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Abstract

Natural language understanding is one of the fundamental goals of artificial
intelligence. An essential function of natural language is to talk about the
location, and translocation of objects in space. Understanding spatial language
is important in many applications such as geographical information systems,
human computer interaction, the provision of navigational instructions to robots,
visualization or text-to-scene conversion, etc.

Due to the complexity of spatial primitives and notions, and the challenges
of designing ontologies for formal spatial representation, the extraction of the
spatial information from natural language still has to be placed in a well-defined
framework. Machine learning has not systematically been applied to the task,
and no established corpora are available. In this thesis I study the problem
from cognitive, linguistics and computational points of view, with a primary
focus on establishing a supervised machine learning framework.

This thesis makes five main research contributions. The first is the design of
a spatial annotation scheme to bridge between natural language and formal
spatial representations. In this scheme the universal and commonly accepted
cognitive spatial notions and multiple well-known qualitative spatial reasoning
models are applied.

The second is the definition of a novel computational linguistic task that utilizes
the annotation scheme to map natural language to spatial ontologies. For this
task I have built rich annotated corpora and an evaluation scheme.

The third is a detailed investigation of the linguistic features and structural
characteristics of spatial language that aid the use of machine learning in
extracting spatial roles and relations from annotated data. The learning methods
used are discriminative graphical models and statistical relational learning.

The fourth is the proposal of a unified structured output learning model for
ontologies. The ontology components are learnt while taking into account the

ix



x ABSTRACT

ontological constraints and linguistic dependencies among the components. The
ontology includes roles and relations, and multiple formal semantic types.

The fifth is the proposal of an efficient inference approach based upon constraint
optimization. It can deal with a large number of variables and constraints,
and makes building a global structured learning model for ontology population,
feasible. To test the approach I have performed an empirical investigation using
my spatial ontology.

The application of my proposed unified learning model for ontology population
is not limited to the extraction of spatial semantics, it could be used to populate
any ontology. I argue therefore that this work is an important step towards
automatically describing text with semantic labels that form a structured
ontological representation of the content.



Beknopte samenvatting

Het begrijpen van natuurlijke taal door een machine is één van de fundamentele
doelstellingen van de kunstmatige intelligentie. Een essentiële functie van
natuurlijke taal betreft het communiceren van de locatie en translocatie van
objecten in de ruimte. Inzicht in ruimtelijke taal is belangrijk voor vele
toepassingen zoals geografische informatiesystemen, human computer interactie,
het verstrekken van navigatie-instructies aan robots, visualisatie en tekst-naar-
scene conversie.

Vanwege de complexiteit van ruimtelijke primitieven en begrippen, en de
uitdagingen bij het ontwerpen van een ontologie voor de formele ruimtelijke
representatie moet de extractie van de ruimtelijke informatie uit natuurlijke taal
in een welomschreven kader geplaatst worden. Machinaal leren is nog steeds
niet systematisch toegepast op de extractietaak, en er zijn nog geen beschikbare
corpora om de leeralgoritmen te trainen. In dit proefschrift bestudeer ik de
problemen vanuit de cognitieve, taal- en computationele invalshoeken, met een
primaire focus op het ontwikkelen van een kader voor gesuperviseerd machinaal
leren.

Dit proefschrift draagt bij tot vijf belangrijke onderzoeksrealisaties.

De eerste realisatie betreft het ontwerp van een ruimtelijke annotatie die
een overbrugging vormt tussen de natuurlijke taal en een formele ruimtelijke
voorstelling. In dit ontwerp worden universele en algemeen aanvaarde cognitieve
ruimtelijke begrippen en meerdere bekende kwalitatieve modellen van ruimtelijk
redeneren toegepast.

De tweede realisatie is de definitie van een nieuwe computationeel linguïstische
taak die de annotatie gebruikt om natuurlijke taal te koppelen aan een ruimtelijke
ontologie. Voor deze opdracht heb ik rijk geannoteerde corpora publiek
beschikbaar gesteld en een evaluatieprocedure opgesteld.

De derde realisatie is een gedetailleerd onderzoek van de taalkundige en
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structurele kenmerken van ruimtelijke taal die het gebruik van machinaal leren
voor het extraheren van ruimtelijke rollen en relaties uit de geannoteerde data
mogelijk maakt. De leermethoden gebruiken methoden van discriminatieve
grafische modellen en statistisch relationeel leren.

De vierde realisatie is het voorstel voor een geïntegreerd kader voor het machinaal
leren van de gestructureerde output voorgesteld door een ontologie. De modellen
voor het toekennen van de ontologiecomponenten worden geleerd, rekening
houdend met de ontologische beperkingen en taalkundige afhankelijkheden
tussen de componenten. De ontologie bevat rollen en relaties, en meerdere
formele semantische types.

Tenslotte de vijfde realisatie betreft een efficiënte aanpak op basis van de
optimalisering van randvoorwaarden. Het voorgestelde model kan omgaan
met een groot aantal variabelen en beperkingen, en maakt het opbouwen van
een globaal gestructureerd leermodel voor ontologiepopulatie haalbaar. Om de
aanpak te testen heb ik een empirisch onderzoek met behulp van mijn ruimtelijke
ontologie uitgevoerd.

De toepassing van het voorgestelde geïntegreerd leermodel voor ontologiepopu-
latie is niet beperkt tot de extractie van ruimtelijke semantiek uit tekst, het
kan ook worden gebruikt voor de populatie van elke andere ontologie. Ik pleit
dan ook dat dit werk een belangrijke stap is in de richting van het automatisch
beschrijven van tekst met semantische descriptoren die een gestructureerde
ontologische representatie van de inhoud vormen.
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Chapter 1

Introduction

1.1 Spatial Information Extraction from Natural
Language

To explain the main goal of this thesis and the challenges we begin with an
example:

Example. In the afternoon bring me the book on AI which is on your table.

The first question is, What does it mean to extract spatial information from
such a sentence?
We use the research overview about spatial semantics made in [168] to clarify
the possible answers to this important question. The spatial semantics in the
language can be characterized in at least in three ways. Firstly according to
a form class, that is, for example, to extract the prepositional phrase or what
is called locative expression in the above sentence. This is a useful language
clue, if the sentence is assumed to contain only spatial information, for example,
when giving a robot only navigational instructions in which the phrases have
only a spatial interpretation. But in a free context the prepositional phrase
can express temporal information like in the above example by the phrase "In
the afternoon". The second approach defines the spatial semantics notionally
according to predefined cognitive spatial primitives and notions. In the above
example, we may consider "book" as a trajector, i.e. an object whose location is
described, and "table" as a landmark, i.e. an object that is used as a reference to
describe the location of the trajector. The preposition "on" restricts the region

3



4 INTRODUCTION

in which the book is placed with respect to the table. The third approach
defines spatial semantics through its communicative function, that is the spatial
information is the part of the sentence which answers a where question, such as
"where is the book? on your table".

And here the second question raises, What kind of spatial primitives, notions
and formal semantic representation should be used, if we aim to deal with an
unrestricted language?

If we aim to represent the spatial information in any type of language in a
formal machine understandable form then we need to represent the functional
spatial information notionally. In other words, we need to recognize the parts
of the sentence that express some spatial information first, such as: "book",
"on", "table"; then represent them using cognitive primitives that clarifies their
functionalities, for example "book" plays the role of a trajector, "table" plays
the role of a landmark, etc. We may represent this level of abstraction as e.g.
on(book, table). Then we may inspect a formal spatial meaning representation,
for example, Externally-connected(book,table), to connect the extracted notions
to some formal machine understandable semantics between regions, points or
any other spatial primitives. The advantage of such a representation will be
that the extracted information can be manipulated by machines, for example,
for automatic spatial reasoning, which is not possible over natural language
directly.

And the last question, in the most interest of this thesis, is How can we
computationally deal with this problem which can be entitled as "automatic
mapping of natural language to a formal spatial representation appropriate for
automatic spatial reasoning"?

1.2 Motivation

On a high level, one of the ambitious goals of artificial intelligence is language
understanding. One of the essential functions of natural language is to talk about
objects and their relative or absolute location and translocation in a particular
space according to a frame of reference. Understanding the spatial language
or more technically spatial information extraction from natural language is
important for many applications including geographical information systems,
human computer interaction, providing navigational instructions to the robots
and visualization or text-to-scene conversion.

For example, if the sentence mentioned in Section 1.1, is an instruction given
to a robot, then the robot should be able to recognize that neither "AI"
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nor "afternoon" are landmarks. Moreover it should extract the main spatial
elements of that sentence and connect their relation to a predefined meaning
representation model, for example, indicating an externally connected region
relationship, to be able to recognize and grab the "book" which is "on" the
"table" when there are several books placed in a variety of locations with respect
to that table.

1.3 Context

This thesis is placed at the intersection of three main research fields, natural
language processing, spatial knowledge representation (the ontology of the space)
and machine learning. As a matter of fact, the research presented in this thesis
is multidisciplinary, and it is the first effort to make a systematic connection
between the above three fields in a theoretically sound and computationally
tractable setting.

Due to the complexity and variety of spatial primitives and notions, and the
difficulty in reducing them to a small number of concepts, formalizing and
reasoning over spatial information has lagged behind compared to dealing
with similar notions such as temporal information [160, 45]. Therefore
the succeeding steps such as mapping natural language to a formal spatial
semantic representation, as defined in a spatial ontology commonly accepted by
cognitive semantics, has not been acted upon actively. Hence, machine learning
models which are the most successful and dominant methods for a variety of
computational linguistic tasks, have not yet been systematically applied to
the extraction of spatial semantics. Subsequently, no established corpora are
available for computational purposes. All these issues are sufficient reasons
for the current situation in which the extraction of spatial semantics has no
well-defined framework yet compared to other computational linguistic tasks.

In this thesis we study this problem from cognitive, linguistics and computational
points of view with a primary focus on establishing a supervised machine learning
framework for it.

The spatial primitives and notions in this thesis are built upon related cognitive
linguistic studies [168, 167, 53, 146]. The formal spatial representations that we
exploit are based on spatial knowledge representation and reasoning models [45,
160, 24, 118, 65, 163].We consider machine learning solutions [97] for the problem
of mapping to its spatial semantics. The machine learning approaches that
we focus on are classified in the three main possibly overlapping categories of
probabilistic graphical models [78, 142], statistical relational models [37, 42, 32]
and structured output prediction models [155, 103, 25, 150, 111]. We pay
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particular attention to the structured output prediction models in the presence
of global constraints [20, 130, 91] and relational features [42, 149, 44, 14] in
relational data domains [142].

The connection between natural language and qualitative spatial reasoning
models has been studied from a cognitive and linguistic point of view [54, 55, 56].
Large linguistically motivated spatial ontologies are used and these connections
have been formalized with a fine-grained ontology engineering [8]. But machine
learning techniques to learn the mapping between natural language and the
spatial ontologies have not been systematically applied. However, due to the
ambiguity and uncertainty in the language, machine learning models are best
situated to solve this problem.

The machine learning models have been applied to extract very domain
dependent spatial concepts such as extracting toponyms and toponym
resolution [56, 132] which is in the interest of geographical information systems,
and considering locations just as named entities [100] which is in the interest of
text analyzers, or in a more technical linguistic sense, recognizing the locatives
in the frame of particular verbs as adjuncts in semantic role labeling [90, 61]. In
visual contexts, a few research works consider more generic spatial objects such
as trajectors and landmarks in a multimodal setting but considering mostly
visual features rather than linguistic ones [66, 151].

Using machine learning models for establishing a connection between language
and adequate spatial ontologies is very challenging. The state-of-the-art
challenges in the structured output prediction, relational learning in the presence
of correlated output variables, and contemplating relational features and global
constraints are the main concerns in this task compared to the classical
applications of machine learning [37].

1.4 Challenges and Research Questions

In this section we point to the emerging challenges and research questions that
we enquire in the relevant areas: spatial ontologies, computational linguistics
and machine learning.

• Chal 1. The choice of the spatial primitives and notions to be extracted
from unrestricted natural language, independent from domain for a
computational model is challenging. For example, the spatial primitives for
describing the objects in a room, entities in a children story or geographical
places can be largely different. Moreover, a detailed account of each domain
leads to the complexity and the infeasibility of the computational models.
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Q 1. What kind of spatial primitives are adequate to consider for starting
a realistic and feasible machine learning effort?

• Chal 2. There are various spatial knowledge representation and reasoning
models each of which focuses on one specific spatial aspect in detail. On
the one hand, mapping language to well-defined spatial representation and
reasoning models, grants the possibility of performing spatial reasoning
on the extracted information, on the other hand there is a gap between
the expressivity of natural language and spatial representation models.
The "book on table" can be assumed as a relation about two externally
connected regions, but a similar expression applies to a book which is on a
small shelf on the table and so the book is disconnected from the table. In
the latter case a formal representation such as above can be more helpful
and externally connected is an over-specification of the relation.

Q 2. Do we represent the semantics using spatial reasoning formalisms?
Which formalisms should we use and how can we deal with the
existing gap?

• Chal 3. Language in general is ambiguous and polysemous. To clarify, in
the above example, what can help the machine to recognize that "book"
is a trajector of "table" not of "AI", and that the preposition "on" in the
phrase "on AI" does not have a spatial sense while the first "on" in the
sentence has.

Q 3. What kind of computational approaches, which features and
structural clues can help disambiguating spatial semantics? Can we
do this with learning from annotated data?

• Chal 4. There is no data available annotated with generic spatial notions
and qualitative formal representations to be used in supervised machine
learning models.

Q 4. Which linguistic corpora are relevant and appropriate for annotation?
What kind of formal semantics are expressed in the linguistic corpora?

• Chal 5. After designing our spatial ontology, we encounter the
computational challenges for the extraction of spatial entities and their
relationships. Each sentence is a structured input1 and can contain
an arbitrary number of spatial entities and relationships each of which
can have different and multiple semantic types. In addition, the type
assignments should obey ontological relationships and constraints. In the

1Often sentences are assumed to have a sequential or a tree structure depending on the
computational task at hand.
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above example the spatial relation is composed of three components and
it can have topological semantics (externally connected regions) as well
as directional semantics (above). This means, there are some constraints
that we expect according to the common sense background knowledge
or linguistic structure of the language, and these can help the machine
making accurate predictions. For example, we know that when an object
is "on" something, then it can not be "about" or "in" it.

Q 5. What kind of machine learning models are appropriate for such a
structured input and output task? How we can contemplate the
relational features and global structure of the spatial language and
background knowledge in a learning framework?

• Chal 6. Given the designed spatial ontology, given the structured output
prediction models which by definition have the capacity to consider the
output correlations and relational features, we encounter the difficulty of
a large number of variables and a large number of constraints over them
which makes inference during training and inference during prediction
highly inefficient. For example, in the above sentence there are 14 words
that can make basically 143 ternary relations (without pruning), and these
candidates can have multiple semantics depending on the ontology of the
spatial semantics that are used.

Q 6. How we can make efficient inference to exploit these particular
correlations, say, ontological constraints, language structure and
properties during joint prediction and joint training when we have a
large number of possible roles and relations each of which can be of
multiple types?

1.5 Contributions of the Thesis

Given the above mentioned challenges in the context of our research, we end up
with the following contributions:

• The first contribution of this thesis is proposing a spatial annotation
scheme. This scheme covers universal and commonly accepted spatial
primitives and notions and applies the well-known formal semantics
represented in the qualitative spatial representation and reasoning models
that grant automatic spatial reasoning. This scheme covers static as
well as dynamic spatial notions. The semantic gap between the natural
language and formal spatial representation models is alleviated by labeling
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the spatial relations with multiple calculi models to be able to cover all
semantic aspects represented in natural language.

• The second contribution is defining a novel computational linguistic
task according to the proposed scheme for mapping natural language
to a spatial ontology consisting of two layers, i.e. spatial role labeling
(SpRL) and spatial qualitative labeling (SpQL), for which we establish
annotated corpora and an evaluation setting for the first time. The former
layer considers the extraction of the spatial roles and relations, while the
second layer considers the assignment of multiple semantic types to the
spatial relations. The introduced task has now become a benchmark for
a computational linguistic challenge.

• The third contribution is an extensive investigation of the linguistic
features and structural characteristics of spatial language. In this
study discriminative graphical models and statistical relational learning
frameworks are used to extract the spatial roles and relations in the SpRL
layer. This investigation, by designing a variety of models, classifying
the error types and, performing a cross domain evaluation indicates the
importance of considering contextual and relational features, long distance
dependencies and background knowledge about the spatial language.

• The forth and major contribution of this thesis, which lies in the machine
learning field, is proposing a unified structured output learning
framework for ontology population. In this framework we learn a
model to map natural language to the full spatial ontology encompassing
both SpRL and SpQL layers. We learn the extraction of spatial roles,
relations and the multiple semantic types of the relations jointly, while
contemplating the ontological constraints and dependencies among these
output components.

• The fifth contribution, is proposing efficient inference approaches based
on constraint optimization techniques that deal with a large number
of variables and constraints in the global structured learning model for
ontology population. An empirical evaluation of the spatial ontology task
assesses the influence of the relational features and global constraints
when they are used during training and prediction.

1.6 Outline of the Thesis

This thesis is organized in three main parts. Part I discusses the spatial
annotation scheme, data and the spatial ontology population task, Part II
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considers the spatial role labeling layer of the ontology, and Part III investigates
the structured output prediction models for mapping natural language to the
full spatial ontology. In the following we give a brief outline of each part.

In this part, following this introductory chapter, in Chapter 2 the foundations
of various aspects of this research including structured machine learning, natural
language processing and ontological concepts, pointing to the ontology of the
space, are provided.

In Part I, the spatial annotation scheme, the data and the spatial ontology
population task are defined. In Chapter 3, the spatial annotation scheme is
illustrated by examples and the corpora which are annotated according to the
spatial scheme as well as other relevant corpora are introduced. In Chapter 4,
the deliberated spatial ontology consisting of two semantic layers of spatial role
labeling (SpRL) and spatial qualitative labeling (SpQL) is introduced. The
spatial ontology population is defined as the targeted machine learning task.
The features and the global constraints that are considered in various machine
learning models through this thesis are clarified. The evaluation metrics for
measuring the performance of the learning models are defined.

In Part II, the spatial role labeling layer of the spatial ontology is investigated.
Chapter 5, provides the first machine learning model for the spatial role
labeling layer. The importance of this layer as an independent computational
linguistic task compared to semantic role labeling is argued. The extraction of
the spatial roles and the relations via linear chain conditional random fields
as well as skip-chain models are described in a multi-sequence tagging model.
The preposition disambiguation as an assisting task for spatial role labeling
is applied and the The Preposition Project (TPP) dataset is exploited as an
additional resource to aid spatial role labeling. An extensive error analysis
and cross domain evaluation is provided. In Chapter 6, given the relational
nature of the spatial role labeling task, the statistical relational learning models,
particularly kLog [42], are considered. A relational model of SpRL is represented
using an entity relationship diagram. Various models such as spatial predicate
classification, pipelining the learning of the spatial role and spatial relation
predicates and, sequence tagging are programmed declaratively using kLog’s
logical language. The underlying graph kernel is used to exploit the sentence
level contextual features. Experimental results and analysis are provided.

In Part III, a unified structured learning model for ontology population is
proposed, and efficient inference during training and prediction on the basis
of constraint optimization techniques, is investigated. The proposed model is
instantiated and empirically studied for the case of spatial ontology population.
In Chapter 7, the relational learning problem of ontology population is
formalized in the framework of structured output prediction. The inference
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during prediction and the loss-augmented inference during training are both
formulated as the objectives of constrained optimization problems. The notion of
templates is used to formalize the relational structure of the objective function
in a basic model called Link-And-Label model. The objective function is
augmented with a component-based loss function during training. The proposed
communicative inference is described to decompose the large space of output
variables and efficiently solve the formulated objectives for each example. Other
relevant decomposed training approaches are discussed and compared. In
Chapter 8, the spatial ontology population is formulated in the proposed
Link-And-Label framework. The templates of the model are defined based
on the predefined spatial ontology and are unrolled to build a multinomial
objective function for each example. The first order constraints are grounded
to a linear form. An extensive empirical investigation is performed over various
models from very local models to a global model including the joint training and
prediction of both SpRL and SpQL layers using the proposed communicative
inference approach and applying linear programming relaxation techniques.

The last part of this thesis contains Chapter 9, which draws the conclusions
of this thesis and points to future work.





Chapter 2

Foundations

This thesis is a multidisciplinary work at the crossing point of natural language
processing, spatial information representation and ontologies, and structured
machine learning. In this chapter we provide the foundations to these relevant
areas and clarify the context of this work to situate the contribution of the
thesis. In Section 2.1 a background to structured machine learning models as
well as relational learning and inference techniques, is provided. In Section
2, a background to natural language processing and the tasks which are used
through this thesis is provided. In Section 4, the basic notions about ontology
as a medium for meaning representation for natural language and the ontology
of the space are introduced.

2.1 Structured Machine Learning

Structured learning mostly refers to learning problems with a strong
interdependence among output variables. In this context the term structured
output prediction is often used to highlight this interdependence. This stands in
contrast to the simpler approaches of classification, where input data are mapped
to, for instance, single labels. Many real world applications of machine learning
in domains such as natural language processing, computer vision, robotics and
computational biology involve learning from structured input data to predict
structured outputs. Examples are tasks such as parsing of natural language
sentences [27], classifying web documents considering the relationships between
webpages via hyperlinks [149], or named entity recognition when the similarity
between distant words is considered when labeling them [142]. In these problems
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output variables are interdependent and the predicted assignments should
obey certain structural characteristics. For instance, in parsing the predicted
output should have a tree structure. Considering the interdependencies and
structural constraints over the output space easily leads to intractable training
and prediction situations. There is a body of research for designing algorithms
that deal with structures such as trees, sequences, sets or any arbitrary structural
dependencies [20, 27, 155, 142, 103, 150]. In some structured learning models,
the expected structural characteristics of the output variables are imposed on
the prediction of the learning models as a number of hard/soft constraints by
applying constraint optimization techniques [20, 126]. Moreover, increasing
attention goes to relational learning [38, 44, 148, 37] in which the structural
dependencies hold between groups of variables [142] and therefore the data is (can
be) represented in a relational form. For example in named entity recognition,
the words of a sentence are treated as entities that have relationships with each
other. The entities are labeled as person, location, organization, etc. [143, 126].
The entities are extracted and connected to each other and placed in a relational
database. Exploiting relational dependencies between groups of objects helps
parameter tying for achieving more efficient structured learning models in such
problems.

We base our work on the most recent research achievements and successful
learning models for the extraction of spatial information from text. Our models
are related to two main types of structured learning techniques: a1) Graphical
models, particularly conditional random fields (CRFs) which are one of the
most successful graphical models applied in several relevant tasks in natural
language processing and other domains; a2) The generalized linear models
for structured output learning namely structured support vector machines
(SVMs) and structured perceptrons. In addition to these, we consider two main
learning frameworks that can be aligned with arbitrary learning techniques: b1)
Constraint conditional models (CCMs) which provide an explicit formalization
for using declarative constraints and apply constraint optimization techniques
as a way of exploiting background knowledge for decision making in structured
output prediction; b2) The statistical relational learning framework, which
aims at providing a relational and/or logical representation of the domain to
formalize the learning from relational data, exploiting background knowledge,
and even logical reasoning during statistical learning.
In the following subsections we provide the background that is relevant for
this thesis on the representation, training and inference algorithms in the
aforementioned learning techniques and frameworks.
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2.1.1 General Framework

The supervised learning models in this thesis have the following general
setting [27],

• We have an input domain X and an output domain Y.

• There is a fixed but unknown underlying probability distribution d(x, y)
over X ×Y, and N training examples E = {(xi, yi) ∈ X ×Y : i = 1 . . . N}
are drawn independently and identically from a distribution d(x, y).

• Given the set of examples, the task is to find a function h : X → Y that
maps inputs x ∈ X to outputs y ∈ Y. Function h is called a hypothesis
and h(x) will approximate y on new samples from the distribution d(x, y).

Given the general setting, the main characteristics of a learning algorithm are
the additional assumptions that are made about the hypothesis class H of
functions h and the criterion for selection of h from H. The structured learning
problem can be viewed and categorized in various ways, we use the following
categorization made in [103].

• Probabilistic parameter learning. In this thesis, from this category
we consider a discriminative formulation rather than a generative one [142].
Hence, the conditional distribution of the output is considered rather than
its joint distribution. Let d(y|x) be the (unknown) conditional distribution
of the output variables for a problem to be solved. For a parameterized
conditional distribution p(y|x;W ) with parameters W ∈ RD, probabilistic
parameter learning is the task of finding a point estimate of the parameter
w∗ that makes p(y|x;W ) closest to d(y|x) for every x ∈ X . In these
models the distribution function p is assumed to be from an exponential
family and the parameters are estimated based on the penalized maximum
likelihood of the training examples where in the conditional distribution
case, the following log likelihood is used as the basis:

`(W ) =
N∑
i=1

log p(yi|xi;W ) (2.1)

and the function h has the following form given the optimal parameter
w∗,

h(x;w∗) = arg max
y∈Y

p(y|x;w∗). (2.2)
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• Loss-minimizing parameter learning. In these models, we define a
loss function ∆(y, ŷ) which measures the cost of proposing an output ŷ
when the true output is y. In general, for any arbitrary loss, ∆(y, ŷ) = 0 if
y = ŷ. The standard loss function for classification is 0/1 loss, ∆(y, ŷ) =
1(y 6= h(x)), where 1(.) denotes the indicator function, that is 1(true) = 1
and 1(false) = 0. Then loss minimizing parameter learning is the task
of finding a parameter value w∗ such that the expected prediction risk
(often regularized)

Er(h) =
∑
x,y

d(x, y)∆(y, h(x;W )), (2.3)

is minimized. Since the distribution d is usually unknown, the expected loss
of the hypothesis can not be calculated explicitly therefore the empirical
loss of the function h on the training set E is minimized instead,

Êr(h) = 1
N

N∑
i=1

∆(yi, h(xi;W )), (2.4)

and assuming a generalized linear class for h, it will have the following
form (T , indicates the matrix transpose),

h(x;w∗) = arg max
y

w∗
T

· f(x, y), (2.5)

where w∗ is an optimal parameter vector and f is a feature map over x and y.

We will apply approaches to solve learning problems in both probabilistic
parameter learning and loss-minimization parameter learning. However, each
approach can be described with different possible views. Particularly, if the
Bayes optimal concept is considered, it is provable that maximizing the likelihood
and finding the Bayes optimal solution, which outputs the most likely y under
the distribution d for each input x, can not outperform minimizing the expected
loss Êr(h) over the space of all possible functions [27]. However, the distinction
between the two approaches mentioned above can be based on the type of the
applied basis functions (e.g. linear vs. exponential/log linear). In the following
section, the particular algorithms that we use in these classes of models, are
described.

2.1.2 Conditional Random Fields

A conditional random field (CRF) is an undirected graphical model or Markov
random field, conditioned on a set of observations X to predict a set of output
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variables Y [144]. As in other graphical models, the probability distributions
over the set of random variables are factorized according to an underlying graph.
The conditional distribution over the large number of variables is represented
by a product of local functions that each depend on only a small number
of variables. This factorization of the global probability distribution makes
learning and inference feasible. We define V = X ∪ Y and consider probability
distributions over these sets of random variables. We denote an assignment to
X by x, an assignment to a set A ⊂ X by xA, and similarly for Y . A CRF
generally defines a probability distribution p(y|x) as follows:

p(y|x) = 1
Z(x)

∏
A

ΨA(xA, yA), (2.6)

for any choice of factors F = {ΨA}, where ΨA : Vn → R+. ΨA(xA, yA)s are
called potential, local or compatibility functions, and Z(x) is the normalization
factor, n is the number of variables involved in the factor, and:

Z(x) =
∑
y

∏
A

ΨA(xA, yA) and ΨA(xA, yA) = exp
{K(A)∑

k=1
wAkfAk(xA, yA)

}
,

(2.7)
where each {fAk(xA, yA)}K(A)

k=1 is a set of real-valued feature functions and
WA = {wAk} ∈ RK(A) is a parameter vector associated to each factor. Obviously
the family of the distributions over the random variables is assumed to be
exponential. Graphically, the factorization in CRFs is represented by a factor
graph [76]. A factor graph is a bipartite graph G = (V,F , E) containing two
sets of nodes V and F which are variable nodes and factor nodes, respectively.
E is the set of edges in the factor graph. A variable node vs ∈ V is connected
to a factor node ΨA ∈ F if vs is an argument of ΨA. Figure 2.1 shows an
example of a factor graph. The black boxes show the factor nodes and the
circles show the variable nodes. The gray variable nodes are the inputs and the
white ones are outputs. The correlated variables are connected to each other
via the factor nodes. Hence, in this figure the sequential relationships between
the output variables as well as the correlation between each output node with
current observation x are modeled. Finally the conditional probability is the
following:

p(y|x) = 1
Z(x)

∏
ΨA∈G

exp
{K(A)∑

k=1
wAkfAk(xA, yA)

}
. (2.8)

Theoretically, the structure of graph G is arbitrary, however the most commonly
used CRF model used in natural language processing has been the linear-chain
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Figure 1.3 Graphical model of an HMM-like linear-chain CRF.
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Figure 1.4 Graphical model of a linear-chain CRF in which the transition score

depends on the current observation.

1.3 Linear-Chain Conditional Random Fields

In the previous section, we have seen advantages both to discriminative modeling

and sequence modeling. So it makes sense to combine the two. This yields a linear-

chain CRF, which we describe in this section. First, in Section 1.3.1, we define linear-

chain CRFs, motivating them from HMMs. Then, we discuss parameter estimation

(Section 1.3.2) and inference (Section 1.3.3) in linear-chain CRFs.

1.3.1 From HMMs to CRFs

To motivate our introduction of linear-chain conditional random fields, we begin

by considering the conditional distribution p(y|x) that follows from the joint

distribution p(y,x) of an HMM. The key point is that this conditional distribution

is in fact a conditional random field with a particular choice of feature functions.

First, we rewrite the HMM joint (1.8) in a form that is more amenable to general-

ization. This is

p(y,x) =
1

Z
exp

8
<
:
X

t

X

i,j2S

�ij1{yt=i}1{yt�1=j} +
X

t

X

i2S

X

o2O

µoi1{yt=i}1{xt=o}

9
=
; ,

(1.13)

where ✓ = {�ij , µoi} are the parameters of the distribution, and can be any real

numbers. Every HMM can be written in this form, as can be seen simply by setting

�ij = log p(y0 = i|y = j) and so on. Because we do not require the parameters to

be log probabilities, we are no longer guaranteed that the distribution sums to 1,

unless we explicitly enforce this by using a normalization constant Z. Despite this

added flexibility, it can be shown that (1.13) describes exactly the class of HMMs

in (1.8); we have added flexibility to the parameterization, but we have not added

any distributions to the family.

Figure 2.1: Graphical representation of a linear-chain CRF in which the
transition score depends on the current observation [142].

CRF, which we describe here.
Linear-chain CRF. When modeling sequential relationships, for example
between words in a natural language sentence, the CRF graph G will be a linear-
chain in the form of a (often first-order) Markov chain [78, 142]. In a setting
where each word in a sentence is tagged by a label, the dependency between
the label of each word and the label of its previous word in the sentence can be
considered (see figure 2.1). Considering sequential relationships can increase
the learning model’s performance. In the linear-chain CRF, the conditional
probability p(y|x) is computed as

p(y|x) = 1
Z(x)

∏T

t=1
Ψt(yt−1, yt, xt), (2.9)

where X = (x1, . . . , xT ) is a sequence of observations and Y = (y1, . . . , yT )
is the corresponding set of labels assigned to X. The potential function
Ψt(yt−1, yt, xt) captures the degree to which the assignment yt to the output
variable fits the transition from yt−1 and xt. The potentials typically factorize
according to a set of features f = {fk(.)} such that Ψt(yt−1, yt, xt) =
exp{

∑K
k=1 wkfk(yt−1, yt, xt)}, where W = {wk} is the parameter set of the

linear chain model which has only one factor. A forward-backward algorithm
can be used to compute the marginal distributions and the Viterbi algorithm
to compute the most probable sequence label assignment.

Templates in general CRFs. In relational domains, practical models rely
extensively on parameter tying. For example, in the linear-chain model, the
same weights are used for the factors Ψt(yt, yt−1, xt) at each position in the
sequence. To denote this, the factors of G are partitioned into a set of templates
C = {C1, C2, . . . , CP }, where each Cp is a clique template whose parameters
are tied. This notion of clique template is also used in [148, 145, 38]. Each
clique template Cp is a set of factors which has a corresponding set of sufficient
statistics {fpk(xp, yp)} and parameters θp ∈ RK(p). Then the CRF can be
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written as
p(y|x) = 1

Z(x)
∏
Cp∈C

∏
Ψc∈Cp

Ψc(xc, yc; θp), (2.10)

where each factor is parametrized as

Ψc(xc, yc; θp) = exp

{K(p)∑
k=1

wpkfpk(xc, yc)
}
, (2.11)

and the normalization function is

Z(x) =
∑
y

∏
Cp∈C

∏
Ψc∈Cp

Ψc(xc, yc; θp). (2.12)

For example, in a linear-chain CRF, one clique template C = {Ψt(yt, yt−1, xt)}Kt=1
is used in the model. However, in many real world applications such as relation
extraction tasks, certain long-distance dependencies between entities play an
important role. A CRF model called skip-chain CRF [142] accounts for the
probabilistic dependencies between distant labels. These dependencies are
represented by augmenting the linear-chain CRF with factors dependent on the
labels of the words in arbitrary positions in the sentence. The features on skip
edges can incorporate information from the context of both endpoints, so the
strong evidence of one endpoint can influence the label at the other endpoint.
The skip-chain CRF model, includes two clique templates one is the sequential
one for connecting neighboring positions in the sequence and the other connects
arbitrary positions according to some pre-defined conditions. If we assume
I = {(u, v)} is the set of all pairs of positions for which there are skip edges
then the probability of a label sequence y given input x is

pθ(y|x) = 1
Z(x)

T∏
t=1

Ψt(yt, yt−1, xt)
∏

(u,v)∈I

Ψuv(yu, yv, xu, xv), (2.13)

where Ψt are factors for sequential relations and Ψuv are factors over skip edges.
These factors are defined as

Ψt(yt, yt−1, xt) = exp{
K1∑
k=1

w1kf1k(yt, yt−1, xt)} (2.14)

and

Ψuv(yu, yv, xu, xv) = exp{
K2∑
k=1

w2kf2k(yu, yv, xu, xv)}, (2.15)

where θ1 = {w1k}K1
k=1 are the parameters of the linear-chain template and

{f1k} is the related set of feature functions or sufficient statistics. Similarly,
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θ2 = {w2k}K2
k=1 are the parameters of the skip-chain templates, and {f2k} is its

related set of feature functions or sufficient statistics. The full set of model
parameters is θ = {θ1, θ2}. In the general CRFs various approximate inference
approaches in two main categories of variational methods such as loopy belief
propagation and Markov Chain Monte Carlo (MCMC) methods such as Gibbs
sampling are used [144].

2.1.3 Structured Support Vector Machines

As pointed out before, this approach is based on finding the hypothesis h that
minimizes the loss over the training data i.e. expected risk,

h∗ = arg min
h∈H

Êr(h). (2.16)

If our set of hypotheses, H, is large enough, we will be able to find h that has
zero or very small empirical risk. However, simply selecting a hypothesis with
lowest risk is generally not a good idea and leads to over fitting. To alleviate
this problem the following regularized risk is minimized instead of Êr(h),

R(h) + Cost

N

N∑
i=1

∆(yi, h(xi)), (2.17)

the first term R(h) of which is the regularizer, prevents the learning models
from over-fitting on the training data by penalizing functions according to
their complexity (e.g. the degree of the polynomial) [156], Cost is a constant
penalizing the training error.

