon et al. 2003), NMR velocity imaging (Mair and Callaghan 

1996), ultrasonic speckle or doppler velocimetry (Manneville et al. 2004; Derakhshandeh et 

al.) and particle imaging velocimetry (Lumma et al. 2003; Meeker et al. 2004a; Dimitriou et 

al. 2011; Seth et al. 2008). However, even for an exact determination of an absolute slip 

velocities and/or lengths, the stresses that are calculated in PP or cone-and-plate (CP) 

geometries from the simultaneously measured torque T represent only an averaged value over 

the inherently inhomogeneous radial distribution of stresses for a slipping sample. These 



‘apparent’ stresses prohibit an exact determination of the absolute stresses that are related to 

the slip phenomena, allowing thus only a qualitative comparison to the theoretical predictions. 

This difficulty can be overcome by creating a planar Couette flow using a sliding plate 

rheometer. The constant and absolutely measured stresses between the parallel plates of such 

a device as well as the adjustable gap allow a precise analysis of a slipping phenomenon. For 

higher viscosity systems in particular the sliding plate devices developed by Dealy and co-

workers (Giacomin et al. 1989; Hatzikiriakos and Dealy 1991) have been used for studies of 

the wall slip of polymer melts and solutions. With the recently introduced Flexure-based 

Microgap Rheometer (FMR) (Clasen and McKinley 2004; Clasen et al. 2010; Baik et al. 

2011; Clasen et al. 2006; Kojic et al. 2006; Baik et al. 2008; Erni et al. 2011) a sliding plate 

rheometer was developed that can also investigate lower viscosity systems, and that can in 

particular access gaps between the sliding plates down to 1 µm. This enables a precise slip 

analysis in particular when low slipping velocities of order 1 µm/s are present (Clasen et al. 

2006) as they are encountered in polymer solutions or colloidal suspensions.  

In this paper we will demonstrate how the micrometer gap distances in the parallel plate 

geometry of the FMR enable an accurate analysis of the non-linear evolution of the slip 

velocity with the stress. The sample selected for this study is a concentrated solution of the 

polysaccharide xanthan gum that exhibits a yield stress due to hydrogen bonding. Yield stress 

fluids as xanthan gum have been the aim of many slip studies (Bertola et al. 2003; Rofe et al. 

1996), as they exhibit no or negligible flow in the bulk phase below the yield stress, allowing 

to focus solely on the slip phenomenon. Furthermore, in comparison to microgel pastes and 

concentrated emulsions that have been studied in detail as model yield stress fluids (Meeker et 

al. 2004a), for xanthan gum one can rule out confinement effects from microstructures of the 

order of the gap settings used for the slip study with the FMR (Davies and Stokes 2008; 

Clasen and McKinley 2004; Clasen et al. 2006). In addition to the accurate slip analysis with 



the FMR, we show that it is possible based on the FMR analysis to calculate and explain the 

radial distribution of stresses of the slipping yield stress fluid in a regular cone-and-plate 

geometry and to compare the total theoretical torque to the experimentally observed apparent 

stresses as function of the nominal shear rate. 

Experiments and Methods 

The FMR sliding plate rheometer used in this study utilizes a compound-flexure based 

drive/sensing system that allows to maintain the parallelism and separation of the plates even 

for µm gap separations over large shearing deformations. The technical details of the FMR 

used in this study are given elsewhere (Clasen et al. 2006), with a detailed analysis of its 

limitations in (Clasen et al. 2010) and (Baik et al. 2011). The square shearing surfaces used in 

the FMR for this study consist of optically flat glass (λ/4) with a surface area A  of 217 mm
2
. 

Each data point of the FMR measurements is obtained in a controlled rate mode and 

represents a steady state stress within 3% over a time period of at least 3/γ& .  

Rotational rheometrical measurements were conducted with an AR-G2 (TA Instruments) 

rotational rheometer, using the same steady state conditions for the stress as a function of 

applied shear rate as for the sliding plate rheometer. The geometries used were a cone-and-

plate (CP) geometry with an angle α  of 2° and a radius R  of 2 cm, and a plate-and-plate (PP) 

geometry, also with a radius R  of 2 cm.   

