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Abstract We introduce a novel approach for synthesis of software models based
on identifying deterministic finite state automata. Our approach consists of three
important contributions. First, we argue that in order to model software, one
should focus mainly on observed executions (positive data), and use the randomly
generated failures (negative data) only for testing consistency. We present a new
greedy heuristic for this purpose, and show how to integrate it in the state-of-
the-art evidence-driven state-merging (EDSM) algorithm. Second, we apply the
enhanced EDSM algorithm to iteratively reduce the size of the problem. Yet during
each iteration, the evidence is divided over states and hence the effectiveness of
this algorithm is decreased. We propose – when EDSM becomes too weak – to
tackle the reduced identification problem using satisfiability solvers. Third, in case
the amount of positive data is small, we solve the identification problem several
times by randomizing the greedy heuristic and combine the solutions using a voting
scheme. The interaction between these contributions appeared crucial to solve hard
software models synthesis benchmarks. Our implementation, called DFASAT, won
the StaMinA competition.

Keywords software model synthesis, model inference, automaton identification,
learning, satisfiability, state machines

1 Introduction

The behavior of software systems can often be specified using finite state machine
models. These models provide an overview of software systems, by describing the
way in which they react to different inputs, and when they produce which output.
In addition, they allow for using techniques such as model checking (Clarke, 1997)
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and model-based testing (Broy et al, 2005) to ensure that the software is operating
correctly. Unfortunately, due to the time and cost involved in generating and
maintaining these models, the construction of such models is often omitted during
software development (Walkinshaw et al, 2010). An alternative to constructing
these models manually, is to use software model synthesis (or process discovery) to
derive them automatically from known software behavior (Cook and Wolf, 1998).

Usually, software synthesis tools model this behavior using deterministic finite
state automata (DFAs). A DFA is a well-known language model that can be used
to recognize a regular language, see, e.g., (Sudkamp, 2006). The synthesis relies
on algorithms that can identify (or infer or learn) such a language model from
a sample of labeled execution traces. This problem of identifying a DFA model
from set of given examples is one of the best studied problems in grammatical
inference, see, e.g., (de la Higuera, 2010). Identifying a DFA typically means finding
the smallest DFA that is consistent with the set of examples. The size of a DFA
is measured by the amount of states it contains. It is desired that this DFA is as
small as possible because of an important principle known as Occam’s razor, which
states that among all possible explanations for a phenomenon, the simplest one is
to be preferred. A smaller DFA is simpler, and therefore a better explanation and
more likely model for the observed examples. DFA identification has also many
applications in, for example, computational linguistics, bio-informatics, software
verification, and speech processing, see (de la Higuera, 2010).

The problem of finding a smallest consistent DFA can be very hard. It is the
optimization variant of the problem of finding a consistent DFA of a fixed size,
which has been shown to be NP-complete (Gold, 1978). Even more troublesome is
the result that the optimization version cannot be approximated (Pitt and War-
muth, 1989). In spite of these hardness results, quite a few DFA identification
algorithms exist, see (de la Higuera, 2010). For many years, the state-of-the-art
in DFA identification has been the evidence-driven state-merging (EDSM) algo-
rithm (Lang et al, 1998). An evidence-driven algorithm is one that uses statistical
evidence in order to determine which way to proceed. State-merging is a common
technique from grammatical inference for learning a small language model by com-
bining (merging) the states of a large initial model, see, e.g., (de la Higuera, 2010).
Essentially, EDSM is a greedy method that tries to find a good local optimum ef-
ficiently. In addition, it has been shown using an earlier state-merging method
called RPNI, that it converges efficiently (from polynomial time and data) to the
global optimum in the limit (Oncina and Garcia, 1992). EDSM participated in and
won in a tie with the search-intensive SAGE algorithm Juillé and Pollack (1998)
the Abbadingo DFA learning competition in 1997 (Lang et al, 1998).

Since this competition, there have been few significant improvements in DFA
identification from labeled examples. There has been some research into specialized
search procedures for EDSM that typically lead to better results, see (Oliveira and
Marques-Silva, 1998; Abela et al, 2004; Lang, 1999; Bugalho and Oliveira, 2005).
These search techniques perform very well on small problems such as identifying
a DFA with 20 states and an alphabet of size 2. On such problem instances, these
search techniques often return the optimal solution within a few minutes, see
for instance (Lang, 1999). Although the different search techniques improve the
performance of EDSM, they are much less advanced than solvers for well-studied
problems such as graph coloring and satisfiability (SAT). Especially SAT solvers
have become very powerful in the last decade, using techniques such as conflict



analysis, intelligent back-jumping, and clause learning, see, e.g., (Biere et al, 2009).
The power of such solvers can be used in other problems by translating these
problems into SAT instances, and subsequently running a SAT solver on these
translated problems. This approach is very competitive for several problems, see,
e.g., (Biere et al, 1999; Marques-Silva and Glass, 1999; Endrullis et al, 2008).
Recently, we successfully adopted this approach for DFA identification (Heule and
Verwer, 2010).

In this paper, we apply our SAT-based approach to the problem of software
model synthesis, i.e., learning the state machine model for the behavior of a given
software system. This is a DFA identification problem. However, in contrast to
most studies of DFA identification (see, e.g., (de la Higuera, 2010)), software mod-
els typically make use of a large alphabet of possible events. In addition, typically
only a small portion of all possible behaviors will ever be seen in practice, leading
to sparse data sets. The goal of the StaMinA DFA learning competition (Walkin-
shaw et al, 2010) was to find DFA learning techniques that perform well in this
challenging setting. To this aim, the competition organizers generated data sets
from 100 random DFAs that matched this setting. The state-of-the-art EDSM
algorithm performs very poorly on these problems, achieving only 52% accuracy
(only 2% better than random guessing) on the most difficult ones (a size 50 alpha-
bet and observing only 12.5% of the input examples). With our SAT-based method
and several additional techniques (a new heuristic, random greedy, and ensemble
techniques), we improved the accuracy on these problems to 95%. Furthermore,
we achieved the required 99% accuracy on all problem instances with an alphabet
of size 50 and observing 50% of the input examples, which was significantly bet-
ter than other approaches that participated in the StaMinA competition. These
results show big potential for solving real-world software synthesis problems and
constitute a significant improvement in state-of-the-art DFA identification.

Our final SAT-based method is a unique combination of exact and greedy tech-
niques that works as follows. Initially, the StaMinA problem instances are too large
for the SAT solver. By performing greedy EDSM steps, the size of the remaining
problem becomes smaller and smaller. This continues until the problem is solvable
using the SAT solver, at that time we switch to solving the remaining problem
exactly. We believe that such a strategy is well-suited to machine learning methods
in general, because these typically use heuristics that are based on statistics. Since
every greedy step typically divides the data used to estimate these statistics, these
statistics will at some point be estimated poorly. When this happens it makes
sense to switch to an exact strategy.

In addition to providing this unique combination, we develop methods that
solve two challenges faced when applying DFA identification to software model
synthesis. First and foremost, the bias of learning is different. Instead of finding a
smallest consistent DFA, the goal is to find a smallest consistent software model.
This is a specific type of DFA in which many states can only generate a small
subset out of a large set of possible events. Furthermore, only a few of these states
generate exactly the same events. The overlap between generated events is there-
fore an important indicator for the similarity between states. We develop a new
heuristic for EDSM aimed at identifying software models based on this overlap.
In addition, since no heuristic is perfect, we employ the simple but surprisingly
effective random greedy method to randomize the new heuristic values. The second
challenge is that the data is very sparse. Because of this sparseness, it is unlikely



that our algorithm finds the DFA that was used to generate the data. To an-
swer this challenge, we generate many good DFA software models using random
greedy, and generalize over them using an ensemble method (Dietterich, 2000).
Our final algorithm is the combination of each of these methods. We believe this
combination of greedy and exact techniques to be crucial in solving the StaMinA
problem instances (Walkinshaw et al, 2010), and an important step forward in
DFA identification.

This paper is organized at follows. We start with an introduction to software
model synthesis and the StaMinA competition (Section 2), followed by an overview
of DFAs and the state-of-the-art in DFA identification (Section 3). We then pro-
vide a detailed explanation of our SAT-based approach (Section 4). Subsequently
(Section 5), we explain the combination of greedy and exact methods, the new
EDSM heuristic, the random greedy technique, and the used ensemble method.
We give a complete overview of our final algorithm (Section 6), and describe the
results obtained during the StaMinA competition (Section 7). We end this paper
with some concluding remarks and ideas for future work (Section 8).

2 Software model synthesis and the StaMinA competition

The behavior of software systems can often be specified using finite state machine
models. These models provide an overview of software systems, by describing the
way in which they react to different inputs, and when they produce which output.
Visualizing such machines can provide insights into the behavior of a software
system, which can be of vital importance during the design and specification of
such a system. Moreover, these machine allow for using automated techniques such
as model checking (Clarke, 1997) and model-based testing (Broy et al, 2005) in
order to ensure correctness of the system. For instance, these techniques can help
to verify that the software system meets its requirements, or to test whether it
will interact correctly with its environment. Unfortunately, due to the time and
cost involved in generating and maintaining finite state machines, the construction
of these models is often omitted during software development (Walkinshaw et al,
2010). An alternative to constructing these models manually, is to use software
model synthesis (or process discovery) tools in order to derive them automatically
from known software behavior (Cook and Wolf, 1998).

