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1 Introduction

In general, we model a certain phenomenon of interest by translating each
item of evidence that we have about it (data or prior knowledge) into a
probability law. In practical situations our belief about which probability
law should be used is inevitably subject to error. Firstly, modelling is only an
attempt to describe the reality which is much more complex than our whole
knowledge and experience can account for. This is a natural distinguishing
mark between theory and practice. Not to mention that usually we do not
make precise judgements about the accuracy of the model in explaining the
real world, subconsciously we accept that our chosen model is adequate to
solve a given problem. Notwithstanding the fact that statistical models are
quite successful in solving problems in real world, in some practical situations
those models may be disturbed by surprising events such as outliers, gross
errors (such as copying), or even the initial assumptions, which led us to
choose a particular model, may be mistaken. Those problems, of course,
may potentially lead to inaccurate results.

As in Bayesian analysis there are more sources of information to model
than the classical approach we may have more potential problems concern-
ing the robustness of the posterior distribution. In addition to the outlier
problem, the prior information, like the data, is also subject to modelling
problems. In general, it is easier to model data than prior knowledge, since
usually data are generated by a random process and most of the times we
have good evidences (such as histograms) about which probability law could
be chosen to represent them. On the other hand, prior information is often
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regarded as a drawback in Bayesian statistics due to the complexity that is
found in translating experts’ opinions into a probability density.

In Bayesian context the idea of surprising events is associated with the
presence of conflicting information. A detailed discussion about conflicts and
their potential effects on the posterior distribution can be found in O’Hagan
& Forster (2004, §3.35). Broadly speaking, we say that two sources of infor-
mation conflict if they disagree; that is, the functions (likelihood/densities)
concerning the parameter of interest are concentrated far away from each
other. As extensively discussed in the literature (e.g. Finetti (1961), Lind-
ley (1968) and O’Hagan & Forster (2004)), problems of conflicts are directly
related with the tails thickness.

To the purpose of resolve problems of conflicts, a long literature has been
developed aiming to establish sufficient conditions on the distributions in
the model in order to make the posterior distribution unaffected by con-
flicts (surprising events). In the pure location-parameter case, Dawid (1973)
and O’Hagan (1979) proposed sufficient conditions on the data and prior
distribution which allows to resolve conflict by rejecting the conflicting in-
formation in favour of the other source. Some further development of the
ideas of Dawid and O’Hagan can found in O’Hagan (1988 and 1990), Peric-
chi et al (1993) and Pericchi & Sansó (1995), O’Hagan & Le (1994) and Le
& O’Hagan (1998) and finally Haro-López and Smith (1999), who proposed
some conditions on multivariate v-spherical family (Fernandez et al, 1995)
involving location and scale parameters in order to bound the influence of
the likelihood over the posterior distribution. However, their approach es-
tablishes conditions which are quite difficult to verify, and does not provide
explicitly the limiting posterior distribution.

Andrade & O’Hagan (2006) used the theory of regular variation in order
to resolve conflicts in Bayesian modelling of location and scale parameters
structures; Andrade & O’Hagan (2011) generalised their idea to location-
scale structures. The advantage of regarding heavy tails as regularly varying
distributions is that regular variation provides a much easier interpretation
of tails decay, since any distribution with regularly varying tails can be rep-
resented simply as a power function. Moreover, concepts created in the
literature (such as Credence O’Hagan (1988)) have equivalents in the regular
variation theory. See Andrade & O’Hagan (2006).

The literature developed so far has been channelled only in providing
sufficient conditions to the posterior distribution become robust to atypical
events. Let x be an outlier and suppose we have single parameter model, in

which x|y D
∼ f(x|y) and y

D
∼ p(y), the idea was to propose sufficient conditions

on f and on p so that the posterior distribution becomes unaffected by the
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outlier x as it becomes large, that is p(y|x) → g(y) as x → ∞, where g is a
density which does not involve the outlier x.

In this work we extend the ideas proposed by Andrade & O’Hagan (2006)
to wider families of heavy-tailed distributions, in which we propose sufficient
conditions on the location and scale parameter structures. In Section 2 we
provide the definitions and some properties of the classes of distributions
which we use throughout the paper. In Section 3 we we find sufficient con-
ditions on the location parameter structure in order to reject observations in
the sample which are far away from the other sources of information. In Sec-
tion 4 we consider the scale parameter case, in which we propose alternative
conditions to those proposed by Andrade & O’Hagan (2006). We illustrate
the theory in Section 5, where we provides examples involving distributions
belonging to the classes studied. Finally, we make some general comments
in Section 6.

