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Abstract

We monitor the capillary thinning and breakup of low viscous liquid fila-

ments with high speed imaging to determine the relaxation time of dilute

polymer solutions in extension. The induction of filament thinning by a slow

extension of a liquid bridge beyond the static stability limit enables one to

create axially symmetric thinning profiles with minimized inertial oscillations

from acceleration of the liquid. The minimized disturbance of the capillary

thinning process by this slow retraction method (SRM) allows the observa-

tion and quantitative fitting of the visco-capillary and inertio-visco-capillary

balance as well as the potential flow regime for a series of Newtonian liq-

uids covering a viscosity range from 350 to 27 mPa s. For dilute solutions

of polyethylene oxide in water the SRM allows the reliable determination

of relaxation times in extension of as low as 240 µs. A lower limit for the

polymer concentration clow below which an elasto-capillary balance cannot

be observed is introduced, based on the finite extensibility limit L2 of the
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polymer chain.
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1. Introduction1

The uniaxial extensional viscosity ηE is a fundamental material prop-2

erty of a fluid which characterizes the resistance of a material to an uniaxial3

stretching deformations. While for rheologically simple fluids this viscosity4

is directly related to the shear viscosity η via the Trouton ratio ηE = 3η,5

for complex (micro-structured) or viscoelastic fluids, this extensional viscos-6

ity can be a function of both the rate of deformation and the total strain7

accumulated. In particular the highly increased extensional viscosity of vis-8

coelastic solutions in comparison to simple fluids of similar shear viscosity9

has a strong impact on operations as mixing, pumping, spraying, coating and10

general processing or transport operations. The strong increase of viscoelastic11

material functions in extensional flows has a particularly pronounced effect12

in dilute polymer solutions due to the unraveling and extension of the ini-13

tially coiled polymeric molecules by the strong extensional flows, whereas a14

contribution of the polymer to the shear viscosity is negligible [1, 2, 3, 4, 5].15

One flow type where the effects of dissolved polymers on the extensional flow16

becomes especially apparent is the thinning and breaking of liquid filaments,17

since this free-surface flow is readily observable. Already the pioneering work18

of Middleman [6] and Goldin et al. [7] have shown the dramatic effects of19
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minute amounts of high-molecular-weight additives on the breakup of fluid20

filaments. For the case of jets of dilute polymer solutions the elastic stresses21

generated affect the breakup length of the jet and the ensuing droplet size22

distribution [8, 9]. For a low viscous, dilute polymer solution dripping from23

a faucet, the presence of the polymer can dramatically extend the time to24

pinch off and inhibit the existence of satellite droplets [10, 4, 11].25

A quantitative description of the effects of polymer additives on low vis-26

cosity dilute polymer solutions requires a precise determination of the actual27

material properties in an extensional flow and therefore experimental tech-28

niques that allow their reliable measurement at relevant deformation rates.29

While for higher viscosity systems techniques as the Meissner [12, 13] or30

Münstedt apparatus [14, 15] have been introduced already a while ago, gen-31

erating and measuring purely extensional flows of lower viscous, mobile fluids32

has proven to be extremely difficult. Attempts have been made to do this33

via the determination of pressure drop in porous media [16], opposed jet de-34

vices [17], spin-line rheometers and two- and four-roll mills [18, 19]. First35

reliable mechanical studies of the state of stress of lower viscous liquids in36

a well-defined uniaxial flow field were made by Sridhar et al. [20] using the37

filament stretching device, but were still limited to viscosities > 1 Pa s [21].38

Only recently the capillary breakup extensional rheometry (Caber) has been39

introduced, that determines extensional flow material functions directly from40

the thinning dynamics of a liquid filament [2, 22, 23]. A capillary break-up41

experiment creates an unstable fluid filament by imposing a rapid axial step-42

strain of prescribed magnitude to a small fluid element. The formed liquid43

filament is then allowed to thin under the action of surface tension until it44
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finally breaks. The decay of the necking sample is governed by a balance of45

viscous, elastic, gravitational and capillary forces. A capillary breakup ex-46

periment has therefore no active control over the uniaxial deformation rate47

that a filament experiences and is therefore often considered to be an ‘in-48

dexer’ rather then an actual rheometer. However, for several special cases49

the Caber experiment can deliver absolute material properties, as for example50

an extensional viscosity for a Newtonian liquid [24], the power law index of an51

extension thinning fluid [25, 26], a yield stress against a uniaxial deformation52

[27, 28], or the longest relaxation time in an extensional flow [29]. In particu-53

lar the possibility to determine and compare the extensional relaxation time54

to the shear relaxation time has been the subject of in-depth investigations55

[30, 31, 32, 3, 19, 23, 33, 34, 5, 4, 35, 36]. But although the Caber technique56

enables one to investigate fluids with viscosities below the limiting value of57

the filament stretching technique of 1 Pa s, Rodd et al. [37] have shown58

that there is also for the Caber technique a lower viscosity limit which is for59

Newtonian systems at ∼ 70 mPa s. The main limitation from an experi-60

mental point of view arises from the difficulty to create a low viscous liquid61

filament fast enough so that the thinning dynamics can still be observed. In62

a general Caber experiment the liquid filament is created outgoing from a63

drop of the fluid confined between two parallel circular plates that are sub-64

sequently quickly separated to a desired separation distance. The necessary65

fast acceleration and deceleration of the liquid when performing this initial66

stretch to create a filament of a low-viscous liquid are inherently coupled67

with inertia induced oscillations of the end droplets adhered to the endplates68

and an axial asymmetric filament profile. The effect of these oscillations on69
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the thinning dynamics of the filament cannot ignored at low viscosity levels70

and prevent a quantitative evaluation of the thinning dynamics below the71

critical limit indicated by Rodd et al. [37]. Furthermore, the inertial effects72

