
 

A three-stage approach for aircraft line 

maintenance personnel rostering using MIP, 
discrete event simulation and DEA 

 
Jorne Van den Bergh 
Philippe De Bruecker 

Jeroen Beliën 
Liesje De Boeck 

Erik Demeulemeester 
 

 

 

 
 
 

HUB RESEARCH PAPERS 2012/42 
ECONOMICS & MANAGEMENT 

NOVEMBER 2012 



1 
 

A three-stage approach for aircraft line maintenance 

personnel rostering using MIP, discrete event 

simulation and DEA 

Jorne Van den Bergha,c,†, Philippe De Brueckerb,d, Jeroen Beliëna,c, Liesje De Boecka,c and 

Erik Demeulemeesterb 

a HUBrussel, Center for Informatics, Modeling and Simulation, Warmoesberg 26, 1000 Brussels 

(Belgium), jorne.vandenbergh@hubrussel.be, jeroen.belien@hubrussel.be, 

liesje.deboeck@hubrussel.be 

b KU Leuven, Research Center for Operations Management, Naamsestraat 69, 3000 Leuven 

(Belgium), philippe.debruecker@kuleuven.be, erik.demeulemeester@kuleuven.be 

c Affiliated researcher KU Leuven, Research Center for Operations Management, Naamsestraat 69, 

Leuven (Belgium) 

d Affiliated researcher HUBrussel, Center for Informatics, Modeling and Simulation, Warmoesberg 

26, 1000 Brussels (Belgium) 

† Corresponding author at: Center for Informatics, Modeling and Simulation, Warmoesberg 26, 1000 

Brussels (Belgium). Tel: +32 2-210 16 11; fax: +32 2 217 64 64. 

Keywords: line maintenance, staff allocation, uncertainty, scheduling, tabu search, Data Envelopment 

Analysis 

Abstract 

Personnel scheduling problems need to cope with personnel preferences, coverage constraints, legal 

restrictions, and many other constraints. We present a three-stage methodology that can be used to 

select personnel rosters. In the first stage we generate multiple personnel rosters with a mathematical 

programming model. In the second stage, the performance of the rosters regarding a number of 

service criteria is evaluated through discrete event simulation. In the third stage, a ranking is made 

using Data Envelopment Analysis. The methodology is tested on a personnel scheduling problem for 

aircraft line maintenance. 
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1 Introduction 

Line maintenance includes regular short inspections of an aircraft between arrival and departure at an 

airport (Gupta, Bazargan, & McGrath, 2003). Once a flight schedule is established, the maintenance 

company can assign a maintenance schedule to each maintenance station. Based on this schedule, the 

company builds a staffing model, considering the fleet type, number and type of maintenance jobs, 

specific client requests, etc. Efficient personnel scheduling not only can reduce costs, but is also 

directly related to flight safety issues (Yan, Yang, & Chen, 2004). Maintenance workforce schedules 

have to meet all safety requirements and time constraints: if timetable punctuality is affected, flight 

delays as well as extra operating costs are incurred. According to delay analyses carried out by 

Eurocontrol, around 50% of delays are due to airline operational processes, while the remaining 

delays are due to other causes such as air traffic control, weather and airport capacity constraints 

(Eurocontrol, 2011). The proportion of intra-European flights delayed by more than 15 minutes has 

decreased in the past few years (CODA, 2010). Nevertheless, it was still larger than 15% in 2009 

(CODA, 2010). Those delays can have a major impact on airline operations in general and line 

maintenance operations in particular. Late maintenance that causes primary delays implies causality 

delays at other airports and huge costs as a consequence. The workforce schedules should be able to 

prevent this. 

Real-world personnel scheduling problems are typically over-constrained. One has to consider 

coverage constraints, personnel preferences, workload balancing, legal restrictions, etc. Most papers 

try to mimic this behavior with multi-objective programming. A mathematical programming model is 

used to generate an optimal roster regarding these constraints and (weighted) objectives. In this paper, 

we present an alternative way of tackling personnel scheduling problems by using mathematical 

programming, discrete event simulation and Data Envelopment Analysis (DEA). With this approach, 

the company is supplied with detailed information about the rosters, which they can use to make the 

selection objectively. First, a mathematical model generates multiple feasible low cost rosters, which 

are evaluated with simulation. The roster characteristics and the simulation results are then fed into a 

DEA model which then identifies the efficient rosters. 

This methodology is applied to a case study, in which we evaluate airline maintenance workforce 

rosters in the occurrence of flight delays (i.e., when flights depart after their scheduled time of 

departure (STD)). These rosters are the results of the mixed integer linear programming (MILP) 

model of Beliën, Demeulemeester and Cardoen (2012). In their model, they try to protect the 

maintenance schedule from flight arrival delays by scheduling no maintenance jobs during a certain 

time period after the scheduled time of arrival (STA). Also, they introduce a 15% capacity buffer to 

deal with employee illness and higher than expected workloads. A flight arrival delay could cause 

such an enlarged workload because the maintenance job has to be completed within a reduced time 
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window. The evaluation of the workforce rosters occurs after simulating flight delays, based on actual 

arrival data over a complete season. The results retrieved from the simulation model are evaluated 

with DEA to obtain a number of dominant rosters from which the company can choose.  

The remainder of the paper is organized as follows. Section 2 offers a review of the recent literature 

on decision-support models for stochastic workforce problems. In Section 3 we present our 

methodology. Section 4 addresses a case study. We introduce the problem setting and give a 

description of the simulation model and its results. Next, the DEA-model and its results are discussed. 

Finally, some conclusions and further research perspectives are offered in Section 5. 

2 Literature review 

In a recent review paper on personnel scheduling literature (Van den Bergh, Beliën, Demeulemeester, 

De Boeck, & De Bruecker, Unpublished results), we showed that most papers study deterministic 

problems. Deng and Lin (2011), for instance, propose an ant colony optimization algorithm in order to 

solve an airline crew scheduling problem. Their goal in choosing this algorithm is to minimize the 

total crew costs which consist of rest expenses, required pay for each duty and under-utilized time 

between duties. However, factors such as capacity, amount of workload and/or timing of the workload 

are subject to variability in real-life situations. Many researchers utilize scenario analysis to test 

alternative combinations of the exogenous variables in order to create robust schedules. In so doing, 

the decision makers are provided with the effects of the variability of the decision-support criterion 

(Borgonovo & Peccati, 2011). Corominas, Lusa and Pastor (2004; 2007) formulate a mixed integer 

linear programming model to allocate the workforce, considering annualized hours. They use a 

number of scenarios to test the influence of the demand curves and working-week-type parameters. 

Brunner and Bard (2012) investigate the problem of determining the size and structure of a workforce 

that faces time-dependent demand and a variety of labor restrictions and work rules. They address 

several types of scheduling flexibility in different problem instances, including different shift starting 

times and lengths, the need for lunch breaks and the option of varying the number of days off. 

A second and better way to create robust schedules that can cope with the uncertainty occurring in 

real-life personnel scheduling problems is to incorporate this uncertainty into the decision-making 

model. This method is common in call center applications, where the workload depends on the 

distributions of call arrivals and durations (e.g., Atlason, Epelman, and Henderson (2004, 2008); 

Avramidis, Chan, Gendreau, L’Ecuyer, and Pisacane (2010); Avramidis, Chan, and L'Ecuyer (2009)). 

