
Lifting Redundancy

from Latin Squares

to Pandiagonal Latin Squares

Bart Demoen

Report CW645, August 2013

KU Leuven
Department of Computer Science

Celestijnenlaan 200A – B-3001 Heverlee (Belgium)



Lifting Redundancy

from Latin Squares

to Pandiagonal Latin Squares

Bart Demoen

Report CW645, August 2013

Department of Computer Science, KU Leuven

Abstract

In the pandiagonal Latin Square problem, a square grid of size
N needs to be filled with N types of objects, so that each column,
row, and wrapped around diagonal (both up and down) contains
an object of each type. This problem dates back to at least Euler.
In its specification as a constraint satisfaction problem, one uses
the all different constraint. The known redundancy result about
all different constraints in the Latin Square problem is lifted to the
pandiagonal Latin Square problem. This proof method’s theoretical
limits are established.



Lifting Redundancy
from Latin Squares

to Pandiagonal Latin Squares

Dedicated to Ajana Beke
18 August 2013

Bart Demoen
Department of Computer Science

KU Leuven

Abstract

In the pandiagonal Latin Square problem, a square grid of size N
needs to be filled with N types of objects, so that each column,
row, and wrapped around diagonal (both up and down) contains
an object of each type. This problem dates back to at least Euler.
In its specification as a constraint satisfaction problem, one uses
the all different constraint. The known redundancy result about
all different constraints in the Latin Square problem is lifted to the
pandiagonal Latin Square problem. This proof method’s theoretical
limits are established.

1 Introduction

In one popular formulation, solving the Latin Square problem of size N
requires filling out an N ×N square grid with numbers from 1 to N in such
a way that each row and column contains every number exactly once. In
the pandiagonal Latin Square problem, the additional requirement is that

1



all pandiagonals also have exactly the numbers 1 to N . A pandiagonal is
a wrapped around diagonal, of which there are 2N : N up going pandiago-
nals, and N down going ones1. The pandiagonal Latin Square problem can
therefore be specified as a Constraint Satisfaction Problem with (a) N2 vari-
ables xij, i, j ∈ [1..N ], representing the value assigned to the cell in row i
and column j of the square, (b) N2 domain constraints indicating that the
domain of each variable xij is [1..N ], and (c) 4N all different constraints of
N variables each, one for the variables in each column, one for the variables
in each row, one for the variables in each up pandiagonal, and one for the
variables in each down pandiagonal. We refer to the set of 4N all different
constraints of the pandiagonal Latin Square problem as PDLS(N). The 2N
all different constraints of the usual Latin Square problem will be referred to
by LS(N). The domain constraints are left implicit. Solutions to PDLS(N)
are known as Knut Vik designs [7], and used for example in the setup of
agricultural experiments.

We denote by Rows(N), Cols(N), UpPDs(N), DownPDs(N) the sets of
all different constraints of the rows, columns, up pandiagonals, and down
pandiagonals. We prove in Section 2 that any three all different constraints
are redundant if they belong to three different sets from Rows(N), Cols(N),
UpPDs(N), DownPDs(N): the proof uses the result from [2] about the redun-
dancy present in LS(N). Section 3 discusses the limits of the proof method:
using this method, no more than those triplets can be proven redundant for
N > 5: N = 5 provides a nice exception and an even nicer picture.

We will use freely the analogy between (solving) a CSP consisting only of
disequalities and (coloring) its constraint graph: [4] contains more details.

2 The main result

Solutions to PDLS(N) exist if and only if N is not divisible by 2 or 3: this
result goes back to [6] and even the work of the great L. Euler[5]. Since we
most often are only interested in the case when there are solutions, we will
assume N is odd and not divisible by 3, unless mentioned explicitly.
The key to our theorem is the insight that an PDLS(N) contains a number of
LS(N) problems: for each of these LS(N) problems, we can use a result proven
in [2] about redundancy of all different constraints, and a recombination to

1Other sources use left and right broken diagonal instead.

2



the PDLS(N) level then finishes the proof. We start by showing how an
PDLS(N) is composed of six useful LS(N)s.