2 Some classes of distribution functions

In this section we recall some important classes of functions (and some pro-
prieties) that play an important role in the models that we discuss. The
basic reference for these classes is Bingham, Goldie & Teugels (1985), which
will be cited as BGT from now on.

Definition 1 A measurable function f is regularly varying at ∞ and with
index ρ ∈ ℜ, written f ∈ RV (ρ), if it satisfies:

lim
x→∞

f(xy)

f(x)
= yρ, ∀y > 0. (1)

In particular, if ρ = 0, f is said to be slowly varying.

Definition 2 A measurable function f is O-regularly varying at ∞, written
f ∈ ORV , if it satisfies:

lim
x→∞

sup
f(xy)

f(x)
< ∞, ∀y > 0. (2)

If f ∈ ORV , the upper index of f is given by

α(f) = lim
y→∞

log lim supx→∞ f(xy)/f(x)

log(y)
, (3)
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and the lower index of f is given by β(f) = α(1/f). It can be proved (see
BGT, §2.0.1) that if f ∈ ORV , then for any β < β(f) and α > α(f), there
exist constants C, D and x◦ so that

Cyβ ≤ f(xy)

f(x)
≤ Dyα, ∀y ≥ 1, ∀x ≥ x◦. (4)

Definition 3 A measurable function f is in the class L if it satisfies:

lim
x→∞

f(x + y)

f(x)
= 1, ∀y > 0. (5)

Equivalently, f ∈ L if and only if f ◦ log ∈ RV (0). It is well known that
f ∈ RV (ρ) implies that f ∈ L. The converse statement is false in general.

Definition 4 A density function f is a subexponential density, written f ∈
SD, if f ∈ L and if

lim
x→∞

f⊗2(x)

f(x)
= 2, (6)

where f⊗2(x) = f ⊗ f(x) is the 2-fold convolution of f .

It can be proved for density functions that if f ∈ RV or f ∈ L ∩ ORV
imply that f ∈ SD. See Chover et al (1973).

3 Location parameter models

3.1 Notation

Consider a random sample X = (x1, x2, ..., xn) of independent and identi-
cally distributed (iid) random variables with fixed sample size n. A general
location parameter Bayesian model is of the form

xi|y D
∼ f(xi | y) = f(xi − y), 1 ≤ i ≤ n;

y
D
∼ p(y),

where f is a fixed p.d.f. and p(y) is the prior p.d.f. of y which is the parameter
of interest.

Suppose that xi, 1 ≤ i ≤ k < n are large. We set XL = (x1, x2, ..., xk)
and XU = (xk+1, ..., xn). We clearly have

f(X|y) = Πk
i=1f(xi − y) × Πn

j=k+1f(xj − y)

= f(XL | y) × f(XU | y)

= L × U .
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The posterior p.d.f. of y is given by

p(y | X) =
f(X | y)p(y)

∫

ℜ
f(X | y)p(y)dy

. (7)

We want to investigate what happens to p(y | X) as x = min(x1, x2, ..., xk) →
∞. This is a situation in which the sample fractions XL and XU conflict, in
the sense that they carry very diverse information, that is the likelihood of
y based on XL is settled far away from the likelihood of y based on XU and
the prior distribution p(y). This kind of conflict may disturb the posterior
distribution and potentially lead to wrong conclusions. In order to avoid this
behaviour, the idea is to establish conditions under which

p(y | X) → p(y | XU) ∝ p(y)f(XU |y), as x → ∞.

In this case we say that the influence of the data over the posterior distribu-
tion vanishes, leaving the posterior distribution depending only on the prior
distribution and the likelihood of y based on XU . The model rejects the
data XL in favour of the prior distribution and the rest of the data. This
behaviour implies that the posterior distribution is robust to atypical data,
that is if x becomes too far away from the prior mode and the data XU , XL

is rejected.

3.2 Preliminary results

If f ∈ L, then as z → ∞ we have f(z − y)/f(z) → 1. If f ∈ L, it follows
that

L = Πk
i=1f(xi − y) ∼ Πk

i=1f(xi) (as x → ∞).

