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Phenotyping the Microcirculation
Harry A.J. Struijker-Boudier, Bart F.J. Heijnen, Yan-Ping Liu, Jan A. Staessen

The role of the microcirculation is increasingly being
recognized in the pathophysiology of cardiovascular

disease.1,2 The microcirculation is a major site of damage in
most target organs of cardiovascular disease, such as the
heart, brain, and kidney. Both functional and structural
alterations in the small arteries, arterioles, and capillaries are
the basis of target organ damage. Furthermore, the microcir-
culation is the major site of control of vascular resistance.
This makes it a central player in the etiopathogenesis of
diseases characterized by an increased vascular resistance,
such as hypertension.

Detailed mechanistic studies in both humans and animal
models of cardiovascular disease have revealed the nature of
microcirculatory dysfunction. Large-scale epidemiological
studies in the last 2 decades have identified the associations
among deranged microvascular perfusion, structure, target
organ damage, and subsequent cardiovascular disease.3 Major
technological developments now allow study of the micro-
circulation both in mechanistic and epidemiological studies.
The purpose of this Brief Review is to provide a critical
appraisal of these developments and their particular impact
on hypertension research.

Assessment of the Microcirculation
The Table gives an overview of the major methods to assess
the microcirculation. Intravital microscopy has been used by
many groups in experimental models to study microcircula-
tory (dys)function. It has been the primary technology under-
lying our present knowledge of microcirculatory function in
health and disease. Intravital microscopy is the optical imag-
ing of living organisms. The tissue to be studied is prepared
by surgical techniques and microscopes, usually in combina-
tion with high quality video recorders, is used to visualize the
microcirculation. Originally this technique was used in rela-
tively transparent tissues like the bat wing, hamster cheek
pouch, or rat mesentery. Later developments using trans- and
epi-illumination have allowed wider access to the microcir-
culation of other tissues, such as skeletal muscle, the brain,
and the heart. The recent introduction of molecular imaging
probes now allows detailed analyses of molecular mecha-
nisms in microcirculatory control.4

The major advantage of intravital microscopy is that it
allows direct and precise observation of the microcirculation

and its dynamics in vivo. However, the access to tissues
usually requires surgery and anesthesia, thus limiting the
applicability in human studies. New techniques for video
microscopic examinations have been introduced in the past 2
decades that do not require surgery and anesthesia. These
techniques are based on the use of orthogonal polarization
spectral or sidestream darkfield imaging.5–7 Both devices use
the principle that green light illuminates the depth of a tissue
and that the scattered green light is absorbed by hemoglobin
of red blood cells contained in superficial vessels.6 These
techniques have been applied in humans for the study of
various tissues but mostly the cutaneous and sublingual
microcirculation. Video recordings by hand-held cameras
now allow microcirculatory observations to be made even in
epidemiological studies. Parameters used to assess the micro-
circulation using orthogonal polarization spectral and side-
stream darkfield imaging include total vascular density;
arteriolar, venular, and capillary density; microvascular flow;
and microvascular diameters. A recent article by De Backer
et al8 gives an excellent review on microcirculatory changes
assessed by these novel imaging methods in humans.
Broekhuizen et al9 have used sidestream darkfield imaging
recently to study the behavior of the endothelial glycocalyx in
humans. Endothelial glycocalyx perturbation contributes to
increased vascular permeability and has been shown to be
involved in the vascular complications of type 2 diabetes
mellitus and perhaps other cardiovascular diseases.9

