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Abstract

This paper presents an application of optimization modeling to win
a popular cycling game. The application involves real-life data of to-
day’s cyclists and challenges the students because of the competition
aspect. Since the developed optimization model contains features of
knapsack problems, multiperiod problems and integer programming
modeling, it is perfectly suited as a concluding case study in an under-
graduate operations research/management science course. Moreover,
the application also sharpens the understanding of the working of stock
exchange markets and is, therefore, also interesting for finance courses.
The application was originally developed for an MBA operations re-
search course focusing on spreadsheet modeling skills, but it can also
be used in courses that focus on algebraic modeling of optimization
problems.

Keywords: Cycling, game, spreadsheet modeling, mixed integer pro-
gramming, knapsack problems, multiperiod problems, stock market

1 Introduction and literature review

The best way to make business students enthusiastic about operations re-
search/management science (OR/MS) is to let them experience how useful
the gained skills can be in their personal life. Ask your students to model
a fictive business problem and only a minority will be motivated to find
the correct solution. Ask your students to model a real-life business prob-
lem and maybe, if you are lucky, half of them will do a serious effort. Do



the same, but use an application that fascinates students, like sports (e.g.,
basket, football, baseball in the US; cycling or soccer in Europe) and the
majority is eager to find the solution. Finally, combine a popular application
with a competition aspect (play a game) and almost all of the students are
determined to find the optimal solution (and win the competition).

This is in line with the literature. Cochran (2004) explains why and how
sports can help instructors of applied quantitative methods achieve sev-
eral important pedagogical goals. The special issue on 'SpORts in the OR
Classroom’, INFORMS Transactions on Education (2004, volume 5, nr 1),
presents several articles documenting the successful classroom use of sports
contexts, including examples from each of the major North American team
sports (baseball, hockey, basketball, soccer, and American football). In that
issue, Trick (2004) describes how to teach integer programming using sports
scheduling applications. As far as we know, our paper is the first OR/MS
education paper in the context of cycling.

As has been argued by Sniedovich (2002), games are a valuable source for de-
veloping educationally rich material for OR/MS courses. More specifically,
games are very effective for teaching LP and IP modeling to students with
motivation problems and/or less quantitative background. For instance,
Chlond and Toase (2002) propose several IP models for chessboard place-
ment and closely related puzzles for use in a classroom. Another example
of a logical puzzle can be found in Chlond (2008) or in Chlond (2005) in
which the popular Su Doku and Log Pile Game are being solved by integer
programming.

The game presented in this paper is suited for a mixed integer program-
ming approach involving three important classes of optimization problems
and corresponding modeling techniques: (1) knapsack problems, (2) multi-
period problems and (3) integer programming modeling.

(1) The knapsack problem is in many textbooks used to introduce integer
programming problems (e.g.,Winston (2004)) and dates back to the early
days of linear programming (e.g., Dantzig (1957)). Since then, many papers
and even whole books have been written on applications and algorithms
for knapsack problems (e.g., Martello and Toth (1990) and Kellerer et al
(2005)).

(2) Multiperiod or dynamic models have also been widely studied in lit-
erature. Mixed integer programming formulations have been proposed for,
amongst other, dynamic inventory (lot sizing) problems (e.g., Stadtler (1996)),
multiperiod financial models (e.g., Rohn (1987)) and multiperiod work schedul-
ing problems (e.g., Franz and Miller (1993)).



(3) The specific use of integer programming to model particular constraints
has been illustrated by Chlond and Toase (2003) who focus on the modeling
of logical conditions in puzzles by IP.

The remainder of this paper is organized as follows. Section 2 introduces
the Gigabike game and explains which aspects make it interesting for use
in a classroom. Section 3 presents the optimization models for solving the
Gigabike optimization problem. Finally, Section 4 discusses some classroom
experiences and Section 5 concludes this paper.

2 The Gigabike game

2.1 The origin of Gigabike

Betting on the outcome of future events has always been a favorite pastime.
These events historically ranged from the totally unpredictable random roll
of dice to the brutal and sometimes more predictable confrontation of an
army battle. Betting on sports results today could be considered a modern
equivalent of this Ancient History betting on the outcome of war. For in-
stance, in Western culture betting on horse races and boxing matches has
been very popular in the second part of the 20th century.

The outcome of a sports competition is not totally random, but depends
on the qualities of the sportsmen and teams involved. As a result, in contrast
to taking part in a dice game or a lottery, sports betting allows participants
to exploit information advantage, e.g. on prior results, to predict the final
outcome. However, uncertainty remains important enough to still create
sufficient difference in opinion among spectators and allowing sports bets to
take place. It is this unique combination of predictability and uncertainty
that makes sports betting particularly appealing.