This method can also be used in all types of service organizations. Bard, Morton and Wang (2007), 

for instance, address a staff planning and scheduling problem that arises at United States Postal 

Service (USPS) mail processing & distribution centers (P&DCs) and develop a two-stage stochastic 
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integer program. In the computational phase of the work, three scenarios are considered: high, 

medium and low demand. The resulting stochastic optimization problem is a large-scale integer 

program that embodies the full set of contractual agreements and labor rules governing the design of 

the workforce at a P&DC. The paper of Mason, Ryan and Panton (1998) details a simulation and 

optimization-based system for the personnel scheduling (rostering) of customs staff at Auckland 

International Airport, New Zealand. The approach starts with a simulation system embedded in a 

heuristic search to determine minimum staffing levels. Next, these requirements are used in an integer 

programming model in order to optimally allocate staff to each period of the working day. These 

shifts are then assigned to daily work schedules. This method ensures that all passenger processing 

targets are met by creating high-quality rosters and has resulted in significant labor cost savings. Yeh 

and Lin (2007) shorten patient waiting times in a hospital emergency department (ED) by adjusting 

nurses’ schedules. They use a simulation model to cover the complete flow for the patient through the 

ED. The results from the simulation are then fed into a genetic algorithm that makes adjustments to 

the nurses’ schedules. Their results indicate that the average waiting time when using the staffing plan 

can be reduced significantly.  

In reviewing the literature, we noticed that authors are eager to explain the structure of the algorithms 

developed to create feasible personnel schedules, but only little is known about how good those 

schedules actually are. Frauendorfer and Königsperger (1996) present a framework for the 

improvement of (production) scheduling decisions in chemical processing environments using multi-

criteria analysis. The purpose of the framework is to provide complete scheduling performance 

transparency and to contribute to better decision making. Ruiz-Torres, Ho, and López (2006) address 

a supply chain scheduling problem where both internal and external/outsourced parallel resources are 

available and the objectives are to minimize the number of late orders and the total outsourced 

machine time. Several heuristics are developed that generate sets of Pareto-efficient schedules. The 

evaluation (comparison of the heuristics) is based on two experiments where the values of relevant 

parameters (e.g., due date tightness or number of jobs) are set at different levels.  

In our paper, we want to consider cost minimization and service maximization simultaneously, 

together with other criteria. One way of dealing with multiple criteria is through multi- objective 

optimization. Tsai and Li (2009) develop a two-stage mathematical model for a nurse scheduling 

system. Their genetic algorithm deals with both hospital management requirements and nursing staffs’ 

shift preferences. A different approach is used by Castillo, Joro and Li (2009). They depart from the 

standard in workforce scheduling to minimize the cost of labor subject to a target service level. They 

argue that this single operational measure is neither sufficient for capturing the performance of service 

organizations, nor for characterizing and quantifying service quality. In their approach, they generate 

a large number of plausible schedules to be evaluated with multiple criteria. Among the evaluated 

schedules, the efficient ones are identified and the best one is chosen. For the evaluation of these 



5 
 

schedules, they use a Free Disposable Hull algorithm. This approach enabled the management to 

transform their needs into efficient schedules and to understand the relationship between the cost of 

labor and various service-quality criteria. The final stage is rather uncommon in the literature. The 

previously mentioned paper of Yeh and Lin (2007) ends with the remark that their results “can be 

provided to the hospital administrators for use in decision-making towards enhancing patient care and 

staffing”. The administrators have to choose between schedules with two shifts and those with three 

shifts and are provided with simulation results for both alternatives. In our approach we want to 

facilitate this step by incorporating an evaluation stage for the different personnel rosters.  

Instead of a Free Disposable Hull algorithm we will use DEA to evaluate the different rosters. DEA is 

a method used to determine the relative efficiencies of a set of organizational units, defined as 

decision making units (DMUs), considering multiple inputs and outputs (Charnes, Cooper, & Rhodes, 

1978). Examples of such units to which DEA has been applied are: banks, police stations, hospitals, 

tax offices, prisons, defense bases (army, navy, air force), schools and university departments. In our 

study, we will consider the rosters as decision-making units, each with its own inputs and outputs. For 

the selection of the inputs and outputs and the specific DEA-model, we checked the paper of Dyson et 

al. (2001). They provide some pitfalls that have been identified in application papers and suggest 

protocols which can be used in order to avoid these pitfalls and to guide the application of the 

methodology.  

In a DEA study, one wants to project the inefficient DMUs onto the frontier. To do so, there are three 

different approaches. The input-oriented one aims at reducing the input amounts by as much as 

possible, while keeping at least the current output levels. The output-oriented one maximizes output 

levels while maintaining at most the current level of input consumption. The third option deals with 

the input excesses and output shortfalls simultaneously in a way that maximizes both (Cooper, 

Seiford, & Tone, 2006, p. 115). When DEA is applied to personnel scheduling problems, it generally 

focuses on the productivity and efficiency of the workers. Paradi, Smith, and Schaffnit-Chatterjee 

(2002) use DEA to examine the productivity, efficiency and effectiveness of the Engineering Design 

Teams (EDT) at Bell Canada. More recently, Azadeh, Ghaderi, Mirjalili, and Moghaddam (2011) 

have presented an integration of Analytical Hierarchy Process (AHP) and DEA for the assessment and 

optimization of personnel productivity in a large private bank.  

3 Methodology 

In this section we present the methodology we will use to select personnel rosters for a given 

personnel scheduling problem.  
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Figure 1: Methodology for selecting personnel rosters 

In the first step in our methodology the objective(s), parameters and constraints of the personnel 

scheduling problem need to be defined. A typical pitfall where this step is concerned is the 

formulation of an over-constrained model. The developer of the mathematical programming model 

needs to pursue the management of the company to indicate the most important constraints, such as 

legal restrictions and minimal coverage constraints. The developer can choose to incorporate the 

decision on shift definitions into the model or to use predetermined shifts. The typical objective of the 

model is to minimize costs while satisfying coverage constraints. While the mathematical 

programming is running, all feasible solutions or rosters are saved. This strategy differs from the 

common approach of selecting a single best solution. If necessary, the constraints that we left out of 

the model can be used later on in order to evaluate all these feasible solutions using a simple heuristic.  

In the next step, we mimic the behavior of the events in the personnel scheduling problem with a 

simulation model. Here the goal is to test how the different rosters perform when, for instance, the 

workload or capacity copes with uncertainty. In order to retrieve meaningful results, the simulation 

model requires verification and validation. Therefore, one needs to test it intensively with a range of 

different parameters. It is also important to identify a number of service criteria in coordination with 

the management of the company. If the first results indicate that the rosters do not meet any of the 

targets set in the simulation model, it can be necessary to adjust or add to some of the constraints in 

the mathematical programming model. 

The third step consists of treating the rosters as DMUs in a DEA model. The mathematical 

programming model supplies the DEA model with information on the costs and the shift sequence of 

the rosters, while the simulation model evaluates the performance on the basis of the service criteria. 