In structured learning, given ys with arbitrary complex structures for each
x, a function g : X × Y → R is learnt to assign a score to each input-output
pair instead of a direct mapping from X to Y. In this way, the prediction is
performed by maximizing g with parameter vector W over y for a given input
x [155],

h(x;W ) = arg max
y∈Y

g(x, y;W ), (2.18)

where
g(x, y;W ) = 〈W, f(x, y)〉, (2.19)

g is assumed to be a linear discriminant function over the joint features of
the input and output f(x, y); W denotes a weight vector and 〈, 〉 denotes a
dot product between two vectors. The basic idea for learning the function g
parametrized by W is that it should roughly fulfill the following constraint for
each training data point,

g(xi, yi;W ) ≥ g(xi, y;W ), ∀y ∈ Y. (2.20)
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These constraints mean the function g should assign a larger score to the ground-
truth output yi than all other possible wrong ys for each input xi. A more
sophisticated variation is to impose the difference of the scores to be larger than
a margin and having the loss between a wrong y and the ground truth yi as a
lower bound,

g(xi, yi;W ) ≥ g(xi, y;W ) + ∆(yi, y), ∀y ∈ Y. (2.21)

These inequalities are referred to as learning constraints (not to be confused
with the constraints over the output structure discussed in Section 2.1.5 ). In
the structured output case, a large number of possible ys per xi leads to a large
number of learning constraints when searching for the optimum W based on
the above idea. A solution to this problem is to consider only the most violated
y for each x. In other words, at each training iteration the following inference
is solved per training example,

arg max
y∈Y

(g(xi, y;W )− g(xi, yi;W ) + ∆(yi, y)). (2.22)

Hence discriminative structured prediction algorithms such as structured
perceptron [25, 27], max-margin Markov networks [150] and structured
SVMs [155] need a solution for this inference task during training and then the
learning is to minimize l(W ) which is a convex upper bound on the loss Êr(h)
over the training data [130]:

l(W ) =
N∑
i=1

max
y∈Y

(g(xi, y;W )− g(xi, yi;W ) + ∆(yi, y)), (2.23)

the inner maximization is referred to as loss-augmented inference. This learning
approach forms the basis of the structured support vector machines (SSVM), but
there are a number of formulations for max-margin optimization in SSVMs as
suggested in [155]. We show the following 1-slack margin rescaling formulation
in which the margin is rescaled by the loss,

minW,ξ 1
2‖W‖

2 + Cost
N

∑N
i=1 ξi

s.t. ∀i : ξi ≥ 0,
∀i,∀y ∈ Y : 〈W, f(xi, yi)− f(xi, y)〉 ≥ ∆(yi, y)− ξi,

(2.24)

where ξis are the slack variables to allow errors in the training set particularly
when the training data is not linearly separable and Cost > 0 is a constant
that controls the tradeoff between the training error minimization and margin
maximization. Referring back to the formula 2.17, in this formulation the ‖W‖2
is the regularization term which is the l2 norm of the weight vector. And instead
of minimizing the expected loss, the convex upper bound in formula 2.23 is
minimized (i.e. expected ξis) along with the margin maximization.
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Algorithm 1 Cutting-plane for SVM-struct
1: Given training data: E = (xi, yi)Ni=1; Cost, ε
2: Si ← ∅ ∀i = 1, . . . , N
3: repeat
4: for i = 1 to N do
5: H(y) , ∆(yi, y) +WT f(xi, y)−WT f(xi, yi)
6: compute ŷ = arg maxy∈Y H(y)
7: compute ξi = max{0,maxy∈Si H(y)}
8: if H(ŷ) > ξi + ε then
9: Si ← Si ∪ {ŷ}
10: W ← optimize primal over ∪iSi
11: until no Si has changed during iteration

Algorithm 1 shows the cutting plane algorithm of SVM-struct1.The cutting
plane algorithm suggested in [155] takes the most violated ys by finding the
maximum a posteriori (MAP) of H in line 6. H is the objective of the loss-
augmented inference defined in line 5. The algorithm adds the most violated
examples one by one building a working subset of constraints (∪iSi, S is the
constraint set associated to the ith training example) at each iteration, and
updates the weight vector W (line 10) by working on the primal formulation in
this algorithm.

2.1.4 Structured Perceptron-based Model

The variation of the structured perceptrons that has a very similar basis to the
SSVM suggested by [27] is shown in Algorithm 2. This algorithm minimizes
the same convex upper bound l(W ) of the structured loss. In the simplest
case there is no regularization term included and the training is performed by
a sub-gradient algorithm. Beginning with a weight vector W initialized with
zeros, the structured perceptron algorithm iterates through each element of the
training set, updating the weight vector after processing each training instance.
The training set is processed repeatedly until convergence. In each update step
t, if the most violated y is not the correct answer, the difference between the
feature vectors of the ground-truth and the model’s prediction is added to the
weight vector W .

There are more effective variations of this algorithm, such as averaged perceptron
and voted perceptron [25, 27]. In the averaged perceptron, the final weight
vector W is the average over all model weights Wt at each iteration t, that

1http://www.cs.cornell.edu/people/tj/svm_light/svm_struct.html
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Algorithm 2 Sub-gradient-descent for structured perceptron
1: Given training data: E = (xi, yi)Ni=1; step sizes ηt
2: W ← 0
3: for t = 1 to T do
4: for i = 1 to N do
5: ŷ ← arg maxy∈Y ∆(yi, y) +WT f(xi, y)−WT f(xi, yi)
6: W ←W + ηt(f(xi, yi)− f(xi, ŷ))

is W = 1/T
∑T
t=1Wt, where T is the number of iterations. This heuristic

regularizes the parameters of the model and compensates for not having an
explicit regularization term in the training objective. Similarly, the voted
perceptron assigns a score to each model of iteration t according to its true
predictions on the training and uses the aggregation of the weighted models at
prediction time.

2.1.5 Constrained Conditional Models

As mentioned above, one essential property that the structured output prediction
models should provide is that the predicted outputs obey certain structural
characteristics. The main idea behind constrained conditional models (CCMs)
is that the structural characteristics, that are often very complex when modeled
as training features, can be considered only at the prediction time to avoid
complicating the training process. Hence these structural features are formally
treated separately as a number of constraints, and the constraint optimization
techniques are used to solve the prediction time inference in CCMs. This idea
has been used for about a decade [124] and is well formalized recently in [20]. In
this model, in addition to the set of feature functions, f = {fk(.)} in the above
described learning models, a set of constraints, ζ = {ζm(.)} is defined over each
input and output. A constrained conditional model is formally characterized by
two weight vectors, W and ρ, and finds a solution to the following optimization
problem:

arg max
y

K∑
k=1

wkfk(x, y)−
M∑
m=1

ρmζm(x, y). (2.25)

where each constraint ζm ∈ ζ is a boolean function that indicates if the joint
assignment violates a constraint. ρ is the penalty incurred for violating the
constraints, M is the number of constraints and K is the number of features
over the given pair of input and output. When constraints should be strictly
fulfilled, they are assigned an infinite penalty and are called, hard constraints.
Hard constraints represent unfeasible assignments to the optimization problem.
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Constraints that can be occasionally violated are called soft constraints. For
these models often integer linear programming (ILP) techniques described in
Section 2.1.7 or other techniques such as A∗ search are used for decision making
at prediction time. A useful property of these models is that the constraints
can be formulated in a declarative way and there is a software that provides
the facilities of implementing such models [120]. These models are becoming
popular in various natural language processing tasks [22, 140, 110].

2.1.6 Relational Learning

In traditional machine learning the data is represented in a flat attribute-value
format which is also called a propositional format. However, in many real world
problems the data has a rich relational structure. In these domains, the data in
its most common and practical form is usually described in terms of entities
and relationships and it is organized and stored in a relational database. A
relational database contains a number of tables that are connected to each other
via various keys. Each table is called a relation and each tuple in a table contains
the attributes that describe an entity or describe the relationship between more
than one entity. For example, a database of an organization such as a university
contains information about students and professors which are among the main
entities and about the relationships between them such as advisor and advisee
relations. Another powerful and flexible framework for representing and storing
relational data is to use the knowledge base technology by which rich knowledge
(mostly in first order logic form) can be stored, manipulated and reasoned over.
However, the expressiveness and flexibility in knowledge base formalisms is
provided by trading off the efficiency compared to databases.

Relational learning applies to learning from relational data which we briefly
define as the data with a structure that is organized in relations, which are
for example a set of tuples in tables in a database or instances of a first order
logical predicate in a knowledge base.

A useful characteristic of relational representations for the learning models is
that functional dependencies are organized among groups of data elements (i.e.
tables), and hence a first order representation of the data can represent such
relational dependencies for parameter tying and efficient learning.

To learn from relational data, researchers with a focus on relational databases use
the entity-relationship (E/R) model as a first order representation of the data.
The probabilistic relational models (PRM) [44], relational Markov networks
(RMN) [148] and relational dependency networks (RDN) [101] are examples
of such relational learning frameworks. On the other hand researchers with a
focus on knowledge base notions use first order logic formalisms to represent
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relational data. In this case, sometimes the logical learning and inference are
used and combined with probabilities in the framework of probabilistic logical
languages to deal with uncertainty inherent in learning and inference. Examples
are PRISM [131] and Problog [33]. These approaches are referred to as logical
relational learning to highlight their ability in combining the ideas from the two
subfields of machine learning and knowledge representation [32]. Sometimes in
spite of using first order logical representations, the logical inference is replaced
by probabilistic inference such as done in Markov logic networks [38]. A recently
developed relational learning framework called, kLog [42], is used in Chapter 6,
is based on the ideas of Datalog [46] and considers both techniques in relational
databases and knowledge base formalisms. It has the capabilities of logical
inference and deduction as well as statistical learning from relational data.

Although structured learning, discussed in Section 2.1, and learning from
relational data can be assumed as two orthogonal aspects of learning models,
these two aspects often are concurrent. We find it useful to distinguish between
these two aspects and shortly describe their natural concurrence here.

In a relational data domain, the entities to be labeled are related to each other
in complex ways and their labels are not independent. For example, in hypertext
classification, the labels of the pages (i.e. entities) that have a link to each other
are highly correlated. However, each entity can be classified independently,
ignoring the correlations between its label and the label of other entities. These
correlations are considered only implicitly when applying the relational features
such as the attributes of the other linked pages when labeling a page. But
explicitly considering the correlations between the unknown labels of the linked
pages and classifying them collectively can yield a better prediction [149]. Hence,
most of the relational learning models consider this challenging problem which
is referred to as collective classification or, more generally, structured output
prediction. For example in PRMs, a relational version of Bayesian networks,
is used to define a joint probabilistic model for a collection of related entities
and similarly in the case of RMNs or MLNs, a relational version of Markov
networks is used for structured output prediction.

In structured learning tasks, often the data has a relational nature in which
firstly there are dependencies between entities that we would like to model and
secondly each entity has a rich set of features for learning [142] and a relational
organization of the data can facilitate parameter tying towards obtaining efficient
learning models for structured output prediction. In addition to the above
mentioned frameworks based on relational databases and declarative languages
based on knowledge representation formalisms, there is a tendency for designing
functional imperative languages for flexible modeling of learning from relational
data such as FACTORIE [92] (based on CRFs) and Learning Based Java
(LBJ) [120] (based on CCMs).
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The term relational learning in its technical usage often refers to the learning
models in which the data and knowledge, the subject to the learning, are
represented in a well-defined relational representation, for example in a first
order logical or relational database form. In these frameworks to exploit
classic machine learning approaches, usually the relational data first should
be represented in attribute-value representations and second a propositional
inference model should be constructed on which statistical learning and various
inference techniques can be applied. The solutions to the former problem, that
is generating the necessary input in a feature-vector format for the statistical
learner, are called propositionalization [75]; and the solutions to the latter, that
is dynamically constructing propositional models from relational data to make
inference over the actual objects and their relations in the domain [164], are
called knowledge based model construction (KBMC).

Finally, on a less technical but more conceptual level, we use the term relational
learning in Chapter 7 to refer to learning models that exploit the relational
structure of the data and the background knowledge modeled conceptually
independent from any relational formal language. The relational learning term
has been used with the same sense also in the previous works where the focus
is on structured learning in a relational data domain and for natural language
processing [142, 126].

2.1.7 Approximate Inference

To predict the output in structured output prediction models, an inference
problem must be solved for finding the best y given a trained model. However, in
inference-based-training techniques as well as probabilistic models, the inference
over the Y space is also performed during training. In inference-based models,
this is an explicit prediction step using an intermediately trained model. This
inference is what we referred to as loss augmented inference in Formula 2.22 and
it is repeated over all training examples in each training iteration. Although
exploiting the structure is crucial for accurate structured prediction and learning,
usually representing complex interactions makes the inference intractable. In
practice, we often need to use approximate inference by giving up one of the
ideal characteristics of an exact inference approach. Sebastian Nowozin and
Christoph H. Lampert provide a thorough categorization of the trade-offs that
one needs to consider in solving real world problems [103]. These trade-offs
are about giving up in one or more of the following aspects in solving a novel
structured prediction problem. These aspects are generality (by considering a
tractable subclass of the problem at hand with specific structural restrictions),
optimality (by considering iterative algorithms that are without optimality
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guarantees), worst-case complexity (by considering efficient algorithms that
are intractable in the worst case such as branch and bound algorithms),
integrality (by enlarging the feasible set in a way that inference is simplified) and
determinism (by using randomness for achieving tractable solutions). Fienley et
al. describe approximation methods in two general classes of undergenerating
and overgenerating algorithms which are also classes of solutions that trade
optimality and integrality as the main idea [40].

Undergenerating. Undergenerating methods approximate the arg maxy∈Y by
arg maxy∈Y where Y ⊆ Y . For example in the context of undirected graphical
models (Markov random fields), the greedy search and loopy belief propagation
algorithms are in this class of approximation algorithms.

Overgenerating. On the other hand, overgenerating methods approximate
arg maxy∈Y by arg maxy∈Ȳ , where Ȳ ⊇ Y . For example LP-relaxation and
graph-cut algorithms belong to this class of algorithms.

However, overgenerating methods such as LP-relaxations have been shown
to work well in the framework of structured output learning so we also use
LP-relaxation, i.e. the relaxation of an integer linear programming as the basic
approach for inference in some of our models. The advantage of this approach
in our problem is that we have a straightforward linear formulation of the
hard constraints over the output space and integrating these constraints is
straightforward and efficient in the ILP formulation. We describe this technique
briefly.

LP-relaxation

In this framework, inference is viewed as an optimization problem and the exact
formulation of the problem and the constraints over the Y space are formulated.
In LP-relaxation, the problem is first formulated as an integer linear program
with the following form,

arg max
y

cT y

subject to Ay ≤ b

y is integer, (2.26)

where y represents the target variables, cT is the transposed coefficient matrix of
the linear objective, A is the matrix of the coefficients of the linear (in)equality
constraints and b is the vector of the constants. By removing the constraint
of y being integer from the formulation 2.26, an integer linear programming
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relaxation is obtained. It is proven that if the constraint matrix A is totally
unimodular [125], the solution to this problem for an integral b is integral.

Definition A matrix A is totally unimodular if the determinant of every square
submatrix of A is +1, −1, or 0.

Integer linear programming is commonly used in natural language processing
(NLP) tasks. Even for non-linear objective functions and complicated finite
feasible sets, we can introduce additional auxiliary variables to make the
necessary connections by imposing linear constraints and formulate the problem
as a linear program. This formulation has been used even in NLP tasks for which
the total unimodularity does not hold and often acceptable approximations are
provided by this technique [125]. To apply this technique we need to formulate a
linear objective function for the inference (prediction/loss-augmented) in terms
of the output labels.

2.2 Natural Language Processing

Developing systems that understand natural language has been a long term
ambition of artificial intelligence. The ultimate goal of natural language
processing (NLP) is to make computers understand statements written in
human languages. Current NLP technology considers various tasks for lexical,
syntactic and semantic analysis which are briefly overviewed in this section.

2.2.1 Morphological and Lexical Analysis

The lexicon of a language is its vocabulary, which includes its words and
expressions. Morphology is the identification, analysis and description of
structure of tokens or words. A token is a set of characters that form a
linguistic unit with meaning. Often words are accepted as being the smallest
units of analysis and so as being the tokens. In lexical analysis, the aim is
to divide the text into paragraphs, sentences and words. Usually this step is
performed prior to more complex NLP tasks. In this step, individual words are
analyzed into their components and non-word tokens such as punctuation marks
are separated from the words, a survey on English morphology is provided by
Jurafsky and Martin in Chapter 3 of their book [62].
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2.2.2 Syntactic Analysis

Part-of-speech tagging. First, we note that in language usually there are
two types of lexical classes: open and closed classes. Closed lexical classes
contain a fixed set of words such as the class of articles, prepositions, auxiliary
verbs and pronouns. The open classes, on the contrary do not have a fixed
word membership such as the class of nouns, verbs, adjectives and adverbs. The
task of part-of-speech (POS) tagging, is to assign the lexical category of the
words in the sentence. This can be a difficult task due to the ambiguities in
the language and because a similar word form can have different POS tags in
different contexts. The POS tags for the sentence

The vase is on the ground on your left.2

are the following:

DT/The NN/vase VBZ/is IN/on DT/the NN/ground IN/on PRP$/your NN/left ./.

where the tags are based on the Penn Treebank standard tag set3, for example
the tag DT indicates that The is a determiner and tag NN indicates that vase
is a noun.
Parsing. It is the syntactic processing of the language in which a flat input
sentence is converted into a hierarchical structure that corresponds to the units
of meaning in the sentence. It plays an important role in natural language
systems for two reasons: first semantic processing must operate on sentence
constituents. If there is no syntactic parsing step, then the semantic system
must decide on its own constituents. If parsing is done, on the other hand, it
constrains the number of constituents that the semantic analysis can consider.
Second, syntactic parsing is computationally less expensive than semantic
processing. Thus it can play a significant role in reducing the overall complexity
of an NLP system. The two main tasks for identifying the syntax are first
part-of-speech tagging and producing the constituent-based parse tree, and
second the dependency structure representation using dependency-based parsing
which we describe briefly, see also [62].

Constituent-based parsing. The constituent-based parse tree of the above
sentence is represented in figure 2.24. S is the root node and the leaf nodes
contain the lexical tokens in the sentence (The, vase, is, . . . ). In the branch

2http://cogcomp.cs.illinois.edu/demo/pos/results.php
3http://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
4http://nlp.stanford.edu/software
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Figure 2.2: Example of a constituent-based parse tree including POS tags.

Figure 2.3: Example of a dependency-based parser including dependency
relations.

nodes, for example the abbreviation NP is for noun phrase. VP is for verb phrase,
and the verb here is an auxiliary verb (AUX). DT stands for the determiner, in
this instance for the definite article "the". The tags are again according to the
Penn Tree bank tag set.

Dependency-based parsing. The dependency tree of the same sentence is
represented in figure 2.35. The basic idea here is to show the links between the
lexical items by binary asymmetric relations called dependencies. A dependency
relation holds between a head and a dependent. Hence the main challenge of a
dependency grammar is determining the criteria for establishing the relations
and distinguishing the head from the dependent. The notion of head plays an
important role even in the constituent-based frameworks which use the syntactic
head. To identify a syntactic head there are some criteria, the main one is that

5http://barbar.cs.lth.se:8081/parse
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the head of a group of words has the same syntactic and semantic category
as the group and often can replace that group. For detailed specifications
see [102]. In the example of figure 2.3, the source of an edge is the head and
the destination is the dependent. For instance, is is the root and does not
depend on any other word. vase is the subject of is and the edge between these
two words is labeled by SBJ. The is the noun modifier and dependent on vase
so the edge between them is labeled by NMOD. A detailed description of the
labels and abbreviations for the dependency trees is in the manual of Stanford’s
dependency parser. 6

2.2.3 Semantic Analysis

The most complex natural language processing tasks are semantic analysis
and language understanding, which is the subject of interest in this thesis.
The term semantic analysis is used more often to refer to discovering sentence
level semantics. More course grained semantics considering the influence of
the other sentences in the analysis of the meaning of one sentence in a text is
referred to as discourse integration. When the situational background knowledge
is added to the ingredients of the semantic analysis then it is referred as
pragmatic analysis. However, apart from the granularity level and the task-
dependent goals and challenges, the representation of the semantics is always
an issue. There are two main approaches for semantic analysis (see also [62]):
a) meaning representation considering formal languages; b) considering lexical
semantics. In real world applications, these two main general frameworks can
be used as the basis of the more pragmatic tasks that consider the semantics,
namely information extraction and mapping to ontologies (ontology population).
However, information extraction can be considered as a simple case of mapping
language to ontologies. We describe these tasks and approaches briefly in the
following.

Meaning Representation

The idea behind the notion of meaning representation is that the meaning
of the linguistic expressions can be captured in formal structures. Hence, a
formal language is used to represent meaning. In this framework, first order
logic, description logic, semantic networks, conceptual dependency diagrams or
frame-based representations are used.

6http://nlp.stanford.edu/software/dependencies_manual.pdf
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Lexical Semantics

A different view on semantic analysis compared to meaning representation is to
consider rich word semantics drawn from linguistic studies of words. It considers
the word senses in the language, the frames of the individual verbs, and the
semantics and roles that they allow. We point to some important related tasks
that apply this view.

Word sense disambiguation. Often the first step in the semantic processing
systems is to look up the individual words in a dictionary (or lexicon) and
extract their meanings. Many words have several meanings, and it may not
be possible to choose the correct one just by looking at the word itself. The
process of determining the correct meaning of an individual word is called word
sense disambiguation or lexical disambiguation. It is done by associating, with
each word in the lexicon, information about the contexts in which each of the
word’s senses may appear. For example in Chapter 5 we use such a task to
recognize the sense of the prepositions, particularly their spatial semantics in a
sentence.

Semantic role labeling. The choice of semantic roles is not an easy and
straightforward type of abstraction. In this respect, thematic roles are one
attempt to capture the semantic commonality between different verbs. For
example the role of AGENT is carried by the subject of many verbs such
as break and open. The objects of these two verbs i.e. BrokenThing and
OpenedThing are directly affected, and their thematic role is theme. The goal of
using thematic roles and semantic roles in general is to have a shallow meaning
representation that makes inference about the meaning feasible. The problem
with thematic roles is the difficulty of coming up with a standard set of roles.
It is difficult to provide a formal definition of the roles of AGENT, THEME,
INSTRUMENT, etc. To deal with this problem one solution has been to define
generalized semantic roles that abstract over the specific thematic roles. In this
case, the roles that act like patient and agent roles called PROTO-AGENT and
PROTO-PATIENT are used. In addition to proto-roles, many computational
models define semantic roles particular for a set of verbs or nouns. The two most
commonly used lexical resources that use some alternative version of semantic
roles are PropBank which uses both proto-roles and verb-specific semantic roles,
and FrameNet which uses frame-specific semantic roles. For a more in depth
discussion about the roles and variations see [62].

Semantic role labeling annotates every verb in the sentence with a structure
called semantic frame usually according to the ProbBank frames [106]. A
semantic frame consists of a predicate label that indicates the sense of the verb,
and a number of arguments called semantic roles. A semantic role indicates the
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The vase is on the ground on your left .
agent[A0] V:be - patient[A1] -

Table 2.1: Example of the output of a semantic role labeler.

The meeting is on Monday .
agent[A0] V:be - temporal[AM-TMP] -

Table 2.2: Example of the output of a semantic role labeler.

role of the labeled phrase in the sentence with respect to the predicate which is
the verb. In table 2.1, for example the verb is has predicate label be. Semantic
roles, The vase, with label A0, is an argument of the predicate and has the
agent role with respect to is. The phrase the ground on your left with the label
A1, is the second argument of is and has the role of patient with respect to the
predicate. In the second example in table 2.2, in addition to the main role of
agent, there is another secondary role of AM-TMP which shows Monday has
temporal information. These additional roles are called adjuncts7.

Information Extraction

Information extraction is usually defined as the extraction of limited types of
semantics from unstructured data (here text) and as the storage of the extracted
information in some structured format, for example relational databases [98].
The most well-known IE task is named entity recognition (NER). In this task
the goal is to find the names of the people, places and organizations that are
mentioned in ordinary news texts. A step further in IE is relation extraction
and classification. For example, relations such as employee-of or part-of are
recognized that hold between the identified entities.

Jantje/PERSON is going to Spain/LOCATION tomorrow/DATE for holidays.

Another linguistic task which can be classified in the IE category of tasks
is temporal information extraction and the extraction of temporal relations
between events [68]. It is worth mentioning that semantic role labeling also
can be viewed as a kind of information extraction that extracts linguistically
oriented semantics where the verb in the sentence has a pivotal role. The spatial
information extraction, which is the topic of this thesis, also can be considered

7http://cogcomp.cs.illinois.edu/demo/srl/
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as an information extraction task, which particularly targets the extraction of
spatial semantics.

2.3 Ontologies

Here we introduce some terms and provide definitions about the concepts related
to ontologies.

Formal Ontology is concerned with the systematic enumeration and classification
of the various kinds of entities represented within a given conceptualization of
the world, together with an account of their properties and relationships [45].

To distinguish ontologies from knowledge bases, ontologies are described as a
scheme for the knowledge base. In every knowledge base there is a kind of
conceptualization, either explicitly or implicitly. This conceptualization is what
is referred to as ontology [49]. Hence, knowledge bases can be built by extracting
the relevant instances from information to populate the corresponding ontologies.
This process is known as ontology population or knowledge markup [166].
Depending on the available knowledge and information resources in a specific
domain, ontologies can be hand crafted or even be learnt automatically. In this
respect, the task of learning ontology from text can be defined as the process of
deriving high-level concepts and relations in addition to the axioms from the
available information to build an ontology.

2.3.1 Ontology Components

There are five types of components that make up an ontology, namely, terms,
concepts, taxonomic relations, non-taxonomic relations, and axioms. Terms are
used to form concepts and the concepts which are related to each other make
the relation layer of the ontology. Relations represent the interaction between
the concepts in the ontology.

Taxonomic relations can make a hierarchy of concepts. This implies the discovery
of the is-a(X,Y) relationships, also referred to as hyperny/hyponym. Non-
taxonomic relations describe more complex interactions between the concepts
and extraction of these relations need syntactic and dependency analysis of
the textual information. The meronymy relations such as part-of(X,Y) or
contain(X,Y), attributes such as property(X,Y) or other relations such as
thematic roles, possession, and causality are more complex to handle in learning
and population of the ontologies. Finally, by generalizing over the relations,
the axioms are produced. Ontologies may contain axioms for validation and
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enforcing constraints. Depending on the relational and axiomatic richness and
the formality of representation in an ontology, a spectrum of different kinds of
ontologies emerge. In one end, the term lightweight ontology is referred to the
ontologies that make little or no use of the axioms. At the other end, the term
heavyweight ontology referrs to the ontologies that intensively use axioms in
their specifications [47].

2.3.2 Meaning Representation via Mapping to Ontologies

We consider mapping natural language to ontologies as a general framework
for semantic representation. Mapping to a knowledge representation scheme
supported by an ontological scheme, can be seen as an extensive and deep
information extraction paradigm which is considered in modern information
systems.

Referring back to the semantic analysis of natural language described in the
previous section, here we can make its connection to the ontologies more clear. In
fact, one of the most widely accepted methodologies for meaning representation
using formal semantics, is model-theoretic semantics [105]. In model-theoretic
semantics, syntactically correct utterances in a language are assigned a semantic
interpretation in terms of truth values with respect to a certain world model.
This world model is based on an ontology represented by a formal language.
Interpreting the meaning of the textual units needs a detailed world model that
uses as few as possible primitives, and it enables the world modeler to build
descriptions of complex objects and process them in a computational fashion.

Understanding natural language text can be modeled as matching the text and
the pre-defined ontology. In the most pragmatic and shallow case, this will be
a task similar to information extraction with a number of named entities and
their relationships. When having a rich set of concepts and relations, mapping
the text to an ontology will be a kind of meaning representation generation.
This is similar to knowledge-based systems which model understanding through
representing the outcome of the input text analysis as a set of well-formed
structures in a formal artificial language. The crucial point in designing
ontologies, in order to have any explanatory power, is that the building blocks
of the meaning representation language must be interpreted in terms of an
independently motivated model of the world. The process of NL analysis is then
interpreted as putting lexical, syntactic, and prosodic units of the source text in
correspondence with elements of the text meaning representation language [105].
This is the idea that is followed in modern information extraction systems and
particularly in the semantic web model [166]. In this thesis when extracting
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spatial semantics, we go beyond a basic information extraction task by viewing
this task as a mapping of text to spatial ontologies.

2.3.3 Space in Ontology

Spatial information usually refers to the information about the physical location
of objects or entities in a space. Formalizing spatial semantics and also
considering the way those are expressed in natural language is an extremely
active and challenging research area [10]. The ontology of space is not granted as
a settled down question though it has been the subject of a very old philosophical
debate. The two concrete elements of an ontology of space are spatial entities
constituting the space and the primitive spatial notions expressed over these
entities. These elements are in fact interdependent, some notions are more
difficult to express over some kind of entities [160]. There is a large body
of research on representing the spatial notions in a formal qualitative model
appropriate for automatic spatial reasoning. These models are referred to as
qualitative spatial reasoning models (QSR). Another research domain in which
spatial primitives have been formalized and practically used is the domain of
geographical information systems. These systems mostly consider geographical
entities and toponymy. A general ontological view on the space aims to integrate
all the current formalizations about the space and connect them to natural
language [5] via an extensive ontology engineering. The SFB/TR8 project is
the main active project in this direction,

We see the ontological modeling of space as particularly necessary within the
SFB for facilitating qualitative spatial reasoning in general, for achieving
interoperability over the different spatial calculi used within the participating
projects, and for ontologically grounding the spatial expressions found in natural
language, Bateman et al. [9] p. 1.
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Outline

Extraction of spatial information from natural language is a key task for
applications that are required to answer questions or reason about spatial
relationships between entities. The research fields of natural language processing,
computer vision and robotics, human machine interaction and geographical
information systems (GIS) concern this type of information in various tasks.
Examples include systems that perform text-to-scene conversion, generation
of textual descriptions from visual data, robot navigation tasks and giving
directional instructions.

Contrary to the large body of past research on spatial cognition, spatial language
and spatial reasoning models, the extraction of spatial information from natural
language is not well-developed yet and does not have a well-defined framework.
This is in contrast to the extraction of temporal information, and it is due to
the complexity of the spatial entities and notions. There is neither a systematic
research work in this field from a computational linguistics (CL) point of view,
nor a systematic application of the current dominating approach in CL which is
statistical machine learning. The main obstacles for employing machine learning
in this context have been the lack of an agreement on a unique semantic
representation model and the gap between expressiveness of natural language
and the existing formal spatial representations. These explain the lack of
annotated data on which machine learning can be employed to learn and extract
the spatial relations. These shortages are the main motivations of the work
presented in this part.

In this part of the thesis, in Chapter 3, we establish a framework for spatial
information extraction in the form of a spatial annotation scheme to be used
by the machine learning models and we prepare rich corpora according to this
scheme for further machine learning investigations.

In chapter 4 we define the task of spatial information extraction as ontology
population for mapping natural language to spatial ontologies based on the
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proposed annotation scheme and the corpus analysis. This novel task is the basis
for our computational linguistic models for extraction of spatial information
in the whole thesis. Given the rich structural characteristics of the spatial
language and the relationships in the spatial ontologies, this task forms a highly
challenging semantic extraction task which is interesting for structured and
relational machine learning models. The following publications are the basis of
this part.
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Chapter 3

Spatial Annotation Scheme

Given the large body of the past research on various aspects of spatial
information, the main obstacles for employing machine learning for extraction
of this type of information from natural language have been: a) the lack of an
agreement on a unique semantic model for spatial information; b) the diversity
of formal spatial representation models ; c) the gap between the expressiveness
of natural language and formal spatial representation models and consequently;
d) the lack of annotated data on which machine learning can be employed to
learn and extract the spatial relations. These items draw the direction of the
contributions on which this chapter is built.

In this chapter we introduce a spatial annotation scheme for natural language
that supports various aspects of spatial semantics, including static and dynamic
spatial relations. The annotation scheme is based on the ideas of holistic spatial
semantics as well as qualitative spatial reasoning models. Spatial roles, their
relations and indicators along with their multiple formal meaning are tagged
using the annotation scheme producing a rich spatial language corpus. The
goal of building such a corpus is to produce a resource for training the machine
learning methods for mapping the language to formal spatial representation
models, and to use it as ground-truth data for evaluation.

We describe the foundations and the motivations for the concepts used in
designing our spatial annotation scheme in Section 1. We illustrate the scheme
and its XML and relational representation via examples, in Section 2. The
investigated corpora, annotated data and the annotation challenges are described
in Section 3. We conclude in Section 4.
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3.1 Annotation Scheme: Foundation and Motiva-
tion

In the proposed annotation scheme two main aspects of spatial information are
considered. Firstly the cognitive aspects and the way that spatial concepts are
expressed in the language, and secondly the formal models that are designed
for spatial knowledge representation and reasoning independent from natural
language. A scheme which covers these aspects will be able to connect natural
language to formal models and make spatial reasoning based on text feasible.
Here we describe the main elements related to these aspects that form the
basis of the proposed scheme. We point to the challenges in making a flexible
connection between these two sides of spatial information.

3.1.1 Holistic Spatial Semantics

One part of our proposed scheme is based on the holistic spatial semantics theory.
An approach to spatial semantics that has the utterance (itself embedded in
discourse and a background of practices) as its main unit of analysis, rather
than the isolated word, is characterized as holistic. Such an approach aims
at determining the semantic contribution of each and every element of the
spatial utterance in relation to the meaning of the whole utterance. One
major advantage of such an approach is that it does not limit the analysis to a
particular linguistic form, form class (e.g. prepositions), or theoretically biased
grammatical notion. The main spatial concepts considered in this theory are
the following.

Trajector: The entity whose location or position is described. It can be static
or dynamic; persons, objects, or events. Alternative common terms include
local/figure object, locatum, referent, or target.

Landmark: The reference entity in relation to which the location or the motion
of the trajector is specified. Alternate terms are reference object, ground,
or relatum.

Region: This concept denotes a region of space which is defined in relation
to a landmark. By specifying a value such as interior or exterior for this
category, the trajector is related more specifically and more precisely with
respect to the landmark.

Path: It is a most schematic characterization of the trajector of actual or
virtual motion in relation to a region defined by the landmark. In cognitive
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semantics this concept is used in two different ways, rich path or minimal
path. The minimal path is represented by its beginning, middle and
end, similar to the distinction source/medium/goal. The minimal path is
enriched when its information is combined with region or place.

Motion: This concept also can be characterized in a rich or minimal way. In its
minimal way, motion is treated as a binary component indicating whether
there is perceived motion or not. The minimal representation of motion
allows a clear separation from the path and direction, while the rich one
conflates it with these.

Direction: It denotes a direction along the axes provided by the different
frames of reference, in case the trajector of motion is not characterized in
terms of its relation to the region of a landmark.

Frame of reference: In general, a frame of reference defines one or more
reference points, and possibly a coordinate system based on axes and angles.
Three reference types can typically be grammaticalized or lexicalized in
English: intrinsic, relative, and absolute [81]. Recently, more detailed
distinctions were presented in [152], where spatial reference frames are
represented and systematically specified by the spatial roles locatum,
relatum, and (optional) vantage together with a directional system.

However, how these theoretical concepts are applied to linguistic descriptions,
is a controversial question. The answer to this question has many challenges
such as dealing with polysemy, characterizing the semantic and phonological
poles of the language [168]. In the holistic approach a many-to-many mapping
between semantic concepts and form classes is allowed [167]. For example, in
general a specific word can contribute to expressing the concept of landmark as
well as region or even path.

3.1.2 Qualitative Spatial Representation

The second part of our suggested scheme is based on qualitative spatial reasoning
(QSR) models. QSR models are designed based on more logical, geometrical or
algebraic spatial semantics independent from natural language. However the
cognitive adequacy of these models has been an important concern. Cognitive
adequacy refers to the degree in which a set of concepts and relationships,
and the computational inference over them is consistent with the mental
conceptualization of humans and the way that a human reasons about those
concepts and their relationships [119]. Two important reasons for paying
attention to the qualitative approach are a) this model is closer to how humans
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represent and reason about commonsense knowledge; b) it is flexibile in dealing
with incomplete knowledge [118].