Now we consider (cf. (7)) the integral
∫

ℜ
f(X | y)p(y)dy and write

∫

ℜ

f(X | y)p(y)dy =

∫

ℜ

f(XL | y)f(XU | y)p(y)dy.

Using Fatou’s lemma, we get that for f ∈ L,

lim inf
x→∞

∫

ℜ
f(X | y)p(y)dy

Πk
i=1f(xi)

≥
∫

ℜ

f(XU | y)p(y)dy

and then also that

lim sup
x→∞

p(y | X) ≤ f(XU | y)p(y)
∫

ℜ
f(XU | y)p(y)dy

= p(y | XU).
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3.3 Main results

Theorem 5 (Densities in L ∩ ORV ) Suppose that f is a bounded density
and that f ∈ L ∩ ORV with α(f) < 0. Also assume that

∫ ∞

x

p(y)dy = o(Πk
i=1f(xi)), as x → ∞. (8)

Then we have
p(y | X) → p(y|XU), as x → ∞.

Proof. For the integral in (7), we write

∫

ℜ

f(X | y)p(y)dy = (

∫ 0

−∞

+

∫ x/2

0

+

∫ ∞

x/2

)L × U × p(y)dy

= I + II + III.

First consider II. In II we have 0 ≤ y ≤ x/2 and it follows that

xi − x/2 ≤ xi − y ≤ xi, 1 ≤ i ≤ k

and then also that

xi/2 ≤ xi − y ≤ xi, 1 ≤ i ≤ k.

First note that for f ∈ L we have L ∼ Πk
i=1f(xi), as x → ∞. Since f ∈

ORV , it follows that in II, L/Πk
i=1f(xi) is bounded. Since f is bounded (by

assumption) we have that U is bounded, then there exists a constant C such
that

∫

ℜ

U × p(y)dy < ∞ < C

∫

ℜ

p(y)dy = C,

hence
II

Πk
i=1f(xi)

→
∫ ∞

0

U × p(y)dy.

Next we consider I. In I we have xi ≤ xi − y. Using (4) we get that

f(xi − y)

f(xi)
=

f(xi(xi − y)/xi)

f(xi)
≤ D

(

xi − y

xi

)α

,

where α(f) < α. Since α(f) < 0, we can choose α < 0 and then we see that
in I, L/Πk

i=1f(xi) is bounded. Again Lebesgue’s theorem can be applied to
obtain that

I

Πk
i=1f(xi)

→
∫ 0

−∞

U × p(y)dy.
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For the third term III we use the assumption that f is a bounded density.
In this case we obtain that

III ≤ (sup f(z))n ×
∫ ∞

x/2

p(y)dy.

By our assumption on p we obtain that

III = o(Πk
i=1f(xi/2)).

Using f ∈ ORV ,we conclude that III = o(Πk
i=1f(xi)). This proves the

theorem.

Theorem 6 (Densities in L) Suppose that f ∈ L and that f is bounded.
Also suppose that there exists s > 0 such that

∫ 0

−∞

e−syU × p(y)dy +

∫ ∞

0

esyU × p(y)dy < ∞.

If
∫ ∞

x
p(y)dy = o(Πk

i=1f(xi)), as x → ∞, we have that

p(y | X) → p(y | XU), as x → ∞.

Proof. Since f ∈ L, we still have L/Πk
i=1f(xi) → 1 as x → ∞. Also we

have F := f ◦ log ∈ RV (0). Using (4), for each ε > 0, we can find constants
A, B, z◦ so that

f(z − y)

f(z)
≤ Ae−εy, y ≤ 0, z ≥ z◦, (9)

f(z − y)

f(z)
≤ Beεy, y ≥ 0, z − y ≥ z◦, z ≥ z◦.

Now we write the integral as follows:

∫

ℜ

f(X|y)p(y)dy = (

∫ 0

−∞

+

∫ x−z◦

0

+

∫ ∞

x−z◦
)L × U × p(y)dy

= I + II + III.

First consider I. For L we have y ≤ 0 and xi ≥ x. It follows from (9)
that for x ≥ z◦ we have

L = Πk
i=1f(xi − y) ≤ Πk

i=1Af(xi)e
−εy.
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Taking s = εk, we can use Lebesgue’s theorem to see that

I

Πk
i=1f(xi)

→
∫ 0

−∞

U × p(y)dy.

Now consider II. In II we have 0 ≤ y ≤ x − z◦ so that

z◦ ≤ xi − x + z◦ ≤ xi − y ≤ xi.