Capillaroscopy
Until recently, nailfold capillaroscopy, using rather bulky
microscopes, was the standard technique to study the micro-
circulation in hypertensive patients. Capillaroscopy consists
of the direct in vivo observation of skin capillaries using a
microscope with an epi-illumination system.10 Nailfold cap-
illaries are parallel to the surface of the skin, which facilitates
their observation. Fluorescent tracers, such as Na-fluorescein
and indocyanine green, have been used to improve the image
contrast and to study dynamics of the microcirculation in
addition to transcapillary diffusion. Abnormal patterns have
been observed in diseases affecting the digital skin microvas-
culature, such as systemic sclerosis, but also in diseases like
diabetes mellitus and hypertension.10,11 Skin capillary density
has been consistently found to be 10% to 20% lower in
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patients with untreated hypertension, in comparison with
normotensive controls.12–15 This defect might be an early
feature of hypertensive disease, as was reported in borderline
hypertensives,16 and even in normotensive offspring of hy-
pertensive parents.17 He et al18 showed recently that modest
salt reduction can restore capillary density in patients with
mild hypertension. Shore and coworkers19,20 have, in addition
to capillary density, measured capillary pressures in the skin
of hypertensive individuals. Capillary pressure was higher in
both elderly normotensives and hypertensives than in young
normotensives, suggesting a significant effect of aging rather
than hypertension, per se, on capillary pressure.

Retinal Imaging
A major advantage in large-scale epidemiological studies on
the pathophysiology of hypertension has been the introduc-
tion of retinal imaging methods.3,21,22 Hypertensive retinop-
athy was first described in the 19th century and has been used
since then in the diagnosis of the severity of hypertension-
induced target organ damage. However, the classic assess-
ment of retinopathy was descriptive and gave no quantitative
or mechanistic data on the microcirculatory dysfunction. In
the last 2 decades several groups have advanced the technol-
ogy of retinal microcirculatory image analysis with the use of
a nonmydriatic video camera.22–24 In particular, the advances
introduced by Knudtson et al25 have allowed retinal micro-
circulatory analysis to become part of both mechanistic and
epidemiological studies. A further major technical advance
was the introduction of scanning laser Doppler flowmetry,
which allows perfusion imaging analysis.26 This technique
also allows determination of the wall thickness and wall:
lumen ratio of individual retinal arterioles.27 A word of
caution should be mentioned, in that retinal microvascular
dimensions are not only the result of structure but also of
function, because measurements cannot be made under fully
relaxed conditions.

The retinal microcirculation undergoes a series of patho-
physiological changes during and after the development of
hypertension. In the initial, vasoconstrictive stage, there is
vasospasm and an increase in retinal arteriolar tone.22 Persis-
tently elevated blood pressure leads to intimal thickening,
hyperplasia of the media wall, and hyaline degeneration in the
subsequent sclerotic stage. This stage corresponds with more
severe areas of arteriolar narrowing and changes in the
arteriolar and venular junctions (arteriovenous nicking of
nipping).22 In an even later stage, there is a disruption of the
blood-retina barrier with microaneurysms, hemorrhages, ne-

crosis of the smooth muscle and endothelial cells, and retinal
ischemia.

Retinal microcirculatory imaging techniques have substan-
tial reproducibility28,29 and can be used repeatedly in the
same individuals for follow-up. Such longitudinal studies
have shown that signs of hypertensive retinopathy can be
observed already in relatively young individuals without a
history of hypertension.22 These data suggest that retinal
arteriolar narrowing may precede the development of hyper-
tension.30 Retinal microcirculatory analysis has been used for
the risk stratification of hypertensive patients because it
shows a strong association with the risk to develop stroke,31

coronary heart disease,32,33 and renal complications.34 An
autopsy study of patients with stroke showed a close corre-
lation between retinal and cerebral arteriolar changes.35 At an
even more advanced level, retinal microcirculation imaging
allows the analysis of arteriolar and venular branching pat-
terns and retinal vascular fractal dimensions.36 We have
suggested previously that abnormal growth and branching of
the vascular tree may represent an early genetic or fetal
programming-related characteristic of hypertensive-prone
individuals.37

Advanced Imaging Technologies
The (video)microscopy techniques discussed above allow
both structural and functional studies of the microcirculation.
Over the past 2 decades, there has been a growing interest in
advanced perfusion imaging technologies, such as laser
Doppler flowmetry, positron emission tomography, MRI, and
angiography. Laser Doppler flowmetry is based on the
backscattering of a beam of laser light. The light undergoes
changes in wavelength when it hits moving cells. The
magnitude and frequency distribution of these changes in
wavelength are related to the number and velocity of red
blood cells.10 Laser Doppler flowmetry assesses blood flow
of superficial tissue (ie, skin) over a small volume and is
accurate for detecting and quantifying relative changes in
skin blood flow in response to a given stimulus.10 Because of
spatial variability, the reproducibility of this technique is
relatively poor. The more recently developed 2D laser Dopp-
ler perfusion imaging, in which a region of skin is progres-
sively scanned, reduces spatial variability. However, it does
not provide an exact linear measure of flow.10 This makes
laser Doppler mostly suited to assess microvascular reactivity
instead of absolute measurement of microvasculatory struc-
ture or flow.