Three main aspects of spatial information are topological, directional and distal
information which are somehow complementary information that could specify
the location of the objects under consideration. Other aspects are size, shape,
morphology, and spatial change (motion). Most of the qualitative spatial calculi
focus on a single aspect, e.g., topology, direction, distance but recently there
are combinatory models and tools that are able to reason based on multiple
calculi models [118, 163]. Here we briefly describe the main aspects of the
spatial information that are the basis of our spatial meaning representation in
the proposed scheme and qualitative calculi models are available for them.

Topological Relations

Distinguishing topological relationships between spatial entities is a fundamental
aspect of spatial knowledge. Topological relations are inherently qualitative
and hence suitable for qualitative spatial reasoning. In reasoning models
based on topological relations, the spatial entities are assumed to be regions
rather than points, and regions are subspaces of some topological space [118].

Figure 3.1: The RCC-8 relations.

A set of jointly exhaustive
and pairwise disjoint relations,
which can be defined in all
topological models based on
parthood and connectedness
relations, are DC, EC, PO,
EQ, TPP, NTPP, TPP−1,
NTPP−1. The best known
approach in this domain is the
Region Connection Calculus by
Randell et al. [115] known as
the RCC-8 model that we use
to represent the topological relationships expressed in the language. RCC
is heavily used in qualitative spatial representation and reasoning. The
above relation symbols are abbreviations of their meanings (see Fig. 3.1):
disconnected DC(a, b), externally connected EC(a, b), partial overlap PO(a, b),
equal EQ(a, b), tangential proper-part TPP(a, b), non-tangential proper-part
NTPP(a, b), tangential proper-part inverse TPP−1(a, b), and non-tangential
proper-part inverse NTPP−1(a, b), which describe mutually exclusive and
exhaustive overlap and touching relationships between two (well-behaved)
regions in the space. The cognitive adequacy of this model is discussed in [119].
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Figure 1.4. Orientation relations between points: (a) cone-based (b) projection-
based (c) double-cross.

specified either by a third object or by a given direction. In
the literature one distinguishes between three different kinds of frames
of reference, extrinsic (“external factors impose an orientation on the
reference object”), intrinsic (“the orientation is given by some inherent
property of the reference object”), and deictic (“the orientation is im-
posed by the point of view from which the reference object is seen”)
[Hernàndez, 1994, p.45]. If the frame of reference is given, orientation
can be expressed in terms of binary relationships with respect to the
given frame of reference.

Most approaches to qualitatively dealing with orientation are based
on points as the basic spatial entities and consider only two-dimensional
space. Frank [Frank, 1991] suggested different methods for describing
the cardinal direction of a point with respect to a reference point in
a geographic space, i.e., directions are in the form of “north”, “east”,
“south”, and “west” depending on the granularity. These are, however,
just labels which can be equally termed as, for instance, “front”, “right”,
“back”, and “left” in a local space. Frank distinguishes between two
different methods for determining the different sectors corresponding to
the single directions: the cone-based method and the projection-based
method (see Figure 1.4). The projection-based approach allows us to
represent the nine different relations (n, ne, e, se, s, sw, w, nw, eq)
in terms of the point algebra by specifying a point algebraic relation
for each of the two axes separately. This provides the projection-based
approach (which is also called the cardinal algebra [Ligozat, 1998]) with
formal semantics which were used by Ligozat [Ligozat, 1998] to study its
computational properties. In particular, Ligozat found that reasoning
with the cardinal algebra is NP-complete (See below in Section 4) and,
further, identified a maximal tractable subset of the cardinal algebra by

Figure 3.2: Directional relations between points: (a) Cone-based model; (b)
Projection-based model; (c) Double-cross model [118].

There are other topological models such as 9-intersection given by Egenhofer [39]
which is based on interior, exterior, and boundary of regions.

Directional Relations

Direction or orientation is also frequently used in linguistic descriptions about
spatial relations between objects in qualitative terms, for example the expressions
such as to the left or in the north are more often used than 45 degrees.
The frame of reference discussed in the previous section is an important
feature to characterize directional relations. Absolute directions are in the
form of {S(south), W(west), N(north), E(east), NE(northeast), SE(southeast),
NW(northwest), SW(southwest)} in a geographical space. Relative directions
are {Left, Right, Front, Behind, Above, Below} and used in a local space. These
are only different in terminology compared to the former set of relations and
can be adapted and used in qualitative direction calculus such as the cone-base,
projection-based and double-cross models [118] (see figure 3.2). The double
cross model (figure 3.2.c) assumes an additional axis and considers a perspective
point in addition to the reference point.

Distal Relations

Along with the topology and direction, distance is one of the most important
aspects of the space. Distance is a scalar entity and can be represented
qualitatively such as close, far or quantitatively such as two meters far. Distances
are also categorized as being either absolute or relative. The absolute distance
describes the distance between two entities and the relative distance describes
the distance between two entities compared to a third one. The computational
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models for distances often consider spatial entities as points. For more
information about the various models for distal reasoning see [118, 163].

3.1.3 The Gap between Natural Language and Formal Models

Although QSR models are often cognitively adequate, spatial language contains
ambiguity and polysemy. Moreover, linguistic spatial expressions can express
complex spatial semantics considering various aspects of the space at the same
time. In contrast to natural language, formal spatial models focus on one
particular spatial aspect and specify its underlying spatial logic in detail [55].
Therefore there is a gap between the level of expressivity and specification of
natural language and spatial calculi models [7]. Huge spatial ontologies are
needed to be able to represent the spatial semantics expressed in the linguistic
expressions. In the work of [54] the alignment between the linguistic and logical
formalizations is discussed. Since these two aspects are rather different and
provide descriptions of the environment from different viewpoints, constructing
an intermediate, linguistically motivated ontology is proposed to establish a
flexible connection between them. Generalized Upper Model (GUM) is the
state-of-the-art example of such an ontology [6, 122]. The GUM-Space ontology
is a linguistically motivated ontology that draws on findings from empirical
cognitive and psycholinguistic research as well as on results from theoretical
language science. GUM contains 73 spatial modalities that are distinguished in
the GUM-Space ontology based on their hierarchical dependencies [8]. However,
we realized, mapping to an intermediate linguistic ontology with a fairly large
and fine-grained division of concepts is to some extent difficult because firstly
it implies the need for a huge labeled corpus, secondly the semantic overlap
between the included relations in the large ontologies makes the learning model
more complex. In addition, although the logical reasoning is computationally
possible using an ontology such as GUM, the kind of spatial reasoning which
is provided by calculi models is not feasible. Hence to perform actual spatial
reasoning another layer of bridging between the GUM representation and calculi
models is required [54]. Therefore, we use a layer of formal representation
models in our proposed scheme instead of linguistically motivated ontologies.
However, to alleviate the above explained gap we propose to map the linguistic
expressions to multiple calculi. This issue is reflected in our annotation scheme
and will be discussed in the following section.
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(1) TRAJECTOR(idT,token)
(2) LANDMARK(idL,token,path)
(3) SPATIAL_INDICATOR(idI,token)
(4) MOTION_INDICATOR(idM,token)
(5) SR(idS,idI,idT,idL,idM)
(6) SRType(idS,id_gtype,gtype,stype,sp_value,f_o_ref)

Table 3.1: Relational representation of the annotation scheme.

3.2 Annotation Scheme: Relational Representa-
tion

We design an annotation scheme for tagging natural language with spatial roles,
relations and their meaning. We take into account the cognitive-linguistic spatial
primitives according to the theory of holistic spatial semantics as well as spatial
relations according to the well-known qualitative spatial representation models
described in Section 3.1.2. Table 3.1 shows the relational representation of the
proposed spatial scheme. We describe these relations and the used terminology
in the following.

In all these relations a token can be a word or a set of words. Each token that
identifies a spatial role is assigned a unique key. Each token can play multiple
roles as trajector or landmark in the sentence, thereby participating in various
spatial relations. Each token is assigned a new identifier for each role that it
plays. As it is shown in table 3.1,

In relation (1), idT is an identifier that identifies a token that plays the role of
trajector.

In relation (2), idL is an identifier that identifies a token that plays the role of
landmark. Each landmark is related to a path which characterizes a path or a
complex landmark with a value in {BEGIN,MIDDLE,END,ZERO}. ZERO value is
assigned when the path is not relevant.

In relation (3), idI is an identifier that identifies a token that indicates the
existence of a spatial relation and is called spatial indicator. According to
the HSS theory [167], the relationship between trajector and landmark is not
expressed directly but mostly via the region or direction concepts. We abstract
from the semantics of these bridging concepts and tag the tokens which define
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constraints on the spatial properties- such as the location of the trajector with
respect to the landmark- as a spatial indicator (e.g. in, on). A spatial indicator
signals the existence of a spatial relation independent from its semantics.

In relation (4), idM is an identifier that identifies a token (a word here) that
indicates the existence of any kind of motion with a spatial influence in the
sentence.

In relation (5), we present a complex relation which links all the elements that
are a part of a whole spatial configuration containing the identifiers of the above
mentioned relations. This relation, which is named as SR, is identified by the
identifier idS to be used in describing its semantic properties in relation (6).
We refer to this relation as spatial relation later.

In relation (6), the type of the semantics of the spatial configuration is
determined regarding the involved components. Since all of these components
(trajector, landmark, etc.) contribute to the semantics of the relation, the
fine-grained semantics are assigned to the whole spatial configuration which was
identified by idS. We allow multiple semantics to be assigned to one spatial
configuration, hence the additional identifier id_gtype is used to identify each
related type. All the above mentioned elements are related to the cognitive
elements of the spatial configuration but this relation is about the formal
representation of the semantics which we now clarify in detail.

Formal semantics. As discussed in Section 3.1.3, to cover all possible semantic
aspects of a linguistic expression about a spatial configuration, we allow multiple
semantics to be assigned to it. We revisit this issue later in Chapter 4. For
each spatial relation/configuration, we assign one or more general types which
have one of the values {REGION,DIRECTION,DISTANCE}. With respect to each
general type a specific type is established. The specific type of a relation
that is expressed by the configuration is stated in the stype attribute. If the
gtype is REGION then we set stype with topological relations in a formalism
like RCC8 [141] (any other topological model might be used here). If an
indicator of direction is observed then the stype can be {ABSOLUTE,RELATIVE}.
The absolute and relative direction values are also according to Section 3.1.2.
In case the gtype of the spatial relation is DISTANCE then it is classified as
{QUALITATIVE,QUANTITATIVE}. For qualitative distances we use a predefined
set of terms including far, near, etc., and for quantitative distances the numbers
and values in the text form the key distance information. Finally, each spatial
relation given its general type identifier is tagged by a frame of reference f_o_ref
with a value in {INTRINSIC,RELATIVE,ABSOLUTE}.
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3.2.1 Annotation Approach

Semantic annotation of a corpus is a challenging, and ambiguous task [99].
We have investigated several kinds of spatial descriptions to facilitate the
annotation process, and we have defined guidelines to make the task easier and
less ambiguous. Below we list a set of questions which annotators should ask
themselves while annotating. The annotations are performed at the sentence
level. The annotators use their understanding of explicit words and their senses.
The questions are:

1. Is there any direct (without commonsense implications) spatial description in
the sentence?

2. Which words are the indicators of the spatial information?
3. Which words are the arguments of those spatial indicators (semantically

connected)?
4. Which tokens have the role of trajector for the spatial indicator and of what is

the spatial description described?
5. Which tokens have the role of landmark for the spatial indicator? (Is there a

landmark?)
6. Is there a complex landmark? if so, can we describe it in terms of a point in a

path (beginning, middle, end)?
7. Is there a motion? and if so, which tokens refer to the motion indicator?
8. What is the frame of reference?
9. Given a predefined set of formal spatial relations, which formal relation describes

the semantics the best?
10. Is one formal semantic type enough for a rough visualization/schematization of

the meaning of the spatial relation, and locating the objects in the space?
11. Do we need multiple annotations to capture the semantics of the relation?

To aid dealing with ambiguities in the annotation task we categorize the spatial
descriptions into complex and simple descriptions. The annotation guidelines
and examples are described first in the simple case and later extended to complex
cases. The answers to questions 8, 9, 10 require the selection of a formal spatial
representation which can be with multiple choices.

3.2.2 Simple Descriptions

We define a simple description as a spatial description which includes one target,
at most one landmark and at most one spatial indicator. For answering the
first question mentioned in the previous section we consider the conventional
specifications of the location or change of location (i.e. translocation) of an
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entity in space as a spatial description such that conversational implications
are excluded. For example, the answer He is washing the dishes to the question
Where is he? could – with some inference – imply He is in the kitchen, but we
do not consider that here. Examples of simple descriptions are:

Example 1.
a. There is a meeting on Monday.
b. There is a book on the table.

Example 1.a. has the same structure of a spatial description with the preposition
“on” but “on Monday” is a temporal expression, so there is no spatial description,
but in Example 1.b., there is a spatial description about the location of a book.
In case there is a spatial description in the sentence, its components are tagged
according to the aforementioned definitions.

Trajector

The following sentences show the way trajector should be annotated.

Example 2.
a. She is at school.
<TRAJECTOR id=’1’> She </TRAJECTOR>
b. She went to school.
<TRAJECTOR id=’1’> She </TRAJECTOR>
c. The book is on the table.
<TRAJECTOR id=’1’> The book </TRAJECTOR>
d. She is playing in her room.
<TRAJECTOR id=’1’> She </TRAJECTOR>
e. Go left!
<TRAJECTOR id=’0’> NIL </TRAJECTOR>

When the trajector is implicit as in example 2.e. “NIL”is added as trajector.

Landmark

A landmark is tagged according to its aforementioned definition. The source of
ambiguity here is that sometimes an explicit landmark is not always needed,
for example in the case of directions. The second more difficult case is when
the landmark is deleted by ellipsis and it is implicit. In such cases we annotate
the landmark by NIL.
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Example 3.
a. The balloon passed over the house.
<LANDMARK id=’1’ path=’ZERO’>the house</LANDMARK>
b. The balloon passed over.
<LANDMARK id=’1’ path=’ZERO’>NIL</LANDMARK>
c. The balloon went up.
<LANDMARK id=’1’ path=’ZERO’>NIL</LANDMARK>
d. The balloon went over there.
<LANDMARK id=’1’ path=’ZERO’>there</LANDMARK>
e. John went out of the room.
<LANDMARK id=’1’ path=’BEGINNING’> the room </LANDMARK>
f. John went through the room.
<LANDMARK id=’1’ path=’MIDDLE’>the room</LANDMARK>
g. John went into the room.
<LANDMARK id=’1’ path=’END’>the room</LANDMARK>
h. John is in the room.
<LANDMARK id=’1’ path=’ZERO’>the room</LANDMARK>

In example 3.c. we have a relative direction, and thus an implicit landmark
should be there. In example 3.d. “there”should be resolved in preprocessing or
postprocessing and the annotators should not concern the reference resolution
here. Another special case happens when there is a motion with spatial effect
and the landmark is like a path and the indicators indicate a relation in some
part of the path. In that case a path attribute is set; see the examples 3.e. to
3.h.

Spatial Indicator

The spatial terms, or spatial indicators, are mostly prepositions but can also be
verbs, nouns and adverbs or a combination of them. We annotate each signal
of the existence of the spatial information in the sentence as spatial indicator.
Example 4.
a. He is in front of the bush.
<SPATIAL-INDICATOR id=’1’ > in front of</SPATIAL-INDICATOR>
b. Sit behind the bush.
<SPATIAL-INDICATOR id=’1’ > behind </SPATIAL-INDICATOR>
c. John is in the room.
<SPATIAL-INDICATOR id=’1’ > in </SPATIAL-INDICATOR>
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Motion Indicator

These are mostly the prepositional verbs but we leave it open for other semantical
categories like adverbs, etc. In this scheme we just tag them as indicators but a
further extension is to map them to motion verb classes.

Example 5.
a. The bird flew to its nest.
<MOTION-INDICATOR id=’1’ > flew to</MOTION-INDICATOR>

We tag the token “flew to”as the indicator because the preposition affects the
semantics of the motion.

Spatial Relation and Formal Semantics

The spatial configuration’s components recognized by the annotators should
be put in relations called spatial relations (SR). In a simple description it is
often easy because we have one trajector, one/zero landmark and one spatial
indicator, so these constitute at least one clear coarse spatial relation to be
tagged. If a motion indicator is present which is related to the spatial relation
and the location of the trajector then the identifier of the motion also is added
in the spatial relation. Each spatial relation is associated with a number of
formal semantics, for example, when it implies both topological and directional
information. The difficulty of annotation is how to fill in the semantic attributes.
In other words the mapping between linguistic terms and formal relations like
RCC is not always clear and easy. We discuss this later in this chapter. For
each type of relation we add a new frame of reference as an attribute. For
example, the frame of reference is more relevant for the directional relationships
compared to topological relationships. Hence, it makes more sense to assign
this concept according to each specific annotated type of semantics.

Example 6.
a. She is at school.
<TRAJECTOR id=’1’ > She</TRAJECTOR>
<LANDMARK id=’1’ path=’ZERO’>school</LANDMARK>
<SPATIAL-INDICATOR id=’1’ > at </SPATIAL-INDICATOR>
<SR id=’1’ trajector=’1’ landmark=’1’ spatial-indicator=’1’ motion-indicator=’NIL’/
>
<SR id=’1’ SRtype id=’1’ general-type=’REGION’ specific-type=’RCC8’ spatial-
value=’TPP’ frame-of-reference=’INTRINSIC’ />
b. She went to school.
<TRAJECTOR id=’1’ > She</TRAJECTOR>
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<LANDMARK id=’1’ path=’END’> school </LANDMARK>
<SPATIAL-INDICATOR id=’1’ > to </SPATIAL-INDICATOR>
<MOTION-INDICATOR id=’1’ > went to </MOTION-INDICATOR>
<SR id=’1’ trajector=’1’ landmark=’1’ spatial-indicator=’1’ frame-of-
reference=’INTRINSIC’ motion-indicator=’1’/>

<SR id=’1’ SRtype id=’1’ general-type=’REGION’ specific-type= ’RCC8’
spatial-value=’TPP’ frame-of-reference=’INTRINSIC’ />

c. The book is on the table.
<TRAJECTOR id=’1’ > The book </TRAJECTOR>
<LANDMARK id=’1’ path=’ZERO’> table </LANDMARK>
<SPATIAL-INDICATOR id=’1’ > on </SPATIAL-INDICATOR>
<SR id=’1’ trajector=’1’ landmark=’1’ spatial-indicator=’1 motion-indicator=’NIL’/
>
<SR id=’1’ SRtype id=’1’ general-type=’REGION’ specific-type=’RCC8’ spatial-
value=’EC’ ’ frame-of-reference=’INTRINSIC’ />
d. She is playing in her room.
<TRAJECTOR id=’1’> She </TRAJECTOR>
<LANDMARK id=’1’ path=’ZERO’> her room </LANDMARK>
<SPATIAL-INDICATOR id=’1’ > in </SPATIAL-INDICATOR>
<MOTION-INDICATOR id=’1’ > playing </MOTION-INDICATOR>
<SR id=’1’ trajector=’1’ landmark=’1’ spatial-indicator=’1 motion-indicator=’1’/>
<SR id=’1’ SRtype id=’1’ general-type=’REGION’ specific-type=’RCC8’ spatial-
value=’TPP’ frame-of-reference=’INTRINSIC’/>

3.2.3 Complex Descriptions

In this section we illustrate how our scheme is able to handle complex spatial
descriptions. In [3] three classes of complex description forms are identified to
which we point here:
I: Complex locative statements are locative phrases with more than one
landmark. The explanations are about one target, meanwhile some relations can
be inferred between landmarks, but for the annotation – annotators should not
do additional reasoning steps – only what is explicitly expressed in the sentence
should be tagged. Therefore the annotation in example 7, is a straightforward
annotation of various possible spatial relations.

Example 7.
The vase is in the living room, on the table under the window.
<TRAJECTOR id=’1’> The vase </TRAJECTOR>
<LANDMARK id=’1’ path=’ZERO’> the living room </LANDMARK>
<LANDMARK id=’2’ path=’ZERO’> the table </LANDMARK>
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<LANDMARK id=’3’ path=’ZERO’>the window </LANDMARK>
<SPATIAL-INDICATOR id=’1’ > in </SPATIAL-INDICATOR >
<SPATIAL-INDICATOR id=’2’ > on </SPATIAL-INDICATOR >
<SPATIAL-INDICATOR id=’3’ > under </SPATIAL-INDICATOR>
<SR id=’1’ trajector=’1’ landmark=’1’ spatial-indicator=’1’ motion-indicator=’NIL’
/>
<SR id=’1’ SRtype=’1’ general-type=’REGION’ specific-type=’RCC8’ spatial-
value=’NTPP’ frame-of-reference=’INTRINSIC’ />
<SR id=’2’ trajector=’1’ landmark=’2’ spatial-indicator=’2’ motion-indicator=’NIL’/
>
<SR id=’2’ SRtype=’1’ general-type=’REGION’ specific-type=’RCC8’ spatial-
value=’EC’ frame-of-reference=’INTRINSIC’ />
<SR id=’3’ trajector=’1’ landmark=’3’ spatial-indicator=’3’ motion-indicator=’NIL’/
>
<SR id=’3’ SRtype=’1’ general-type=’DIRECTION’ specific-type=’RELATIVE’
spatial-value=’BELOW’ frame-of-reference=’INTRINSIC’ />

II: Path and route descriptions are possibly the most important for
multimodal systems. In this kind of descriptions a focus shift can happen.
It means that the speaker explains one target referring to some landmarks,
but at some point explains another object or landmark, i.e. the focus shifts to
another entity as trajector. Annotators should recognize this focus shift and
annotate the rest of the phrases by the new trajector. The following example
shows such an expression, but here we only tagged the spatial indicators and
not the motion indicators to simplify its representation.

Example 8.
The man came from between the shops, ran along the road and
disappeared down the alley by the church.
<TRAJECTOR id=’1’ > the man </TRAJECTOR>
<LANDMARK id=’1’ path=’BEGINNING’> the shops </LANDMARK>
<LANDMARK id=’3’ path=’END’> the alley <LANDMARK/>
<TRAJECTOR id=’2’ > the alley </TRAJECTOR >
<LANDMARK id=’4’ path=’ZERO’> the church </LANDMARK>
<SPATIAL-INDICATOR id=’1’ > between </SPATIAL-INDICATOR >
<SPATIAL-INDICATOR id=’2’ > along </SPATIAL-INDICATOR>
<SPATIAL-INDICATOR id=’3’ > down </SPATIAL-INDICATOR>
<SPATIAL-INDICATOR id=’4’ > by </SPATIAL-INDICATOR>

<SR id=’1’ trajector=’1’ landmark=’1’ spatial-indicator=’1’ motion-indicator=’NIL’/
>
<SR id=’1’ SRtype=’1’ general-type=’Region’ specific-type=’RCC8’ spatial-value=’IN’
frame-of-reference=’INTRINSIC’ motion-indicator=’NIL’/>
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<SR id=’2’ trajector=’1’ landmark=’2’ spatial-indicator=’2’ motion-indicator=’NIL’/
>

<SR id=’2’ SRtype id=’1’ general-type=’Region’ specific-type=’RCC8’ spatial-
value=’EC’ frame-of-reference=’INTRINSIC’/>
<SR id=’3’ trajector=’1’ landmark=’3’ spatial-indicator=’3’ frame-of-
reference=’RELATIVE’ motion-indicator=’NIL’/>
<SR id=’3’ SRtype id=’1’ general-type=’Direction’ specific-type=’Relative’ spatial-
value=’Below’ frame-of-reference=’RELATIVE’ />
<SR id=’4’ trajector=’2’ landmark=’4’ spatial-indicator=’4’ frame-of-
reference=’INTRINSIC’ motion-indicator=’NIL’/>
<SR id=’4’ SRtype=’1’ general-type=’Region’ specific-type=’RCC8’ spatial-value=
’DC’ frame-of-reference=’INTRINSIC’ />

III: Sequential scene descriptions are linked descriptive phrases. After
each description usually an object focus shift happens.

Example 9.
Behind the shops is a church, to the left of the church is the town hall, in
front of the town hall is a fountain.
<TRAJECTOR id=’1’> church </TRAJECTOR>
<LANDMARK id=’1’ path=’ZERO’> shops </LANDMARK>
<SPATIAL-INDICATOR id=’1’ > behind </SPATIAL-INDICATOR>
<TRAJECTOR id=’2’ > town hall </TRAJECTOR>
<LANDMARK id=’2’ path=’ZERO’> church </LANDMARK>
<SPATIAL-INDICATOR id=’2’ > to the left of </SPATIAL-INDICATOR>
<TRAJECTOR id=’1’> fountain </TRAJECTOR>
<LANDMARK id=’2’ path=’ZERO’> town hall </LANDMARK>
<SPATIAL-INDICATOR id=’3’ > in front of </SPATIAL-INDICATOR>
<SR id=’1’ trajector=’1’ landmark=’1’ spatial-indicator=’1’ frame-of-
reference=’INTRINSIC’ motion-indicator=’NIL’/>
<SR id=’1’ SRtype=’1’ general-type=’Direction’ specific-type=’Relative’ spatial-
value=’Behind’ frame-of-reference=’INTRINSIC’ />
<SR id=’2’ trajector=’2’ landmark=’2’ spatial-indicator=’2’ frame-of-
reference=’INTRINSIC’ motion-indicator=’NIL’/>
<SR id=’2’ SRtype=’1’ general-type=’Direction’ specific-type=’Relative’ spatial-
value=’Left’ frame-of-reference=’INTRINSIC’ />
<SR id=’3’ trajector=’3’ landmark=’3’ spatial-indicator=’3’ motion-indicator=’NIL’/
>
<SR id=’3’ SRtype=’1’ general-type=’Direction’ specific-type=’Relative’ spatial-
value=’Front’ frame-of-reference=’RELATIVE’/>

In addition to the complex descriptions mentioned in [3], the following examples
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show some additional special characteristics. The next example contains one
indicator for for two relations.

Example 10.
John left Boston for New York.
<TRAJECTOR id=’1’> John </TRAJECTOR>
<LANDMARK id=’1’ path=’BEGIN’>Boston </LANDMARK >
<LANDMARK id=’2’ path=’END’> New York </LANDMARK >
<SPATIAL-INDICATOR id=’1’ > for </SPATIAL-INDICATOR>
<MOTION-INDICATOR id=’1’> left </MOTION-INDICATOR >
<SR id=’1’ trajector=’1’ landmark=’1’ spatial-indicator=’NIL’ motion-indicator=’1
/>
<SR id=’1’ SRtype id=’1’ general-type=’Direction’ specific-type=’Relative’ spatial-
value=’NTPP’ frame-of-reference=’ABSOLUTE’ />
<SR id=’2’ trajector=’1’ landmark=’2’ spatial-indicator=’1’ motion-indicator=’1’ />
<SR id=’2’ SRtype=’1’ general-type=’Direction’ specific-type=’Relative’ spatial-
value=’NTPP’ frame-of-reference=’ABSOLUTE’/>

In example 11 the focus shift is ambiguous. The phrase on the left can refer to the
door or to the table. If more information is available (for example in a multimodal
context other information could come from video input) then we could estimate
the likeliness of each alternative. In general, if an annotator is not sure about the
reference then all the true relations are added. For machine learning purposes,
this is still a correct annotation because no additional inference is performed
and both meanings can be extracted for the same sentence.

Example 11.
The table is behind the door on the left.
<TRAJECTOR id=’1’>The table </TRAJECTOR >
<LANDMARK id=’1’ path=’ZERO’>the door </LANDMARK >
<SPATIAL-INDICATOR id=’1’ > behind </SPATIAL-INDICATOR >
<SPATIAL-INDICATOR id=’2’ > on the left </SPATIAL-INDICATOR >
<SR id=’1’ trajector=’1’ landmark=’1’ spatial-indicator=’1’ motion-indicator=’NIL’/
>
<SR id=’1’ SRtype=’1’ general-type=’Direction’ specific-type=’Relative’ spatial-
value=’BEHIND’ frame-of-reference=’RELATIVE’ motion-indicator=’NIL’/>
<SR id=’2’ trajector=’1’ landmark=’NIL’ spatial-indicator=’2’ frame-of-
reference=’RELATIVE’ motion-indicator=’NIL’/>
<SR id=’2’ SRtype=’1’ general-type=’Direction’ specific-type=’Relative’ spatial-
value=’LEFT’ frame-of-reference=’RELATIVE’ />
<TRAJECTOR id=’2’ >The door </TRAJECTOR >
<SR id=’3’ trajector=’2’ landmark=’NIL’ spatial-indicator=’2’ frame-of-
reference=’RELATIVE’ motion-indicator=’NIL’ />
<SR id=’3’ SRtype=’1’ general-type=’Direction’ specific-type=’Relative’ spatial-
value=’LEFT’ frame-of-reference=’RELATIVE’ />
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In example 12, there are one trajector, three landmarks and three indicators.
The landmarks are geographically related, but the annotators should not use
their background about this geographical information.

Example 12.
He drives within New England from Boston to New York.
<TRAJECTOR id=’1’ > He </TRAJECTOR >
<LANDMARK id=’1’ path= ’ZERO’> New England <LANDMARK >
<LANDMARK id=’2’ path=’BEGIN’> Boston </LANDMARK >
<LANDMARK id=’3’ path=’END’> New York </LANDMARK >
<SPATIAL-INDICATOR id=’1’ > within </SPATIAL-INDICATOR>
<SPATIAL-INDICATOR id=’2’ > from </SPATIAL-INDICATOR>
<SPATIAL-INDICATOR id=’3’ > to </SPATIAL-INDICATOR >
<MOTION-INDICATOR id=’1’> drives </MOTION-INDICATOR>
<SR id=’1’ trajector=’1’ landmark=’1’ spatial-indicator=’1’ motion-indicator=’1’/>
<SR id=’1’ SRtype=’1’ general-type=’Region’ specific-type=’RCC8’ spatial-
value=’NTPP’ frame-of-reference=’ABSOLUTE’/>
<SR id=’2’ trajector=’1’ landmark=’2’ spatial-indicator=’2’ motion-indicator=’1’ />
<SR id=’2’ SRtype=’1’ general-type=’Region’ specific-type=’RCC8’ spatial-
value=’NTPP’ frame-of-reference=’ABSOLUTE’/>
<SR id=’3’ trajector=’1’ landmark=’2’ spatial-indicator=’3’ motion-indicator=’1’/>
<SR id=’3’ SRtype=’1’ general-type=’Region’ specific-type=’RCC8’ spatial-
value=’NTPP’ frame-of-reference=’ABSOLUTE’/>

Another possibility is having one indicator but with various roles. In example
13, "cross" is a motion indicator and also spatial indicator.

Example 13.

The car crosses the street.

To map the relations to formal representations, the ontology of the objects and
also shape information about the objects are necessary for the machine to learn
from. We do not discuss these issues here further, but just show two examples.

Example 14.
The room is at the back of the school.
The tree is at the back of the school.

In the first sentence the semantics of the spatial indicator at the back of is
about an interior region of the school whereas in the second sentence it is about
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an exterior region.

3.2.4 Adding a Temporal Dimension

In the suggested scheme for each relation a time dimension can be easily added.
Temporal analysis of sentences can be combined with spatial analysis to assign
a value to the temporal dimension of each relation and the interpretation is the
time instant at which the spatial relation holds. Looking back to example 10,
in the first spatial relation, the temporal dimension is related to yesterday.

Example 16.
John left Boston for New York yesterday.
<TIME-INDICATOR id=’1’> yesterday </TIME-INDICATOR >
<SR id=’1’ trajector=’1’ landmark=’1’ spatial-indicator=’1’ motion-indicator=’1’
frame-of-reference=’ABSOLUTE’ time-indicator=’1’/>

The analysis of temporal expressions could be done separately and only the
time-indicator attribute is added to related spatial relations.

3.3 Data Resources

We performed a broad investigation to find possible data resources to be used as
training data by supervised machine learning models for the extraction of spatial
information. As, to our knowledge, such data were not publicly available so far,
we have built a corpus, based on the aforementioned annotation scheme we refer
to it as CLEF which is used as a benchmark for the SemEval-2012 shared
task. The main experimental investigations in the thesis are over editions of
this corpus. In addition to the main corpora we annotated very small datasets
from different domains and used these in cross domain evaluations in Chapter 5.
We also point to a few datasets which were indirectly relevant for our task. The
detailed information is given in the following sections and the relevant statistics
are provided in Tables 3.2 and 3.3.

3.3.1 Corpus Collection

The main annotated corpus for the whole scheme is a subset of IAPR TC-12
image Benchmark [50] referred as CLEF. It contains 613 text files that
include 1213 sentences in total. The original corpus was available without
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copyright restrictions. The corpus contains 20, 000 images taken by tourists with
textual descriptions in up to three languages (English, German and Spanish).
The texts describe objects, and their absolute and relative positions in the
image. This makes the corpus a rich resource for spatial information. However
the descriptions are not always limited to spatial information. Therefore they
are less domain-specific and contain free explanations about the images. An
essential property of this corpus is not only that it contains a large enough
number of spatial language texts for learning, but also that it has additional
(non-linguistic) spatial information, i.e. images, from which a qualitative spatial
model can be built that can be related to the textual information. Hence,
an additional advantage of this dataset is providing the possibility for further
research on combining spatial information from vision and language. The first
column in table 3.2 shows the detailed statistics about the spatial roles in
this data. The average length of the sentences in this data is about 15 words
including punctuation marks with a standard deviation of 8. The textual
descriptions have been indexed and annotated with the spatial roles of trajector,
landmark, and their corresponding spatial indicator. Separate roles are assigned
to phrases and the head words of the phrases. Both verbs and verb phrases
are indexed and annotated, particularly when they participate in forming the
spatial configurations, and this is mostly the case for dynamic spatial relations.
Each sentence with a spatial relation is additionally annotated as dynamic or
static, and each spatial relation is annotated with a GUM-Space modality
which are not used in this thesis. Moreover, every sentence with a spatial
relation is annotated with the aforementioned formal semantics in Section 3.2.

At the starting point two annotators including the author and another non-
expert annotator, annotated 325 sentences for the spatial roles and relations.
The goal was to realize the disagreement points and prepare a set of instructions
in a way to achieve highest-possible agreement. From the first effort an inter-
annotator agreement of 0.89 for Cohen’s kappa was obtained [17]. This very first
version of annotations is used in the experiments in Chapter 5. We refer to it
as SemEval-0 version. We continued with a third annotator for the remaining
888 sentences. The annotator had an explanatory session and received a set
of instructions and previously annotated examples as a guidance to obtain
consistent annotations. This version is referred to as SemEval-2012 version
and is used as a benchmark in the workshop with this name. The data has a
minor revision in its latest edition and is enriched with the QSR annotations.
This version is referred to as SemEval-1. In SemEval-1 for the directional
relations such as on the left, the landmark is assumed to be implicit while the
word left was annotated as landmark in the previous versions. Such expressions,
in fact, express left of some implicit object depending on the frame of reference.
This edition is used and reported on, in Chapter 8.
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CLEF GUM (Maptask) Fables DCP
#Sentences 1213 100 289 250
#Spatial relations 1706 112 121 222
#Trajectors 1593 65 106 199
#Landmarks 1462 69 95 188
#Spatial indicators 1468 112 121 222
#nonSpatial prepositions 695 10 743 587

Table 3.2: Data statistics on the occurrence of spatial components in different
corpora; The CLEF corpus is used for SemEval-2012.

Spatial relations 1706
Topological EQ DC EC PO PP
1040 6 142 462 15 417
Directional BELOW LEFT RIGHT BEHIND FRONT ABOVE
639 18 159 103 101 185 71
Distal
82

Table 3.3: Data statistics of the QSR additional annotations on SemEval-2012,
referred to as SemEval-1.