It follows from (9) that for x ≥ z◦ we have

L = Πk
i=1f(xi − y) ≤ Πk

i=1Bf(xi)e
εy.

Taking s = εk, we can use Lebesques theorem to see that

II

Πk
i=1f(xi)

→
∫ ∞

0

U × p(y)dy.

Finally consider III. Since f has a bounded density, we find that

III ≤ (sup f(z))n

∫ ∞

x−z◦
p(y)dy.

Our assumption about p shows that

III = o(Πk
i=1f(xi − z◦).

Using f ∈ L, we obtain that III = o(Πk
i=1f(xi). This proves the result.

Now, assume k = 1 in Section 3.1, we get just one outlier and then we
have L = f(x1 − y). In this subsection we assume f ∈ SD, that is f ∈ L

and f satisfies f ⊗ f(x)/f(x) → 2, as x → ∞.

Theorem 7 (Densities in SD) Suppose that f ∈ SD ⊂ L and that p(|x|) =
o(f(|x|)), then p ⊗ f(x)/f(x) → 1.

Proof. We write

p ⊗ f(x) =

(
∫ −x◦

−∞

+

∫ x◦

−x◦

+

∫ ∞

x◦

)

p(y)f(x − y)dy

= I + II + III.

Since p(−x) = o(1)f(−x) as x → ∞, for ε > 0 we can find x◦ so that we
have

I ≤ ε

∫ −x◦

−∞

f(y)f(x− y)dy ≤ εf ⊗ f(x),
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It follows that

lim sup
I

f(x)
≤ 2ε.

For III, in a similar way we find that

lim sup
III

f(x)
≤ 2ε.

Now consider II. Using f ∈ L, we get that

II

f(x)
→

∫ x◦

−x◦

p(y)dy.

By choosing x◦ sufficiently large, we obtain that

1 −
∫ x◦

−x◦

p(y)dy ≤ ε,

We conclude that

lim sup
x→∞

∣

∣

∣

∣

p ⊗ f(x)

f(x)
− 1

∣

∣

∣

∣

≤ 5ε.

Now let ε → 0, to get the desired result.
A following theorem provides the same result, but with conditions slightly

different from Those of Theorem 7.

Theorem 8 (Densities in SD) Assume that f ∈ SD, (this is: f ∈ L and
f ⊗ f(x)/f(x) → 2, as x → ∞). Also assume that p(|x|) ∼ αf(|x|) where
α > 0. Then p ⊗ f(x) ∼ (α + 1)f(x).

Proof. We choose a in such a way that

(α − ε)f(|x|) ≤ p(|x|) ≤ (α + ε)f(|x|), ∀x with |x| ≥ a.

Now choose x◦ ≥ a. We reconsider I and III from the proof of Theorem 7
and get that

(α − ε)

∫ −x◦

−∞

f(y)f(x− y)dy ≤ I ≤ (α + ε)

∫ −x◦

−∞

f(y)f(x− y)dy

(α − ε)

∫ ∞

x◦

f(y)f(x− y)dy ≤ III ≤ (α + ε)

∫ ∞

x◦

f(y)f(x− y)dy
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It follows that

(α + ε)

{

f ⊗ f(x) −
∫ x◦

−x◦

f(y)f(x− y)dy

}

≤ I + III

≤ (α + ε)

{

f ⊗ f(x) −
∫ x◦

−x◦

f(y)f(x− y)dy

}

,

and using f ∈ L we obtain that

(α − ε)(2 −
∫ x◦

−x◦

f(y)dy) ≤ lim
x→∞

(

sup

inf

)

I + III

f(x)
≤ (α + ε)(2 −

∫ x◦

−x◦

f(y)dy).

For II we obtain that (use f ∈ L), we get that

II

f(x)
→

∫ x◦

−x◦

p(y)dy.

We can find x◦ sufficiently large such that

1 − ε ≤
∫ x◦

−x◦

f(y)dy ≤ 1, 1 − ε ≤
∫ x◦

−x◦

p(y)dy ≤ 1.

We get that

(α − ε) + 1 − ε ≤ lim
x→∞

(

sup

inf

)

p ⊗ f(x)

f(x)
≤ (α + ε)(1 + ε) + 1.

Now let ε → 0 to get the desired result.