The sample investigated in this study is a 5 wt% aqueous solution of xanthan gum (Keltrol 

BT, CP Kelco) with 0.012 wt% NaN3 added as an antibacterial agent. A non-thixotropic 

behaviour of the solution over the timescales applied was confirmed by measuring the sample 

with the cone-and-plate geometry consecutively with increasing and decreasing rates. 

Measurements with the FMR as well as with the rotational rheometer were conducted at an 

ambient room temperature of 23°C.   



MATLAB (Mathworks) was used to perform the numerical integration to solve eq. (2). 

Results and Discussion 

Fig. 1 shows the apparent stresses ( )33 2σ π= T R  determined from the measured torque T 

for a CP geometry (Macosko 1994) as a function of the nominal shear rates 
, tanγ α= Ω&

n cp
 

calculated from the applied angular velocity Ω that are obtained for the Xanthan gum 

solution. Figure 1 gives also the apparent stresses ( )32σ π= T R  measured with the PP 

geometry (Macosko 1994) at different gap settings h  from 20 to 1000 µm as a function of the 

nominal shear rate at the rim 
,γ = Ω&

n pp R h . All flow curves show at a stress level of 

approximately 140 Pa a nearly rate independent plateau that can be attributed to a yielding of 

the material at this critical stress level 
yσ . At higher rates, the flow curves obtained with the 

different geometries nearly coincide and show a shear thinning behaviour as expected for an 

aqueous solution of xanthan gum. For both the CP and PP geometries the yield stress plateau 

does not extend to small rates and instead over a range of shear rates from 10
-2 

- 10
1
 s

-1
 an 

apparent shear thinning flow regime is observed that shifts to higher rates for decreasing gaps 

for the PP data. For the PP geometry at lower gaps, in particular 50 µm and 20 µm, it should 

be noted that h  (and therefore the shear rate 
pp R hγ = Ω& ) is only indicative for the actual 

gap, since no correction of gap errors due to non-parallelism of the plates has been performed 

(Davies and Stokes 2008; Clasen 2012; Kramer et al. 1987). A final thing to note for the PP 

data at gaps larger than 250 µm is a slight onset of a shoulder that can be observed on close 

inspection at a stress level of ~σ 70 Pa and that can also be seen in the CP data, but that is 

not visible for the smaller PP gaps and also not in the FMR data at even smaller gaps 

presented in the following. It can be speculated that the origin of this discontinuity is a 

supramolecular structure that can only build up in larger gaps; however, this is not of 

importance for the following discussion of the slip phenomenon of a yield stress fluid. 



 

Fig. 1   Apparent shear stress of the 5 wt% aqueous xanthan gum solution determined with a cone-and-

plate (CP) geometry as well as a plat-and-plate (PP) geometry at different gaps h , as a function of the 

nominal shear rate of the respective geometry. 

The relatively large nominal shear rates, as well as the dependence on the gap for the flow 

curves of the PP experiments, indicate that the apparent shear thinning in the low shear 

regime is not a creeping flow of the unyielded sample, but rather a slip phenomenon of the 

unyielded material against the shearing surface or within the bulk. Furthermore, the general 

shape of the flow curves in Fig. 1 has already been reported and possibly attributed to slip for 

other complex fluids with a yield stress as for example concentrated microgel (Meeker et al. 

2004b, a) or fibre pulp suspensions (Derakhshandeh et al.), mayonnaise (Clasen et al. 2006) 

or toothpaste (Ardakani et al. 2011). This slip phenomenon is investigated in the following in 

detail with the sliding plate geometry and the constant small gaps of the FMR. 



 

Fig. 2 Absolute shear stresses of the 5 wt% aqueous xanthan gum solution as a function of the nominal 

shear rates determined with the sliding plate geometry of the FMR (open symbols) at different gap 

between the plates. In addition also the apparent stress determined with the CP geometry from Fig. 1 is 

given as a reference (closed symbols. The dotted line represents the theoretically calculated apparent 

stress in a CP geometry from the total torque of eq. (2). 