The statistics about formal spatial semantics of the relations are shown in
table 3.3. In the current corpus only 50 examples are annotated with more than
one general spatial type. For example, “next to” is annotated as a topological
relation DC in terms of RCC-8 and as a distance relation close in terms of a
relative distance calculus:

(1) Two people are sitting next to her.

trajector : people
landmark : her
spatial - indicator : next to
general -type: region / distance
specific -type: RCC -8 / relative - distance
spatial -value: DC / close
path: none
frame -of - reference : none

2D vs. 3D annotations. Although the textual data used is accompanied by
images, the qualitative spatial annotation for CLEF was based on the text itself.
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This was done to focus on information that can actually be extracted from the
language itself. Nevertheless, human imagination about a described scene can
interfere with the textual description, which has resulted in some variations. As
an example, take the following sentence and its annotation:

(2) Bushes and small trees (are) on the hill.

trajector : bushes
landmark : the hill
spatial - indicator : on
general -type: region
specific -type: RCC -8
spatial -value: EC
path: none
frame -of - reference : none

This 3-D projection of the description of a 2-D image is annotated as externally
connected. In the 2-D image, however, a partial overlap may also be adequate.
In contrast, a 2-D map (with an allocentric perspective) of the described scene
would lead to a non-tangential proper part annotation. This example illustrates
what we have said before; that RCC-8 alone is – quite naturally – not enough
to capture adequately all necessary spatial information, and that in a more
general approach additional (and combinations of) qualitative spatial calculi
have to be used.

Dynamic vs. static annotations. In the CLEF data set 25 of the relations
are annotated as dynamic, the others as static. If a dynamic situation
is annotated with a (static) RCC-8 relation, the qualitative relation can be
regarded as a snapshot of the situation. This is shown in the following example:

(3) People are crossing the street.

trajector : people
landmark : road
spatial - indicator : crossing
general -type: region / direction
specific -type: RCC -8 / undefined
spatial -value: EC / undefined ,
path: middle
frame -of - reference : none
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Hence, the annotations refer to time slices for the (linguistic) explanation of
the (static) image. This allows a mapping from dynamic descriptions to (static)
RCC-8 relations mainly by including the path feature and the relative situation
of the trajector with respect to an imaginary path related to the landmark.
Allowing RCC-8 annotations for dynamic descriptions is also supported by the
conceptual neighborhood graphs [43]; Every topological change, i.e. movements
of regions with respect to each other and their changing relations, can be split
into a sequence of adjacent RCC-8 relations according to the neighborhood
graph [65]. The annotated RCC-8 relation thus reflects one relation out of this
sequence, i.e. one moment in time of the topological change. However, we
may not predict if the annotations refer to a time slice that reflects the start,
intermediate, or end point of the path or the motion process. For instance, it is
shown that linguistic expressions seem to focus primarily on the end point of
the motion [116].

3.3.2 Other Linguistic Resources

In this part we briefly point to the other relevant resources for spatial
information extraction from language, which we used to perform some additional
experiments.

• TPP dataset Since the spatial indicators are mostly prepositions, the
preposition sense disambiguation is an important relevant task to our
problem. Fortunately, for this specific task, there is a standard test and
training data provided by the SemEval-2007 challenge [85]. It contains
34 separate XML files, one for each preposition, totaling over 25,000
instances with 16,557 training and 8,096 test example sentences; each
sentence contains one example of the respective preposition.

• GUM (Maptask) dataset Another relevant small corpus is the general
upper model (GUM) evaluation data [6], comprising a subset of a well-
known Maptask corpus for spatial language. It has been used to validate
the expressivity of spatial annotations in the GUM ontology. Currently,
the dataset contains more than 300 English and 300 German examples. We
used 100 English samples in the GUM (Maptask) corpus. The following
example shows the GUM-annotation for one sentence:

(4) The destination is beneath the start.

SpatialLocating ( locatum : destination ,
process :being , placement : GL1
( relatum :start ,
hasSpatialModality : UnderProjectionExternal )).
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Here, relatum and locatum are alternative terms for landmark and trajector.
Spatial modality is the spatial relation mentioned in the specific spatial
ontology. Although complete phrases are annotated in this dataset, we
only use a phrase’s headword with trajector (tr) and landmark (lm) labels
and their spatial indicator (sp). Using this small corpus to evaluate our
approach for a very domain-specific corpus, including only instructions
and guidance for finding the way on a map, is beneficial.

• DCP dataset The dataset contains a random selection from the website
of The Degree Confluence Project.1 This project seeks to map all possible
latitude-longitude intersections on earth and have people who visit these
intersections provide written narratives of the visit. The main textual
parts of randomly selected pages are manually copied, and up to 250
sentences are annotated. Approximately 30% of the prepositions are
spatial. This percentage represents the proportion of spatial clauses in the
text. The webpages of this dataset are similar to travelers’ weblogs but
include more precise geographical information. The richness of this data
enables broader applicability for future applications. Compared to CLEF,
this dataset includes less spatial information, and the type of text is
narrative rather than descriptive. It also contains more free (unrestricted)
text. Moreover, the spatio-temporal information contained in this data
has recently been used to extract discourse relations [57].

• Fables dataset This dataset contains 59 randomly selected fable stories2,
which have been used for data-driven story generation [93]. The dataset
contains a wide scope of vocabulary and only 15% of the prepositions have
a spatial meaning, making it the most difficult corpus for our system. We
annotated 289 sentences from this corpus for cross-domain experiments.

There is another small dataset about Room descriptions prepared by Tenbrick
et al. in [135]. We had a limited access to 124 sentences of this corpus that
contains directional and topological descriptions for an automatic wheelchair
about the objects in a room. The full dataset which contains pictures of the
room can help preparing multimodal analyses which is not the focus of this
thesis.

1http://confluence.org/
2http://homepages.inf.ed.ac.uk/s0233364/McIntyreLapata09/
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3.4 Related Work

In recent cognitive and linguistic research on spatial information and natural
language, several annotation schemes have been proposed such as ACE3, GUM4,
GML5, KML6, TRML7 which are described and compared to the SpatialML
scheme in [88]. The most systematic work in this area regards the SpatialML [89]
scheme which focuses on geographical information. SpatialML uses PLACE tags
to identify geographical features. SIGNAL, RLINK and LINK tags are defined
to identify the directional and topological spatial relations between a pair of
locations. Topological spatial relations in SpatialML are also connected to RCC8
relations. However, SpatialML considers static spatial relations and focuses
on geographical domains. The corpus which is provided along with SpatialML
scheme contains rich annotation for toponymy but not for learning spatial links
and especially links between arbitrary objects. GUM, also aims at organizing
spatial concepts that appear in natural language from an ontological point of
view. The formulated concepts are very expressive, but the ontology is large and
more fine-grained than what could be effectively learnable from a rather small
corpus. An interesting new XML scheme based on SpatialML and GUM was
proposed in [134], targeting spatial relations in the Chinese language. It also
deals with geographical information and defines two main tags of geographical
entity and spatial expression. In [112], a spatio-temporal markup language
for the annotation of motion predicates in text informed by a lexical semantic
classification of the motion verbs, is proposed. The interesting point is that the
proposed scheme seems suitable for tagging dynamic spatial relations, based on
motions in space and time. However, the focus is on motion verbs and their
spatial effects and not on spatial language in general. There is another spatial
annotation scheme proposed in [112] in which the pivot of the spatial information
is the spatial verb. The most recent and active research work regards the ISO-
Space scheme [113] which is based on this last scheme and SpatialML. The
ISO-Space considers detailed and fine-grained spatial and linguistic elements,
particularly motion verb frames. The detailed semantic granularity considered
there, makes the preparation of the data for machine learning more expensive,
and there is no available data for machine learning annotated according to that
scheme yet. Our proposed scheme is closely related to the SpatialML scheme,
but more domain independent considering more universal spatial primitives and
cognitive aspects. It is relevant to the ISO-Space scheme but the pivot of the
relation is not necessarily the verb, and a general notion of spatial indicator is

3Automatic content extraction
4General upper model
5Geography markup language
6Keyhole markup language
7Toponym resolution markup language
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used as the pivot of each spatial configuration. Spatial information is directly
related to the part of language that can be visualized. Thus, the extraction of
spatial information is useful for multimodal environments. One advantage of
our proposed scheme is that it considers this dimension. Because it abstracts
the spatial elements that could be aligned with the objects in images/videos, it
can be used for annotation of audio-visual descriptions as shown in [15]. Our
scheme is also useful in other multimodal environments where, for example,
natural language instructions are given to a robot for finding the way or objects.

There are a few sparse efforts towards creating annotated data sets for extraction
of some limited elements of our scheme. For example in [83] the Chinese version
of Aesops Fables has been labeled in terms of trajector, landmark and spatial
expressions and turned into an evaluation database for the extraction of spatial
relations. It has been applied in a very limited machine learning setting, only a
binary classifier was used so far for the extraction of the trajector. In [134] texts
from a Chinese encyclopedia concerning geographical information is annotated
using the XML scheme we have mentioned. GUM also is accompanied by
an evaluation corpus containing a limited set of 600 sentences in German
and English. It should be mentioned that from the linguistic point of view,
FrameNet frames [41] are a useful linguistic resource which can be very helpful
for identifying spatial components in the sentence. Spatial relations can be
seen, to some extent, as a part of the frame-based semantic annotation. There
are various semantic frames which are related to spatial roles and semantics.
Frames like LOCATIVE RELATION, SELFMOTION, PERCEPTION, BEING
LOCATED seem most related to spatial semantics. Hence, using these semantic
frames requires making a connection between the general spatial representation
scheme and the specific frames that could be related to each word. Therefore
defining a tag set is important to have a unified spatial semantic frame for
spatial semantics and to integrate partial annotations that tend to be distributed
over different layers [77]. Towards this direction a corpus is annotated (in
German) for walking directions [133]. The preprocessed texts are annotated
on the following three levels: pos lemma (part-of-speech and lemma), syn dep
(dependency relations) and sem frame (frames and semantic roles). For tagging
walking directions on the semantic frame level, annotation was carried out
using FrameNet frames. However, the available resources and corpora are very
limited for a broad machine learning research on this area, hence we provide an
annotated dataset according to the proposed scheme which we described in this
chapter and which has been used as the first benchmark for spatial information
extraction from natural language in SemEval2012.8

8http://www.cs.york.ac.uk/semeval-2012/task3/
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3.5 Conclusion

The first contribution of this chapter is proposing a spatial annotation scheme on
the basis of related research. The advantages of the proposed scheme compared
to other existing schemes are: a) It is based on the concepts of two layers of
cognitive spatial semantics and formal spatial representation models; b) This
scheme is domain-independent and useful for real world applications and it is
rather flexible to be extended in both mentioned layers to cover all aspects of
spatial information; c) It is easily applicable for annotating spatial concepts in
image data and multimodal settings; d) It supports static as well as dynamic
spatial relations; e) Using multiple formal semantic assignments it bridges
the gap between the natural language spatial semantics and formal spatial
representation models.

For each of the cognitive and formal semantic aspects, we exploit the most
commonly accepted concepts and their formalizations to establish an agreeable
setting for spatial information extraction. Extraction of the spatial information
accruing to this scheme facilitates automatic spatial reasoning based on linguistic
information.

The second contribution of this chapter regards corpora preparation according
to the proposed scheme and assessing the available resources for the goal of this
thesis which is a machine learning investigation for spatial information extraction
from natural language. The noticeable points about the selected data are: a) It
is free text about various topics containing spatial and non spatial information;
b) The descriptions are related to photographs implying that they contain rich
spatial information; c) Having the aligned photographs in a spatially annotated
corpus provides a potential for learning in multimodal settings combining
information from both language and vision and also grounding language in
perception in further research. A part of our prepared data has been used as
a benchmark in SemEval-2012 shared task on spatial role labeling [69] and it
is available for follow up research in this field. Providing such a benchmark
is an important step towards persuasion and progress on spatial information
extraction as a formal computational linguistic task and spotting the practical
problems towards enriching both the corpora and the proposed task which is
hard to achieve without any practice.

The two important semantic layers of the scheme and the formal task of their
recognition are discussed in detail in Chapter 4 of the thesis.



Chapter 4

Task Definition:
from Language to Spatial
Ontologies

In this chapter we define the main framework for mapping natural language
to spatial ontologies. Having a tendency for being pragmatic yet our proposed
framework is based on the theoretical cognitive and linguistic foundations as
well as on the cognitively adequate formal spatial models. These theoretical
foundations were described in Chapter 3. The task is formulated as an ontology
population to be performed via machine learning models. We aim at learning
to assign the segments in the sentence to the concepts in the ontology. The
considered concepts form an ontology based on the aforementioned spatial
annotation scheme. We highlight the distinction between two spatial role
labeling (SpRL) and spatial qualitative labeling (SpQL) layers in the ontology.
We describe the structural characteristics of the two layered ontology to be
exploited in the learning models.

The two layers of the semantics are explained in Section 1. We formulate the
general machine learning task encompassing the two layers of SpRL and SpQL
in Section 2. The constraints and features are described in Section 3. The
methodology and the metrics that we employ for evaluation of all models are
explained in Section 4. We conclude in Section 5.

67
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4.1 Two Layers of Semantics

The gap between the semantics expressed in natural language and the formal
semantics considered in spatial calculus models are discussed in Section 3.1.3.
Due to this gap, learning how to map the spatial information in natural
language onto a formal representation is a challenging problem. To overcome
the complexity of this problem in a systematic way, our spatial scheme is divided
in to two abstraction layers of cognitive-linguistic and formal models [7, 72, 70]:

1. A layer of linguistic conceptual representation called spatial role
labeling (SpRL), which predicts the existence of spatial information at
the sentence level by identifying the words that play a particular spatial
role as well as their spatial relationship [74];

2. A layer of formal semantic representation called spatial qualitative
labeling (SpQL), in which the spatial relation is described with semantic
attribute values based on qualitative spatial representation models
(QSR) [45, 71].

Establishing a connection between the two layers is a complex task. In spite
of spatial calculi which focus on a single spatial aspect [118], spatial language
often conveys multiple meanings within one expression [18]. In our conceptual
model we argue that mapping the language to multiple spatial representation
models could solve the problem of the existing gap to some extent. Because
various formal representations capture the semantics from different angles, their
combination covers various aspects of spatial semantics needed for locating the
objects in the physical space. Hence, the SpQL has to contain multiple calculi
models with a practically acceptable level of generality. Moreover, mapping to
spatial calculi forms the most direct approach for automatic spatial reasoning
compared to mapping to more flexible intermediated ontologies discussed in
Section 3.1.3. However, we believe that this two layered model does not yield
sufficient flexibility for ideal spatial language understanding. As in any other
semantic tasks in natural language additional layers of discourse and pragmatics
must be worked out, which is not the focus of this thesis.

4.2 Task Definition as Ontology Population

Our main task is to map a given sentence X composed of a number of words
x1 . . . xn to the predefined spatial ontology shown in Figure 4.1.a. The task is
to label the words in the sentence with spatial roles (SpRL), detect the spatial
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Figure 4.1: (a) Spatial ontology; (b) Example of the SemEval-1 benchmark.

relations, and label the spatial relations with their spatial semantics including
the course-grained in addition to fine-grained semantic labels. The words can
have multiple roles and the relations can have multiple semantic assignments.
The labels are assigned according to the relationships and constraints that
we discuss in the following sections. The considered spatial ontology here is
only a lightweight [166] ontology, but pinpoints to the main challenges in the
recognition of ontological label structures in text.

4.2.1 Spatial Role Labeling (SpRL)

In the spatial role labeling (SpRL) layer, the cognitive-linguistic spatial semantics
are considered. Figure 4.1.b shows the sentence, There is a white large statue
with spread arms on the hill., which is labeled according to the nodes in the
spatial ontology in Figure 4.1.a. In the SpRL step the goal is to identify the
words that play a spatial role in the sentence and classify their roles, moreover
to recognize the link between the spatial roles and extract the spatial relations.
In the example sentence, we need to extract a spatial relationship signaled by
on that holds between statue and hill. The word statue has the role of trajector
(tr). The word hill has the role of landmark (lm). These two spatial entities
are related by the spatial expression on that is the spatial indicator.

These spatial roles are the three main nodes in our ontology. We refer to
these nodes as single labels. A single label refers to an independent concept in
the ontology. The spatial configuration that we consider in the whole thesis
considers the link between the three roles which is labeled as a spatial relation,
also called a spatial triplet. We refer to these kind of nodes in the ontology as
linked labels. Linked labels show the connection between the concepts in the
ontology. For example here the spatial relation is a linked label that shows a
composed-of relationship with the composing labels of spatial roles. There is
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one spatial relation in the above sentence, <onsp statuetr hilllm>. In general,
there can be a number of spatial relations in each sentence. Although the spatial
indicators are mostly prepositions, but in general the sense of the prepositions
depends on the context. The first preposition with in the example sentence states
the possession of the arms, so <with statue arms> is not a spatial relation.

The trajectors and landmarks can be implicit, meaning that there is no word
in the sentence to represent them. In some linguistic spatial expressions, there
is no need to express the spatial information based on any landmark [168]. In
these cases we use the term undefined instead of the roles to keep the triplet
representation consistent. For example, in the sentence Come over here where
the trajector you is only implicitly present, the spatial triplet is represented as
<oversp undefinedtr herelm>. The other SpRL elements such as motion, path
and frame of reference are considered only very marginally in this thesis due to
the static descriptions in our main dataset and the lack of examples for these
concepts.

Spatial relations can be inferred by spatial reasoning too. For instance, in
the example of The book is on the table behind the wall. The spatial relations
<onsp booktr tablelm> and <behindsp tabletr walllm> are extracted directly
from the sentence but the relation <behind book wall> can be inferred by spatial
reasoning. Such inferred relations are not considered in this task because they
make the semantic annotation of the data more difficult and less consistent.

4.2.2 Spatial Qualitative Labeling (SpQL)

In the spatial qualitative labeling (SpQL) layer, the goal is to map the entire
spatial configuration that is extracted from the SpRL layer to a formal semantic
representation. As we simplified the first layer by ignoring a number of concepts
such as shape, size and motion, in this layer also a number of simplifications
are considered for the sake of feasibility of the learning task given the available
resources and data. Our representation of the spatial semantics is based
on multiple spatial calculi [118, 18]. Figure 4.1.a, shows the semantics that
are mostly considered in this thesis. The three general types of regional
(i.e topological), directional and distal cover all coarse-grained aspects of
space (ignoring shape and size) and qualitative spatial calculi are available for
them. Henceforth, we map extracted cognitive linguistic elements to multiple
qualitative representations including these three categories.

We assume that trajector and landmark are ‘interpreted’ as two regions. As a
consequence, we can map static as well as dynamic spatial expressions, although
dynamicity is not directly covered in RCC (unless neighborhood graphs are used
as a form of spatial change over time). Since the mapping can point to relations
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from different calculi (e.g., RCC and an orientation calculus), this is more suited
to achieve the required level of expressivity for a spatial expression. Given
multiple representations over the linguistic spatial information, qualitative (even
probabilistic) spatial reasoning will be feasible over the produced output. The
learned relations could be considered as probabilistic constraints about most
probable locations of the entities in the text.

As can be seen in Figure 4.1.a., the fine-grained semantics are considered
according to the spatial scheme described in the last chapter. However, for
mapping to topological relations in RCC-8, we observe that in the textual
descriptions, mostly salient objects are chosen as landmarks. Hence, the inverse
proper part relations occur less frequently (cf. [65]). This motivates that we
combine all variations of proper part including {TPP,NTPP,TPPI, NTPPI}
into one class {PP}, resulting in what we call RCC-mod. In other words we
used five categories related to topological relations in our ontology. With regard
to the directional relationships, since our data contains image descriptions,
relative directions occur in the linguistic captions rather than the cardinal and
absolute directions. Hence we consider learning relative directional information
in the ontology. For the distal information, since the corpus contains a small
set of examples with distal information, a general class of distance is used in
the applied spatial ontology.

In the example of Figure 4.1a., spatial roles compose the relation (on,statue,hill)
and then this relation is labeled with regional and EC together with directional
and above. This sentence has no distal information.

4.3 Constraints and Features for the Machine
Learning Models

As described in Chapter 2 about the spatial language, the lexical, syntactic
and semantic features of language can help the extraction of spatial semantics.
There is also linguistic and commonsense background knowledge on the spatial
language to be exploited when designing an intelligent model for automatic
spatial semantic extraction. In this section we aim to specify all types of
information that can be useful for the machine learning models that we design
through this thesis. We divide these characteristics in two categories of Features
and Constraints. The benefit of the distinctions between these two types of
information is extensively discussed in [20]. Generally, constraints capture
global/structural characteristics of the problem while the features capture local
properties. Considering global properties during training is more complex
than considering local properties. The complexity is due to the involvement of
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complex correlations between variables. Moreover, learning models need a large
number of training examples in order to capture the global properties of the
problem. Global characteristics also can be modeled in the form of features,
but separating them from the features helps the models to treat them more
efficiently. For example, global constraints are considered sometimes only during
prediction time rather than during the training as in CCM models.

4.3.1 Constraints

The spatial language has a number of structural characteristics that we exploit
for automatic extraction of spatial roles and relations. These global constraints
should hold among the predicted output labels by the models. For instance:

• Each spatial relation is composed of three spatial roles that some of them
can be undefined. It implies the following constraints that are referred to
as composed-of constraints.

– If there is a trajector or landmark in the sentence then there is a
spatial indicator too.

– If a spatial indicator is detected in the sentence then we impose the
extraction of a spatial triplet, possibly with undefined roles.

• Avoiding spatial reasoning imposes the following structural properties,
also referred to as spatial reasoning constraint: each word with a fixed
spatial role is only connected to one indicator. Note that a same word
can be connected to a different spatial indicator while having a different
spatial role.

• An object can play only one role of trajector or landmark with respect
to one specific spatial indicator. We refer to this property as multilabel
constraint.

• The number of spatial relations in a sentence can be restricted. This
restriction can be set according to the statistics in the annotated data
and proportional to the length of the sentence. We refer to this type of
constraint as a counting constraint.

The above mentioned constraints are about the SpRL layer of the ontology and
the sentence level characteristics of the spatial language. We refer to the SpRL
layer constraints as horizontal constraints. Considering the ontological structure
of the nodes in the SpQL layer, we introduce the following constraints:
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• If an is-a relationship holds between two semantic nodes (labels) l1 and
l2 in the ontology, that is l1 is-a l2, then each instance of l1 should be an
instance of l2. We refer to these as is-a constraints.

• Each arbitrary triplet can be assigned zero or more fine-grained semantic
labels. If the triplet is recognized as spatial, then there should be at
least one fine-grained semantic label assigned to it. We refer to these as
null-assignment constraints.

• Given a general type-label, each spatial relation is associated to only
one fine-grained label under that type. This property is due to the
mutual exclusivity of the formal spatial semantics. We refer to these as
mutual-exclusivity constraints.

These last three type of constraints relate to the structure of the in-depth and
fine-grained spatial semantics and properties of the formal models, hence we
refer to these as vertical constraints.

In addition to the above mentioned constraints between the predicted outputs,
there are often constraints that can be employed without knowing the output
labels, but which are defined according to expert knowledge and can be
integrated in a preprocessing phase. We refer to these type of constraints
as input constraints. Employing the input constraints technically is trivial
but their application is important for the feasibility of the training in many
structured learning problems. To clarify this we can consider the formulated
ontology population problem in which usually there are a large number of
possibilities for assigning the components in the input to the concepts in the
output. In this problem, it is always beneficial to prune possibilities using
relevant background knowledge. For example, we know that in the English
language, the spatial indicators are mostly prepositions and can be selected
based on the POS tags. They are mostly tagged as IN and TO by parsers.
Since prepositions belong to a closed lexical category, we also could collect a
lexicon for prepositions according to our corpus.
Trajectors are mostly singular (NNS) or plural nouns (NN), or the words that
are labeled as subject (SBJ) in the dependency tree. The landmarks also are
mostly singular, plural or proper nouns (PRN). These linguistic features are
extracted by a syntactic and dependency parser. As discussed before, spatial
roles can be undefined too. These kind of constraints are usually used before
passing the inputs to the training and prediction models to reduce the output
search space. We formalize these properties when they are used in our designed
models according to the models’ parameters in Chapters 8, Chapter 6 and
partially in Chapter 5.
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4.3.2 Features

In addition to the global characteristics of spatial language there are a number
of linguistically motivated features that we use to train our learning models.
We use natural language processing tools to process the sentences and extract
these features. These input features can describe single words or even composed
components of a sentence like pairs of words or phrases. First we describe the
input features related to single words in the context of a sentence. We assume
that words are indexed based on their sequential position in the sentence. We
call the features that are assigned to a single word, local features. Although for
some local features the context of a word in the sentence has to be considered,
we use the term local as far as the features are assigned as a property of one
single word. The following local features are assigned to each single input
component (word). We refer to the input features by the φ symbol, and each
class of features is indexed by a relevant name, φlocal(xi).

• Word-form φwf (xi): lexical information is indicative and important
for spatial semantics. So the word form itself is used as a feature. For
example, the two expressions, the meeting in the afternoon and the meeting
in the office, differ only in one word, but the term afternoon can not be a
landmark, while the term office can be.

• Part-of-speech tag φpos(xi): POS tags are informative features for
recognizing spatial roles, e.g. the IN tag (i.e preposition) gives a higher
chance to a word for being a spatial indicator, and the NN tag (i.e. noun)
gives a higher chance for being a trajector or landmark. Therefore, POS
tags can be used as distinguishing features for training a model. For
example, He is on the left. compared to He left you., the two similar word
forms left can be distinguished using their part of speech tags. left in the
first sentence is a noun (NN) and has a spatial meaning, but in the second
it is a verb (VB) and does not carry any physical locative information.

• Semantic role φsrl(xi): since semantic role models are learned from
large corpora, they can provide information for spatial role labeling. For
example, a preposition which is labeled as locative (LOC) by a semantic
role labeler has a high probability of being a spatial indicator.

• Dependency relation φdprl(xi): the assigned labels to the words by the
dependency parsers are useful for spatial role labeling. For example, the
SBJ label meaning that a word is the subject of the sentence gives a higher
chance to that word for being a trajector. Or the label of NMOD, meaning
that a word is a noun modifier, often indicates that the word does not
carry any spatial role. The relations represented by the dependency trees
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could be directly exploited in finding the spatial links too. We exploit
only the dependency labels for the sake of reduced complexity.

• Subcategorization φsub(xi): subcategorization shows the sister nodes of
the parent of a word in the parse tree. For example, for the preposition on
in the phrase on your left, this feature is IN-NP. This provides information
about the structural context of each word. Given this feature the learning
model will know, for instance, whether a specific preposition is a part of a
prepositional noun phrase or of a verb phrase. Hence the learning model
can learn the frequent contextual patterns of the spatial prepositions.

• Spatial context of the preposition φspc(xi): in spite of the verbs and
nouns, spatial terms and prepositions are usually a closed lexical class
of words in many languages. Hence a list of terms such as directions
left, right and other spatial terms can be easily collected. Here, for each
spatial indicator the existence of a spatial term in its neighborhood, is
used as a feature. This feature helps to recognize the spatial sense of the
prepositions which are in a spatial context. Moreover, it helps to detect
the undefined landmarks. Normally, the undefined landmarks occur in
the context of the directional phrases such as on the left. In these cases
the landmark is implicit and depends on the spatial frame of reference.
However if a directional phrase is followed by of then it means the phrase
attributes an explicit landmark, for example in the phrase on the left
of the room. In other words, if the spatial context contains the second
preposition of then the possibility of having an explicit landmark is higher.
So we define a feature with three dimensions to distinguish whether a
spatial indicator has a spatial context with a second preposition, whether
it has a spatial context without a second preposition or no spatial context
at all.

• Undefined φund(xi): to stress that a word is a dummy one a binary
feature is used that indicates this. This feature is used in some models
for technical ease.

In addition to the local features, we use a number of relational pairwise features,
between the words including,

• path φpath(xi, xj): the parse tree path between a word xi that is a
candidate of trajector/landmark and a word xj that is a candidate for
spatial indicator.

• before φbefore(xi, xj): this feature indicates whether the position of a
word which is a candidate for trajector/landmark is before a word which
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is a candidate for spatial indicator. Also whether the position of the
candidate trajector is before the candidate landmark.

• distance φdis(xi, xj): the relative distance between trajector/lanmark
candidate xi and the candidate spatial indicator xj is defined as,

distance = #Nodes on the path between xi and xj
#Nodes in the parse tree ,

and the integer value of the inverted distance is used as a nominal feature.

All the above mentioned features which are mostly nominal, are turned into
binary vectors. If there is no preprocessing and candidate selection phase for
the roles, the relational features should be computed for all possible pairs of
words in the sentence. We find it useful to make a distinction between relational
features and contextual features. A contextual feature is a feature which in spite
of not being local, is assigned to a single component without mentioning the
other related component(s). For example the above mentioned spatial context is
such a feature since it is a binary feature that indicates whether a spatial term
exists in the neighborhood of a preposition, but there is no explicit relation
referring to the identifiers of its neighborhood.

For the extraction of the linguistic features we use the LTH1 tool that produces
features in the CoNLL-08 format2. In the statistical machine learning models,
features are usually represented in a feature vector and applied for training as
well as prediction. However, in the structured machine learning models that we
consider in this thesis, not only the vectors of features but also the structural
constraints of spatial language and spatial semantics need to be taken into
account. These issues will be discussed in the later chapters where models are
proposed for performing the task we described in this chapter.

4.4 Evaluation Methodology

In this thesis we use classic machine learning evaluation metrics. The evaluations
are based on 10-fold cross validation. In all the designed learning models the
evaluations are provided per each node in the ontology if it is relevant and
predicted for that specific model. More precisely, we evaluate the predictions for
the single labels including the nodes trajectors, landmarks, spatial-indicators,
for the linked labels including pairs of spatial indicator-trajector and spatial
indicator-landmark, for the linked label of spatial relation and, for the semantic

1http://barbar.cs.lth.se:8081/
2http://barcelona.research.yahoo.net/dokuwiki/doku.php?id=conll2008:format
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type linked labels in the ontology such as region, etc. The evaluation metrics of
precision, recall and F1-measure are used which are defined as:

recall = TP

TP + FN
, precision = TP

TP + FP
, F1 = 2 ∗ recall ∗ precision

(recall + precision)

where,

TP = the number of predicted components that exactly match the
ground truth,
FP = the number of predicted components that do not match the
ground truth,
FN = the number of ground truth components that do not match
the predicted components.

In the evaluation of linked labels, a prediction is true when all the composing
single labels are according to the ground truth. These values are counted per
test sentence and are summed up over all the sentences in the test set for
each fold. The precision, recall and F1 are calculated for each fold separately
and afterwards averaged over the 10-folds (i.e. macro averaging) per label.
The evaluations will be reported based on the performance of models over
the two layers. For the SpRL layer each label and linked label are reported
separately. For the SpQL layer each linked label is evaluated separately and
then the weighted averages over all SpQL linked labels in the ontology are
reported. Because the number of examples is highly variable among SpQL
linked labels, each metric value for an SpQL linked label is weighted with the
proportion of its examples when calculating the final value of each evaluation
metric (micro-averaging).

4.5 Conclusion

The contribution of this chapter is its novel view on the spatial information
extraction as an ontology population task. The considered concepts form a
lightweight spatial ontology based on the aforementioned spatial annotation
scheme and are adapted according to the corpus analysis and statistics in the
data. We highlighted the distinction between two spatial role labeling (SpRL)
and spatial qualitative labeling (SpQL) layers in the ontology. Distinguishing
between the two layers provides a modular and flexible platform for future
extensions of the cognitive concepts and their formal representation. Moreover,
we contributed to characterizing linguistically motivated local features and
global structural and ontological properties of the spatial language that can be
exploited in machine learning models.
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According to the structural characteristics, ontological relations and the
relational features of the data we conclude that relational and structured
learning models are well fitted solutions for this problem. We need a model
which is able to learn from annotated data, use relational features and can
consider the relationships between the output variables in the spatial ontology
encompassing the ontological relationships as background knowledge. The
distinguishing feature of the formulated task is that it is a unique computational
linguistic semantic task that comes along rich structural characteristics. This
property makes this task interesting for structured machine learning models.
Designing such models is the roadmap of the rest of this thesis which brings us
further, to more contributions on this topic.
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Outline

In Part I of the thesis we defined a new framework and corpora for learning to
map natural language to spatial ontologies. In addition, the motivation behind
the proposed ontology and its two layers of semantics was described. In this
part, we investigate the extraction of the first layer of the ontology which is
called spatial role labeling (SpRL).

The main contribution of this part of the thesis is designing the first machine
learning models for this newly introduced task and extensive experimental
investigation of its feasibility and its computational challenges using structured
and relational machine learning frameworks.

In Chapter 5 we use graphical models, particularly conditional random fields
which are among the best performing approaches in various natural language
processing tasks. We apply a variety of CRF models and combine the two tasks
of spatial role labeling and preposition disambiguation for recognizing spatial
prepositions for SpRL.

Given the relational nature of the SpRL problem using models that are able
to work with a formal relational representation and learning is justified. In
Chapter 6, we provide various formulations of relational learning for SpRL
using the kLog framework. The advantage of kLog compared to other relational
learning frameworks is that by using an entity relationship diagram it provides
a clear first order representation of the data model and by using a relational
logical language it provides the flexibility and ease for programming for different
learning models. It facilitates relational feature engineering and exploiting
background knowledge. kLog uses a powerful convolution kernel that helps
using extensive contextual features.

The experimental results of both frameworks in the two chapters are promising
for dealing with SpRL and provide us with an extensive analysis about the
challenges in the problem itself and the advantages and the disadvantages of
the proposed models in these frameworks. This part of the thesis has been
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Chapter 5

Graphical Models

Given the general task defined in Chapter 4 and the prepared corpus described
in Chapter 3, in this chapter the spatial role labeling layer for mapping to
spatial ontologies is investigated extensively. The main contribution of this
chapter is the first computational investigation of the spatial role labeling
(SpRL) problem. In this investigation the discriminative graphical models
known as conditional random fields (CRF) are applied. CRFs have been
applied successfully in many natural language processing and information
extraction tasks. In line with the general ontology population task and
mapping the language to spatial ontologies in the previous chapter, here we
highlight the SpRL layer and its value to be considered as an independent
computational linguistic task for extraction of spatial semantics from language.
Finer grained investigations in this chapter are: a) Modeling multi-sequence
tagging for multiple role assignments and relation extraction; b) Using
template based CRFs to model long distance dependencies for training the
SpRL model; c) Exploiting the standard preposition disambiguation task
through which additional knowledge about spatial prepositions is considered;
b) Cross domain evaluation of the SpRL models; c) Formulating the types
of errors and providing an extensive error analysis in extraction of such
semantics.
In Section 5.1, we describe our view on the spatial role labeling task. In
Section 5.2, we provide the formal problem definition and input output
representation. In Section 5.3, we describe the linear-chain and skip-chain
CRF models that we apply, in addition to the preposition disambiguation
subtask. In Section 5.4, we present the experimental study including cross
domain and cross model results and error analysis. In Section 5.6, we conclude.
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5.1 Spatial Role Labeling

As an independent computational linguistic task, SpRL considers the
extraction of generic spatial semantics from natural language. From the
SpRL point of view, language is a medium to explain the space and the
location of objects and their movements, therefore different lexical categories
including nouns, prepositions, verbs and other categories can paly a role in
this direction.
We define spatial role labeling as the automatic labeling of words or phrases
in sentences with a set of spatial roles. The roles take part in one or more
spatial relations expressed by the sentence. The spatial indicator (typically a
preposition) establishes the type of spatial relation, and other constituents
express the participants of the spatial relation (e.g., entities’ locations). The
following sentence is an example:

Give me the [gray book]tr [on]sp [the big table]lm.

Our spatial role set consists of trajector (tr), landmark (lm) and spatial
indicator (sp) and none (nrol) [63, 168, 73]. The above sentence contains
several subsequences labeled with these roles. These are defined in Chapter 3.
Other conceptual aspects, such as motion indicators, indicate specific spatial
motion information (usually specified in terms of verbs); frame of reference
and the path of a motion are influencing concepts for spatial semantics and
roles [168]. However, we restrict our focus to prepositions conveying spatial
information.
Spatial role labeling is a special type of semantic role labeling, and, as with
semantic roles, the spatial relations supported by the roles contribute to
the recognition of the semantic frame of a sentence [90]. In semantic frame
labeling, a predicate is identified and disambiguated, and its role arguments
are recognized. In spatial role labeling, the spatial indicator is identified
(instead of the verb predicate) and disambiguated, and its semantic role
arguments including the trajector and landmark, are found.
However, differences between these two tasks exist. In spatial role labeling,
the roles are more specific regarding their semantics; there is no direct
correspondence between the semantics structure based on traditional semantic
frames (patient, agent) and the spatial semantics structure of a sentence. In
the above example, the FrameNet frame of Giving provides the semantic type
Locative_relation as the Place where the Donor gives the Theme to the
Recipient. The location refers to the place where the giving is performed,
and not the location of the book, mentioned in the prepositional phrases
which is important for spatial role labeling.
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Figure 5.1: Parse tree labeled with spatial roles.