3.4 Many observations

Theorems 7 and 8 can be extended to many observations with some of them
possibly being outliers. In order to show this, we use the same strategy as in
Andrade & O’Hagan (2006). Consider a random sample x = (x1, x2, ..., xn)
iid with a p.d.f. f(xi|y) = f(xi − y) ∀i, where y is a location parameter. Let

also y
D
∼ p(y) (prior distribution).

Now we have the situation in which a few observations are very large (i.e.
tending to infinity). In other words, we have (x1, ..., xk) (k ≤ n) tending to
infinity. This is equivalent to think of the k observations close to each other
and tending to infinity, that is xi = x + ξi for ξi fixed (i = 1, ..., k). Thus we
can write the joint distribution of (x1, ..., xk) as

f(x1, ..., xk|y) =

k
∏

i=1

f(x + ξi − y) = g(x − y),
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which clearly keeps the location structure. In fact, the outliers behave like a
single observation as x → ∞.

The joint distribution of the rest of the observations is given by

f(xk+1, ..., xn|y) =
n

∏

i=k+1

f(xi − y) = U.

The posterior can be written as

p(y|x) =
U × g(x − y) × p(y)

∫

R
U × g(x − y) × p(y)dy

.

Let p∗(y) = U × p(y), it follows that we have the same structure of Theorem
8, holds if p∗(|x|) ∼ αg(|x|) as x → ∞. In this case the posterior distribution

p(y|x) → U × p(y)
∫

R
U × p(y)dy

(x → ∞).

4 Scale parameter models

4.1 Notation

As shown by Andrade & O’Hagan (2006), regular variation provides a nat-
ural way to deal with scale parameters since the scale structure of a scale
parameter model is the same as in the definition of regular variation.

Consider a sample X = (x1, x2, ..., xn) of independent and identically
distributed (iid) with fixed sample size n. A typical scale parameter model
is of the form

xi|y D
∼ f(xi | y) = y−1h(xi/y), 1 ≤ i ≤ n;

y
D
∼ p(y),

where f is the data p.d.f. and p(y) is the prior p.d.f. of y which is the
parameter of interest. For convenience, we assume that all random variables
involved are concentrated on the positive halfline.

Suppose that xi, 1 ≤ i ≤ k < n are large. As before we define XL =
(x1, x2, ..., xk), x = min(x1, ..., xk) and XU = (xk+1, ..., xn). We clearly have

f(X | y) = y−nΠk
i=1h(xi/y) × Πn

j=k+1h(xj/y)

= y−n × L × U .

The posterior p.d.f. of y is given by

p(y | X) =
f(X | y)p(y)

∫

ℜ
y−nL × U × p(y)dy

. (10)
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4.2 Main result

Now we suppose that h ∈ RV (α). In this case it is easy to see that

L

Πk
i=1h(xi)

→ y−αk, as x → ∞.

We need extra conditions to see what happens in (10) if x → ∞. An
alternative to the conditions proposed by Andrade & O’Hagan (2006) is
provided by the next result.

Theorem 9 (Densities in RV ) Suppose that h ∈ RV (α) with α < 0 and
suppose that h is bounded on bounded intervals. Assume that for ε > 0 we
have

∫ 1

0

y−(α+ε)kU × p(y)dy +

∫ ∞

1

y−(α−ε)kU × p(y)dy < ∞, (11)

Then

1

Πk
i=1h(xi)

∫

ℜ

L × U × p(y)dy →
∫ ∞

0

y−αkU × p(y)dy < ∞ (12)

Proof. We have

∫

ℜ

L × U × p(y)dy = (

∫ 1

0

+

∫ ∞

1

)L × U × p(y)dy = I + II.

First consider I and write

I

Πk
i=1h(xi)

=

∫ 1

0

Πk
i=1

h(xi/y)

h(xi)
U × p(y)dy.

Since 1 ≤ 1/y and h ∈ RV (α), for each ε > 0 we can find constants C and
z◦ such that

h(z/y)

h(z)
≤ Cy−α−ε, ∀z ≥ z◦, ∀y ≤ 1.

It follows that

Πk
i=1

h(xi/y)

h(xi)
≤ Cky−αk−εk, ∀x ≥ z◦, ∀y ≤ 1.

Using (11) it follows that we can apply dominated convergence and we find
that

I

Πk
i=1h(xi)

→
∫ 1

0

y−αkU × p(y)dy.
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Now consider II. Using h ∈ RV (α), for each ε > 0, we can find constants
D and z◦ such that

h(xi/y)

h(xi)
≤ Dy−α+ε, ∀y ≥ 1 and xi/y ≥ z◦.