Halfway through the nineties, the popular Belgian newspapers ‘Het Laat-
ste Nieuws’ and ‘Het Nieuwsblad’ started to use sports betting games as a
marketing instrument to boost their sales. Interest in popular sports, es-
pecially soccer and road cycling, was combined with a game element of
predicting which sportsmen would do well. Participants in these games typ-
ically had to act as some sort of managers of a team of riders selected by
themselves. The goal was to select a fixed number of real soccer players
(Megascore) or professional cyclists (Megabike) scoring the most points in
selected sports events. By paying a small fee, entrants in the game could
win interesting (money) prizes if they selected the best team.

For road cycling, newspapers organized games around the popular spring



classic races such as the Tour of Flanders and Paris-Roubaix, and the widely
viewed Tour de France. Unfortunately for die-hard cycling fans, less pop-
ular races, such as the Giro d’Italia or the autumn classic races, were not
included in these newspaper games. Peter Samoy and Mark Vanderwegen,
two workmates with a common interest in cycling, saw an opportunity and
developed a more elaborated game concept. In the year 2000 they started
“Gigabike”, a non-commercial year-long Internet cycling game including all
major road cycling races (www.gigabike.be). Although no prizes could be
won, the game became an instant success amongst Belgian and Dutch cy-
cling fans because of its originality. The number of players in the game rose
steadily from initially 40 to almost 500 in 2009.

2.2 The principles of the Gigabike game

The Gigabike game basically goes as follows. At the start of the road cycling
season, each Gigabike player has to select a team of 30 riders from a world
ranking of all professional road cyclists. In this ranking, each cyclist is
assigned a value, the so-called Cycling Quotient (CQ) value, based on his
performances during the last 12 months (see www.cqranking.com). This
value thus reflects the past quality of the rider and might be an indication
for his future performance. The total CQ value of a team selection is required
to be smaller than a particular limit. This limit is further referred to as the
CQ budget or, simply, budget. Observe that this ‘budget restriction’ makes
it impossible to select only the best riders, i.e. the professional cyclists with
the highest CQ value. During the season, at five moments, it is possible
to adapt the team formation by replacing at most five cyclists. However,
the sum of the CQ values of the incoming riders cannot exceed the sum of
the values of the outgoing riders plus the remaining (unused) CQ budget of
the preceding period (if any). The overall winner of the game is the person
whose selection of riders gained the most points over the course of the whole
season, consisting of over 60 races and more than 120 racing days.

Two dynamic characteristics make Gigabike very distinct from other in-
ternet or newspaper cycling games. First, the transfer opportunities during
the season allow for strategic decision making during the season. Second,
the CQ value of the riders changes throughout the year as their results from
12 months ago are deleted and replaced by new results. After each race,
the riders’ CQ values are updated as follows: each rider loses the CQ points
won in the last year edition of that race and gains the C(Q points earned
in the current edition. To give an example: suppose a particular rider won
the Tour of Flanders of last year. Then, this rider will lose the CQ points



after the Tour of Flanders, however, he might win them back if he wins the
Tour of Flanders again this year. Hence, in the best case, this rider keeps
his current value after the Tour of Flanders. Other riders, who did not score
a single CQ point in the last year edition of the Tour of Flanders, cannot
decrease their CQ-value: if they score any CQ points in this year’s edition
of the Tour of Flanders, their CQ value will increase. Especially this dy-
namic aspect makes the game appealing. Not only luck, but also strategic
considerations and good knowledge of the racing schedule of certain cyclists
determines the final result of a team. For instance, although a certain cyclist
may be a pre-season favorite for winning the Tour de France, from a strate-
gic point of view it could be better not to have him in the initial team as his
value may decrease before the start of the Tour de France. Therefore, it is
not always in the best interest of having the best riders in a team right from
the start. However, since the number of transfer opportunities is limited
and some riders will be in the team for the whole season, a well-balanced
start selection of cyclists for all types of races is crucial to have any chance
of winning the game.

2.3 Using Gigabike in a classroom

The Gigabike game can be used in a classroom to illustrate certain economic
problems. In essence, the game very much reflects the situation of a stock
market in which an investor can buy a number of shares for a fixed amount of
money. These shares render dividends, and when share prices go up they can
be sold with a profit to invest in other shares. In the game, the shares are the
cyclists, the share prices are the CQ values and the dividends are the points
scored by a cyclist in the races he participates in. The transfer opportunities
in Gigabike are similar to the rearrangement of a stock portfolio in the real
world.