Software model synthesis (or system identification/learning, or process discov-
ery/mining) is a technique for automatically constructing a software model based
on observed system behavior. In software systems, this data typically consists of
execution traces, i.e., sequences of operations, function calls, user interactions, or
protocol primitives, which are produced by the system or its surrounding environ-
ment. Intuitively, software model synthesis tries to discover the logical structure
(or model) underlying these sequences of events. This can be seen as a grammatical
inference problem in which the events are modeled as the symbols of a language,
and the goal is to find a model for this language. Many different language mod-
els and ways of finding them are available in the grammatical inference, machine
learning, and data mining literature. Which one to choose depends mostly on the
available data and the type of system under consideration.

In this paper, we assume the availability of labeled data (or positive and nega-
tive examples). This means that both desired (positive) and undesired (negative)



execution traces are available. Other common identification settings are identifica-
tion from unlabeled data (only positive examples) and identification from queries
(or query-learning), see, e.g., (Kearns and Vazirani, 1994). Identification from un-
labeled data is mostly the domain of probabilistic language models and identifi-
cation algorithms that are based on statistics, e.g., (Clark and Thollard, 2004).
Identification from unlabeled data is less powerful than learning from labeled data
and often a lot more data is required in order to obtain good performance of the
identification algorithms, see (Jain et al, 1999). Fortunately, this type of data is
often very easy to obtain: simply observe the events generated by a system. In
contrast, labeled data requires some labeling to process (often performed by a
domain expert) to determine the ones that are desired and the ones that are not.
In identification from queries, access to an oracle is needed that can answer spe-
cific types of questions such as: whether a specific string is part of the language
(membership queries), and whether a given model is a model for the language
(equivalence queries). In software model synthesis, the actual software system can
be used for this purpose, see, e.g., (Raffelt et al, 2009). When such an oracle is
available that can be queried often and quickly, it is advisable to use it as much
as possible since identification from queries is very powerful, making it possible to
identify very large realistic models. Due to time constraints, however, there often
is a limit to the amount of available queries. In such cases, it is also possible to
combine identification from queries and data, see, e.g., (Dupont et al, 2008).

The model we use in this paper is the deterministic finite state automaton
(DFA), see, e.g., (Sudkamp, 2006). This model is very popular for specifying the
behavior of software systems. Furthermore, identifying a DFA is one of the best
studied problems in grammatical inference, and many algorithms have been devel-
oped for this purpose (de la Higuera, 2010). A DFA is a simple model, however, and
in some cases it will not be able to represent or identify all the complex behaviors
of a software system. Some more powerful models with identification algorithms
include: non-deterministic automata (Yokomori, 1993; Denis et al, 2000), prob-
abilistic automata (Clark and Thollard, 2004; Castro and Gavaldà, 2008), Petri-
nets (modeling concurrency) (van der Aalst, 2011), timed automata (Verwer, 2010;
Grinchtein et al, 2006a), I/O automata (modeling both input and output) (Aarts
and Vaandrager, 2010), and Büchi automata (modeling infinite strings) (Higuera
and Janodet, 2004). Despite its limited power, DFA learning methods have been
used to learn different types of complex systems such as web-services (Bertolino
et al, 2009), X11 windowing programs (Ammons et al, 2002), network proto-
cols (Cui et al, 2007; Antunes et al, 2011), and java programs (Walkinshaw et al,
2007; Dallmeier et al, 2006; Mariani et al, 2011). Unfortunately, nearly all of the
comparative studies of DFA identification methods (e.g, (Lang et al, 1998; Bugalho
and Oliveira, 2005)) cover settings that are very different from the ones in software
engineering. In particular, the studied models usually contain a small alphabet and
are identified from very large and complete sets of event sequences. In software
models, however, typically make use of a large set of possible events. In addition,
typically only a small portion of all possible behaviors will ever be seen in practice,
leading to sparse data sets (Walkinshaw et al, 2010).

The goal of the StaMinA DFA learning competition (Walkinshaw et al, 2010)
was to find DFA learning techniques that perform well in this challenging setting.
To this aim, the competition organizers generated labeled data sets from random
DFAs that matched with this setting. The difficulty of the different problem in-



import java.util.*;

public class HelloWorld

{
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Fig. 1 Based on observed execution traces of a software system, labeled as desired and un-
desired, the dfasat algorithm can be used to find DFA models for the desired behavior of the
software system.

stances was varied using differently sized alphabets and different levels of sparsity.
For alphabets of size 2, 5, 10, 20, and 50, different DFAs were generated which
all contained about 50 states. From these DFAs large sets of labeled training in-
stances (in total 20,000) were sampled using a random walk procedure. Sparsity
was then introduced by re-sampling the training data provided to the participants.
The re-sampled sets contained either 100%, 50%, 25%, or 12.5% of the original
training data. For every combination of alphabet size and sparsity level, 5 different
DFAs and labeled sets were generated. In order to measure the performance of the
different algorithms, participants were asked to provide the labels of a small set
(1,500 instances) of unseen test data. These were then compared to the actual
labels provided by the generated DFA using a balanced classification rate (BCR,
a variant of accuracy), see Section 7. When a participant managed to achieve an
accuracy of 99% on all 5 problems of a certain size-sparsity combination, (s)he
was said to “break” the corresponding cell in the StaMinA problem grid (see
http://stamina.chefbe.net). The participant that managed to break the most
difficult cell the earliest was announced as the winner.

The state-of-the-art DFA identification algorithm (evidence-driven state-mer-
ging (Lang et al, 1998)) performs very poorly on the StaMinA problems, achieving
only 52% accuracy on the most difficult ones (a size 50 alphabet and observing
only 12.5% of the input examples). This is an improvement of only 2% over random
guessing. In this paper, we present the winner of the StaMinA competition: dfasat.
Our algorithm improved the accuracy on these problems to 95%. Furthermore, we
achieved the required 99% accuracy on all problem instances with an alphabet
of size 50 and observing 50% of the input examples, which was significantly bet-
ter than other approaches that participated in the StaMinA competition. These
results show big potential for solving real-world software synthesis problems and
constitute a significant improvement in state-of-the-art DFA identification.

The dfasat algorithm can be used to identify DFA models for software systems
based on labeled data, see Figure 1. On its own, this can provide important insights
into the inner workings of a software system and its environment. In combination
with other techniques, however, it can become a very powerful method for soft-
ware engineering tasks such as modeling, requirement engineering, maintenance,
verification, and testing.

3 The state-of-the-art in DFA identification

A deterministic finite state automaton (DFA) is one of the basic and most com-
monly used finite state machines. Below, we provide a concise description of DFAs,
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Fig. 2 A deterministic finite state automaton (DFA). It contains states (circles) and labeled
transitions (arrows). One state is a predefined start state, indicated by the arrow pointing from
nowhere. Accepting states have a white center, rejecting states have a black center. Strings
that end in accepting states are accepted, others rejected. For example, the DFA accepts a,
abaa, and bb, and rejects b, and abb.

the reader is referred to (Sudkamp, 2006) for a more elaborate overview. A DFA
A = 〈Q,T,Σ, q0, Q+〉 is a directed graph consisting of a set of states Q (nodes)
and labeled transitions T (directed edges). An example is shown in Figure 2. The
start state q0 ∈ Q is a specific state of the DFA and any state can be an accepting
state (final state) in Q+ ⊆ Q. The labels of transitions are all members of a given
alphabet Σ. A DFA A can be used to generate or accept sequences of symbols
(strings) using a process called DFA computation. This process begins in q0, and
iteratively activates (or fires) an outgoing transition ti = 〈qi−1, qi, li〉 ∈ T with la-
bel li ∈ Σ from the source state it is in qi−1, moving the process to the target state
qi pointed to by ti. A computation q0t1q1t2q2 . . . tnqn is accepting if the state it
ends in (its last state) is an accepting state qn ∈ Q+, otherwise it is rejecting. The
labels of the activated transitions form a string l1 . . . ln. A DFA accepts exactly
those strings formed by the labels of accepting computations, it rejects all others.
Since a DFA is deterministic there exists exactly one computation for every string,
implying that for every state q and every label l there exists at most one outgoing
transition from q with label l. A string s is said to reach all the states contained
in the computation that forms s, s is said to end in the last state qn of such a
computation. The set of all strings accepted by a DFA A is called the language
L(A) of A.

Given a pair of finite sets of positive example strings S+ and negative example
strings S−, called the input sample, the goal of DFA identification (or learning) is
to find a (non-unique) smallest DFA A that is consistent with S = {S+, S−}, i.e.,
such that every string in S+ is accepted by A, and every string in S− is rejected
by A. Typically, the size of a DFA is measured by the number of states it contains.
Seeking this DFA is an active research topic in the grammatical inference com-
munity, see, e.g., (de la Higuera, 2010). The performance of a DFA identification
algorithm is typically measured using another set of positive and negative exam-
ples, called the test sample. Both the input sample and the test sample come from
the same DFA language. In other words, there exists a (preferably small) DFA At
that is consistent with both the input sample and the test sample. This DFA At,
called the target DFA, is assumed to have generated (or really did generate) the
input sample. Typically, the accuracy of the identified DFA A on the test sample
is used as a performance measure. Accuracy is the number of correctly classified
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Fig. 3 An augmented prefix tree acceptor for S = (S+ = {a, abaa, bb}, S− = {abb, b}). The
start state is the state with an arrow pointing to it from nowhere.