Now consider the case where y ≥ 1, xi/y < z◦ and xi ≥ z◦. Since we assume
that h is bounded on bounded intervals, we get that

h(xi/y)

h(xi)
≤ sup

u≤z◦
h(u)

1

h(xi)

= sup
u≤z◦

h(u)
1

x−α+ε
i h(xi)

x−α+ε
i .

Since z−α+εh(z) → ∞ as z → ∞, we can find a constant D◦ so that

h(xi/y)

h(xi)
≤ D◦x−α+ε

i , ∀y ≥ 1, xi/y < z◦, xi ≥ z◦.

Now it follows that

h(xi/y)

h(xi)
≤ D◦yα−εx−α+ε

i y−α+ε.

Since α < 0 and xi/y < z◦, we get that

h(xi/y)

h(xi)
≤ D◦(z◦)−α+εy−α+ε = Fy−α+ε.

Combining these estimates, we have proved that we can find a constant
G such that

h(xi/y)

h(xi)
≤ Gy−α+ε, ∀y ≥ 1, ∀xi ≥ z◦.

Assumption (11) can be used and applying dominated convergence, we get
that

II

Πk
i=1h(xi)

→
∫ ∞

1

y−αkU × p(y)dy.

Combining the results for I and II, we obtain (12).
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4.3 Remark

We briefly discuss conditions under which condition (11) holds. We prove
the following result

Proposition 10 Suppose that h ∈ RV (α) is bounded on bounded intervals.
Also assume that

∫ 1

0

yθ−(n−k)(α+ε)p(y)dy < ∞ resp.

∫ ∞

1

yθp(y)dy < ∞.

Then for fixed XU ,

∫ 1

0

yθU × p(y)dy < ∞, resp.

∫ ∞

1

yθU × p(y)dy < ∞.

Proof. First consider an integral of form

∫ 1

0

yθU × p(y)dy.

Clearly we have

∫ 1

0

yθU × p(y)dy = (

∫ a

0

+

∫ 1

a

)yθU × p(y)dy = A + B,

where 0 < a < 1. First consider B. Since we assume that h is bounded on
bounded intervals, we have

B ≤
∫ 1

a

yθp(y)dy ≤ max(1, aθ)

∫ 1

a

p(y)dy < ∞.

Next consider A. Using z−α−εh(z) → 0, we can find z◦ such that h(z) ≤
εzα+ε, z ≥ z◦. It follows that

h(xi/y) ≤ ε(xi/y)α+ε, xi/y ≥ z◦.

Since y ≤ a, we should choose a such that xi/a ≥ z◦, or a ≤ xi/z
◦. Having

done this, we find

A ≤
∫ 1

a

yθΠn
i=k+1ε(xi/y)α+εp(y)dy

= εn−kΠn
i=k+1x

α+ε
i

∫ 1

a

yθ−(n−k)(α+ε)p(y)dy < ∞.
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Next consider an integral of the form
∫ ∞

1

yθU × p(y)dy.

Since we assume that h is bounded on bounded intervals, we have

h(xi/y) ≤ sup
z≤xi

h(z) = s(xi)

and then also
∫ ∞

1

yθU × p(y)dy ≤ Πn
i=k+1s(xi)

∫ ∞

1

yθp(y)dy < ∞.

This proves the result.

5 Examples

We illustrate the theory with a general problem of estimating the location
and scale parameters of the random sample x = (2, 3, 3, 4, x5), where we
take x5 arbitrarily large in order to observe the behaviour of the posterior
distribution of the location and the scale parameters. The general model is











xi|y, σ2 D
∼ f(xi|y, σ) = σ−1h

(

xi−y
σ

)

iid, i = 1, ..., 5

y
D
∼ p(y)

σ
D
∼ π(σ)

. (13)

We use the OpenBugs software which uses the MCMC methods for sampling
from the posterior distribution, in all the cases the algorithm was run until
its convergence, then the posterior estimates of the location and of the scale
parameters were computed.