Some particular characteristics of investing in shares on a stock market
are also present in the strategic decision making during the game. One of the
key strategies in Gigabike is to select those promising cyclists with currently
low CQ values, for instance due to injury or bad luck, and sell them when
they have a much higher CQ value. One of the best ways to make money
on the stock market is also to pick out the underrated shares and sell them
in time. However, sometimes the most promising shares raise ethical ques-
tions. Should an investor buy shares from arms or tobacco companies? An
almost similar problem arises in Gigabike. To win the game, it is sometimes
necessary to select questionable riders or have faith in riders that return
from a doping suspension. Finally, the fact that the highest valued riders do



not necessarily take the most points is analogous to the warning financial
companies give to their investing clients that ‘past performances of stocks
or financial products are no guarantee for future profits’.

The focus of this paper, however, is on another classroom use that deals
with an a posteriori game component of Gigabike. At the end of each season,
some Gigabike players engage in a new competition. Given the fact that all
results are now known, they try to find the optimal team, i.e. the team
that would have collected the most points if all results had been known (or
perfectly forecasted) in advance. The optimal team therefore reflects the
hypothetic situation in which all the right decisions would have been taken.
As we will show, the problem of finding this optimal team can be modeled
as a mixed integer linear optimization problem involving characteristics of
several basic problems, i.e. knapsack problems, multiperiod problems and
integer programming modeling.

A spreadsheet (see the file Gigabike_ OPT _2008.xls) greatly simplifies the
search for the optimal cycling team, as it contains all the costs (CQ values)
and all the points collected by the riders for each of the six periods. More-
over, given a particular selection, it calculates automatically the budget
spent and the number of transfers done in each period. The user only has
to indicate for each of the six periods which 30 riders are selected in the
team. A constraint violation (negative budget, more than five transfers be-
tween two periods, or not exactly 30 riders) is clearly indicated in red. To
further simplify things, the spreadsheet only contains the 112 best scoring
riders of the past cycling season. Finally, clear instructions on how to use
the spreadsheet for finding the optimal team are added in an extra sheet
‘instructions’. We recommend distributing this spreadsheet file to the stu-
dents, at least one week before the actual class on the Gigabike modeling
problem. Ask them to find the best team possible starting from this file. If
you promise a reward for the highest found score (e.g., a coke works well),
many of your students will be extra motivated to find a good solution and
become familiar with the problem. Some of them might even try to solve
the puzzle by modeling it as a mixed integer programming (MIP) problem,
however, the number of variables needed is too large for Frontline’s stan-
dard Solver'¥ for MS Excel©, further referred to as Solver. The actual
class starts with congratulating the winner and presenting the optimal so-
lution, which will, typically, be far better than the best score found by the
students. In 2007 and 2008, the optimal score was also better than the best
score found by the Gigabike participants who puzzled for almost 1 month.
Being fascinated by the proven power of optimization modeling, students
will be curious about the model.



3 Discussion of the models

This section presents the mixed integer programming model for the Gigabike
optimization game. Since student versions of most optimization packages
are limited to a small number of decision variables (e.g., up to 200 changing
cells in Solver), we propose to develop the model for a smaller instance of
the problem; i.e., we only consider the 18 best performing riders, a team
consisting of 10 riders (instead of 30), a budget limited to 12000 CQ points
(instead of 20000) and a maximum of three transfers between two periods
(instead of five). Using these dimensions, the model can be solved by a
standard version of Solver. Although the model is not difficult at all, we
strongly recommend to apply a divide-and-conqueror approach, certainly
for students with a limited quantitative background. After all, the aim of
this case is to increase the students’ modeling skills, not to overwhelm them
with a brilliant optimization model. Fortunately, the modeling process can
be very effectively divided into three stages with an increasing difficulty
level. Moreover, these three stages each correspond to an important class
of optimization problems. In this way, the link between theory and practice
becomes very clear to the students. The three stages are:

1. Knapsack problem modeling
See ‘Gigabike 1 template.xls’ for a template Excel Solver model
See ‘Gigabike 1 solution.xls’ for the full model

2. Multiperiod modeling
See ‘Gigabike 2 template.xls’ for a template Excel Solver model
See ‘Gigabike 2 solution.xlIs’ for the full model

3. Integer programming modeling
See ‘Gigabike 3 template.xls’ for a template Excel Solver model
See ‘Gigabike 3 solution.xls’ for the full model

We now briefly discuss these three stages and present the corresponding
optimization models.

