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Abstract

Adverse drug events are a leading cause of danger and cost
in health care. We could reduce both the danger and the cost
if we had accurate models to predict, at prescription time for
each drug, which patients are most at risk for known adverse
reactions to that drug, such as myocardial infarction (MI, or
“heart attack”) if given a Cox2 inhibitor, angioedema if given
an ACE inhibitor, or bleeding if given an anticoagulant such
as Warfarin. We address this task for the specific case of Cox2
inhibitors, a type of non-steroidal anti-inflammatory drug
(NSAID) or pain reliever that is easier on the gastrointesti-
nal system than most NSAIDS. Because of the MI adverse
drug reaction, some but not all very effective Cox2 inhibitors
were removed from the market. Specifically, we use machine
learning to predict which patients on a Cox2 inhibitor would
suffer an MI. An important issue for machine learning is that
we do not know which of these patients might have suffered
an MI even without the drug. To begin to make some head-
way on this important problem, we compare our predictive
model for MI for patients on Cox2 inhibitors against a more
general model for predicting MI among a broader population
not on Cox2 inhibitors.

Introduction

An electronic medical record (EMR) or electronic health
record (EHR) is a relational database that stores a patient’s
clinical history: disease diagnoses, procedures, prescrip-
tions, vitals and lab results, etc. EMRs contain a wealth of
information, and using techniques such as machine learn-
ing and data mining to analyze them offers the potential to
discover interesting medical insights. For example, it is pos-
sible to use an EMR to build models to address questions
such as predicting which patients are most at risk for hav-
ing an adverse response to a certain drug or predicting the
efficacy of a drug for a given individual.

The automated analysis of EMR data poses many chal-
lenges, including:

Multiple relations. Each type of data (e.g., drug prescrip-
tion information, lab test results, etc.) is stored in a dif-
ferent table of a database. Traditionally, machine learning
algorithms assume that data are stored in a single table.
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Representation of uncertainty. It is necessary to model
the non-deterministic relationships between a patient’s
past and future health status.

Noisy data. The data are inherently noisy. For example, a
disease code may be recorded for billing purposes or be-
cause a patient had the disease in the past and the physi-
cian found it relevant for the current consultation. Or lab
test results may vary due to lab conditions and personnel.

Incomplete data. Important information such as the use of
over-the-counter drugs may not appear in the clinical his-
tory.

Varying amounts of data. The amount of data about each
patient may vary dramatically. For example, patients
switch doctors and clinics over time, so a patient’s entire
clinical history is unlikely to reside in one database.

Longitudinal data. The time of diagnosis or drug pre-
scription is often very important.

Statistical relational learning (SRL) (Getoor and Taskar
2007) is a relatively new area of artificial intelligence re-
search that is particularly suited to analyzing EMRs. The
goal of SRL is develop formalisms that combine the benefits
of relational representations, such as relational databases or
first-order logic, with those of probabilistic, graphical mod-
els for handling uncertainty. SRL is particularly adept at si-
multaneously modeling the relational structure and uncer-
tain nature of EMRs.

In this paper, we will look at applying SAYU (Davis et
al. 2005), a SRL formalism that combines rule learning with
probabilistic inference, to the specific task of predicting ad-
verse drug reactions (ADRs) from EMR data. Building pre-
dictive models for ADRs is interesting because an accurate
model has the potential to be actionable. However, in or-
der to be actionable, one important question is whether the
model is predicting susceptibility to the ADR or simply that
a patient is at risk for the outcome, regardless of whether the
drug (or medicine) is taken. In this paper, we present a pre-
liminary investigation of this question using real-world clin-
ical data. We focus on one ADR related to selective Cox2
inhibitors (Cox2ib), such as Vioxx™.

Our results show significant differences in transferring
learned models for myocardial infarction (MI) between two
populations, one that was exposed to Cox2 inhibitors and



a control population, and in general suggest differential be-
havior between the two populations with higher accuracy in
models for populations exposed to Cox2 inhibitors.

Background

In this section, we review SAYU (Davis et al. 2005), an SRL
learning system. SAYU uses first-order definite clauses,
which can capture relational information, to define (binary)
features. These features then become nodes in a Bayesian
network.