In this step, one can define relative or absolute restrictions on the weights for the different input or 
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output factors in line with the preferences of the management or personnel. The DEA model identifies 

the efficient rosters which are then presented to the management of the company. They can choose 

which roster to implement, since they have been provided with all the information they need 

concerning the different steps. 

4 Case study 

4.1 Problem description 
As mentioned in the introduction, we use the rosters built up by Beliën et al. (2012). The objective of 

the MILP-model is to minimize the labor costs while satisfying a number of constraints, such as 

coverage constraints. These coverage constraints ensure that for each time period the workload does 

not exceed the available capacity.  

Unlike many other workforce scheduling models, the workload is not given per time period, but per 

client (flight). Therefore, the number of workers that need to be present per time period depends 

heavily on the flight schedule. Every flight has a time window, bounded by its STA and STD, during 

which the maintenance should take place. For each client flight, Sabena Technics has an estimate of 

the workload, expressed in man-hours. The workload input for their optimization problem is a cyclic 

list of 310 flights with STA, STD and the estimated workload. 

The solution algorithm of Beliën et al. (2012) follows an enumerative approach and solves a MILP for 

each combination of team sizes for the different cycles. In order to avoid spending MILP time on 

combinations which cannot result in a better solution, each MILP is provided with a current upper 

bound (i.e., current best solution). Consequently, whenever the MILP lower bound (which 

continuously increases during the MILP search) becomes larger than or equal to this upper bound 

(UB) cut-off value, the MILP calculation stops and the algorithm moves on to the next combination. 

To allow for several near-optimal solutions, the UB cut-off value can be increased by a certain 

percentage, e.g., 5%. Every time a MILP results in a feasible solution, it will be saved. At the end of 

the solution algorithm, multiple feasible solutions might be found, differing in shift sequence, team 

size, cost, etc.  

One constraint in the MILP-approach of Beliën et al. (2012) is the implementation of a time buffer 

after the flight arrival. This buffer avoids problems in the event of a flight delay. Another constraint 

adds a time buffer before the flight departure. Since passengers do not like to see aircraft maintenance 

while they are waiting at the gate, the latest maintenance time is set to 15 or 30 minutes before 

departure, depending on the available time window. During both time buffers, no maintenance can be 

scheduled. Both constraint types serve the same goal. They make the work rosters more robust, 

meaning that small differences in, e.g., workload would not result in huge capacity problems. 
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However, about one out of seven flights arrives with a delay of more than 15 minutes. Depending on 

the available maintenance time window and the duration of the time buffers, those delays can lead to 

coverage problems: the crew member who was assigned to maintain the aircraft could have ended 

his/her shift, the time window has become too narrow to carry out the maintenance with the pre-

assigned number of crew members, etc. On request of the management, the model contains a 15% 

capacity buffer, added to the coverage constraints. The reason behind this measure is that the 

company expected problems with the labor unions, because were the new rosters to be introduced, the 

workload would increase dramatically. This measure would also suffice to deal with situations where 

the maintenance workload is higher than expected, or capacity is lower than scheduled due to, e.g., 

employee illness. A flight arrival delay can be seen as a possible cause for the increase in workload. 

In the event of this happening, the available maintenance time window narrows, which leads to an 

increase in work pressure. 

In the MILP-model, the flights are scheduled in the best possible way. The main principle is to level 

the workload over the entire time window. When two flights are to be maintained with STA1 < STA2 

and STD1 > STD2, flight 2 can cause preemption of the maintenance of flight 1 if limited capacity is 

available, because it arrives later and it needs to depart earlier. Also, the number of workers assigned 

to a flight can decrease and again increase (and vice versa) during its time window, creating a 

fluctuating pattern. In real life this kind of behavior would not occur. While scheduling the 

maintenance, one tries to avoid preemption as well as the assignment of a variable number of workers 

to a flight. A third drawback of the MILP-approach is the assignment of fractional workers. A job 

with a workload of one and a half hours can be scheduled during a time window of an hour by 

assigning 1.5 workers to that job. In practice, one would schedule one worker for the first and an extra 

worker for the second half hour, or vice versa, or three workers for a half hour, etc.  

A simulation procedure was programmed in C++ using Microsoft Visual Studio 2010. A discrete-

event simulation method permits us to model real-life behavior, such as arrival delays and the 

assignment of (discrete) workers to a flight. Real-time flight arrival data for the winter season in 2008 

are used in order to identify the appropriate delay distributions. These distributions are applied to the 

list of flights that was also the input for the MILP-approach (Beliën, et al., 2012). In the simulation, 

decisions are made every 15 minutes and the planning horizon is divided into quarters of an hour (i.e., 

each period equals 15 minutes). The available capacity is cyclic for each week. In our case, we 

simulate a period of 28 weeks, which is the length of an entire flight season with two additional weeks 

as a warm-up period during which no statistics are collected. Out of the results of the MILP, 50 

rosters are selected: 40 rosters with three cycles (i.e., in the third (weekend) cycle the team is only 

working during special weekend shifts on Friday, Saturday and Sunday and has the rest of the week 

off) and 10 with only two (regular) cycles. The rosters are selected on the basis of total cost, which is 

the evaluation criterion in the MILP-approach. The rosters with three cycles can be divided into two 
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groups, depending on the tightness of the coverage constraints (i.e., the size of the capacity buffer). 

Out of both groups the 20 cheapest rosters are selected.  

We only evaluate the rosters with respect to the effect of uncertainty in the timing of the workload 

(flight arrival). Other sources of uncertainty, such as available capacity (e.g., illness) or workload 

(e.g., increased workload for a flight due to a certain failure) are not considered. Within the 

simulation, the same random numbers are generated in order to evaluate the different scenarios. These 

differ in terms of the maximum number of workers one can assign to a flight during one period and in 

the queuing discipline which determines the priority of the flights queuing for line maintenance. We 

assume that a worker becomes available to work on a new job immediately after finishing a previous 

one and that every employee is qualified to work on any job (i.e. identically skilled workers). This 

assumption originates from the MILP-model of Beliën et al. (2012). In real life, however, workers 

have different skills. The management of the service company considered that using identical workers 

in the model would not harm feasibility, when team sizes are large enough. For those team sizes, it 

would be possible to assign workers with different skills to the different teams.  

4.2 Simulation results 
One of the simulation outputs is the success rate, i.e., the percentage of flights that are maintained 

before their STD. Table 1 gives the average, minimum and maximum success rates over the 50 rosters 

with a given maximum number of workers that can be allocated to a certain flight (further referred to 

as an allocation rule), and different queuing disciplines. We report the average results over all rosters, 

because these values give us an idea of the performance of the MILP-approach of Beliën et al. (2012) 

in a stochastic setting. Recall that the solution method of Beliën et al. (2012) does not provide a single 

“best roster”, but generates many “good acceptable rosters”. Since, in practice, one tries to schedule 

the maintenance by using a maximum of five workers, we opted for two, three, four and five workers 

as a maximum number. Four different queuing disciplines are used to order the flights: Earliest STD, 

Critical ratio, Smallest workload and earliest expected time of arrival (Earliest ETA). For Earliest 

ETA, we use the expected arrival time, which is the original (deterministic) STA adjusted with a 

(stochastic) delay. Earliest STD (ETA) establishes the order of flights based on its STD (ETA), 

starting with the first flight to depart (arrive). The “Critical ratio” uses the division of the workload of 

a flight by its remaining time interval in order to determine the priority of the flights to be processed. 