3.1 Knapsack problem modeling

In a first stage, let us assume that the six periods are independent. In this
simplified case, for each period, an identical, independent problem needs to
be solved. Given the costs (CQ values) and the gains (CQ points obtained)
of each rider in that period, the problem is to find the 10 riders within a
total CQ value of 12000 (=budget constraint) who collect, in total, the most



CQ points. Since the periods are considered to be independent, we do not
have to bother about the remaining budget (unused budget is simply lost)
and about the transfer restrictions (we can even select 10 new riders in each
period). In this way, the problem in each period reduces to a knapsack
problem with one extra constraint, namely that the knapsack must consist
of exactly 10 items. Let x;; be 1 if rider ¢ is selected in period j, 0 otherwise,
pi; be the points obtained by rider i in period j and ¢;; be the cost (CQ
value) of rider i in period j. Then, the formulation of the first stage problem
is as follows:

maximize

18 6
DY pijwi (1)

i=1j=1
subject to

18
> cijaij < 12000, Vi=1,..,6 (2)
i=1

18
> aij =10, Vji=1,..,6 (3)
i=1
zi; €{0,1}, Vi=1,..,18 Vj=1,..,6 (4)

Constraints (2) ensure that the total value of the team in each period
does not exceed the budget. Constraints (3) limit the number of riders
chosen to be exactly 10. Applying this model results in the optimal set of
10 riders for each of the six periods. However, the model is a simplification
of the real game. First, it does not take into account that unused budget
in the first period, can be used in the second period, unused budget in the
second period can be used in the third period, etc. Second, the formulation
of the budget constraint is not entirely correct. Indeed, in the real game, a
team can have a larger value than 12000 CQ points after the first transfer
moment. This will be the case when the selected riders increase their total
CQ value, i.e., if they perform better than the previous year during the
finished period(s). Obviously, the reverse (a budget decrease) could also
occur. Hence, implying a budget constraint of 12000 CQ points in each
period is not entirely correct: the budget in the succeeding periods depends
on the team performance in the preceding periods. Finally, the solution to
(1)-(4) does not guarantee that there are at most three transfers between
two periods. In other words, it is possible that, from the 10 riders selected in
period 2, there are six or less common with the 10 riders selected in period



1. Therefore, the model has to be extended taking these three issues into
account. We start with the first two issues, which both can be solved by
transforming the model from a static model to a multiperiod (or dynamic)
model.

3.2 Multiperiod modeling

In order to allow for the future use of remaining budget and to have a
correct calculation of the available budget in the periods after period 1,
balance constraints must be added to the model. Balance constraints are
typically for multiperiod problems, e.g., dynamic inventory, work scheduling
or investment problems. A balance constraint defines the link between two
succeeding periods, i.e., it states that the output of a given period must be
equal to the input of the succeeding period. Let r; denote the remaining
budget of period j. Then, the Gigabike a posteriori optimization model
extended with the remaining budget issue, is as follows:

maximize
18 6
> D v (5)
i=1j=1
subject to
18
> civwa + 1 = 12000, (6)
i=1
18 18
ri—1+ Zcijxi,j—l — Zcijxij =Ty, V] =2,...,6 (7)
i=1 i=1
18
> aiy =10, Vi=1,..,6 (8)
i=1
Tij € {0,1}, Vi=1,..,18 Vi=1,...,6 (9)
r; >0, Vi=1,...,6 (10)

Equation (6) now calculates the remaining budget in period 1. Note
that the budget cannot be exceeded, as the r; variables are required to be
non-negative. Since a budget violation corresponds to a negative remaining
budget (r; < 0), this cannot occur in a feasible solution to (5)-(10). Equa-
tions (7) define the balance restrictions, saying that the remaining budget
from the previous period plus the incomes of the riders sold minus the costs
of the new riders selected must be equal to the remaining budget that can be



carried over to the next period. Remark that riders are always bought (sold)
at their value of the moment of purchase (sell). Hence, it is possible to sell a
rider at a price higher than the price paid when the rider was bought. This
will be the case if the rider performed better than he did in the preceding
year during the considered periods (between time of buy and time of sell).
Obviously, the reverse is also possible. Observe that for riders which are not
transferred, i.e., these riders that are in the team in period j, but also in
period j 4+ 1, the net contribution to the budget equals zero. Indeed, these
riders have a positive as well as a negative contribution in the left hand side
of equation (7), and this at the same cost, i.e., at their current value, ¢;;.