First-order Logic

SAYU defines features using the non-recursive Datalog sub-
set of first-order logic.! The alphabet consists of three types
of symbols: constants, variables, and predicates. Constants
(e.g., the drug name Propranolol), which start with an up-
per case letter, denote specific objects in the domain. Vari-
able symbols (e.g., disease), denoted by lower case let-
ters, range over objects in the domain. Predicate symbols
P/n, where n refers to the arity of the predicate and n > 0,
represent relations among objects. An atom is of the form
P(tq,...,t,) where each ¢; is a constant or variable. A [if-
eral is an atom or its negation. A clause is a disjunction over
a finite set of literals. A definite clause is a clause that con-
tains exactly one positive literal. Definite clauses are often
written as an implication B = H, where B is a conjunc-
tion of literals called the body and H is a single literal called
the head.

Tree-Augmented Naive Bayes

A Bayesian network compactly represents the joint prob-
ability distribution over a set of random variables X =
{X1,...,X,}. A Bayesian network is a directed, acyclic
graph that contains a node for each random variable X; €
X. For each variable (node) in the graph, the Bayesian net-
work has a conditional probability table O, | parents(x;) 1V-
ing the probability distribution over the values that variable
can take for each possible setting of its parents. A Bayesian
network encodes the following probability distribution:

X)) = 1:[ P(X;|Parents(X;)) (1)
i=1

Pp(Xy,..

Tree augmented naive Bayes (TAN) (Friedman, Geiger,
and Goldszmidt 1997) is a Bayesian network based classi-
fier. Given a set of attributes Aq,..., A, and a class vari-
able C, the TAN learning algorithm starts with basic Bayes
net structure of naive Bayes, where each attribute has ex-
actly one parent: the class node. TAN further permits each
attribute to have at most one other parent. This allows the
model to capture a limited set of dependencies between at-
tributes. A TAN model can be learned in polynomial time
with a guarantee that the learned model maximizes the log
likelihood of the data given the class node.

IThis subset of first-order logic with a closed-world assumption
is equivalent to relational algebra/calculus.

SAYU

SAYU, like VISTA (Davis et al. 2007), uses definite clauses
to define features for the statistical model. Each definite
clause becomes a binary feature in the underlying statistical
model. The feature receives a value of one for an example if
the data about the example satisfies (i.e., proves) the clause
and it receives a value of zero otherwise.

SAYU starts by learning a model M over an empty fea-
ture set F'S. This corresponds to a model that predicts the
prior probability of the target predicate. Then it repeatedly
searches for new features for a number of iterations. In
each iteration, SAYU first selects a random seed example
and then performs a general-to-specific, breadth-first search
through the space of candidate clauses. To guide the search
process, it constructs the bottom clause by finding all facts
that are relevant to the seed example (Muggleton 1995).
SAYU constructs a rule containing just the target attribute,
such as ADR(pid), on the right-hand side of the implication.
This means that the feature matches all examples. It creates
candidate features by adding literals that appear in the bot-
tom clause to the left-hand side of the rule, which makes the
feature more specific (i.e., it matches fewer examples). Re-
stricting the candidate literals to those that appear in the bot-
tom clause helps limit the search space while guaranteeing
that each generated refinement matches at least one exam-
ple.

SAYU converts each candidate clause into a feature, f,
and evaluates f by learning a new model (e.g., the struc-
ture of a Bayesian network) that incorporates f. In prin-
ciple, any structure learner could be used, but SAYU typi-
cally uses a tree-augmented Naive Bayes model (Friedman,
Geiger, and Goldszmidt 1997). SAYU evaluates each can-
didate f by comparing the generalization ability of the cur-
rent model F'S versus a model learned over a feature set ex-
tended with f. SAYU does this by calculating the area under
the precision-recall curve (AUC-PR) on a tuning set (Davis
and Goadrich 2006). AUC-PR is used because relational do-
mains typically have many more negative examples than
positive examples, and the AUC-PR ignores the potentially
large number of true negative examples.? In each iteration,
SAYU adds the feature f " to F'S that results in the largest
improvement in the score of the model. In order to be in-

cluded in the model, f " must improve the score by a certain
percentage-based threshold. This helps control overfitting by
pruning relative weak features that only improve the model
score slightly. If no feature improves the model’s score, then
it simply proceeds to the next iteration.