General spatial relation extraction presents many challenges concerning task-
specific ambiguities and difficulties. There is not always a direct mapping
between a sentence’s grammatical structure and its spatial semantic structure.
This issue is more challenging in complex spatial expressions that convey
several spatial relations. The simple example below shows that grammatical
dependencies cannot always identify spatial dependencies and connections:

The vase is on the ground on your left.

The dependency tree relates the first appearance of “on” to the words “vase”
and “ground”. This process produces a valid spatial relation connecting
the right trajector to the right landmarks. If we systematically follow the
grammatical clues and information, then the second appearance of “on”
connects the “ground” and “your left”, producing a less meaningful spatial
relation in terms of trajector, landmark and spatial indicator (“ground on
your left”), Figure 5.1 shows the related parse tree. When confronted with
more complex relations and nested noun phrases, deriving “spatially valid”
relations is not straightforward and highly dependent on the lexical meaning of
words. However, recognizing the right prepositional phrase (PP) attachment
during syntactic parsing can improve the identification of spatial arguments.
Other linguistic phenomena, such as spatial-focus-shift and ellipsis of trajector
and landmark [84], make extraction more difficult. Spatial motion detection
and recognition of the frame of reference are additional challenges that are
not treated here.
It should be noticed that, both the formal and informal (pragmatic) spatial
expression meanings in natural language are highly dependent on lexical
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details, on the ontological structure of spatial information spaces, and on the
embedding of extracted information into existing spatial knowledge.

5.2 Problem Statement

The spatial role labeling task finds spatial relations in natural language
sentences, each of which includes a spatial indicator and its arguments. We
assume that the sentence is a priori partitioned into a number of segments.
The segments could be words, phrases or arbitrary subsequences of the
sentence. More formally, let S be a sentence defined as a sequence of T
segments:

S =
〈
x1, x2, . . . , xT

〉
.

The target is to extract the spatial relations as a set of triplets with the
following form, from each sentence:〈

xspatial_indicator, xtrajector, xlandmark
〉
,

where xspatial_indicator, xtrajector and xlandmark are three distinct segments
of S, denoting the parts of S that represent the spatial indicator and its
trajector and landmark arguments, respectively. For any spatial relation,
the value of the trajector (or landmark) can be “undefined”, meaning
that no segment in S represents the trajector (or landmark). In those
cases, we call the trajector (or landmark) implicit, as in the sentence
“Come over here”, where the trajector “you” is only implicitly present.
To formulate a learning setting for this problem we define a set of roles:
roles = {trajector, landmark, spatial_indicator,none} and build a setting
based on sequence tagging. The goal is to assign each segment in the sentence
one or more of these roles and moreover recognize the link between the roles.
Given a sentence S, the set of all spatial indicators of S is denoted sp. It is
induced by the indicator function sp defined over all segments x of S: 1

sp(x) =
{

1 if x is a spatial indicator
0 otherwise.

We assume that spatial indicators overlap with neither each other nor
trajectors and landmarks. In other words, for any sentence S, if x and
x′ are two segments of S, then sp(x) = 1 and sp(x′) = 1 imply that x∩x′ = ∅.
This is a realistic assumption according to our annotation scheme. Because
1We use the same symbols for denoting the sets and their indicator functions through this

thesis which is a commonly accepted notation.
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trajectors and landmarks are spatial indicator arguments, we define two
indicator functions relative to a given spatial indicator s in sentence S.

trs(x) =
{

1 if x is a trajector of s
0 otherwise

, lms(x) =
{

1 if x is a landmark of s
0 otherwise.

The set of trajectors (landmarks) with respect to the spatial indicator s is
denoted trs (lms), induced by indicator functions trs and lms defined over
all segments in S. For a spatial indicator s, its trajector and landmark
cannot overlap with each other or s itself (though they can be undefined, as
mentioned earlier). Although we have defined spatial indicators, trajectors
and landmarks as arbitrary segments of a sentence, we focus on single words,
each as one segment. However, a phrase in the sentence commonly plays a
role, and we thus assume that the head word of the phrase is the role-holder.
This is our first assumption which is often made in similar tasks [96]. The
word level assignments can be leveraged to phrase level using NLP tools as
preprocessing or post-processing. However, the phrase boundaries also can
be learnt jointly along with the target roles. For example, in "the huge blue
book", "book" is the head word, and "huge" and "blue" are modifiers. In our
data, the labeling scheme reflects this fact and only assigns roles to head
words and labels the remaining words (e.g., modifiers) as “none". Hence, a
sentence is hereafter assumed to be a sequence of words.
Since each word can have multiple spatial roles, we design a multi-sequence
tagging setting in which each training sentence in the ground-truth data turns
to a number of sequences, each of which is annotated with respect to one
candidate spatial indicator with all possible trajectors and landmarks. Our
second assumption, which is a realistic one in the English language, is that the
spatial indicators are mostly prepositions, hence we can consider this subset
of words as spatial indicator candidates. A sentence can thus provide multiple
examples, up to the number of its candidate spatial indicators. We formally
define each sentence in the corpus as a sequence of words 〈x1, . . . , xn〉. Let
k be the number of spatial indicator candidates in a sentence S; S then
induces k examples e1 . . . ek, where examples ei and ej have the same spatial
indicator candidate for no i and j. Each ei (i = 1 . . . k) is a sequence
〈(x1, l1), . . . , (xn, ln)〉 in which each word xi (i = 1 . . . n) is tagged such that:
i) At most, one xj gets a label lj = spatial_indicator; ii) Some words get
a label trajector or landmark, if they are a trajector or landmark of the
candidate spatial indicator xj ; and iii) The remaining words get a label none.
If a preposition is not spatial, all words in the sequence are tagged with
none. As an illustration, consider the following sentence, which produces two
example sequences:
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A girl and a boy are sitting at the desk in the room
nrol tr nrol nrol tr nrol nrol sp nrol lm nrol nrol nrol

nrol nrol nrol nrol nrol nrol nrol nrol nrol tr sp nrol lm

The sentence is labeled twice, each time with a different indicator. Using our
indicator functions, we have

sp = {at,in}, trat = {girl,boy}, lmat = {desk}, trin = {desk}, lmin = {room}.

The spatial relations for this sentence are the triples produced by the following:

{at} × {girl, boy} × {desk} =
{
〈at, girl, desk〉, 〈at, boy, desk〉

}
,

{in} × {desk} × {room} =
{
〈in,desk, room〉

}
.

An example with an implicit trajector is the following sentence:

Go under the bridge
nrol sp nrol lm

In this case, we derive the spatial relation using

sp = {under}, trunder = ∅, lmunder = {bridge},

which results in 〈under,undefined,bridge〉 as the corresponding spatial
relation. In our learning model given a corpus of sentences tagged with
spatial indicators, trajectors and landmarks, we produce a multitude of
sequences as training examples, and construct (i.e. learns) an automated
spatial relation extraction method based on tagging the multi-sequences and
the extraction of the relations. We employ the same model for unseen data.

5.3 Approach

In analogy with semantic role labeling (SRL) in which words are classified
based on a known predicate (a verb), in SpRL the spatial indicator is the
pivot (i.e. predicate) of the spatial arguments. A spatial indicator can be
from various lexical word classes, although the most dominant form is the
preposition. In SRL, one can start from a verb and find roles related to it,
but in SpRL, one must first find the sense of the pivot (i.e. the preposition).
Sometimes, a proposition has a spatial sense, but that same preposition might
not have a spatial sense in a different context.
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Given the defined set of roles in the previous section, the set of spatial
relations in a sentence S, denoted SR, is defined thus (where x, x′, x′′ are
words in S),

SR =
{
〈x, x′, x′′〉 | x ∈ sp, x′ ∈ trx, x′′ ∈ lmx

}
.

In this definition, three functions should be estimated. First, the function sp
is needed; it takes a word in the sentence as an input and estimates whether
it is a spatial indicator. We employ a general binary classifier; for spatial
indicators, for example we learn a function ŝp representing the probability
that a word x is spatial, given its set of features in the context of sentence
S. In other words, to determine the value of the indicator function sp, we
compute (using r = {spatial,nonspatial}),

sp(x) =
{

1 if spatial = arg maxr ŝp(r | x, S)
0 otherwise.

(5.1)

Indicating which words in the sentence have the trajector or landmark role
requires two other functions, given that we know that some word s is a
spatial indicator. We can train a multi-class classifier that classifies words
in a sentence into r′ = {trajector, landmark,none}. We call this function R̂,
and it takes a spatial indicator and tags words with these roles. We use a
probabilistic classifier and the roles are predicted as follows,

rx,s = arg max
r′

R̂(r′ | x, s, S)), (5.2)

where x is a word in sentence S, s is the pivot spatial indicator. By finding
the best role assignments which is referred to as finding the maximum a
posteriori (MAP), we obtain the sets of roles with respect to each spatial
indicator,

lms(x) =
{

1 if rx,s = landmark
0 otherwise,

trs(x) =
{

1 if rx,s = trajector
0 otherwise.

From Equations 5.1 and 5.2, we see that a pipelined model can be a solution
for this task. We can first find words that potentially carry a spatial sense
(i.e. being a spatial indicator or not, sp(s) = 1), and we then find the
corresponding trajectors and landmarks for each pivot. The general structure
of our pipeline approach consists of the following steps, outlined in subsequent
sections:

• Finding spatial indicators: The first task consists of labeling parts
of an input sentence S that play the spatial pivot role or finding the
preposition with spatial sense. Section 5.3.1 describes this step, which
utilizes TPP data to learn the labeling task.
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• Finding spatial arguments: The second task consists of classifying
parts of an input sentence S that play the landmark or trajector roles,
given a (spatial) pivot.

In an additional relation extraction phase, we assemble the results of the
previous two steps to form spatial relation triplets with spatial indicators and
their trajector and landmark arguments (see also Algorithm 3). This step is
straightforward and involves no learning. We also investigate an alternative
approach in which we tackle both steps jointly:

• Finding spatial indicators and their arguments jointly: In this
task, we do not use a separate preposition disambiguation step but
instead learn to tag all words in a sentence jointly. The examples in
the dataset are used to train a model that assigns the spatial indicator,
trajector, and landmark roles simultaneously and the spatial relations
are constructed based on the extracted roles afterwards. Section 5.3.3
describes this approach.

The remainder of this section describes the features and algorithms we
designed and implemented for the spatial relation recognition task.

5.3.1 Learning Spatial Indicators

According to the aforementioned formalization, the set sp contains only
prepositions and sp(x) = 1 holds only for prepositions with spatial sense.
The sense of prepositions, as the main candidates for spatial indicators, can
be disambiguated by machine learning methods, as a large corpus exists for
it [153, 85]. We consider prepositions because of their importance and the
feasibility of the disambiguation task [1].
The locatives recognized by SRL might help recognizing the spatial
prepositions, but this is often not the case. The following two examples
stem from the preposition disambiguation dataset (TPP) [85].

(i) He saw Owen redden with pleasure and
laughed flinging an arm about his shoulders . . .

(ii) This project compares assumptions incorporated into
social policies about these obligations . . .

Table 5.1 shows the labels assigned by a part-of-speech (POS) tagger, a
dependency parser, and SRL to the preposition "about". The parse tree, the
dependency tree and even the semantic role labeler could not distinguish
between two senses of the preposition "about". We therefore propose to
learn these senses from a corpus labeled with senses (TPP) provided for the
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Prep POS DepRel SRL sense
about(i) IN NMOD Arg1 spatial
about(ii) IN NMOD Arg1 topic

Table 5.1: Assigned labels by a POS tagger, dependency tree and SRL
to "about" with two different senses.

preposition disambiguation task (SemEval07) [85], featuring the category
SpatialSense among others.
More specifically, the function ŝp is trained to perform the preposition
disambiguation task described in the previous section in Equation 5.1. It uses
the following linguistically motivated features and the preposition contextual
features that we aim to classify:

• The preposition itself
• By exploiting the dependency parser:

– The words directly dependent on the preposition (head1 )
– The words on which the preposition is directly dependent (head2 )

• For the predicates which have a dependency relation with the preposition:
– All words that are arguments of the predicate other than the

preposition are added using a semantic role labeler

For all extracted words satisfying the above conditions, the following features
are also included: lemma, part-of-speech tag (POS), type of dependency
relation (DPRL), semantic role labels and, for predicates, the sense of the
predicate (if assigned).
To identify the spatial prepositions, we use the TPP data provided for the
preposition disambiguation task, SemEval07 [85]. We extract the features
from the training and test data and use a maximum entropy and a Naive
Bayes classifier to disambiguate the prepositions’ sense. This process results
in a binary classification of a preposition’s spatial or nonspatial sense.

5.3.2 Trajector and Landmark Classification

We utilize the first step of preposition sense disambiguation, described in
the previous section, to recognize the spatial indicators first, after which
its arguments (trajectors and landmarks) can be classified with a a multi-
class classifier R̂ as explained in Section 5.3. The generic feature set used in
Equation 5.2 can now be defined in more detail using three different sorts. The
first set of features are the local features of the word that we aim to classify,



92 GRAPHICAL MODELS

φ1(x) ={φwf (x), φpos(x), φdprl(x), φsrl(x), φsub(x)}, the second includes the
local features of the spatial indicator candidate of which the word may be an
argument, φ2(s) = {φwf (s), φsub(s)}, and the third contains the relational
features that relate the word to the sentence’s candidate spatial indicator,
φ3(x, s) = {φpath(x, s), φbefore(x, s), φdis(x, s)}. The detailed explanation of
these features are provided in Chapter 4. Take the following sentence as an
example,

The vase is on the ground on your left.

Here, the input features for classification of vase w.r.t. the first on are:

vase,NN, SBJ,A0,NP-VP︸ ︷︷ ︸on,NP︸ ︷︷ ︸ NN ↑ NP ↑ S ↓ VP ↓ PP ↓ IN, true, 3︸ ︷︷ ︸
φ1(x) φ2(x) φ3(x, s)

In a multi-class classification setting each word, represented by a feature
vector, is separately classified, assuming that these classifications are
independent. We use such a model in our initial experiments. In subsequent
models, the class to which the words are assigned depends not only on their
own feature values but also on the features of other words and relations
among the various classes. The obtained class of a word may constrain
the class of the next word. We therefore employ conditional random field
(CRF) models. In these models, a sentence is a sequence of observations (i.e.
words). Each observation can be described in terms of feature vectors, and
the model outputs a label for each word in the sequence forming the nodes of
a probabilistic graphical model.
After recognizing the trajector and landmark given a spatial indicator, we have
all the relation elements. Relation extraction is performed in a straightforward
way, by assembling all extracted roles and combining them into spatial triplets.
Algorithm 3 shows the entire process, based on preposition disambiguation
and trajector/landmark classification. The main purpose of this pipeline
approach is to exploit a large external data source (TPP) for spatial sense
disambiguation.

5.3.3 Learning Spatial Relations without a Priori Spatial
Indicator Classification

Combining two steps of the aforementioned pipeline provides another option
for learning spatial relations. We could omit the first step of using a dedicated
classifier for spatial sense recognition, and learn to assign all spatial roles
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Algorithm 3 Spatial-Relation-Extraction(S: sentence) returns relations SR
1: {preposition disambiguation}
2: for all x ∈ S do
3: Use the trained binary classifier ŝp(x) and
4: construct the set sp of all spatial indicators of the sentence S.
5: for all s ∈ sp do
6: {trajector and landmark classification}
7: for all x ∈ S do
8: Use the trained multi-class classifier R̂ and
9: construct the sets trs and lms according to the assigned labels.
10: if trs = ∅ then trs ← {undefined}
11: if lms = ∅ then lms ← {undefined}
12: {relation extraction}
13: SR ← SR

⋃{
〈s, t, l〉 | t ∈ trs, l ∈ lms

}
14: return SR

jointly, i.e. tagging words with trajector, landmark, spatial_indicator or
none, based on a training dataset.
As mentioned before, each sentence can contain several spatial prepositions
and each word can carry different roles with respect to a different spatial
preposition. Hence a simple classification setting can not solve the problem.
The solution we use here is to, again, generate multiple examples from S,
where each example contains a candidate pivot with specific features extracted
for that word (e.g., path features from words to the pivot). For each example,
the words are classified using these relational features. One must basically
generate as many examples as there are words in S; in our practice, it
suffices to do this procedure only for pivots that are prepositions. The main
advantage of this setting is that the learning algorithm gets the freedom to
classify trajectors, landmarks and indicators in the context of one another.
In the relation extraction step, we perform the same general steps as in
Algorithm 3, differing primarily in that we take all prepositions as candidate
spatial indicators in the preposition disambiguation phase (lines 1–4) and
that the classifier R̂ now uses all roles, including spatial_indicator.

5.3.4 Linear Chain Model

For classification of the words in the sentence with spatial roles we use a
sequence tagging model based on the conditional random fields described in
Chapter 2. Formally, each input sentence X = (x1, . . . , xT ) is a sequence of
words and output Y = (y1, . . . , yT ) is the corresponding set of labels assigned
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Figure 5.2: Instantiated graphical representation of linear-chain CRF,
labeled given "on" as the pivot of the sequence.

Figure 5.3: Graphical representation of CRF with preposition template.
Prepositions are connected to the candidate trajectors and candidate
landmarks i.e noun phrases. Factors occur as black squares. Labeled
given "on" as the pivot of the sequence.

to X based on one spatial indicator candidate which is the pivot of the
sequence. For example, in Figure 5.2, the sentence is annotated given the
word "on" as the pivot of the sequence. In SpRL, Y ranges over the classes
trajector (tr), landmark (lm), spatial indicator (sp) in the joint setting or
none of these (nrol). The features of the words in the sequence are produced
based on the features of each word itself and the relational features between
each word and the pivot of the sequence.
In this setting, the spatial role label of a word in the sentence depends
on the label of the word in the previous position. Considering sequential
relationships can increase the learning model’s accuracy. The conditional
probability p(y|x) 2 is calculated given one template, Ψt(yt−1, yt, xt) described
in Chapter 2, in Formula 2.9.
For the CRF experiments we use Mallet3. The linear chain setting of Mallet
uses a forward-backward algorithm to compute the marginal distributions
and the Viterbi algorithm to compute the most probable sequence label
2An istantiation of X is denoted as x and an instantiation of Y as y.
3http://mallet.cs.umass.edu/download.php
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assignment. For our task, allowing transitions unobserved in the training
data during the inference and prediction phases adds more flexibility to the
model, particularly when there are few training examples. This setting is
called fully-connected in the Mallet tool, and we use it in our experiments.
We refer to this setting as linear-chain (FC).

5.3.5 Skip-chain Model with Preposition Template

In many relation extraction tasks, certain long-distance dependencies between
entities play an important role. In our task, prepositions primarily play
a spatial indicator role, while trajectors and landmarks are noun phrases.
There could be many words in between the roles in the sentence that have
no particular role and are assigned the none label. In light of this fact, we
apply a version of a skip-chain CRF [142] to account for the probabilistic
dependencies between distant labels. These dependencies are represented
by augmenting the linear-chain CRF with factors dependent on the labels
of the sentence’s pivot preposition and noun phrases. The features on skip
edges can incorporate information from the context of both endpoints, so the
strong evidence of one endpoint can influence the label at the other endpoint.
In our skip-chain CRF model, we exploit two clique templates: one is the
normal sequential part (connecting neighboring words), (Ψt(yt, yt−1, xt)), and
the other connects pivot prepositions to candidate trajectors and landmarks,
(Ψuv(yu, yv, xu, xv)). The u and the v are the positions which there are skip
edges for them. In our model, the set of pairs of (u, v) includes all pairs of
prepositions and nouns (see Figure 5.3). The probability of sequence label y
given input x is defined based on the above mentioned templates (defined in
Formula 2.14 and 2.15) and computed according to the Formula 2.13 for the
skip-chain model described in Chapter 2.
We use loopy belief propagation as the approximate inference algorithm of
GRMM,4 in the implementations. This tool is developed as an add-on package
to Mallet, and supports designing arbitrary factor graphs for general CRFs
rather than basic linear chain models.
We compare the results of the CRFs defined in this section and Section 5.3.4
with two baseline approaches:

• MaxEnt (baseline) model. As a baseline learning model, we classify
the words of a sentence independently using a standard maximum entropy
classifier.

• Simple baseline. To encourage the use of machine learning, a simple
baseline is employed: given a spatial preposition, the first head word

4http://mallet.cs.umass.edu/grmm/index.php
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before the preposition is taken as the trajector and the head word after
the preposition as the landmark. There is no learning from data in
this setting, but the dependency tree is exploited to discover dependent
headwords.

5.4 Experimental Study

In this section, we report on a set of experiments to evaluate various
components of the spatial role labeling and relation extraction tasks. The
research questions that we aim to answer empirically in this chapter are the
following.

Q5.1. How well can we detect the spatial sense of prepositions using available
resources and methods?

Q5.2. If the spatial sense of a preposition is known or learned beforehand, how
well can we learn its corresponding trajectors and landmarks from data?

Q5.3. What benefits lie in the sequential nature of finding the spatial sense of
a preposition and then finding trajectors and landmarks (the so-called
pipeline technique)?

Q5.4. What benefits lie in jointly recognizing spatial indicators, trajectors and
landmarks, and how can long-distance dependencies help in this setting?

Q5.5. How do different pipelining methods affect the accuracy of the whole-
relation extraction?

Q5.6. What is the effect of the used features on the extraction task?
Q5.7. What is the cross-domain performance of the approach on an unre-

stricted natural language text that contains both spatial and nonspatial
information?

Q5.8. What are the main sources of errors in our approach?

5.4.1 Datasets

For the experimental analysis in this chapter we use the corpora that are
described in Chapter 3.
For the CLEF annotations the SemEval-0 version is used. This was the only
available annotation for these experiments and the statistics are shown in
Table 5.2. The other datasets in this chapter are GUM (Maptask), Fables
and DCP with the aforementioned statistics where the number of their
sequences for the sequence tagging setting in this chapter are 122, 864 and
809, respectively. Moreover, for the preposition disambiguation the standard
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#Sentences 686
#Sequences 1430
#Spatial relations 869
#Trajectors 839
#Landmarks 741
#Spatial prepositions 735
#nonSpatial prepositions 695

Table 5.2: The statistics of the first version of CLEF, also referred as
SemEval-0.

TPP data has been used. As mentioned above, we only consider prepositions
as spatial indicators.
This restriction is natural in English texts and especially for our data.
Ignoring lexical categories other than prepositions has a trivial influence
on our experiments with this corpus. Three exceptional cases exist in CLEF,
where the words crossing, supporting and away are tagged as spatial indicators
and this is the case for seven sentences in GUM (Maptask) dataset. The other
two corpora of DCP and Fables are used in cross-domain experiments of this
chapter. The datasets are preprocessed as follows. We generate parse trees
for the sentences using the Charniak parser5 [21], and the LTH6 tool [61]
produces the semantic roles and several other features in CoNLL-2008 output
format.7

5.4.2 Preposition Disambiguation

In this part we investigate the answer to the Q5.1 experimental question and
design a number of experiments to this aim.
In the first experiment, we investigate how well the semantic role labeling
(SRL) recognizes the prepositions with spatial sense and tags them with
LOC (location) or DIR (direction). This experiment is performed on the
TPP corpus. We call this model SRL-LOC and compare it to preposition
disambiguation over TPP. TPP contains 8,781 spatial prepositions and 14,681
nonspatial prepositions. We train multi-class classifiers using Naive Bayes
(TPP-NB) and Maximum entropy (TPP-MaxEnt) techniques and classify the
senses of the prepositions including their spatial sense. The results in table 5.3
show that the precision of SRL-LOC is fairly good. Whenever SRL recognizes
5http://www.cfilt.iitb.ac.in/ anupama/charniak.php
6http://barbar.cs.lth.se:8081/
7http://barcelona.research.yahoo.net/dokuwiki/doku.php?id=conll2008:format
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the spatial sense, it is mainly correct; however, there are many cases in
which SRL does not recognize spatial senses, rendering a lower recall and
consequently a lower F1 and accuracy. For the preposition disambiguation,
the 99% confidence interval for the accuracy and F1-measure of both TPP-
MaxEnt and TPP-NB is (0.875− 0.89) and (0.868− 0.88), respectively. This
report is over the spatial sense class and it clearly is more accurate compared
to the results of SRL’s recognition. This experiment provides an argument
for the necessity of sense disambiguation even when recognizing only spatial
prepositions. Table 5.4 gives results for some frequently used prepositions
(e.g., in, on, after, before).

System Precision Recall F1 Accuracy
SRL-LOC 0.83 0.49 0.53 0.59
TPP-NB 0.86 0.92 0.88 0.88
TPP-MaxEnt 0.88 0.91 0.88 0.88

Table 5.3: Detection of spatial or nonspatial preposition senses, relying
on detected locatives by SRL compared to using a NB and a MaxEnt
classifier for PP-disambiguation; 10-fold cross validation on TPP dataset.

PP TPP-NB
Pre Rec F1

TPP-MaxEnt
Pre Rec F1

SRL-LOC
Pre Rec F1

on 0.73 0.96 0.83 0.79 0.95 0.86 0.71 0.40 0.51
after 0.50 0.90 0.64 0.54 0.70 0.61 0.00 0.00 0.00
in 0.66 0.92 0.77 0.70 0.88 0.78 0.56 0.91 0.69
before 0.67 0.86 0.75 0.80 0.57 0.67 0.50 0.43 0.46

Table 5.4: Detection of spatial or nonspatial preposition senses for
some frequently used prepositions in the TPP dataset.

In a second experiment, we evaluate our preposition disambiguation models
in general. We tested their recognition of all coarse-grained senses on
the preposition SemEval-2007 data [85]. Coarse-grained senses include 20
general classes of preposition senses, such as spatial, temporal, causal, and
membership. Table 5.5 gives the accuracy of standard train/test split of the
benchmark, using a maximum entropy classifier and a Naive Bayes classifier.
This table shows the results of the best system in the SemEval-2007 challenge
for this coarse-grained sense disambiguation, the accuracy of applying bag
of words (BOW), using the most frequent (FreqSense) and first (FirstSense)
senses as baselines. The difference between our system and the best system
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System Accuracy
Proposed-features (MaxEnt) 0.874
Proposed-features (NB) 0.86
MELB-YB (Best in SemEval-2007) 0.861
BOW (MaxEnt) 0.81
FreqSense 0.649
FirstSense 0.61

Table 5.5: Coarse grained sense disambiguation, TPP dataset.

from SemEval-2007 is statistically significant with a 95% confidence level (p
< 0.05).
Although other work [153] on preposition sense disambiguation outperforms
results of the SemEval-2007 challenge too, these authors report only on the
results of fine-grained sense disambiguation, which was not required for spatial
sense recognition in our setup. As the TPP data are a benchmark problem,
we use a similar evaluation setting for comparison purposes and do not further
experiment with different training regimes (in train/test splits). The current
preposition disambiguation results are a promising start for spatial sense
recognition and spatial relation extraction.
In the third experiment we move towards testing the preposition
disambiguation models on our SpRL datasets. We built the final preposition
sense classifiers using the whole TPP dataset. We implemented 34 binary
classifiers for 34 prepositions and for classifying their spatial vs. non spatial
sense. For some prepositions in CLEF, e.g., opposite, no classifier is trained-
as there are no annotations in TPP for it. This issue occurred in 35 of the
1,430 cases. Table 5.6 shows the preposition disambiguation performance on
GUM (Maptask) and CLEF. GUM (Maptask) is more domain-specific and
contains more spatial prepositions (112/122), including a larger percentage
(24/122) of prepositions that are not found in the TPP corpus and thus not
recognized as spatial prepositions. This fact leads to a lower recall for spatial
preposition recognition in this corpus in comparison to CLEF. We use the
disambiguated prepositions obtained in this step in the pipeline of spatial
role labeling.

5.4.3 Extraction of Trajector and Landmark

This part of the experiments is designed to answer the Q5.2, Q5.3 and Q5.4
in three sets of experiments. We note that, the classification of trajectors and
landmarks is not an isolated classification of words, but a classification of
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Corpus Precision Recall F1 #Unrec. PPs
CLEF 0.858 0.818 0.84 35
GUM (Maptask) 0.97 0.71 0.82 24

Table 5.6: Preposition disambiguation trained on TPP and tested on
CLEF and GUM (Maptask).

relations between a word and spatial pivot. This statement is the underlying
assumption for relation extraction in the experiments described below. We
show results for different settings: a) Using ground-truth spatial prepositions;
b) Using a pipeline approach in which the preposition disambiguation is
learned from external data; and c) Using a joint classification model in
which spatial indicators, trajectors and landmarks are learned and classified
together.

Using Ground Truth Spatial Prepositions

To extract the trajectors and landmarks related by a spatial pivot, we first
use the disambiguated ground-truth pivots. We implemented two different
classification settings. In one setting, MaxEnt (baseline), we classify each
word as trajector, landmark or none, based on its related extracted features
described in section 5.3.2 and using a maximum entropy multiclass classifier.
In the second setting, Linear-chain, we classify each word, using CRFs,
considering its context (the sentence) and employing the same linguistic
input features as the first setting. These results are compared to the Linear-
chain (FC) and the Simple baseline described in Section 5.3. Tables 5.7
and 5.8 show the precision, recall and F1 measures for each tag using 10-fold
cross-validation on the CLEF and GUM (Maptask) datasets.

Method Trajector Landmark
Pr Rec F1 Pr Rec F1

MaxEnt(baseline) 0.775 0.744 0.758 0.916 0.853 0.881
Linear-chain 0.870 0.744 0.801 0.950 0.869 0.907
Linear-chain (FC) 0.905 0.792 0.844 0.953 0.879 0.914
Simple baseline 0.269 0.413 0.326 0.456 0.784 0.576

Table 5.7: Extraction of trajector/landmark roles in the CLEF dataset
relying on the ground-truth preposition sense; 10-fold cross-validation.
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Method Trajector Landmark
Pr Rec F1 Pr Rec F1

MaxEnt(baseline) 0.862 0.931 0.891 0.776 0.762 0.750
Linear-chain 0.990 0.959 0.973 0.916 0.918 0.915
Linear-chain(FC) 1.000 0.969 0.983 0.947 1.000 0.971
Simple baseline 0.008 0.015 0.011 0.337 0.500 0.402

Table 5.8: Extraction of trajector/landmark roles in the GUM (Maptask)
dataset relying on the ground-truth preposition sense; 10-fold cross-
validation.

The results show that context-dependent classification models outperform the
maximum entropy model and that the differences are statistically significant
for p < 0.05, where the fully connected CRF model gives the best results.
Using the fully connected setting of the simple tagger yields statistically
significant and sharp improvements in trajector classification in CLEF and
landmark classification in GUM (Maptask).

Pipeline Setting – Exploiting Preposition Disambiguation

In this experiment, we fully automate the tasks of recognizing spatial roles
and the corresponding spatial relations. The preposition disambiguation and
the extraction of trajector/landmark tasks are connected and followed by the
whole-relation-extraction. The preposition classifier is trained on the TPP
dataset. The landmark/trajector/none classifier is trained on the subset of
GUM and also the CLEF dataset.
In this setting, various options are examined during the test phase. Each
preposition in a sentence is given to the relevant classifier from the 34 TPP-
classifiers. If it does not match a TPP preposition, it is an unknown preposition
and treated in two distinct ways: a) Nonspatial and the model referred as
Pip1; b) Spatial and the model referred as Pip2. If the preposition is
recognized as spatial, the process of the trajector/landmark extraction is
performed; otherwise, all words in the sentence are labeled as none with
respect to that preposition. We compare these settings with two other
settings: c) A setting in which every preposition is blindly assumed to be
a spatial indicator referred as Pip3; d) The setting that uses the ground
truth prepositions referred as PipGt and was reported as linear-chain in the
previous section’s experiments. These results, presented in Tables 5.9, 5.10,
help to assess the effect of preposition disambiguation.
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Method Trajector Landmark
Pr Rec F1 Pr Rec F1

Pip1 0.886 0.654 0.752 0.914 0.714 0.801
Pip2 0.889 0.685 0.773 0.916 0.741 0.819
Pip3 0.870 0.792 0.828 0.904 0.878 0.891
PipGt 0.905 0.792 0.844 0.953 0.879 0.914
JL 0.884 0.668 0.759 0.919 0.712 0.802
JLT 0.988 0.998 0.980 0.866 0.892 0.843

Table 5.9: Extraction of trajector/landmark on CLEF dataset,
comparing pipeline, ground-truth and joint learning by 10-fold cross-
validation.

The experimental results in Table 5.9 show that exploiting the linguistic
features of the correct spatial preposition in the CLEF corpus (PipGt)
improves the trajector and landmark extraction performance compared to
pipelining, as expected. The difference is statistically significant (p < 0.05).
In the complete extraction problem, i.e. with unknown spatial indicators,
assuming all prepositions to be spatial (Pip3) yields the highest recall, as
it allows the trajector/landmark classifier to find related arguments. The
pipeline model assuming unrecognized prepositions as spatial (Pip2), receiving
input from the preposition disambiguation module, improves precision but
lowers recall compared to Pip3 and Pip2. Investigating the errors indicates
that no trajectors and landmarks are generally extracted when nonspatial
prepositions are recognized as spatial and the words are correctly classified as
none. However, having a spatial preposition wrongly classified as nonspatial
(in Pip1) prohibits trajector and landmark extraction, causing a drop in recall
and also F1 compared to Pip2 and Pip3.
For GUM (Maptask) corpus, the results in Table 5.10 show that inputting the
correct preposition (PipGt) does not make a difference compared to assuming
all spatial in Pip3; moreover, pipelining (in Pip1 and Pip2) yields lower recall.
GUM (Maptask)’s statistics show that more than 93% of the prepositions
are spatial and errors in preposition disambiguation prohibit the extraction
of related trajectors and landmarks, resulting in a sharp drop in recall with
no significant variation in precision.

Joint Learning Setting

This model is described in section 5.3.3. Since spatial indicators are classified
jointly with other spatial roles, here some of the errors caused by the pipelining
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Method Trajector Landmark
Pr Rec F1 Pr Rec F1

Pip1 1.000 0.510 0.660 0.930 0.460 0.580
Pip2 1.000 0.701 0.801 0.937 0.660 0.752
Pip3 1.000 0.969 0.983 0.947 1.000 0.971
PipGt 1.000 0.969 0.983 0.947 1.000 0.971
JL 1.000 0.956 0.976 0.920 0.956 0.934
JLT 0.934 0.945 0.936 0.720 0.760 0.727

Table 5.10: Extraction of trajector/landmark on GUM (Maptask)
dataset, comparing pipeline, ground-truth and joint learning by 10-
fold cross-validation.

are corrected. However, as Table 5.9 shows on the CLEF dataset, the recall
of the best pipeline system (Pip2), is slightly higher than jointly learning (JL)
the trajector and landmark classification (the improvement is statistically
significant only for (p < 0.1)), which implies the difficulty of the preposition
disambiguation in the joint setting. Adding long distance dependencies to
joint learning through the preposition template in JLT model greatly improves
the performance on the CLEF dataset, particularly in trajector classification.
Coupling the prepositions and the nouns via the defined template helps the
joint setting for recognizing the spatial prepositions and consequently the roles.
In contrast, a sharp decrease in landmark classification occurs on the GUM
(Maptask) dataset when applying the JLT model. The difference in language
characteristics in these datasets affects these results, which calls for further
investigation. In Section 5.4.7, an error analysis categorizes the types of errors
that can occur in the spatial role labeling task and the errors of two models
(with and without a template) are compared using a test subsample. For
GUM (Maptask), Table 5.10 shows that assuming all prepositions to be spatial
outperforms other settings, including joint learning. The previous experiments
show joint learning outperforming pipelining, though the pipeline setting
uses the external resource TPP. Cross-domain differences and sentence types
in TPP, CLEF, and GUM (Maptask) datasets account for this discrepancy.
This issue will be discussed later in this chapter.

