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Abstract

We study the spectral properties of stiffness matrices that arise in
the context of isogeometric analysis for the numerical solution of
classical second order elliptic problems. Motivated by the applica-
tive interest in the fast solution of the related linear systems, we
are looking for a spectral characterization of the involved matrices.
In particular, we investigate non-singularity, conditioning (extremal
behavior), spectral distribution in the Weyl sense, as well as clus-
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Abstract We study the spectral properties of stiffness matrices that arise in the context of
isogeometric analysis for the numerical solution of classical second order elliptic problems.
Motivated by the applicative interest in the fast solution of the related linear systems, we are
looking for a spectral characterization of the involved matrices. In particular, we investigate
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1 Introduction

We consider the stiffness matrices that are encountered when approximating the solution of a
classical second order elliptic problem, by using the Isogeometric Analysis (IgA) approach.
More precisely, we are interested in studying

1. the eigenvalue of minimal modulus and the eigenvalue of maximal modulus,
2. the conditioning,
3. the localization of the spectrum,
4. the global behavior of the spectrum,
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as the finesse parameter h tends to zero, and, in the case of item 2 and item 3 also for fixed h.
Regarding the global behavior, we mean the asymptotic eigenvalue distribution in the sense
of Weyl (see e.g. [15]), as reported in Definition 1.

The task of evaluating the asymptotic conditioning has a plain numerical motivation
in understanding the numerical intrinsic difficulty of the problem, while the motivation of
evaluating extremal eigenvalues and the localization of the spectrum is evident for obtaining
reasonable bounds for the number of iterations when Krylov methods – such as the Con-
jugate Gradient (CG) in the Hermitian positive definite setting or GMRES (see [3,35,45])
– are employed. In particular, it is of paramount interest to find localization areas up to a
small number of outliers, for estimating the convergence speed of such techniques (see the
seminal paper by Axelsson and Lindskog [3] and subsequent results).

On the other hand, the task of finding the asymptotic eigenvalue distribution is motivated
by the analysis of multigrid methods where the notion of symbol is crucial in the proof of
optimality of the method [1] and by recent results on the (superlinear) convergence behavior
for the CG method [5,6,7]. The CG method is a popular method for solving positive definite
linear systems, and its convergence properties have been analyzed by many authors (see e.g.
[3,45]). For instance, one has a simple upper bound for the CG error in energy norm in terms
of the spectral condition number, that is, the ratio of the largest divided by the smallest
eigenvalue, see, e.g., [35, eq. (6.106)]. In reality, the upper bound based on the condition
number may be not very accurate, especially in the range of superlinear convergence of CG.
This superlinear convergence behavior is observed numerically in the context of discretized
elliptic problems in dimension d ≥ 2, in particular for small step-sizes h. In this setting, the
CG convergence is known to be governed by the distribution of the spectrum and has been
quantified only recently in [5,6,7]. Here, for distribution of the spectrum we mean a precise
limit relation reported in Definition 1. Similar results are also available for other Krylov
methods, when the matrices are not Hermitian positive definite (see the book by Saad [35]):
in such a case an additional actor is the conditioning of the eigenvector matrix, but all the
other ingredients – such as conditioning, extremal eigenvalues, localization of the spectrum,
spectral distribution results – are all important.

A discretization of our differential problem for some sequence of step-sizes h tending to
zero leads to a sequence of systems of linear equations Amxm = bm with Am some matrix of
order m, where of course m depends on h, and tends to ∞ for h → 0.

A very classical example of sequences of matrices having an asymptotic spectrum is
given by Hermitian Toeplitz matrices Tm( f ) = [ f j−k] j,k=1,...,m obtained from the Fourier
coefficients of the Lebesgue integrable generating function f defined over [−π,π] (see for
instance [15] and references therein). Here the sequence {Tm( f )} is distributed as the symbol
f and, informally speaking, this means that the eigenvalues of Tm( f ) behave as a sampling
of f over an equi-spaced grid of [−π,π], at least if f is smooth enough.

Furthermore, in the case of Finite Difference discretizations for differential operators,
explicit formulas for the asymptotic spectrum have been given in [32,41,44] for the one-
dimensional setting, and in [39,40] for the two-dimensional and multi-dimensional setting.
Each time, the underlying symbol includes information on the coefficients and the domain
of the PDE and information on the discretization schemes for the derivatives. The technique
works also for Finite Elements, and with grading meshes (see [8]).

In the present paper, the matrices Am arise from the IgA process and one might expect
that the sequence of matrices {Am} has an asymptotic spectrum, as in the case of Finite Dif-
ference [10,22,38,41] and Finite Element [8,34] approximations: the answer is affirmative
and, to our knowledge, our findings are the first concerning the spectral behavior of IgA ap-
proximations. More precisely, in our setting the matrix Am is not Hermitian positive definite
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but it is close to it, at least for large m (i.e. small h), since the real part of Am is positive
definite and differs from Am by a term of infinitesimal spectral norm as h → 0. Hence, the
sequences {Am} and {ReAm} share the same spectral distribution symbol which is a real-
valued, bounded, nonnegative function having a unique zero at zero (in analogy with the
classical approaches related to Finite Differences and Finite Elements).

We finally emphasize that the analysis in this paper is a preliminary step for designing
efficient preconditioners and efficient projectors, in the spirit of the theory that has been
widely developed for Finite Difference and Finite Element approximations and which is
heavily based on the knowledge of the symbol describing the main spectral features of the
sequence {Am}.

The paper is organized as follows. In the remaining part of the Introduction, namely
Sections 1.1 and 1.2, we present the considered differential problem and the main basics on
IgA methods. In Section 2 we summarize some tools for dealing with the spectral analysis
of sequences of matrices. Section 3 provides the definition and some properties of cardi-
nal B-splines. Then Section 4 is devoted to the analysis of matrices arising from the IgA
discretization based on B-splines in the 1D case, and Section 5 addresses the 2D case. We
characterize the spectrum in a precise way, and no difficulties are expected for treating the
higher dimensional case. A final Section 6 is devoted to conclusions and future lines of
research.

1.1 Problem setting

As our model problem we consider the following second order linear elliptic differential
equation with constant coefficients and homogeneous Dirichlet boundary conditions:

{
−∆u+β ·∇u+ γu = f, in Ω ,
u = 0, on ∂Ω,

(1)

where Ω ⊂ Rd is a domain with Lipschitz boundary, f ∈ L2(Ω), β ∈ Rd and γ ≥ 0. The
weak form of problem (1) reads as follows: find u ∈ V := H1

0 (Ω) such that

a(u,v) = F(v), ∀v ∈ V , (2)

where
a(u,v) :=

∫

Ω
(∇u ·∇v+β ·∇u v+ γuv)dΩ , F(v) :=

∫

Ω
fvdΩ . (3)

There exists a unique solution u of (2), called the weak solution of (1), see e.g. [17]. In the
standard Galerkin method we find an approximation of u in the following way: we choose a
finite dimensional subspace W ⊂ V and we look for a function uW ∈ W such that

a(uW ,v) = F(v), ∀v ∈ W . (4)

If dimW = N and we fix a basis {ϕ1, . . . ,ϕN} for W , then each v ∈ W can be written as

v =
N

∑
j=1

v jϕ j,

and, by linearity, equation (4) is satisfied for all test functions v ∈ W if and only if it is
satisfied for the basis functions ϕ1, . . . ,ϕN . Thus, the Galerkin problem (4) is equivalent to
the problem of finding a vector u = [u1 u2 · · · uN ]T ∈ RN such that

Au = f, (5)
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where A = [a(ϕ j,ϕi)]
N
i, j=1 ∈ RN×N is the stiffness matrix and f = [F(ϕi)]

N
i=1. Once we find u,

we know uW = ∑N
j=1 u jϕ j. It can be proved that A is a positive definite matrix in the sense

that vT Av > 0, ∀v ∈ RN\{0}. In particular, A is non-singular and so there exists a unique
solution u of (5).

In classical Finite Element Methods (FEM) the approximation space W is usually a
space of C0 piecewise linear polynomials vanishing at the boundary of Ω , whereas in IgA
W is a space of polynomial splines with higher degree and higher continuity, or some of
their generalizations. In this paper we are going to construct the matrix A in the case where
W is the space spanned by B-spline functions. After the construction of A, we will study its
spectral properties.

1.2 Isogeometric analysis based on B-splines

Isogeometric analysis is a recent, but well established and successful, paradigm for the anal-
ysis of problems governed by partial differential equations [20,27]. Its main goal is to im-
prove the connection between numerical simulation and Computer Aided Design (CAD)
systems.

In its original formulation, the main idea in IgA is to use directly the geometry provided
by CAD systems – which is usually expressed in terms of tensor-product B-splines or their
rational version, the so-called NURBS – and to approximate the unknown solutions of dif-
ferential equations by the same type of functions. This results in some principal advantages
of IgA with respect to classical FEM.

– Complicated geometries are represented more accurately, and some common profiles
as conic sections are exactly described. This exact or accurate description of the geom-
etry has a beneficial influence on the numerical solution of the addressed differential
problem.

– The description of the geometry is incorporated exactly at the coarsest mesh level and
mesh refinement does not modify the geometry. This greatly simplifies the refinement
process because it eliminates any interaction with the CAD system, whereas such inter-
action is an unavoidable bottleneck in the classical CAD/FEM procedure.

– B-spline and NURBS representations allow an easy treatment and refinement of spaces
with high approximation order and an inherent higher smoothness than those in classical
FEM. This has been proved to be superior in various applications, see [20,27], and
references therein.

Despite its name, the use of discretization spaces consisting of functions with high
global smoothness (like tensor-product B-splines, NURBS, or some of their generaliza-
tions as T-splines, B-splines over triangulations, generalized B-splines, etc.) is as relevant
as the accurate/exact description of the geometry in the context of IgA. Indeed, focusing
for instance on the simpler and elegant structure of B-spline spaces, the use of B-splines of
maximal smoothness allows to deal with spaces of high approximation power but lower di-
mension compared with standard low smoothness FEM. Moreover, the high smoothness of
discretization spaces coupled with the variation diminishing property of the B-spline basis is,
somehow unexpectedly, very fruitful in the numerical treatment of challenging problems as
advection/reaction-dominated advective-reactive-diffusive equations and some eigenvalue
problems as vibration of a finite elastic rod with fixed ends, see [20,27] and references
therein. These appealing features are maintained by the above mentioned generalizations of
B-splines, see [4,9,21,29,42].
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Finally, the well known properties of the B-spline basis – convex partition of unity,
minimum support, local linear independence, optimality of the basis, etc., see e.g. [14] –
offer some relevant advantages from the numerical point of view and result in fast and robust
evaluation algorithms for the basis functions and their derivatives.

Therefore, as a first step in the investigation of the properties of matrices arising in IgA,
in this paper we present a detailed spectral analysis of the matrices obtained by the Galerkin
method based on B-splines with equally spaced knots for problem (1) defined on the unit
interval and on the unit square. Generalizations to higher dimensions are straightforward but
more involved from the notational point of view. This topic has not yet been addressed in
the literature. Some related results can be found in [18,23].

2 Preliminaries on spectral analysis

In this section we present the tools that will be employed in subsequent sections for per-
forming the spectral analysis of the matrices arising from the approximation of problem (1)
in the context of IgA. We will be interested in the conditioning, localization, extremal be-
havior, and global behavior of the spectrum in particular when the size tends to infinity: in
such a setting we need to work in the framework of matrix sequences. As already recalled
in the introduction, such a spectral information is important for understanding the numerical
difficulty of the involved linear systems and represents a prerequisite for designing efficient
preconditioners for Krylov methods and efficient projectors for multigrid techniques.

Before starting, let us introduce some notation and recall some basic results that will be
used throughout this paper.

For any vector x, the 2-norm (Euclidean norm) of x will be denoted by ‖x‖. Given a
matrix X ∈ Cm×m, ‖X‖ is the 2-norm of X , i.e. ‖X‖ =

√
ρ(X∗X) = s1(X), where s1(X) is the

maximum singular value of X and ρ(X) is the spectral radius of X . Denote by ‖X‖1 the trace
norm of X , i.e. the sum of all the singular values of X : ‖X‖1 = ∑m

j=1 s j(X). Since the number
of nonzero singular values of X is precisely rank(X), it follows that, for all X ∈ Cm×m,
‖X‖1 ≤ rank(X)‖X‖ ≤ m‖X‖. Recall that, if X is a normal matrix, i.e. X∗X = XX∗, then
‖X‖ = ρ(X) and ‖X‖1 = ∑m

j=1 |λ j(X)|, where λ j(X) is an eigenvalue of X . Note that, if
X is Hermitian (X = X∗) or skew-Hermitian (X = −X∗), then X is normal. For any matrix
X ∈ Cm×m, we will denote by ReX and ImX the real and imaginary part of X , respectively.
Recall that ReX and ImX are the Hermitian matrices defined by

ReX :=
X +X∗

2
, ImX :=

X −X∗

2i
,

and X = ReX + i ImX . If λ is an eigenvalue of X and x ∈ Cm is a corresponding eigenvector,
then, by the minimax principle [11,13], we have

λ =
x∗Xx
x∗x

=
x∗(ReX)x

x∗x
+ i

x∗(ImX)x
x∗x

∈ [λmin(ReX),λmax(ReX)]× [λmin(ImX),λmax(ImX)] ⊂ C,

which implies that the spectrum σ(X) of X can be bounded as

σ(X) ⊆ [λmin(ReX),λmax(ReX)]× [λmin(ImX),λmax(ImX)] , ∀X ∈ Cm×m. (6)
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Since many of the matrices appearing in Section 5 will be formed by a tensor-product of
matrices defined in Section 4, we recall that, for every X ∈ Cm1×m1 and Y ∈ Cm2×m2 , the
tensor-product X ⊗Y is the matrix in Cm1m2×m1m2 given by:

X ⊗Y =




x11Y x12Y · · · x1m1Y
x21Y x22Y · · · x2m1Y

...
...

...
xm11Y xm12Y · · · xm1m1Y


 .

The next lemma, see e.g. [11], contains basic results concerning tensor-products.

Lemma 1 Suppose that X ∈ Cm1×m1 and Y ∈ Cm2×m2 are normal matrices with eigenvalues
given by λ1(X), . . . ,λm1(X) and λ1(Y ), . . . ,λm2(Y ). Then

1. X ⊗Y is normal and (X ⊗Y )∗ = X∗ ⊗Y ∗.
2. σ(X ⊗Y ) = {λi(X)λ j(Y ) : i = 1, . . . ,m1, j = 1, . . . ,m2}.
3. rank(X ⊗Y ) = rank(X)rank(Y ).
4. ‖X ⊗Y‖ = ‖X‖‖Y‖ and ‖X ⊗Y‖1 = ‖X‖1 ‖Y‖1.

In particular, from statements 1 and 2 it follows that if X ,Y are Hermitian then X ⊗Y is
Hermitian, and if X ,Y are Hermitian and positive definite then X ⊗Y is Hermitian and
positive definite.

To conclude this paragraph about notation and preliminary results, whenever X ,Y ∈ Cm×m

are Hermitian, we write X ≥ Y if and only if X −Y is non-negative definite.
Now we introduce the fundamental definitions for developing our spectral analysis, see

[24, Definitions 1.1 and 1.2]. We denote by µd the Lebesgue measure in Rd .

Definition 1 (Spectral distribution of a sequence of matrices) Let {Xn} be a sequence of
matrices with increasing dimension (Xn ∈ Cdn×dn with dn < dn+1 for every n), and let f :
D → C be a measurable function defined on the measurable set D ⊂ Rd with 0 < µd(D) < ∞.

We say that {Xn} is distributed like f in the sense of the eigenvalues, and we write {Xn} λ∼ f ,
if

lim
n→∞

1
dn

dn

∑
j=1

F(λ j(Xn)) =
1

µd(D)

∫

D
F( f (x1, . . . ,xd))dx1 . . .dxd , ∀F ∈ Cc(C,C).

Here, Cc(C,C) is the space of continuous functions F : C → C with compact support.

Definition 2 (Clustering of a sequence of matrices at a subset of C) Let {Xn} be a se-
quence of matrices with increasing dimension (Xn ∈ Cdn×dn with dn < dn+1 for every n), and
let S ⊆ C be a non-empty closed subset of C. We say that {Xn} is strongly clustered at S if
the following condition is satisfied:

∀ε > 0, ∃Cε and ∃nε : ∀n ≥ nε , qn(ε) ≤ Cε ,

where qn(ε) is the number of eigenvalues of Xn lying outside the ε-expansion Sε of S, i.e.,

Sε :=
⋃

s∈S

[Res− ε,Res+ ε]× [Ims− ε, Ims+ ε] .