The “Smallest workload” queuing discipline gives priority to the flights that have the smallest 

workload in man-hours (i.e., not divided by the number of allocated workers). For all the scenarios, 

using earliest STD as queuing discipline provides the best results for the minima, maxima and 

averages of the set of rosters. When five workers can be allocated to the same flight, on average 

99.44% of all flights leave before their STD. 
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Max 

Worker

s 

Earliest STD Critical ratio Smallest workload Earliest ETA 

 MIN MAX AVG MIN MAX  AVG MIN MAX AVG MIN MAX AVG 

2 0.9009 0.9133 0.9101 0.8886 0.9103 0.9019 0.8967 0.9116 0.9058 0.8842 0.9081 0.8962 

3 0.9716 0.9839 0.9810 0.9578 0.9807 0.9720 0.9703 0.9828 0.9772 0.9574 0.9809 0.9691 

4 0.9802 0.9925 0.9897 0.9660 0.9891 0.9804 0.9790 0.9913 0.9859 0.9666 0.9896 0.9781 

5 0.9849 0.9972 0.9944 0.9705 0.9938 0.9850 0.9832 0.9957 0.9904 0.9714 0.9944 0.9828 

AVG 0.9594 0.9717 0.9688 0.9457 0.9685 0.9598 0.9573 0.9704 0.9648 0.9449 0.9683 0.9565 

Table 1: Average success rates over the 50 test rosters for different allocation rules and different queuing disciplines 

The difference between the minimum and the maximum success rate of the different rosters is only 

1.23% for the scenario with a maximum of three workers and earliest STD as queuing discipline. This 

comes down to a difference of three to four flights per week. Similar results are retrieved with the 

combinations of two, four and five workers and earliest STD. The difference in costs (wages) between 

the most expensive and the cheapest roster, however, is more than 26%. Thus, the extra cost of these 

“expensive” rosters is not automatically translated into a higher success rate. For one specific roster 

(Roster 50), the contradiction holds that it is by far the most expensive one while having the worst 

success rate of all the rosters. 

 

Figure 2: Comparison between the best (Roster 1) and the worst roster (Roster 50) in terms of capacity and average 

number of workers busy 

In Figure 2 the capacity (Cap) and the average number of workers busy (Avg WB) for the first 100 

periods (i.e., similar figures could be made for other periods) are shown. Roster 50 clearly has more 

0

5

10

15

20

25

30

35

Pe
rio

d 
1

Pe
rio

d 
4

Pe
rio

d 
7

Pe
rio

d 
10

Pe
rio

d 
13

Pe
rio

d 
16

Pe
rio

d 
19

Pe
rio

d 
22

Pe
rio

d 
25

Pe
rio

d 
28

Pe
rio

d 
31

Pe
rio

d 
34

Pe
rio

d 
37

Pe
rio

d 
40

Pe
rio

d 
43

Pe
rio

d 
46

Pe
rio

d 
49

Pe
rio

d 
52

Pe
rio

d 
55

Pe
rio

d 
58

Pe
rio

d 
61

Pe
rio

d 
64

Pe
rio

d 
67

Pe
rio

d 
70

Pe
rio

d 
73

Pe
rio

d 
76

Pe
rio

d 
79

Pe
rio

d 
82

Pe
rio

d 
85

Pe
rio

d 
88

Pe
rio

d 
91

Pe
rio

d 
94

Pe
rio

d 
97

Pe
rio

d 
10

0

N
um

be
r o

f w
or

ke
rs

 

Roster 1 - Cap

Roster 50 - Cap

Roster 1 - Avg WB

Roster 50 - Avg WB



11 
 

capacity during most of the periods, which makes it more expensive. The pattern of the average 

number of workers busy is similar for the two rosters, as they use the same queuing discipline. The 

reason why Roster 50 performs worse than Roster 1 is the drop in capacity during specific periods. 

Due to the lower capacity in these periods (i.e., periods 77 to 93), fewer workers can be allocated to 

the flights, which results in fewer workers busy. The decrease in performance is caused by a number 

of flights having their maintenance time window during these periods and now having to wait until 

other flights are finished or until a new shift starts. 

 

Figure 3: Comparison of the average number of delays between Roster 1 and Roster 50 

Figure 3 clearly indicates the difference in the average number of delays between Roster 1 and Roster 

50. While there are peaks of up to 10 delays (out of 26 departures) for both rosters, Roster 50 has a 

number of flights accounting for more than 15 or even more than 20 delays. 

So far, we can conclude from Table 1 that the MILP-approach of Beliën et al. (2012) is successful in 

covering demand under conditions of uncertainty. However, there is still room for improvement. The 

existence of rather big gaps between the number of workers present and workers busy offers some 

opportunities to improve the matching between demand and coverage, and hence to cut labor costs.  

Besides the results represented in Table 1, we can also calculate the highest attainable success rate a 

roster can achieve given the maximum number of workers. Since a flight’s STD remains fixed in our 

simulation study, the time window during which maintenance is able to take place can be calculated 

once the arrival time is known. If the workload of the flight divided by the maximum number of 

workers is greater than the resulting time window that is left, it is known for certain that the flight 

cannot depart on time, regardless of the queuing discipline or allocation rule that is used.  
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Max 2 workers Max 3 workers Max 4 workers Max 5 workers 

0.0866 0.0160 0.0074 0.0027 

Table 2: Percentage of flights that cannot depart on time for a given maximum number of workers  

Table 2 gives an overview of these highest attainable success rates. When the company wants to 

allocate a maximum of three workers to a flight, the highest achievable success rate is 98.4%. From 

Table 1 we know that for a maximum of three workers and earliest STD as queuing discipline, the 

average success rate over the 50 rosters is 98.1%, which represents a difference of only 0.3% or only 

one flight per week. This strengthens our findings that the MILP-approach of Beliën et al. (2012) is 

able to cope with the stochastic arrival pattern of the flights. For the remainder of the flights (i.e., 

those that cannot be handled on time because of the limit on the number of workers per flight), 

arrangements need to be made between the maintenance company and the airlines. Major delays are 

generally known beforehand, since the crew can send a telex to the airport of destination. Hence the 

flights are rescheduled, resulting in a new STD and thereby a new time window for the maintenance 

company.  

4.3 DEA 
After defining the rosters by Beliën et al (2012), the next step consists of choosing a roster to 

implement. So far, the management has had to base its decision on information about the cost of a 

roster and its shift sequence. Thanks to the simulation experiment, we now have information on the 

number of flights (and workers) busy during each period, the resulting delays, the number of times a 

flight has been maintained without preemption, etc. These results aid in searching for the better rosters 

in the set.  