5.4.4 Whole Relation Extraction

This part of experiments is designed to answer the Q5.5 about the whole
relation extraction. The way that the spatial triplets are generated is explained
in section 5.3 and the evaluation is detailed in Chapter 4. The results of
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Method WR (GUM) WR (CLEF)
Pr Rec F1 Pr Rec F1

Pip1 0.874 0.534 0.663 0.653 0.605 0.628
Pip2 0.894 0.722 0.799 0.547 0.627 0.584
Pip3 0.870 0.948 0.907 0.391 0.722 0.507
PipGt 0.948 0.948 0.948 0.704 0.723 0.714
JL 0.888 0.904 0.896 0.704 0.737 0.720
JLT 0.672 0.703 0.684 0.830 0.830 0.830

Table 5.11: Extraction of whole relations (WRs) on GUM (Maptask)
/CLEF, comparing pipeline, ground-truth and joint learning using 10-
fold cross-validation.

all previously discussed models on the whole relation extraction from GUM
and CLEF are represented in Table 5.11. The first noticeable result is
that assuming all prepositions as spatial (Pip3) is generally impractical.
The very low performance on CLEF indicates that the relation extraction
by this assumption is not robust for unrestricted language, though this
setting works well for trajector and landmark extraction on GUM (Maptask).
Employing ground-truth prepositions (PipGt) provided the best results for
GUM (Maptask), though we observed no significant difference compared
to joint learning for relation extraction in CLEF. To explain how the joint
learning setting can, in this particular case, perform as well as the ground-
truth setting, we must examine the input and output features of the models.
In the ground-truth setting, the (correct) spatial indicators function as input,
and the classifier learns to label trajectors and landmarks. In the joint
learning setting JL, the model learns to utilize the correlations between
trajectors, landmarks and spatial indicators as outputs labels, so it considers
the transitions between spatial indicators and other labels. In the two pipeline
settings, Pip2 shows better results in GUM (Maptask) but worse results in
CLEF. This finding is reasonable due to the prior distribution of spatial
prepositions in GUM (Maptask) and CLEF, as discussed above. The JLT
model gives the best results for whole relation extraction on CLEF. This
setting is ideal for the SpRL problem when there are sufficient training
examples, which is not always the case. The pipeline setting performs better
in some trajector and landmark classifications, which signals the significance
of exploiting the TPP resource. Our final experiments on texts from different
domains in Section 5.4.6 highlight the importance of the TPP resource.
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5.4.5 Experimental Feature Analysis

This part of the experiments is to answer question Q5.6 about the influence of
the learning features. As mentioned in section 5.3, we exploit the linguistically
motivated local and relational features which are described in Chapter 4. In
the results reported above, we use all of the features described in that section.
By investigating the features’ impacts and omitting them one by one, we
determined that almost all features contribute positively to the performance.
The path feature contribution was marginal, especially for GUM (Maptask).
Because GUM (Maptask) is a small corpus and the path feature has too many
unique values in our dataset, its discriminative power is limited here. The
complex path feature generally can produce some overfitting or inserts noise
into the model, due to incorrect prepositional phrase (PP) attachments, for
example. The distance between the preposition and its arguments is thus a
valuable feature that helps determine whether a word is an argument of a
preposition. The experiments with and without this feature show a positive
impact on both datasets; an overall gain of approximately 1% − 3% for
both GUM (Maptask) and CLEF is statistically significant only for p < 0.1.
To understand the effect of our additional features, we use ground-truth
preposition senses, and Table 5.12 shows the results.
Exploiting more discriminative structural features may compensate for the lack
of lexical information, we therefore evaluate adding the subcategorization of
a target word using the aforementioned definition. The last row in Table 5.12
for each dataset shows the performance using neither distance nor sub-
categorization. The quantitative effect of the SRL feature is represented in
the same table. The table clearly shows the positive influence of this feature
on GUM (Maptask), but it contributes less for CLEF. GUM (Maptask)
contains directional instructions with few compound locative descriptions, so
there are more direct relations between semantic roles, including AM-DIR,
AM-LOC and being a landmark, as well as between a “patient" role and being
a trajector.

5.4.6 Cross-domain Evaluation

This part of the experiments is to answer Q5.7 about cross domain evaluation
of the SpRL models. Although our methodology for extracting spatial
semantics is domain independent, the results still depend on the observed
lexical features. A model trained in one domain and later employed in another
often performs poorly due to feature distribution changes. Other applications
of machine learning methods share this problem [60], particularly the natural
language processing area. As explained in previous sections, our main data
set is CLEF, which contains many spatial descriptions but is still balanced
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with nonspatial information. The GUM (Maptask) corpus is much smaller,
domain-specific and biased to spatial descriptions; learning from the same
corpus in a cross-validation setting produces good results. We based our
experiments on these two data sets to show that SpRL is feasible and that
specific learning algorithms and representations are effective. In this section,
we use our two additional annotated datasets from different domains and
discuss experiments that explore domain portability of the learnt models
and test the advantage of using external data resources (e.g., TPP) in that
process.

Corpus Precision Recall F1 #Unrec. PP
Fables (TPP-Maxent) 0.444 0.657 0.530 13
Fables (SRL-LOC) 0.495 0.420 0.454 -
DCP (TPP-MaxEnt) 0.584 0.687 0.631 29
DCP (SRL-LOC) 0.226 0.423 0.295 -

Table 5.13: Preposition disambiguation performance trained on TPP
and tested on Fables and DCP.

Our first experiment concerns the intrinsic cross-domain nature of employing
TPP data. As previously done for CLEF and GUM (Maptask) in Section 5.4.2,
we evaluate preposition sense disambiguation performance on the new datasets
Fables and DCP. This classifier is also used in the pipeline setting in subsequent
experiments. The results in Table 5.13 indicate that the preposition spatial
sense recognition (TPP-MaxEnt) is harder in these data sets than in CLEF
and GUM (Maptask). However, for Fables and DCP datasets, the TPP-based
model outperforms SRL in spatial preposition recognition. The results also
show that the SRL system is more accurate for Fables than DCP. The more
frequent use of compound verbs in Fables may account for this phenomenon,
as the prepositions are mostly attached to verb phrases.
In a second set of experiments concerning trajector and landmark extraction,
we applied the settings described in previous sections to Fables and DCP.
The models were trained on CLEF and tested on these data sets. For the
JL model, we applied the learned classifier on the unlabeled Fables/DCP
data. For the pipeline settings (Pip1 and Pip2), the classifiers trained on
TPP find the spatial indicators, after which we apply a classifier trained on
CLEF (for trajectors and landmarks) to the unlabeled Fables/DCP data.
Table 5.14 reports the results, to summarize the tables only the F1-measure
is presented. Confidence intervals (90%) for the last column are (0.428–0.532)
and (0.423–0.527), and all others have a lower variance. The table shows that
Pip1 outperforms JL, demonstrating the benefits of the model trained on
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Method Fables
Traj. Land. Indica.

DCP
Traj. Land. Indica.

Pip1 0.080 0.397 0.530 0.208 0.435 0.631
Pip2 0.100 0.424 0.348 0.232 0.463 0.554
Pip3 0.181 0.342 0.245 0.293 0.447 0.431
PipGt 0.231 0.620 —— 0.338 0.590 ——
JL 0.113 0.378 0.45 0.223 0.432 0.614
JLT 0.101 0.292 0.333 0.163 0.319 0.409

Table 5.14: F1-measure of cross-domain evaluation; the classifiers
learned on CLEF and tested on fable stories and DCP data.

TPP and the value of exploiting TPP in this experiment. The outperforming
of the pipeline is statistically significant.
For trajectors and landmarks, the first unsurprising result is that given the
ground-truth prepositions, trajectors and landmarks can be classified more
accurately in both data sets. The whole relation extraction (not shown)
proved more difficult here. Once more, in Section 5.4.7 we chose a sample of
the errors to obtain a clearer analysis on cross-domain evaluation.

Dataset Trajector Landmark Indicator Whole-rel
Fable stories 0.544 0.569 0.638 0.481
Confluence 0.518 0.595 0.685 0.475

Table 5.15: F1-measure of 10-fold cross-validation; with JL model that
has the best F1-measure averaged over all roles.

For completeness, we evaluate how well our techniques work on the additional
datasets without training on CLEF using standard 10-fold cross validation
in a third experiment (see Table 5.15). To summarize the tables, we only
present the F1-measures of the most outperforming models, where we find
that joint learning is the best setting for both datasets. Considering the
previous cross-domain experiment, this result is reasonable. The joint learning
setting shows higher performance with 10-fold cross validation because the
training and test sets have similar (lexical) feature distribution. Overall, the
evaluation of these two datasets performed worse than on our main datasets,
CLEF and GUM (Maptask), because of the broad vocabulary range in these
additional datasets and the lower proportion of spatial expressions. This
situation requires more training examples to obtain acceptable accuracy. In
Section 5.4.7, a brief discussion on the errors of this experiment is given too.
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5.4.7 Error Analysis

In this part we look into the errors to answer the Q5.8 about the
type of difficulties that learning models should handle for SpRL. The
experiments using the GUM (Maptask) and CLEF datasets clearly indicate
that dependencies between observed nodes in the CRF model are advantageous
for spatial role labeling. Most errors are classical information extraction errors.
The lack of a huge training corpus with sufficient word occurrences results in
invalid argument assignments concerning spatial semantics. Cross-domain
experiments on Fables and DCP are most affected by this lack. In the pipeline
setting, errors are primarily propagated from one phase to another. The more
elaborate solution of jointly classifying prepositions and trajector/landmarks
should, theoretically, provide a better solution. However, this setting suffers
even more from the lack of lexical information, but shows promising results
in general. This setting could be the best platform with the injection of the
partially labeled external TPP resource. Many words in a sentence have
ambiguous meanings, which also causes errors, as in other semantic annotation
tasks. In particular, errors may occur more often in sentences with more than
one relation due to the issues mentioned above. In the following subsections
we consider three subsamples of sentences, two from test folds of CLEF and
one from the Fables dataset, to investigate the error types and the ways that
model characteristics and data characteristics cause certain errors.

Error Types

To understand the nature of the errors (i.e. other than those from pipelining),
we manually inspected over 10% of the errors, 50 wrongly labeled sequences
from the largest data set CLEF. We selected the setting with a given ground-
truth preposition to analyze problematic issues in classifying trajector and
landmark roles and relation extraction. Table 5.16 categorizes the errors
based on their cause and gives the percentage of each category in the random
sample.

Class Description Percentage
1 A role element is classified as none 48%
2 Nesting spatial relations 24%
3 Spatial focus shift 10%
4 Irregularity in the grammar 10%
5 Errors in the annotated data 8%

Table 5.16: Error classes assessed on CLEF.
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• Class 1. One frequent error assigns none labels to words that play
spatial roles. This error originates from two sources: the lack of lexical
information and the high prior probability of the none class compared
to role-holder words, leading to lower recall of both trajectors and
landmarks. The latter generally causes errors in experiments on the
CLEF dataset. In the sentence below, “woman” is wrongly classified as
none, which the latter issue causes.
Example: A [woman]Tr holding a plastic bag [on]Ind the left.
However, the first cause (i.e. the lack of lexical information) generally
affects errors in the cross-domain experiments in section 5.4.6.

• Class 2. These errors are caused when the sentence expresses spatial
relations that are more complex. In these cases, multiple trajectors are
assigned to a preposition. In nested relations, the spatial relation has
the transitivity property, so the assigned roles are semantically correct.
However, we avoid spatial reasoning in the hand-labeled data, and these
relations have not been annotated. The transitivity property of the
relation depends only on the context, type of relation and its trajector
and landmark entities. Injecting these more complex inputs makes the
learning more difficult for the machine learning model, particularly when
it lacks training data. These additional role assignments are classification
errors and cause lower precision particularly in trajector labeling in our
dataset.
Example: A dark-haired girl in a white T-shirt is sitting at a [desk]Tr
[in]Ind a [classroom]Lm.
With respect to the second “in”, only “desk” is the annotated trajector,
though the classifier also classifies “girl” as a trajector. This assignment
is semantically correct, but as described above, it does not match the
ground-truth annotations.

• Class 3. This type of error concerns cases in which the transitivity
property does not hold. A preposition trajector cannot semantically be
a trajector of the next preposition in the sentence, but the landmark
of the first relation is often the trajector of the next. In other words,
the spatial descriptions’ focus changes from one trajector to another. In
these cases, a wrong trajector is assigned to a preposition and is related
to a wrong landmark.
Example: More kids sitting at their desks and a [blackboard]Tr [in]Ind
the [background]Lm.
Depending on the context, one can infer that only the “blackboard” is
in the “background” and the desks are not. Hence, “background” is a
wrong landmark for both “kids” and “desks”.
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• Class 4. The sentences’ grammar causes this type of error, primarily
the phenomenon of semantic ellipsis.
Example: A king size bed with the night [table]Tr [on]Ind the [side]Lm.
Here, “bed” is classified as the trajector of “on”, while “table ”is actually
the trajector. In fact, “side” should be labeled as the landmark that
actually refers to the side of “bed”.

• Class 5. The annotator, not the classifier, causes these errors. This
fact implies that accuracy can, to some extent, vary.

Error Analysis Cross Folds and Models (CLEF and GUM)

Adding the preposition template had inconsistent impacts on the performance
of CRF’s on different datasets. Particularly, this impact was greatly positive
on trajector classification in CLEF and negative on landmark classification
in GUM. This inconsistency encouraged to take a small subset of testing
examples and compare the errors of two models (with and without a template)
to address the effects of adding the templates on each type of error.
In the CLEF dataset, several sentences contain nouns and prepositions
between the pivot-preposition and its related trajector. The sequential joint
learning makes errors due to assigning “none" to these long distance trajectors.
The template performs the first correction to handle these long distance
trajectors properly in the skip-chain CRF. To quantify, 65% (11 of 17) of the
errors in the checked subsample (100 instances) are in this category, leading
to lower recall in the linear-chain CRF. Those errors belong to class 1, and
most are corrected by the skip-chain CRF model. The following sentence is
an example:
Example: A dark-skinned, dark-haired [boy]Tr with a gray shirt is standing
in a room [in]Ind front of a [wall]Lm made of red bricks.
The linear-chain model labels “boy" as “none" with respect to “in" (front of),
which the skip-chain model corrects it to “trajector".
The second type of error includes cases in which two trajector labels are
assigned despite there being only one actual trajector. The previous subsection
classifies and explains these errors as classes 2 and 3. In this subsample, we
see that the long distance noun is the actual trajector in 3 of 17 such cases.
In 3 other cases, the noun immediately before the preposition is the actual
trajector. These errors, totaling 6 of 17 (36%), lead to a decrease in both
recall and precision.
Example: There is a wooden commode and a mirror on the left, a wooden
bedside table with a table lamp next to the bed and a huge [fan]Tr on the wall
[above]Ind the [bed]Lm.
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The linear-chain tagger labels both “wall" and “fan" as trajectors with respect
to “above", while the general skip-chain CRF correctly tags only “fan" as the
trajector.
The only error made by the skip-chain CRF concerning trajectors in our
subsample is the example below, in which the trajector “boy" is assigned a
“none" label with respect to the second “in", in the sentence:
Example: A dark-skinned, dark-haired [boy]Tr in a very colorful pullover is
standing in between two desks [in]Ind the [classroom]Lm.
This error is not typical but merely arbitrary, as there are similar cases in
the test data that the skip-chain CRF model correctly classifies.
Furthermore, the improved model outperforms using the ground-truth
spatial indicator in trajector classification. This finding was unexpected
but not contradictory. In the ground-truth and pipeline settings, the
correlations between indicators and other role labels are not considered, while
joint learning uses these additional correlations between output variables.
The template clearly increases the probability of assigning role labels (i.e.
trajector/landmark) instead of a none label, with the additional probabilistic
factor connecting distant nouns to the pivot-preposition; this process corrects
the long distance words labeled as none and increases the recall of both
trajectors and landmarks. This feature removes one cause of class 1 errors.
Because landmarks are usually in prepositional phrases and close to the pivot
preposition, modeling long distance dependencies contributes less than for
trajectors. However, it still increases recall of landmarks. It may, however,
introduce additional false positive landmarks, as in the following example:
Example: [Tourists]Tr are standing [in]Ind the [classroom]Lm of a school in
front of the blackboard.
Here, both “school" and “classroom" are labeled as landmarks of the first
“in". The F-measure, therefore, has less improvement in landmarks than in
trajectors.
In contrast to CLEF, sentences are short in GUM (Maptask), and modeling
long-distance dependencies does not improve recall. Some cases lack trajectors
because sentences contain directional instructions in which “you" is the
implicit trajector. The skip-chain CRF thus only does equally well or slightly
worse in trajector classification. Fitting the more complex model to the small
amount of data in GUM (Maptask) lowers both the recall and precision of
landmarks. Additional investigation of one fold of the errors in the skip-chain
CRF of GUM (Maptask) shows that many landmarks are annotated as none
because both occurring a specific noun as a landmark in the training data and
the combination of a landmark with a specific preposition are important to
the model. However, the linear chain CRF is less strict and annotates them
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correctly. The additional probabilistic factor makes the model tend to overfit
the data, strengthening the effects of the lack of training data and lexical
information. The incorrect “none" labels here assigned are more primarily
due to the lack of training data than to the frequently occurring “none" labels
in sentences. The additional template can, therefore, also introduce class 1
errors, but for a different reason than mentioned above.

Error Analysis Cross Domains and Models (DCP and Fables)

The lower performance of cross-domain evaluation and also 10-fold cross
validation on Fables and DCP encouraged an investigation on the incorrectly
classified sentences in these datasets. A sample is selected from Fables’s test
errors because it shows more problematic than DCP.
Most of the errors belong to class 1. The high prior probability of the “none"
labels in the sequence of words is the main cause. Adding the preposition
template in the skip-chain CRF model increases the errors of this type. The
increased complexity of this model and the limited training data typically
cause overfitting, i.e. the model adapts to the training data characteristics
too strongly and does not generalize properly. This type of error is more
problematic for trajector classification, whereas the landmarks are frequently
in prepositional phrases and close to the indicators. Syntactical information
thus helps achieve higher recall for there. If the indicator has been identified
correctly, landmarks are more easily recognized than trajectors.
For trajector classification, due to the variety of trajector syntactical features,
lexical information is more discriminative and useful for the model. In the
example sentence below, in which gold labels are indexed, the trajector is
incorrectly classified as “none" because the word eagle does not occur as a
trajector in the CLEF dataset:
Example: An [Eagle]Tr sat perched [on]Ind a lofty [rock]Lm, keeping a sharp
look-out for prey.
The next example is another case in which none of the roles are recalled and
all are labeled as “none". Because the type and context of the texts differ
from Fables to CLEF, contextual features are ineffective.
Example: A [huntsman]Tr, concealed [in]Ind a [cleft]Lm of the mountain
and on the watch for game.
Conversely, exploiting grammatical features introduces more false positives
and decreases precision for landmarks. The following sentence is an example
of this phenomenon:
Example: One touch from you and I should be broken in pieces.
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The model wrongly classifies in as an indicator and pieces as a landmark
while in has no spatial sense. For this example, the semantic role labeler
labels in as AM-LOC, which is also incorrect. Despite dissimilarities in the
sentences’ vocabulary and context, there are several cases where all roles
have been labeled correctly. Their similarity to typical spatial description
grammatical structures in CLEF accounts for this and the below sentence is
an example:
Example: There were two [Cocks]Tr [in]Ind the same [farmyard]Lm, and
they fought to decide who should be master.
We also briefly study the errors made by the system in 10-fold cross-validation
inside these datasets. The trajector and landmark classification precision
is nearly 100% for both datasets, but recall is very low, signifying that the
major problem is again insufficient evidence for assigning the roles, i.e. a lack
of training data and particularly a lack of positive examples. If we compare
the overall number of prepositions to the number of spatial prepositions,
there are many more non-spatial prepositions per sentence in the Fables and
DCP compared to GUM and CLEF, which leads to a stronger bias toward
assigning none labels. Having an unbalanced dataset (with respect to positive
and negative examples) is a typical challenge for relation extraction with
machine learning. Overall, the error analysis in these experiments indicates
the main issues for successful transfer of models across different domains. It
also suggests ways to improve spatial role labeling systems in the future.
Because labeling data to train a model in each domain of interest is inefficient,
we have shown one way in which to use existing resources to alleviate the
annotation labor. Experiments in different domains present difficulties in
cross-domain transferability and indicate that learned classifiers become biased
to the distribution of features and words in the training dataset. However,
exploiting more general resources, such as TPP, can help reducing this bias.

5.5 Related Work

Our general investigation shows that in computational models for spatial
information extraction, mostly geographical information and toponym
resolution are considered [132, 80], hence the universal cognitive elements have
been paid a minor attention. However, these elements find more importance
when understanding domain independent and unrestricted natural language
is targeted as in our research. Few research works exist that consider both
the computational linguistic problem and the abstraction of spatial concepts
in their systems [122, 66]. Moreover, most of these works noticeably consider
visual information resources and that is why the linguistic structures and
features have been paid less attention in the related works.
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In the related spatial language research from a cognitive-linguistic point of
view, spatial prepositions, their semantics’ variation, and grounding their
perceived meaning have been thoroughly investigated [53]. In the visual
context, applying computational spatial preposition models to a visually
situated dialog system is investigated [64]. Lockwood et al. [86, 87] describe a
model for learning to classify visual scenes according to the spatial preposition
depicted. They use SEQL, an existing model for analogical generalization,
to construct relational descriptions from stimuli input, such as hand-drawn
sketches, and their suggested model can distinguish between in, on, above,
below, and left after being trained on simple sketches exemplifying each
preposition. These efforts are valuable but remain too limited to ground
unrestricted spatial natural language perception. In our work, having a holistic
view on the spatial meaning the automatic mapping to the prepositions’
meaning is performed by exploiting the first level of mapping the language to
spatial roles. This plays an important role in the semantic representation of
spatial expressions in a domain-independent way.
However, the preposition disambiguation that we use in this chapter, has
been introduced as a formal benchmark task in SemEval2007 [85, 153]. The
importance of prepositions in meaning conveyance has been extensively
investigated [1], and prepositions’ dominant role in language semantics
has been experimentally proven. This fact also explains why prepositional
sense disambiguation has recently received much attention in semantic text
analysis [104, 30, 140]. Exploiting preposition disambiguation in this work
shows the benefits of this computational linguistic task in spatial relation
extraction. Some related research have noticed these primitive spatial
elements in visual contexts and processing locative phrases [2]. But automatic
extraction of these elements from language has been noticed in few applications
containing multimodal environments or in tasks that are occupied with visual
information and visualization. There are few works that focus on the linguistic
aspect, with notable exceptions [84, 83] (for the Chinese language). Their focus
on extracting similar trajector and landmark elements attempts to visualize
fable stories. However, their approach is limited to a binary classification
of the trajector role. The landmark is extracted using limited background
knowledge instead of a machine learning approach. Kollar et al. in a recent
work [66] presented a system for interaction between humans and robots.
The robot follows natural language directions by extracting a sequence of
spatial description clauses (SDCs) from the linguistic input and infers the
most probable path through the environment given information only about
environmental geometry and detected visible objects. Their spatial description
clauses contain elements including figure (trajector), verb, spatial relation and
landmark. Grounding the flexible spatial language of directions in perception
is interesting, but it essentially assumes that directional instructions are given,
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which renders it to be domain-specific understanding which does not need
disambiguation.
None of these works formalized the complete task of domain-independent
spatial role labeling using machine learning nor, did they pay attention to
linguistically motivated features. The idea of defining spatial role labeling
is inspired by the more general task of semantic role labeling [90], but we
consider different thematic roles related to spatial semantics and argue that
these semantics deserve particular attention.
Researchers have applied skip-chain CRF’s for named entity recognition [142].
In the above mentioned work, Kollar et al. [66], also used a CRF model (to
extract SDCs) but with different settings and feature functions. However,
they have not been used in spatial information extraction in the sense that
we define. There are a number of related works that exploit machine learning
models in restricted spatial settings. For example, Reinbergerr [117] presents
an unsupervised method to extract spatial prepositional phrases from text
corpora and use the output as preprocessed material to build a virtual
environment. They use a shallow parser and select functional relations from
which they can extract spatial information. That work manually evaluates
the adequacy of the extracted relations. Another work transforms a textual
description of a spatial scene in a sequence of prepositions into a graph
with objects, annotating local reference systems as nodes and relations as
arcs [23, 165]. Inference is realized by multiplying transformation matrices,
constraint propagation and verification using machine learning techniques. By
assigning values to the parameters and using heuristics for object placement,
a visualization of the described spatial layout is generated from the graph.
They also consider a limited set of predefined relations.
Spatial relations are also important in semantic image analysis. In one work,
eight fuzzy directional relations, such as right, left and above, are supported
[107]. All relations are evaluated for each pair of objects in the image. That
work presents a learning approach, coupling support vector machines (SVMs)
and a genetic algorithm (GA), for knowledge-assisted domain-specific semantic
image analysis. There are also many challenges in video analysis, handling
spatial and temporal relations and extracting those relations from video; an
interesting work proposes a framework for learning object and event categories
from video [139]. The work exploits graphical models, and spatio-temporal
patterns in the video are represented using an activity graph.
To interpret spatial language for following navigational directions, a system
is presented that does not use semantic annotation, but instead learns
from human demonstration on the Maptask corpus [161]. In this work,
a reinforcement learning setting derives the correspondence between the
instruction language and path features. On the same corpus, an earlier work
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first manually maps the spatial language to conceptual NIUs (navigational
information units) [82]. The combination of NIUs is then automatically
interpreted as a spatial path using dynamic programming. The linguistic
part of NIU extraction is ignored there. The same authors in a recent work
start from natural language and map it to SDCs [66].
Moreover, several systems extract information directly from text and
determine spatial relationships between objects in a 3D scene to generate such
scenes from these textual descriptions. These systems consider the semantic
models of spatial relations and their computational implementation. However,
they are restricted to simple narratives, often invented by the authors, and do
not consider a real corpus. For applying machine learning usually a limited
number of relations is defined to keep the problem tractable. A more general
overview of older vision and language systems can be found in [63].
According to our overview, in the related research in this domain, restricted
languages extract very specific and application-dependent relations from text
[63, 147, 84]. Previous research has not systematically covered spatial relation
and role extraction from unrestricted natural language with machine learning
methods, but we do so.

5.6 Conclusions

This chapter encompasses the first extensive computational investigation
of the SpRL as a novel computational linguistic semantic task. We point
to the unique characteristics and challenges of this task and design various
learning models mostly based on probabilistic graphical models, namely
CRFs. Performing experiments on various datasets and models we showed
that a) Existing semantic role labeling models and also using dependency trees
can perform very poorly for labeling the spatial roles and extraction of the
spatial relations; b) Using machine learning for such a task can improve those
baselines to a great extent; c) Context dependent models such as linear-chain
CRFs improve the simple classification models; d) Exploiting long distance
dependencies by modeling general CRFs improves the training from a larger
dataset while showing over-fitting side effects on our smaller dataset; e) Cross
domain evaluations showed a sharp drop in the performance of the models
when tested on a different domain, which is due to the high influence of
the lexical information in this semantic task; in this case, exploiting the
external resources with the support of very large annotated data (TPP) for
preposition disambiguation improved the SpRL results; f) The error analysis
shows additional challenges to the critical lexical information, such as the
difficulty of the relation extraction in the long sentences containing multiple
spatial relations; g) The feature analysis shows the positive influence of the
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linguistically motivated and relational features, however the more complex
features such as path were not useful particularly in the smaller datasets.
The relational nature of spatial role labeling and the difficulty in extraction
of the relations compared to the roles motivated the use of more flexible
relational learning models that can exploit background knowledge in a flexible
setting for SpRL. These are the subject of the next chapter in this thesis.



Chapter 6

Relational Learning

The first experimental investigation of spatial role labeling in Chapter 5, using
CRFs, highlighted the importance of the contextual features and the relational
nature of this problem. This is the motivation of exploring the statistical
relational learning models for SpRL. Many natural language processing
problems, including SpRL, require one to deal with the underlying structure
of the data, to employ knowledge about the domain such as ontologies, and
to impose constraints on the output. Therefore, a relational formulation of
SpRL is encouraged and many related problems can be treated as such [29].
SpRL is a well-fitting problem for relational learning models. We can treat
the words in the natural language sentences as objects that have their own
properties and also relationships to each other. Then SpRL is about extraction
of the spatial relations between these objects. The goal of this chapter is to
employ an expressive logical representation and relational model of SpRL.
We utilize kLog [42], a novel framework with an expressive first order logical
representation of the relational data and the background knowledge. It
supports describing learning problems in a declarative, relational fashion [31].
Moreover, it applies a powerful and flexible graph kernel that has a high
potential for capturing long distance dependencies in the data using extensive
relational input features. We investigate a number of models represented in
this framework, such as simple binary classification of the predicates with
spatial role arguments, pipeline models and sequence tagging for SpRL. We
formulate the learning model and our knowledge about the problem in a
declarative way.
This chapter is structured as follows. In Section 6.1, the relational formulation
of spatial role labeling in kLog and the features are defined formally, moreover
the kLog framework itself is briefly introduced. In Section 6.2, we discuss two
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ways of modeling the learning problem: as triplet classification (i.e. hyperlink
prediction) and sequence tagging. Section 6.3 reports on experimental results
that show the promise of our approach, Section 6.4 points to the related work,
and finally Section 6.5 concludes.

6.1 Relational Problem Statement

In Chapter 5, the SpRL problem was described and motivated, hence we
directly state the relational formulation of the problem here. As before,
the input is a natural language sentence S that is a sequence of T words
S =

〈
x1, x2, . . . , xT

〉
. In a relational learning setting, we assume each word is

an entity with a number of properties and these entities can have relationships
to each other. A spatial relation is presented as a predicate with three
arguments sr(SP, TR, LM). Three spatial role predicates are defined as
indicator(SP),trajector(TR),landmark(LM) where SP= xi, TR= xj , LM=
xk, i, j, k ∈ [1, T ] and for each spatial triplet i 6= j 6= k. Each sentence
contains n ≥ 0 spatial relations. Each word is an argument of the spatial role
predicates when it carries a specific spatial role. As in the previous chapter,
for any spatial relation, when no word in the sentence S represents a trajector
or a landmark, then the value of those arguments is “undefined”. In general,
spatial indicators, trajectors and landmarks can be arbitrary segments that
contain more than one word, but as in the previous chapter, we focus on
individual words; namely the syntactical head word of a segment. We recall
the example in Chapter 5:

A girl and a boy are sitting at the desk in the classroom.
Here we can roughly (i.e. using the actual word forms instead of using
a unique identifier for each word which is discussed later) represent the
spatial relations as: sr(at,girl,desk), sr(at,boy,desk). Depending on
the learning model these spatial roles can be predicted as intermediate steps,

trajector (girl) trajector (boy)
landmark (desk) landmark ( classroom ).

And the example with an implicit trajector is the following,

Go under the bridge.

In this sentence the target spatial relation is: sr(under,undefined,bridge)
and the spatial roles are indicator(under) and landmark(bridge).
Before describing the relational input features and modeling the problem, the
kLog framework and language is discussed in the following subsection.
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Figure 6.1: kLog flow.

6.1.1 Relational Representation and Learning in kLog

kLog [42]1 is a language designed for relational learning. Fig. 6.1 presents
the workflow in kLog. kLog allows users to specify a relational database,
background knowledge and the target problem in a declarative way. The
main elements of the data model are entities and relationships. A kLog
script contains kLog’s signatures that represent the format of each table in a
relational database. This is to some extent similar to the notion of bias in
inductive logic programming. The data structure is naturally represented as
an entity-relationship (E/R) diagram like the one shown in Fig. 6.2.
The purpose of kLog is to make it easy to define and maintain relational
features. kLog is a domain-specific language embedded in Prolog, a language
with both a declarative and a procedural semantics. Hence, feature definition
in kLog lies somewhat between purely declarative (as in Markov logic [38])
and purely imperative (as in FACTORIE [92]) approaches.
kLog learns from interpretations [31], where an interpretation is essentially a
set of ground atoms (or a set of tuples, since structured terms are not allowed
in the language). Ground atoms can be either explicitly given as data (for
extensional signatures) or deduced using Prolog’s deduction mechanism (for
intensional signatures). Intensional predicates are akin to Datalog rules [46]
and tabling can also be used to avoid Prolog’s procedural semantics, if desired.
Under mild assumptions, grounding the E/R diagram (a process we call
graphicalization) yields, for each interpretation, a bipartite graph whose
nodes are ground atoms either of entity or relationship type, cf. Fig. 6.3. An
edge from a relationship vertex to an entity vertex is created if the identifier
1http://www.dsi.unifi.it/~paolo/ps/klog.pdf

http://www.dsi.unifi.it/~paolo/ps/klog.pdf
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of the entity appears as an argument of the ground relationship atom. A
graph kernel is subsequently used to compare interpretations by comparing
the associated graphs. Unlike the approach in [162], kLog does not require a
kernel on hypergraphs and any existing graph kernel can – in principle – be
used. The current implementation uses a modified version of the neighborhood
subgraph pairwise distance kernel (NSPDK) [28] which we describe briefly here.

NSPDK. It is a decomposition kernel, in which the similarity between graphs
are calculated based on their subgraphs. The subgraphs are produced based
on three given parameters namely, kernel points, radius and distance. A
kernel point is the center of a subgraph, which can be any entity or relation in
the graph. Given the radius r each entity or relation that is within a number
of r edges away from the kernel point is considered as a node of the subgraph.
Given the distance d, each subgraph around a kernel point that is within a
distance d or less from the current kernel point will be considered. This is
denoted by the relation Rr,d(Av, Bu, G) between two rooted subgraphs Av,
Bu and a graph G, which selects all pairs of neighborhood graphs of radius
r whose roots are at distance d in a given graph G. The kernel κr,d(G,G′)
between graphs G and G′ on the relation Rr,d is then defined as:

κr,d(G,G′) =
∑

A,B ∈ R−1
r,d

(G)
A′, B′ ∈ R−1

r,d
(G′)

δ(Av, A′v′)δ(Bu, B′u′), (6.1)

where δ is a similarity function and has two versions of hard match (i.e. exact
graph match) and soft match in kLog. For efficiency reasons, an upper bound
is imposed on radius and distance (i.e. r∗, d∗) leading to the following kernel
definition:

Kr∗,d∗(G,G′) =
r∗∑
r=0

d∗∑
d=0

κr,d(G,G′). (6.2)

NSPKD is computed by creating feature vectors associated with the
interpretations. Any model can then be trained using the final feature
vectors that are produced by the NSPKD kernel.
Underlying classifiers. kLog is agnostic about the statistical procedure
used to learn from the constructed feature vectors and several alternative
models can be plugged-in. In this work, the underlying models we use
are a standard binary support vector machine (SVM) implementation
of LIBSVM [19] and a structured SVM implementation for sequence
tagging of SVM-HMM.2 The LIBSVM implementation provides various SVM
2http://www.cs.cornell.edu/people/tj/svm_light/svm_hmm.html
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formulations that are all solved in the dual space. All these formulations are
standard and well-known. The specific formulation that is used by default
in our reported results is with the one called C-SVC in LIBSVM and we
use it with a linear kernel. Other SVM implementations that work in the
primal, such as stochastic gradient descent (SVM-SGD), are also integrated
and can be called in kLog scripts. We avoid describing the standard binary
classification formulations of SVM, but briefly point to the sequence tagging
model of SVM-HMM here.
SVM-HMM. This model is used in conjunction with kLog in the current
experiments. SVM-HMM is an extension of a SVM, for sequence tagging. It
uses a similar linear model described in Chapter 2 as its decision function:
h(x) = arg maxyW> · f(x, y), where f(x, y) is the feature vector associated
with each interpretation, (x, y), consisting of input (x) and output (y) ground
atoms. A potential function equal to W> · f(x, y) is used to score the
interpretation. Prediction, is the process of maximizing g with respect to
y. Here, we directly exploit the sequence tagging implementation of SVM-
HMM to solve the SpRL problem in kLog. SVM-HMM uses a structural
(SVM) formulation and discriminatively trains models that are isomorphic
to a kth-order hidden Markov model. In summary, given an observed input
sequence x = 〈x1 . . . xT 〉 of feature vectors over x1 . . . xT , the model predicts
a tag sequence y = 〈y1 . . . yT 〉 according to the following linear discriminant
function,

h(x) = arg max
y

w>emis · femis(x, y) + w>trans · ftrans(y), (6.3)

where wemis and wtrans are the emission and the transition weight vectors,
respectively. The built-in NSPDK graph kernel in kLog produces the emission
feature vectors femis(x, y) and those are used by SVM-HMM.