We also recall the following results, see [24, Theorems 3.4 and 3.5].
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Theorem 1 Let {Xn} and {Yn} be two sequences of matrices with Xn, Yn ∈ Cdn×dn , and
dn < dn+1 for all n, such that

– Xn is Hermitian for all n and {Xn} λ∼ f , where f : D ⊂ Rd → R is a measurable function
defined on the measurable set D with 0 < µd(D) < ∞;

– there exists a constant C so that ‖Xn‖, ‖Yn‖ ≤ C for all n;

– ‖Yn‖1 = o(dn) as n → ∞, i.e., lim
n→∞

‖Yn‖1

dn
= 0.

Set Zn := Xn +Yn. Then {Zn} λ∼ f .

Theorem 2 Let {Xn} and {Yn} be two sequences of matrices with Xn, Yn ∈ Cdn×dn , and
dn < dn+1 for all n, such that

– Xn is Hermitian for all n and {Xn} λ∼ f , where f : D ⊂ Rd → R is a measurable function
defined on the measurable set D with 0 < µd(D) < ∞;

– there exists a constant C so that ‖Xn‖, ‖Yn‖1 ≤ C for all n.

Set Zn := Xn +Yn. Then {Zn} λ∼ f . Moreover, {Zn} is strongly clustered at the essential range
of f .1

A (one-level) Toeplitz matrix is a square matrix whose entries are constant along each
diagonal. Given a (univariate) function f : [−π,π] → R belonging to L1([−π,π]), we can
associate to f a family (sequence) of Hermitian Toeplitz matrices {Tm( f )} parameterized
by the integer index m and defined for all m ≥ 1 in the following way:

Tm( f ) :=




f0 f−1 · · · · · · f−(m−1)

f1
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . . f−1

fm−1 · · · · · · f1 f0




∈ Cm×m,

where
fk :=

1
2π

∫ π

−π
f (θ)e−i(kθ) dθ , k ∈ Z,

are the Fourier coefficients of f . The next theorem is one of the most important results
concerning sequences of Toeplitz matrices. In particular, the third statement in the theorem
was originally proved by Szegö [25], see also [43] for a generalization.

Theorem 3 (Szegö) Let f ∈ L1([−π,π]) be a real-valued function, and let m f := ess inf f ,
M f := ess sup f , and suppose m f < M f . Then

– σ(Tm( f )) ⊂ (m f ,M f ), ∀m ≥ 1;
– λmin(Tm( f )) ↘ m f and λmax(Tm( f )) ↗ M f as m → ∞;

– {Tm( f )} λ∼ f , that is

lim
m→∞

1
m

m

∑
j=1

F(λ j(Tm( f ))) =
1

2π

∫ π

−π
F( f (θ))dθ , ∀F ∈ Cc(C,C).

1 The essential range of f coincides exactly with the range of f whenever f is continuous. In this pa-
per we will only deal with continuous functions f and the application of Theorem 2 will not involve any
complication.
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Another result concerns the asymptotics of the j-th smallest eigenvalue λ j(Tm( f )), for
j fixed and m → ∞. This result is due to Parter [30], see also [31] for a generalization.

Theorem 4 (Parter) Let f : R → R be continuous and 2π-periodic. Let m f := min
θ∈R

f (θ) =

f (θmin) and let θmin be the unique point in (−π,π] such that f (θmin) = m f . Assume there
exists s ≥ 1 such that f has 2s continuous derivatives in (θmin − ε,θmin + ε) for some ε > 0
and f (2s)(θmin) > 0 is the first non-vanishing derivative of f at θmin. Finally, for every m ≥ 1,
let λ1(Tm( f )) ≤ . . . ≤ λm(Tm( f )) be the eigenvalues of Tm( f ) arranged in increasing order.
Then, for each fixed j ≥ 1,

λ j(Tm( f ))−m f
m→∞∼ cs, j

f (2s)(θmin)

(2s)!
1

m2s , (7)

i.e., lim
m→∞

m2s (λ j(Tm( f ))−m f
)

= cs, j
f (2s)(θmin)

(2s)!
, where cs, j > 0 is a constant depending

only on s and j.

Remark 1 The constant cs, j is the j-th smallest eigenvalue of the boundary value problem

{
(−1)su(2s)(x) = f(x), for 0 < x < 1,

u(0) = u′(0) = . . . = u(s−1)(0) = 0. u(1) = u′(1) = . . . = u(s−1)(1) = 0,
(8)

see [30, p. 191]. This means that cs, j is the j-th smallest number satisfying (−1)su(2s)(x) =
cs, j u(x) for some (nonzero) function u belonging to an ‘appropriate functional space’ asso-
ciated with (8). In particular, cs,1 is the minimum eigenvalue of (8). The sequence {cs,1} was
investigated in [16], where it was shown that the numbers c1,1,c2,1,c3,1, . . . appear in many
situations and the following asymptotic formula holds:

cs,1 =
√

8πs
(

4s
e

)2s [
1+O

(
1√
s

)]
as s → ∞.

Remark 2 When s = 1, the boundary value problem (8) becomes

{
−u′′(x) = f(x), 0 < x < 1,
u(0) = u(1) = 0,

(9)

and its eigenvalues can be computed explicitly, because they coincide with the eigenvalues

of the operator − d2

dx2 with homogeneous Dirichlet boundary conditions:

− d2

dx2 : H2
0 ([0,1]) ⊂ L2([0,1]) → L2([0,1]). (10)

The mentioned ‘appropriate functional space’ is in this case H2
0 ([0,1]). The eigenvalues of

(10) are j2π2, j = 1,2, . . . , and an eigenfunction corresponding to the j-th eigenvalue j2π2

is u j(x) = sin( jπx): −u′′
j (x) = j2π2u j(x). Thus, by Remark 1, we find that c1, j = j2π2 for

all j ≥ 1.
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Remark 3 Parter’s theorem applies to the function f (θ) = (2 − 2cosθ)s, s ≥ 1. Indeed, it
can be proved that this function satisfies all the hypotheses of Theorem 4 with m f = 0,
θmin = 0, and the number s appearing in Theorem 4 being exactly the exponent s in the
definition of f . Moreover, f (2s)(θmin) = (2s)!. Therefore, by (7) we obtain that, for each
fixed j ≥ 1,

λ j(Tm((2−2cosθ)s))
m→∞∼ cs, j

m2s .

On the other hand, by using Theorem 13 below, for the case s = 1 we get

λ j(Tm(2−2cosθ)) = 4
(

sin
jπ

2(m+1)

)2
m→∞∼ j2π2

m2 ,

and so we find again c1, j = j2π2 for all j ≥ 1.

In view of Section 5, it is also important to recall some properties of two-level Toeplitz
matrices. Given a bivariate function g : [−π,π]2 → R belonging to L1([−π,π]2), we can
associate to g a family of two-level Hermitian Toeplitz matrices {Tm1,m2(g)} parameterized
by two integer indices m1,m2 and defined for all m1,m2 ≥ 1 in the following way:

Tm1,m2(g) :=




G0 G−1 · · · · · · G−(m1−1)

G1
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . . G−1

Gm1−1 · · · · · · G1 G0




∈ Cm1m2×m1m2 ,

where for every k ∈ Z,

Gk :=




gk,0 gk,−1 · · · · · · gk,−(m2−1)

gk,1
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . . gk,−1

gk,m2−1 · · · · · · gk,1 gk,0




∈ Cm2×m2 ,

and for every k, l ∈ Z,

gk,l :=
1

(2π)2

∫ π

−π

∫ π

−π
g(θ1,θ2)e−i(kθ1+lθ2) dθ1dθ2

is the (k, l) Fourier coefficient of g. For sequences of two-level Hermitian Toeplitz matrices
we have the following classical theorem analogous to Theorem 3, see [37] (and references
therein) and again [43] for the distribution results.

Theorem 5 Let g ∈ L1([−π,π]2) be a real-valued function, and let mg := ess infg, Mg :=
ess supg, and suppose mg < Mg. Then

– σ(Tm1,m2(g)) ⊂ (mg,Mg), ∀m1,m2 ≥ 1;
– it holds that ∀F ∈ Cc(C,C),

lim
m1→∞
m2→∞

1
m1m2

m1m2

∑
j=1

F(λ j(Tm1,m2(g))) =
1

(2π)2

∫ π

−π

∫ π

−π
F(g(θ1,θ2))dθ1dθ2.
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The last result relates tensor-products and Toeplitz matrices. Observe that, given two
(univariate) functions f ,h : [−π,π] → R in L1([−π,π]), we can construct the (bivariate)
tensor-product function

f ⊗h : [−π,π]2 → R, ( f ⊗h)(θ1,θ2) := f (θ1)h(θ2),

which belongs to L1([−π,π]2). Hence, we can consider the three families of Hermitian
Toeplitz matrices {Tm1( f )}, {Tm2(h)} and {Tm1,m2( f ⊗ h)}. A direct computation gives the
following result.

Lemma 2 Let f ,h ∈ L1([−π,π]) be real-valued functions. Then, for all m1,m2 ≥ 1,

Tm1( f )⊗Tm2(h) = Tm1,m2( f ⊗h).

3 Cardinal B-splines

Let us denote by φ[p] the cardinal B-spline of degree p over the uniform knot sequence
{0,1, . . . , p+1}, which is defined recursively as follows [14]:

φ[0](t) :=
{

1, if t ∈ [0,1),
0, elsewhere, (11)

and
φ[p](t) :=

t
p

φ[p−1](t)+
p+1− t

p
φ[p−1](t −1), p ≥ 1. (12)

The cardinal B-spline can also be expressed in terms of truncated powers [14],

φ[p](t) =
1
p!

p+1

∑
i=0

(−1)i
(

p+1
i

)
(t − i)p

+, (13)

where (t)r
+ := (max(t,0))r. As usual in the literature, we will refer to cardinal B-splines

of degree p as the set of integer translates of φ[p], that is {φ[p](· − k), k ∈ Z}. In the next
subsections we collect some properties of cardinal B-splines and their Fourier transform that
will be useful later on.

3.1 Properties of cardinal B-splines

Denoting by Pp the space of algebraic polynomials of degree less than or equal to p, it turns
out that the cardinal B-spline φ[p] belongs piecewisely to Pp and it is globally of class Cp−1.

It is well known that the cardinal B-spline possesses some fundamental properties. Some
of them are briefly summarized below, see [14,19].

– Positivity:
φ[p](t) ≥ 0, t ∈ R.

– Minimal support:
φ[p](t) = 0, t /∈ [0, p+1]. (14)

– Symmetry:

φ[p]

(
p+1

2
+ t
)

= φ[p]

(
p+1

2
− t
)

. (15)
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– Partition of unity:
∑
k∈Z

φ[p](t − k) = 1, (16)

which gives in combination with the local support and smoothness,

p

∑
k=1

φ[p](k) = 1, p ≥ 1. (17)

– Recurrence relation for derivatives:

φ̇[p](t) = φ[p−1](t)−φ[p−1](t −1), (18)

φ (r)
[p]

(t) = φ (r−1)
[p−1]

(t)−φ (r−1)
[p−1]

(t −1), (19)

where φ̇[p](t) denotes the derivative of φ[p](t) with respect to its argument t.
– Unimodal behavior:

φ̇[p](t) = 0, t ∈ (0, p+1) if and only if t =
p+1

2
, p ≥ 2. (20)

– Convolution relation:

φ[p](t) = (φ[p−1] ∗φ[0])(t) :=
∫

R
φ[p−1](t − s)φ[0](s)ds =

∫ 1

0
φ[p−1](t − s)ds. (21)

In the remaining of the subsection we derive from the previous properties some results
that are needed later on. The next lemma generalizes the symmetry property to derivatives
of any order of the cardinal B-splines.

Lemma 3 Let φ[p] be the cardinal B-spline as defined in (11)–(12), then

φ (r)
[p]

(
p+1

2
+ t
)

= (−1)r φ (r)
[p]

(
p+1

2
− t
)

.

Proof We prove this by induction on the order of derivatives. The base case (r = 0) is just the
symmetry property (15). As inductive step we increase the order of derivative by one, i.e.,
r → r + 1. Using the recurrence relation for derivatives (19) and the induction hypothesis,
we have

φ (r+1)
[p]

(
p+1

2
+ t
)

= φ (r)
[p−1]

(
p+1

2
+ t
)

−φ (r)
[p−1]

(
p+1

2
+ t −1

)

= (−1)r
(

φ (r)
[p−1]

(
p+1

2
− t −1

)
−φ (r)

[p−1]

(
p+1

2
− t
))

= (−1)r+1 φ (r+1)
[p]

(
p+1

2
− t
)

.

ut

The following lemma provides an expression for inner products of the cardinal B-spline
and its integer translates. Similar results for derivatives will be provided in Lemma 5.

Lemma 4 Let φ[p] be the cardinal B-spline as defined in (11)–(12), then
∫

R
φ[p1](t)φ[p2](t + k)dt = φ[p1+p2+1](p1 +1+ k) = φ[p1+p2+1](p2 +1− k). (22)
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Proof Using the convolution relation of cardinal B-splines (21), we obtain

φ[p1+p2+1](p2 +1− k) =
∫ 1

0
φ[p1+p2](p2 +1− k − t1)dt1

=
∫ 1

0
. . .
∫ 1

0
φ[p2](p2 +1− k − (t1 + t2 + . . .+ tp1+1))dt1 . . .dtp1+1.

From [19, p. 85] we know that for every continuous function f it holds

∫

R
f (t)φ[p](t)dt =

∫ 1

0
. . .
∫ 1

0
f (t1 + t2 + . . .+ tp+1)dt1 . . .dtp+1, (23)

and hence

φ[p1+p2+1](p2 +1− k) =
∫

R
φ[p2](p2 +1− k − t)φ[p1](t)dt.

By symmetry of the cardinal B-splines, see (15), we have

φ[p2](p2 +1− k − t) = φ[p2](k + t),

resulting in

φ[p1+p2+1](p2 +1− k) =
∫

R
φ[p2](k + t)φ[p1](t)dt.

In addition, again by symmetry of the cardinal B-splines, we obtain

φ[p1+p2+1](p1 +1+ k) = φ[p1+p2+1](p2 +1− k),

which completes the proof. ut

Lemma 5 Let φ[p] be the cardinal B-spline as defined in (11)–(12), then

∫

R
φ (r)

[p1]
(t)φ (s)

[p2]
(t + k)dt = (−1)r φ (r+s)

[p1+p2+1]
(p1 +1+ k) = (−1)s φ (r+s)

[p1+p2+1]
(p2 +1− k).

(24)

Proof Because of the (anti-)symmetry of the higher order derivatives of the B-splines given
by Lemma 3, we have

(−1)r φ (r+s)
[p1+p2+1]

(p1 +1+ k) = (−1)r φ (r+s)
[p1+p2+1]

(
p1 + p2 +2

2
+

p1 − p2

2
+ k
)

= (−1)r (−1)r+s φ (r+s)
[p1+p2+1]

(
p1 + p2 +2

2
− p1 − p2

2
− k
)

= (−1)s φ (r+s)
[p1+p2+1]

(p2 +1− k).

So, we only have to show one of both equalities in (24). This can be proven by induction
on the order of derivatives. The base case (r = s = 0) simply follows from Lemma 4. We
consider two inductive steps: in the first inductive step we increase the order of derivative
of φ[p1] by one, i.e., r → r + 1, and in the second inductive step we increase the order of
derivative of φ[p2] by one, i.e., s → s+1.
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1. (r → r +1). Using (19) and the induction hypothesis, we have
∫

R
φ (r+1)

[p1]
(t)φ (s)

[p2]
(t + k)dt =

∫

R

(
φ (r)

[p1−1]
(t)−φ (r)

[p1−1]
(t −1)

)
φ (s)

[p2]
(t + k)dt

=
∫

R
φ (r)

[p1−1]
(t)φ (s)

[p2]
(t + k)dt −

∫

R
φ (r)

[p1−1]
(t −1)φ (s)

[p2]
(t + k)dt

=
∫

R
φ (r)

[p1−1]
(t)φ (s)

[p2]
(t + k)dt −

∫

R
φ (r)

[p1−1]
(t)φ (s)

[p2]
(t + k +1)dt

= (−1)r
(

φ (r+s)
[p1+p2]

(p1 + k)−φ (r+s)
[p1+p2]

(p1 +1+ k)
)

= (−1)r+1 φ (r+s+1)
[p1+p2+1]

(p1 +1+ k).