We will now evaluate the rosters by applying DEA. Table 3 lists the inputs and outputs (the original 

values can be found in Appendix A). The input ‘Cost’ represents the total labor cost of the roster, 

assuming a fixed fee per hour and an extra premium for the hours worked in early, evening and night 

shifts and weekends and a fixed premium for every night shift in the roster. For the input ‘Score’, we 

have developed a tabu search algorithm that takes into account employee preferences when 

sequencing the different shifts. The MILP-model of Beliën et al. (2012) allocates shifts to every day 

of the week in a cycle, but does not provide details on the distribution of these shifts over the weeks in 

the cycle. When, for instance, a cycle has a length of three weeks and two night shifts are assigned to 

Monday, we have the option between weeks 1 and 2, weeks 1 and 3, and weeks 2 and 3 for assigning 

the two night shifts. In creating these shift sequences, we still have to satisfy the legal constraints 

which prohibit an evening shift being followed by a morning or day shift and a night shift being 

followed by any other shift except for a night shift. The tabu search tries to minimize a penalty cost by 

swapping two shifts on a certain weekday between the weeks in the cycle. The penalty cost is 

calculated as follows: 
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• Invalid shift succession: 1000 points. Neglecting the legal constraints needs to be avoided.  

• Incomplete weekends: 100 points. Employees like to work the entire weekend or have the 

complete weekend off. 

• Isolated shift: 50 points. Not only are isolated working shifts unpleasant for workers, but so 

also are isolated days off.  

• Different shift types on Saturday and Sunday: 20 points. On successive weekend working 

days, the same shift should be assigned.  

• Different shift types on weekdays: 10 points. As with the previous penalty, the same shift type 

should be assigned on successive working days within a week. This creates regular working 

patterns which are favored by the personnel. 

• Block lengths: preferably between [5,8] – if not, a penalty is assigned that proportionally 

increases, starting from 5 points. If possible, we want to create blocks of minimum 5 working 

days. Shorter block lengths also cause shorter blocks of days off, which are undesirable.  

Inputs Outputs 

Cost  Success rate 

Score Average number of completions without preemption 

 Average tardiness 

Table 3: Inputs and outputs of the DEA-model 

The first output is the success rate of a roster, which represents the average number of flights that 

were maintained during their time window over all flights. The second output represents the average 

number of times a flight was maintained without preemption. The third output is the average 

tardiness. When a flight’s maintenance has been finished during its time window, it does not matter 

whether this was at the beginning or at the end of that interval. Therefore, we only take into account 

time delays of flights that departed after their STD (i.e., average tardiness) rather than computing the 

difference between every flight’s STD and the end of its maintenance (i.e. average deviation from 

STD or average lateness). 

In our study, we will consider the input-oriented direction in order to define efficient DMUs, since the 

outputs in our model are provided by the simulation model and our goal is to evaluate the rosters 

generated by the MILP-model of Beliën et al. (2012). The rosters result in the input variables in the 

DEA-model. We are interested in identifying the efficient rosters rather than determining how much 

the cost or score of inefficient rosters should decrease to make them efficient. Moreover, we assume 

constant returns to scale (i.e., we consider the basic CCR-I model), since all rosters satisfy the same 

MILP-constraints. 
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Many of the DEA-models assume isotonic inputs and outputs, i.e., increasing the inputs reduces 

efficiency, whereas efficiency would improve by increasing the outputs. On the basis of this 

assumption, our inputs are suitable: minimizing both ‘Cost’ and ‘Score’ would increase efficiency. 

The output factors yield some problems, though. The average number of completions without 

preemption and the success rate should be maximized, whereas the average tardiness should be 

minimized. These anti-isotonic data are also called undesirable inputs and outputs. Dyson et al. 

(2001) suggest three options to handle anti-isotonic factors: inversion, moving the variable from the 

output to the input side of the model or subtracting the value of the undesirable factor from a large 

number.  

The transformation of these anti-isotonic variables is one of the pitfalls described by Dyson et al. 

(2001). The alternative ways of dealing with the problem can lead to different outcomes in terms of 

the units identified as efficient and the targets set for inefficient units. We tested the influence of two 

different settings. In the first one, we reverse all the values while in the second one the new values are 

calculated by subtraction from a large number. Given the allocation rule of a maximum of four 

workers and earliest STD as queuing discipline, both DEA-models yield the same results: rosters 1, 2, 

3, 4, 16 and 35 are considered efficient (see Appendix B).  

In the original DEA formulations, the DMUs can freely choose the weights or values to be assigned to 

each input and output in a way that maximizes their efficiency, subject to this system of weights being 

feasible for all other DMUs. The advantage of this full flexibility is that it makes clearer the 

identification of inefficiency, since a DMU is free to choose its own value system. However, an 

efficient DMU may become so by assigning a zero weight to the inputs and/or outputs for which its 

performance is worst (Cooper, Seiford, & Zhu, 2004, p. 100). As can be seen in the table in Appendix 

B, almost all the rosters or DMUs assign a zero weight to at least one of the outputs, while Roster 1 is 

the only DMU which allocates a zero weight to one of the inputs, i.e., the score of the roster. By doing 

so, the roster becomes efficient, even with the worst score out of all rosters for the shift sequence (i.e., 

the score of 1.344 points reveals the existence of an invalid shift succession). We want to avoid 

neglecting some of the inputs and outputs by adding weight restrictions. There are many ways of 

adding these weight restrictions: they can be applied directly to the DEA weights or to the product of 

these weights with the relevant input or output level (i.e., virtual weights). Within these two 

variations, one can also choose to use absolute or relative weight restrictions (Cooper, et al., 2004, pp. 

108-115). Weight restrictions can introduce numerous pitfalls (Dyson, et al., 2001). Podinovski 

(2004) shows that in the presence of absolute weight bounds, the CCR model and its linear forms may 

identify the maximum relative efficiency of a DMU incorrectly and he also identifies certain types of 

restrictions that do not cause the observed error.  
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We propose the following (absolute) weight restrictions, creating an assurance region global model 

(Cooper, et al., 2006, p. 185) (AR-Global): 

0.75 ≤ Virtual weight of Cost
Total virtual weight

 ≤ 0.95  (1)  

0.05 ≤ Virtual weight of Score
Total virtual weight

 ≤ 0.25  (2) 

0.1 ≤ Virtual weight of Average number of completions without preemption
Total virtual weight

 ≤ 0.2  (3) 

0.25 ≤ Virtual weight of Average tardiness
Total virtual weight

 ≤ 0.5  (4) 

0.25 ≤ Virtual weight of Success rate
Total virtual weight

 ≤ 0.5  (5) 

Restrictions (1) and (2) emphasize the relative importance of the input ‘Cost’ as compared to the input 

‘Score’. For the maintenance company, the main goal was to cut  labor costs while satisfying  

demand. The rosters needed to be feasible and if possible, meet personnel requests. Therefore, we 

stress  the importance of the input ‘Cost’, while the low virtual weight for the input ‘Score’ makes it 

possible to differentiate between those rosters with valid and those with invalid shift sequences and to 

a lesser extent, those with preferred shift sequences. Restrictions (3), (4) and (5) represent the weight 

restrictions on the output variables. It is clear that the outputs ‘Average tardiness’ and ‘Success rate’ 

are more important than the output ‘Average number of completions without preemption’.  