(accepted or rejected) examples divided by the total amount of examples. This
value is determined by checking whether the computation of A on every example
in the test sample corresponds to its label (positive or negative). In StaMinA,
this measure was balanced between the positive and negative examples, see Sec-
tion 7. Intuitively, accuracy tests how good the identification algorithm is at finding
the target DFA At that generated the input sample. The current state-of-the-art
in DFA identification is evidence-driven state-merging in the red-blue framework
(EDSM) (Lang et al, 1998), possibly with some search procedure wrapped around
it in order to continue searching once a possible local optimum has been reached.
In the following, we explain this algorithm and the used search techniques.

3.1 State Merging

The idea of a state-merging algorithm is to first construct a tree-shaped DFA
A from the input sample S (Algorithm 1), and then to merge the states of A
(Algorithm 2). This DFA A is called an augmented prefix tree acceptor (APTA).
An example is shown in Figure 3. For every state q of A, there exists exactly one
computation that ends in q. This implies that the computations of two strings s
and s′ reach the same state q if and only if s and s′ share the same prefix until
they reach q. Furthermore, an APTA A is constructed to be consistent with the
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Fig. 4 A merge of two states: 0, 2 from the APTA of Figure 3. On the left the original part
of the automaton is shown. The states that are to be merged are surrounded by a dashed
ellipse. In the middle the result of that merge is shown. The resulting automaton still has to
be determinized by merging the children 1, 3 that can be reached using transitions with the
same label from 0/2. On the right the result after determinization is shown.



Algorithm 1 Construct the APTA: apta

Require: an input sample S = {S+, S−}
Ensure: A is the APTA for S
Σ =

⋃
s∈S{l | l ∈ s} // Σ is the set of all symbols in S

A = 〈Q = {q0}, T = ∅, Σ, q0, Q+ = ∅, Q− = ∅〉 // A is an empty DFA
for all s = l1, . . . , ln ∈ S do // for every input string s

state q = q0 // let q be the start state
for 0 ≤ i ≤ n do // iterate over the labels li in s

if there exists no 〈q, q′, li〉 ∈ T then // if there is no transition from q with label li
create q′, set Q := Q ∪ {q′} // add a new state q′ to A
set T := T ∪ {〈q, q′, li〉} // create a transition to q′ from q with label li

end if
q = q′ such that 〈q, q′, li〉 ∈ T // update q by following the transition with label li

end for
if s ∈ S+ then
Q+ = Q+ ∪ {q} // make the state s ends in accepting if s is positive

else
Q− = Q− ∪ {q} // make it rejecting otherwise

end if
end for
return A

input sample S, i.e., S+ ⊆ L(A) and S− ∩ L(A) = ∅. Thus a state q is accepting
only if there exists a string s ∈ S+ such that the computation of s ends in q.
Similarly, it is rejecting only if the computation of a string s ∈ S− ends in q. As a
consequence, A can contain states that are neither accepting nor rejecting. None
of the computations of strings from S ends in such a state. Therefore, the rejecting
states are maintained in a separate set Q− ⊆ Q, with Q− ∩ Q+ = ∅. Whether a
state q ∈ Q\(Q+∪Q−) should be accepting or rejecting is determined by merging
the states of the APTA and trying to find a DFA that is as small as possible.

A merge (see Figure 4 and Algorithm 2) of two states q and q′ combines the
states into one: it creates a new state q′′ that has the incoming and outgoing
transitions of both q and q′, i.e., replace all 〈q, qt, l〉 ,

〈
q′, qt, l

〉
∈ T by

〈
q′′, qt, l

〉
and all 〈qs, q, l〉 ,

〈
qs, q

′, l
〉
∈ T by

〈
qs, q

′′, l
〉

(the for loops in Algorithm 2). Such
a merge is only allowed if the states are consistent, i.e., it is not the case that q
is accepting while q′ is rejecting or vice versa. When a merge introduces a non-
deterministic choice, i.e., q′′ is now the source of two transitions

〈
q′′, q1, l

〉
and〈

q′′, q2, l
〉

in T with the same label l, the target states of these transitions q1 and
q2 are merged as well. This is called the determinization process (the while loop
in Algorithm 2), and is continued until there are no non-deterministic choices left.
However, if this process at some point merges two inconsistent states, the original
states q and q′ are also considered inconsistent and the merge will fail. The result
of a successful merge is a new DFA that is smaller than before, and still consistent
with the input sample S. A state-merging algorithm iteratively applies this state
merging process until no more consistent merges are possible. Notice that when
states q0, q2 and q7 of the APTA of Figure 3 are merged, then a part of the DFA
of Figure 2 is obtained.

The successful red-blue framework (Lang et al, 1998) follows the state-merging
algorithm just described, and in addition adds colors (red and blue) to the states
to guide the merge process. A red-blue algorithm only merges red r ∈ R ⊆ Q and
blue b ∈ B ⊆ Q states. The red states and the transitions between them form the



Algorithm 2 Merging two states: merge (A, q, q′)

Require: an augmented DFA A = 〈Q,T,Σ, q0, Q+, Q−〉 and two states q, q′ ∈ Q
Ensure: if q and q′ are inconsistent, return false; else return A with q and q′ merged.

if (q ∈ Q+ and q′ ∈ Q−) or (q ∈ Q− and q′ ∈ Q+) then
return false // return false if q is inconsistent with q′

end if
let A′

〈
Q′, T ′, Σ, q′0, Q

′
+, Q

′
−
〉

be a copy of A // initialize the result A′

create a new state q′′, and set Q′ := Q′ ∪ q′′ // add a new state q′′ to A′

if q ∈ Q+ or q′ ∈ Q+ then
set Q′+ := Q′+ ∪ {q′′} // q′′ is accepting if q or q′ is accepting

end if
if q ∈ Q− or q′ ∈ Q− then

set Q′− := Q′− ∪ {q′′} // q′′ is rejecting if q or q′ is rejecting
end if
for all t = 〈qs, qt, l〉 ∈ T ′ with qs ∈ {q, q′} do // forall transitions with source state q or q′

T ′ := T ′ \ { t} // remove the transition
T ′ := T ′ ∪ {〈q′′, qt, l〉} // add a new transition with q′′ as source

end for
for all t = 〈qs, qt, l〉 ∈ T ′ with qt ∈ {q, q′} do // forall transitions with target state q or q′

T ′ := T ′ \ { t} // remove the transition
T ′ := T ′ ∪ {〈qs, q′′, l〉} // add a new transition with q′′ as target

end for
set Q′ := Q′ \ {q, q′} // remove q and q′ from A′

while
〈
qf , q1, l

〉
,
〈
qf , q2, l

〉
∈ T ′ with q1 6= q2 do // while non-deterministic choices exist

A′′ := merge(A′, q1, q2) // determinize the targets
if A′′ equals false then

return false // return false if the targets are inconsistent
else
A′ := A′′ // else keep the merge and continue determinizing

end if
end while
return A′

currently constructed DFA, the blue states are still to be identified transitions,
potentially to new states of the DFA. The new state q′′ resulting from a red-blue
merge is colored red, i.e., R := R ∪ {q′′}. In addition, every non-red target state
q ∈ Q \ R that is the target of a transition 〈r, q, l〉 ∈ T with a red source state
r ∈ R, is colored blue, i.e., B := B ∪ {q}. In this way, the framework maintains
a core of red states with a fringe of blue states (see Figure 5 and Algorithm 3).
Initially, the start state of the APTA is colored red, and its children (targets for
every symbol) are colored blue.

Note that every blue state is the root of a tree of uncolored states. Conse-
quently, every pair of states q and q′ that is merged by the determinization process
contains at most one colored state. The state q′′ resulting from a determinization
merge of q or q′ is given this color. A determinization merge of two uncolored states
leaves q′′ uncolored. Whenever there exists a blue state b for which no consistent
merge is possible with a red state (merge(A, b, r) is false for all r ∈ R), the algo-
rithm changes the color of this blue state into red (R := R∪{b}). Since a red-blue
state-merging algorithm never merges pairs of red states, it is guaranteed not to
modify the transitions between red states. In other words, once

〈
r, r′, l

〉
∈ T with

r, r′ ∈ R has been created in an iteration of a red-blue state-merging algorithm,〈
r, r′, l

〉
will be in the DFA returned by the algorithm. The red core of the DFA
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Fig. 5 The red-blue framework. The red states (labeled R) are the identified parts of the
automaton. The blue states (labeled B) are the current candidates for merging. The uncolored
states are pieces of the APTA. The symbols on the transitions are omitted for clarity.

can be thus be viewed as a part of the DFA that is (assumed to be) correctly
identified.