One PDLS(N) is worth at least six LS(N)

We introduce the following six sets of all different constraints:

• row col(N) = Rows(N) ∪ Cols(N)

• col up(N) = Cols(N) ∪ UpPDs(N)

• col down(N) = Cols(N) ∪ DownPDs(N)

• row up(N) = Rows(N) ∪ UpPDs(N)

• row down(N) = Rows(N) ∪ DownPDs(N)

• up down(N) = UpPDs(N) ∪ DownPDs(N)

For N = 3, the different problems are depicted in Figure 1. The cells are
labeled with symbols instead of numbers, so as not to confuse the reader with
the domain of the cells:

row_col(3)

☛ ✌☎

✉ ❁ ❂

●✈✏

row_down(3)

☎ ✌

✈

❁✉ ❂

☛

✏●

up_down(3)

☛

❂ ☎ ✏

●

✌

❁

✈ ✉

✉ ☎ ●

☛ ✈ ❂

✏ ❁ ✌

col_down(3)

❁ ❂

✏

☎☛

✈

✉

●

✌

col_up(3)

☛

☎✏

❁

✈

❂

✌✉

●

row_up(3)

✉ ❁ ❂

☛ ☎

✏✈

✌

●

Figure 1: PDLS(3) (left with double border) and six of its LS(3)s

Clearly, each of these six sets is an LS(N) for any N for which LSDP (N)
has a solution. Note that up down(N) for even N is not, because an up and

3



down pandiagonal always intersect in zero or two cells. It is also clear that
LSDP (N) = row up(N) ∪ col down(N) and two more similar equalities can
easily be established. We are now ready for the main theorem.

Sets of three redundant constraints in LSDP (N)

Theorem 1 Let C ∈ Cols(N), R ∈ Rows(N), D ∈ DownPDs(N), and
U ∈ UpPDs(N). Then each of the sets {C,R,D}, {C,R, U}, {C,U,D},
{R,U,D} is redundant.

Proof
We give the proof only for {C,R,D}: the proofs for the other sets are similar.

LSDP (N) \ {C,R,D} =
(col up(N)\C)∪ (col down(N)\{C,D})∪ (row down(N)\{R,D})

so we have a union of three LS(N) problems minus some individual
all different constraints: one misses one all different constraint, the others
miss two. Since in [2], it was proven that any single all different constraint
of the LS(N) problem is redundant, we know that (col up(N)\C) implies C
and we can make the following derivation. The rewritten term is underlined:

(col up(N) \ C) ∪ (col down(N) \ {C,D}) ∪ (row down(N) \ {R,D}) =⇒
(col up(N) ∪ (col down(N) \ {D}) ∪ (row down(N) \ {R,D}) =⇒

(col up(N) ∪ col down(N) ∪ (row down(N) \ {R}) =⇒
(col up(N) ∪ col down(N) ∪ row down(N)) = LSDP (N)

So we can conclude: LSDP (N) \ {C,R,D} =⇒ LSDP (N) meaning that
{C,R,D} is a redundant set of constraints in LSDP (N).

The proof works because the six LS(N) subproblems of the original PDLS(N)
problem are enough to leave always at least one of the subproblems with only
one missing constraint.

Unfortunately, using this proof method, the result cannot be made stronger.

3 The limits of the Proof Method

Theorem 1 hinges on the identification of a sufficient number of LS(N)
subsets of PDLS(N), and we have found some useful LS(N) subsets al-
ready: row col(N), col up(N), col down(N), row up(N), row down(N), and

4



up down(N). So it seems worthwhile to investigate the existence of other
LS(N) subsets of PDLS(N), in the hope that a similar application of the
proof renders different redundant sets of all different constraints. But do
other LS(N) subsets of PDLS(N) exist ? Lemma 1 prepares the ground for
a negative answer to this question, Theorem 2 proves it.

One PDLS(N) is worth at most six LS(N) for N > 5

The above question boils down to finding subgraphs of the PDLS(N)
disequality graph that are isomorphic to the LS(N) disequality graph. For
the sake of the argument, we restrict ourselves to N for which PDLS(N)
has a solution.