3.3 Integer programming modeling

The optimal solution to (5)-(10) does not necessarily satisfy the restriction
on the maximal number of transfers between two periods. If less than seven
riders are common between two succeeding periods, then more than three
transfers took place, which is not allowed. In order to model the transfer
restriction we need a new binary decision variable, ¢;;, which equals one if
rider 4 is transferred into the team in period j and zero otherwise. The
model is adapted as follows:

maximize

18 6

> D Pt (11)

i=1j=1

subject to
18
> cawin + 1 = 12000, (12)
i=1
18 18
rji—1+ Zcijxi,j—l — Zcijxij =Ty, Vi=2,..6 (13)
i=1 i=1

18
> wij =10, Vi=1,..,6 (14)
i=1
tij Z .I'Z'j — :B@j_l, Vj = 2, veey 6 (15)
18
D ti; <3, Vji=2,..6 (16)
i=1
zi; € {0,1}, Vi=1,..,18 Vi=1,...,6 (17)
rj >0, Vi=1,...,6 (18)
ti; € {0,1}, Vi=1,..,18 Vji=2,..,6 (19)



Having introduced the binary variable ¢;;, it is easy to state the transfer
restriction by requiring that the total sum of ¢;;’s must be smaller than or
equal to three in each period, see inequalities (16). Now, we only have to
make sure that ¢;; equals one for each new rider 4, that is, for each rider that
is selected in the team in period j but was not yet present in the team in
period j — 1. Modeling this kind of conditional relations is very typical for
integer programming formulations. Constraints (15) ensure this relation by
requiring ¢;; to be one, only if the rider is in the team in period j (i.e., when
x;; = 1) and not in period j — 1 (i.e., when z; ;_1 = 0). Model (11)-(19) is
the complete mixed integer programming model for the smaller instance of
the ex post Gigabike optimization problem. Obviously, the same model can
be used to find the optimal solution to the Gigabike problem including all
the riders. Only the dimensions of the problem will change.

4 Class experiences

Since 2007, the Gigabike game is used to teach mixed integer programming
modeling to students of the commercial engineering program as well as the
MBA program at the University College Brussels. We had a lot of positive
reactions on this class. First of all, thanks to the game and the sport el-
ement, students are much more motivated to find the optimal solution to
the problem (and beat their opponents). Consequently, most students do
a serious effort to understand the characteristics of the Gigabike game and
particularly the optimization problem. Many students have asked us to get
more time to solve the Gigabike puzzle, a request we don’t often get when
students have to model a (fictitious) business case. Some students even
immediately started to formulate the problem as a MIP model, while we
only asked them to find the best possible solution by puzzling in the Excel
sheet (by a trial-and-error approach). The Gigabike application, hence, pro-
vides a good illustration of how a structured ‘model formulation’ approach
eventually outperforms a quick trial-and-error approach that focusses on im-
mediate success. This is an important lesson for students who might have
to take complex business decisions in their future careers. Finally, given the
positive feedback from many students, we are convinced that the Gigabike
game helps to improve the students’ MIP modeling skills.
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5 Conclusion

Recently, (mixed) integer programming has gained in popularity. Indeed,
advances in solution methods as well as computer hardware and software
make solving such problems no longer an exhaustive challenge with respect
to computing times. As a result, also the importance and relevance of (M)IP
increased for solving real-life managerial-related problems. However, getting
students really excited about (M)IP is not always an easy task. One way to
overcome this is to let them experience how MIP can be used in applications
taken from their own living environment. In this paper, we use an a posteri-
ori game component of a popular cycling game (called the Gigabike game),
involving real-life data of all current cyclists. Further on, we stimulate the
students by adding a competitive aspect: the week before the solution is
discussed in class acts as a real race among all students in finding the best
solution for the game. An Excel sheet facilitates this search process. The
game is very much suited for an undergraduate OR/MS course as a case
concluding the (M)IP chapter. Indeed, the model can be gradually built up
in three clearly distinctive phases, each phase covering an important class
of (M)IP optimization methods. In the first phase, we consider the model
as made up of independent knapsack problems (one for each period). The
second phase introduces dependency between the periods, turning it into
a multiperiod model. Finally, the third phase adds a typical IP constraint
in order to obtain the right final model. The models of all phases can be
solved using Frontline’s standard version of Excel Solver'¥, as such making
the models accessible to every student. The class experience with the game
fosters our belief that using applications from the student’s own world of
interest are very valuable in getting the students excited about what they
themselves call theoretical models (in this case, MIP models). The competi-
tive component as introduction to the game, has impressively stimulated the
student’s interest which was clearly visible during the class. We hope that
in this way the students learned about the power such models can provide
and, more importantly, that they start to get a feeling about the importance
and relevance these models might have in real-life management applications.
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