A red-blue state-merging algorithm is complete since it is capable of producing
any DFA that is consistent with the input sample and smaller than the original
APTA. Furthermore, it is more efficient (in terms of computation time) than
standard state-merging since it considers a lot less merges. Currently, the most
successful method for solving the DFA identification problem is the evidence driven
state-merging (EDSM) algorithm in the red-blue framework (Lang et al, 1998). In
EDSM each possible merge is given a score based on the amount of evidence in
the merges that are performed by the merge and determinization processes. Let
|A| denote the sum of the number of accepting and rejecting states in A, i.e.,
|A| = |Q+ ∪Q−|. The evidence score is equal to:

evidence(A, q, q′) :=

{
|A| − |merge(A, q, q′)| if merge(A, q, q′) 6= false

−1 otherwise

In other words, the difference in accepting and rejecting states before and after
performing the merge. In every iteration, EDSM chooses the merge that maximizes
this difference, which is computed by counting the number of accepting states that
are merged with accepting states and adding the number of rejecting states that
are merged with rejecting states. EDSM can be seen as a greedy procedure that
uses this simple heuristic to determine which merge to perform. Intuitively, this
heuristic tries merge the states that have the most statistical evidence (confi-
dence) of being the a single state in the DFA that generated the data. Under the
assumption that every merge during the determinization process is an independent
statistical test that has some probability to show that the merge is inconsistent,
the heuristic chooses the merge that passes the most of these tests. EDSM partici-
pated in and won (in a tie) the Abbadingo DFA learning competition in 1997 (Lang
et al, 1998). In the competition EDSM was capable of approximately (with 99%



Algorithm 3 State-merging in the red-blue framework
Require: an input sample S
Ensure: A is a DFA that is consistent with S

A = apta(S) // construct the APTA A
R = {q0} // color the start state of A red
B = {q ∈ Q \R | ∃ 〈q0, q, l〉 ∈ T} // color all its children blue
while B 6= ∅ do // while A contains blue states

if ∃b ∈ B s.t. ∀r ∈ R holds merge(A, r, b) = false then // if there a blue state
inconsistent with every red states
R := R ∪ {b} // color b red
B := B ∪ {q ∈ Q \R | ∃ 〈b, q, l〉 ∈ T} // color all its children blue

else
for all b ∈ B and r ∈ R do // forall red-blue pair of states

compute the evidence(A, q, q′) of merge(A, r, b) // find the best performing merge
end for
A := merge(A, r, b) with highest evidence // perform the best merge
let q′′ be resulting state
R := R ∪ {q′′} // color the resulting state red
R := R \ {r} // uncolor the merged red state
B := {q ∈ Q \R | ∃r ∈ R and 〈r, q, l〉 ∈ T} // recompute the set of blue states

end if
end while
return A

accuracy) learning a DFA with 500 states with a training set consisting of 60, 000
strings on a 2 letter alphabet.

In the grammatical inference community, there has been some research into de-
veloping advanced and efficient search techniques for ESDM. The idea is to increase
the quality of a solution by searching other paths in addition to the path deter-
mined by the greedy EDSM heuristic. Examples of such advanced techniques are
dependency directed backtracking (Oliveira and Marques-Silva, 1998), using mu-
tually (in)compatible merges (Abela et al, 2004), and searching most-constrained
nodes first (Lang, 1999). A comparison of different search techniques for EDSM
can be found in (Bugalho and Oliveira, 2005).

The current state-of-the-art techniques are two simple search strategies called
ed-beam and exbar (Lang, 1999). The ed-beam procedure calculates one greedy
EDSM path starting from every node in the search tree in breadth-first order.
In other words, it tries all possible merges (from a given search node), adds the
resulting search nodes to a queue, computes the DFA result of an EDSM run
starting from these nodes, pops a new search node from the queue, and iterates.
The smallest DFA found by these EDSM runs is returned as a solution. This
solution then serves as an upper bound of the DFA size for the breadth-first search.
The exbar procedure iteratively runs a full search of the EDSM search space with
an increasing upper bound on the number of DFA states. When it reaches this
bound it backtracks the last heuristic decision, and if all search nodes with up to
the bound have been searched, it increases the bound and iterates. It continues
this procedure until a solution is found. In addition, in order to reduce the size
of the search space, exbar searches the most-constrained nodes first. Typically, a
time bound is set and the algorithm is stopped when its running-time exceeds this
bound. However, it can guarantee that it has found an optimal solution (a smallest
DFA) if all smaller solutions have been visited by its search procedure.



4 SAT-based DFA identification

Recently, instead of wrapping a search technique around EDSM, we proposed to
translate the DFA identification problem into satisfiability (SAT) and then use a
state-of-the-art SAT-solver to search for an optimal solution (Heule and Verwer,
2010). The main advantage of such an approach is that it directly makes use of
advanced search techniques such as conflict analysis, intelligent back-jumping, and
clause learning, see, e.g., (Biere et al, 2009). Despite the low level representation,
such an approach is very competitive for several problems. Examples are bounded
model checking (Biere et al, 1999), equivalence checking (Marques-Silva and Glass,
1999) and rewriting termination problems (Endrullis et al, 2008). In addition, a
nice bonus is that due to the yearly SAT competition, the performance of these
solvers improves every year due to the hard labor of fellow researchers.

Our method is inspired by the translation in (Coste and Nicolas, 1997) from
DFA identification into graph coloring. Graph coloring is the problem of assigning
a color to every node in a given graph such that nodes with the same color do not
share an edge. Determining whether there exists a coloring that uses at most k ≥ 3
colors is a well-known NP-complete problem, see, e.g., (Garey and Johnson, 1979).
The main idea of the translation into graph coloring is to use a distinct color
for every state of the identified DFA. The nodes in the graph coloring instance
represent the labeled examples and share an edge if one of them is positive and
the other negative. The graph coloring problem thus ensures that inconsistent
examples cannot obtain the same color, and therefore cannot end in the same
state, making the resulting DFA consistent. The size of this DFA is determined by
the amount of colors used in the graph coloring problem. Finding the minimum
can be done by iterating over this amount.

The satisfiability problem (SAT) (Biere et al, 2009) deals with the question
whether there exists an assignment to Boolean variables such that a given formula
in conjunctive normal form (CNF) evaluates to true. Such a formula is a conjunc-
tion (∧) of clauses, each clause being a disjunction (∨) of literals. Literals refer
either to a Boolean variable x or to its negation ¬x. One of the main problems
we solved with our method is how to efficiently encode the graph coloring con-
straints of (Coste and Nicolas, 1997) into SAT. A naive direct encoding (Walsh,
2000) of these constraints would lead to O(k2|V |2) clauses, where k is the size
of the identified DFA, and |V | is the size (number of states) of the APTA for
the labeled examples. Since this APTA combines prefixes of these examples, not
only the amount but also the length of these examples has an effect on |V |. Our
encoding requires only O(k2|V |) clauses. A closely related approach (Grinchtein
et al, 2006b) uses a translation of DFA identification into an integer constraint
satisfaction problem (CSP) from (Biermann and Feldman, 1972). It then trans-
lates this CSP into SAT in two ways: using a unary and a binary encoding of the
integers. Interestingly, a direct encoding of graph coloring is identical to a unary
encoding of the CSP constraints. Again, the minimum is found by iterating over
the number of states.

The crucial part of our translation is the use of auxiliary variables to represent
the problem more efficiently. In addition, we apply symmetry breaking (Sakallah,
2009) to prevent overlapping searches with different colors by preprocessing the
result of our translation with a fast max-clique approximation algorithm. Further-
more, we add many redundant clauses to our translation that provide the SAT
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Fig. 6 The consistency graph corresponding to the APTA of Figure 3. Some states in the
consistency graph are not directly inconsistent, but inconsistent due to determinization. For
instance states 2 and 6 are inconsistent because the strings abb (negative) and bb (positive)
would end in the same state if these states were merged. Similarly, states 1 and 2 are inconsis-
tent because the strings a (positive) and abb (negative) would end in the same state if these
states were merged.

solver with some additional knowledge about the DFA identification instance. In
the following, we describe each of these techniques in turn.

4.1 From DFA identification to graph coloring

The main idea of the translation in (Coste and Nicolas, 1997) is to use a distinct
color for every state of the identified DFA. Every node in the graph coloring
problem corresponds to a distinct state in the APTA. With slight abuse of notation,
we refer to these nodes using the corresponding APTA states. Two states v and
w in this graph are connected by an edge (cannot be assigned the same color), if
merging v and w results in an inconsistency (i.e., an accepting state is merged with
a rejecting state). These edges are called inequality constraints. Figure 6 shows an
example of such a graph.

In addition to these inequality constraints, equality constraints are required: if
the parents p(v) and p(w) of two states v and w (in the APTA) with the same
incoming transition label are merged, then v and w must be merged too. The
incoming transition label of an APTA state v is the label of the unique transition
that has v as its target. In the graph coloring problem, these equality constraints
imply that the two parent states p(v) and p(w) can get the same color only if
v and w get the same color. Such a constraint is difficult to implement in graph
coloring. In (Coste and Nicolas, 1997), this is dealt with by modifying the graph
according to the consequences of these constraints. This implies that a new graph
coloring instance has to be solved every time an equality constraint is used. In our
SAT-based method we encode these constraints directly into SAT.