Positron emission tomography has been used for �35
years as a powerful tool to study cardiac physiology.38 Apart
from studies on metabolism, it allows the assessment of
myocardial perfusion in combination with molecular studies.
Coronary microvascular function was conventionally as-
sessed by studying flow changes detected by thermodilution
or intracoronary Doppler flow wires.38 The invasive nature of
these technologies limits their applicability. Positron emis-
sion tomography has become an alternative technique to
study microvascular function, although it is still used only in
highly specialized centers. For a detailed review on positron
emission tomography and coronary microvascular function,
readers are referred to 2 recent review articles.38,39

Table. Major Methods to Assess the Microcirculation

Intravital microscopy

Capillaroscopy

Retinal imaging

Isolated small arteries

Contrast angiography

MRI

Positron emission tomography

Laser Doppler flowmetry
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MRI has undergone major advances in the past years and is
now used to study the structure of arteries in various organs,
such as the brain and the heart. However, its resolution is still
not high enough to assess the microcirculation, because the
smallest sizes of vessels that can be measured are in the range
of 200 to 300 �m.40 The same is true for angiography on the
basis of computed tomography or dyes and for ultrasound-
based methods for vascular imaging. Again, most advances
are being made in the area of myocardial microvascular
studies. The recent progress in MRI and angiography has
been reviewed recently.40

Isolated Small Arteries
All of the above-discussed methods to study the microcircu-
lation share an in vivo approach. Isolated small arteries have
been used in the past 25 years successfully to study other
aspects of microcirculatory behavior in health and disease.
Small arteries have been obtained either from surgical pro-
cedures or from specific subcutaneous gluteal biopsies.41–43

A clear advantage of the in vitro approach has been the
possibility for detailed structural analyses of the small arteries
both in diseased conditions and during pharmacological
treatment of patients. With respect to structural alterations,
small arteries remodel in hypertension with 2 types of
remodeling. Inward eutrophic remodeling is usually found in
primary forms of hypertension in humans and rats, whereas
inward hypertrophic remodeling has been described in sec-
ondary hypertension and hypertension associated with diabe-
tes mellitus.41–43 These 2 forms of remodeling reflect diver-
gent ways in which small arteries adapt their structure in the
face of mechanical and chemical stresses. The mechanisms of
these forms of remodeling are still poorly understood but
seem to involve growth of both cellular and matrix compo-
nents of the vessel wall. Low-grade inflammation of the
arterial wall and perhaps perivascular fat also plays a role in
arterial remodeling.44–46 The reader is referred to 2 recent
reviews for a more in-depth discussion on mechanism of
small artery remodeling, as studied by micromyography.42,43

Park and Schiffrin47 have proposed that small artery
remodeling may be an early manifestation of target organ
damage in hypertension. Small artery structure has important
prognostic significance for later cardiovascular events in both
hypertensive and normotensive individuals.42 Although there
are limitations to the in vivo relevance of these isolated artery
studies, they provide an excellent approach to the study of
molecular and cellular mechanisms of microvascular changes
in hypertension and cardiovascular disease.