Data

Our data comes from Marshfield Clinic, an organization of
hospitals and clinics in northern Wisconsin. This organiza-
tion has been using electronic medical records since 1985
and has electronic data back to the early 1960’s. We have re-
ceived institutional review board approval to undertake these
studies.

’In principle, SAYU can use any evaluation metric to evaluate
the quality of the model including (conditional) likelihood, accu-
racy, ROC analysis, etc.



We included information from four separate relational ta-
bles: lab test results (e.g., cholesterol levels), medications
taken (both prescription and non-prescription), disease diag-
noses, and observations (e.g., height, weight and blood pres-
sure). We only consider patient data up to one week before
that patient’s first prescription of the event under consider-
ation. This ensures that we are building predictive models
only from data generated before the event occurs. Table 1
provides the characteristics of each patient population that
we will use in our case study. It reports the number of unique
medication codes, diagnosis codes and observation values
that occur in these tables. The table size rows lists the num-
ber of facts (i.e., rows) that appear in each relational table.

Case Study

Now we will present a preliminary case using selective Cox2
inhibitors, which are a class of pain relief drugs that were
found to increase a patient’s risk of having a a myocardial
infarction (MI) (i.e., a heart attack) (Kearney et al. 2006).
We will look at the following two patient populations:

Population 1 (P;): The positive examples consist of pa-
tients who had a MI. To create a set of negative examples,
we selected patients who did not have an MI. None of the
patients in this data set were prescribed a selective Cox2
inhibitor.

Population 2 (P;): The positive examples consist of pa-
tients who had an MI after taking a selective Cox2 in-
hibitor. To create a set of negative examples, we took pa-
tients who were prescribed a selective Cox2 inhibitor and
did not have a subsequent MI.

We matched the two populations, population 1 and popula-
tion 2, on age and gender and were careful to match pos-
itive examples with positive examples, and negatives with
negatives. The negatives in population 2 were selected to be
all individuals in the database who had a record of taking
Cox2ib, but had no subsequent MI. Thus the prevalence of
MI in the Cox2ib population is maintained in the data set,
and thus there is a distribution skew between negatives and
positives. Due to the large skew in the class distribution, we
employ Precision-Recall curves for evaluation, and the ar-
eas under them (AUC-PR), rather than ROC curves and AU-
CROC. It is possible to build a predictive model for each
population, and each can be viewed as a separate but sim-
ilar learning task. To be able to compare AUC-PR results
meaningfully between the two tasks, our matching ensures
that both populations have the same skew. One limitation
is that, as a result, the prevalence of MI in population 1 is
the same as in population 2, roughly double what one would
normally see in a general population; nevertheless, there is
no way to address this without either having the wrong skew,
or propensity, in population 2 or comparing AUC-PRs for
different skews. PR curves and the areas under them are
known to be sensitive to skew, unlike ROC curves (Boyd
et al. 2012).

We designed two simple experiments to try to assess the
overlap between these two first tasks. In both cases, we per-
form stratified ten-fold cross validation to estimate the gen-
eralization ability of the models.

Experiment 1. In our first experiment, we use SAYU to
learn two different models to distinguish between patients
that suffered a MI (positive examples) and those that did not
(negative examples). The essential difference between the
two models is whether the patient took a selective Cox2 in-
hibitor:

e Model M is trained on patients who did not take a selec-
tive Cox2 inhibitor.

e Model M5 is trained using patients who were prescribed
a selective Cox2 inhibitor.

Then we evaluated M; and My’s performance on both pa-
tient populations. That is, M; is used to predict MI for
patients who have not been prescribed selective Cox2 in-
hibitors and those who have. We evaluate M5 in a similar
manner. If one of the models performs well on the other
patient population, this would provide evidence that the
learned models are picking up general signals for predict-
ing MI rather than MI as an adverse event associated with
selective Cox2 inhibitors.