4.2 Direct encoding

A widely used translation of graph coloring problems into SAT is known as the
direct encoding (Walsh, 2000). Given a graph G = (V,E) and a set of colors
C = {1, . . . , k}, the direct encoding uses Boolean color variables xv,i with v ∈ V



and i ∈ C. If xv,i is assigned to true, it means that state (vertex) v has color i.
The constraints on these variables are as follows (see Table 1 for details): For every
state, at-least-one color clauses ensure that each state is colored, while at-most-one
color clauses forbid that a state can have multiple colors. The latter clauses are
redundant because they are not required for a solution to be correct. Additionally,
we have to translate that adjacent states cannot have the same color. The direct
encoding uses the following clauses:∧

i∈C

∧
(v,w)∈E

(¬xv,i ∨ ¬xw,i)

Let EL be the set consisting of pairs of states that have the same incoming label in
the APTA. In case the parents p(v) and p(w) of such a pair (v, w) ∈ EL have the
same color, then v and w must have the same color as well. This corresponds to the
equality constraints in (Coste and Nicolas, 1997). A straight-forward translation
of these constraints into CNF is:∧

i∈C

∧
j∈C

∧
(v,w)∈EL

(¬xp(v),i ∨ ¬xp(w),i ∨ ¬xv,j ∨ xw,j) ∧
(¬xp(v),i ∨ ¬xp(w),i ∨ xv,j ∨ ¬xw,j)

This encoding is identical to the CSP-based translation given in (Grinchtein et al,
2006b). Notice that the size of the direct encoding is O(k2|V |2). For interesting
DFA identification problems this will result in a formula that will be too large for
the current state-of-the-art SAT solvers. Therefore we will propose a more compact
encoding below.

4.3 Compact encoding with auxiliary variables

The majority of clauses in the direct encoding originate from translating the equal-
ity constraints into SAT. We propose a more efficient encoding based on auxiliary
variables ya,i,j , which we refer to as parent relation variables. If set to true, ya,i,j
means that for any state with color i, the child reached by label a has color j. Let
l(v) denote the incoming label of state v. As soon as both a child v and its parent
p(v) are colored, we force the corresponding parent relation variable to true by the
clauses ∧

i∈C

∧
j∈C

∧
v∈V

(yl(v),i,j ∨ ¬xp(v),i ∨ ¬xv,j)

This leads to O(k2|V |) clauses with only k2|Σ| additional literals (where |Σ| is the
size of the alphabet). Additionally, we require at-most-one parent relation clauses
to guarantee that each relation is unique:∧

a∈Σ

∧
h∈C

∧
i∈C

∧
j∈C,j>h

(¬ya,i,h ∨ ¬ya,i,j)

This new encoding reduces the number of clauses significantly. To further reduce
this size, we introduce an additional set of auxiliary variables zi with i ∈ C. If zi
is true, color i is only used for accepting states. Therefore, we refer to them as
accepting color variables. They are used for the constraint that requires accepting



states V+ to be colored differently from rejecting states V−. Without auxiliary
variables, this can be encoded as∧

v∈V+

∧
w∈V−

∧
i∈C

(¬xv,i ∨ ¬xw,i)

resulting in |V+| · |V−| · k clauses. Using the auxiliary variables zi, the same con-
straints can be encoded as∧

v∈V+

∧
i∈C

(¬xv,i ∨ zi) ∧
∧

w∈V−

∧
i∈C

(¬xw,i ∨ ¬zi)

requiring only (|V+|+ |V−|)k clauses and k additional literals.

Table 1 Encoding of DFA identification into SAT. C = set of colors, Σ = set of labels
(alphabet), V = set of states, E = set of conflict edges.

Variables Range Meaning

xv,i v ∈ V ; i ∈ C xv,i ≡ 1 iff state v has color i

ya,i,j a ∈ Σ; i, j ∈ C ya,i,j ≡ 1 iff parents of states with color j
and incoming label a have color i

zi i ∈ C zi ≡ 1 iff an accepting state has color i

Clauses Range Meaning

(xv,1 ∨ xv,2 ∨ · · · ∨ xv,k) v ∈ V every state has at least one color

(¬xv,i ∨ zi) ∧ (¬xw,i ∨ ¬zi) v ∈ V+;w ∈ V−; i ∈ C accepting states cannot have
the same color as rejecting states

(yl(v),i,j ∨ ¬xp(v),i ∨ ¬xv,j) v ∈ V ; i, j ∈ C a parent relation is set when a
state and its parent are colored

(¬ya,i,h ∨ ¬ya,i,j) a ∈ Σ;h, i, j ∈ C;h < j
each parent relation can
target at most one color

Redundant Clauses Range Meaning

(¬xv,i ∨ ¬xv,j) v ∈ V ; i, j ∈ C; i < j every state has at most one color

(ya,i,1 ∨ ya,i,2 ∨ · · · ∨ ya,i,k) a ∈ Σ; i ∈ C each parent relation must
target at least one color

(¬yl(v),i,j ∨ ¬xp(v),i ∨ xv,j) v ∈ V ; i, j ∈ C a parent relation forces a state
once the parent is colored

(¬xv,i ∨ ¬xw,i) i ∈ C; (v, w) ∈ E all determinization conflicts
explicitly added as clauses

4.4 Symmetry breaking

In case a graph cannot be colored with k colors, the corresponding (unsatisfiable)
SAT instance will solve the problem k! times: once for each permutation of the col-
ors. Therefore, when dealing with CNF formulas representing graph coloring prob-
lems, it is good practice to add symmetry breaking predicates (SBPs) (Sakallah,
2009). Notice that in any valid coloring of the consistency graph, every state in
a clique must have a different color. So, one can fix the color of states in a large



clique in this graph in a pre-processing step. Although finding the largest clique in
a graph is NP-complete, a large clique K can be computed cheaply using a greedy
algorithm:

1. Start with a state v with highest degree. Set K = {v}.
2. Let GK be the subgraph of states that are connected to all states in K.
3. Add a state with highest degree in GK to K.
4. Repeat from Step 2 until GK contains only states in K.

Since every state in K needs to have a different color, and the actual value of
the color does not matter for the solution, we simply pre-assign a color to every
state in K = {v1, . . . , vn} using unit clauses:∧

vi∈K
(xvi,c(i))

where c(i) is the ith color.

4.5 Adding redundant clauses

The compact encoding discussed above can be extended with several types of
redundant clauses. First, we can explicitly state that every state must be colored
with exactly one color by adding the redundant at-most-one color clauses∧

v∈V

∧
i∈C

∧
j∈C,j>i

(¬xv,i ∨ ¬xv,j)

Similarly, we can explicitly encode that for each combination of a color and a label
exactly one parent relation variable must be true. This is achieved by adding the
at-least-one parent relation clauses∧

a∈Σ

∧
i∈C

(
∨
j∈C

ya,i,j)

These two types of clauses are known as blocked clauses (Kullmann, 1999). These
clauses have at least one literal that cannot be removed by resolution. Therefore,
blocked clauses cannot be used to derive the empty clause (i.e., show that the
formula is unsatisfiable) (Kullmann, 1999). So, formulas with and without blocked
clauses are equisatisfiable. In previous work (Heule and Verwer, 2010), we showed
that these blocked clauses improve the performance of DFA identification. For
other problems, removal of blocked clauses results in a speed-up (Jarvisalo et al,
2010). Other types of redundant clauses we use include a reformulation of the
constraint on the parent relation:∧

v∈V

∧
i,j∈C

(¬yl(v),i,j ∨ ¬xp(v),i ∨ xv,j)

and an explicitly formulation of all edges of the consistency graph that are not
covered by the accepting color literals, i.e., the inconsistencies caused by deter-
minization: ∧

i∈C

∧
(v,w)∈E

(¬xv,i ∨ ¬xw,i)



Although these clauses are redundant, they provide some additional knowledge
about the problem to the SAT solver. In particular, adding the clauses that rep-
resent inconsistent merges appeared to improve the performance in our previous
work (Heule and Verwer, 2010). For the StaMinA problems, however, we excluded
them since they only resulted in a large overhead (in the worst case O(k|V |2)
clauses are required) and an increased solving time.

5 DFA identification for software model synthesis

We now describe how we applied our SAT-based approach to the problem of soft-
ware model synthesis. The size of the alphabet, sparsity of the available data,
and types of machines used to generate the data in the StaMinA problem in-
stances (Walkinshaw et al, 2010) lead to several problems for our SAT-translation:

1. The resulting encoding is too large for state-of-the-art SAT solvers. Naively ap-
plying our SAT-based technique by iterating over the number of states quickly
requires hundreds of millions of clauses.

2. The learning bias (finding the smallest DFA) is unsuited for software model
synthesis. For example, in a software model, many states occur that have dis-
junctive sets of labels (no overlap at all) on outgoing transitions. The tra-
ditional learning bias often combines such states into one since it does not
influence the acceptance of positive strings and inconsistencies due to negative
strings (small deviations of positive behavior) are rare. The result, however, is
a very different (much larger) language.