2. (s → s+1). This inductive step can be proven in a completely analogous way as the first
inductive step.

ut

Finally, we provide some relations about second derivatives of cardinal B-splines.

Lemma 6 Let φ[p] be the cardinal B-spline as defined in (11)–(12), and let φ̇[p] and φ̈[p] be
its first and second derivative, respectively, then

p

∑
k=1

φ̈[2p+1](p+1− k) = φ̇[2p](p) = −1
2

φ̈[2p+1](p+1),

p

∑
k=1

k2 φ̈[2p+1](p+1− k) = 1.

Proof We first note that by (19), (15) and (20), we have

−φ̈[2p+1](p+1) = −2φ̇[2p](p+1) = 2φ̇[2p](p) > 0. (25)

Using (18)–(19) and φ[2p−1](−1) = φ[2p−1](0) = 0, we obtain that

p

∑
k=1

φ̈[2p+1](p+1− k) =
p

∑
k=1

(φ[2p−1](p+1− k)−2φ[2p−1](p− k)+φ[2p−1](p−1− k))

= φ[2p−1](p)−φ[2p−1](p−1) = φ̇[2p](p).

In a similar way, taking into account that

k2 −2(k +1)2 +(k +2)2 = 2, k ≥ 0,

we find that
p

∑
k=1

k2 φ̈[2p+1](p+1− k) =
p

∑
k=1

k2 (φ[2p−1](p+1− k)−2φ[2p−1](p− k)+φ[2p−1](p−1− k))

= φ[2p−1](p)+2
p

∑
k=2

φ[2p−1](p+1− k)

=
p

∑
k=−p+2

φ[2p−1](p+1− k) =
2p−1

∑
k=1

φ[2p−1](k) = 1.

The last equalities follow from the symmetry property (15) and the partition of unity prop-
erty (17) of cardinal B-splines. ut
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3.2 Fourier transform

In this subsection we will address some relations between inner products of cardinal B-
splines, and the Fourier transform of the cardinal B-spline.

We first recall the following result, see [19, Theorem 2.28].

Theorem 6 Let ψ ∈ L2(R) and its Fourier transform ψ̂ satisfy

ψ(t) = O(|t|−a), a > 1, as |t| → ∞, (26)

and
ψ̂(θ) = O(|θ |−b), b >

1
2
, as |θ | → ∞. (27)

Then,

∑
k∈Z

(∫

R
ψ(t − k)ψ(t)dt

)
ei(kθ) = ∑

k∈Z
|ψ̂(θ +2kπ)|2 , ∀θ ∈ [−π,π]. (28)

By using the convolution relation (21) one can easily obtain a simple expression for the
Fourier transform of the cardinal B-spline φ[p], see [19, p. 56]:

φ̂[p](θ) =

(
1− e−iθ

iθ

)p+1

, (29)

so that ∣∣∣φ̂[p](θ)
∣∣∣
2
=

(
2−2cosθ

θ 2

)p+1

. (30)

From (14) and (29) it follows that the cardinal B-spline satisfies the conditions (26)–(27).
So, when using the cardinal B-spline of degree p as the function ψ in Theorem 6, we can
express the right-hand side in (28) by means of (30). This implies

∑
k∈Z

∣∣∣φ̂[p](θ +2kπ)
∣∣∣
2
≥
∣∣∣φ̂[p](θ)

∣∣∣
2
=

(
2−2cosθ

θ 2

)p+1

≥
(

4
π2

)p+1

, θ ∈ [−π,π]. (31)

A sharper lower bound can be found in [19, p. 89]. It is formulated in terms of the roots
of the so-called Euler-Frobenius polynomials of degree 2p, but these roots are not provided
in a closed form expression. On the other hand, to obtain an upper bound, we make use of
relation (22) and of the partition of unity property (17). In this way, we obtain

∑
k∈Z

∣∣∣φ̂[p](θ +2kπ)
∣∣∣
2
= ∑

k∈Z
φ[2p+1](p+1−k)ei(kθ) ≤ ∑

k∈Z
φ[2p+1](p+1−k) |ei(kθ)| = 1. (32)

Note that for the cardinal B-spline of degree p the left-hand side in (28) is a finite sum
consisting of 2p+1 terms.

The next two lemmas provide some properties of the functions associated to certain
Toeplitz matrices that we will investigate later on.

Lemma 7 Let p ≥ 1, and let fp : [−π,π] → R,

fp(θ) := −φ̈[2p+1](p+1)−2
p

∑
k=1

φ̈[2p+1](p+1− k)cos(kθ), (33)

and M fp := max
θ∈[−π,π]

fp(θ). Then the following properties hold.
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1. ∀θ ∈ [−π,π],

fp(θ) = (2−2cosθ) ∑
k∈Z

∣∣∣φ̂[p−1](θ +2kπ)
∣∣∣
2
, (34)

and

(2−2cosθ)

(
4

π2

)p

≤ fp(θ)≤ min
(

2−2cosθ ,(2−2cosθ)p+1
(

1
θ 2p +

1
6π2p−2

))
.

2. min
θ∈[−π,π]

fp(θ) = fp(0) = 0, and θ = 0 is the unique zero of fp over [−π,π], and

M fp ≤ min

(
4,

8
p+1

+
2π2

3

(
4

π2

)p

,2φ̇[2p](p)+2
p

∑
k=1

∣∣φ̈[2p+1](p+1− k)
∣∣
)

.

In particular, M fp → 0 as p → ∞.

Proof Using the recurrence relation for derivatives (18), for every θ ∈ [−π,π] we obtain
that

̂̇φ[p](θ) =
(

1− e−iθ
)

φ̂[p−1](θ),

and ∣∣∣ ̂̇φ[p](θ)
∣∣∣
2
= (2−2cosθ)

∣∣∣φ̂[p−1](θ)
∣∣∣
2
.

This implies that

∑
k∈Z

∣∣∣ ̂̇φ[p](θ +2kπ)
∣∣∣
2
= (2−2cosθ) ∑

k∈Z

∣∣∣φ̂[p−1](θ +2kπ)
∣∣∣
2
. (35)

The equality (34) follows from relation (24), Theorem 6 and (35) in the following way:

fp(θ) = ∑
k∈Z

−φ̈[2p+1](p+1− k)ei(kθ) = ∑
k∈Z

(∫

R
φ̇[p](t)φ̇[p](t − k)dt

)
ei(kθ)

= ∑
k∈Z

∣∣∣ ̂̇φ[p](θ +2kπ)
∣∣∣
2
= (2−2cosθ) ∑

k∈Z

∣∣∣φ̂[p−1](θ +2kπ)
∣∣∣
2
.

From (34) and from the inequalities (31)–(32), we get

(2−2cosθ)

(
4

π2

)p

≤ fp(θ) ≤ 2−2cosθ , ∀θ ∈ [−π,π]. (36)

Furthermore, using (30) in the expression of fp given by (34), we obtain that

fp(θ) = (2−2cosθ) ∑
k∈Z

(
2−2cos(θ +2kπ)

(θ +2kπ)2

)p

= (2−2cosθ)p+1 ∑
k∈Z

1
(θ +2kπ)2p .

(37)
Note that for θ ∈ [0,π]

∑
k∈Z

1
(θ +2kπ)2p =

1
θ 2p +

∞

∑
k=1

1
(θ +2kπ)2p +

∞

∑
k=1

1
(−θ +2kπ)2p

≤ 1
θ 2p +

∞

∑
k=1

1
(2kπ)2p +

∞

∑
k=1

1
(−π +2kπ)2p

≤ 1
θ 2p +

1
π2p

(
∞

∑
k=1

1
(2k)2 +

∞

∑
k=1

1
(2k −1)2

)
=

1
θ 2p +

1
6π2p−2 ,
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and the same bound holds for θ ∈ [−π,0] because of the symmetry. By (37), the latter
inequality yields

fp(θ) ≤ (2−2cosθ)p+1
(

1
θ 2p +

1
6π2p−2

)
, ∀θ ∈ [−π,π]. (38)

This proves the first statement in the theorem.
We now prove the second statement. The inequalities in (36) imply that min

θ∈[−π,π]
fp(θ) =

fp(0) = 0, that θ = 0 is the only zero of fp, and that M fp ≤ 4. In order to prove that M fp ≤
8

p+1 + 2π2

3

(
4

π2

)p
, we use the inequalities

2−2cosθ ≤ θ 2 − θ 4

18
≤ θ 2, ∀θ ∈ [−π,π].

It follows that

(2−2cosθ)

(
2−2cosθ

θ 2

)p

≤ θ 2
(

1− θ 2

18

)p

, ∀θ ∈ [−π,π].

If p ≥ 2, the maximum of θ 2
(

1− θ 2

18

)p

over [−π,π] is located at θ 2 = 18
p+1 and its value

is given by
18

p+1

(
1− 1

p+1

)p

≤ 8
p+1

.

Therefore, if p ≥ 2, we have

(2−2cosθ)p+1

θ 2p ≤ 8
p+1

, ∀θ ∈ [−π,π]. (39)

Moreover,
(2−2cosθ)p+1

6π2p−2 ≤ 4p+1

6π2p−2 , ∀θ ∈ [−π,π]. (40)

Recalling (38), the inequalities (39)–(40) prove that, for p ≥ 2,

M fp ≤ 8
p+1

+
2π2

3

(
4

π2

)p

. (41)

In addition, (41) holds for p = 1 too, because f1(θ) = 2−2cosθ and M f1 = 4. To complete
the proof of the second statement, we still have to show that

M fp ≤ 2φ̇[2p](p)+2
p

∑
k=1

|φ̈[2p+1](p+1− k)|, (42)

which is easily obtained by using (25) and (33). ut

Lemma 8 Let p ≥ 1, and let hp : [−π,π] → R,

hp(θ) := φ[2p+1](p+1)+2
p

∑
k=1

φ[2p+1](p+1− k)cos(kθ), (43)

and mhp := min
θ∈[−π,π]

hp(θ). Then the following properties hold.
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1. hp(θ) = ∑
k∈Z

∣∣∣φ̂[p](θ +2kπ)
∣∣∣
2
.

2. max
θ∈[−π,π]

hp(θ) = hp(0) = 1 and mhp ≥
(

4
π2

)p+1

.

Proof From relation (22) and Theorem 6 it follows that

hp(θ) = ∑
k∈Z

φ[2p+1](p+1− k)ei(kθ) = ∑
k∈Z

(∫

R
φ[p](t)φ[p](t − k)dt

)
ei(kθ)

= ∑
k∈Z

∣∣∣φ̂[p](θ +2kπ)
∣∣∣
2
.

The inequalities (31)–(32) imply that

(
4

π2

)p+1

≤ hp(θ) ≤ 1, θ ∈ [−π,π]. (44)

In addition, by the symmetry property (15) and the partition of unity property (17), we get

h(0) = φ[2p+1](p+1)+2
p

∑
k=1

φ[2p+1](p+1− k) =
2p+1

∑
k=1

φ[2p+1](k) = 1.

ut

Remark 4 From the expressions of fp and hp given in Lemmas 7 and 8, respectively, it
follows that for every θ ∈ [−π,π] and p ≥ 2,

fp(θ) = (2−2cosθ)hp−1(θ),

and for p ≥ 1,

fp(θ) = (2−2cosθ)

(
φ[2p−1](p)+2

p−1

∑
k=1

φ[2p−1](p− k)cos(kθ)

)
. (45)

The latter equality can be easily checked for p = 1 by a direct computation, with the usual
assumption that a sum is empty when the upper index is less than the lower one. Note that
(45) is a more elegant and efficient formula to compute fp.

4 The 1D setting

In this section we focus on the problem (1) in the case where d = 1 and Ω = (0,1) is a
one-dimensional domain, namely

{
−u′′ +βu′ + γu = f, 0 < x < 1,
u(0) = 0, u(1) = 0,

(46)

with f ∈ L2((0,1)), β ∈ R, γ ≥ 0. In order to approximate the weak solution u of problem
(46) by means of the Galerkin method (4), in the IgA setting we choose the approximation
space W to be a space of smooth spline functions, as we are going to describe now.
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Fix p ≥ 1, n ≥ 2 and let V
[p]

n be the space of splines of degree p (or order p+1) defined
over the knot sequence

t1 = . . . = tp+1 = 0 < tp+2 < .. . < tp+n < 1 = tp+n+1 = . . . = t2p+n+1, (47)

where

tp+i+1 :=
i
n
, ∀i = 0, . . . ,n, (48)

and the extreme knots have multiplicity p+1. More precisely,

V
[p]

n := {s ∈ Cp−1([0,1]) : s|[tp+i+1,tp+i+2) ∈ Pp, ∀ i = 0,1, . . . ,n−1}.

Let W
[p]

n be the subspace of V
[p]

n formed by the spline functions vanishing at the boundary
of [0,1], i.e.,

W
[p]

n := {s ∈ V
[p]

n : s(0) = s(1) = 0} ⊂ H1
0 ([0,1]). (49)

We recall that dimV
[p]

n = n+ p and dimW
[p]

n = n+ p−2. In the IgA setting we choose the
approximation space W = W

[p]
n for some p ≥ 1 and n ≥ 2.

This space is spanned by the B-spline basis defined as follows (see [14]). Using the
convention that a fraction with zero denominator is zero, define the function Ni,[k] : [0,1] → R
for every (k, i) such that 0 ≤ k ≤ p, 1 ≤ i ≤ (n+ p)+ p− k:

Ni,[0](x) :=
{

1, if x ∈ [ti, ti+1),
0, elsewhere,

and

Ni,[k](x) :=
x− ti

ti+k − ti
Ni,[k−1](x)+

ti+k+1 − x
ti+k+1 − ti+1

Ni+1,[k−1](x), k > 0.

Then {Ni,[p] : i = 1, . . . ,n+ p} is a basis of V
[p]

n , called the B-spline basis of V
[p]

n . Moreover,
noting that [14]

Ni,[p](0) = Ni,[p](1) = 0, ∀ i = 2, . . . ,n+ p−1,

we deduce that {Ni,[p] : i = 2, . . . ,n+ p−1} is a basis of W = W
[p]

n :

W = 〈Ni,[p], i = 2, . . . ,n+ p−1〉. (50)

If we choose p = 1 then we obtain by the above construction the same approximation space
W and the same basis functions considered in classical FEM with linear elements, see [33].

Using the basis (50), the stiffness matrix A in (5) is the object of our interest and, from
now onwards, will be denoted by A[p]

n in order to emphasize its dependence on n and p:

A[p]
n := A =

[
a(N j+1,[p],Ni+1,[p])

]n+p−2
i, j=1 , (51)

where in this case a(u,v) =
∫ 1

0 u′v′dx+β
∫ 1

0 u′vdx+ γ
∫ 1

0 uvdx, see (3).
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4.1 Construction of the matrices A[p]
n

The central basis functions Ni,[p](x), i = p+1, . . . ,n, defined on the knot sequence (47)–(48)
are cardinal B-splines, see Section 3. We have

Ni,[p](x) = φ[p](nx− i+ p+1), i = p+1, . . . ,n. (52)

Due to the compact support of the B-spline basis, the stiffness matrix A[p]
n has a (2p + 1)-

band structure. We note that

N′
i,[p](x) = n φ̇[p](nx− i+ p+1), i = p+1, . . . ,n.