6.1.2 Representing SpRL in kLog

The data model defines the entities and relationships using an E/R diagram.
Fig. 6.2 shows the diagram used for SpRL. The main entity of our model is a
word. Word properties are obtained using the same approach of Chapter 4.
The difference here is that a first order formalism is used for representation
of the data. Each word xi is assigned an identifier W_id and the properties
are represented as follows:

• The φwf (xi), is represented as word(W_id,Word_form).

• The φpos(xi), is represented as pos(W_id,Word_pos).

• The φdprl(xi), is represented as dprl(W_id,Word_dprl).



124 RELATIONAL LEARNING

word

word-word

word-form pos dprl
srl

path distance nextto

trajector-
candidate

landmark-
candidate

spindicator-
candidate

spatial relation

tr-Wcandidate

lm-Wcandidate

sp-Wcandidate

Figure 6.2: The E/R diagram.

• The φsrl(xi), is represented as srl(Word_id,Word_srl).

• The φsub(xi), is represented as subcat(Word_id,Word_subcat).

In addition to the sequential relationships, a set of relational features between
the words xi and xj with identifiers w_i and w_j in the sentence are exploited:

• The φpath(xi, xj), is represented as path(w_i,w_j,Path).

• The φbefore(xi, xj), is represented as before(w_i,w_j).
• The φdis(xi, xj), is represented as distance(w_i,w_j,Distance).

Each sentence is represented as an interpretation. This interpretation is
equivalent to the unfolded (grounded) E/R diagram represented as a bipartite
graph such as Fig. 6.3. This figure shows an example with kLog’s graphical
representation of the relational features for the sentence “The kids are on the
stairs.". It shows a part of the facts that are stored in the relational tables. In
addition to the stored database of facts which is called an extensional table, a
kLog script is prepared that contains the signatures of the extensional tables
as well as the logical rules that define how more facts can be deduced for the
learning model. These rules deduce the intentional tables. We describe these
two sources of data with examples here.
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candidate
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candidate spatial Indicator 
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dprl(root)

word-word

path(---)
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next 
to(true)

word-word

Figure 6.3: Grounded E/R for one interpretation.

Extensional tables. The given facts are stored directly in the database, in
so-called extensional tables. In the above example some of these are:
word(w0 ,the ). word(w1 ,kids ). word(w2 ,are ). pos(w2 ,vbp ). pos(w3 ,in ).
pos(w4 ,dt ). dprl(w0 ,nmod ). dprl(w1 ,sbj ). dprl(w2 ,root ). dprl(w3 ,prd ).
dprl(w4 ,nmod ). path(w1 ,w3 ,’NNS^NP^ S_VP_PP_IN ’). distance (w1 ,w3 ,2).
path(w5 ,w3 ,’NNS^NP^ PP_NN ’). distance (w5 ,w3 ,3).

Intentional tables. In kLog, logical rules can be used (as in Prolog) to
define intensional relations and induce new features. For example, it is not
needed to provide the next relation between adjacent words extensionally
because it can be derived from the word identifiers using the following clause:

next(W1 ,W2):- word(W1 ,_),word(W2 ,_),W2 is W1 +1.

This produces the following tuples in the data base, in so-called intensional
tables:

next(w0 ,w1 ). next(w1 ,w2 ). next(w2 ,w3 ). next(w3 ,w4 ). next(w4 ,w5 ).

Background knowledge. In a kLog script, background knowledge is
represented explicitly using logical rules in the problem specification and
independent of the underlying machine learning model. In SpRL, in its
binary classification formulation, to avoid an explosion in the number of
negative examples, we limit the set of example spatial relations to a number



126 RELATIONAL LEARNING

of candidates. This is performed using a set of logical rules that we call
candidate selection rules. In more details, trajectors and landmarks are
mostly noun phrases and spatial indicators are often prepositions. To exploit
this knowledge in kLog, for example, the following candidate selection rules
for selecting trajector candidates are provided:

trajector_candidate (W):-
word(W,_),pos(W,POS),
member (POS ,[nn ,nns ,prp ,nnp ,nnps ]).

trajector_candidate (W):-
word(W,’undefined ’).

Thus, a candidate trajector is either a noun or undefined. This is applied
similarly in candidate selection for landmarks and spatial indicators. The
rules produce new relational entities and intentional tables. For example
applying the candidate selection rules on the above sentence yields:
indicator_candidate (w3 ).
trajector_candidate (w1 ). trajector_candidate (w5 ).
landmark_candidate (w1 ). landmark_candidate (w5 ).

Finally, we are able to generate the relational target of the learning problem
using the logical language. This provides a flexible way to represent any
structured output prediction in a relational form. The target formulation
is discussed in more details in the next section. In the above example, the
target roles include
indicator (w3 ). trajector (w1 ). landmark (w5 ).

and the target spatial relation is sr(w3,w1,w5).

This resembles a multi-predicate learning task [31] in which the predicates are
nodes in the graphs (see 6.3). The graphs are turned into feature vectors using
a graph kernel, which ultimately leads to a propositional learning problem in
a high dimensional space.

6.2 Spatial Relation Extraction

In this section we discuss two different formulations of spatial relation
extraction. The first formulation is a binary classification of ternary relations.
That is, for every possible triplet of words in a sentence, we hypothesize a
relation between them and classify it as being spatial or not. In the second
formulation, we perform relational sequence tagging and then construct the
target spatial relations using a set of logical rules.
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6.2.1 Problem Formulation I: Triplet Classification

According to the problem statement, each sentence is associated with a set
of true spatial relations in the form of sr(SP,TR,LM). A direct formulation
of extracting the sr predicates includes the following processes: a) Generate
the possible triplets of words per sentence; b) Consider each produced true
triplet as a positive and each false triplet as a negative example; c) Compute
the features of each example; d) Classify each triplet as true or false based
on its computed features. In kLog, the candidate triplets can be easily
specified declaratively and generated. The triplets that are in the database
are positives and the negatives are produced automatically based on the closed
world assumption. Each triplet atom is a relational node in kLog’s bipartite
graph. The triplet’s features contain the connected nodes in its neighborhood.
The neighborhood means the scope of a given radius and distance parameters
of kLog’s graph kernel. In this formulation, the learning problem boils down
to binary classification of these atoms using the relational features and the
propositionalization process. The bottleneck of this approach is the vast
number of possible negative examples as compared to the positive ones. We
exploit the background knowledge and also a pipelining approach to deal with
this problem. Due to the use of a logical representation in kLog, different
settings are represented in the problem specification side, independent from
the learning model.

Candidate Selection.

Instead of generating all combinations of arbitrary words, the candidate
selection rules described in Section 6.1.2 are used to reduce the number
of examples. Hence, the candidate triplets are produced by choosing their
arguments from the previously defined candidate roles using the following
rule:
sr_candidate1 (I,T,L) :- indicator_candidate (I),

trajector_candidate (T), landmark_candidate (L).

The predicate sr_candidate1(I,T,L) includes the positive as well as the
negative examples; the positives are those for which sr(I,T,L) holds in the
sentence and satisfy the candidate selection rules, e.g. POS tag restrictions.
Since the coverage of candidate selection rules is not 100%, some actual
positive examples may not be sr_candidates1.

Pipelining.

Another approach is to separately train three models to predict the spatial
roles first and use the predicted roles to construct the examples for learning the
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sr predicates. In this case the positive and negative examples are produced
using
sr_candidate2 (I,T,L) :- indicator_predicted (I),

trajector_predicted (T), landmark_predicted (L).

The newly introduced predicates such as indicator_predicted(I) are added
to the database after the spatial role prediction. A high recall of this step is
required to achieve a reasonable performance for sr prediction in the second
phase. To this aim a threshold is adjusted using the precision-recall curve
to increase the number of sr_candidates2. In this setting, the learning
procedure becomes a stacked pipeline where the second stage of sr(I,T,L)
prediction receives as examples the ground atoms for sr_candidate2
predicted in the first stage. kLog supports the implementation of such
a layered learning approach using its scripting language.

6.2.2 Problem Formulation II: Relational Sequence Tagging

To consider the sequential correlations between spatial roles, the SVM-HMM
model is used under kLog’s representation. During the role prediction for
each word the role of its adjacent words are considered. This model receives
the input feature vectors created by kLog’s graph kernel. As discussed in
chapter 5, the sequence tagging formulation is not straightforward for SpRL
because each word can play various roles with respect to various spatial
indicators in a sentence. However, for one specific spatial indicator each word
carries at most one role. This realistic assumption is used to set up relational
sequence tagging. Each interpretation is presented as a sequence of word
entities word(w_1,Wordform),...,word(w_n,Wordform) that are connected
with the next(w_i,w_j) relation and one spatial-indicator candidate is chosen
as the pivot of the interpretation. The word entities are assigned a role
based on the selected pivot.
A sentence with k spatial indicator candidates generates k examples, each
having a different pivot. In this setting a new predicate role(w_i, Role)
is defined such that 1) role(w_j,spatial_indicator) is true for at most
one w_j; 2) Each word wi is assigned the property trajector or landmark,
if it carries that role with respect to the spatial indicator w_j; and 3) the
remaining words are assigned word(w_i,none). If the pivot is not a spatial
indicator, all words in the example will have role(w_i,none).
Target generation rules. Assuming a fixed pivot implies that pairwise
relations are obtained immediately after the tagging phase. We can
declaratively program in kLog to produce sr relations using the below rules
as a post-processing step to the learning and prediction. These rules we name
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target generation rules. These rules construct the ternary relations based on
the predicted components in the sequence tagging.
sr_predicted (I,T,L):- pivot (I), indicator_predicted_seq (I),

trajector_predicted_seq (T), landmark_predicted_seq (L).
sr_predicted (I,T, undefined ):- pivot (I), indicator_predicted_seq (I),

trajector_predicted_seq (T),word(W),
\+ landmark_predicted_seq (W).

sr_predicted (I,undefined ,L):- pivot (I), indicator_predicted_seq (I),
word(W) ,\+ trajector_predicted_seq (W),
landmark_predicted_seq (L).

sr_predicted (I,undefined , undefined ):- pivot (I),
indicator_predicted_seq (I),word(W)
\+ trajector_predicted_seq (W) ,\+ landmark_predicted_seq (W).

The newly introduced predicates such as indicator_predicted_seq(I) are
added to the database after the sequence tagging phase. If the role of trajector
or landmark is not produced then the related argument in sr is ’undefined’,
cf. the example in Section 6.1.
In Section 6.3 the experimental results using SVM-HMM are presented and
compared to their counterpart linear-chain CRF model.

6.3 Experiments

In this section, the experimental setup and the results for SpRL are presented.
For the described problem formulations, the following experimental questions
are investigated:

Q6.1. Can we get reasonable results using a simple binary predicate
classification in kLog’s relational learning for extraction of the true
spatial roles and spatial relation predicates, given its kernel graph and
the relational features?

Q6.2. What is the influence of using background knowledge in the form of
candidate selection rules for classification of the spatial role and spatial
relation predicates?

Q6.3. What is the effect of pipelining the classification of spatial role predicates
and spatial relation predicates?

Q6.4. Does using SVM-HMM instead of binary SVM in classification of the
role predicates improve the pipeline model?

Q6.5. Does using relational multiple sequence tagging improve over binary
predicate classification and the pipeline model?

Q6.6. What are the benefits of relational representation and using sequence
tagging in kLog compared to CRFs according to this case study?
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Dataset. Our corpus in this chapter is a version of CLEF which has been
used for the SemEval-2012 and described in Chapter 3.
Evaluation. The evaluation is based on 10-fold cross validation as explained
in Chapter 4. For unary roles this is the classic evaluation based on true/false
positive/negatives for each role. For the end-to-end evaluation of sr(I,T,L),
the final false/true positive/negative generated triplets are counted against
the ground truth sr’s in the whole kLog’s database.

6.3.1 Triplet Classification I

In these experiments, a kLog script produces sets of positive and negative
triplets per each sentence to train a model for sr prediction. The experimental
questions Q6.1-Q6.4 are considered and to produce triplets the following
options are examined: 1) producing all possible triplets; 2) using candidate
selection rules; 3) predicting spatial roles and pipelining.
For predicting the spatial roles in the pipeline the use of SVM and SVM-HMM
is examined. We describe the spatial role prediction first because it is used in
other steps.

Predicting Spatial Role Predicates

In the first experiment, referred to as Model1, a model containing
three independent binary SVM models is trained using all words as
individual training examples. These form the baseline for unary predicates
trajector(W), landmark(W) and indicator(W). In these models each word
is an example. The total number of words in the data set is 21, 308. The
number of positive roles trajectories, landmark and indicators are 1468, 1593
and 1462 respectively. The words with no role are negative examples. In
spite of an imbalanced distribution of positives and negatives, the spatial role
prediction is feasible with a reasonable accuracy, see Table 6.1. The values
up to two decimal points are significant with 95% confidence interval.
In the second experiment, referred as Model2, the candidate selection
rules (Section 6.1.2.) are used and this reduces the number of negative
examples to a great deal, from 21308 to 7195 for trajector/landmark
candidates (about 66%) and to 2903 for spatial indicator candidates (about
86.4%). However, by applying these rules, on average 11% of positive
roles are not covered. In the Model2 setting also three independent
binary SVMs are used. The results indicate a statistically significant
improvement in the classification of candidate words compared to using
all words (p < 0.05). In the third experiment referred as Model3, the binary
classifiers in Model2 are replaced by SVM-HMM. SVM-HMM considers the
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Model Target predicate F1 Precision Recall #examp.

Model1
trajector(W)
landmark(W)
indicator(W)

0.68
0.68
0.81

0.67
0.64
0.81

0.68
0.71
0.81

21308
21308
21308

Model2
trajector(W)
landmark(W)
indicator(W)

0.72
0.74
0.90

0.73
0.73
0.90

0.72
0.76
0.91

7195
7195
2903

Model3
trajector(W)
landmark(W)
indicator(W)

0.77
0.86
0.94

0.79
0.88
0.95

0.76
0.85
0.92

7195
7195
2903

Table 6.1: Unary spatial role prediction for word entities in kLog, 10-fold
cross validation.

sequential relationships between words in the unary spatial role prediction
(trajector(W), landmark(W), indicator(W) in separate models vs. none).
Considering these correlations improved the results significantly, see Table 6.1.

Spatial Relation Prediction

If all triplets of words are considered as possible spatial relations, the number
of examples produced for sr prediction will be equal to the cube of words
per sentence (= 12, 346, 353), while only 1,716 of these are positive relations.
Hence, due to the huge number of negative examples, training a practical
model is not feasible. By applying candidate selection rules, the number
of triplets is reduced from 12,346,353 to 190,740. However, the disadvantage
is that about 252 of positively annotated triplets are not covered and missed.
This means 15% of the annotated relations that yield 1,464 positive triplets
for this setting. The results of sr prediction in different experiments are
presented in Table 6.2. The details of the settings are described in the
following paragraphs.
sr_1 shows the results of triplet classification in one step by using our default
binary SVM. The candidate selection rule (i.e. the predicate sr_candidate1
defined in Section 6.2.1) is used to produce examples. This is the baseline of
triplet classification.
sr_1_1 exploits the predicted spatial role predicates in learning the
sr prediction model. The role predicates are added to the database
and consequently to the interpretations. Then those are used as new
features attached to the words for the triplet classification. Once more
the sr_candidate1 is used to generate examples yet with the difference that
predicted roles such as the trajector_predicted are employed as new features.
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Target predicate F1 Precision Recall
sr_1(W,W’,W") 0.52 0.50 0.55
sr_1_1(W,W’,W") 0.54 0.50 0.58
sr_2(W,W’,W") 0.60 0.48 0.80
sr_2_1(W,W’,W") 0.50 0.48 0.52
sr_3(W,W’,W") 0.71 0.68 0.74
sr_3_1(W,W’,W") 0.58 0.68 0.50

Table 6.2: Classification of spatial relation predicates (by one step,
two pipeline steps of roles and relations, two pipeline steps of roles and
relations when SVM-HMM is used for the roles), 10-fold cross validation.

The use of these features improved the results of sr_1_1 compared to sr_1
in Table 6.2 by 2%± 1% with a 95% confidence interval for the F-measure.
sr_2 presents the performance of the relation classification in the pipeline
model. In this experiment the first step of the pipeline uses the candidate
selection rules and the binary SVM. Given the recall of spatial role prediction
in Table 6.1, using these assignments for selecting candidates leads to a large
miss about 40% of the true positives. However, we did stacking over the role
classification and triplet classification steps. The sr_candidate2 predicate
is used to generate examples for the second layer, see Section 6.2.1. The
results of stacking are presented in sr_2 line in Table 6.2. These indicate a
6% improve in the F-measure compared to the one step relation classification.
The missed positives are ignored in this line of reported results which implies
a perfect system is needed in the first phase of pipelining to obtain this overall
performance.
sr_2_1 evaluates the whole pipeline system starting from the input sentences.
This end-to-end evaluation indicates a decrease in performance compared to
sr_1. This is due to the propagated errors from the spatial role prediction
step.
sr_3 aims to improve the performance of the pipeline by reducing the errors
of the first step. It uses the stronger model SVM-HMM for spatial role
prediction. The triplet classification is performed using the same binary SVM.
Due to the improvement made in the first stage, the triplet classification in
the second phase significantly improves compared to sr_2.
sr_3_1 examines the end-to-end evaluation of the pipeline model of
sr_3. Compared to the counterpart of this experiment sr_2_1, an 8%± 0
improvement is observed. This model performs 4%± 0 better than sr_1_1
too (with a 95% confidence interval).
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An overall comparison according to the results in Table 6.2 indicates that
the pipeline system that uses the candidate selection rules along with SVM-
HMM for the role prediction and then SVM for the second phase of triple
classification is the best model in the above experiments. This answers the
questions Q6.1- Q6.4.

6.3.2 Sequence Tagging for Relation Extraction II

The goal of this section is to investigate the experimental questions Q6.5-
Q6.6. The main difference of these experiments compared to the last ones is
that the direct target of the learning model is relational sequence tagging. This
is performed using the sequence tagging technique of SVM-HMM [155] plugged
into kLog. This type of modeling for SpRL is described in Section 6.2.2. The
setting is without candidate selection unless for the spatial indicators. The
number of examples in this experiment is equal to the number of candidate
prepositions; that is about 2903 tagged sequences. The predicate role(w_j,R)
is predicted by the sequence tagger. This predicate assigns a relational spatial
role R to each word with respect to a predefined pivot in each sequence. Spatial
triplets derived by a set of rules and the predicate sr_predicted(I,T,L)
are produced directly based on the predicted relational roles in the sequence.
Producing the interpretations in kLog for this experiment is described in
Section 6.2.2.

kLog (SVM-HMM) Linear-chain CRF
Target pred F1 Prec Rec
trajector(W) 0.71 0.75 0.68
landmark(W) 0.87 0.89 0.85
indicator(W) 0.93 0.92 0.93
sr(W,W’,W") 0.60 0.57 0.63

Target pred F1 Prec Rec
trajector(W) 0.79 0.83 0.76
landmark(W) 0.88 0.92 0.84
indicator(W) 0.94 0.92 0.96
sr(W,W’,W") 0.65 0.65 0.65

Table 6.3: Results of CRF, SVM-HMM, 10-fold cross-validation.

Even by ignoring the missed positives in candidate selection of the triplet
classifier, relational sequence tagging performs best for this task, see Table 6.3.
In Table 6.3, we present the experimental results of our previous work [74]
using CRFs too. The current results are not better but fairly comparative
to the results of CRFs. Given the flexibility that is provided by kLog for
declaratively representing the problem and considering the use of background
knowledge these results are promising.
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6.3.3 Experimental Analysis

Comparing the two main sets of experiments indicates the relational sequence
tagging assuming a pivot is the best model which is molded using both CRFs
and kLog. Although the results of applying CRFs are outperforming, kLog
provides a declarative language to present the model, including generating
examples for train/test from the database, performing relational feature
engineering and generating the structure of the output, independent from the
underlying learning model. These are promising answers to question Q6.6.
The performance of triplet classification was low due to the huge number of
negative examples, even in the candidate selection setting. Pipelining and
stacking have a low performance due to the error propagation between the
spatial role prediction and the sr prediction phase.
In the following paragraphs we provide a brief analysis on the relational
representation of the features and the flexible way that kLog deals with them
in the graphicalization process and propositionalization. A more extensive
analysis for the influence of the linguistic features and the errors is given in
Chapter 5 within the propositional modeling.
Feature Analysis. We performed an experimental analysis of the features
by gradually incorporating them in the training phase, the results were
not significantly different than the feature analysis in Chapter 5. In the
triplet classification, even after using candidates a huge number of negatives
remained. Therefore, less dense graphs (i.e. with many edges) are used for
the sake of efficiency. In these experiments the path and distance features
are not used, but only the “next" relation connects the word entities in each
interpretation. Path and distance are used in the sequence tagging approach.
As mentioned in Section 6.1.1, in the process of graphicalization and generating
the propositionalized features in kLog, one can easily set two parameters
called radius and distance. These guide the graph kernel in selecting the
pairwise subgraphs for computing the kernel matrix. Intuitively this allows
us to indicate the size of the relational features and an upper bound for the
distance in the graph to be considered in feature generation. We observed
that the “next" relation has a strong increasing influence in classification of
the roles and consequently in classification of sr relations. This improvement
was 6% for trajectors, 3% for indicators and 2% for landmarks. However
increasing the distance and radius for generating relational features does
not always increase the performance and obviously these parameters can be
optimized by using a validation set. One other observation was that involving
the predicted trajector roles improved the prediction of landmarks by 3% and
the mutual influence of landmarks was also positive.
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Error Analysis. We provide an extensive description of the error types
for spatial role labeling in Chapter 5 with graphical models. Related to
the kLog experiments, one main source of error in both triplet classification
and sequence tagging is the relatively large number of negatives compared
to the positives due to having a structured output i.e. a set of triplets.
This leads to a bias towards no role assignment to the words in multi-class
sequence tagging and also to classifying the triplets as negative in the triplet
classification. However, this issue is more problematic in triplet classification
and dramatically decreases the performance. We performed some experiments
using a random selection of negatives to create a balanced data set. In these
experiments a 10-fold-cross validation over the same data shows a very high
precision and recall. However in a realistic setting in which all the possible
negatives should be tested, even a 99% accuracy on the negatives introduces a
large number of false positives and decreases the precision sharply. Moreover,
the error analysis confirms again the importance of the lexical features and
also the necessity of finding a solution to this well-known problem in linguistic
semantic tasks.

6.4 Related Work

In this chapter we point to related works that apply statistical relational
learning for natural language processing and general information extraction
tasks. The most relevant relational learning models that are applied in
different domains are relational Markov networks (RMN) used for relation
extraction from biomedical texts [14], and also for link prediction in web
data [149]. Markov logic networks also have become popular models for
natural language processing and information extraction [38, 109, 96] and
are used for semantic role labeling, information extraction and coreference
resolution. All these works are based on learning and inference techniques
in probabilistic graphical models. The advantage of using kLog compared
to these models is its more flexible relational representation language based
on the notions of relational and deductive databases exploiting Prolog for
relational feature extraction and its ability of deductive analysis exploiting
background knowledge. Moreover, using the powerful graph kernel it can
capture the long distance dependencies by means of extensive relational
input features instead of explicit modeling of the correlations between output
variables as in the above mentioned models. kLog is successfully applied on
some linguistic tasks such as hedge cue detection [159] and for identifying
evidence based medicine categories [158].
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6.5 Conclusion

We presented the SpRL problem using the relational learning framework of
kLog motivated by its flexible first order logical representation of the data and
knowledge compared to the propositional models. Moreover, kLog’s powerful
graph kernel can capture the long distance dependencies by using extensive
input relational features. The experimental findings in this framework are: a)
A binary classification of the spatial relation predicates with three argument
performs poorly. This is due to the huge number of false predicates (i.e.
triplets) compared to the number of true ones as training examples. In this
setting, even the long distance relational features produced by the graph
kernel can not help alleviating this problem; b) Using background knowledge
in the form of candidate selection rules helped to reduce the number of
negative triplets. This made the prediction of the spatial relation predicate
feasible given the relational features though the performance was lower than
some next settings; c) Various pipeline models which do role prediction in a
first phase, for decreasing the negative examples, had the typical side effect
of error propagation and a low performance; d) Considering the dependencies
between the output entities by using SVM-HMM under kLog showed sharp
improvements over the SpRL mentioned above models which is comparable
to the experiments by using its CRF counterpart.
We find kLog a very flexible and suitable language for performing experiments
in such relational domains. kLog easily allows querying from a database for
retrieving various relational features and storing the new predictions as new
tables in the database and hence facilitates building pipelines or various kinds
of combinatory models over basic classification models. It provides the facility
of deductive analysis over the declaratively described background knowledge,
prior or posterior to the training by using the underlying Prolog. This is a
great potential for integration of learning and logical reasoning models for
our future goal of spatial understanding.
Given the remaining challenges such as dealing with a large number of negative
examples in such relational domains with structured output, and given that
the experimental results using SVM-HMM and CRFs confirm the advantage
of considering the correlations between the output variables during training,
we aim to integrate all these aspects in the last part of this thesis. Our
next investigation over structured output prediction models in addition to
considering background knowledge during training, applies not only to SpRL
but also to the full ontology population. Mapping to the full spatial ontology
is a richer problem for these kind of investigations and is the subject of Part
III of this thesis of Chapters 7 and 8.



Part III

Structured Learning: from
Language to Spatial

Ontologies

137





Outline

Given the general targeted task defined in Part I, and the experimental
investigation of Part II using graphical models and relational learning for
SpRL, in this part we extend and investigate the problem from different
angles. We explore the extended ontology population task, structured machine
learning in a relational data domain and efficient approximate inference for
global learning in the presence of global constraints.
We extend SpRL to a kind of general ontology population task. Ontology
population is a relational learning problem in which the concepts and relations
in a predefined ontology are assigned to arbitrary segments of the input
text and the ontological constraints can be considered during training and
prediction.
The main line of research and practice in this part of the thesis contains: a)
Providing a unified structured learning framework for ontology population; b)
Designing structured learning models that are able to exploit relational
features, structural and ontological characteristics of the problem and
constraints on the output; c) Designing efficient approximate inference models
for global learning in the presence of global constraints; d) Experimental
investigation and evaluation of the structured learning models on the spatial
ontology population; e) Assessing the influence of the relational features and
global constraints in the designed structured learning framework for spatial
ontology population.
Our general learning framework for ontology population and the global
inference during training and prediction are discussed in Chapter 7. The
grounded model for mapping the natural language to our predefined spatial
ontology and the experimental results for a variety of local and global models
are the subject of Chapter 8. The following documents are related to this
chapter.
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Chapter 7

Structured Learning for
Ontology Population

In this chapter, we introduce a general structured learning framework for
mapping natural language to arbitrary ontologies or the so-called ontology
population task. We view ontology population as a relational learning
problem in which the input natural language sentences can be segmented and
represented as a number of entities with their properties and relationships,
and the output is an ontology of which the concepts are populated with the
relevant input segments. We introduce a learning framework called Link-And-
Label based on the notion of templates and a basic component-based loss in
the context of constraint optimization for structured learning in relational
domains. We propose an efficient inference approach called communicative
inference in order to deal with the large number of output variables that
should obey certain structural constraints. We discuss relevant decomposed
inference approaches that can be applied in our learning framework. Although
we do not propose a formal language for relational representation in this piece
of work, we discuss the underlying structured learning model which can be
connected to any formal relational representation language in the future.
In Section 7.1, we describe the Link-And-Label model. In Section 7.2, we
discuss the global and decomposed inference algorithms to be applied during
training and prediction. Section 7.3 provides an overview of the related
research. In Section 7.4, we conclude.

141



142 STRUCTURED LEARNING FOR ONTOLOGY POPULATION

spatial relation

Direction
Distance

Region

PO

EQ
left

right
front

below

above

back

EC

DC

PP

spatial indicator trajector landmark 

is-a
is-a is-a

is-a
is-a

is-a

is-a

is-a

is-a
is-a

is-a
is-a is-a

composed-of composed-of composed-of

is-a

Ontology population

SpRL

SpQL

12

on, statue,hill

on, statue,hill

on, statue,hillon, statue,hill
on, statue,hill

There is a white, large statue with spread arms on a hill.
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Structured machine learning! Figure 7.1: The spatial ontology populated by spatial roles and relations
in one sentence.

7.1 Link-And-Label Model

Ontology population is the process of inserting concept and relation instances
into an existing ontology. In a simplified view, an ontology can be thought of as
a set of concepts, relations among the concepts and their instances. A concept
instance is a realization of the concept in the domain, e.g. the instantiation of
the concept as a phrase in a textual corpus [108]. Figure 7.1, shows an example
of spatial ontology population. In this example, the segments of the input
sentence, which are words such as statue and triplets such as on,statue,hill,
populate the concepts and the relationships such as trajector and Region
represented in the spatial ontology.
In the ontology population the components in the input space are grouped
according to their types. There are relationships between the types such
as is-a and composed-of, etc. The groups of the input components can be
associated to various types and hence will have similar relationships according
to their types. This means, learning to populate an ontology forms a relational
learning problem.
To directly apply the general formulation of structured learning in Chapter 2,
the structured inputs and outputs should be turned into a flat vector
representation and a loss function and a solution to the inference problem
should be provided to the learning algorithm. Designing these components for
real world problems is very challenging. Having an expressive representation of
the learning model is always useful besides having an expressive representation
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of the data model [101]. Particularly in relational domains, such a
representation eases designing, assessing and improving the learning models.
In this section, we aim to provide a simple and useful abstraction for
designing unified1 structured learning models for ontology population from
text. We describe the learning components (i.e. input/output/features/con-
straints/loss/inference) via a model which we name Link-And-Label (LAL).
We explain the way we build the objective functions for the inference during
training and during prediction according to the relational data and the
knowledge for the ontology population task.
The Link-And-Label name, is inspired by the conceptualization process that
a human performs in general. We usually group objects which are related
to each other by having some commonalities and we label them as a new
concept. In our case the various segments of the text are linked to each other
and labeled as an instance or an indicator of a specific concept. The labels
themselves are the new properties of the higher level concepts; therefore,
by linking a number of labels (for example in the case of a composed-of
relationship) we build more complex concepts and new labels (such as spatial
relation which is built upon the concepts of trajector and landmark).
In general, concepts can have various relationships which are considered in
designing ontologies [51]. The relationships between concepts describe the
relationships between the instances of them. This feature stimulates treating
ontology population as a relational learning problem exploiting the ontology
as a first order representation of the output space. From the machine learning
point of view, objects are grouped based on their known properties and
relationships. Then their unknown properties and relationships are to be
predicted. The goal of applying machine leaning models is to categorize
the original objects in new groups with new types of relationships in an
output space which represents a new semantic layer. According to the
machine learning problem setting, we distinguish between the concepts and
relationships in the input space and in the output space of the domain data.
To show the Link-And-Label abstraction layer, first we describe the concepts
and the terminology that we use based on the input and output distinction.
Then we describe the form of the objective function of the training and the
prediction for ontology population in this framework.

7.1.1 Input Space

We represent each input x by a set of components {x1 . . . xT }. The components
can be of different types. Each xk ∈ x is described by a vector of the feature
1By unified we mean a model that deals with relational input and outputs, considering

the correlations between the outputs, e.g. ontological relationships and constraints.
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values relevant for its type. The feature vector is denoted by φp where p is
an arbitrary index that refers to a specific type. For instance, in semantic
labeling of text an input type could be a word or a prepositional phrase
composed of two noun phrases connected by a preposition, and each type is
described by its own typical features (e.g., a single word by its part-of-speech,
the prepositional phrase by the distance in words of its head nouns). We
refer to each component in the input by an identifier. A component can be
composed of a number of other input components in which case it is called a
composed component and is identified by the identifiers of its parts. We refer
to atomic components as single components. The features that describe a
property of a single component are called local and the ones that describe the
relation among more than one single component are called relational features
(See Chapter 4).

7.1.2 Output Space

The output space y is represented by a set of labels l = {l1, . . . , lP }. Each
label lp ∈ l refers to specific semantics in the output. The labels are defined
based on the nodes in the ontology and have ontological relationships to each
other. To be able to represent complex output concepts in general for any
arbitrary task, we distinguish between two types of labels, the single labels
and linked labels that refer to an independent concept and to a configuration
of a number of related single labels respectively. Linked labels can represent
different types of semantic relationships among single labels. They can express
composed-of, is-a and other semantics given in the ontology.
To show which labels are connected by a linked label, we represent the linked
labels by a label string.

Definition A label string is the concatenation of a number of labels. In fact
a label string shows the parts of the output that are linked to each other and
construct a bigger semantic part of the whole structure.

For example as you see in figure 7.2 a spatial relation can be denoted by
sp.tr.lm meaning that it is composed of these three single labels. Label strings
can also imply is-a or other semantic relationships between concatenated
labels.

Definition A label l is a sub-label of a label l′ when all single labels that
occur in the label string of l also occur in the label string of l′, denoted by
l ≺ l′. In this case we call l′ a super-label of l.

For example, in figure 7.2 sp is a sub-label of sp.tr.lm.
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Figure 7.2: Syntactic relationships between labels represented via the
label strings.

7.1.3 Connecting Input and Output Spaces

The objective function of a structured learning model, that is g(x, y;W ),
described in Chapter 2, is defined over the combined feature representation
of the inputs and outputs denoted by f(x, y) (See Formula 2.19). In the LAL
model, we treat labels as binary indicator functions that receive an input
component and indicate whether the component has a certain label. In fact,
the binary indicator function for each linked label is defined according to its
semantics. For example a spatial relation label should be defined in a way
to convey the composed-of semantics based on the labels of its components.
We highlight two properties of our setting that deserve attention. Firstly,
because we allow input components of different types, usually an output label
only applies to a certain type of input component (e.g. a label can only be
assigned to a word, another label only to a pair of syntactically connected
words). Secondly, given a particular type, more than one input component
of that type can be associated to a label. In fact, each label can refer to a
set of components. We use both notations of lp(xk) or lpk to indicate the
membership of the component xk in the set of components with the label lp.
To formally specify the connections between input components and output
labels we use the notion of template. This notion has been used mostly in
relational graphical models [26, 14] (see Chapter 2). The learning model is
specified with a set of templates C = {C1, . . . , CP }, where P is the number of
templates defined for the application. Each template Cp ∈ C is specified by
three main characteristics,

• A subset of joint features (i.e. a local joint feature function or a sub-
mapping). Each local joint feature function is defined over a number of
input type(s) and output label(s) which are associated to that template.
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Figure 7.3: The input is given to a set of predefined templates and the
local joint feature functions are produced for the relevant components
of the input.

The local joint feature function of a template Cp is denoted by fp(xk, lp),
where xk indicates a single or composed component of the input and lp
is a single or linked label that is entailed from the ontology labels l.

• Candidate generator. It generates all candidate components upon which
the specified subset of joint features is applicable, the set of candidates
for each template is denoted as Clp .

• A block of weights Wp. This is a block of the weights in the main weight
vector W of the model which is associated to that template and its
sub-mapping.