present also a limit to the determination of a relaxation time λ with a Caber73

experiment. Although the stabilizing effect of the polymer lowers the acces-74

sible viscosities to ∼ 1 mPa s, Rodd et al. [37] gave an empirical lower limit75

for the relaxation time determination of ∼ 1 ms [37]. Recently Vadillo et al.76

[38] presented with the Trimaster a Caber type experimental setup utilizing77

high speed plate separations that allowed to reliably determine the thinning78

dynamics of dilute polymer solutions with viscosities down to 10 mPa s and79

that could detect breakup time delays caused by the polymer of order 580

ms. For even lower viscosities and relaxation times, detailed investigations81

of the breaking dynamics of liquid threads had so far to rely on simulation82

techniques. Recent results by Bath et al. [39] using the Oldroyd-B model,83

and Ardekani et al. [40] using the Giesekus model where able to model the84

breaking dynamics and satellite drop formation for filaments with relaxation85

times down to O(1 ms) and viscosities of O(1 mPa s). However, as correctly86

stated in [40], ”the [experimental determination of extensional viscoelastic87

properties for these] very low viscosity and weakly elastic liquids ... is a88

particular challenge using traditional rheometers”, and ”filament stretching89

devices or Caber devices cannot be used to measure the tensile properties of90

such low-viscosity liquid(s) because of the rapid timescales for breakup”.91

Still, an experimental technique that could probe (aqueous) solutions92

with viscosities of order O(1 mPa s) to determine relaxation times in uni-93

axial extensional free surface flows at the sub-millisecond scale is highly de-94
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sirable, since applications as for example ink-jet printing or atomization of95

drug loaded formulations in medical or pharmaceutical applications operate96

at thinning velocities where sub-millisecond relaxation times are dominant97

[41, 42] and where the addition of traces of polymers is used to structure the98

breaking dynamics and size and occurrence of satellite droplets [43].99

In this paper we present therefore with the slow retraction method (SRM)100

a modified usage protocol of the general Caber setup that enables the reliable101

determination of breakup time delays and relaxation times of order O(200 µs)102

in aqueous systems with viscosities of O(1 mPa s). The paper is structured103

as follows:104

In the Materials and Methods section the operating principle of the slow105

retraction method to create a liquid filament of a low viscous liquid is in-106

troduced. The second section focuses then on the thinning behaviour of low107

viscous, Newtonian liquids. The third section discusses the thinning dynam-108

ics of dilute aqueous polymer solutions and introduces the theoretical limits109

of the slow retraction method for the detection of sub-millisecond relaxation110

times.111

2. Materials and Methods112

2.1. Experimental Setup113

The capillary thinning experiments were carried out using the plate sepa-114

ration drive unit of a Haake CaBER-1 extensional rheometer (Thermo Haake115

GmbH, Karlsruhe, Germany) in order to control the position and separation116

velocities of two circular parallel plates with selectable diameters Dp of 4, 6117

and 8 mm. Fluid samples were carefully loaded between the plates using a118
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syringe to ensure the absence of trapped air bubbles in the sample as well119

as between the sample and the plates. During and after the controlled sep-120

aration of the plates to a final distance the evolution of the thinning fluid121

filament forming between the plates was monitored with video imaging us-122

ing a high speed camera (Photron Fastcam SA-2, Photron, San Diego CA,123

USA) with a 12X zoom lens and two 2X extensions (Navitar, Rochester NY,124

USA), together with a fiber optic backlight source as shown in Figure 1. Each125

experimental test was repeated at least four times in order to corroborate126

reproducibility.127

Figure 1: Experimental set up for the CaBER.

The video images were subsequently analyzed by digital image processing128
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in Matlab in order to determine the full filament profile and in particular the129

position and dimension of the minimum filament diameter Dmin. In order130

to calibrate the diameters determined from the image processing, a series of131

standard diameter filaments (0.02, 0.03, 0.06, 0.12, 0.25, 0.50 and 1 mm) has132

been measured with the optical setup at the same experimental conditions.133

The correlation between the actual and observed diameters is given in Figure134

2 and used for all subsequent investigations.135
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Figure 2: Millimeter to pixel ratio of the experimental setup, determined from images of

fibers with absolute diameters of 0.02, 0.03, 0.06, 0.12, 0.25, 0.50 and 1 mm.

2.2. The slow retraction method (SRM)136

For the creation of low viscous liquid filaments whose thinning dynamics137

are subsequently monitored we followed a procedure that is different from the138

general capillary breakup extensional rheometry (Caber) protocols. Start-139
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ing from the initial cylindrical liquid bridge with an initial aspect ratio of140

Λ0 = L0/(2Rmid) = L0/Dp (where L generally denotes the plate separation141

distance and Rmid the liquid bridge radius at L/2), the plates are separated142

with a moderate velocity of ∼ 2 mm/s just slightly below a critical aspect143

ratio ΛS,break at which a statically stable liquid bridge (indicated by the suffix144

S) still exists.145
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Figure 3: Critical volume stability limits V ∗break (solid lines, taken from [44]) as a function

of the aspect ratio Λ for different Bond numbers Bo (indicated as numbers in the diagram).

The dashed hyperbolas (eq. (1)) represent constant absolute fluid volumina. The dotted

line indicates a cylindrical filament (V ∗ = 1). The indicated initial aspect ratio Λ0 and the

critical aspect ratio ΛS,break represent the values selected for measurements in the present

paper

The critical aspect ratio of ΛS,break above which the liquid bridge becomes146
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unstable and collapses can be determined from the stability diagrams for147

liquid bridges of Slobozhanin et al. [44]. These diagrams give critical values148

of the dimensionless fluid volume149

V ∗ =
4V0

πD2
pL

(1)

as a function of the aspect ratio Λ. Here V0 refers to the total volume of150

the fluid which can be calculated from that of the initial cylindrical bridge as151

(πD2

pL0)/4. The diagram in Figure 3 depicts (as solid lines) the critical vol-152

ume stability limit V ∗

break (beyond which the filament collapses) as a function153

of the aspect ratio Λ for different Bond numbers B0 = (ρgD2

p)/(4γ). The154

Bond number captures the effects of gravity against the surface tension and155

is a measure of how much the initial cylindrical filament ’sags’. Larger plate156

diameters Dp lead to more sagging and higher Bond numbers and therefore157

to critical volume stability limit curves V ∗

break that reach there collapsing limit158

already at smaller critical aspect ratios ΛS,break. Starting now for a filament159

breakup experiment in this diagram from a cylindrical configuration V ∗ = 1160

(the dotted horizontal line) at Λ0 and holding the total physical volume con-161

stant as the bridge is axially elongated by separating the plates, we follow162

the hyperbolic trajectory V ∗ ∼ L0/L of eq. (1) (indicated as dashed lines).163

The axial elongation yields statically stable filaments until the hyperbola in-164