3. Even with a good bias, it is unlikely that the best scoring DFA is identical to the
target machine due to the data sparseness. Ensuring this will typically require
a large input set of diverse examples.

Any DFA identification technique has to face these problems when trying to
synthesize software models. One of the goals of the StaMinA DFA learning com-
petition was to find DFA learning techniques that perform well in this challenging
setting. The EDSM algorithm performs very poorly on the StaMinA problem in-
stances, achieving an accuracy of only 52% on the most difficult ones. Using our
SAT-based method, we improved the accuracy on these problems to 95%. Signif-
icantly improving the state-of-the-art in software model DFA identification, and
(partially) solving the problems faced when synthesizing software models.

Our algorithm is a combination of the greedy and exact DFA identification
techniques described in the previous sections. It can be succinctly described as
follows. We first apply greedy EDSM steps. Every such step (iteration) reduces
the size of the remaining DFA identification problem. When the remaining prob-
lem is sufficiently small, we apply the SAT-based exact method. This solves the
first problem, but unfortunately it also makes the result dependent on the EDSM
heuristic. Since this heuristic is not well suited to learning software models (shown
by the low accuracy scores), we develop a new heuristic and new merge restrictions
for EDSM that favor a large overlap in the labels of outgoing transitions of merged
states, partially solving the second problem. Furthermore, since any greedy heuris-
tic method can perform merges that lead to suboptimal solutions, we randomize
the new evidence value and run it several times before returning the best found so-
lution. Using such a random greedy procedure, we can actually find many possible



candidate solutions. Especially on the sparse problems, we cannot be sure which
one of these DFAs is best. We therefore apply an ensemble method (Dietterich,
2000) in order to generalize these DFAs into an “average” DFA language. This
partially solves the third problem.

Although all these techniques radically modify our algorithm, the SAT solver
still serves as the core problem solving engine. Below we describe the different
techniques in detail.

5.1 Greedy before search

The first problem is the most pressing one, because otherwise the SAT solver
crashes or starts to swap memory1. We tackle it using the fact that our encoding
is also valid for a partially identified DFA instead of an APTA. Since a partially
identified DFA potentially combines (merges) many states of the APTA into one,
this can significantly reduce the size of the encoding. The price to pay is of course
that the solution provided by the SAT solver will no longer be exact. This now
depends on whether the partial DFA is identified correctly. For identifying this par-
tial DFA, we use the state-of-the-art EDSM algorithm in the red-blue framework.
Our SAT-based DFA identification algorithm then works as follows:

1. Identify a partial DFA A′ by applying EDSM for several iterations.
2. Apply a SAT solver to the remaining problem of finding the minimal consistent

DFA A that contains A′.

Intuitively, using the red-blue framework for identifying A′ is a natural choice
since the first couple of merges are then based on evidence from many examples
with respect to the number of available options (merges). Consequently, during
these first merges, the heuristic value is well-estimated and therefore has a high
probability of being correct, i.e., it is likely to lead to the optimal solution. With ev-
ery merge that EDSM performs, more options and less examples become available,
reducing this probability. An interesting open question is whether it is possible to
compute this probability and use it as a guidance for when to switch to the exact
solver. This could lead to DFA identification algorithms with high performance
guarantees.

The decision value we used to determine when to switch during the StaMinA
competition is based on practical considerations. In particular, for reasons that will
become apparent in the following sections, we needed to be able to construct many
small (not necessarily minimal) consistent DFAs in very little time. We therefore
based the decision value on the size of the encoding of the remaining problem.
This size is for a large part determined by the number of remaining non-red states
reached by positive strings (the not pure negative parts of the original APTA
that are not yet merged with red states). We switch once this value becomes
less than 1000. We disregard the pure negative states since many of these will
be merged into a rejecting sink (most of the negative strings from the StaMinA
competition problems end up in such a sink). The remaining problem after this
switch is typically solved in about a minute by the SAT solver.

1 The machine we used for the competition contained 20Gb of RAM.



A bonus of first applying the EDSM algorithm in the red-blue framework is that
we automatically obtain a clique of conflicting states: no red state can be merged
with another red state. On the StaMinA problems, this clique is never smaller
than the one found by the greedy max-clique algorithm. Therefore, we use these
red states instead of the clique to construct the symmetry breaking predicates in
our SAT encoding.

5.2 A new heuristic

The greedy before search method completely solves the first problem. Unfortu-
nately, this method also makes the result very dependent on the heuristic used
by EDSM. Due to the second problem, this heuristic is not well-suited for soft-
ware model synthesis. Most importantly, it does not include any measure for the
overlap in positive fanout of states. The positive fanout of a state is the set of
symbols of outgoing transitions that can be activated by an accepting compu-
tation. In software models almost every state has a small positive fanout. We
denote by pf (q) the positive fanout of state q, i.e., pf (q) = {t ∈ T | ∃s ∈
S+ with computation q0t1 . . . qt . . . qn}. Moreover, since software models typically
use a large alphabet of possible symbols, only a few of these states have exactly
the same positive fanout. Therefore, if two states q and q′ in the APTA have the
same (or similar) positive fanout, this is an important indication that q and q′ are
actually the same state in the original software model that generated the data.

EDSM should thus use an evidence measure that favors merging states with a
high degree of overlap in positive fanout. Hence a merge of q and q′ is favorable if
|pf (q)∩ pf (q′)| − |pf (q)∪ pf (q′)| is small. We provide such a measure by counting
the amount of positive merges. Let |A|p denote the number of states in A that
are reached by the positive examples from the input sample, i.e., |A|p = |{q ∈
Q | ∃s ∈ S+ with computation q0t1 . . . q . . . qn}|. For instance, in the APTA of
Figure 3, from all states except q5 an accepting state can be reached. The new
evidence score is computed as follows:

new evidence(A, q, q′) :=

{
|A|p − |merge(A, q, q′)|p if merge(A, q, q′) 6= false

−1 otherwise

In other words, the difference in states reached by positive examples before and
after the merge. This measure is computed by counting the number of merges
between states that are both reached by a positive example. When there is a lot of
overlap in positive fanout between the merged states, our new evidence measure
obtains a high value because many children of these states are reached by positive
examples, and will be merged during the determinization process. Which states
are reached by positive examples can be computed efficiently by setting a Boolean
flag to true in each state reached by a positive string. This flag can be set during
APTA construction and maintained using the or-operation when merging states.

In contrast to the traditional EDSM measure, which only uses counts based on
the rejecting and accepting states, our new evidence measure uses counts based on
the entire computation of positive examples. It thus uses more information from
the positive examples, and it completely disregards all information in the negative
examples. This makes sense in software model synthesis because the behavior of



a software system is captured in the positive examples, representing correct ex-
ecutions of the system. The negative examples are simply random deviations of
this behavior that represent faulty or incomplete executions. Due to this random-
ness, the computations of negative examples do not hold a lot of information. The
only information from the negative examples used in our algorithm is that (like
in EDSM) merges are required to be consistent, i.e., positive states and negative
states cannot be merged.

5.3 Random greedy

The heuristic value described above gives preference to merges between states with
a lot of overlap in positive fanout. Although this makes sense in software model
synthesis, it is still a heuristic and it will not always select the most optimal
merge, leading to the best DFA software model. It thus makes sense to sometimes
try different merges, leading to different greedy paths, and resulting in different
DFA software models. The best DFA model resulting from these different paths
can then be returned as a solution. Unfortunately, it is not clear when to try
different merges. Intuitively, it makes sense to try other merges that also obtain a
high heuristic value, but how big the difference from the optimal value should be is
unknown. A simple but effective technique called random greedy can be employed
in such cases. This transforms the heuristic value in the following way:

random greedy := random() · new evidence

where random() is a function that return a value between 0.0 and 1.0 drawn uni-
formly at random. Using this transformation, the greedy procedure sometimes
tries merges with heuristic values that are smaller than optimal. Additionally, if
this value is much smaller than optimal, the probability that the merge is per-
formed is very small. This makes sense intuitively, and works very well in practice.
A potential problem occurs when many merges with small heuristic values are
possible. In this case, the probability of performing a merge with a high heuristic
value is small. We solve this problem by restricting the set of possible merges, and
by repeating the greedy procedure many times. In the remainder of this section,
we first describe these restrictions and then how we combine the result of many
greedy runs.

5.4 Additional merge restrictions

In EDSM, the only restriction on a possible merge is that it is not allowed to
be inconsistent (merging an accepting state with a rejecting state). Other than
that, the decision on which merge to perform is determined using the evidence
value. In software models, not only the acceptance condition of states, but also
their positive fanout is important. In fact, in our experience with the StaMinA
competition instances, the overlap in positive fanout turned out to be so important
that we also use it in a consistency check by adding to merge (A, q, q′):

if q ∈ R and pf (q′) 6⊆ pf (q) or q′ ∈ R and pf (q) 6⊆ pf (q′) then return A



In other words, a merge is not allowed to add a new label to the positive fanout of
a red state. The intuition behind this check is that, in the red-blue framework, the
red states are assumed to be correctly identified. Therefore, we disallow adding
new possible executions to the software system represented by these red states.
Adding this consistency check turned out to be extremely important in solving
the StaMinA problem instances.