After adding these weight restrictions, only three rosters appear to be efficient: Rosters 3, 16 and 35 

(see Appendix C). Of the efficient rosters, Roster 35 is the only roster that does not set the weight of 

the input ‘Cost’ at the upper bound of 95%, but emphasizes its performance on the input ‘Score’ 

instead. This is logical, since Roster 35 has the minimum value for this input variable. The weights 

assigned to the output variables are quite similar for the different efficient rosters.  

5 Conclusion and future work 

Throughout this paper, we discussed a new methodology for selecting personnel rosters. Instead of 

searching for an optimal roster with a multi-objective mathematical programming approach, we 

presented a framework of mathematical programming, discrete event simulation and DEA analysis. 

With the DEA analysis, it is easy to compare the different rosters considering different weight 

restrictions. In a ‘traditional approach’, this would be rather time-consuming, since it would be 

necessary to run the mathematical programming model for each setting.  
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Considering the case study, the simulation model provides insight into the performance of the rosters, 

resulting from the deterministic MILP-model. In general, the MILP approach performs well. With an 

easily applicable queuing discipline such as earliest STD, on average only four flights per week out of 

the cyclic list of 310 flights show departure delays. However, there is still room for improvement. 

First, we noted that the extra capacity, added to please the unions, is not always assigned to the right 

periods, which results in a large number of idle workers after the daily morning working peaks. 

Second, arrival delays and the upper bound on the number of workers that are to be assigned to the 

same flight (which were not incorporated into the MILP-approach) results in departure delays that 

cannot be avoided without an adjustment of flights’ STD. More than 80% of the departure delays are 

caused by the limit on the number of workers allocated to each flight. In practice, the company could 

reconsider the flights’ STD, since they are informed of arrival delays by the airlines. We could try to 

cope with this by adding extra constraints to the MILP-model, considering the restriction on the 

number of workers as well as preemption, which is still present because of capacity dropdowns during 

a flight’s maintenance time window. The DEA-model allows the maintenance company to select a 

roster which dominates others based on objective inputs and outputs from the MILP, the tabu search 

and the simulation model, and by defining specific weights to these input and output parameters. This 

prevents the selection of a roster on the basis of intuition alone with only the costs and a possible shift 

sequence as decision parameters.  

In future, we can also incorporate other sources of uncertainty into the model, such as uncertainty in 

supply (e.g., employee illness) and uncertainty in demand (e.g., unexpected aircraft problems leading 

to higher workloads). A last topic that could be of interest for future research is the incorporation of 

skills. 
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Appendix A 

  
Cost Score Avg tardiness Success rate 

Avg # of completions 

without preemption 

Roster 1 31671.62 1344 1.7961 0.9911 0.8883 

Roster 2 31939.94 211 1.8504 0.9917 0.8930 

Roster 3 32051.80 123 1.8470 0.9913 0.8844 

Roster 4 32271.90 96 2.0123 0.9892 0.8938 

Roster 5 32418.94 1277 1.8643 0.9888 0.8820 

Roster 6 32608.72 304 2.0293 0.9890 0.9003 

Roster 7 32809.85 552 1.9265 0.9880 0.8931 
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Roster 8 33045.05 183 1.8406 0.9911 0.9042 

Roster 9 33223.98 304 1.8690 0.9914 0.9136 

Roster 10 33328.50 473 1.8878 0.9850 0.8895 

Roster 11 33435.36 219 1.9670 0.9891 0.8955 

Roster 12 33934.50 111 1.8972 0.9919 0.9238 

Roster 13 33982.30 344 1.8567 0.9889 0.8839 

Roster 14 33991.60 220 1.8417 0.9890 0.8811 

Roster 15 34004.81 248 1.9543 0.9861 0.8979 

Roster 16 34221.20 68 1.7221 0.9911 0.9271 

Roster 17 34323.30 233 1.7637 0.9911 0.9157 

Roster 18 34529.51 171 1.8200 0.9902 0.9142 

Roster 19 34682.00 228 1.9319 0.9915 0.9255 

Roster 20 34827.95 157 1.9495 0.9881 0.8845 

Roster 21 32003.25 1154 1.8163 0.9911 0.8887 

Roster 22 32034.15 404 1.8904 0.9879 0.8917 

Roster 23 32577.45 129 2.0293 0.9890 0.8999 

Roster 24 33079.16 353 1.8212 0.9905 0.9110 

Roster 25 33416.55 83 2.0219 0.9892 0.8991 

Roster 26 33519.61 352 1.8246 0.9912 0.9132 

Roster 27 33529.79 1070 1.9895 0.9890 0.8925 

Roster 28 33547.30 520 1.9635 0.9893 0.9074 

Roster 29 33612.90 501 1.9158 0.9893 0.9064 

Roster 30 33905.20 119 1.9254 0.9919 0.9233 

Roster 31 34134.71 107 1.8281 0.9919 0.9295 

Roster 32 34189.50 144 1.9391 0.9923 0.9062 

Roster 33 34267.22 180 1.8220 0.9911 0.9082 

Roster 34 34298.85 136 1.9621 0.9923 0.9084 

Roster 35 34309.92 45 1.8271 0.9881 0.8962 

Roster 36 34578.58 87 1.7640 0.9911 0.9311 

Roster 37 35144.94 1123 1.9848 0.9803 0.8905 

Roster 38 35212.41 250 1.9079 0.9892 0.9134 

Roster 39 35607.09 110 1.9585 0.9925 0.9033 

Roster 40 35614.42 107 1.8875 0.9919 0.9241 

Roster 41 37165.01 79 1.9354 0.9891 0.8953 

Roster 42 37226.21 69 1.8794 0.9922 0.8976 

Roster 43 37617.69 155 1.9786 0.9862 0.8985 

Roster 44 37724.65 213 2.0193 0.9925 0.9075 

Roster 45 37730.13 156 1.9031 0.9916 0.9227 

Roster 46 38081.81 92 1.8893 0.9890 0.9059 

Roster 47 38467.74 71 1.9545 0.9893 0.8897 

Roster 48 38747.62 249 1.9028 0.9889 0.9181 

Roster 49 39427.35 312 1.9109 0.9912 0.9426 

Roster 50 40150.61 79 2.0617 0.9802 0.8925 

Table A.1: Original values of input and output variables for the DEA-model given a maximum number of four workers 

per flight and earliest STD as queuing discipline 
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Appendix B 

DMU Score  VX(1) Cost  VX(2) Score  UY(1) Avg # of 

completions 

without 

preemption 

 UY(2)  

Avg tardiness 

 UY(3) 