 

The experimentally observed absolute stresses of the FMR measurements are shown in Fig. 2 

as a function of the apparent shear rate 
,γ =&

n FMR v h  for different gaps h  between the 

stationary lower plate and the upper plate that moves with velocity v . For comparison, Fig. 2 

shows also the apparent stresses determined with the CP geometry as a function of the 

nominal rate 
, tanγ α= Ω&

n cp
. The primary yield stress plateau that is observed in this rate-

controlled experiment with the CP geometry is ~yσ 140 Pa, and it is obvious that all stresses 

accessible with the FMR in Fig. 2 are still below this critical yield stress level.  

The apparent flow for stresses below 
yσ , observed both in the CP geometry as well as in the 

FMR, can be attributed to a slip phenomenon. It is possible to determine the slip velocities 

and gaps from the sliding plate data of the FMR following the general analysis of Mooney 

(Yoshimura and Prudhomme 1988; Cohen and Metzner 1985; Mooney 1931). The nominal 



shear rate γ&n  in the gap h  between the shearing surfaces at a constant stress level σ  can be 

divided into the shear rate in the bulk phase bγ&  and an apparent shear rate bγ&  in the two (wall) 

slip layers of thickness 2δ  as 

   
2

,
δ

γ γ γ δ= + <<& & &
n b w h

h
     (1) 

Linear regression of plots of the apparent shear rate γ&  as a function of the reciprocal gap 1 h  

at constant values of the shear stress then enables the determination of bγ&  as well as the slip 

velocities ( )2 2σ δγ= &
s wv  at this specific shear stress level. Examples of such fits to the stress 

data of the FMR of Fig. 2 are shown in the appendix in Fig. 5 for different stress levels from 8 

– 100 Pa, and the obtained slip velocities as a function of the stress are given in Fig 3. It is 

obvious from Fig. 3 that the slip velocity is not simply showing a linear dependence on the 

stress as proposed by Navier (Piau and Piau 2005; Navier 1823). Instead several distinct 

scaling regimes can be observed with increasing stress. The onset of slip at a stress level of 

~σ low  ~ 8 Pa goes along with a sudden increase of the slip velocity, which is also observed in 

the sudden increase in the shear rate in Fig. 2 over a relatively small stress window in 

particular for the smaller gap distances. Above a stress level of 10 Pa one observes then a 

power law scaling of m

sv βσ=  with m =  4 which is changing to m =  2.25 above ~σ  20 Pa. 

This scaling, that is close to the experimentally observed scaling of 2~sv σ  reported for 

microstructured yield stress fluids as microgels (Davies and Stokes 2008) and soft sphere 

glasses and emulsions (Meeker et al. 2004a), extends only over a small stress window, and the 

slope of the sv  vs. σ  curve continuously increases above ~σ  50 Pa when approaching the 

yield stress level 
yσ . 

 



                     

Fig. 3   Absolute slip velocities 2 sv  as function of the measured stress in the FMR. The inset shows 

the respective bulk shear rates bγ&  as a function of the stress. The indicated critical slip velocities *rΩ  

and lowrΩ  represent the limits for the integration of eq. (2).  

 

The bulk shear rate bγ&  of the fluid is obtained from the y-axis intercept of the fits in Fig. 5. 

The exact values of these intercepts and thus the bulk shear rate bγ&  are shown as an insert in 

Fig. 3 and it can clearly be seen that bγ&  remains at zero for stresses below 
yσ . Therefore, as 

expected for a yield stress fluid the bulk of the material remains unyielded for a stress below 

~yσ 140 Pa, 

We are not going to make any assumption about the mechanism of the slip phenomenon in 

this study and the reason for the observed non-homogeneous evolution of the slip velocity in 

Fig. 3. Different from suspensions, emulsions or dilute polymer solutions, where the slip 

phenomenon can be attributed to depletion layers (Barnes 1995) of thickness δ at the walls 



and a slip layer viscosity determined by the solvent, it is not obvious if such a mechanism is 

also applicable for the yield stress fluid under consideration. For a concentrated polymer 

solution also adhesive failure with the wall (Migler et al. 1993) or a cohesive failure of the 

polymer at the wall and the bulk (Reimers and Dealy 1998) are possibilities discussed. The 

apparently sigmoidal shape of the slip velocity curve in Fig. 3 is for example similar to that 

expected for an adhesive failure mechanism based on a modified Eyring theory as introduced 

by Hatzikiriakos (Hatzikiriakos 1993). Following this model the slip velocity is 

( )~ sinh 1σ σ −  s low
v E RT  and for a minimum amount of energy to be overcome at the 

interface of E ~ 1.4 kJ/mol this model predicts the shape of the data and the apparent scaling 

2~sv σ  in Fig. 3 surprisingly well. 