Experiment 2. Our second experiment builds on our first.
This can be viewed as a theory refinement or transfer learn-
ing experiment. At a high-level, the approach works as fol-
lows. First, SAYU is employed to learn a set of features us-
ing one patient population. Second, this set of features is
transferred to the other population where SAYU uses this
learned model as a starting point. (Note that SAYU normally
starts with an empty feature set.) SAYU uses the data from
the second patient population to the learn additional features
as well as the structure of the statistical model.
Specifically, we learn the following two models:

e Model M{ is learned the following manner. It starts by
using My (from the first experiment) as the initial model.
Then, SAYU refines this model by using the data about
patients who did not take a selective Cox2 inhibitor.

e Model Mé is learned the following manner. It starts by
using M, (from the first experiment) as the initial model.
Then, SAYU refines this model by using the data about
patients who were prescribed a selective Cox2 inhibitor.

Then we perform the same evaluation as before. M{ and
Mé’s performance is measured on both patient populations.
Note that we take care to ensure that the test partitions of
the populations are never used during training. M 1 is used
to predict MI for patients who have not been prescribed se-
lective Cox2 inhibitors and those that have. We evaluate MQ,
in a similar manner.

Results for Experiment 1

Table 2 reports results for this experiment. First, consider
the cross-validated AUC-PR when the models are trained
and tested on the same patient population. Here, we see that
the cross-validated AUC-PRs are roughly equivalent. Using
a two-tailed unpaired #-test, we found that there is no signif-
icant difference (p-value 0.50).3 That is, there seems to be

Here the test sets are different, so we use the unpaired test.



Table 1: Characteristics of Patient Populations.

Cox2ib (P2) | No Cox2ib (P1)
Positive examples 184 184
Negative examples 1,776 1,776
Unique medications 2,489 2,093
Unique diagnoses 7,221 5,838
Unique observations 1,608 1,492
Medicine table size 1,345,547 286,701
Disease table size 1,136,755 336,708
Observation table size 1,497,693 907,802

Table 2: Results for Experiment One.

Train Population

Testing Population

AUC-PR

No Cox2ib
Cox2ib
No Cox2ib
Cox2ib

No Cox2ib
Cox2ib
Cox2ib

No Cox2ib

0.560
0.602
0.478
0.401

Table 3: Results for Experiment 2.

Train Population

Testing Population

AUC-PR

Cox2ib + No Cox2ib
No Cox2ib + Cox2ib
Cox2ib + No Cox2ib
No Cox2ib + Cox2ib

No Cox2ib
Cox2ib
Cox2ib

No Cox2ib

0.601
0.611
0.534
0.578

no significant difference on our ability to predict MI regard-
less of whether we condition the patient population based
on whether or not a selective Cox2 inhibitor was prescribed.
This is interesting as provides some evidence that, on this
dataset, the difficulty of these prediction tasks is not substan-
tially different (i.e., one is not a fundamentally more chal-
lenging problem than the other).

However, when we use M; to predict on patients that
were prescribed selective Cox2 inhibitors, the performance
drops by 20%. This corresponds to a significant decrease
in performance (p-value 0.022) according to a two-tailed
paired z-test.* More dramatically, when we use My to pre-
dict on the patients that were not prescribed selective Cox2
inhibitors, the performance degrades by 28%. These results
can be seen graphically in Figure 1. Again, this difference is
significant (p-value 0.0041) according to a two-tailed paired
t-test. This finding is interesting as it gives some evidence
that the learned models are tailored to a specific prediction
task. Note that the search space of possible models is similar
for both problems. The models are picking up on some joint
signal, as the models are doing better than random guessing,
which would correspond to AUC-PR of 0.094 on these tasks.
However, in each task there clearly seems task-dependent
structure that, when discovered, leads to significantly better
performance.
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Figure 1: Precision-recall curves for the M3 and M5 models
on P; and Ps.
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Figure 2: Precision-recall curves for the M; and M5 models
on P; and Ps.