Success rate 

Roster 1 1 1 0 1 0 0 

Roster 2 1 0.999432 5.68E-04 1 0 0 

Roster 3 1 0.996324 3.68E-03 6.93E-02 0.860662 7.00E-02 

Roster 4 1 0.992232 7.77E-03 1 0 0 

Roster 5 0.975338 0.991439 8.56E-03 0 0 0.975338 

Roster 6 0.987252 0.999199 8.01E-04 0.987252 0 0 

Roster 7 0.972668 0.998555 1.44E-03 0.972668 0 0 

Roster 8 0.982682 0.975649 2.44E-02 0.903893 7.88E-02 0 

Roster 9 0.98325 0.999214 7.86E-04 0.98325 0 0 

Roster 10 0.953867 0.998781 1.22E-03 0.953867 0 0 

Roster 11 0.957998 0.983055 1.69E-02 0.957998 0 0 

Roster 12 0.983525 0.985472 1.45E-02 0.908341 7.52E-02 0 

Roster 13 0.936465 0.997786 2.21E-03 0 0 0.936465 

Roster 14 0.942759 0.99365 6.35E-03 0 0.854612 8.81E-02 

Roster 15 0.944363 0.999373 6.27E-04 0.944363 0 0 

Roster 16 1 0.954985 4.50E-02 1 0 0 

Roster 17 0.971624 0.994018 5.98E-03 0.195384 0.77624 0 

Roster 18 0.953314 0.978168 2.18E-02 0.87686 7.65E-02 0 

Roster 19 0.954452 0.982993 1.70E-02 0.954452 0 0 

Roster 20 0.916862 0.986116 1.39E-02 0.457348 0 0.459514 

Roster 21 0.991041 0.992157 7.84E-03 0 0 0.991041 

Roster 22 0.995006 0.998917 1.08E-03 0.995006 0 0 

Roster 23 0.994763 0.989687 1.03E-02 0.994763 0 0 

Roster 24 0.984618 0.999083 9.17E-04 0.984618 0 0 

Roster 25 0.986206 0.911549 8.85E-02 0.611461 0 0.374744 

Roster 26 0.974079 0.999098 9.02E-04 0.974079 0 0 

Roster 27 0.949954 0.997263 2.74E-03 0.949954 0 0 

Roster 28 0.966696 0.998669 1.33E-03 0.966696 0 0 

Roster 29 0.963759 0.99872 1.28E-03 0.963759 0 0 

Roster 30 0.981847 0.990848 9.15E-03 0.981847 0 0 

Roster 31 0.988121 0.973483 0.026517 0.874699 0.113422 0 

Roster 32 0.953838 0.989037 1.10E-02 0.953838 0 0 

Roster 33 0.953461 0.976874 2.31E-02 0.876609 7.69E-02 0 

Roster 34 0.953735 0.989673 1.03E-02 0.953735 0 0 

Roster 35 1 0.927964 7.20E-02 1 0 0 

Roster 36 0.986082 0.978604 2.14E-02 0.869436 0.116646 0 

Roster 37 0.904255 0.99726 2.74E-03 0.904255 0 0 

Roster 38 0.927691 0.99939 6.10E-04 0.927691 0 0 

Roster 39 0.91674 0.973856 2.61E-02 0.815207 0.101533 0 

Roster 40 0.939773 0.974556 2.54E-02 0.83437 0.105404 0 
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Roster 41 0.895867 0.920384 7.96E-02 0 0 0.895867 

Roster 42 0.906496 0.929862 7.01E-02 0 0 0.906496 

Roster 43 0.859822 0.989273 1.07E-02 0.859822 0 0 

Roster 44 0.862576 0.985359 1.46E-02 0.862576 0 0 

Roster 45 0.880259 0.989236 1.08E-02 0.880259 0 0 

Roster 46 0.871505 0.91376 8.62E-02 0.541928 0 0.329577 

Roster 47 0.874902 0.930137 6.99E-02 0 0 0.874902 

Roster 48 0.847799 0.983369 1.66E-02 0.847799 0 0 

Roster 49 0.854938 0.99932 6.80E-04 0.854938 0 0 

Roster 50 0.829502 0.92862 7.14E-02 0.514649 0 0.314853 

Table B.1: Outcome of the CCR-I-model (normalized data), representing the scores of the rosters and their weights 

Appendix C 

DMU Score  VX(1) Cost  VX(2) Score  UY(1) Avg # 

completions 

without 

preemption 

 UY(2)  

Avg tardiness 

 UY(3) 

Success rate 

Roster 1 0.975932 0.95 5.00E-02 0.174612 0.383316 0.418003 

Roster 2 0.983972 0.95 0.05 0.166891 0.199353 0.617728 

Roster 3 1 0.95 0.05 0.178626 0.392701 0.428673 

Roster 4 0.99679 0.928738 7.13E-02 0.141889 0.189626 0.665275 

Roster 5 0.939611 0.95 0.05 8.41E-02 0.228365 0.627187 

Roster 6 0.937667 0.95 5.00E-02 0.159309 0.180036 0.598322 

Roster 7 0.930823 0.95 5.00E-02 0.157655 0.184174 0.588994 

Roster 8 0.960056 0.95 5.00E-02 0.172959 0.377479 0.409618 

Roster 9 0.939674 0.95 0.05 0.161487 0.18944 0.588748 

Roster 10 0.919692 0.95 0.05 0.155505 0.18412 0.580067 

Roster 11 0.927634 0.95 0.05 0.157253 0.181342 0.589038 

Roster 12 0.959074 0.924705 7.53E-02 0.165841 0.191763 0.60147 

Roster 13 0.911422 0.95 5.00E-02 0.153627 0.184207 0.573588 

Roster 14 0.923234 0.95 0.05 0.164655 0.362161 0.396418 

Roster 15 0.909161 0.95 0.05 0.154411 0.178428 0.576322 

Roster 16 1 0.95 5.00E-02 0.181921 0.393974 0.424105 

Roster 17 0.935847 0.95 0.05 0.169428 0.368237 0.398182 

Roster 18 0.928144 0.95 5.00E-02 0.167919 0.36504 0.395185 

Roster 19 0.903773 0.95 5.00E-02 0.156359 0.178828 0.568586 

Roster 20 0.901771 0.95 0.05 0.125047 0.174641 0.602083 

Roster 21 0.963148 0.95 5.00E-02 0.172356 0.37831 0.412481 

Roster 22 0.960426 0.95 5.00E-02 0.162624 0.192138 0.605664 

Roster 23 0.965445 0.95 0.05 0.163981 0.185364 0.6161 

Roster 24 0.94779 0.95 0.05 0.17124 0.372737 0.403812 

Roster 25 0.973993 0.939808 6.02E-02 0.139137 0.184796 0.650059 

Roster 26 0.935649 0.95 5.00E-02 0.169212 0.368117 0.39832 

Roster 27 0.900137 0.95 0.05 0.127001 0.172339 0.600796 
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Roster 28 0.911018 0.95 0.05 0.155684 0.178392 0.576942 