However, for the following discussion of the slipping behaviour of this fluid in a CP or PP 

geometry of a regular rheometer, it is not necessary to know the mechanism causing the 

evolution of the slip gap with stress or the viscosity in the slip gap. In order to calculate the 

torque T  measured in these geometries, it is sufficient to know the evolution of the slip 

velocity with stress as determined in Fig. 3. The only assumption that we make is that the slip 

mechanism is similar for the CP and PP geometry and the FMR, and thus depending mainly 

on the properties of the fluid. This assumption seems to be justified as the following 

comparison is indicating. 

                    



Fig. 4   Schematic drawing of the CP geometry and the partial yielding of the yield stress fluid due to a 

slip induced inhomogeneous radial stress distribution. 

  

With a bulk shear rate 
b
γ&  = 0 it follows from eq. (1) that for such an unyielded sample the slip 

velocity in a rotational geometry is 2 = Ω
s

v r  and therefore linearly depending on the radius.  

With this it follows directly from Fig. 3 that for the investigated solution the stress does not 

show a linear dependence on the radius as for example assumed by Russel and Grant (Russel 

and Grant 2000), a square root relation as proposed by Meeker et al. (Meeker et al. 2004a; 

Salmon et al. 2003), or a square relation as theoretically assumed amongst others by Yeow et 

al. (Yeow et al. 2006). For the slipping yield stress fluid in this study the stress is non-

homogeneously distributed along the radius of a CP geometry. Still, attempts to calculate the 

full stress distribution in a CP (or PP) geometry have used only such simplified linear or 

quadratic relations for the slip as mentioned above (Meeker et al. 2004a; Yeow et al. 2008) 

and focused more on the influence of the bulk fluid rheology (Yeow et al. 2006). In the 

following we reverse this approach by using the most simple bulk fluid rheology (an 

unyielded bulk with ~
b
γ& 0) and the true relation of stress and slip velocity ( )2σ sv  or ( )rσ Ω  

obtained with the sliding plate rheometer in Fig. 3. For a simple model to describe the total 

torque T  in a CP geometry as function of the angular velocity Ω  of the cone it can be 

assumed that  

  ( ) ( )
*

2 2

* 0

2 2 , *

R r

y

r

T r dr r r dr r Rπ σ π σΩ = + Ω <  ∫ ∫ .   (2) 

Here *r  is the critical radius above which the sample starts to yield (see also the schematic in 

Fig. 4), and *r  is obtained from the slip velocity vs. stress curve of Fig. 3. As indicated in the 

figure the extrapolated value of the slip velocity at the yield stress is given by a critical value 

of 
,2 *= Ωs yv r  and the critical radius *r  is thus a function of the angular velocity Ω . For low 



angular velocities for which ( ),
* 2= Ω ≥s yr v R  we assume the bulk of the material to remain 

fully unyielded so that eq. (2) reduces to  

  ( ) ( )2

0

2 , *

R

T r r dr r Rπ σΩ = Ω ≥  ∫ .      (3) 

On the other hand, for *r r R< <  the fluid will start to partially yield in the outer regimes of 

the CP geometry and form a banded structure, as schematically indicated in Fig. 4. The stress 

remains in this banded regime constant at 
yσ , independent of the angular velocity or radial 

position. The only thing that changes is the width ( )d r  of the yielded band (also indicated in 

Fig. 4) in which the liquid flows (or the thickness h d−  of the unyielded band) (Picard et al. 