We now focus on the central part of the stiffness matrix which is only determined by the
cardinal B-splines in (52). For each k = 0,1, . . . , p and i = 2p, . . . ,n − p − 1, the non-zero
element in (51) at row i and column i± k can be expressed by
(

A[p]
n

)
i,i±k

= a(Ni+1±k,[p](x),Ni+1,[p](x)) = a(φ[p](nx− i+ p∓ k),φ[p](nx− i+ p))

= n2
∫ 1

0
φ̇[p](nx− i+ p∓ k) φ̇[p](nx− i+ p)dx

+nβ
∫ 1

0
φ̇[p](nx− i+ p∓ k)φ[p](nx− i+ p)dx

+ γ
∫ 1

0
φ[p](nx− i+ p∓ k)φ[p](nx− i+ p)dx

= n
∫

R
φ̇[p](t ∓ k) φ̇[p](t)dt +β

∫

R
φ̇[p](t ∓ k)φ[p](t)dt +

γ
n

∫

R
φ[p](t ∓ k)φ[p](t)dt. (53)

Let us consider the following split of the matrix,

A[p]
n = nK[p]

n +βH [p]
n +

γ
n

M[p]
n , (54)

according to the diffusion, advection and reaction terms, respectively. More precisely,

nK[p]
n :=

[∫ 1

0
N′

j+1,[p](x)N
′
i+1,[p](x)dx

]n+p−2

i, j=1
, (55)

H [p]
n :=

[∫ 1

0
N′

j+1,[p](x)Ni+1,[p](x)dx
]n+p−2

i, j=1
, (56)

1
n

M[p]
n :=

[∫ 1

0
N j+1,[p](x)Ni+1,[p](x)dx

]n+p−2

i, j=1
. (57)

In view of (53), the parts of these matrices determined by the cardinal B-splines in (52) are
(

K[p]
n

)
i,i±k

=
∫

R
φ̇[p](t ∓ k)φ̇[p](t)dt, (58)

(
H [p]

n

)
i,i±k

=
∫

R
φ̇[p](t ∓ k)φ[p](t)dt, (59)

(
M[p]

n

)
i,i±k

=
∫

R
φ[p](t ∓ k)φ[p](t)dt, (60)

for k = 0,1, . . . , p and i = 2p, . . . ,n − p − 1. We now derive simple expressions for the ele-
ments of the central rows of the matrices K[p]

n , H [p]
n and M[p]

n given in (58)–(60), i.e., for the
row indices i = 2p, . . . ,n− p−1. Other rules have to be considered for the remaining 2p−1
initial/final rows. Lemma 5 implies the following result.
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Theorem 7 The matrix K[p]
n is symmetric, the matrix H [p]

n is skew-symmetric and the matrix
M[p]

n is symmetric. Moreover, the central non-vanishing elements can be expressed as
(

K[p]
n

)
i,i±k

= −φ̈[2p+1](p+1− k),
(

H [p]
n

)
i,i+k

= −
(

H [p]
n

)
i,i−k

= φ̇[2p+1](p+1− k),
(

M[p]
n

)
i,i±k

= φ[2p+1](p+1− k),

for k = 0,1, . . . , p and i = 2p, . . . ,n− p−1.

From the above theorem, the generic central row of K[p]
n can be expressed as

[
0 · · · 0 −φ̈[2p+1](1) · · · −φ̈[2p+1](p) −φ̈[2p+1](p+1) −φ̈[2p+1](p) · · · −φ̈[2p+1](1) 0 · · · 0

]
,

(61)
and in particular, by (25), the diagonal elements can be expressed as

(
K[p]

n

)
i,i

= 2φ̇[2p](p) > 0.

The generic central row of H [p]
n can be expressed as

[
0 · · · 0 −φ̇[2p+1](1) · · · −φ̇[2p+1](p) 0 φ̇[2p+1](p) · · · φ̇[2p+1](1) 0 · · · 0

]
, (62)

where we remark that
(

H [p]
n

)
i,i

= φ̇[2p+1](p + 1) = 0. The generic central row of M[p]
n can

be expressed as
[

0 · · · 0 φ[2p+1](1) · · · φ[2p+1](p) φ[2p+1](p+1) φ[2p+1](p) · · · φ[2p+1](1) 0 · · · 0
]
. (63)

As a consequence of Theorem 7, we get the following result.

Corollary 1 The central non-vanishing elements of the matrix A[p]
n can be expressed as

(
A[p]

n

)
i,i±k

= −nφ̈[2p+1](p+1− k)±β φ̇[2p+1](p+1− k)+
γ
n

φ[2p+1](p+1− k), (64)

for k = 0,1, . . . , p and i = 2p, . . . ,n− p−1.

Remark 5 Considering the recurrence relations for derivatives (18)–(19), for the compu-
tation of the matrix elements (64) we only need to evaluate cardinal B-splines at integer
positions. We sum up some possibilities to evaluate φ[p] at integer positions.

1. The values of φ[p] at the integers can be obtained by recurrence relation (12). Recalling
that φ[0](k) = δ0k, φ[1](k) = δ1k, k ∈ Z, we have

φ[p](k) =
k
p

φ[p−1](k)+
p+1− k

p
φ[p−1](k −1).

2. From (13) it follows that the non-zero values of φ[p] at the integers are equal to

φ[p](k) =
1
p!

k−1

∑
i=0

(
p+1

i

)
(−1)i(k − i)p, k = 1, . . . , p.
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4.2 Estimates for the minimal eigenvalues

In this subsection we provide estimates for the minimal eigenvalues of M[p]
n and K[p]

n . These
estimates will be employed to obtain a lower bound for |λmin(A

[p]
n )|, where λmin(A

[p]
n ) is an

eigenvalue of A[p]
n with minimum modulus.

We begin with recalling the following result from [36]. The inequalities in (65) are a
special instance for the L2-norm of the results stated in [36, Theorem 9.27]. We remark that
the quantity ∆̄ used in the cited theorem in our context has the value 1

n , see [36, eq. (6.3)].

Lemma 9 For every p ≥ 1, n ≥ 2, and x = (x1, . . . ,xn+p−2) ∈ Rn+p−2,

Cp
‖x‖2

n
≤
∥∥∥∥∥

n+p−2

∑
i=1

xiNi+1,[p]

∥∥∥∥∥

2

L2([0,1])

≤ C̄p
‖x‖2

n
, (65)

where the constants Cp,C̄p > 0 do not depend on n and x.

Now we state the Poincaré inequality in the one-dimensional setting. This inequality
plays an important role in the proof of Theorem 8.

Lemma 10 (Poincaré’s inequality) For all v ∈ H1
0 ([0,1]),

‖v‖L2([0,1]) ≤ 1
π

‖v′‖L2([0,1]). (66)

In [16] we find that
1
π

=

√
1

c1,1
is the best constant such that (66) is satisfied for all v ∈

H1
0 ([0,1]). Here, c1,1 is the number appearing in (7) for s = j = 1, see also Remarks 1–3.

Theorem 8 Let Cp > 0 be the constant in (65), then for all p ≥ 1 and n ≥ 2 the following
properties hold.

1. λmin(M
[p]
n ) ≥ Cp.

2. K[p]
n ≥ π2

n2 M[p]
n and λmin(K

[p]
n ) ≥ π2Cp

n2 .

Proof Fix p ≥ 1, n ≥ 2. By using the definition of M[p]
n , see (57), we have for all y ∈ Rn+p−2,

yT
(

1
n

M[p]
n

)
y =

n+p−2

∑
i, j=1

(
1
n

M[p]
n

)

i, j
yiy j =

n+p−2

∑
i, j=1

∫ 1

0
yiy jN j+1,[p](x)Ni+1,[p](x)dx

=
∫ 1

0

n+p−2

∑
i=1

yiNi+1,[p](x)
n+p−2

∑
j=1

y jN j+1,[p](x)dx

=
∫ 1

0

(
n+p−2

∑
i=1

yiNi+1,[p](x)

)2

dx =

∥∥∥∥∥
n+p−2

∑
i=1

yiNi+1,[p]

∥∥∥∥∥

2

L2([0,1])

≥ Cp
‖y‖2

n
. (67)

The last inequality holds because of (65). Hence, we get yT M[p]
n y ≥ Cp‖y‖2, and from the

minimax principle [11,13] it follows that

λmin(M
[p]
n ) = min

y6=0

yT M[p]
n y

‖y‖2 ≥ Cp. (68)
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This proves the first statement. To prove the second statement, we use the definition of K[p]
n ,

see (55), and obtain for all y ∈ Rn+p−2,

yT
(

nK[p]
n

)
y =

n+p−2

∑
i, j=1

(
nK[p]

n

)
i, j

yiy j =
n+p−2

∑
i, j=1

∫ 1

0
yiy jN′

j+1,[p](x)N
′
i+1,[p](x)dx

=
∫ 1

0

n+p−2

∑
i=1

yiN′
i+1,[p](x)

n+p−2

∑
j=1

y jN′
j+1,[p](x)dx

=
∫ 1

0

(
n+p−2

∑
i=1

yiN′
i+1,[p](x)

)2

dx =

∥∥∥∥∥
n+p−2

∑
i=1

yiN′
i+1,[p]

∥∥∥∥∥

2

L2([0,1])

= ‖v′
y‖2

L2([0,1]), (69)

where vy := ∑n+p−2
i=1 yiNi+1,[p] ∈ W

[p]
n , see (49). Since W

[p]
n ⊂ H1

0 ([0,1]), we may apply the
Poincaré inequality (66). From (66) and (67) it follows that

yT
(

nK[p]
n

)
y = ‖v′

y‖2
L2([0,1]) ≥ π2‖vy‖2

L2([0,1]) = yT
(

π2

n
M[p]

n

)
y.

Dividing both sides by n we obtain, for all y ∈ Rn+p−2,

yT K[p]
n y ≥ yT

(
π2

n2 M[p]
n

)
y.

This proves that K[p]
n ≥ π2

n2 M[p]
n , and applying the minimax principle and (68) yield

λmin(K
[p]
n ) = min

y6=0

yT K[p]
n y

‖y‖2 ≥ min
y6=0

yT
(

π2

n2 M[p]
n

)
y

‖y‖2 =
π2

n2 λmin(M
[p]
n ) ≥ π2Cp

n2 ,

which concludes the proof. ut

Remark 6 Suppose that, for a given p ≥ 1, we are able to find a constant C̃p > 0 such that2

λmin(M
[p]
n ) ≥ C̃p.

In this case, the statements in Theorem 8 hold with C̃p instead of Cp. Moreover, the left
inequality in (65) also holds with C̃p instead of Cp. Indeed, by using a similar argument as
in the proof of Theorem 8, we obtain

n

∥∥∥∥∥
n+p−2

∑
i=1

xiNi+1,[p]

∥∥∥∥∥

2

L2([0,1])

‖x‖2 =
xT M[p]

n x
‖x‖2 ≥ min

y 6=0

yT M[p]
n y

‖y‖2 = λmin(M
[p]
n ) ≥ C̃p.

2 Such a constant C̃p could be found by means of the Gershgorin theorems [13]. We refer to Remark 9 in
Section 4.6.1 for an example.
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n λmin(M
[2]
n ) λmin(M

[3]
n ) λmin(M

[4]
n ) n2 λmin(K

[2]
n ) n2 λmin(K

[3]
n ) n2 λmin(K

[4]
n )

20 0.1333333 0.0482607 0.0171864 9.8089070 9.7834046 9.7507398
40 0.1333333 0.0486447 0.0173795 9.8543957 9.8486563 9.8419964
80 0.1333333 0.0486538 0.0173821 9.8658001 9.8644478 9.8629796
160 0.1333333 0.0486538 0.0173821 9.8686532 9.8683256 9.8679834
320 0.1333333 0.0486538 0.0173821 9.8693666 9.8692860 9.8692036
640 0.1333333 0.0486538 0.0173821 9.8695450 9.8695250 9.8695048
1280 0.1333333 0.0486538 0.0173821 9.8695896 9.8695846 9.8695796
2560 0.1333333 0.0486538 0.0173821 9.8696007 9.8695994 9.8695982
5120 0.1333333 0.0486538 0.0173821 9.8696035 9.8696032 9.8696029

Table 1 Computation of λmin(M
[p]
n ) and n2 λmin(K

[p]
n ) for p = 2,3,4 and for increasing values of n.

Table 1 shows the results of some numerical experiments performed on the matrices
M[p]

n and K[p]
n for p = 2,3,4 and for increasing values of n. From these results it seems that

λmin(M
[p]
n )

n→∞∼ m̃p, (70)

with m̃2 = 2
15 , m̃3 ≈ 0.0486538 and m̃4 ≈ 0.0173821. Apparently, the sequence λmin(M

[p]
n )

converges to m̃p very quickly as n → ∞. In addition, it seems that3

λmin(K
[p]
n )

n→∞∼ π2

n2 . (71)

Note that K[1]
n = Tridiagonal(−1,2,−1) ∈ R(n−1)×(n−1) (see Section 4.5) and for λmin(K

[1]
n )

the asymptotic formula (71) holds, because it is known that

λmin(K
[1]
n ) = 4

(
sin

π
2n

)2 n→∞∼ π2

n2 .

The numerical experiments confirm that, for p = 2,3,4, the eigenvalue λmin(K
[p]
n ) converges

to 0 as n−2, which means that the lower estimate
π2Cp

n2 obtained in Theorem 8 is asymptot-

ically of the same order as λmin(K
[p]
n ) when n → ∞.

In addition, referring to Table 2, we can formulate a deeper conjecture than (71).

Conjecture 1 For every p ≥ 1, n ≥ 2 and j = 1, . . . ,n+ p−2, let us denote by λ j(K
[p]
n ) the

j-th smallest eigenvalue of K[p]
n : λ1(K

[p]
n ) ≤ . . . ≤ λn+p−2(K

[p]
n ). Then, for every p ≥ 1 and

for each fixed j ≥ 1,

lim
n→∞

(
n2 λ j(K

[p]
n )
)

= j2π2. (72)

This conjecture can be motivated as follows. The matrix K[p]
n is associated with the (IgA)

discretization of the boundary value problem (9), because nK[p]
n coincides with A[p]

n if β =
γ = 0. The numbers j2π2, j = 1,2, . . ., are precisely the eigenvalues of (9), see Remark 2.
The matrices Tm(2 − 2cosθ), m = 1,2, . . ., are also associated with the (Finite Difference)
discretization of (9) and for these matrices Theorem 4 establishes exactly the limit relation
lim

m→∞

(
m2 λ j(Tm(2−2cosθ))

)
= j2π2 for each fixed j ≥ 1, see Remark 3.

3 The constant π2 is precisely c1,1, see Remarks 1–3.



24 Carlo Garoni et al.

n λ̌ [2]
2,n λ̌ [3]

2,n λ̌ [4]
2,n λ̌ [2]

3,n λ̌ [3]
3,n λ̌ [4]

3,n
20 9.6289991 9.5293645 9.4042990 9.3363215 9.1205723 8.8541077
40 9.8089070 9.7860742 9.7596733 9.7335487 9.6826385 9.6241225
80 9.8543957 9.8489935 9.8431323 9.8354171 9.8232883 9.8101443
160 9.8658001 9.8644900 9.8631221 9.8610467 9.8581006 9.8550251
320 9.8686532 9.8683308 9.8680013 9.8674643 9.8667391 9.8659977
640 9.8693666 9.8692867 9.8692058 9.8690693 9.8688895 9.8687076

1280 9.8695449 9.8695250 9.8695050 9.8694706 9.8694259 9.8693808
2560 9.8695895 9.8695846 9.8695796 9.8695710 9.8695598 9.8695486
5120 9.8696007 9.8695994 9.8695982 9.8695960 9.8695933 9.8695905

Table 2 Computation of λ̌ [p]
j,n := (n/ j)2 λ j(K

[p]
n ) for p = 2,3,4, for j = 2,3 and for increasing values of n.

Theorem 9 For all p ≥ 1 and all n ≥ 2, let λmin(A
[p]
n ) be an eigenvalue of A[p]

n with minimum
modulus. Then ∣∣∣λmin(A

[p]
n )
∣∣∣≥ λmin(ReA[p]

n ) ≥ Cp(π2 + γ)

n
, (73)

with Cp > 0 being the same constant appearing in Theorem 8.

Proof By the expression (54) of A[p]
n and recalling that K[p]

n , M[p]
n are symmetric, while H [p]

n

is skew-symmetric, we infer that the real part of A[p]
n is given by

ReA[p]
n = nK[p]

n +
γ
n

M[p]
n .

Therefore, by the minimax principle and by Theorem 8 we obtain

λmin(ReA[p]
n ) = λmin

(
nK[p]

n +
γ
n

M[p]
n

)
≥ λmin(nK[p]

n )+λmin

( γ
n

M[p]
n

)

= nλmin(K
[p]
n )+

γ
n

λmin(M
[p]
n ) ≥ n

π2Cp

n2 +
γ
n

Cp =
Cp(π2 + γ)

n
.

From (6) we know that |λmin(A
[p]
n )| ≥ λmin(ReA[p]

n ), implying (73). ut
The lower bound (73) remains bounded away from 0 for all γ ≥ 0 and, in particular, for the
interesting value γ = 0.

4.3 Conditioning

In this subsection we provide a bound for the condition number

κ2(A
[p]
n ) := ‖A[p]

n ‖‖(A[p]
n )−1‖,

see Theorem 11. For its proof we need two auxiliary results. The first one (Theorem 10) is
the Fan-Hoffman theorem [11, Proposition III.5.1]. The second result (Lemma 11) gives a
bound for the infinity norm of the matrices K[p]

n , H [p]
n and M[p]

n .