The disequality graph PDG of PDLS(N) consists of 4N N -cliques: no larger
clique can exist, because otherwise there would be no solution. It is tempting
to think that the only N -cliques are the 4N ones explicitly given, however,
for N = 5, this is not true as shown in Figure 2: the dotted lines indicate a
3-clique, the full lines just one edge.

Figure 2: Two new (symmetric) 5-cliques in PDLS(5)

By an exhaustive search programmed in hProlog [3] we found out that
PDLS(7) contains no new 7-cliques, so we first formulated as a conjecture
and later proved

Lemma 1 For N > 5, and such that PDLS(N) has a solution, PDLS(N)
contains exactly 4N N -cliques.2

Proof The proof structure is as follows: suppose K is a clique, let Q be
the maximum number of nodes K has in common with any row, column,

2Note that instead of N > 5, we could have written N ≥ 7.

5



up or down diagonal. Because of symmetry considerations, we can restrict
ourselves to the case that this is in row 1. We show that for any Q < N , K
has size strictly smaller than N .

• let N > Q ≥ 4: every node in another row has exactly 3 neighbors
in row 1, through its column, up diagonal, and down diagonal; since
Q > 3, the Q nodes in row 1 cannot have any common neighbor in any
other row; therefore, K has size Q, which is strictly smaller than N

• let Q = 3: one can check that if N is not a multiple of 3, the 3 nodes
in row 1 can have at most two common neighbors and that when they
exist, they are in two different rows; for any N , this results in a 5-clique,
as shown in Figure 2, but 5 is strictly smaller than N

• let Q = 2: we number the two nodes as 1 and 2; we use the notation cu
as an abbreviation for the node where the column of node 1 intersects
with the up diagonal of node 2, and likewise for other combinations
of c, u and d; the common neighbors of the given nodes can thus be
written as cu, cd, uc, dc, ud, du, and we have a total of 8 potential
nodes in K; however, cu and cd are in the same column as node 1, so
they cannot be both in K, since otherwise Q would be 3; likewise for
uc and dc; so, K has at most 6 nodes, which is strictly less than N

• finally, if Q = 1, K cannot have 2 connected nodes, meaning K has
size 1, and that is strictly smaller than N

Let G be the disequality graph of an LS(N)-subset of PDLS(N). G consists
of 2N cliques of size N , and is a subgraph of PDG. As a consequence
of Lemma 1, for N > 5, G contains only elements of Rows(N), Cols(N),
UpPDs(N) and DownPDs(N). Moreover, because of LS(N), every node of G
is in exactly two N -cliques, a property we will use later.

The following theorem essentially says that G contains either the whole of
Rows(N), or none of it - and similarly for the three other sets.

Theorem 2 Let G be an LS(N)-subset of PDLS(N), and N > 5, then
G ∩ Rows(N) 6= ∅ =⇒ Rows(N) ⊂ G

and the same holds for Cols(N), UpPDs(N) and DownPDs(N).

Proof First some notation to refer to the cliques of PDLS(N): for 1 ≤ i ≤ N

6



• row(i) and col(i) refer to the ith row and column

• down(i) and up(i) refer to the down (or up) pandiagonal going through
the ith cell in the first row.

Because of symmetry considerations, we can assume, without loss of
generality, that row(1) is in G. Since the first cell of the first row (let us
name it cell1) must be in two cliques in G, and because of the symmetry
between up and down pandiagonals (at this point in the proof), we need to
consider only the following two cases:

1. col(1) is in G: then up(1) neither down(1) can be in G, otherwise cell1
would be in more than two N -cliques; now suppose up(j) is in G for a
particular j 6= 1: up(j) intersects col(1) in the jth cell (name it cell2),
and it intersects also row(1) in the jth cell (name it cell3); the three
nodes cell1, cell2 and cell3 are in a 3-clique; but an LS(N) disequality
graph has the property that any three cells in a 3-clique, are also in
an N -clique, name it C: C differs from row(1) and col(1), so now cell1
is in row(1), col(1) and C, 3 N -cliques, which cannot be true in an
LS(N); so, no up(j) can be in G, and by symmetry the is true for
the down(j); this leaves only all other rows and columns to make G,
meaning that Rows(N) ⊂ G

2. down(1) is in G: the argument is similar to the previous one

So, if row(1) ∈ G then Rows ∈ G or G ∩ Rows(N) 6= ∅ =⇒ Rows(N) ⊂ G.
By symmetry this holds also for Cols(N), UpPDs(N) and DownPDs(N).