Another new merge restriction involves an important property of software mod-
els, namely, that negative strings contain little information. This causes some prob-
lems when the greedy procedure starts to consider merging states with very small
heuristic values. Although states reached only by negative strings always get a
heuristic value of 0, it is possible that no good merge can be performed. In this
case, it is always better to color a state red then to perform a bad merge. Since
introducing new red states increases the number of possible merges, it is possible
that good merges can again be found after coloring a state red. Coloring one of
the pure negative states red, however, does not have this positive effect on later
merges. Instead, it only increases the number of possible bad merges. Therefore,
we do not even color pure negative states blue since this excludes them from being
merged except by determinization. At the end of the greedy procedure, however,
many transitions will now go from red states to uncolored pure negative states.
Before calling the SAT solver, we merge these pure negative children of red states
into a rejecting sink (a rejecting state with all outgoing transitions pointing to
itself). Although it is possible that the exact solver now requires a few additional
states to solve the problem (if some of these rejecting sink merges are suboptimal),
this is worth it because merging these states into a single sink significantly reduces
the size of the encoding.

5.5 An ensemble of automata

The previous three techniques and modifications all involved the greedy procedure
and how to change its learning bias into the direction of software models, solving
problem 2 from the beginning of this section. It could also be a good idea to modify
the learning bias of the subsequent exact procedure. This would require a radically
different encoding however, and since our current encoding (that minimizes the
number of required additional states) works very well, we did not change this part
of our algorithm. Instead, we focus on the remaining problem number 3, which is
the sparseness of the available data.

Due to the sparseness of the data, it is unlikely that our algorithm finds the
target DFA that was used to generate the data. During the StaMinA competition,
we often encountered problem instances for which our algorithm found hundreds
of different good solutions but none of them was good enough to solve the problem
(achieving the required 99% accuracy). Surprisingly, some instances were suddenly
solved when we combined all of these solutions:

given a test string s, output

{
‘1’ if at least 50% of the DFAs accept s

‘0’ otherwise

Such an ensemble (Dietterich, 2000) of good automata seems to generalize really
well over the different DFA languages, solving several StaMinA instances. Later,



we modified the condition to at least 10% since this increased the performance,
solving several additional problem instances. Essentially, this means that the found
DFAs have a tendency to reject strings. Investigating this tendency would be a
very interesting direction for future work on software model synthesis.

6 The final algorithm

The final algorithm we used in the StaMinA competition is a combination of greedy
techniques and our exact SAT translation. We believe this combination of greedy
and exact techniques to be an important step forward in DFA identification. The
key insight is that by iteratively introducing new states of the identified DFA, a
greedy learning method continuously divides the data over more and more states.
EDSM in the red-blue framework does so by coloring more and more states red.
Consequently, with every iteration of the algorithm less data becomes available.
Since the EDSM heuristic is based on statistics, this leads to a drop in performance.
At some point, the heuristic performs so poorly that it makes sense to switch to
an exact strategy.

Other important key points of our final algorithm are the new heuristic and new
consistency checks. These effectively change the bias of a state-merging method
in the direction of software models. The resulting increase in performance clearly
shows the need to change this bias. We believe that such a need also exists in
other applications of grammatical inference such as bio-informatics and computa-
tional linguistics, since, like software models, the models in these domains typically
require large alphabets. It would be interesting to see what kind of heuristics per-
forms well in these domains. We would like to point out, however, that even our
new heuristic will perform poorly at some point. Therefore the combination with
an exact technique such as a SAT solver is crucial for obtaining good performance.

Finally, the ensemble of automata is an interesting technique that works really
well on sparse problem instances. Here, the key is to only combine good solutions.
Therefore, instead of using every solution found by the random greedy algorithm,
we only use those of small size. Furthermore, by decreasing this size bound (dis-
cussed below), we actively try to increase the quality of these solutions over time.
Given enough good solutions (DFAs), we generalize them using a voting scheme
that accepts a string if a substantial minority of the given DFAs accepts it (and
rejects it otherwise). The first solutions can be discarded during the voting scheme
to slightly improve the resulting generalization.

Our final algorithm (Algorithm 4) works in three steps:

1. First merge using EDSM, continue using SAT.
2. Fine-tune the target size.
3. Generalize over the found solutions.

We now explain each of these three steps, their parameters, and the settings used
during the StaMinA competition.

EDSM vs SAT Ideally, one wants to solve a DFA identification problem exact (op-
timal value). In prior work (Heule and Verwer, 2010), we showed that SAT solving
can beat EDSM implementations on hard instances. However, for the StaMinA



Algorithm 4 dfasat
Require: an input sample S, a test sample St, merge bound m, number of solutions n,

accepting vote percentage avp between 0 and 1
Ensure: L is a labeling for St aimed to give high accuracy for software models

let t :=∞ // the size bound t is initialized to infinity
let D := ∅ // D is an empty set of DFAs
A = apta(S) // construct the APTA A
while |D | < n do // while D contains less than n DFAs

let A′ := copy(A) // create a copy A′ of the APTA
while |A′|p > m do // while the positive strings reach more than m states in A′

use random greedy to select q and q′ in A′

call merge(A′, q, q′) // merge states in A′ using random greedy
end while

if |R| > t (R being the red states in A′) then // if A′ has more than t red states
continue the next while loop iteration // try to find a better partial solution

end if
set t := |R| // else update t to the amount of resulting red states

let i := 0 // initialize the number of additional states to 0
while true do // while no solution has been found for the remaining problem

translate A′ using |R|+ i colors // try to find an exact solution with i extra states
solve the formula using a SAT-solver
if the solver returns a DFA solution A′′ then

add A′′ to D and break // if the SAT solver finds a solution add it to D
else if the solver used the 300 seconds timeout then

break // try another partial solution if the problem is too hard
else

set i := i+ 1 // else try to find a larger solution
end if

end while
end while

let L be an empty labeling // initialize the test labeling
for all s ∈ St do // forall test strings

if |{A ∈ D | s ∈ L(A)}| ≥ n · avp then
append ’1’ to L // label s positive if at least avp percent of the DFAs in D accept s

else
append ’0’ to L // label s as negative otherwise

end if
end for
return L

problems as well as many others, exact solving is not possible. Hence we propose
to combine both alternatives.

Two main reasons make exact solving difficult. First, the merge restrictions,
discussed in Section 5.4, are important for making the first merges effective. Our
SAT translation does not cover concepts such as “red states” and “positive fanout”.
Adding these concepts, to encode these restrictions, will probably increase the size
of the encoding significantly. Therefore, it seems best to perform the first merges
using EDSM.

Second, the size of the APTA is simply too large for SAT solvers to deal with.
Current state-of-the-art SAT solvers can solve structured problems, such as our
DFA encoding, up to a few million clauses in reasonable time. Without applying
some merge steps in advance, the SAT translation of the StaMinA problems con-



sists of hundreds of millions of clauses – definitely too big to solve. Hence, at least
several merge steps are required to bring the size down.

The question arises, when to stop merging and start SAT solving? Within the
algorithm, we use the parameter m for this purpose. It stops the merging sequence
as soon as the size of the number of states in A that are reached by the positive
examples from the input sample is smaller than m (|A′|p ≤ m). For the StaMinA
competition we used the following reasoning to fix m. The main idea is to switch
to SAT solving as soon as possible. So, when the APTA becomes small enough
such that the translation consists of at most a few million clauses, then make the
translation and apply SAT. We fixed m := 1000 because that value satisfied this
objective.

After StaMinA finished, detailed results became available. We therefore also
experimented with smaller values of m to see whether the performance of the
algorithm decreased. It appeared that this was hardly the case. It is possible
to decrease m to approximately 300 without any measurable performance loss.
Apparently, random greedy EDSM can still make (almost) the optimal merges up
to that point for some of the merge sequences. The advantage of setting m to a
lower value is that the algorithm will generate solutions faster. This is especially
useful in case one wants to generate many solutions in order to generalize them
(discussed below).

Tuning the target size. In a partially identified DFA A, the red states R form the
part of A that is assumed to be correctly identified. Therefore, the smallest DFA
A′ that can be found by the SAT solver when starting from A has at least r states.
Now, consider two partially identified DFAs that both have (almost) the same size,
but they differ in the number of red states. It is expected that one can construct a
smaller DFA solution when starting from the one with fewer red states. Therefore
we use the number of red states as a measurement on the effectiveness of a random
greedy sequence.

This measurement is used as follows in the dfasat algorithm. A parameter t is
used that refers to the target size of the DFA. If after merging, the number of red
states |R| is larger than t, then that merge sequence is considered as ineffective.
Initially, t := ∞. So, no matter how bad the merge sequence, the remaining part
is solved exactly by the SAT solver. The target size t is decreased over time: If
the SAT procedure is called (|R| ≤ t), then t is reduced to |R| (t := |R|). As a
result of the decrement of t over time, the size of the generated DFA solution is
expected to decrease as well. There is no strong relation between the number of
red states of a partially identified DFA A and the smallest DFA A′ found starting
from A′. For the StaMinA problems we observed that in most cases the size of A′

is between |R| and |R|+ 6.