Theorem 10 (Fan-Hoffman) Let X ∈ Cm×m and let

‖X‖ = s1(X) ≥ s2(X) ≥ . . . ≥ sm(X), λ1(ReX) ≥ λ2(ReX) ≥ . . . ≥ λm(ReX)

be the singular values of X and the eigenvalues of ReX, respectively. Then

s j(X) ≥ λ j(ReX), ∀ j = 1, . . . ,m.
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Lemma 11 For every p ≥ 1 and every n ≥ 2,
∥∥∥∥

1
n

M[p]
n

∥∥∥∥
∞

≤ 1
n
, ‖H [p]

n ‖∞ ≤ 2, ‖nK[p]
n ‖∞ ≤ 4pn.

Proof We first note that the derivative and integral of a B-spline Ni,[p](x) are given by (see
[14,36]),

N′
i,[p](x) = p

(
Ni,[p−1](x)
ti+p − ti

−
Ni+1,[p−1](x)
ti+p+1 − ti+1

)
, (74)

and ∫

R
Ni,[p](x)dx =

ti+p+1 − ti
p+1

. (75)

The sequence of knots (47)–(48) implies that the length of the support of any Ni,[p] can be
bounded from above by p+1

n . Recalling (57), by the positivity property and the partition of
unity property of B-splines, we obtain

∥∥∥∥
1
n

M[p]
n

∥∥∥∥
∞

= max
i=1...n+p−2

n+p−2

∑
j=1

∫ 1

0
N j+1,[p](x)Ni+1,[p](x)dx

= max
i=1...n+p−2

∫ 1

0

(
n+p−2

∑
j=1

N j+1,[p](x)

)
Ni+1,[p](x)dx

≤ max
i=1...n+p−2

∫ 1

0
Ni+1,[p](x)dx = max

i=1...n+p−2

ti+p+2 − ti+1

p+1
≤ 1

n
.

Due to the skew-symmetry of H [p]
n , see (56), the infinity norm of H [p]

n is equal to the
infinity norm of its transpose. By (74) and the positivity property of B-splines, we obtain

‖H [p]
n ‖∞ = max

i=1...n+p−2

n+p−2

∑
j=1

∣∣∣∣
∫ 1

0
N j+1,[p](x)N

′
i+1,[p](x)dx

∣∣∣∣

= max
i=1...n+p−2

p
n+p−2

∑
j=1

∣∣∣∣
∫ 1

0
N j+1,[p](x)

(
Ni+1,[p−1](x)
ti+p+1 − ti+1

−
Ni+2,[p−1](x)
ti+p+2 − ti+2

)
dx
∣∣∣∣

≤ max
i=1...n+p−2

p
n+p−2

∑
j=1

∫ 1

0
N j+1,[p](x)

(
Ni+1,[p−1](x)
ti+p+1 − ti+1

+
Ni+2,[p−1](x)
ti+p+2 − ti+2

)
dx. (76)

Using the partition of unity property and (75), we have

n+p−2

∑
j=1

∫ 1

0
N j+1,[p](x)

Ni+1,[p−1](x)
ti+p+1 − ti+1

dx =
∫ 1

0

(
n+p−2

∑
j=1

N j+1,[p](x)

)
Ni+1,[p−1](x)
ti+p+1 − ti+1

dx ≤ 1
p
,

and a similar bound holds for the remaining term in (76). It follows that ‖H [p]
n ‖∞ ≤ 2.

Recalling (55), we obtain

‖nK[p]
n ‖∞ = max

i=1...n+p−2

n+p−2

∑
j=1

∣∣∣∣
∫ 1

0
N′

j+1,[p](x)N
′
i+1,[p](x)dx

∣∣∣∣

= max
i=1...n+p−2

p2
n+p−2

∑
j=1

∣∣∣∣
∫ 1

0

(
N j+1,[p−1](x)
t j+p+1 − t j+1

−
N j+2,[p−1](x)
t j+p+2 − t j+2

)

(
Ni+1,[p−1](x)
ti+p+1 − ti+1

−
Ni+2,[p−1](x)
ti+p+2 − ti+2

)
dx
∣∣∣∣ . (77)
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In addition, we have

n+p−2

∑
j=1

∫ 1

0

N j+1,[p−1](x)
t j+p+1 − t j+1

Ni+1,[p−1](x)
ti+p+1 − ti+1

dx =
∫ 1

0

(
n+p−2

∑
j=1

N j+1,[p−1](x)
t j+p+1 − t j+1

)
Ni+1,[p−1](x)
ti+p+1 − ti+1

dx

≤ n
∫ 1

0

Ni+1,[p−1](x)
ti+p+1 − ti+1

dx =
n
p
,

and in a similar way we can also bound the remaining terms in (77). This results in

‖nK[p]
n ‖∞ ≤ max

i=1...n+p−2
p24

n
p

= 4pn.

ut
Remark 7 A consequence of Lemma 11 is that we can take C̄p = 1 in (65), independently
of p. Indeed, Lemma 11 implies that λmax(M

[p]
n ) ≤ ‖M[p]

n ‖∞ ≤ 1 for all p ≥ 1 and n ≥ 2.
Thus, by the minimax principle, along the lines of the proof of Theorem 8, we have

n

∥∥∥∥∥
n+p−2

∑
i=1

xiNi+1,[p]

∥∥∥∥∥

2

L2([0,1])

‖x‖2 =
xT M[p]

n x
‖x‖2 ≤ max

y6=0

yT M[p]
n y

‖y‖2 = λmax(M
[p]
n ) ≤ 1.

Theorem 11 For every p ≥ 1 there exists a constant αp > 0 such that

κ2(A
[p]
n ) ≤ αpn2, ∀n ≥ 2. (78)

Proof Fix p ≥ 1 and n ≥ 2. By Theorem 7 it follows that K[p]
n , H [p]

n and M[p]
n are normal

matrices, and by applying Lemma 11 we obtain for ‖A[p]
n ‖ the following bound:

‖A[p]
n ‖ =

∥∥∥nK[p]
n +βH [p]

n +
γ
n

M[p]
n

∥∥∥≤ ‖nK[p]
n ‖+ |β |‖H [p]

n ‖+ γ
∥∥∥∥

1
n

M[p]
n

∥∥∥∥

= ρ(nK[p]
n )+ |β |ρ(H [p]

n )+ γρ
(

1
n

M[p]
n

)

≤ ‖nK[p]
n ‖∞ + |β |‖H [p]

n ‖∞ + γ
∥∥∥∥

1
n

M[p]
n

∥∥∥∥
∞

≤ 4pn+2|β |+ γ
n
. (79)

We now give a bound for ‖(A[p]
n )−1‖. Using Theorems 9 and 10, we obtain

sn+p−2(A
[p]
n ) ≥ λmin(ReA[p]

n ) ≥ Cp(π2 + γ)

n
,

where sn+p−2(A
[p]
n ) is the minimum singular value of A[p]

n . Hence,

‖(A[p]
n )−1‖ =

1

sn+p−2(A
[p]
n )

≤ n
Cp(π2 + γ)

. (80)

Combining (79) with (80), we get κ2(A
[p]
n ) ≤ 4pn2 +2n|β |+ γ

Cp(π2 + γ)
, which implies (78) with

αp :=
1

Cp(π2 + γ)

[
4p+ |β |+ γ

4

]
.

ut
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4.4 Spectral distribution

We will now study, for a fixed p ≥ 1, the spectral distribution of the sequence

1
n

A[p]
n = K[p]

n +
β
n

H [p]
n +

γ
n2 M[p]

n , (81)

formed by the scaled stiffness matrices. Recall from (51) that A[p]
n is of size (n + p − 2)×

(n+ p−2). The central rows of A[p]
n (given in Corollary 1) are those with index ranging from

i = 2p to i = n − p − 1. Thus, the condition on n to ensure that A[p]
n has at least one central

row is n− p−1 ≥ 2p, i.e., n ≥ 3p+1.
For every n ≥ 3p+1, we decompose the matrix K[p]

n into

K[p]
n = B[p]

n +R[p]
n , (82)

where B[p]
n is the symmetric (2p+1)-band matrix whose generic central row is given by (61),

while R[p]
n := K[p]

n − B[p]
n is a low-rank correction term. Indeed, R[p]

n has at most 2(2p − 1)
non-zero rows and so

rank(R[p]
n ) ≤ 2(2p−1). (83)

Similarly, we decompose the matrix M[p]
n into

M[p]
n = C[p]

n +S[p]
n , (84)

where C[p]
n is the symmetric (2p + 1)-band matrix whose generic central row is given by

(63), while S[p]
n := M[p]

n −C[p]
n is a low-rank correction term analogous to R[p]

n and

rank(S[p]
n ) ≤ 2(2p−1). (85)

Now we analyze the spectral properties of B[p]
n and C[p]

n . Besides being interesting in
its own right, some of the given properties are needed for the proof of Theorem 12, which
yields the spectral distribution of the sequence { 1

n A[p]
n }.

Lemma 12 Let fp and M fp be defined as in Lemma 7. For all n ≥ 3p+1, B[p]
n = Tn+p−2( fp).

Moreover,

1. σ(B[p]
n ) ⊂ (0,M fp), ∀n ≥ 3p+1;

2. λmin(B
[p]
n ) ↘ 0 and λmax(B

[p]
n ) ↗ M fp as n → ∞;

3. {B[p]
n } λ∼ fp;

4. for each fixed j ≥ 1,

λ j(B
[p]
n )

n→∞∼ j2π2

n2 ,

where λ1(B
[p]
n ) ≤ . . . ≤ λn+p−2(B

[p]
n ) are the eigenvalues of B[p]

n arranged in increasing
order.



28 Carlo Garoni et al.

Proof From the definitions of B[p]
n and fp it follows that B[p]

n = Tn+p−2( fp) for all n ≥ 3p+1.
Hence, the first three statements are a consequence of Theorem 3 and Lemma 7.

We now prove the last statement. From Lemma 7 we know that θ = 0 is the unique zero
of fp over [−π,π]. Furthermore, from (36) it is easy to derive that f ′

p(0) = 0 and, by using
Lemma 6,

f ′′
p (0) = 2

p

∑
k=1

k2φ̈[2p+1](p+1− k) = 2.

This means that the function fp satisfies all the hypotheses of Theorem 4 with s = 1, θmin = 0
and f (2s)

p (θmin) = 2. Then, for each fixed j ≥ 1,

λ j(B
[p]
n ) = λ j(Tn+p−2( fp))

n→∞∼ c1, j

(n+ p−2)2
n→∞∼ j2π2

n2 ,

where the last asymptotic equivalence holds because c1, j = j2π2, see Remarks 2–3. ut

Remark 8 In Section 4.2, looking at the numerical results summarized in the Tables 1–2,
we conjectured that (72) holds for all p ≥ 1 and j ≥ 1. In Lemma 12 we have seen that (72)
holds with λ j(B

[p]
n ) instead of λ j(K

[p]
n ). Furthermore, using the Cauchy interlacing theorem

[11] and the fact that B[p]
n is a principal submatrix of K[p]

n+4p−2, it can be shown that

λ j(K
[p]
n+4p−2) ≤ λ j(B

[p]
n ) ≤ λ j+4p−2(K

[p]
n+4p−2), ∀p ≥ 1, ∀n ≥ 2, ∀ j = 1, . . . ,n+ p−2.

Hence, if there exists a constant k̃p, j such that

λ j(K
[p]
n )

n→∞∼ k̃p, j

n2 ,

then k̃p, j ≤ j2π2, and if j > 4p−2 then ( j −4p+2)2π2 ≤ k̃p, j ≤ j2π2.

Lemma 13 Let hp and mhp be defined as in Lemma 8. For all n ≥ 3p+1, C[p]
n = Tn+p−2(hp).

Moreover,

1. σ(C[p]
n ) ⊂ (mhp ,1), ∀n ≥ 3p+1;

2. λmin(C
[p]
n ) ↘ mhp and λmax(C

[p]
n ) ↗ 1 as n → ∞;

3. {C[p]
n } λ∼ hp.

Proof From the definitions of C[p]
n and hp it follows that C[p]

n = Tn+p−2(hp) for all n ≥ 3p+1.
Theorem 3 and Lemma 8 conclude the proof. ut

The function fp in (33) (as well as the function hp in (43)) can be easily computed for
particular p using the evaluation methods for cardinal B-splines described in Remark 5.

Theorem 12 The sequence of matrices { 1
n A[p]

n } is distributed like the function fp defined in
(33) in the sense of the eigenvalues, i.e.,

lim
n→∞

1
n+ p−2

n+p−2

∑
j=1

F
(

λ j

(
1
n

A[p]
n

))
=

1
2π

∫ π

−π
F( fp(θ))dθ , ∀F ∈ Cc(C,C).

Furthermore, { 1
n A[p]

n } is strongly clustered at the range [0,M fp ] of fp.
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Proof Recalling (81)–(82), we have

1
n

A[p]
n = B[p]

n +R[p]
n +

β
n

H [p]
n +

γ
n2 M[p]

n . (86)

We now prove that the hypotheses of Theorem 2 are satisfied with Zn = 1
n A[p]

n , Xn = B[p]
n

and Yn the remaining term in the right-hand side of (86). We have seen in Lemma 12 that

{B[p]
n } λ∼ fp. Noting that B[p]

n is symmetric, by Lemma 12 we obtain that for all n ≥ 3p+1,

‖B[p]
n ‖ = ρ(B[p]

n ) ≤ M fp ,

where M fp is a constant independent of n. Since rank(R[p]
n ) ≤ 2(2p−1) (see (83)) and since

K[p]
n , H [p]

n and M[p]
n are normal matrices, we get

∥∥∥∥R[p]
n +

β
n

H [p]
n +

γ
n2 M[p]

n

∥∥∥∥
1
≤ ‖R[p]

n ‖1 +
|β |
n

‖H [p]
n ‖1 +

γ
n2 ‖M[p]

n ‖1

≤ rank(R[p]
n )‖R[p]

n ‖+ |β | (n+ p−2)

n
‖H [p]

n ‖+ γ
(n+ p−2)

n2 ‖M[p]
n ‖

≤ 2(2p−1)‖K[p]
n −B[p]

n ‖+ |β | (n+ p−2)

n
‖H [p]

n ‖+ γ
(n+ p−2)

n2 ‖M[p]
n ‖

≤ 2(2p−1)‖B[p]
n ‖+2(2p−1)‖K[p]

n ‖+ |β | (n+ p−2)

n
‖H [p]

n ‖+ γ
(n+ p−2)

n2 ‖M[p]
n ‖

≤ 2(2p−1)M fp +2(2p−1)‖K[p]
n ‖∞ + |β | (n+ p−2)

n
‖H [p]

n ‖∞ + γ
(n+ p−2)

n2 ‖M[p]
n ‖∞.

From Lemma 11 it follows that the right-hand side of the last inequality can be bounded
from above by a constant independent of n, ∀n ≥ 3p+1, implying that all the hypotheses of
Theorem 2 are satisfied. ut

In the next two subsections we discuss in more detail the spectral properties of the
matrices A[p]

n for the cases p = 1 and p = 2.

4.5 The linear case p = 1

In the case p = 1, for every n ≥ 4, the matrix A[1]
n is of size (n−1)× (n−1) and is given by

A[1]
n = nK[1]

n +βH [1]
n +

γ
n

M[1]
n , (87)

where

K[1]
n =




2 −1
−1 2 −1

. . .
. . .

. . .
−1 2 −1

−1 2




, H [1]
n =

1
2




0 1
−1 0 1

. . .
. . .

. . .
−1 0 1

−1 0




, M[1]
n =

1
6




4 1
1 4 1

. . .
. . .

. . .
1 4 1

1 4




.

The matrix A[1]
n is nothing else than the stiffness matrix arising from classical FEM with

linear elements.



30 Carlo Garoni et al.

Note that the scaled matrix

1
n

A[1]
n = K[1]

n +
β
n

H [1]
n +

γ
n2 M[1]

n (88)

is a real Toeplitz tridiagonal matrix, namely

1
n

A[1]
n = Tridiagonal

(
−1− β

2n
+

γ
6n2 , 2+

2γ
3n2 , −1+

β
2n

+
γ

6n2

)
.

Moreover, for n large enough, the elements −1− β
2n + γ

6n2 and −1+ β
2n + γ

6n2 are both neg-

ative. This means that we can compute all the eigenvalues of 1
n A[1]

n (for n large enough) by
means of the following result.

Theorem 13 Let

X :=




b c
a b c

. . .
. . .

. . .
a b c

a b




= Tridiagonal(a,b,c) ∈ Rm×m

be a real Toeplitz tridiagonal matrix such that ac > 0. Then, X has m real distinct eigenval-
ues

λ j(X) = b+2
√

ac cos
jπ

m+1
, j = 1, . . . ,m.