In order to achieve rejection of the outlying observation we need to model
accordingly to the theorems above. This basically means to choose suitably
heavy-tailed distributions for the data and prior distributions with lighter
tails for the location and the scale parameters. As our purpose is to illustrate
the theory, thus we opt for quite strong prior information (small variances),
which will make the MCMC algorithm to achieve convergence more quickly.
Thus we expect to base the posterior estimates on the prior information
and on the non-outlying observations XU = (2, 3, 3, 4). As for the data
distribution, we propose four different choices for f , namely, models: (I) f
light-tailed, (II) f ∈ RV , (III) f ∈ L and (IV) f ∈ SD. Thus we assess the
behaviour of the posterior estimates as we disturb the data by increasing x5.

We need to verify if the distributions of Models (I)-(IV) satisfy the con-
ditions of the Sections 3 and 4.
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Model I) The traditional light-tailed choice for f is a normal distributions
with mean (location) y and standard deviation (scale) σ. It easy
to verify that the normal distributions does not belong to any
of the families above. In fact,

lim
x→∞

f(x − y)/f(x) =







1, y = 1;
0, y < 0;
∞, y > 0.

,

hence f /∈ L, therefore f /∈ RV and f /∈ SD. Notice that f /∈
ORV , since we the limit (2) is infinity as 0 < y < 1. As for the

prior information, we assign y
D
∼ N(0, 0.05) and σ

D
∼ G(3, 10).

Model II) Besides being bounded, by (1), the Student’s t distribution with
d degrees of freedom and is regularly varying with index −(d +
1). Thus we assign to f(yi|y, σ2) a t distribution with d = 4
degrees of freedom, mean y and variance σ2. In addition we

assign y
D
∼ N(0, 0.05) for the prior distribution of y and σ

D
∼

G(3, 10). Now we need to verify the conditions of Theorems 5
(location parameter) and 9 (scale parameter).

Location parameter: We have to show that

[1 − Φ(x)]/

n
∏

i=1

f(xi) → 0, as x → ∞,

where Φ is the cumulative distribution of the standard normal
distribution. In fact, 1−Φ(x) = erfc(x/

√
2)/2, where erfc is the

complementary error function

erfc(x) = 2(2π)−1/2

∫ ∞

x

e−x2/2dx,

which has the asymptotic expansion

erfc

(

x√
2

)

=
2e−x2/2

√
2π

n
∑

n=0

(−1)n1 · 2 · 3 · · · (2n − 1)

x2n+1
. (14)

For any k (≤ n)
∏k

i=1 f(xi) ∝ ∏k
i=1 (1 + x2

i /(d − 2))
−(d+1)/2

, it

follows that [1 − Φ(x)]/
∏k

i=1 f(xi) → 0 as x → ∞. Hence the
conditions of Theorem 5 as satisfied. Here k = 1 which makes
the condition even easier to verify.
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Scale parameter: It’s straightforward by application of Propo-
sition 10, since the prior of the scale parameter is a Gamma
distribution, it follows that

∫ ∞

1

σθp(σ)dσ < ∞, for all θ > −α = −3.

Model III) The Exponential Power Distribution (EPD) (or generalised nor-
mal distribution) (Box & Tiao, 1973) is of the form

f(yi|y, σ2) ∝ 1

σ
e−|

yi−y

σ |q .

This structure generalises several well know distributions. For
instance, if q = 2 f is a normal distribution and if q = 1 f is
the double exponential. For 0 < q ≤ 1 we have EPD ∈ L, thus
we choose q = 1/3. From (1), the EPD is not in the RV class,
hence we cannot guarantee robustness of the posterior estimate

of the scale parameter, here we assign σ
D
∼ G(3, 0.01). As for the

location parameter, let y
D
∼ N(0, 0.05), again we have to satisfy

the conditions of Theorem 5. In fact, similarly to the strategy
used in Model II above,

∏k
i=1 f(xi) ∝ σ−k exp{−

∑k
k=1 |xi|q},

which can be compared with (14), hence Condition (8) is verified.

Model IV) The LogNormal distribution is a well known subexponential dis-
tribution (see Goldie & Klüppelberg, 1998). The LogNormal
distribution is also in L, but not in ORV . We consider the
model

f(yi|y, σ2) ∝ (yiσ)−1e−
(log yi−y)2

2σ2 , i = 1, ..., 5

that is yi is lognormally distributed with location parameter y
and scale parameter σ. In addition we choose a Lognormal distri-

bution for the prior distribution of µ, that is µ
D
∼ LogN(0, 0.05),

hence we satisfy the condition that p(x) ∼ f(x) (x → ∞) (The-
orem 8). Again, as in the L the SD class will not produce a
robust posterior distribution for the scale parameter, thus we

arbitrarily choose σ
D
∼ IG(3, 10).