tersects the critical volume stability curve of the appropriate Bond number165

and enables one to extract ΛS,break from this intersection [27].166

After reaching the stable separation distance just below ΛS,break, a very167

slow separation velocity of the end plates of 0.11 mm/s was chosen in order168

to approach ΛS,break and initiate the filament breaking process which then169
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subsequently evolves on a timescale orders of magnitude faster than the slow170

plate separation speed . This ’slow retraction method’ (SRM) assures that171

the effects of fluid inertia (that were inherent for a fast plate separation as172

described by Rodd et al. [37]) are minimized. Furthermore, in comparison173

to a fast initial separation, the slow retraction method leads to a a fully174

relaxed state of the liquid filament and its solution structure at the onset175

of the filament collapse [35]. The mid-filament radius Rmid at this point is176

denoted R0 in the following. Figure 4 compares the breaking process of a177

75% solution of glycerol in water, initiated with a fast separation (upper178

row) and with the slow retraction method (lower row of pictures). It can be179

seen that the oscillations in the end drops are strongly reduced with the slow180

retraction method and that the filament retains its axial symmetry to the181

final breaking point in comparison to the fast separation.182

Figure 4: Comparison of the breaking dynamics induced by the slow retraction method

(SRM) (bottom row) and by a fast separation (upper row) for a 75% glycerol/water

mixture. The plate separation velocity of the SRM is 0.11 mm/s, and 170 mm/s for

the fast separation method. The time to breakup is indicated in milliseconds on each

consecutive picture. The plate diameter is Dp = 4 mm (Bo = 0.648).
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In order to adjust the radius R0 as well as the length of the collapsing183

filament, both the plate diameter Dp as well as the initial aspect ratio Λ0184

can be varied in order to affect the critical aspect ratio ΛS,break at which185

the filament will start to thin. We still follow the same hyperbolic trajec-186

tory in the stability diagram when keeping Λ0 constant and increasing Dp.187

However, increasing Dp will lead to higher Bond numbers and therefore de-188

creasing critical values ΛS,break, but at same time increasing filament radii189

R0. On the other hand, increasing the initial aspect ratio at constant plate190

diameter moves the hyperbola in Figure 3 away from the origin and therefore191

the intersect ΛS,break to larger aspect ratios. Both adjustments (increasing192

Dp at constant Λ0, and increasing Λ0 at constant Dp) will lead to longer193

thinning filaments at comparable radii, an effect that becomes important in194

the curvature discussion below. It should be noted that also Sattler et al.195

[11] have deliberately used ΛS,break as the final aspect ratio, however, with a196

fast initial separation to reach this limit.197

2.3. Fluids198

The Newtonian liquids used were aqueous solutions of glycerol (Acros199

Organics, Geel, Belgium) at different concentrations of 75, 85, 90 and 95200

wt%. The shear viscosity was measured using a stress-controlled rheometer201

(AR-G2, TA Instruments) at 25oC, and the surface tension γ was determined202

with a Wilhelmy plate method. The resulting values are shown in Table 1. As203

a non-Newtonian fluid, aqueous solutions of poly(ethylene oxide) (POLYOX204

Resin WSRN N-12K, Union Carbide) with a nominal mass average molecular205

weight of 1.000.000 g/mol and an equilibrium surface tension of γ = 62 mN/m206

[4] were used. Solutions in pure distilled water of 0.0005, 0.001, 0.002, 0.005,207
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0.01, 0.02 and 0.05 wt% of PEO were prepared at room temperature, and208

gently stirred for 24 h to speed dissolution.209

Table 1: Shear viscosity η and surface tension γ for the glycerol in water solutions at 25oC.

η (mPa s) γ (mN/m)

75% 27.0 ± 0.1 64.8 ± 1

85% 76.8 ± 0.1 64.0 ± 1

90% 149.9 ± 0.1 63.6 ± 1

95% 319.2 ± 0.1 63.0 ± 1

3. Results and Discussion210

3.1. Newtonian Fluids211

Before the next chapter focuses on the filament thinning behaviour of212

dilute polymer solutions and the determination of relaxation times from these213

experiments, it is necessary to first investigate the thinning dynamics of the214

pure (Newtonian) solvents to validate the slow retration method (SRM) and215

to determine the general effects that the SRM has on the breaking dynamics.216

Figure 5 shows the last 4 milliseconds of filament thinning of the four217

glycerol solutions that span a range of viscosities from 27 to 320 mPa s at218

a surface tension of ∼64 mN/m (exact values in table 1). Each fluid was219

probed with 3 different plate diameters and 2 initial aspect ratios Λ0. In220

order to follow the fast evolution of the filament diameter, a frame rate of221

5400 frames per second was selected with a resolution of 256 x 832 pixels222

at 1.8 microns/pixel for the video imaging. In addition to the diameter223
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Figure 5: Time evolution of the minimum filament diameter Dmin close to breakup for four

concentrations of glycerol in water and for three different endplate diameters Dp and two

initial aspect ratios Λ0 as indicated in the legend, at 25oC. Also shown are the calculated

thinning curves for the visco-capillary balance (V-regime) of eq. (2) (dashed line), for the

inertio-visco-capillary balance (IV-regime) of eq. (4) (dotted line), and for the PF regime

of eq. (5) (solid line), using the the viscosity and surface tension of Table 1

.
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evolution of Figure 5, Figure 6 gives for a plate diameter of Dp = 4 mm and224

an aspect ratio of Λ0 = 0.5 for each concentration a series of images of the225

full filament shape with time intervals that directly relate to the data point226

spacing in Figure 5.227

Figure 6: Thinning and pinch-off of the filament for solution of a) 75%, b) 85%, c) 90%

and d) 95% of glycerol in water at 25oC. The time interval between each consecutive

picture amounts to 0.185 ms, the plate diameter Dp used was 4 mm with an initial height

of 2 mm (initial aspect ratio Λ0 = 0.5).