As a consequence of Lemma 2, we cannot hope to extend the reach of the
proof method of Theorem 1, because there are no other LS(N) subsets of
PDLS(N) besides the six used in Theorem 1.

The special case N = 5

PDLS(5) has one hundred new 5-cliques. Each of them belongs to one of
four types: Figure 2 shows representatives of two of these types. We expected
that they could be combined – just as the sets Rows(5), Cols(5), UpPDs(5),
and DownPDs(5) – into LS(5) subsets of PDLS(5). A lucky first try gave
us the pleasing combination in Figure 3:

7



Figure 3: A new LS(5) in PDLS(5)

Four nodes at the corners of the PDLS(5) square in Figure 3 have been
marked with a white dot. The nodes that are not in that square should be
mapped to the inside in a cyclic way, while keeping their edges: each node
is involved in two 5-cliques having a different shape, and two 5-cliques either
have no nodes, or one node in common. It turns out that the four new types
of 5-cliques can be composed two by two, to form siz different LS(5) subsets
of PDLS(5), just enough to extend slightly the applicability of Theorem 1
for N = 5 in the obvious way.

It remains to prove whether Theorem 2 holds for N = 5, or in other words,
whether the 20 original 5-cliques can be combined with the 100 new 5-cliques.

4 Discussion

We initially hoped that lifting the results from [2] to the PDLS(N) problem
would give an optimal result. Theorem 2 proves that we succeeded in the
best possible lift, but the result is far from optimal, i.e. redundant sets with
size larger than 3 exist for several N : this was experimentally established. It
means that the naive composition of redundancy is weak in this case, even
though it did the job completely for the Sudoku problem (see [1]). Clearly,
more fundamental work is needed. [4] is a first start from the disequality
graph perspective. Also, the question about the maximal size of redundant
sets of all different constraints in PDLS(N) remains open.

8



Acknowledgement

We thank Michael Codish for bringing this problem to our attention.

References

[1] B. Demoen and M. Garcia de la Banda. Redundant Sudoku rules. Theory
and Practice of Logic Programming, pages 1–15, Online 18 August 2013.
doi: 10.1017/s1471068412000361.

[2] B. Demoen and M. Garcia de la Banda. Redundant disequalities in the
Latin Square problem. Constraints, pages 1–8, Online 18 August 2013.
doi: 10.1007/s1060101391471.

[3] B. Demoen and P.-L. Nguyen. So many WAM Variations, so little Time.
In Computational Logic, First International Conference, volume 1861 of
LNAI, pages 1240–1254. Springer, July 2000.

[4] B. Demoen and P.-L. Nguyen. The classification of graphs with a re-
dundant inequality. CW Report 633, Department of Computer Science,
KU Leuven, January 2013.

[5] L. Euler. Recherches sur une nouvelle espèce de carrés de mag-
iques. Verhandelingen uitgegeven door het zeeuwsch Genootschap
der Wetenschappen te Vlissingen, Middelburg, 9:85–239, 1782. URL
http://www.math.dartmouth.edu/~euler/pages/E530.html.

[6] A. Hedayat. A complete solution to the existence and nonexistence
of Knut Vik designs and orthogonal Knut Vik designs. Journal of
Combinatorial Theory, Series A, 22(3):331 – 337, 1977.

[7] K. Vik. Bedømmelse av feilen p̊a forsøksfelter med og uten malestokk.
Meldinger fra Norges Landbrukshøgskole, 4:129–181, 1924.

9