2002). The shear rate in this gap will also stay constant at 
y r dγ = Ω&  , determined by the 

viscosity of the yielded sample at this yield stress ( )yη σ . For a given angular velocity the 

ratio r d  is therefore constant along the radial axis, and decreases with increasing Ω . The 

upper limit of the yielding regime in this simplified model is reached at a critical angular 

velocity of tanc yγ αΩ = &  where the ratio r d  has reached the limit tanr h α=  and the fluid 

is fully yielded and the unyielded band has disappeared. Beyond this critical angular velocity 

the total torque is determined by the general relation for a CP geometry 

( ) ( ) 3tan 2 3T Rσ α πΩ = Ω  and thus solely depending on the stress function of the fully 

yielded liquid ( )tanσ αΩ  or ( ),σ γ&n cp .  

For a comparison of this model to experimental data the total torque T  as a function of the 

angular velocity is calculated from eqs. (2) and (3), using the experimental results of Fig. 3 for 

the stress function ( )rσ Ω    in the second term of eqs. (2) and integrating numerically over 

the range lowr  to *r  that is indicated in Fig. 3. This result for the torque is converted to the 



apparent (constant) stress in a non-slipping CP geometry, 33 2T Rσ π= , and compared in 

Fig. 2 to the measured apparent stress in the CP geometry as a function of the nominal shear 

rate 
, tanγ α= Ω&

n cp
. The comparison to the experimentally obtained data for the CP geometry 

shows that this simple model gives a good agreement over the range of apparent shear rates 

up to the yield stress level of the fluid. The deviation at rates below 0.15 s
-1

 can be attributed 

to the fact that the lower limit for the numerical integration is not 0 but the experimental limit 

lowr  of the FMR measurements. The contribution of stresses from fluid elements at small CP 

radii with slip velocities 2 *< Ωsv r  is thus not included in the theoretically predicted stresses, 

and the model is therefore underpredicting the stress at low rates as can be seen in Fig. 3. A 

calculation of the evolution of stresses above the yield stress level and cΩ  is not included, as 

the necessary stress function ( )tanσ αΩ  would be obtained from the experimental CP data to 

which the prediction would be compared to. This would obviously result in a perfect match, 

and the numerical calculations are thus limited solely to stresses obtained from the slip 

velocities of the FMR, resulting in the observed plateau at 
yσ  also at higher rates.  

From the definitions of the nominal shear rates used for the cone-and-plate geometry, 

, tanγ α= Ω&
n cp

, and for the plate-and-plate geometry, 
,γ = Ω&

n pp R h , it follows that the same 

apparent shear rate at the same angular velocity in the CP and PP geometry will be observed 

for a gap distance in the PP geometry of tanh R α= . For the given geometry radius and angle 

of the geometries in this study this gap calculates to h =698 µm, and in Fig. 1 it is obvious 

that in the pre-yield slip regime the curves for the CP and the PP geometry at a gap of h =500 

µm are nearly coinciding. Furthermore, it can be seen in Fig. 1 that the pre-yield curves for PP 

geometry measurements at lower gaps h  have the same shape and are just shifted along the 

rate axis by ( ), ,tanγ α γ=& &
n pp n cph R . 



A close observation of the PP data at stresses above 
yσ  shows that also here an apparent shift 

of the lower gap data along the x-axis is observed. This can also be attributed to a slip of the 

fluid, however, now of the yielded sample. This is likely to follow a different mechanism, as 

the shift is much smaller than observed for the stresses below 
yσ . A precise analysis of this 

high-rate slip with the FMR, as done for the low rates, is not possible as these stresses exceed 

the technical limits of the thin film rheometer. On the other hand it demonstrates the 

capability of the FMR to investigate in particular slip velocities at low nominal rates and 

stresses as observed and expected in polymer solutions, suspensions and other complex fluids 

with fragile microstructures. 

Conclusions 

In this paper we have demonstrated the capabilities of the sliding plate configuration of the 

FMR rheometer to determine the absolute relation between the slip velocity and the stress for 

a yield stress fluid. In particular the sensitive compound flexures of the FMR in combination 

with the possibility to achieve precise gap settings down to 1 µm allows to accurately 

determining slip velocities down to 1 µm/s. The FMR is therefore ideally suited to 

investigated slip phenomena with its sliding plate configuration for complex fluids as 

suspensions, emulsions or solutions of lower viscosities and yield stresses, in the current 

configuration down to stresses of 2 Pa (that were so far not accessible with the sliding plate 

rheometer of Dealy and co-workers developed for polymer melts).  

