Interpretation of europium(III) spectra

Koen Binnemans^a

^a KU Leuven – University of Leuven, Department of Chemistry, Celestijnenlaan 200F, P.O. Box 2404, B-3001 Heverlee, Belgium

E-mail address: Koen.Binnemans@chem.kuleuven.be

The trivalent europium ion (Eu³⁺) can exhibit an intense red photoluminescence upon irradiation with UV radiation. This property is exploited in red-emitting lamp phosphors such as Y_2O_3 :Eu³⁺. However, Eu³⁺ is also of interest from a theoretical point of view. There are several reasons why the Eu^{3+} ion is so often used as a spectroscopic probe for the symmetry of first coordination sphere of a trivalent lanthanide ion. First of all, the ground state $({}^{7}F_{0})$ and the most important emitting excited state $({}^{5}D_{0})$ are non-degenerate and are thus not split by the crystal-field effect. This greatly facilitates the interpretation of the experimental absorption and luminescence spectra. Second, the most important transitions in the luminescence spectra are from the ⁵D₀ excited state to ⁷F_I levels with a low J value (J = 0, 1, 2). This also facilitates the interpretation of the spectra, because the number of possible crystal-field transitions is small. Third, the wave functions of the ${}^{7}F_{J}$ levels and of the ${}^{5}D_{0}$, ${}^{5}D_{1}$ and ${}^{5}D_{2}$ excited states are well described within the intermediate coupling scheme and J is a good quantum number. J-mixing is limited so that there is only a small relaxation of the selection rules and an accurate theoretical description of the energy level structure of the 4f⁶ configuration of Eu³⁺ is possible. Fourth, the different ${}^{5}D_{0} \rightarrow {}^{7}F_{J}$ lines are well separated, so that there is virtually no overlap between the crystal-field levels belonging to different ${}^{7}F_{I}$ levels. Fifth, europium(III) compounds often show an intense luminescence due to the large energy gap between the ${}^{5}D_{0}$ excited state and the highest level of the ${}^{7}F_{I}$ manifold. It is also convenient that the luminescence is in the visible spectral region (red luminescence). Sixth, the Eu³⁺ ion shows only a weak vibronic coupling and as a consequence the crystal-field transitions are narrow, even at room temperature. The crystal-field fine structure is relatively easy to resolve, although spectral overlap may occur in case of weak crystal-field effects. This lecture gives an overview of the spectroscopic properties of Eu³⁺. The different transitions in the luminescence spectra of europium(III) compounds are discussed in detail. It will be shown to what an extent the Eu^{3+} ion can be used a probe for the local symmetry of the lanthanide ion in crystalline host matrices.