Results for Experiment 2

Table 3 reports results for this experiment. First, we com-
pare M, to M; and M, to M,. Remember that the models
M’ are obtained in two steps: first a model is trained on a
different population and second the model is reinforced with
new rules, designed to fit the target population. Although the
average result in both cases is slightly better than just train-
ing on the target population, using a two-tailed paired z-test,
we found there there is no significant benefit by training first
on the other population. It is not surprising that the results
improve, as we are effectively using more data to train the
model. It is interesting that the incorporating the extra data
has limited benefit. This is again some evidence that the task
specific data is crucial for achieving good performance. Fig-
ure 2 shows the PR curves for these comparisons.

We then apply this model in the other population: so the
final Cox2ib model is evaluated on the non Cox2ib popu-
lation, and vice-versa. Unsurprisingly, the results improve
compared to experiment 1 as the model incorporates struc-
ture from both populations, even if it is fined-tuned for the
wrong population. It is interesting to note that the improve-
ment in the Cox2ib population (33%) is much greater than
for the non Cox2ib population (20%).

“Here the test sets are identical, so we use the paired test.

Conclusions and Future Work

The second PR curve in Figure 1 indicates that if we want a
very high recall—we want to catch everyone who will have
an MI on a Cox2 inhibitor (Cox2ib)—then we would do bet-
ter to use the general MI model than the Cox2ib-specific
model. Nevertheless, the large gap between the two models
at higher precision indicates that the Cox2ib-specific model
ranks at highest risk many patients not considered high risk
by the general MI model. Potentially we could greatly im-
prove safety and reduce MI, with relatively low impact on
overall drug use, if we just denied Cox2ib drugs to the very
highest risk patients under the Cox2ib-specific model, for
example operating either at precision of roughly 1.0 and re-
call of roughly 0.05 or operating at precision of roughly 0.7
and recall of roughly 0.4 on the Cox2ib-specific model’s PR
curve. Nevertheless, before such a method could be widely
implemented, many more issues need to be examined.

One issue is that this study used the entire class of Cox2
inhibitors. How would the curves differ for specific drugs,
and in particular how would they differ for drugs still on
the market vs. for drugs pulled from the market already?
For drugs still on the market, it makes sense to operate in
the high precision, low recall range, where we can improve
safety without greatly limiting who gets the drugs. If one
wanted to take the more dramatic step of using predictive
models to bring a drug back to market that had been pulled,’
it would be necessary to operate in the high recall range
to ensure that returning a drug to market did not decrease
health and safety.

A second issue is that PR curves alone do not tell the en-
tire evaluation story. It would also be important to see ac-
tual numbers of patients estimated to be affected. One useful
number from the medical community is “number needed to
treat” (NNT). For example, if we implement the predictive
model at precision roughly 1.0 and recall roughly 0.05 to
deny the drug to a small subset of high-risk individuals, how
many patients would need to be seen in order to avoid one
MI?

A third issue is that, while in machine learning we are
usually happy with a sound cross-validation methodology to
compare approaches, in the medical community a prospec-
tive clinical trial would be necessary to determine whether
use of the predictive model in the clinical setting actually
yields health benefits. Hence further study of this modeling
task is needed, with the aim of eventually taking the result-
ing predictive model into the clinical setting in a prospective
clinical trial. Some patients with indications for an already-
on-the-market Cox2 inhibitor would be prescribed the drug
(or not) under the normal procedures, while others would
have their data run through the predictive model first be-
fore being prescribed the drug—the proposed new proce-
dure. Patients would be followed for several years to deter-
mine whether the new procedure reduces MI risk.

In summary this paper presents an initial retrospective
study to see how accurately MI can be predicted in a general

5This might be desirable for the sake of patients for whom only
the pulled drug was efficacious and who are deemed at low risk of
the ADR.



population and in a population exposed to Cox?2 inhibitors.
The results indicate that machine learning can identify with
reasonable accuracy Cox2ib-induced risk of myocardial in-
farction. These promising results encourage further work
into models of Cox2ib-induced MI risk, other models of
drug-induced risk for negative health outcomes, and other
health prediction tasks. From a technical perspective, inves-
tigating applying uplift modeling techniques seems like a
promising direction to pursue (Jaskowski and Jaroszewicz
2012). This further work needs to include not only improv-
ing methods in machine learning and methods in evaluat-
ing machine learning results, but also improved methods in
analysis of EHR data, causal inference, and clinical trials of
predictive models in health care.
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