The FMR has been used to precisely determine the non-linear relation of the slip velocity to 

stress for a concentrated xanthan gum solution as a model yield stress material. This relation 

allowed calculating the non-homogeneous radial stress distribution of the slipping xanthan 

gum solution in a cone-and-plate geometry. With this and the assumption of a partial yielding 

of the slipping sample it was possible to predict the apparent stress or torque in the CP 



geometry as function of the applied rates up to the yield stress level. A comparison of these 

calculations to measured apparent stresses with the CP geometry showed good agreement, 

indicating the validity of the used simple model assumptions. 

Acknowledgements 

The authors would like to acknowledge financial support from the research foundation 

Flanders (FWO) (project G.0543.10). They also acknowledge support by the Bijzonder 

Onderzoeksfonds K.U. Leuven (GOA 09/002) Furthermore they would like to thank G.H. 

McKinley and P. Erni for fruitful discussions. 

References 

Ardakani HA, Mitsoulis E, Hatzikiriakos SG (2011) Thixotropic flow of toothpaste through extrusion 

dies. J Non-Newton Fluid Mech 166 (21-22):1262-1271. doi:10.1016/j.jnnfm.2011.08.004 

Baik SJ, Moldenaers P, Clasen C (2008) Determination of normal stresses in micrometer thin films. In: 

Co A, Leal LG, Colby RH, Giacomin AJ (eds) Xvth International Congress on Rheology - the 

Society of Rheology 80th Annual Meeting, Pts 1 and 2, vol 1027. Aip Conference Proceedings. 

Amer Inst Physics, Melville, pp 1165-1167 

Baik SJ, Moldenaers P, Clasen C (2011) A sliding plate microgap rheometer for the simultaneous 

measurement of shear stress and first normal stress difference. Rev Sci Instrum 82 

(3):035121. doi:10.1063/1.3571297 

Barnes HA (1995) A Review of the Slip (Wall Depletion) of Polymer-Solutions, Emulsions and Particle 

Suspensions in Viscometers - Its Cause, Character, and Cure. J Non-Newton Fluid Mech 56 

(3):221-251 

Bertola V, Bertrand F, Tabuteau H, Bonn D, Coussot P (2003) Wall slip and yielding in pasty materials. 

J Rheol 47 (5):1211-1226. doi:10.1122/1.1595098 

Clasen C (2012) High shear rheometry using hydrodynamic lubrication flows. J Rheol submitted 

Clasen C, Gearing BP, McKinley GH (2006) The flexure-based microgap rheometer (FMR). J Rheol 50 

(6):883-905 

Clasen C, Kavehpour HP, McKinley GH (2010) Bridging Tribology And Microrheology Of Thin Films. 

Appl Rheol 20 (4):196-208. doi:10.3933/ApplRheol-20-45049 

Clasen C, McKinley GH Microrheometry: Gap-Dependent Rheology and Tribology of Complex Fluids. 

In: Lee JW, Lee SJ (eds) The XIVth International Congress on Rheology, Seoul, 2004. The 

Korean Society of Rheology, pp 1-3 

Cohen Y, Metzner AB (1985) Apparent Slip-Flow of Polymer-Solutions. J Rheol 29 (1):67-102 

Davies GA, Stokes JR (2008) Thin film and high shear rheology of multiphase complex fluids. J Non-

Newton Fluid Mech 148 (1-3):73-87 

Derakhshandeh B, Hatzikiriakos SG, Bennington CPJ Rheology of pulp suspensions using ultrasonic 

Doppler velocimetry. Rheol Acta 49 (11-12):1127-1140. doi:10.1007/s00397-010-0485-2 

Dimitriou CJ, McKinley GH, Venkatesan R (2011) Rheo-PIV Analysis of the Yielding and Flow of Model 

Waxy Crude Oils. Energy Fuels 25 (7):3040-3052. doi:10.1021/ef2002348 



Erni P, Varagnat M, Clasen C, Crest J, McKinley GH (2011) Microrheometry of sub-nanolitre 

biopolymer samples: non-Newtonian flow phenomena of carnivorous plant mucilage. Soft 

Matter 7 (22):10889-10898. doi:10.1039/c1sm05815k 

Giacomin AJ, Samurkas T, Dealy JM (1989) A Novel Sliding Plate Rheometer for Molten Plastics. 