In practice, t converges fast. For the StaMinA benchmarks, t was close to the
converging value after a few decrements. Yet different values were observed for
different problems. The value of t after a few decrements ranged between 30 and
130. All problems of the StaMinA competition were constructed using a DFA of
approximately size 50. So the large range of values can hardly be explained based
on the construction method. In general (but with exceptions), the sparser the data,
the larger t, while the larger the alphabet, the smaller t.



Generalizing over the found solutions. The algorithm (Algorithm 4) generates
many solutions. For the StaMinA problems with 100% sparsity, one of the first
solutions had an accuracy of 99% thereby solving the problem. However, for al-
most all the problems with less than 100% sparsity, a single solution (even when
generating dozens of them) did not have an accuracy of 99%. In order to solve
several of these problems we developed a technique to combine good solutions.

Once the algorithm has found quite some (say n := 100) good complete so-
lutions, we let each of these stored DFAs determine whether it accepts or rejects
the strings in the test set. In our experience, using 100 good solutions is sufficient
to get good results and more solutions hardly improved the result further. Every
string from the test set that is accepted by a “substantial minority” of the DFAs
gets assigned a positive label ‘1’, all other strings get a negative label ‘0’. We refer
to the accepting vote percentage (avp) as this fraction of the “substantial minor-
ity”. For the competition we used 10% of the DFAs as avp, because using it solved
most instances.

After the competition, when detailed results became available, it appeared
that a voting scheme depending on 10% of the DFAs is hardly the best one in
general. Table 2 shows the results for different vote schemes based on the avp.
We selected ten instances for which i) dfasat performs reasonably well and ii) the
voting scheme has an observable influence. The size of the alphabet has a clear
impact on the optimal voting scheme. For an alphabet of size two, a voting scheme
that requires 50% of the DFAs to accept a string was optimal. With increasing
sizes of the alphabet, the voting scheme should accept a string if fewer DFAs accept
that string. The most extreme example that we encountered was problem #91.
For this problem, only a voting scheme requiring 1% of the DFAs to accepted it
resulted in a BCR (accuracy, see next section) of 98.

Table 2 Balanced Classification Rate (BCR) for selected problems using different voting
schemes based on the avp. The bold values show the highest rate per problem.

problem |L| 10% 20% 30% 40% 50% 60% 70% 80% 90%
#8 2 89 92 94 95 95 95 94 93 91
#14 2 95 97 98 98 98 98 98 97 93
#26 5 94 97 97 97 96 95 94 92 88
#31 5 84 87 89 89 84 78 67 57 45
#49 10 96 97 97 96 94 92 88 84 78
#55 10 97 97 98 97 97 95 90 84 77
#69 20 98 98 98 98 98 97 97 96 96
#73 20 99 99 99 98 98 97 96 92 86
#86 50 99 98 97 97 97 97 96 96 95
#91 50 97 96 95 94 94 93 92 89 86

7 Results

We implemented the dfasat algorithm while focusing on fast performance on the
StaMinA competition benchmarks2. Our implementation strongly follows the pseu-
docode as shown in Algorithm 4. Some minor tweaks discussed below were applied

2 available from http://stamina.chefbe.net/download



to speed up the algorithm for the benchmark set. The picosat solver (Biere, 2008)
was selected to tackle the resulting CNF formulas. This solver appeared to be the
fastest around for this application.

7.1 Running dfasat on StaMinA

The CNF formulas that were generated by our translator consisted on average of
a few million clauses for each of the StaMinA competition problems. These formu-
las include all redundant clauses (Section 4.2) and symmetry breaking predicates
(Section 4.4). Since the latter are mostly unit clauses, the translator simplified the
formula during the translation (otherwise the output would have been significantly
larger). SAT solvers would perform a similar simplification, but the translator is
much faster than writing the huge formula to disk and let the SAT solver deal
with it.

Although formulas with a few million clauses may appear hard to solve, in
practice most were relatively easy. The satisfiable formulas (with solutions) were
solved between a few seconds and five minutes. The unsatisfiable formulas (without
solutions, so the target DFA is too small) required clearly more time; between a
minute and an hour. Because unsatisfiable formulas do not result in a DFA, we
killed the SAT solver after 5 minutes to speed up the whole process. For the 25
competition instances with 100% sparsity, the dfasat algorithm could quickly find
a DFA which labeled the test set with an accuracy of at least 99% according to
the online competition oracle. For most of these instances, just a few DFAs were
computed of which one passed the accuracy test. For the harder ones a dozen DFAs
were required to pass the test using the 10% voting scheme. Our implementation
could solve all the 100% sparsity instances in less than 15 minutes per problem.

The problems with 50% sparsity required more computational cost. For each of
those problems we ran the algorithm for one hour per instance and submitted the
labeling of the test set using the 10% voting scheme. Using this approach, we were
able to solve about half of the instances. For the unsolved instances, we ran the
algorithm for an additional three hours per instance which helped to solve a few
more instances. For problem #8 (the smallest unsolved benchmark) we even ran
the algorithm for 24 hours. Yet it remained unsolved. For all 50 instances with very
low sparsity (25% or 12.5%) we ran the algorithm for an hour and submitted the
result using the 10% voting scheme. Based on the experience with 50% sparsity,
we had no expectation to solve any of these instances.

7.2 Final results

The results of our algorithm on the StaMinA problems are shown in Figure 7.
The accuracy score is computed according to the (BCR) measure, which is the
harmonic mean of the true positive and true negative ratios, see (Walkinshaw
et al, 2010):

BCR =
2 · sensitivity · specificity

sensitivity + specificity

where sensitivity is TP
TP+FN , specificity is TN

TN+FP , and TP , TN , FP , FN are the
true and false positives and negatives.
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Fig. 7 The resulting average Balanced Classification Rate values of EDSM and dfasat on the
StaMinA problem instances.

In addition to winning the StaMinA competition, the figure shows we also
improved the accuracy of the state-of-the-art grammatical inference method for
software synthesis from an average performance of 52% (using EDSM) to 95% on
the hardest problems. Our technique thus shows big potential for solving real-world
software synthesis problems.

Figure 7 also shows that our technique does not perform well on sparse problem
instances with small alphabets. This is partially due to the new heuristic. The
heuristic considers the overlap in positive fanout to be the most important criterion
when deciding which merge to perform. Since this is less important when the
alphabet is small, using another heuristic such as the original EDSM evidence
value potentially improves our performance on these instances. Furthermore, as
shown in the previous section, the 10% voting scheme later turned out to be
unsuited for problems with a small alphabet.

Due to the construction method of the StaMinA instances3, the training sets
contain a lot of duplicate examples (especially positive ones). As a result, the
smaller the alphabet, the larger the fraction of duplicates. Hence, competition
instances with larger alphabets have more unique training examples. Since the
examples used for testing do not overlap with the training examples, we expect
that this contributed to the performance of dfasat on larger alphabets.

8 Conclusions

We presented dfasat, the winning solver of the StaMinA DFA learning competition.
Our contributions are the following:

– We provide an efficient translation from DFA identification into satisfiability.

3 see http://stamina.chefbe.net/machines



– We show how to use a greedy state-merging algorithm before applying the exact
SAT solver.

– We give a new heuristic and new consistency checks that are dedicated to
software model synthesis problems.

– We demonstrate the effectiveness of random greedy and ensemble methods in
DFA identification problems.

With our technique, the performance of the state-of-the-art on the hardest StaMinA
problems (a size 50 alphabet and observing only 12.5% of the input examples) is in-
creased from 52% to 95%. This shows the big potential of our technique for solving
real-world software synthesis problems. Furthermore, since many other application
areas such as bio-informatics and computational linguistics typically also require
a large alphabet, it would be interesting to test the performance of our method in
these domains as well.

Our technique is a unique combination of exact and greedy techniques that we
believe has a lot of merit in many machine learning problems. The key insight
of our method is that greedy methods in machine learning perform well when a
lot of data is available since they are typically based on statistics. Furthermore,
with every step, a greedy method typically divides the data over newly identified
elements of a model. An example is decision tree learning in which the greedy
method divides the data over new leaf nodes in every step. In every subsequent
iteration of such a greedy method less and less data becomes available. At some
point, the statistics in the heuristic will be poorly estimated and therefore it makes
sense to switch to an exact strategy.

Using a SAT solver for the exact part of our algorithm seems a very good
choice since it provides many advanced solving techniques. In addition, since less
data becomes available with every greedy iteration, we can perform greedy steps
until the size of the SAT encoding is relatively small. The SAT solver then requires
little time to decide whether the remaining problem is ‘satisfiable’. In this way, it
is possible to generate many good solutions in just a few minutes. An ensemble of
these solutions nearly solved the most difficult StaMinA problems. We performed
an analysis on how to set the accepting vote percentage parameter used in this
ensemble on the StaMinA instances. Interestingly, the obtained results show that a
larger alphabet requires a smaller accepting vote percentage in order to be learned
with high accuracy. We tuned the other parameters (bounds on the number of
merges and solutions) such that dfasat returns good quality solutions quickly.
Further investigation of these parameters on the resulting accuracy is left as future
work.

We are very interested to see how our technique performs in different problem
domains. The code is available online at http://www.st.ewi.tudelft.nl/sat/

dfasat.php.
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