Proof By direct computation we have X = diag0≤ j≤m−1(r
j) ·Y ·diag0≤ j≤m−1(r

− j) with r =√ a
c and Y = Tridiagonal(

√
ac,b,

√
ac). Thus, X is similar to Y , whose eigenvalues

λ j(Y ) = b+2
√

ac cos
jπ

m+1
, j = 1, . . . ,m,

are known since Y belongs to the τ-algebra, see [12]. ut

Applying Theorem 13 to our case we obtain the following corollary.

Corollary 2 Let n ≥ 4 be such that −1 − β
2n + γ

6n2 and −1 + β
2n + γ

6n2 are both negative.

Then, 1
n A[1]

n has n−1 real distinct eigenvalues

λ j

(
1
n

A[1]
n

)
= 2+

2γ
3n2 +2

√
1−
(

γ
3

+
β 2

4

)
1
n2 +

γ2

36n4 cos
jπ
n

, j = 1, . . . ,n−1. (89)

By using the expression (89) for the eigenvalues, one can show (by a direct computation)
that the sequence { 1

n A[1]
n } is distributed like the function f1(θ) = 2−2cosθ in the sense of

the eigenvalues, which is in agreement with Theorem 12. Note that also the sequence {K[1]
n }

is distributed like f1 in the sense of the eigenvalues, because K[1]
n is the (n − 1)-th Toeplitz

matrix associated with the function f1.
For all n ≥ 4 such that −1− β

2n + γ
6n2 and −1+ β

2n + γ
6n2 are both negative, by using (89)

and some asymptotic expansion, one can prove that

λmin

(
1
n

A[1]
n

)
≥ 4

(
sin

π
2n

)2
+

2γ
3n2 .
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Moreover, by Gershgorin’s first theorem [13], we have λmin

(
1
n A[1]

n

)
≥ γ

n2 . Hence,

σ
(

1
n

A[1]
n

)
⊂
[

max
(

4
(

sin
π
2n

)2
+

2γ
3n2 ,

γ
n2

)
,4+

γ
3n2

)
.

This gives a sharper lower bound for λmin(
1
n A[p]

n ) than the one provided in Theorem 9.
From (89) it also follows that

n2λmin

(
1
n

A[1]
n

)
= n2λn−1

(
1
n

A[1]
n

)
n→∞−→ π2 + γ +

β 2

4
,

n2
(

4−λmax

(
1
n

A[1]
n

))
= n2

(
4−λ1

(
1
n

A[1]
n

))
n→∞−→ π2 − γ

3
+

β 2

4
.

In particular, { 1
n A[1]

n } is strongly clustered at [0,4] according to Definition 2. Note that [0,4]
is precisely the range of the function f1(θ) = 2−2cosθ (cfr. Theorem 12).

We conclude this subsection by collecting in the next lemma some results which can be
derived by the Gershgorin theorems and will be used in later sections.

Lemma 14 For all n ≥ 4,

– H [1]
n is skew-symmetric, irreducible, and σ(H [1]

n ) ⊂ {0}× (−1,1) ;
– M[1]

n is symmetric, irreducible, and σ(M[1]
n ) ⊂

( 1
3 ,1
)
.

4.6 The quadratic case p = 2

The spectral analysis of 1
n A[1]

n has not been difficult because Theorem 13 provided us with

the explicit expression (89) for the eigenvalues of 1
n A[1]

n . For p ≥ 2 such an expression for

the eigenvalues of 1
n A[p]

n is not available and so our spectral analysis must rely on other
considerations.

In the case p = 2, for every n ≥ 5 the matrix 1
n A[2]

n is of size n×n and is given by

1
n

A[2]
n = K[2]

n +
β
n

H [2]
n +

γ
n2 M[2]

n ,

where

K[2]
n =

1
6




8 −1 −1
−1 6 −2 −1
−1 −2 6 −2 −1

. . .
. . .

. . .
. . .

. . .
−1 −2 6 −2 −1

−1 −2 6 −1
−1 −1 8




, H [2]
n =

1
24




0 9 1
−9 0 10 1
−1 −10 0 10 1

. . .
. . .

. . .
. . .

. . .
−1 −10 0 10 1

−1 −10 0 9
−1 −9 0




,

M[2]
n =

1
120




40 25 1
25 66 26 1
1 26 66 26 1

. . .
. . .

. . .
. . .

. . .
1 26 66 26 1

1 26 66 25
1 25 40




.
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Theorem 12 reads in the case p = 2 as { 1
n A[2]

n } λ∼ f2, with

f2(θ) = 1− 2
3

cosθ − 1
3

cos(2θ) = (2−2cosθ)

(
2
3

+
1
3

cosθ
)

.

Moreover, { 1
n A[2]

n } is strongly clustered at
[
0, 3

2

]
, which is the range of f2. In the next sub-

sections we provide more specific results about the spectral properties of 1
n A[2]

n .

4.6.1 Localization of the eigenvalues

We are now looking for a good localization of σ
(

1
n A[2]

n

)
. In order to prove Theorem 14, we

need some auxiliary lemmas. Using the Gershgorin theorems, we can derive the following
bounds for the spectra of the matrices K[2]

n , H [2]
n and M[2]

n .

Lemma 15 For all n ≥ 5,

– K[2]
n is symmetric, irreducible, and σ(K[2]

n ) ⊂ (0,2) ;
– H [2]

n is skew-symmetric, irreducible, and σ(H [2]
n ) ⊂ {0}×

(
− 11

12 , 11
12

)
;

– M[2]
n is symmetric, irreducible, and σ(M[2]

n ) ⊂
( 1

10 ,1
)

;

– if 25γ
120n2 < 1

6 , then K[2]
n + γ

n2 M[2]
n is symmetric, irreducible, and

σ
(

K[2]
n +

γ
n2 M[2]

n

)
⊂
( γ

n2 ,2+
γ

10n2

)
.

Remark 9 Lemma 15 implies that λmin(M
[2]
n ) > 1

10 for all n ≥ 5. From Remark 6 and Theo-
rem 8 it follows that

λmin(K
[2]
n ) >

π2

10n2 , ∀n ≥ 5. (90)

Moreover, by Remark 6, we have

∥∥∥∥∥
n

∑
i=1

xiNi+1,[2]

∥∥∥∥∥

2

L2([0,1])

≥ ‖x‖2

10n
for all n ≥ 5 and all x ∈ Rn.

The next lemma concerns the low-rank matrix R[2]
n introduced in (82).

Lemma 16 For every n ≥ 5, we have R[2]
n = 1

6




2 1
1 0

0 1
1 2




∈ Rn×n, and its characteristic

polynomial is 1
1296 λ n−4(36λ 2 − 12λ − 1)2. Hence, the eigenvalues of R[2]

n are 1+
√

2
6 (with

multiplicity 2), 1−
√

2
6 (with multiplicity 2) and 0 (with multiplicity n−4).

Theorem 14 For every n ≥ 5 such that 25γ
120n2 < 1

6 ,

σ
(

1
n

A[2]
n

)
⊂
(

max
(

γ
n2 ,

π2 + γ
10n2

)
,min

(
3
2

+
1+

√
2

6
+

γ
n2 ,2+

γ
10n2

))

×
[
−11|β |

12n
,

11|β |
12n

]
⊂ C. (91)
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Proof Fix n ≥ 5 such that the condition 25γ
120n2 < 1

6 is met. By computing the real and imagi-

nary part of 1
n A[2]

n , we obtain

Re
1
n

A[2]
n = K[2]

n +
γ
n2 M[2]

n = B[2]
n +R[2]

n +
γ
n2 M[2]

n , Im
1
n

A[2]
n =

β
in

H [2]
n .

We aim at localizing the spectra σ
(

Re 1
n A[2]

n

)
and σ

(
Im 1

n A[2]
n

)
.

We begin with σ
(

Re 1
n A[2]

n

)
. Since n satisfies the condition 25γ

120n2 < 1
6 , by Lemma 15 we

have

σ
(

Re
1
n

A[2]
n

)
⊂
( γ

n2 ,2+
γ

10n2

)
. (92)

We can improve (92) as follows. By combining the minimax principle with Lemmas 12, 15
and 16, and taking into account that M f2 = 3

2 , we obtain

λmax

(
Re

1
n

A[2]
n

)
= λmax

(
B[2]

n +R[2]
n +

γ
n2 M[2]

n

)
≤ λmax(B

[2]
n )+λmax(R

[2]
n )+

γ
n2 λmax(M

[2]
n )

<
3
2

+
1+

√
2

6
+

γ
n2 .

Similarly, by using (90) and Lemma 15,

λmin

(
Re

1
n

A[2]
n

)
= λmin

(
K[2]

n +
γ
n2 M[2]

n

)
≥ λmin(K

[2]
n )+

γ
n2 λmin(M

[2]
n ) >

π2 + γ
10n2 .

Thus, we can replace (92) with

σ
(

Re
1
n

A[2]
n

)
⊂
(

max
(

γ
n2 ,

π2 + γ
10n2

)
,min

(
3
2

+
1+

√
2

6
+

γ
n2 ,2+

γ
10n2

))
. (93)

Now we localize the spectrum σ
(

ImA[2]
n

)
. Since Im 1

n A[2]
n is Hermitian, from Lemma 15

we obtain4

σ
(

Im
1
n

A[2]
n

)
⊂
[
−11|β |

12n
,

11|β |
12n

]
. (94)

Combining (93)–(94) with (6), we obtain (91). ut

4.6.2 Clustering

We are now dealing with the clustering properties of the sequence { 1
n A[2]

n }. We have al-

ready mentioned that { 1
n A[2]

n } is strongly clustered at
[
0, 3

2

]
, but we have no bounds on the

number of outliers, i.e., those eigenvalues of 1
n A[2]

n lying outside the ε-expansion [0, 3
2 ]ε =[

−ε, 3
2 + ε

]
× [−ε,ε]. Theorem 17 provides an estimate for the number of outliers, and its

proof requires the following two results from numerical linear algebra. The first result is the
classical interlacing principle, see e.g. [11].

4 If β 6= 0 then Im 1
n A[2]

n is irreducible and σ
(

Im 1
n A[2]

n

)
⊂
(
− 11|β |

12n , 11|β |
12n

)
. In (94) we have included the

endpoints ± 11|β |
12n to cover the case β = 0.
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Theorem 15 Let K := B+R, where B ∈ Cm×m is Hermitian and

R :=
k+

∑
j=1

r ju ju∗
j +

k−

∑
j=1

t jv jv∗
j ,

with r j > 0 for each j = 1, . . . ,k+, t j < 0 for each j = 1, . . . ,k− and u1, . . . ,uk+ ,v1, . . . ,vk− ∈
Cm\{0}. Let

λ1(B) ≥ . . . ≥ λm(B) and λ1(K) ≥ . . . ≥ λm(K)

be the eigenvalues of B and K arranged in decreasing order. Then

λ j−k+(B) ≥ λ j(K) ≥ λ j+k−(B),

for every j = k+ +1, . . . ,m− k−.

The second result is the Ky-Fan theorem [11, Proposition III.5.3].

Theorem 16 (Ky-Fan) Let A ∈ Cm×m and let λ j(A) and λ j(ReA), j = 1, . . . ,m, be the
eigenvalues of A and ReA, respectively, arranged in decreasing order:

Re(λ1(A)) ≥ . . . ≥ Re(λm(A)) and λ1(ReA) ≥ . . . ≥ λm(ReA).

Then
k

∑
j=1

Re(λ j(A)) ≤
k

∑
j=1

λ j(ReA),

for every k = 1, . . . ,m. For k = m, the equality holds.

Theorem 17 For all ε ∈ (0,1) and n ≥ max
(

5,
√

2γ
ε

)
, it holds

q+
n (ε) ≤

⌈
1+

√
2

3ε

⌉
, (95)

where q+
n (ε) is the number of eigenvalues of 1

n A[2]
n whose real parts are ≥ 3

2 + ε .

Proof For every n ≥ 5, we consider again the decomposition K[2]
n = B[2]

n + R[2]
n introduced

in (82). The matrix R[2]
n is symmetric and we know the eigenvalues of R[2]

n from Lemma 16.
By the spectral (Schur) decomposition of R[2]

n we see that

R[2]
n =

1+
√

2
6

u1u∗
1 +

1+
√

2
6

u2u∗
2 +

1−
√

2
6

v1v∗
1 +

1−
√

2
6

v2v∗
2,

where u1,u2,v1,v2 ∈ Cn are orthonormal vectors. Hence, by Theorem 15,

λ j−2(B
[2]
n ) ≥ λ j(K

[2]
n ) ≥ λ j+2(B

[2]
n ),

for every j = 3, . . . ,n−2, where the eigenvalues of B[2]
n and K[2]

n are arranged in decreasing
order. In particular, from Lemma 12 and M f2 = 3

2 , it follows that σ(B[2]
n ) ⊂

(
0, 3

2

)
, and

3
2

> λ1(B
[2]
n ) ≥ λ3(K

[2]
n ) ≥ . . . ≥ λn(K

[2]
n ) > 0, (96)
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where the last inequality is a consequence of Lemma 15. Moreover, by the minimax princi-
ple,

λmax(K
[2]
n ) = λmax(B

[2]
n +R[2]

n ) ≤ λmax(B
[2]
n )+λmax(R

[2]
n ) <

3
2

+
1+

√
2

6
. (97)

Assume that the eigenvalues of 1
n A[2]

n and Re 1
n A[2]

n are arranged in decreasing order:

Re
(

λ1

(
1
n

A[2]
n

))
≥ . . . ≥ Re

(
λn

(
1
n

A[2]
n

))
,

and

λ1

(
Re

1
n

A[2]
n

)
≥ . . . ≥ λn

(
Re

1
n

A[2]
n

)
.

Recalling from Lemma 15 that σ(M[2]
n ) ⊂

( 1
10 ,1

)
and applying again the minimax principle,

for every j = 1, . . . ,n we have

λ j(K
[2]
n ) = min

V⊆Cn
dimV=n+1− j

max
x∈V

‖x‖=1

(x∗K[2]
n x) = min

V⊆Cn
dimV=n+1− j

max
x∈V

‖x‖=1

(
x∗
(

Re
1
n

A[2]
n − γ

n2 M[2]
n

)
x
)

> min
V⊆Cn

dimV=n+1− j

max
x∈V

‖x‖=1

(
x∗
(

Re
1
n

A[2]
n

)
x− γ

n2

)
= λ j

(
Re

1
n

A[2]
n

)
− γ

n2 ,

and so

λ j

(
Re

1
n

A[2]
n

)
< λ j(K

[2]
n )+

γ
n2 , ∀ j = 1, . . . ,n. (98)

Now fix ε > 0 and let q+
n (ε) be the number of eigenvalues of 1

n A[2]
n whose real parts are

greater than or equal to 3
2 + ε . Following the argument used in [24, proof of Theorem 3.5]

and keeping in mind (96)–(98), we apply Theorem 16 to obtain

(
3
2

+ ε
)

q+
n (ε) ≤

q+
n (ε)

∑
j=1

Re
(

λ j

(
1
n

A[2]
n

))
≤

q+
n (ε)

∑
j=1

λ j

(
Re

1
n

A[2]
n

)
≤

q+
n (ε)

∑
j=1

(
λ j(K

[2]
n )+

γ
n2

)

=
q+

n (ε)

∑
j=1

λ j(K
[2]
n )+

γ q+
n (ε)

n2 = λ1(K
[2]
n )+λ2(K

[2]
n )+

q+
n (ε)

∑
j=3

λ j(K
[2]
n )+

γ q+
n (ε)

n2

< 2

(
3
2

+
1+

√
2

6

)
+(q+

n (ε)−2)
3
2

+
γ q+

n (ε)

n2 =

(
3
2

+
γ
n2

)
q+

n (ε)+
1+

√
2

3
,

and so, for every ε > 0 and n ≥ 5 such that γ
n2 < ε we have

q+
n (ε) <

1+
√

2

3
(

ε − γ
n2

) . (99)

If 0 < ε < 1 and n > max
(

5,
√

γ
ε

)
, then

1+
√

2

3
(

ε − γ
n2

) ≤ 1+
√

2
3ε

+1 ⇔ n ≥

√
(1+

√
2+3ε)γ

3ε2 .
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From the inequality √
(1+

√
2+3ε)γ

3ε2 ≤
√

2γ
ε

,

and from (99) it follows that (95) holds ∀ε ∈ (0,1) and ∀n ≥ max
(

5,
√

2γ
ε

)
. ut

Let qn(ε) be the number of eigenvalues of 1
n A[2]

n lying outside the ε-expansion
[
0, 3

2

]
ε .