The thinning diagrams in Figure 5 represent four critical cases of the228

SRM when approaching the breaking behaviour of low viscosity fluids. For229
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the highest viscous solution in Figure 5 (95 wt% glycerol) the liquid filament230

decays linear with time prior to breakup and (as can be seen in Fig. 6) with231

a stationary minimum filament diameter and breaking point in the middle232

of the filament. This is expected, since for a sufficiently high viscosity the233

squeezing action of the capillary pressure is solely balanced by the viscous234

stresses in the filament. In this viscosity controlled thinning regime (in the235

following indicated as ’V’ regime) the slender filament that develops close236

to breakup becomes independent of initial conditions and evolves in a self-237

similar way with the smallest diameter Dmin and final breaking point in the238

middle of the filament. The minimum radius evolution can in this case be239

described by similarity solutions [45] of which the most stable one was found240

by Papageorgiou [46, 47]:241

Rmin = 0.0709
γ

µ
(t0 − t), (2)

where t0 is the time at filament breakup. The dashed line in Figure 5 for242

the concentration 95% gives the Papageorgiou solution of eq. (2), using the243

shear viscosity η and surface tension γ of Table 1.244

For the solution of 90% Figure 5 shows that the final stages of thinning245

are still in the V regime and are well described by the indicated Papageor-246

giou solution (dashed line). However, the linear thinning regime is reached at247

later stages as compared to the 95% solution and we can clearly observe an248

accelerating thinning regime before the linear, viscosity controlled thinning249

sets in. The reason for this is that the Papageorgiou solution is only appli-250

cable for long, slender filaments with axial length scales much larger then251

radial. On the other hand, the slow retraction method as a tool to create252
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observable filaments is deliberately using the smallest possible final aspect253

ratio ΛS,break and therefore creating the shortest possible filaments with an254

inherently high axial curvature. The mean curvature κ of the filament surface255

can be described via [48]256

κ =
1

R (1 + (R′)2)0.5 −
R′′

(1 + (R′)2)1.5 , (3)

where R = R(z) is the radius of the filament along the axial or z-direction257

and R′ = dR/dz and R′′ = d2R/dz2 are the respective first and second spatial258

derivatives. At the location of the minimum radius Rmin the first derivative259

is R′ = 0 and the second derivative reduces to the inverse of the radius Rz260

of the tangentially adjacent circle (indicated in Fig. 7), R′′ = 1/Rz, so that261

the mean curvature of eq. (3) reduces at this point to κ = 1/Rmin − 1/Rz.262

The apparent acceleration of the filament thinning originates then from the263

initially high value of 1/Rz that causes a lower mean curvature and therefore264

a lower Laplace pressure at the necking point in comparison to a slender265

filament of same radius Rmin. During the thinning process 1/Rz becomes266

smaller, resulting in the apparent acceleration of the thinning until the mean267

curvature κ = 1/Rmin − 1/Rz approaches the radial curvature 1/Rmin and268

the slender filament shape required for the applicability of the Papageorgiou269

solution is reached.270

Comparing the ratio of mean curvature κ and radial curvature 1/Rmin271

(shown in Figure 8 as the relative curvature κRmin) for representative thin-272

ning experiments of 95%, 90% and 85% glycerol solutions with the observable273

linear thinning range in Figure 5 enables one to determine a critical relative274

curvature, below which a slender filament is reached. This critical relative275

curvature is indicated in Figure 8 by the dotted line and equates to κRmin276
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Figure 7: Schematic drawing of the filament radius R and the axial radius Rz.

= 1.006. This limit gives now a practical value to the general ’slenderness’277

requirement for the application of similarity solution and the range of radii278

where linear fits of Rmin ∼ (t0− t) can be used to extract material properties279

from capillary thinning experiments.280

The thinning curves of Figure 5 for 90% and 85% indicate that also the281

initial aspect ratio and plate diameter have an influence on when the critical282

relative curvature and a slender filament is reached when using the slow283

retraction method. As it can be seen in Figure 5, increasing the end-plate284

diameter from 4 to 8 mm at a constant initial aspect ratios Λ0 shifts the285

onset of a clearly visible self similar thinning regime to earlier times. Also an286

increase of the initial aspect ratio at a constant plate diameter has the same287

effect. This is not unexpected as both cases increase the filament length and288

decrease therefore the axial curvature at comparable radii as discussed for289

the critical volume stability limit above.290

However, both larger plate diameters and initial filling height lead to291
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Figure 8: Ratio of the mean curvature κ to the radial curvature 1/Rmin as a function of

the minimum radius Rmin. Data for Rz were obtained from tangential fits to the digitized

filament profiles of Fig. 9 at the minimum of the radius R(z). The dotted line marks the

critical relative curvature κRmin below which the experimental data in Figure 5 follow the

linear similarity solutions.

larger Bond numbers and therefore less reproducible results due to difficulties292

in achieving similar initial fillings of the gap. Optimal plate diameter and293

initial aspect ratio for a sufficient reproducibility of the data for the current294

investigation of low viscous solutions were Dp = 4 mm and Λ0 = 0.5 which295

will be used throughout the following experiments and discussions.296

The solution of 85% glycerol in Figure 5 marks then a transition in the297

thinning behaviour. While it is still possible to observe a linear thinning close298

to breakup, the images of Figure 6 reveal that the filament is not breaking in299

the middle anymore, but that the location of the minimum filament diameter300

Dmin is shifting in axial direction towards the end drops. This becomes more301
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obvious in Figure 9 that depicts the digitized filament profiles of figure 6302

with intervals of time of 0.185 ms (The location of the minimum radius Rmin303

is for each profile indicated by the bold arrows where it deviates from the304

midfilament location z = 0).305

In this case velocities in the filament become so large that inertia can no306

longer be neglected and the thinning behaviour prior to breakup is controlled307

by an inertio-visco-capillary balance (the so-called ’IV’ regime). The similar-308

ity solution found by Eggers [49] that describes this IV thinning regime does309

not contain the fluid density and differs from the visco-capillary thinning (eq.310

2) only by the front factor311

Rmin = 0.0304
γ

µ
(t0 − t). (4)

However, the determination of the minimum filament radius requires in312

this case the evaluation of the full filament shape as the location of the313

minimum radius shifts away from the filament middle. A comparison of the314

thinning data of the 85% solution in Fig. 5 with the IV solution of eq. (4)315

(dotted line) shows good agreement.316

For the 75% glycerol solution the shifting of the minimum filament diam-317

eter Rmin away from the middle of the filament and the final breaking close318

to the enddrops becomes even more obvious in the pictures of Figure 6 as319

well as in the digitized profiles of Figure 9. However, fitting the minimum320

diameter data in Figure 5 with the IV solution of eq. (4) (dotted line) does321

not work anymore. The thinning data for the 75% solution is much closer322

to a purely inertia controlled thinning, indicated by the solid line in Figure323