Note that we have different models, thus we cannot compare the models
estimates. In fact, we compare the behaviour of the posterior estimates in
the different models.
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5.1 Results

Although the example looks rather simple, great part of the problems in
Statistics concerns the estimation of location and scale parameters. For in-
stance, in linear regression models the parameters of interest are the mean
(which involves the regression coefficients) and the variance of the errors.

We plot the posterior estimates for each x5 varying from 1 to 1000, we
also plot the tendency line which helps to see the variation of the estimates.
Figure 1(a) (Model I) shows a quite common model used in Bayesian analy-
sis, in which both the data and the prior distributions are light-tailed. Note
that in this case, when x5 ↑ ∞ the posterior estimates follow the outlying
information faithfully to the infinity. This was the behaviour identified by de
Finetti (1961) and described in more details by Lindley (1968). In practice
this basically means that if outliers are in the data, the posterior distribu-
tion may be disturbed by it, and potentially leading wrong conclusions. As
an alternative, Model II (Figure 1(b)) yields a quite robust posterior distri-
bution. In fact, the posterior estimates for y and for σ becomes unaffected
by the outlying information when it becomes too large. As pointed out by
Andrade & O’Hagan (2006), the posterior estimates reject the outlying data
in favor of the rest of the data and the prior information. Model III uses an
L distribution, which shows in Figure 1(c) that we achieve robustness only
on the location parameters, whose posterior estimates tend to a constant,
whereas the posterior estimates of the scale parameter tend to infinity as
x5 ↑ ∞. Similarly, in Model IV we cannot control the influence of the outlier
in the posterior distribution of σ, which produces estimates very sensitive to
changes of x5, in contrast the posterior estimates of the location parameter
y tends to a constant, rejecting the outlier.

6 Discussion

The results above concern the cases where we want to reject some observa-
tions or the whole sample in favour of the prior information, although this
is the most common form of conflict (most of the problems happen in the
data), in some situations one may wish to weaken the prior information in
the model, perhaps for finding the prior information not so credible. In this
case, the theory presented provides tools for making the the model to behave
in the way the modeller wishes. For rejecting some prior information we ba-
sically need to model accordingly to the Theorems above, but how focusing
in the prior information, that is assign some heavy-tailed distribution to the
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(a) Model I: Posterior estimates of y and σ.
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(b) Model II: Posterior estimates of y and σ.
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(c) Model III: Posterior estimates of y and σ.
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(d) Model IV: Posterior estimates of y and σ.
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prior information and some distribution with lighter tails to the data. For
instante, in Theorem 5, in order to reject the prior distribution in favour
of the data, we need to choose p ∈ L ∩ ORV , with p bounded, α(p) < 0
and

∫ ∞

x
f(y)dy = o(p(x)) as x → ∞. In general we need just to exchange

the prior distribution with the data distribution in the theorems presented
above. Andrade & O’Hagan (2006, 2011) provides some further description
of how to reject prior information of the location and the scale parameter.

Our results involve quite wide classes of heavy-tailed distribution, in par-
ticular the L and SD embraces most of the distributions whose tails decay
like e−xq

(q < 1) and those with regularly varying tails, which behave like a
polynomial. Distributions like the EPD, Laplace and LogNormal have been
used as heavy tails in practical applications (see Pericchi & Sansó, 1995 and
Pericchi et al, 1993), but without formal description of their classes. As
shown in the examples, we cannot achieve posterior robustness on the scale
parameters within the classes L and SD. As Andrade & O’Hagan (2006)
point out, differently from the location case in which conflicts disturb only
the location of the posterior distribution, in a scale parameter structure the
posterior distribution is affected both on the location as in the dispersion as
some observation increases, thus we need quite heavy tails to resolve those
conflicts.

The theory of Bayesian robustness modelling for resolution of conflicts
has been channeled to find sufficient conditions under which the posterior
distribution resolves the conflict in favour of that source of information we
regard as the most credible. The literature has been focusing on the theoret-
ical aspects rather than applications. Actually we do not know how efficient
the theory is in practical applications. In particular, the verification of the
conditions of the theorems might not be so straightforward in hierarchical
models in which we may have many sources of prior information. Of course
this is a lacuna in the area which needs more work.
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