Microcirculatory Dysfunction: Cause or
Consequence of Hypertension?
Microcirculatory dysfunction seems to be both a cause and
consequence of elevated blood pressure.2 Arteriolar and
capillary rarefaction and small artery remodeling are early
hallmarks of hypertension and have been shown to occur
already before or early in the onset of primary hypertension in
humans or animal models.2,47 On the other hand, the micro-
circulation is a primary target of the organ damage caused by
an elevated blood pressure. Microvascular damage is now
held responsible for much of the pathology related to cardiac,

brain, and renal dysfunction in hypertension.48 The microcir-
culation is part of a vicious cycle that initiates, maintains, and
amplifies high blood pressure if it is not treated adequately.49

The most rigorous way to investigate the behavior of this
vicious cycle is to follow the dynamics of the microcircula-
tion throughout life in a population at risk to develop
hypertension. Ideally, such a population should be followed
up from birth. In animal models like the spontaneously
hypertensive rat, such studies have been performed,50 but the
most challenging study is, of course, a human one. A
beginning of such studies has been made on the basis of
retinal imaging and orthogonal polarization spectral video-
capillaroscopy. In 6- to 8-year–old children, those with the
higher quartiles of blood pressure had significantly narrower
retinal arterioles.51 Recent studies showed that low birth
weight children, who are at risk to develop hypertension later
in life, have a narrower retinal arteriolar caliber at the ages of
6 and 12 years.52,53 Earlier studies had already associated low
birth weight with capillary rarefaction in both prepubertal
children and adults.54–57 Surprisingly, low birth weight in-
fants do not have capillary rarefaction at birth.58 In low birth
weight infants, capillary density may be even higher because
of the relative systemic hypoxia that these infants experi-
enced in utero.56 Basal capillary density decreases progres-
sively after the first week of life because of a process of
pruning. It may be speculated that low birth weight infants
undergo a process of capillary hyperpruning because of a
relative hyperoxia of the extrauterine environment, together
with supplemental oxygen in the postnatal period of preterm
infants. Alternatively, a “catch-up” process with abundant
availability of nutrients may cause capillary hyperpruning.59

Follow-up studies on the neonatal cohort described by D’Souza
et al58 have to be awaited to decide on this hypothesis.

Genetic Determinant of
Microcirculatory Phenotypes
The genetic components of hypertensive disease have been
the focus of recent intense research efforts. Apart from
several rare forms of monogenic causes, hypertension appears
to be associated with subtle changes in a range of genes.
Recent genome-wide association studies indicate that perhaps
�30 genes can contribute, each to a small degree, to average
blood pressure values in a population.60,61 Because blood
pressure is a highly variable phenotype in an individual, it can
be speculated that more robust underlying phenotypes, such
as microvascular structure, give better correlations. With
respect to the microcirculation, recent studies have focused
on the genetic influence on the structure of the retinal
microcirculation. There is a strong heritability for the retinal
arteriolar and venular caliber.62 Genome-wide association
studies have revealed several loci that were significantly
associated with retinal arteriolar and venular caliber.62–64

However, there was no overlap in the specific loci found in
the 3 published genome-wide association studies. This may
suggest a lack of power or may indicate regional differences,
because the studies were based on populations from different
parts of the world. Another approach in genetic studies is the
candidate gene approach. Using this approach, we found
recently that diameters of the retinal arterioles are associated
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with the 1675G/A polymorphism in the angiotensin type 2
receptor gene.65

Conclusion
The microcirculation is both a major site of vascular resis-
tance control and of target organ damage in hypertensive
disease. Evidence from animal, clinical, and epidemiological
studies has confirmed its essential role in the pathogenesis of
hypertension. Major advances in technology now allow the
noninvasive study of various aspects of the microcirculation
in clinical and even population-based research. Such studies
have revealed the major phenotypic microcirculatory changes
in hypertension, such as arteriolar narrowing, capillary rar-
efaction, and altered branching patterns. Future research
should focus on the mechanisms underlying these changes in
microcirculatory phenotype, as well as on how these are
influenced by drug treatment.

The combination of methods of phenotyping the microcir-
culation discussed in this Brief Review now allows this
approach. Intravital microscopy, particularly in combination
with molecular imaging probes, remains the state-of-the-art
approach for fundamental mechanistic studies on microvas-
cular dynamics in health and (cardiovascular) disease. Retinal
imaging has opened a window on the microcirculation for
clinical and population-based studies, thus allowing large-
scale investigations on genetic and environmental influences
on the microcirculation. Further technological developments
in the area of optical imaging will refine our possibilities to
phenotype the microcirculation.
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