5. This thinning behaviour (the so called potential flow ’PF’ regime), that324
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Fig. 6 , at 25oC. The time intervals between the profiles are 0.185 ms, larger time intervals

are indicated in the graphs. Bold arrows indicate the position of the minimum radius Rmin

where this is not located at the mid-filament position z = 0.
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is described by a power law as derived by [50, 37]325

Rmin = 0.64

(

γ

ρ

)
1

3

(t0 − t)
2

3 , (5)

is generally observed for low viscous fluids where the capillary pressure is326

only resisted by the inertia of the accelerating fluid molecules.327

The experimental data of the 85% solution in Fig. 5 are actually for a328

similar glycerol concentration and viscosity as the numerical simulations by329

Chen et al. [51] and the experiments of Rothert et al. [52] that predicted330

and showed the existence of an IV thinning regime. The faster thinning data331

in Fig. 5 prior to the onset of the linear regime are, however, caused by the332

initially high axial curvature and lack of sufficient slenderness of the filament.333

We can therefore not judge if the thinning prior to the onset of the IV regime334

is following a V or PF scaling.335

The general question, if the overall thinning dynamics of a filament are336

controlled by viscosity (as for the 95% and 90% glycerol solutions in Figs. 5,337

6 and 9) or by inertia (the 85% and 75% glycerol solutions) can be answered338

by calculating the Ohnesorge number339

Oh =
η√
ργR

. (6)

that compares the timescales of a viscosity controlled breakup tv = ηR/γ340

and an inertia controlled breakup tρ = 0.3413
√

ρR3/γ [37]. In order to341

determine the critical value of the Ohnesorge number below which a filament342

breakup will be controlled by inertia rather then the viscosity, one needs to343

compare the actual velocities with which the filament thins in the PF and344

in the V regime. Outgoing from eqs. (2) and (5) one can obtain via the345
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first derivatives the thinning velocities U = −dR/dt as Uη = 0.0709γ/η for346

the viscous thinning regime and Uρ = 0.3413
√

γ/(ρR) for the potential flow347

regime. Formulating then a Ohnesorge number via the ratio of these velocities348

(rather than as a ratio of timescales as done in the derivation of Rodd et al.349

[37]) we obtain the appropriate numerical front factor that describes the350

correct transition value for the Ohnesorge number when Uρ = Uη:351

Uρ

Uη
=

Oh

0.2077
. (7)

Using the initial radius of the cylindrical filament of R = 2 mm we ob-352

tain Oh = 1.09 for the 95% glycerol solution and Oh = 0.08 for the 75 %353

solution (Oh values are also indicated in the figure 6). The Ohnesorge num-354

ber of Oh = 0.21 calculated for the solution of 85% that shows a breaking355

behaviour right at the transition between viscous and inertia control is then356

in excellent agreement with the the critical value of 0.2077 of eq. (7). Fur-357

thermore, the experimental results in Fig. 6 are also in good agreement with358

numerical calculations of the filament profiles for similar Ohnesorge numbers.359

A comparison to Fig. 1d and 3b in [39] shows for example that the predicted360

formation of the small bead on a string structure at Oh = 0.4 and Oh = 0.2361

is actually observed in our experiments for the 75% solution at Oh = 0.21.362

While the above classification via the Ohnesorge number allows a de-363

termination of the ‘global’ or overall breaking behaviour, Eggers [49] has364

shown that also during the thinning process any initially in the PF regime365

starting filament will eventually turn over to an IV thinning. The minimum366

filament radius at which this transition sets in can be determined from a367

local Ohnesorge number [53, 51, 27, 26]. Assuming that this transition takes368
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place when the length scale that enters the Ohnesorge number (the radius369

Rmin) reaches a value so that the Ohnesorge number takes on the critical370

value Oh∗ = 0.2077 of eq. (7), we can calculate the corresponding critical371

minimum filament radius at which this transition sets in:372

R∗ = 23.2
η2

ργ
. (8)

From a practical point of view the transition to the IV regime is done373

at ∼ 0.3Oh/0.2077 [51] and the fully developed linear thinning regime can374

therefore be observed at ∼ 0.1R∗. For the 85% glycerol solution with a375

viscosity of 77 mPa s this critical limit equates to 0.1R∗ = 0.8 mm and the376

linear IV thinning regime is therefore still within the observable limits in377

Figure 5. However, for the 75% solution with a viscosity of 27 mPa s, this378

transition radius calculates to R∗ = 0.26 mm and the clear onset of linear379

IV thinning therefore to 0.1R∗ = 0.026 mm. From these radii follows that380

most of the thinning data observed in Figure 5 for the 75% solution is within381

the transitional regime between PF and IV thinning, and the onset of linear382

thinning is expected only at the last data point.383

Since the viscosity enters eq. (8) squared, it becomes clear that for even384

lower viscosities also the critical radius R∗ will leave the observable window.385

For aqueous systems with viscosities of 1 mPa s the critical radius R∗ is of386

order O(0.1µm) and the thinning dynamics in the observable diameter range387

will follow solely a PF thinning and eq. (5). In the following section, that388

focuses on the thinning dynamics of dilute aqueous polymer solutions, we389

will therefore observe only the PF thinning dynamics before the onset of any390

observable polymer contribution.391
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3.2. Dilute Polymer Solutions392

In this section the filament thinning behaviour of a series of dilute aqueous393

solutions of polyethylene oxide with a molecular weight of 1.000.000 g/mol394

is investigated with the SRM. The solutions have a constant shear viscosity395

from 1 to 3 mPa s approximately, and will therefore show initially a thinning396

behaviour within the PF regime. For the capillary breakup experiments an397

initial aspect ratio of Λ0 = 0.5 and plate diameter Dp = 4 mm were chosen398

as determined in the previous section for most reproducible results. In order399

to be able to observe short relaxation times in the inertial flow regime, a400

recording rate of 15000 frames per second was selected with a resolution of401

256 x 320 square pixel and 1.8 µm/pixel.402

In Figure 10 the evolution of the filament radius Rmin with time is shown403

for the different PEO concentrations. For a better visualization the curves are404

shifted by a time tp along the time axis so that the initial PF regimes collapse405

onto the pure solvent curve [4]. As it can be seen in Figure 10, the initial406

necking of all dilute polymer solutions is similar to the Newtonian solvent and407

following the PF thinning of eq. (5) (indicated by the solid line in Figure 10).408