Roster 29 0.914004 0.95 5.00E-02 0.156213 0.181561 0.57623 

Roster 30 0.951728 0.919686 8.03E-02 0.164444 0.188666 0.598618 

Roster 31 0.964716 0.92755 7.25E-02 0.167618 0.197155 0.599943 

Roster 32 0.92857 0.95 5.00E-02 0.158614 0.18315 0.586806 

Roster 33 0.932025 0.95 0.05 0.168196 0.36655 0.397279 

Roster 34 0.926452 0.95 0.05 0.158424 0.181502 0.586526 

Roster 35 1 0.933862 6.61E-02 0.179517 0.392544 0.427939 

Roster 36 0.973176 0.940935 5.91E-02 0.169435 0.203072 0.600669 

Roster 37 0.853963 0.95 0.05 0.144238 0.166013 0.543712 

Roster 38 0.887158 0.95 0.05 0.152342 0.176716 0.5581 

Roster 39 0.909088 0.925947 7.41E-02 0.127353 0.175674 0.606061 

Roster 40 0.92044 0.930403 6.96E-02 0.159214 0.184591 0.576635 

Roster 41 0.890623 0.947675 5.23E-02 0.122969 0.173217 0.594436 

Roster 42 0.903498 0.941668 5.83E-02 0.122338 0.178771 0.602389 

Roster 43 0.836988 0.95 0.05 0.142152 0.163083 0.531753 

Roster 44 0.825411 0.95 5.00E-02 0.140941 0.159008 0.525463 

Roster 45 0.847536 0.95 0.05 0.146432 0.169148 0.531956 

Roster 46 0.868554 0.940661 5.93E-02 0.11755 0.171283 0.579721 

Roster 47 0.864921 0.941437 0.058563 0.120403 0.16728 0.577238 

Roster 48 0.809516 0.95 0.05 0.139446 0.161539 0.508531 

Roster 49 0.795022 0.95 0.05 0.139105 0.158445 0.497472 

Roster 50 0.812274 0.9375 6.25E-02 0.116224 0.152285 0.543765 

Table C.1: Outcome of the AR-Global model (normalized data), representing the scores of the rosters and their weights 

References 

Atlason, J., Epelman, M. A., & Henderson, S. G. (2004). Call center staffing with simulation 
and cutting plane methods. Annals of Operations Research, 127, 333-358. 

Atlason, J., Epelman, M. A., & Henderson, S. G. (2008). Optimizing call center staffing 
using simulation and analytic center cutting-plane methods. Management 
Science, 54, 295-309. 

Avramidis, A. N., Chan, W., Gendreau, M., L’Ecuyer, P., & Pisacane, O. (2010). Optimizing 
daily agent scheduling in a multiskill call center. European Journal of Operational 
Research, 200, 822-832. 

Avramidis, A. N., Chan, W., & L'Ecuyer, P. (2009). Staffing multi-skill call centers via 
search methods and a performance approximation. IIE Transactions, 41, 483-
497. 

Azadeh, A., Ghaderi, S. F., Mirjalili, M., & Moghaddam, M. (2011). Integration of analytic 
hierarchy process and data envelopment analysis for assessment and 
optimization of personnel productivity in a large industrial bank. Expert Systems 
with Applications, 38, 5212-5225. 

Bard, J. F., Morton, D. P., & Wang, Y. M. (2007). Workforce planning at USPS mail 
processing and distribution centers using stochastic optimization. Annals of 
Operations Research, 155, 51-78. 



21 
 

Beliën, J., Demeulemeester, E., & Cardoen, B. (2012). Improving workforce scheduling of 
aircraft line maintenance at Sabena Technics. Interfaces, 42, 352-364. 

Borgonovo, E., & Peccati, L. (2011). Managerial insights from service industry models: 
a new scenario decomposition method. Annals of Operations Research, 185, 161-
179. 

Brunner, J., & Bard, J. (2012). Flexible weekly tour scheduling for postal service workers 
using a branch and price. Journal of Scheduling, In press. 

Castillo, I., Joro, T., & Li, Y. Y. (2009). Workforce scheduling with multiple objectives. 
European Journal of Operational Research, 196, 162-170. 

Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision 
making units. European Journal of Operational Research, 2, 429-444. 

CODA. (2010). Delays to air transport in Europe. In  CODA Digest (pp. 44): Eurocontrol. 
Cooper, W. W., Seiford, L. M., & Tone, K. (2006). Data Envelopment Analysis: A 

Comprehensive Text with Models, Applications, References and DEA-Solver 
Software: Springer. 

Cooper, W. W., Seiford, L. M., & Zhu, J. (2004). Handbook on Data Envelopment Analysis: 
Springer. 

Corominas, A., Lusa, A., & Pastor, R. (2004). Planning annualised hours with a finite set 
of weekly working hours and joint holidays. Annals of Operations Research, 128, 
217-233. 

Corominas, A., Lusa, A., & Pastor, R. (2007). Using a MILP model to establish a 
framework for an annualised hours agreement. European Journal of Operational 
Research, 177, 1495-1506. 

Deng, G.-F., & Lin, W.-T. (2011). Ant colony optimization-based algorithm for airline 
crew scheduling problem. Expert Systems with Applications, 38, 5787-5793. 

Dyson, R. G., Allen, R., Camanho, A. S., Podinovski, V. V., Sarrico, C. S., & Shale, E. A. 
(2001). Pitfalls and protocols in DEA. European Journal of Operational Research, 
132, 245-259. 

Eurocontrol. (2011). Planning for delay: influence of flight scheduling on airline 
punctuality. In  Eurocontrol trends in air traffic (Vol. 7, pp. 124). 

Frauendorfer, K., & Königsperger, E. (1996). Concepts for improving scheduling 
decisions: An application in the chemical industry. International Journal of 
Production Economics, 46–47, 27-38. 

Gupta, P., Bazargan, M., & McGrath, R. N. (2003). Simulation model for aircraft line 
maintenance planning. In  Annual Reliability and Maintainability Symposium, 
2003 (pp. 387-391). Tampa, Florida. 

Mason, A. J., Ryan, D. M., & Panton, D. M. (1998). Integrated Simulation, Heuristic and 
Optimisation Approaches to Staff Scheduling. Operations Research, 46, 161-175. 

Paradi, J. C., Smith, S., & Schaffnit-Chatterjee, C. (2002). Knowledge worker performance 
analysis using DEA: an application to engineering design teams at Bell Canada. 
IEEE Transactions on Engineering Management, 49, 161-172. 

Podinovski, V. V. (2004). Suitability and redundancy of non-homogeneous weight 
restrictions for measuring the relative efficiency in DEA. European Journal of 
Operational Research, 154, 380-395. 

Ruiz-Torres, A. J., Ho, J. C., & López, F. J. (2006). Generating Pareto schedules with 
outsource and internal parallel resources. International Journal of Production 
Economics, 103, 810-825. 

Tsai, C.-C., & Li, S. H. A. (2009). A two-stage modeling with genetic algorithms for the 
nurse scheduling problem. Expert Systems with Applications, 36, 9506-9512. 



22 
 

Van den Bergh, J., Beliën, J., Demeulemeester, E., De Boeck, L., & De Bruecker, P. 
(Unpublished results). Personnel scheduling: a literature review. 

Yan, S., Yang, T. H., & Chen, Y. C. (2004). A model and a solution algorithm for airline line 
maintenance manpower supply planning with multiple aircraft type 
maintenance certificates. Journal of the Chinese Institute of Engineers, 27, 719-
729. 

Yeh, J.-Y., & Lin, W.-S. (2007). Using simulation technique and genetic algorithm to 
improve the quality care of a hospital emergency department. Expert Systems 
with Applications, 32, 1073-1083. 

 

 


	vandenbergh cover1.pdf
	Van den Bergh HRP1.pdf
	Abstract
	1 Introduction
	2 Literature review
	3 Methodology
	4 Case study
	4.1 Problem description
	4.2 Simulation results
	4.3 DEA

	5 Conclusion and future work
	Acknowledgements
	Appendix A
	Appendix B
	Appendix C
	References