By combining (91) and (95), we are able to find an upper bound for qn(ε). Indeed, ∀ε ∈ (0,1)

and ∀n ≥ max
(

5, 11|β |
12ε ,

√
2γ
ε

)
= O

( 1
ε
)
,

qn(ε) ≤
⌈

1+
√

2
3ε

⌉
.

Note that, by Theorem 14, ∀ε ∈ (0,1), ∀n ≥ max
(

5, 11|β |
12ε ,

√
5γ
4ε

)
, there are no eigen-

values of 1
n A[2]

n lying outside
[
0, 3

2 + 1+
√

2
6

]
ε
. Thus, ∀ε ∈ (0,1), ∀n ≥ max

(
5, 11|β |

12ε ,
√

2γ
ε

)
,

qn(ε) is just the number of eigenvalues of 1
n A[2]

n lying in
[

0,
3
2

+
1+

√
2

6

]

ε

\
[

0,
3
2

]

ε
=

(
3
2

+ ε,
3
2

+
1+

√
2

6
+ ε

]
× [−ε,ε] .

5 The 2D setting

We now consider our model problem (1) on the two-dimensional domain Ω = (0,1)2. More
precisely,

{
−∆u(x,y)+β ·∇u(x,y)+ γu(x,y) = f(x,y), ∀(x,y) ∈ Ω ,
u(x,y) = 0, ∀(x,y) ∈ ∂Ω ,

(100)

with f ∈ L2((0,1)2), β = [β1 β2]
T ∈ R2, γ ≥ 0. In order to approximate the weak solution of

problem (100) by means of the Galerkin method (4), the approximation space W is chosen
as the space of smooth tensor-product splines that we now describe.

We consider two univariate B-spline bases as defined in Section 4 (for the x and y direc-
tions):

– the B-spline basis {Ni,[p1](x), i = 1, . . . ,n1 + p1} over the knot sequence

s1 = . . . = sp1+1 = 0 < sp1+2 < .. . < sp1+n1 < 1 = sp1+n1+1 = . . . = s2p1+n1+1,

where
sp1+i+1 :=

i
n1

, ∀i = 0, . . . ,n1;

– the B-spline basis {Ni,[p2](y), i = 1, . . . ,n2 + p2} over the knot sequence

t1 = . . . = tp2+1 = 0 < tp2+2 < .. . < tp2+n2 < 1 = tp2+n2+1 = . . . = t2p2+n2+1,

where
tp2+i+1 :=

i
n2

, ∀i = 0, . . . ,n2.
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The bivariate tensor-product B-spline basis {Ni, j,[p1,p2], i = 1, . . . ,n1 + p1, j = 1, . . . ,n2 +
p2} is given by

Ni, j,[p1,p2](x,y) :=
(
Ni,[p1] ⊗N j,[p2]

)
(x,y) = Ni,[p1](x)N j,[p2](y).

We choose the space W
[p1,p2]

n1,n2 as approximation space W in the Galerkin problem (4), where

W
[p1,p2]

n1,n2 := 〈Ni, j,[p1,p2] : i = 2, . . . ,n1 + p1 −1, j = 2, . . . ,n2 + p2 −1〉, (101)

and we consider the elements of the basis (101) ordered as follows:

ϕ(n1+p1−2)( j−1)+i = Ni+1, j+1,[p1,p2], i = 1, . . . ,n1 + p1 −2, j = 1, . . . ,n2 + p2 −2. (102)

Once we have fixed the tensor-product B-spline basis ordered as in (102), the Galerkin
problem (4) leads to a linear system (5). The stiffness matrix A in (5) is the object of our
interest and, from now onwards, will be denoted by A[p1,p2]

n1,n2 in order to emphasize its depen-
dence on n1,n2 and p1, p2:

A[p1,p2]
n1,n2 := A = [a(ϕ j,ϕi)]

(n1+p1−2)(n2+p2−2)
i, j=1 , (103)

where in this case a(u,v) =
∫ 1

0
∫ 1

0 ∇u ·∇vdxdy+β ·∫ 1
0
∫ 1

0 ∇u vdxdy+γ
∫ 1

0
∫ 1

0 uvdxdy, see (3).

5.1 Construction of the matrices A[p1,p2]
n1,n2

Using the integration rules described in Section 4.1, we obtain that

A[p1,p2]
n1,n2 =

n1

n2
K̂[p1,p2]

n1,n2 +
n2

n1
K̃[p1,p2]

n1,n2 +
β1

n2
Ĥ [p1,p2]

n1,n2 +
β2

n1
H̃ [p1,p2]

n1,n2 +
γ

n1n2
M[p1,p2]

n1,n2 , (104)

where

K̂[p1,p2]
n1,n2 := M[p2]

n2 ⊗K[p1]
n1 , K̃[p1,p2]

n1,n2 := K[p2]
n2 ⊗M[p1]

n1 ,

Ĥ [p1,p2]
n1,n2 := M[p2]

n2 ⊗H [p1]
n1 , H̃ [p1,p2]

n1,n2 := H [p2]
n2 ⊗M[p1]

n1 ,

M[p1,p2]
n1,n2 := M[p2]

n2 ⊗M[p1]
n1 .

In particular, for the case n1 = n2 = n and p1 = p2 = p,

A[p,p]
n,n = K[p,p]

n,n +
β1

n
Ĥ [p,p]

n,n +
β2

n
H̃ [p,p]

n,n +
γ
n2 M[p,p]

n,n , (105)

with K[p,p]
n,n := K̂[p,p]

n,n + K̃[p,p]
n,n .
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5.2 Spectral distribution

We will now study, for fixed p1, p2 ≥ 1, the spectral distribution of the sequence of matrices
(104) under the additional mild assumption that the ratio

n2

n1
=: ν is constant as n1 → ∞.5

With this assumption we have

A[p1,p2]
n1,n2 =

1
ν

K̂[p1,p2]
n1,n2 +νK̃[p1,p2]

n1,n2 +
β1

νn1
Ĥ [p1,p2]

n1,n2 +
β2

n1
H̃ [p1,p2]

n1,n2 +
γ

ν(n1)2 M[p1,p2]
n1,n2 . (106)

For every n1 ≥ 3p1 + 1 such that n2 = νn1 ≥ 3p2 + 1, we decompose the matrices K̂[p1,p2]
n1,n2

and K̃[p1,p2]
n1,n2 into

K̂[p1,p2]
n1,n2 = B̂[p1,p2]

n1,n2 + R̂[p1,p2]
n1,n2 , K̃[p1,p2]

n1,n2 = B̃[p1,p2]
n1,n2 + R̃[p1,p2]

n1,n2 , (107)

where
B̂[p1,p2]

n1,n2 := C[p2]
n2 ⊗B[p1]

n1 , B̃[p1,p2]
n1,n2 := B[p2]

n2 ⊗C[p1]
n1 ,

and

R̂[p1,p2]
n1,n2 := K̂[p1,p2]

n1,n2 − B̂[p1,p2]
n1,n2 = C[p2]

n2 ⊗R[p1]
n1 +S[p2]

n2 ⊗B[p1]
n1 +S[p2]

n2 ⊗R[p1]
n1 ,

R̃[p1,p2]
n1,n2 := K̃[p1,p2]

n1,n2 − B̃[p1,p2]
n1,n2 = B[p2]

n2 ⊗S[p1]
n1 +R[p2]

n2 ⊗C[p1]
n1 +R[p2]

n2 ⊗S[p1]
n1 .

We recall that the matrices B[p]
n , R[p]

n , C[p]
n , S[p]

n were introduced in Section 4.4, see (82)–(85).
Finally, we define

B[p1,p2]
n1,n2 :=

1
ν

B̂[p1,p2]
n1,n2 +νB̃[p1,p2]

n1,n2 , (108)

R[p1,p2]
n1,n2 :=

1
ν

R̂[p1,p2]
n1,n2 +νR̃[p1,p2]

n1,n2 . (109)

From Lemmas 12 and 13 we know that B[p]
n = Tn+p−2( fp) and C[p]

n = Tn+p−2(hp) for
p ≥ 1 and n ≥ 3p+1. By Lemma 2 we then obtain

B̂[p1,p2]
n1,n2 = Tn2+p2−2(hp2)⊗Tn1+p1−2( fp1) = Tn2+p2−2,n1+p1−2(hp2 ⊗ fp1),

B̃[p1,p2]
n1,n2 = Tn2+p2−2( fp2)⊗Tn1+p1−2(hp1) = Tn2+p2−2,n1+p1−2( fp2 ⊗hp1),

and

B[p1,p2]
n1,n2 = Tn2+p2−2,n1+p1−2

(
1
ν

hp2 ⊗ fp1 +ν fp2 ⊗hp1

)
. (110)

Hence, by Theorem 5,

{B̂[p1,p2]
n1,n2 } λ∼ hp2 ⊗ fp1 , {B̃[p1,p2]

n1,n2 } λ∼ fp2 ⊗hp1 ,

5 In this way, A[p1 ,p2 ]
n1 ,n2 is really a sequence of matrices, since only n1 is a free parameter. The relation

n2 = νn1 must be kept in mind while reading this section. We point out that this request could be replaced by
even milder conditions, but at the price of heavier notations.
If n1 and n2 are not proportional, i.e., n2/n1 does not converge to a positive constant, then:

• either a distribution does not exist (when n2/n1 does not have a limit),
• or it exists, but this distribution completely ignores the differential operator in x (if n1/n2 converges to

zero) or the operator in y (if n2/n1 converges to zero).
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and

{B[p1,p2]
n1,n2 } λ∼ 1

ν
hp2 ⊗ fp1 +ν fp2 ⊗hp1 . (111)

By Lemma 1 and the inequalities (83), (85), the two matrices R̂[p1,p2]
n1,n2 and R̃[p1,p2]

n1,n2 satisfy

rank(R̂[p1,p2]
n1,n2 ) ≤ rank(C[p2]

n2 ⊗R[p1]
n1 )+ rank(S[p2]

n2 ⊗B[p1]
n1 )+ rank(S[p2]

n2 ⊗R[p1]
n1 )

= rank(C[p2]
n2 )rank(R[p1]

n1 )+ rank(S[p2]
n2 )rank(B[p1]

n1 )+ rank(S[p2]
n2 )rank(R[p1]

n1 )

≤ (νn1 + p2 −2)2(2p1 −1)+2(2p2 −1)(n1 + p1 −2)+2(2p2 −1)2(2p1 −1)

= o((n1 + p1 −2)(νn1 + p2 −2)), as n1 → ∞,

and in a similar way we also obtain

rank(R̃[p1,p2]
n1,n2 ) = o((n1 + p1 −2)(νn1 + p2 −2)), as n1 → ∞.

Thus,

rank(R[p1,p2]
n1,n2 ) ≤ rank(R̂[p1,p2]

n1,n2 )+ rank(R̃[p1,p2]
n1,n2 ) = o((n1 + p1 −2)(νn1 + p2 −2)), (112)

as n1 → ∞. Note that (n1 + p1 − 2)(νn1 + p2 − 2) is the dimension of the matrix A[p1,p2]
n1,n2 .

Moreover, using Lemmas 1, 12, 13 and the fact that the matrices K[p]
n , H [p]

n , M[p]
n , B[p]

n , C[p]
n

are normal, we obtain

‖R[p1,p2]
n1,n2 ‖ ≤ 1

ν
‖R̂[p1,p2]

n1,n2 ‖+ν‖R̃[p1,p2]
n1,n2 ‖ =

1
ν

‖K̂[p1,p2]
n1,n2 − B̂[p1,p2]

n1,n2 ‖+ν‖K̃[p1,p2]
n1,n2 − B̃[p1,p2]

n1,n2 ‖

≤ 1
ν

‖K̂[p1,p2]
n1,n2 ‖+

1
ν

‖B̂[p1,p2]
n1,n2 ‖+ν‖K̃[p1,p2]

n1,n2 ‖+ν‖B̃[p1,p2]
n1,n2 ‖

=
1
ν

‖M[p2]
n2 ‖‖K[p1]

n1 ‖+
1
ν

‖C[p2]
n2 ‖‖B[p1]

n1 ‖+ν‖K[p2]
n2 ‖‖M[p1]

n1 ‖+ν‖B[p2]
n2 ‖‖C[p1]

n1 ‖

≤ 1
ν

‖M[p2]
n2 ‖∞‖K[p1]

n1 ‖∞ +
1
ν

M fp1
+ν‖K[p2]

n2 ‖∞‖M[p1]
n1 ‖∞ +νM fp2

.

From Lemma 11 it follows
‖R[p1,p2]

n1,n2 ‖ ≤ Qp1,p2 , (113)

where Qp1,p2 is a constant independent of n1.

Theorem 18 The sequence of matrices {A[p1,p2]
n1,n2 } is distributed like the function gp1,p2 :

[−π,π]2 → R,

gp1,p2 :=
1
ν

hp2 ⊗ fp1 +ν fp2 ⊗hp1 , (114)

in the sense of the eigenvalues.

Proof We have to show that, ∀F ∈ Cc(C,C),

lim
n1→∞

1
(n1 + p1 −2)(νn1 + p2 −2)

(n1+p1−2)(νn1+p2−2)

∑
j=1

F(λ j(A
[p1,p2]
n1,n2 ))

=
1

(2π)2

∫ π

−π

∫ π

−π
F(gp1,p2(θ1,θ2))dθ1dθ2.
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By (106)–(109), we have

A[p1,p2]
n1,n2 = B[p1,p2]

n1,n2 +R[p1,p2]
n1,n2 +

β1

νn1
Ĥ [p1,p2]

n1,n2 +
β2

n1
H̃ [p1,p2]

n1,n2 +
γ

ν(n1)2 M[p1,p2]
n1,n2 . (115)

Recalling that n2 = νn1 is determined as a function of n1, we now prove that the hypotheses
of Theorem 1 are satisfied with Zn1 = A[p1,p2]

n1,n2 , Xn1 = B[p1,p2]
n1,n2 and Yn1 the remaining term

in the right-hand side of (115). We have seen in (111) that {B[p1,p2]
n1,n2 } λ∼ gp1,p2 . Noting that

B[p1,p2]
n1,n2 is symmetric, by Theorem 5 we obtain

‖B[p1,p2]
n1,n2 ‖ = ρ(B[p1,p2]

n1,n2 ) < Mgp1 ,p2
,

where Mgp1 ,p2
:= max

(θ1,θ2)∈[−π,π]2
gp1,p2(θ1,θ2) is a constant independent of n1.

By Lemma 1, we get
∥∥∥∥

β1

νn1
Ĥ [p1,p2]

n1,n2 +
β2

n1
H̃ [p1,p2]

n1,n2 +
γ

ν(n1)2 M[p1,p2]
n1,n2

∥∥∥∥

≤ |β1|
νn1

‖Ĥ [p1,p2]
n1,n2 ‖+

|β2|
n1

‖H̃ [p1,p2]
n1,n2 ‖+

γ
ν(n1)2 ‖M[p1,p2]

n1,n2 ‖

≤ |β1|
νn1

‖M[p2]
n2 ‖‖H [p1]

n1 ‖+
|β2|
n1

‖H [p2]
n2 ‖‖M[p1]

n1 ‖+
γ

ν(n1)2 ‖M[p2]
n2 ‖‖M[p1]

n1 ‖

≤ |β1|
νn1

‖M[p2]
n2 ‖∞‖H [p1]

n1 ‖∞ +
|β2|
n1

‖H [p2]
n2 ‖∞‖M[p1]

n1 ‖∞ +
γ

ν(n1)2 ‖M[p2]
n2 ‖∞‖M[p1]

n1 ‖∞,

and from Lemma 11 it follows that∥∥∥∥
β1

νn1
Ĥ [p1,p2]

n1,n2 +
β2

n1
H̃ [p1,p2]

n1,n2 +
γ

ν(n1)2 M[p1,p2]
n1,n2

∥∥∥∥= O
(

1
n1

)
. (116)

Combining (113) and (116), we obtain
∥∥∥∥R[p1,p2]

n1,n2 +
β1

νn1
Ĥ [p1,p2]

n1,n2 +
β2

n1
H̃ [p1,p2]

n1,n2 +
γ

ν(n1)2 M[p1,p2]
n1,n2

∥∥∥∥≤ Q̄p1,p2 ,

where Q̄p1,p2 is a constant independent of n1.
On the other hand, by using (112)–(113) and (116), we get
∥∥∥∥R[p1,p2]

n1,n2 +
β1

νn1
Ĥ [p1,p2]

n1,n2 +
β2

n1
H̃ [p1,p2]

n1,n2 +
γ

ν(n1)2 M[p1,p2]
n1,n2

∥∥∥∥
1

≤ ‖R[p1,p2]
n1,n2 ‖1 +

∥∥∥∥
β1

νn1
Ĥ [p1,p2]

n1,n2 +
β2

n1
H̃ [p1,p2]

n1,n2 +
γ

ν(n1)2 M[p1,p2]
n1,n2

∥∥∥∥
1

≤ rank(R[p1,p2]
n1,n2 )‖R[p1,p2]

n1,n2 ‖

+(n1 + p1 −2)(νn1 + p2 −2)

∥∥∥∥
β1

νn1
Ĥ [p1,p2]

n1,n2 +
β2

n1
H̃ [p1,p2]

n1,n2 +
γ

ν(n1)2 M[p1,p2]
n1,n2

∥∥∥∥

≤ rank(R[p1,p2]
n1,n2 )Qp1,p2 +(n1 + p1 −2)(νn1 + p2 −2)O

(
1
n1

)

= o((n1 + p1 −2)(νn1 + p2 −2)), as n1 → ∞.