The SRM assures that at the beginning of the thinning process the polymer409

molecules are unstretched and the capillary pressure is solely balanced by410

inertial acceleration in the fluid column. However, for high enough extension411

rates (ǫ̇ λ > 0.5) the chains will eventually undergo a coil-stretch transition,412

start to unravel and begin to balance with their resulting entropic stresses413

the squeezing action of surface tension. In this case close to t − tp = 0 a414

transition from the initial PF thinning regime to an elasto-capillary (EC)415

balance regime is observed and the necking fluid filament is formed into a416
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long thin thread that thins exponential with time. As indicated by the first417

three pictures in Figure 10, the minimum filament radius is initially moving418

towards the enddroplets as expected for a PF thinning. The thin filament419

that forms (stabilized by the unraveling polymer) is therefore for the lower420

polymer concentrations located on both sides between a large satellite drop in421

the middle and the two enddrops [39, 40] (in the following we have evaluated422

the evolution of the upper filament). Measurements of the thinning rate423

in the elastic thinning regime can be used to estimate the relaxation time424

λ for the polymer solution in an extensional flow. As long as the finite425

extensibility limit of the molecules is not yet reached the balance between426

elastic stresses and capillary pressure results in an exponential decrease in427

the filament radius, with a time constant corresponding to three times the428

longest relaxation time of the fluid [29, 23, 54]429

Rmin

R0

=

(

GR0

2γ

)1/3

e
−t
3λ . (9)

This exponential behaviour is clearly observed in the semi-log presenta-430

tion of Figure 10 for the highest concentrated solution of 0.05%, indicated by431

the straight fit line. Also for 0.02 and 0.01% this exponential decay is clearly432

visible after an initial disturbance of an inertio elastic wave at the transition433

from the PF to the EC thinning regime. The values for the respective re-434

laxation times obtained from the fits of eq. (9) are given in Table 2. These435

relaxation times determined with the slow retraction method are with 0.24436

ms the lowest reliably reported so far for capillary thinning experiments, and437

below the limit of 1 ms indicated by Rodd et al. [37].438

The exponentially thinning filament in the EC regime develops prior to439
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Figure 10: Time evolution of filament diameter for the different PEO concentrations, at

25oC. The straight lines on the three highest concentrations represent exponential fits

following eq. (9).

breakup further instabilities that can be observed as the ’bead-on string’440

structure in the last pictures of Figure 10 [54, 55]. Although the evaluation441

of an exponential thinning regime is, in principle, also possible from the442

string between the higher order generations of beads [56, 40], the induced443

oscillations by the occurrence of the higher order satellites [40] induces too444

much noise for a quantitative evaluation of the radius data and we restricted445
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Table 2: Relaxation times from capillary break-up experiments and Zimm relaxation times

for the aqueous PEO solutions.

λ (ms) λZ (ms)

0.05% 1.38 0.107

0.02% 0.322 0.107

0.01% 0.240 0.107

0.005% - 0.107

0.002% - 0.107

the fit to obtain the relaxation time to the thinning regime before the onset446

of the bead-on-string structure.447

The experimentally observed diameter evolutions in Figure 10 are very448

similar to the predictions of numerical simulations of [39] for low viscous449

and weakly elastic polymer solutions. Calculating the respective Deborah450

numbers De = λ/
√

ρR3/γ from the accessible relaxation times λ in Table 2451

and the initial radius of R = 2 mm (indicated in Figure 10), we can compare452

the experimentally observed breaking behaviour in Fig. 10 to the simulations453

in Fig. 3a of [39]. It is obvious that for both a Deborah number of De = 0.02454

as well as De = 0.1 the experiments confirm the radius evolution predicted455

by the simulations, in particular the figure sequence in Figure 10 for De =456

0.027 reflects the simulated profiles of Fig. 3b(Bottom) in [39] for De = 0.02.457

3.3. Lower concentration limit for the determination of a relaxation time458

One could also be tempted to perform an exponential fit on the thinning459

data of the lower concentrations of 0.005 % and 0.002%. However, the ca-460

pability of a capillary breakup experiment to extract a relaxation time from461

28



the thinning data is limited to a critical minimum concentration. As laid out462

by Clasen et al. [5], for higher viscosity solutions a lower limit of the visi-463

ble effects of the polymer concentration on the thinning dynamics is reached464

when even the fully unraveled polymer chains will carry less stress than the465

solvent. This can be related to the lower viscosity solutions in this paper466

when looking again at the Ohnesorge number of eq. (6). The viscosity η467

that enters the Ohnesorge number for a dilute polymer solution consists of468

a contribution of the solvent and of the polymer η = ηs + ηp. For a low469

viscous solvent in an extensional flow the solvent contribution ηs is negligible470

and the viscosity originates primarily from the viscosity contribution ηp of471

the unraveling polymer chains. Following a FENE model description of the472

polymer stress in a dilute solution in an uniaxial flow, the stress originating473

from the polymer coils can be described as GAzz, where474

G = nkT =
cNAkBT

Mw
(10)

is the modulus of the polymer in solution (with NA and kB as the Avo-475

gadro and Boltzman constants respectively), and Azz is the axial component476

of the conformation tensor A (defined as the ensemble average second mo-477

ment configuration tensor of the entire chain, A = <QQ>
Q2

eq/3
, normalized with478

the equilibrium coil end-to-end distance Qeq). The polymer contribution to479

the extensional viscosity ηp = GAzz/ǫ̇ reaches its maximum when the poly-480

mer chains approach their finite extensibility limit where Azz ∼ L2 and the481

extensional viscosity reduces to the constant value 2GλL2 [5] (here L2 de-482

notes in FENE terminology the finite extensibility limit of the polymer coils483

that is defined as the trace of the conformation tensor of the polymer coil,484
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trA, at full stretch). With these assumptions the local Ohnesorge number485

reduces at the finite extensibility limit to [57]486

Oh =
2GλL2

3
√

ργR
. (11)

For a given modulus G (or concentration c via eq. (10)) this equation can487

be solved for a critical radius ROh at which the initial PF thinning changes to488

a V thinning regime controlled by the constant viscosity of the fully unraveled489

polymer chains:490

ROh = 23.18

(

2

3
GλL2

)2

ργ
. (12)