Polym Eng Sci 29 (8):499-504 

Hatzikiriakos SG (1993) A slip model for linear-polymers based on adhesive failure. Int Polym Process 

8 (2):135-142 

Hatzikiriakos SG, Dealy JM (1991) Wall Slip of Molten High-Density Polyethylene .1. Sliding Plate 

Rheometer Studies. J Rheol 35 (4):497-523 

Kalika DS, Denn MM (1987) Wall slip and extrudate distortion in linear low-density polyethylene. J 

Rheol 31 (8):815-834. doi:10.1122/1.549942 

Kalyon DM, Yaras P, Aral B, Yilmazer U (1993) Rheological behaviour of a concentrated suspension - A 

solid rocket fuel simulant. J Rheol 37 (1):35-53. doi:10.1122/1.550435 

Kojic N, Bico J, Clasen C, McKinley GH (2006) Ex vivo rheology of spider silk. Journal of Experimental 

Biology 209 (21):4355-4362 

Kramer J, Uhl JT, Prudhomme RK (1987) Measurement of the Viscosity of Guar Gum Solutions to 

50,000 1/s Using a Parallel Plate Rheometer. Polym Eng Sci 27 (8):598-602 

Laun HM (2004) Capillary rheometry for polymer melts revisited. Rheol Acta 43 (5):509-528. 

doi:10.1007/s00397-004-0387-2 

Lumma D, Best A, Gansen A, Feuillebois F, Radler JO, Vinogradova OI (2003) Flow profile near a wall 

measured by double-focus fluorescence cross-correlation. Phys Rev E 67 (5):10. doi:056313 

10.1103/PhysRevE.67.056313 

Macosko C (1994) Rheology: Principles, Measurements, and Applications. VCH Publishers, New York 

Mair RW, Callaghan PT (1996) Observation of shear banding in worm-like micelles by NMR velocity 

imaging. Europhys Lett 36 (9):719-724. doi:10.1209/epl/i1996-00293-9 

Manneville S, Becu L, Colin A (2004) High-frequency ultrasonic speckle velocimetry in sheared 

complex fluids. Eur Phys J-Appl Phys 28 (3):361-373. doi:10.1051/epjap:2004165 

Meeker SP, Bonnecaze RT, Cloitre M (2004a) Slip and flow in pastes of soft particles: Direct 

observation and rheology. J Rheol 48 (6):1295-1320. doi:10.1122/1.1795171 

Meeker SP, Bonnecaze RT, Cloitre M (2004b) Slip and flow in soft particle pastes. Phys Rev Lett 92 

(19):4. doi:198302 

10.1103/PhysRevLett.92.198302 

Migler KB, Hervet H, Leger L (1993) Slip Transition of a Polymer Melt under Shear-Stress. Phys Rev 

Lett 70 (3):287-290 

Mooney M (1931) Explicit formulas for slip and fluidity. J Rheol 2:210-222 

Navier CLMH (1823) On the laws of movement of fluids. Mém de l’Acad Roy des Sciences de l’Inst de 

France 6:389-440 

Neto C, Evans DR, Bonaccurso E, Butt HJ, Craig VSJ (2005) Boundary slip in Newtonian liquids: a 

review of experimental studies. Rep Prog Phys 68 (12):2859-2897. doi:10.1088/0034-

4885/68/12/r05 

Piau JM, Piau A (2005) Letter to the Editor: Comment on "Origin of concentric cylinder viscometry" [J. 