Hence, all the hypotheses of Theorem 1 are satisfied, and the symbol (114) follows. ut
In the next two subsections we discuss in more detail the spectral properties of the

matrices A[p1,p2]
n1,n2 with n1 = n2 = n in the cases p1 = p2 = 1 and p1 = p2 = 2.
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5.3 The bilinear case p1 = p2 = 1

In the case p1 = p2 = 1, for every n1 = n2 = n ≥ 4, the matrix A[1,1]
n,n is (n − 1)2 × (n − 1)2

and is given by

A[1,1]
n,n = K[1,1]

n,n +
β1

n
Ĥ [1,1]

n,n +
β2

n
H̃ [1,1]

n,n +
γ
n2 M[1,1]

n,n , (117)

where the matrices K[1,1]
n,n , Ĥ [1,1]

n,n , H̃ [1,1]
n,n , M[1,1]

n,n are described in Section 5.1. Theorem 18 reads

in the case p1 = p2 = 1 as {A[1,1]
n,n } λ∼ g1,1, with

g1,1(θ1,θ2) = ( f1 ⊗h1)(θ1,θ2)+(h1 ⊗ f1)(θ1,θ2)

=
8
3

− 2
3

cos(θ1)− 2
3

cos(θ2)− 4
3

cos(θ1)cos(θ2).

5.3.1 Localization of the eigenvalues and clustering

Theorem 19 For every n ≥ 4 such that γ
9n2 < 1

3

σ(A[1,1]
n,n ) ⊂

(
max

(
γ
n2 ,

8
3

(
sin

π
2n

)2
+

γ
9n2

)
,min

(
4+

γ
n2 ,

16
3

− γ
9n2

))

×
[
−|β1|+ |β2|

n
,
|β1|+ |β2|

n

]
⊂ C. (118)

Proof Fix n ≥ 4. By computing the real and imaginary part of A[1,1]
n,n , we obtain

ReA[1,1]
n,n = K[1,1]

n,n +
γ
n2 M[1,1]

n,n , ImA[1,1]
n,n =

β1

in
Ĥ [1,1]

n,n +
β2

in
H̃ [1,1]

n,n .

The target is the localization of σ(ReA[1,1]
n,n ) and σ(ImA[1,1]

n,n ).

We begin with σ(ReA[1,1]
n,n ). Since n satisfies the condition γ

9n2 < 1
3 , ReA[1,1]

n,n is Hermi-
tian, irreducible and, by Gershgorin’s theorems,

σ(ReA[1,1]
n,n ) ⊂

(
γ
n2 ,

16
3

− γ
9n2

)
.

We can improve this range as follows. The matrix K[1,1]
n,n is equal to the matrix B[1,1]

n,n defined
in (108), taking into account that in this case ν = n

n = 1. Therefore, by (110) we obtain

K[1,1]
n,n = B[1,1]

n,n = Tn−1,n−1(h1 ⊗ f1 + f1 ⊗h1) = Tn−1,n−1(g1,1).

The range of g1,1 is [0,4] and so, by Theorem 5, σ(K[1,1]
n,n ) ⊂ (0,4). Moreover, since M[1,1]

n,n =

M[1]
n ⊗M[1]

n , from Lemmas 1 and 14 it follows that M[1,1]
n,n is symmetric and that σ(M[1,1]

n,n ) ⊂
( 1

9 ,1). By the minimax principle we then have

λmax(ReA[1,1]
n,n ) = λmax

(
K[1,1]

n,n +
γ
n2 M[1,1]

n,n

)
≤ λmax(K

[1,1]
n,n )+

γ
n2 λmax(M

[1,1]
n,n ) < 4+

γ
n2 .
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In addition, by the minimax principle, by Lemmas 1 and 14, and by the fact that λmin(K
[1]
n ) =

4
(
sin π

2n

)2, we obtain

λmin

(
ReA[1,1]

n,n

)
= λmin

(
K[1,1]

n,n +
γ
n2 M[1,1]

n,n

)

= λmin

(
K[1]

n ⊗M[1]
n +M[1]

n ⊗K[1]
n +

γ
n2 M[1]

n ⊗M[1]
n

)

≥ λmin(K
[1]
n )λmin(M

[1]
n )+λmin(M

[1]
n )λmin(K

[1]
n )+

γ
n2 λmin(M

[1]
n )

2

> 2 ·4
(

sin
π
2n

)2 1
3

+
γ

9n2 =
8
3

(
sin

π
2n

)2
+

γ
9n2 .

Therefore, we obtain for σ(ReA[1,1]
n,n ) the localization

σ(ReA[1,1]
n,n ) ⊂

(
max

(
γ
n2 ,

8
3

(
sin

π
2n

)2
+

γ
9n2

)
,min

(
4+

γ
n2 ,

16
3

− γ
9n2

))
. (119)

We now localize the spectrum σ(ImA[1,1]
n,n ). The matrices Ĥ [1,1]

n,n and H̃ [1,1]
n,n are skew-

symmetric.6 As a consequence, the matrices iĤ [1,1]
n,n and iH̃ [1,1]

n,n are Hermitian, proving that
all the eigenvalues of Ĥ [1,1]

n,n and H̃ [1,1]
n,n are purely imaginary. Moreover, Ĥ [1,1]

n,n = M[1]
n ⊗H [1]

n

and H̃ [1,1]
n,n = H [1]

n ⊗M[1]
n . Thus, by Lemmas 1 and 14, σ(Ĥ [1,1]

n,n ) = σ(H̃ [1,1]
n,n ) ⊂ {0}×(−1,1).

Hence, by the minimax principle,

λmin(ImA[1,1]
n,n ) = λmin

(
β1

n
1
i

Ĥ [1,1]
n,n +

β2

n
1
i

H̃ [1,1]
n,n

)

≥ λmin

(
β1

n
1
i

Ĥ [1,1]
n,n

)
+λmin

(
β2

n
1
i

H̃ [1,1]
n,n

)
≥ −|β1|

n
− |β2|

n
,

and similarly it can be proved that

λmax(ImA[1,1]
n,n ) ≤ |β1|

n
+

|β2|
n

.

Therefore, we obtain for σ(ImA[1,1]
n,n ) the localization

σ(ImA[1,1]
n,n ) ⊆

[
−|β1|+ |β2|

n
,
|β1|+ |β2|

n

]
. (120)

Combining (6) with (119)–(120), we obtain (118). ut

Theorem 19 shows that {A[1,1]
n,n } is strongly clustered at [0,4], the range of the function

g1,1. This is confirmed by the following corollary.

Corollary 3 ∀ε ∈ (0,1) and ∀n ≥ max
(

4,
√

γ
ε , |β1|+|β2|

ε

)
, we have

qn(ε) = 0,

where qn(ε) is the number of eigenvalues of A[1,1]
n,n lying outside [0,4]ε .

6 This follows from their definition and from Lemma 1, taking into account that H [1]
n is skew-symmetric,

while M[1]
n is symmetric, see Theorem 7.
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Proof Fix ε ∈ (0,1) and n ≥ max
(

4,
√

γ
ε , |β1|+|β2|

ε

)
. Since n satisfies the conditions γ

9n2 < 1
3 ,

γ
n2 ≤ ε and |β1|+|β2|

n ≤ ε , by Theorem 19 we have

σ(A[1,1]
n,n ) ⊂

( γ
n2 ,4+

γ
n2

)
×
[
−|β1|+ |β2|

n
,
|β1|+ |β2|

n

]
⊂ [−ε,4+ ε]× [−ε,ε] = [0,4]ε .

Hence, qn(ε) = 0. ut

5.4 The biquadratic case p1 = p2 = 2

In the case p1 = p2 = 2, for every n1 = n2 = n ≥ 5, the matrix A[2,2]
n,n is n2 ×n2 and

A[2,2]
n,n = K[2,2]

n,n +
β1

n
Ĥ [2,2]

n,n +
β2

n
H̃ [2,2]

n,n +
γ
n2 M[2,2]

n,n ,

where the matrices K[2,2]
n,n , Ĥ [2,2]

n,n , H̃ [2,2]
n,n , M[2,2]

n,n are described in Section 5.1. Theorem 18 reads

in the case p1 = p2 = 2 as {A[2,2]
n,n } λ∼ g2,2, with

g2,2(θ1,θ2) = ( f2 ⊗h2)(θ1,θ2)+(h2 ⊗ f2)(θ1,θ2)

=
1

90
[99+6cos(θ1)+6cos(θ2)−15cos(2θ1)−15cos(2θ2)−52cos(θ1)cos(θ2)

−14cos(θ1)cos(2θ2)−14cos(θ2)cos(2θ1)− cos(2θ1)cos(2θ2)].

5.4.1 Localization of the eigenvalues

Theorem 20 For every n ≥ 5 such that 25γ
120n2 < 1

6

σ(A[2,2]
n,n ) ⊂

(
max

(
π2 +10γ

100n2 ,
2π2 + γ
100n2

)
,

49
24

+
γ
n2

)

×
[
−11

12
|β1|+ |β2|

n
,

11
12

|β1|+ |β2|
n

]
⊂ C. (121)

Proof Fix n ≥ 5 such that the condition 25γ
120n2 < 1

6 is met. By computing the real and imagi-

nary part of A[2,2]
n,n we obtain

ReA[2,2]
n,n = K[2,2]

n,n +
γ
n2 M[2,2]

n,n , and ImA[2,2]
n,n =

β1

in
Ĥ [2,2]

n,n +
β2

in
H̃ [2,2]

n,n .

The target is now the localization of σ(ReA[2,2]
n,n ) and σ(ImA[2,2]

n,n ).

First we localize the spectrum of ReA[2,2]
n,n . Note that

ReA[2,2]
n,n = K[2,2]

n,n +
γ
n2 M[2,2]

n,n = M[2]
n ⊗K[2]

n +K[2]
n ⊗M[2]

n +
γ
n2 M[2]

n ⊗M[2]
n

= M[2]
n ⊗K[2]

n +
(

K[2]
n +

γ
n2 M[2]

n

)
⊗M[2]

n .
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Therefore, by the minimax principle, by Lemmas 1 and 15, and by (90),

λmin(ReA[2,2]
n,n ) ≥ λmin(M

[2]
n ⊗K[2]

n )+λmin(K
[2]
n ⊗M[2]

n )+
γ
n2 λmin(M

[2]
n ⊗M[2]

n )

= λmin(M
[2]
n )λmin(K

[2]
n )+λmin(K

[2]
n )λmin(M

[2]
n )+

γ
n2 λmin(M

[2]
n )λmin(M

[2]
n )

> 2 · π2

10n2
1

10
+

γ
100n2 =

2π2 + γ
100n2 . (122)

Moreover, recalling that n ≥ 5 satisfies the condition 25γ
120n2 < 1

6 , we can use the bound pro-

vided in Lemma 15 for the spectrum of the matrix
(

K[2]
n + γ

n2 M[2]
n

)
. Hence, by the minimax

principle, by Lemmas 1 and 15, and by (90),

λmin(ReA[2,2]
n,n ) ≥ λmin

(
M[2]

n ⊗K[2]
n

)
+λmin

((
K[2]

n +
γ
n2 M[2]

n

)
⊗M[2]

n

)

= λmin

(
M[2]

n

)
λmin

(
K[2]

n

)
+λmin

(
K[2]

n +
γ
n2 M[2]

n

)
λmin

(
M[2]

n

)

>
1

10
π2

10n2 +
γ
n2

1
10

=
π2 +10γ

100n2 . (123)

Furthermore, since K[2,2]
n,n = B[2,2]

n,n +R[2,2]
n,n , we can decompose ReA[2,2]

n,n as

ReA[2,2]
n,n = B[2,2]

n,n +R[2,2]
n,n +

γ
n2 M[2,2]

n,n .

We recall from (110) that B[2,2]
n,n = Tn,n(g2,2). The range of g2,2 is

[
0, 3

2

]
, and so by The-

orem 5 we obtain σ(B[2,2]
n,n ) ⊂

(
0, 3

2

)
. Concerning the symmetric matrix R[2,2]

n,n , we find by

Gershgorin’s first theorem that σ(R[2,2]
n,n ) ⊂

[
− 269

360 , 13
24

]
. Using Lemmas 1 and 15, we also

find that σ(M[2,2]
n,n ) ⊂ ( 1

100 ,1). Then, we apply again the minimax principle to obtain an

upper bound for λmax(ReA[2,2]
n,n ):

λmax(ReA[2,2]
n,n ) ≤ λmax(B

[2,2]
n,n )+λmax(R

[2,2]
n,n )+

γ
n2 λmax(M

[2,2]
n,n ) <

3
2

+
13
24

+
γ
n2 =

49
24

+
γ
n2 .

(124)

Combining (122)–(124) we obtain

σ(ReA[2,2]
n,n ) ⊂

(
max

(
π2 +10γ

100n2 ,
2π2 + γ
100n2

)
,

49
24

+
γ
n2

)
. (125)

Now we localize the spectrum of ImA[2,2]
n,n . The matrices Ĥ [2,2]

n,n , H̃ [2,2]
n,n are skew-symmetric

and Ĥ [2,2]
n,n = M[2]

n ⊗ H [2]
n , H̃ [2,2]

n,n = H [2]
n ⊗ M[2]

n . By Lemmas 1 and 15, we have σ(Ĥ [2,2]
n,n ) =

σ(H̃ [2,2]
n,n ) ⊂ {0}× (− 11

12 , 11
12 ). Hence, by the minimax principle,

λmin(ImA[2,2]
n,n ) = λmin

(
β1

n
1
i

Ĥ [2,2]
n,n +

β2

n
1
i

H̃ [2,2]
n,n

)

≥ λmin

(
β1

n
1
i

Ĥ [2,2]
n,n

)
+λmin

(
β2

n
1
i

H̃ [2,2]
n,n

)
≥ −|β1|

n
11
12

− |β2|
n

11
12

,
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and similarly it can be proved that

λmax(ImA[2,2]
n,n ) ≤ |β1|

n
11
12

+
|β2|

n
11
12

.

Thus,

σ(ImA[2,2]
n,n ) ⊆

[
−11

12
|β1|+ |β2|

n
,

11
12

|β1|+ |β2|
n

]
. (126)

Using (6) in combination with (125) and (126), we obtain (121). ut

6 Conclusions

We have studied the spectral properties of stiffness matrices that arise when isogeometric
analysis is employed for the numerical solution of classical second order elliptic problems.
Motivated by the applicative interest in the fast solution of the related linear systems, we
have provided a spectral characterization of the involved matrices. In particular, we have
given an asymptotic analysis of

1. the eigenvalue of minimal modulus and the eigenvalue of maximal modulus,
2. the conditioning,
3. the localization of the spectrum,
4. the global behavior of the spectrum.

Concerning all these items, as in the case of Finite Differences and Finite Elements, the
crucial information comes from a symbol that describes the spectrum. The current analysis is
not yet complete since we have to take into account more involved geometries, variable co-
efficients operators, etc. We expect that the global symbol of the associated matrix sequence,
describing the spectrum in such a general context, will be formed, in analogy with the Finite
Difference and Finite Element context, by using the information from the main operator (the
principal symbol in the Hörmander Theory [26]), the used approximation techniques, and
the involved domain.

Of course, a second challenging step will be the use of such spectral information for
designing optimal preconditioners in the Krylov methods, optimal multigrid methods, and
efficient combinations of these techniques.
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