The numerical front factor arises from the critical value for the Ohnesorge491

number Oh = 0.2077 from eq. (7). This radius ROh at which this transition492

from the PF to the V regime is observed decreases with decreasing polymer493

concentration and eventually leaves the observation window.494

However, the above assumption of fully unraveled polymer coils can lead495

to an overestimation of this critical radius, since the polymer coils first have496

to unravel during the thinning process in order to reach the finite extensibility497

limit. The onset of unraveling will not occur at the initial filament radius498

R0, but only when the extension rate ǫ̇ = −(2/R)(dR/dt) in the thinning499

filament overcomes the critical limit ǫ̇λ = 0.5 that marks the coil-stretch500

transition of a polymer. Using the extension rate ǫ̇ρ for an inertia controlled501

filament thinning (retaining the numerical factor of eq. (5) obtained from502

the similarity solutions for inertio-capillary breakup [37])503

ǫ̇ρ = 0.68

√

γ

ρR3
(13)
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we can solve for the critical filament radius R0,c at which the coil-stretch504

transition will begin505

R0,c = 1.23

(

γλ2

ρ

)
1

3

. (14)

Assuming an affine deformation of the unraveling polymer chain with506

the fast elongating filament, the axial component of the conformation ten-507

sor A evolves with the radius as AzzR
4 = Azz,0R

4

0,c [58] (The assumption508

of an affine polymer deformation is justified by recognizing that at R0,c a509

local intrinsic Deborah number that compares the inertia controlled time510

to break tρ with the relaxation time λ of the polymer [27] calculates to511

De0 = tρ/λ = (γλ2/(ρR0,c))
0.5 = 0.73. So for any instant happening at512

t < tρ(R0,c) (e.g. the transition to an EC balance, or the polymers reach-513

ing their finite extensibility) the polymer relaxation can be neglected). An514

advantage of the SRM in order to create the thinning filament is now that515

the polymer coil will be initially in a relaxed state and therefore Azz,0 = 1516

at R = R0,c. In this case we can relate the filament radius R to the state of517

deformation of the polymer Azz via518

R =
R0,c

A
1

4

zz

(15)

The radius RL2 , at which the polymer coils approach their finite extensi-519

bility limit so that one can assume Azz ∼ L2 is then520

RL2 =
R0,c

L
1

2

. (16)

Only if the radius ROh (eq. (12)) at which the critical Ohnesorge number521

is reached is below this critical filament radius RL2 we will observe a transition522
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from the PF to a V regime controlled by the viscosity 2GλL2 of the already523

fully extended chains.524

If the stresses that originate from the unraveling polymer coils become525

sufficiently large to balance the surface pressure before RL2 is reached, we will526

observe a transition from the initial PF regime to an elasto-capillary (EC)527

balance during which the polymer chains are still further unraveling and have528

not reached their finite extensibility limit yet. Only in this EC regime is it529

possible to obtain via eq. (9) a relaxation time λ from the thinning dynamics.530

However, the polymer concentration needs to be sufficiently high in order531

create enough polymers stress to stabilize an EC balance before the finite532

extensibility limit at Rmin is reached. Similar to [5] a critical minimum533

polymer concentration cmin can be defined at the point where at least half534

the surface pressure is balanced by the stresses originating from the stretching535

polymers. With the polymer stress equal to GAzz this condition is met when536

γ

R
= 2GAzz (17)

Combining this criterion with eq. (15) gives then the relation between a537

modulus (or concentration) and a critical radius REC at which the polymer538

stresses start to dominate the thinning dynamics and would show a transition539

to an elasto-capillary balance540

REC = R0,c

(

2GR0,c

γ

)
1

3

(18)

Setting the critical radii RL2 and REC of eqs. (16) and (18) equal gives541

then the lower limit for the modulus Glow at which an observable onset of a542

polymer contribution to the thinning dynamics coincides with the polymer543
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just having reached its finite extensibility limit544

Glow =
γ

2L
3

2 R0,c

. (19)

The observation of an exponential thinning regime required for the de-545

termination of a relaxation time with eq. (9) from a Caber experiment is546

therefore not possible for a modulus below Glow or a concentration below the547

related critical concentration clow. This critical concentration limit is larger548

than the minimum concentration cmin derived in [5]. While cmin in [5] gives549

the critical concentration below which the polymer will not affect the thin-550

ning dynamics and delay the breaking process, clow indicates the (higher)551

concentration where the polymer will not only delay the breaking process,552

but where also the finite extensibility limit is not yet approached and a true553

exponential thinning regime following eq. (9) can be observed.554

Still, the lower limit of the modulus Glow is just an order of magnitude555

estimation for two reasons. First of all, the relaxation time λ that enters556

eq. (19) via the critical radius R0,c (eq. (14)) is not known a priori. An557

estimate of λ for dilute solutions with the Zimm relaxation time λZ (eq. 21)558

(as done below) is going to underestimate λ. Even the lowest relaxation times559

in Table 2 that could be reliably determined from the exponential thinning560

profile in the capillary breakup experiments of Fig. 10 are roughly an order561

of magnitude larger than the Zimm relaxation time λZ . Using the Zimm562

time as an estimate in eq. (14) will therefore lead to an overestimation of563

Glow by a factor of ∼ 5. Secondly, the stretching polymer chains will leave564

their linear response regime much earlier than at their finite extensibility565

limit. In [58] a linear response regime was estimated to hold until polymer566

33



stretches of Azz = 0.1L2. Neglecting this criterion when calculating Glow567

leads therefore to an underestimation by a factor of ∼ 5. Since both these568

effects work in opposite direction and by roughly the same factor, eq. (19)569

gives still a good order of magnitude estimation of the lower limit of the570

modulus. This can readily be seen when calculating the absolute lower limit571

for the concentration, clow, by combining eqs. (10), (14) and (19)572

clow =
1

2.46

Mw

NAkBT

(

γ2ρ

λ2

)
1

3 1

L
3

2

. (20)

An estimate for the relaxation time λ can be done with the Zimm time573

λZ [5]574

λZ =
1

Uητ

[η]ηsMw

NAkBT
. (21)