Rheol. 49, 807-818 (2005)]. The relevance of the early days of viscosity, slip at the wall, and 

stability in concentric cylinder viscometry. J Rheol 49 (6):1539-1550. doi:10.1122/1.2072087 

Picard G, Ajdari A, Bocquet L, Lequeux F (2002) Simple model for heterogeneous flows of yield stress 

fluids. Phys Rev E 66 (5):12. doi:051501 

10.1103/PhysRevE.66.051501 

Princen HM, Kiss AD (1986) Rheology of foams and highly concentrated emulsions. III: Static shear 

modulus. J Colloid Interface Sci 112 (2):427-437. doi:10.1016/0021-9797(86)90111-6 

Reimers MJ, Dealy JM (1998) Sliding plate rheometer studies of concentrated polystyrene solutions: 

Nonlinear viscoelasticity and wall slip of two high molecular weight polymers in tricresyl 

phosphate. J Rheol 42 (3):527-548 



Rofe CJ, deVargas L, PerezGonzalez J, Lambert RK, Callaghan PT (1996) Nuclear magnetic resonance 

imaging of apparent slip effects in xanthan solutions. J Rheol 40 (6):1115-1128. 

doi:10.1122/1.550775 

Russel WB, Grant MC (2000) Distinguishing between dynamic yielding and wall slip in a weakly 

flocculated colloidal dispersion. Colloid Surf A-Physicochem Eng Asp 161 (2):271-282. 

doi:10.1016/s0927-7757(99)00376-3 

Salmon JB, Becu L, Manneville S, Colin A (2003) Towards local rheology of emulsions under Couette 

flow using Dynamic Light Scattering. Eur Phys J E 10 (3):209-221. doi:10.1140/epje/i2002-

10110-5 

Seth JR, Cloitre M, Bonnecaze RT (2008) Influence of short-range forces on wall-slip in microgel 

pastes. J Rheol 52 (5):1241-1268. doi:10.1122/1.2963135 

Yeow YL, Leong YK, Khan A (2006) Non-Newtonian flow in parallel-disk viscometers in the presence of 

wall slip. J Non-Newton Fluid Mech 139 (1-2):85-92. doi:10.1016/j.jnnfm.2006.07.005 

Yeow YL, Leong YK, Khan A (2008) Slow steady viscous flow of newtonian fluids in parallel-disk 

viscometer with wall slip. J Appl Mech-Trans ASME 75 (4):7. doi:041001 

10.1115/1.2910901 

Yoshimura A, Prudhomme RK (1988) Wall Slip Corrections for Couette and Parallel Disk Viscometers. 

J Rheol 32 (1):53-67 

 

 

Appendix 

The slip velocity and bulk shear rate are determined following the Mooney analysis by 

plotting for a constant stress the different shear rates that were observed in Fig. 2 at different 

gaps as function of the inverse gap. Following eq. (1) the linear extrapolation of such a series 

of constant stress gives the bulk shear rate as the y-axis intersect and the slip velocity as the 

slope of the interpolated curve.  



    

Fig. 5   Slip analysis of the flow curve data of Fig. 2 

 

  



Figures 

 

 

Fig. 1   Apparent shear stress of the 5 wt% aqueous xanthan gum solution determined with a cone-and-

plate (CP) geometry as well as a plat-and-plate (PP) geometry at different gaps h , as a function of the 

nominal shear rate of the respective geometry. 

  



 

 

Fig. 2   Absolute shear stresses of the 5 wt% aqueous xanthan gum solution as a function of the 

nominal shear rates determined with the sliding plate geometry of the FMR (open symbols) at 

different gap between the plates. In addition also the apparent stress determined with the CP geometry 

from Fig. 1 is given as a reference (closed symbols. The dotted line represents the theoretically 

calculated apparent stress in a CP geometry from the total torque of eq. (2). 

  



 

                    

Fig. 3   Absolute slip velocities 2 sv  as function of the measured stress in the FMR. The inset shows 

the respective bulk shear rates bγ&  as a function of the stress. The indicated critical slip velocities *rΩ  

and lowrΩ  represent the limits for the integration of eq. (2). 

  



 

 

Fig. 4   Schematic drawing of the CP geometry and the partial yielding of the yield stress fluid due to a 

slip induced inhomogeneous radial stress distribution. 

  



    

Fig. 5   Slip analysis of the flow curve data of Fig. 2 

 