The universal ratio Uητ [59] can be estimated from the excluded volume575

exponent ν as described by [4] via Uητ = ζ(3ν) with ζ as the Riemann zeta576

function. For ν = 0.55 for PEO in aqueous solution [4] Uητ calculates to577

0.463. The intrinsic viscosity [η] can be calculated from the appropriate578

Mark-Houwink-Sakurada equation which is tabulated for the present system579

in [60] as [η] = 0.072M3ν−1

w . With this we obtain for the Zimm relaxation580

time λZ = 0.107 ms. The finite extensibility parameter L2 can be obtained581

from molecular parameters as the CC bond angle θ, the number of bonds j582

in a monomer unit with molar mass Mu and the characteristic ratio C∞ for583

a given polymer [5]584

L2 =
3

k2
α

[

j sin2(θ/2)Mw

C∞Mu

]2(1-ν)

. (22)
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C∞ is reported in [60] as 4.8 for j = 3 and an averaged bond angle θ585

in the PEO monomer unit taken as the CC bond angle. The additionally586

introduced swelling ratio k2

α that takes into account the polymer coil expan-587

sion in the relatively good solvent can be estimated by from the excluded588

volume exponent k2

α ≈ ζ(3ν)/ζ(1.5) [61] and equates for the current system589

to k2

α = 0.829. With this the finite extensibility parameter calculates to590

L2 = 13713 and we can now obtain the lower limit for the concentration591

from eq. (20) as clow = 0.009%.592

This calculated value is in good agreement with the experimental data in593

Figure 10. For a concentration of c = 0.01% and all higher concentrations594

(open symbols) that are above the calculated critical value clow a sufficiently595

long exponential thinning regime is clearly detectable. For the next smaller596

concentration of c = 0.005% (indicated by filled symbols) that is already597

below the calculated lower limit we can still observe an influence of the poly-598

mer on the breaking behaviour and a delayed breaking in comparison to the599

pure solvent. However, a clear exponential thinning regime is not observed.600

It might be tempting to do an exponential fit to the thinning data for the601

concentration c = 0.005% (and also for c = 0.002%) that still show a de-602

layed breakup time, in order to extract a relaxation time. However, outgoing603

from our analysis the thinning data will already be in the finite extensibility604

limit of the polymer and the apparent relaxation time will be shorter than605

the actual one. We attribute in the literature reported experimental relax-606

ation times below the Zimm time to attempts to fit the thinning data of607

concentrations below the critical limit clow.608

For the lowest experimental polymer concentrations of c = 0.001% and609
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c = 0.0005% a calculation of the radius REC from eq. (18) at which an onset610

of a delayed thinning caused by the polymer can be expected yields values611

that are below the observable window in Fig. 10. And indeed, we do not612

observe a deviation from the thinning dynamics of the pure solvent in Fig.613

10 for c = 0.001% and c = 0.0005%. Furthermore, for these dilutions as well614

as for the pure solvent the minimum filament diameter is eventually located615

within an indention of the terminal drop, so that the 2-dimensional projection616

of the filament profile does not allow to observe the thinning dynamics beyond617

this so called ’turnover’ point (indicated in Figure 10 for the case of pure618

water).619

4. Conclusions620

Conducting a capillary breakup experiment with the initial liquid bridge621

close to the critical aspect ratio ΛS,break of a statically stable state enables one622

to quantitatively investigate the thinning dynamics of low viscosity liquids.623

Using a slow retraction of the endplates that confine the liquid bridge in624

order to overcome the critical value of ΛS,break induces an axially symmetric625

thinning and minimizes effects of inertia induced oscillations of the end drops626

and the connecting filament. This slow retraction method allowed to follow627

the thinning dynamics of a series of Newtonian glycerol in water solutions628

with viscosities that span a range of 350 - 27 mPa s. The transition between629

a viscosity and an inertia controlled thinning, in particular the radius of the630

filament at which this transition takes place can be obtained from a local631

Ohnesorge number Oh (eq. (6)) that uses the radius Rmin(t) as the critical632

length scale. The numerical value for Oh at the transition could obtained633
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from a balance of the thinning velocities in the viscous (V) flow regime and634

the inertial (PF) flow regime to Oh = 0.2077. Equating the the critical radius635

of the transition from this local Ohnesorge number shows that the onset of the636

V regime shifts with decreasing viscosity to lower filament radii in accordance637

with the experimental observations for the glycerol solutions. The thinning638

dynamics allow for a clear observation of a V thinning regime for viscosities of639

320 and 150 mPa s and a IV thinning for 77 mPa s. However, the SRM leads640

for Newtonian liquids to a high axial curvatures of the thinning filament,641

so that an evaluation of the thinning data with the similarity solutions of642

eqs. (2) and (4) is only possible for small radii where the mean curvature643

κ = 1/Rmin − 1/Rz approaches the radial curvature 1/Rmin. A practical644

value for the general ’slenderness’ requirement for the application of similarity645

solution and the range of radii where linear fits of Rmin ∼ (t0 − t) can be646

used to extract material properties from capillary thinning experiments has647

shown to be κRmin = 1.006.648

For dilute polymer solutions with a shear viscosity of O(1 mPa s) the649

initial thinning dynamics of a liquid bridge (for which the endplate sepa-650

ration crosses the critical aspect ratio ΛS,break) follow the PF thinning law651

of eq. (5). However, as soon as the unraveling polymer chains carry more652

stress then the surrounding solvent, the thinning dynamics switch over to an653

EC type thinning and allow to extract a relaxation time via eq. (9). Due654

to the initial PF thinning with local minimum radii close to the enddrops655

one observes two cylindrical filaments stabilized by the EC balance, with a656

large satellite drop in the middle. The observability of an EC thinning of the657

cylindrical filaments is limited by a critical concentration clow of the poly-658
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mer. If the unraveling polymer chains reach their finite extensibility limit659

(at a concentration independent filament radius RL2 (eq. (16))) before the660

polymer stress becomes sufficiently large to balance the capillary pressure661

(at a concentration dependent filament radius REC (eq. (18))) the EC bal-662

ance will not be observable. Setting RL2 and REC equal allows therefore to663

determine a lower limit for the modulus, Glow (eq. (19)) (or concentration664

clow), below which a capillary breakup experiment will not allow the extrac-665

tion of the relaxation time. Accounting for this concentration limit (which666

could be calculated for the investigated solutions of polystyrene in DEP to667

clow = 0.009 %) a reliable relaxation time in extension as low as 240 µs at a668

concentration of 0.01% PEO could be determined with the SRM.669
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