The design of the learning model is represented by the specification of its
templates which are designed based on the labels in the ontology and the
links between them.
LAL objective function. In the main objective discriminant function
g = 〈W, f(x, y)〉, we explicitly represent the weight vector W with its blocks
of weights as W = [W1,W2, . . . ,WP ], where each block Wp is associated with
a template. Hence the objective can be written in terms of the instantiations
of the templates and their related block of weights, Wp. In other words, g is
a linear function in terms of the combined feature representation associated
to each candidate input component and an output label according to the
template specifications (see Figure 7.3),

g(x, y;W ) =
∑
lp∈l

∑
xk∈Clp

〈Wp, fp(xk, lp)〉 =
∑
lp∈l

∑
xk∈Clp

〈Wp, φp(xk)〉lpk =

∑
lp∈l

〈Wp,
∑

xk∈Clp

(φp(xk)lpk)〉, (7.1)

where fp(xk, lp) is a joint feature vector which is an instantiation of the
template Clp for its candidate xk. This feature vector is computed by scalar
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multiplication of the input feature vector of xk (i.e. φp(xk)), and the output
label lpk. This output label is the indicator function of label lp for component
xk. Clp denotes the set of candidates for template label lp. Each indicator
function of a template linked label is applied on the relevant input component
and its value is one when the intended semantics behind it holds for that
component. For example if a template is an and template, it means the
indicator function of the linked label is one if all included single label indicators
are one when applied on the input parts. In this case we can represent the
linked labels with the scalar product of the indicators of the sub-labels when
forming the objective g. In this way, g is written in terms of the output
labels. Hence, we can view the inference task as a combinatorial constrained
optimization given the polynomial g which is represented in terms of labels,
subject to the constraints that describe the relationships between the labels.
For example, the composed-of relation between a linked label l denoted by
the label string l = li . . . lj , and its single sub-labels can be represented by
the following constraint,

(l(xc) = 1)⇒ (li(x1) = 1) ∧ · · · ∧ (lj(xn) = 1),

where each label l− applies only on a relevant type of component xk and,
xk ⊆ xc, ∀k = 1, . . . , n; and the is-a relationships can be defined as the
following constraint,

(l(xc) = 1)⇒ (l′(xc) = 1),

where l and l′ are two distinct labels that are applicable on the type of
component xc. These are two commonly used ontological relationships also
in our spatial ontology, but many other ontological relationships can be
represented and directly exploited in a learning model.
In designing templates, the highly correlated labels should be linked to each
other and be considered in one template (See specific examples in Chapter 8).
However, there can be global correlations that are not considered inside
templates due to complexity issues (e.g. a large number of candidates). The
correlations between the variables of different templates can be modeled
via a number of (hard) constraints. The constraints can hold between
the instantiations of one template which implies the relations between the
components of one type also referred to as autocorrelations according to the
terminology used in relational dependency networks in [101]. These (hard)
constraints are exploited during training in the loss-augmented inference and
are imposed on the output structure during the prediction. Particularly, we
treat the objective as a linear function in which the association between linked
labels and single labels in addition to their global relationships are modeled
via linear constraints. In other words, each linked label is considered as one
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new variable and its connection to other labels is reflected in the formulated
constraints.
Each time, we need to do inference over an input example, we build a
new instance of the main objective function and the related constraints.
This process, at the conceptual level, is similar to knowledge-based model
construction [164]. In contrast to KBMC models, we construct a non-
probabilistic model which is a multinomial function with a number of first
order2 constraints that are also instantiated. The inference is performed
by combinatorial optimization instead of probabilistic inference. Our LAL
model is well-posed to be represented using a first order language. To shortly
clarify this we note that the input components are typed so the types and the
attributes of each type are easier represented using a first order language; the
output labels can be seen as binary predicates that function on the arguments
derived from the input space. The templates are defined based on the types
of input and output, thus are a first order abstraction of the learning model
structure. The constraints, as we showed in the two above examples, are
inherently first order though in practice are compiled into a linear form.
We present how we apply this approach in Chapter 8, when modeling the
relationships in our spatial ontology.

7.1.4 Component Based Loss

In the formulation of the structured learning in both structured SVM and
structured perceptron frameworks any arbitrary loss function ∆ : Y ×Y → R
can be considered. However, we assume the loss function is decomposed in
a similar way as the joint feature function. In this way we avoid increasing
the complexity of the loss-augmented inference during training compared
to the prediction time inference (see Foundations chapter, Section 2.1.3,
Formula 2.22). Hence, we define a component based Hamming loss for various
output components. Hamming loss counts the number of disagreements for
two binary vectors λ and λ′ with length n,

∆H(λ, λ′) = 1− (|λ� λ′|+ |(1− λ)� (1− λ′)|) = |λ|+ |λ′| − 2|λ� λ′|,
(7.2)

where � denotes the element-wise product and |.| denotes the 1-norm of
a vector which in the case for binary vectors is the number of ones. The
Hamming loss is divided by the length of the vectors to get a normalized
value between 0 and 1,

∆H̃(λ, λ′) = 1
n

(|λ|+ |λ′| − 2|λ� λ′|). (7.3)

2Because constraints can be over types of variables.
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We define a component-based loss for each template label lp by measuring
the Hamming loss between the vector of predicted labels for all candidates
(denoted by Λlp) compared to the ground truth assignments (denoted by Λ′lp)
and normalize by the length of the vectors (=number of candidates),

∆lp(Λlp,Λ′lp) = 1
|Clp |

|Clp |∑
k=1

∆H(lpk, l′pk) where ∆H(lpk, l′pk) = lpk+l′pk−2lpkl′pk.3

(7.4)
In addition to the above mentioned motivation and the complexity issues, using
this type of loss function is very natural for ontology population because we
basically perform a kind of collective classification over all input components
with respect to the nodes in the ontology and a simple 0/1 loss over all (link)
label assignments is jointly minimized at the end.
When some labels have priority for the application at hand, the Hamming
loss between the labels can be simply weighted based on their priority and
aggregated such as follows,

∆(Y, Y ′) =
P∑
p=1

ωlp∆lp(Λlp ,Λ′lp), (7.5)

where ωlp is the weight of each template label lp and P is the number of all
templates used in the modeling. Hereafter we refer to ωlps as preferences
which obtain their values from an expert. In this way, the loss also is yet
expressed in terms of the labels, and the two inference problems for training in
Formula 2.22 and prediction in Formula 2.18 are similar (in terms of variables
and constraints) and finding a solution to one applies to the other. Therefore
to represent and describe the inner inference at training time we only discuss
the same objective g for the sake of brevity in the representation. Now that
we formulated the main objectives, providing efficient solutions for inference
over these objectives is the subject of the next section.

7.2 Global Training and Prediction

Punyakanok et al. [111] describe three fundamentally different solutions to
learning structured output prediction at a high level,

• Learning only (LO): Local classifiers are trained and used to predict
each output component separately.

3As if these binary labels are vectors with length one.
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• Learning plus inference (L+I): Training is performed locally as
in the LO models, but the global constraints/correlations among
components are imposed during prediction. These models are formulated
in a general framework referred to as constrained conditional models.

• Inference based training (IBT): Inference is used during training
so that the constraints and dependencies among the variables are
incorporated into the training process. In fact, these models are referred
to as structured output learning models.

However for training, there is a spectrum of various model compositions
between two extreme sides of strict local training as in LO and L+I schemes
versus a strict global training in the IBT scheme. At the extreme side of strict
local training, an independent binary classifier is trained for each output
variable using local examples relevant for each part of the output. On the
other extreme side of IBT training which we refer to as global learning [130],
the inference during training is supposed to be solved over the entire output
space for each training example. Global learning in its strict meaning implies
performing exact inference considering all correlations and constraints among
output variables which is not alway feasible and also not always required for
the learning problems.
In an ideal IBT setting for the LAL model, a global combinatorial constraint
optimization should consider all correlations and ontological relationships
between the output labels in both training time and prediction time inferences.
As described in Chapter 2, LP-relaxation is an efficient way to approximate a
MAP solution for such complex problems. Though there are many off-the-shelf
solvers that can provide such solutions, still this combinatorial optimization
can become highly inefficient given our relational data domain. Because the
objective function which is represented in terms of templates along with the
first order constraints in practice can produce a large number of output labels
and linear constraints, when instantiated for each example (depending on the
overall candidate components of each example).
To solve this problem we make an additional layer of decomposition as a
meta frame for applying off-the-shelf LP-solvers. Decomposition is the general
approach to solve a problem by breaking it into smaller ones and solving
each of the smaller ones independently [13]. This is an old approach which
has been studied extensively in the optimization literature [11]. There are a
number of general ideas and various techniques for decomposition through
which one can approach solving large problems that are not solvable with
one standard technique. Hereafter we use the term decomposition according
to its technical definition rather than conceptual, provided by Samdani et
al. [130] in the learning context as:
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Definition Given a set of L binary output variables4 indexed by {1, . . . , L},
a decomposition S is a set containing distinct and non-inclusive (possibly
overlapping) index sets which are subsets of {1, . . . , L}:

S = {s1, . . . , sq|∀i, si ⊂ {1, . . . , L};∀i, j, si * sj},

where q, the decomposition size, indicates the number of subspaces considered
in the output space. Also given a set s ⊆ {1, . . . , L}, let −s = {1, . . . , L}\s.
ys ∈ {0, 1}|s| denotes an assignment to the variables indexed by set s.
In this work by generalizing a formulation made in [130], we assume an
arbitrary oracle can provide an assignment to y and we refer to it as yoracle.
Accordingly, we define (ys, yoracle−s ) as the output formed by replacing the
labels in yoracle indexed by s by the corresponding labels in ys. For each
training/test example a decomposition Si is associated and an inference
subproblem is defined as follows: Given an oracle assignment yoracle, pick a
set s ∈ Si fix the labels in yoracle−s and find the best assignments to ys, over
all feasible selections of y and over all s ∈ Si and return the labels. Before
providing the details about the considered decomposition approaches based
on this formulation, we discuss the loss-augmented inference and the role of
violating examples in global learning both formally and intuitively.

7.2.1 Globality and Violating Examples

Solving the global loss-augmented inference in IBT models for the LAL’s
objective function implies selecting a globally violating output that updates
all blocks of the target weight vector W jointly. In this way, the structured
loss and the constraints over the output variables are exploited to achieve
the optimum weight vector W ∗. To make the role of the violating outputs
more clear we first provide a relevant definition given in [59].

Definition The standard confusion set CFs(E) for training data E is the
set of triplets (x, y, z) where z is a wrong output for input x. A triplet
TS = 〈E, f, CF 〉 is called a training scenario, where CF = CFs(E).

Definition A triplet (x, y, z) is said a violation in the training scenario given
a weight vector W , if (x, y, z) ∈ CF and the learning constraint 2.20 or 2.21
does not hold.

In global learning for a target model the most violated triplet denoted by
(xi, yi, ŷ), is selected per training example (xi, yi) from the confusion set.
4Here we use capital L rather than l to refer to all output variable instances of an example

rather than the type of the labels in the output space.
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Thus the whole model weight W is updated jointly on the basis of one
globally violating output per example. By contrast, when training local
models in LO or L+I models, the blocks of the target weight vector are
updated independently by considering the violating outputs related to each
label which can contain all negative candidates for that label.
Approximating the global inference can result in finding less global violations
and hence less ideal updates of the weight vector [59]. For structured SVMs
the theoretical guarantees for the convergence of learning in the case of
approximate inference have been investigated in [40]. The guarantees in case
of structured perceptrons have been studied in [59]. The authors explain
why in certain sub-optimal solutions to the loss-augmented inference, the
convergence still is guaranteed.
If we approximate the global inference by decomposing the objective function,
for instance in terms of individual labels, in its extreme case without
considering any constraints, inference will be trivial. In this case, the most
violated output with respect to each label will be the relevant input component
with the opposite label. Hence, the training scenario contains all input
components labeled with opposite output labels compared to the ground
truth. Thus the training scenario becomes exactly similar to training local
binary classifiers because the training scenario for a binary classifier for a
particular label also uses a confusion set that contains all negative candidates
of that label and all of them are potentially used for training. In other words,
all candidates act as independent and identically distributed (i.i.d) examples
for learning the weights related to each label as in local training of binary
classifiers.
When decomposing a complex inference task into smaller ones, the number
of violations that we then call local violations can be many more than the
number of global violations and therefore they can redirect the training from
learning the optimal W . If we use the decomposition in its conceptual sense
rather than technical, the learning-only (LO) models are, in fact, a form of
decomposed learning in which the correlations between the subproblems are
totally ignored. Decomposing the inference in a way that each subproblem
considers a number of labels together and thus selects more globally violating
examples will help updating the model weights jointly. This will yield a
solution that is closer to learning the optimal model. In the next section we
discuss our proposed approach based on decomposing the output space for
efficient global inference as well as the most recent relevant approaches that
consider splitting the global inference and still exploit the global structure of
the output.
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Algorithm 4 Communicative inference
1: Given an example (x, y) and the objective function H(y)
2: Given a decomposition over y as Sx = {y1, y2}, {H(y), H(y1, y2)}
3: Given two disjoint subsets of constraints c1 and c2 over y1 and y2
4: t← 0
5: Initialize yt1, yt2
6: repeat
7: t← t+ 1
8: yt2 ← arg maxy2 H(yt−1

1 , y2)
{A LP-relaxation subproblem subject to c2}

9: yt1 ← arg maxy1 H(y1, y
t
2)

{A LP-relaxation subproblem subject to c1}
10: until (yt−1

1 = yt1 ∧ yt2 = yt−1
2 ) ∨ t > Tmax

11: ŷ ← [yt1, yt2] { ŷ is the MAP of H over y}

7.2.2 Communicative Inference

We propose an approach for decomposing the inference that can be applied at
both training and prediction time and we call it communicative inference. The
basic idea behind this approach is that given a decomposition by an expert, the
inference subproblems are solved independently but communicate with each
other by passing messages, that is, passing solutions. To implement this idea
we use an approach which has a similar intuition as block coordinate descent
(BCD) [154] methods also referred to as alternating optimization (AO) [12]. In
these methods, given a general objective function H of multivariate y, to find
the MAP of H we can divide the variables into a number of blocks assuming
that each block has a local maximizer. Here, H(y) is the objective of the loss-
augmented inference problem at the training time and is equal to g(x, y;W ),
in Formula 2.19, that is the trained objective function at the prediction time.
Our suggested communicative inference is presented in algorithm 4 for a
decomposition S = {y1, y2} containing two blocks of variables y1 and y2. At
the starting point the oracle is a random initializer, assigning random values to
the output variables in the decomposition set. Then at each step we optimize
over one block of the target variables (i.e. one member of the decomposition
set) while the other block is set with the last partial MAP assignment from
the previous step, see figure 7.4. In fact, to solve a subproblem the oracle
assignment is the solution from the previous iteration. In contrast to the
standard setting of AO, in our setting the variables are discrete and each
subproblem is solved approximately by a LP-relaxation technique with a
relevant subset of constraints activated. As pointed in Section 2.1.7, the
solution to LP-relaxation subproblems are optimal and the convergence is
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Figure 7.4: Finding the most violated y for a given input x using
communicative inference (blue cycles show the fixed variables at each
step).

guaranteed if the constraint matrix has the unimodularity property. It is
easily proved that in this case the convergence of the communicative inference
is also guaranteed. To shortly clarify, if we assume a maximization setting,
then the value of the objective function at step i can not be less than its
value at step i − 1, otherwise the solution of step i − 1 is selected as the
optimal solution (because we know each subproblem is solved exactly). Given
this monotonically increasing sequence of objective function values during
the optimization iterations and given that we have a finite space (due to the
given discrete space problem) the algorithm is alway convergent. However, in
the worst case an exhaustive search can be performed.
At prediction time, we establish communicative inference between two
arbitrary models, each of which can be trained jointly or independently.
At training time, it allows a joint update over all blocks in the weight vector.
Hence it can provide more globally violating examples. The main advantage
of this approach is that the models can follow their own MAP methodology,
based on any approximate or exact inference technique.

7.2.3 Decomposed Training (DecL)

In decomposing complex inferences during training, one can exploit some
properties that are not available for simplifying inference during prediction.
For example, the ground truth labels are available during training and the
partial MAP solutions can be used at each iteration. In addition at training
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time the final goal of inference is to optimize W , therefore being globally
optimal in y is marginal and not necessarily needed. These differences call for
particular considerations for training time inference which have been taken
into account in the DecL learning model in [130]. We look at DecL as an
alternative approach to simplify the complex inference problem we need to
deal with for the ontology population.
The general DecL algorithm is shown in Alg 5. This algorithm, given
a decomposition, each time performs efficient learning by restricting the
inference step to a limited part of the structured output spaces.
Formally, for a training instance (xi, yi) ∈ E, let nbr(yi) ⊆ Y be a subset of
the output space defining a neighborhood around yi. The key idea behind
decomposed learning (DecL) is to learn W by discriminating the supervised
label yi from only all ỹ ∈ nbr(yi) instead of all y ∈ Y. The nbr(yi) is
generated by fixing a subset of the output labels to their ground truth in
yi, while allowing the rest of them to vary. This means, according to the
general formulation of Section 7.2, the oracle here is the ground truth data.
The confusion set each time contains only the wrong ys in the neighborhood
of yi. In the example shown in figure 7.5, the decomposition contains four
subsets, each time three subsets are fixed with the values obtained from the
ground-truth oracle (G-th) and one subset of variables can vary. The most
violated example is found locally for the varying subset. The globally most
violated output for each training example is chosen based on the MAP of all
the solved subproblems.
Using the ground-truth yi of each training example as the oracle (see above
Section 7.2) leads to minimizing the following convex function over N training
examples (cf. formula 2.23).

DecL(W ;E) =
N∑
i=1

max
s∈Si ys∈{0,1}|s|:(ys,yi−s)∈Y

[
g(xi, (ys, yi−s);W )− g(xi, yi;W )

+∆(ys, yis)
]
, (7.6)

And accordingly the most violated constraint for each example is computed
as it is shown in line 5 of Algorithm 5.
One label decomposition. By considering a decomposition S that contains
si subsets with only one label, we will have an approach proposed in [138]
called Pseudo-Max which allows one label to vary and sets the rest of them
as ground truth. In other words ys ∈ {0, 1} in formula 7.6. In Pseudo-Max
all blocks of the weight vector related to a single label are updated jointly.
The violating examples are picked from the confusion set that vary only in
one label compared to the ground truth. Hence no inference is needed and
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Algorithm 5 Sub-gradient-descent Alg. for DecL [130]

1: Given: training data: E = (xi, yi)Ni=1; step sizes ηt; decompositions: S =
(S1, . . . ,SN )

2: W ← 0
3: for t = 0 to T do
4: for i = 1 to N do
5: ŷ ← arg maxs∈Si ys∈{0,1}|s|:(ys,yi−s)∈Y [g(xi, (ys, y−s);W ) + ∆(ys, yis)]
6: W ←W + ηt(f(xi, yi)− f(xi, ŷ))

the maximum number of violating examples will be as many as the number
of output labels. Violating examples update the blocks of the weight vector
related to a label each time. In the presence of large data with examples
drawn from the right distribution this model can cover learning over all
regions in the output space [138]. However, the theoretical proof about the
Pseudo-Max does not consider the presence of constraints and only covers
the case in which the correlations are modeled in the feature function as a
pairwise Markov model, therefore the DecL extends the Pseudo-Max idea in
various dimensions. This model is referred to as DecL-1 in the experiments
described in Section 8.3.

Pairwise decomposition. Each decomposition S contains all subsets of
size 2 from the output space, so ys ∈ {0, 1}2 in formula 7.6. The model
allows two labels to vary while all other labels are fixed by the ground truth
assignments. The violating examples are chosen by doing loss augmented
inference in the space of only two variables each time, hence the pairwise
correlations are directly considered. This model is referred to as DecL-2 in



GLOBAL TRAINING AND PREDICTION 157

the experiments described in Section 8.3.

7.2.4 Decomposition in Relational Domains

To fulfill the properties that theoretically guarantee the globality of the DecL,
an exhaustive number of decompositions are needed. Though solving the
inference in each subset of variables can be exact and efficient, producing
all subproblems and adapting the constraints for each subset of variables is
an extra overhead. However, in the relational domains where the variables
can be grouped based on their type, the type of input components can guide
the way we decompose the output space. In these problems considering the
relational structure of the variables helps to find the decompositions that
semantically are sensible. For example, in the Dec-2 setting, distinguishing a
variable of type trajector against another variable with the same type is not
sensible, but we need to be able to distinguish between the instantiations of
trajectors and landmarks. Hence, we may decompose the output based on
the type of the candidate components.
In the relational case, local learning (see Section 7.2.1) can be described as
a decomposition in which the labels related to only one template can vary
while the rest are fixed to the ground truth. Moreover, the fixed variables
do not propagate any constraints to the free variables, and the candidate
components are assumed to be independent by acting as i.i.d examples.

7.2.5 Decomposition in Pipeline Models

Traditionally, pipelines are defined as a cascade of models. At each stage one
model has access to the initial input in addition to the predictions from models
used in the previous stages [123]. Many natural language processing models
include such pipelines of various subtasks of which performing them jointly
can be beneficial. We can view the pipeline models as a kind of decomposition
where in the decompositions of S each set s contains the output variables of
one stage of the pipeline. In the first training iterations the output of the
first stage of the pipeline is variable and the outputs of the rest are fixed.
Afterwards the first stage variables obtain values from the ground truth and
the second stage is learnt in the second set of iterations and so on. In this
style the decomposition parts are ordered and training is done for each subset
separately, in a sequential setting. Obviously, this type of decomposition
does not have the properties that lead to the globally optimal solution for
the learning. The main drawback of this type of decomposition is that the
variables in different subsets si are highly correlated. There could be soft
relationships between these variables or even one subset can impose hard
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constraints on the others. For example, in the two layered spatial semantic
model, having a semantic label is meaningful for a triplet only if that triplet
is a spatial one. In other words there is an is-a relationship between the
variables of the two layers. Therefore, setting a variable in the second layer
imposes hard constraints on the first layer variables. Therefore, one cascade
direction of training is very natural in these situations. However, the order
of the stages can be ignored by training in any arbitrary direction in the
pipelines. The problem with this latter approach is that the constraints often
can not be propagated when setting a succeeding stage as ground truth as
in DecL because propagating the constraints in the succeeding stages that
depend on the variable of the previous stages often does not give the freedom
to do inference by restricting the feasible space. Moreover in the pipeline
setting all violating examples from the subspaces are used for training (instead
of the most violating among them). This latter property can be used in the
DecL standard setting also to exploit directly from the partial inferences
in the small subspaces of the output. Obviously, pipelines take less-global
violating outputs compared to an ideal global model.

After all, to obtain an effective learning decomposition, sophisticated problem
specific decompositions according to expert knowledge are needed and there
are difficult trade-offs in selecting the decompositions as well. Having all
correlated variables in one block often results in an inference task as difficult
as the original one, while decomposing the relationships between the variables
and ignoring correlations trades optimality.

7.3 Related Work

The related previous works on ontology population [127] mostly consider: a)
An extensive preprocessing step applying NLP tools; b) External linguistic,
web or relevant database resources; c) Learning in pipeline models for
extraction of the terms, concepts and the relationships for classification
or clustering over the extracted material; and d) Post processing for resolving
the inconsistencies in the predictions. According to a comprehensive study
in [166] the related works are at the level of term, concept and relation
extraction, and a few works exist that implement more logic-based approaches
for axiom extraction. To our knowledge there is no unified model proposed
to extract these elements collectively in one unified framework of structured
machine learning by considering the ontological relationships and background
knowledge as global constraints, while we do in this work.
Our learning model is appropriate for structured learning in relational domains
given that we deal with different types of components in the input and
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output. Our approach for producing the objective functions for inference
during training and during prediction, is similar to knowledge-based model
construction. To specify our model we use the notion of templates as in
relational graphical models to produce the objective function for each example.
In relational graphical models, clique templates [14] are grounded to produce
the structure of the probabilistic inference over each relational input. However,
by unrolling the templates, we construct a non-probabilistic model in the
form of a multinomial function, instantiate a number of first order constraints
and solve the inference with combinatorial approaches. To our knowledge,
this connection has not been formalized before. Compared to relational
learning frameworks discussed in Section 6.4, we only approach the relational
structure at the conceptual level and no explicit relational language for
relational representation is used. But the advantage of our model is the use of
more efficient optimization techniques and LP-relaxation for inference-based-
training, exploiting global constraints. To capture the global correlations in
the probabilistic models, enough evidence in the data is required which is
difficult to obtain while using a small training data set as it is the case for
us. Compared to using kLog in chapter 6, the LAL model has the possibility
of inference-based-training and exploiting global constraints during training
and prediction. Exploiting global constraints in learning models but only
during prediction is formally introduced in constrained conditional models [20].
Moreover compiling the propositional logical constraints for integer linear
programming models is automated in a modeling language named learning
based Java (LBJ) [120].
Another dimension of our investigation regards efficient inference techniques
for global training and prediction. Recently in the field of natural language
processing there is a tendency to combine structured models for various tasks
that can promote each other. Different models are designed for inference in
such joint settings [140, 129, 52]. Dual decomposition is a class of solutions
that can theoretically cover a large variation of this type of solutions and it is
investigated for natural language processing tasks in [128] and also for solving
MAP problems in Markov random fields in [136]. This type of models have
gained a high popularity recently because they are easy and efficient and can
be solved by LP-relaxation and a subgradient algorithm. These techniques
involve two steps of solving the separate local inferences and simple additive
updates of Lagrange multipliers. Dual decomposition and LP-relaxation is
used in [129] for the joint inference at prediction time only, to perform jointly
lexicalized parsing and part of speech tagging. Each inference sub-problem is
solved using dynamic programming. In fact the two local solutions are forced
to agree by solving a linear programing relaxation. LP-relaxation is used
also in [140] for joint learning and prediction for semantic role labeling and
preposition disambiguation by imposing linear hard constraints to express
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the correlations between the outputs of the two tasks. A totally different
probabilistic solution for this type of problems is suggested in [52]. This
work uses an EM-like approach in a probabilistic setting called expectation
propagation for communication during training between three different models
that target three types of annotations in parsing problems.
In contrast to the above mentioned joint settings for naturally separated
problems, a body of research is about decomposing complex tasks to smaller
subproblems. In very recent work Samdani and Roth [130] proposed the
decomposed learning model particular for training which we also have applied
in this work (see Section 7.2.3). Another relevant approach in [138] is the
Pseudo-Max described in Section 7.2.3. Pseudo-Max alleviates the necessity
of inference during training in the presence of large training data. In this
direction when we decompose a complex task (compared to building joint
settings), finding an appropriate decomposition is a problem by itself that
often requires expert knowledge about the problem. Sontag et al. [137]
choose clusters of variables based on a cluster effectiveness measure, in
order to decompose the objective function. The MAP problem is solved
for clusters of variables with integral constraints using LP-relaxation and
then message passing is performed between the clusters. In this way tighter
LP-relaxation upper bounds are obtained. This work is relevant to our
approach though, the main goal of our communicative inference approach
is scalability not optimality, nor the tightening of the LP-relaxation. Once
more using LP-relaxation, in a different track for inference-based-training,
Meshi et al. in [95], avoid explicit solving the loss-augmented inference
in an independent step of LP-relaxation for each data point; instead they
replace the LP with its dual and solve the dual of the structured prediction
loss. The proposed communicative inference approach in this chapter can be
considered as an approximation by message passing between two subproblems
that are solved by LP-relaxation. In our problem a decomposition according
to the semantic layers seems natural, therefore we do not investigate an
automatic decomposition in contrast to the work in [137]. However we formally
view the communicative inference as a kind of block coordinate descent
approach [154, 48] or alternating optimization [12]. Alternating optimization
provides a general framework for the EM [12] and similar approaches.

7.4 Conclusion

In this chapter, a novel unified framework of structured learning for mapping
natural language to spatial ontologies is proposed. We provide a framework
called the Link-And-Label model that is able to deal with relational data both
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in the input and in the output and is able to consider ontological relationships
and background knowledge during training and prediction.
Using the notion of templates, as in relational graphical models, we formalize
the relational structure of learning in the inference-based training models.
Here, the objective function is produced by unrolling/grounding the templates
and producing a multinomial function to be optimized, subject to the linearly
grounded first order constraints.
This formalization provides a more clear illustration of the structure of the
learning models and the tied parameters (via the blocks of weights). It also
helps in designing decomposed inference algorithms exploiting the relational
structure of the data by considering the types of the output variables when
using constraint optimization techniques. We propose a novel and efficient
decomposed inference approach for solving the inference for structured training
and prediction in a global learning framework. The ontological relationships
and background knowledge can be modeled in the form of linear constraints,
and LP-relaxation techniques can be used to solve each subproblem in the
decomposed space of output variables. The proposed framework will be used
in Chapter 8 to design a learning model for mapping natural language to the
predefined spatial ontology described in Chapter 4.





Chapter 8

Mapping Natural Language
to Spatial Ontologies

In this chapter, we extend the task of spatial role labeling discussed in Part I
to the task of full spatial ontology population described in Chapter 4. We
refine this task using the described features and the structural characteristics
of the problem in the unified structured learning framework described in
chapter 7. In this framework, spatial roles and the composed spatial relations
in the spatial role labeling (SpRL) layer and, the semantics of the relations in
the spatial qualitative labeling (SpQL) layer are extracted in a global learning
model. However given the large possible output spaces according to the spatial
ontology, the global inference-based structured learning becomes intractable.
To address this, we analyze various model compositions and decompositions
in the framework of structured learning. To achieve a tractable model, we
use the decomposed inference model during training and prediction. Using
our proposed communicative inference approach, our global learning model
outperforms the pipelining of the two layers as well as other state-of-the-art
decomposed learning models when evaluated on the SemEval-1 version of
our benchmark. The presented work in this chapter is a new step towards
automatically describing text with semantic labels that form a structured
ontological representation of its content.
This chapter is organized as follows. In Section 1, we specify the model
formally in terms of its input and output, and the designed templates.
In Section 2, we describe the objective, the loss function and the applied
decompositions. Section 3 contains a detailed account of the experimental
setup, the results of the SpRL and SpQL layers, their connection and
discussions. Section 4, concludes with the most important findings.
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8.1 Model Specification

In this section, we formulate the problem of mapping natural language to
spatial ontologies. We represent the supervised structured learning model
designed for solving this problem using the Link-And-Label model of Chapter 7
and specify: a) The input components and types; b) The output single
labels, linked labels and global constraints over the output structure; c) The
joint feature templates, candidate generation for the templates and the main
objective function.

8.1.1 Input Space

The input part of each example, x, is originally a natural language sentence
such as

"There is a white large statue with spread arms on a hill.",

and each sentence has a number of single components that are its contained
words. The single components of x in the above example are identified as
x = {x1, . . . , x14}, where xi is the identifier of the ith word in the sentence.
Each word in the sentence is described by a vector of the local features denoted
by φword(xi), e.g., (There,EX,SBJ,. . .) describing the word form, the part
of speech, etc. There are also components composed of pairs and triplets
of words and their descriptive vectors are referred to as φpair(xi, xj) and
φtriplet(xi, xj , xk). We define a number of relational features describing the
relationships between words (e.g., distance). A feature vector of a composed
component such as a pair, φpair(x1, x2) is described by the local features of
x1, x2 and the relational features between them, (before, 1). The details
of the linguistic meaning and values of the applied features is explained in
chapter 4 and we refer back to it later in this section. A dummy word (x14
here) is added to the components of each sentence to be used for undefined
roles.

8.1.2 Output Space

In the output space, an ontology H with Γ number of nodes is given. The
nodes in the ontology are actually the target labels we tend to predict and we
denote it as ltarget = {li|li ∈ H, i = 0 . . .Γ}. The ontology is defined as a set
of labels where (H,≺) is a partial order. The symbol ≺ in our terminology
represents the super-label relationship (see Section 7.1) thus

∀γ, γ′ ∈ H : γ ≺ γ′ if and only if γ is a super-label of γ′.
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The actual labels in the learning model are defined based on the nodes in the
ontology, see chapter 4 figure 4.1.a. We define one single label sp which is
an indicator function that receives a word xi and indicates whether it is a
spatial indicator, denoted as sp(xi) or briefly as spi. The roles of trajector
and landmark are defined as linked labels. We present them with label strings
sp.tr and sp.lm and their indicator functions act on a pair of words. The link
label sp.tr(xi, xj) (sp.lm(xi, xj)) receives two ordered words and indicates
whether the first word is a spatial indicator and the second is a trajector
(landmark) with respect to the first, this also is denoted briefly as spi.trj
(spi.lmj). We use two additional labels: nsp that indicates whether a word
is not a spatial indicator, and nrol that indicates whether a pair is neither
sp.tr nor sp.lm. These two labels are helpful to collect features of negative
classes for distinguishing the spatial relations. The above mentioned labels
are related to the SpRL semantic layer. The fine grained semantics of spatial
triplets are indicated in lower nodes in the ontology related to the SpQL
layer. All SpQL related nodes are linked labels related to triplets and the
indicator function of each one identifies whether a spatial relation is of a
certain spatial type such as Region, Direction, EC, and so on. We denote
these linked labels by rγ and the first one r0 is the spatial relation label.
These labels actually are linked labels that can be represented by label strings.
For example, sp.tr.lm.region shows the single labels on which the Region
node in the ontology directly depends.
Output structure. The structural properties of the output are described in
Section 4.3.1. Here, given the introduced parameters for the representation of
the input and output in our LAL model, those constraints are formalized in
Formulas 8.1-8.12. The labels are represented as indicator functions for the
candidate inputs. For example sp(xi) is equal to one if the candidate word
xi is a spatial indicator. The first two additional constraints 8.1-8.2 associate
the labels in the learning model to the nodes in the ontology. Constraints 8.6-
8.9 are the horizontal constraints including multilabel, spatial reasoning and
composed-of constraints. The last three formulas show the vertical constraints
including the is-a constraint in Formula 8.10, the null-assignment constraint
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in Formula 8.11 and the mutual exclusivity constraint in Formula 8.12.

nsp(xi)← 1− sp(xi) (8.1)

nrol(xi, xj)← (1− sp.tr(xi, xj)) ∧ (1− sp.lm(xi, xj)) (8.2)

sp(xi)← sp.tr(xi, xj) (8.3)

sp(xi)← sp.lm(xi, xj) (8.4)

sp(xi)→ ∃xj , xk sp.tr(xi, xj) ∧ sp.lm(xi, xk) (8.5)

xk 6= xj ← sp.tr(xi, xj) ∧ sp.lm(xi, xk) (8.6)

sp.tr(xi, xj) ∧ sp.tr(xk, xj)→ xi = xk (8.7)

sp.lm(xi, xj) ∧ sp.lm(xk, xj)→ xi = xk (8.8)

r0(xi, xj , xk)← sp(xi) ∧ sp.tr(xi, xj) ∧ sp.lm(xi, xk) (8.9)

rγ(xi, xj , xk)← rγ′(xi, xj , xk) ∀γ ≺ γ′ γ, γ′ ∈ H (8.10)∑
γ∈Hleafs

rγ(xi, xj , xk) ≥ r0(xi, xj , xk) (8.11)

∑
γ∈QSRh

rγ(xi, xj , xk) <= 1, ∀QSRh ⊂ Hleafs, (8.12)

to clarify the notation in the last two constraints, as described in Section 4.2.2,
in the lightweight ontology H, we have three general types of spatial calculi
models, regional, directional and distal. The leaf nodes in the ontology are
constructed based on multiple spatial calculi. Here the set of leaf nodes defined
as Hleafs = QSRregional ∪QSRdirectional ∪QSRdistal. The null-assignment
constraint 8.11 imposes at least one fine-grained semantic assignment in a
leaf node when a spatial relation is predicted. In constraint 8.12, to express
the mutual exclusivity we denote each group of leaf nodes that belong to a
qualitative spatial representation model as QSRh.
Output representation. At the prediction time, the model predicts the
labels of the input components. The output is the spatial ontology that is
populated by the input components (i.e. segments of the input sentence).
The populated ontology can be represented as a set of the sets of components
associated to each label in the ontology. For the above mentioned example in
Section 8.1.1, to be more illustrative we represent the output example with
the indicators with value one:
{ {sp(on)},{sp.tr(on , statue )},{sp.lm(on ,hill )},
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{sp.tr.lm(on ,statue ,hill )},
{sp.tr.lm. region (on ,statue ,hill )},
{sp.tr.lm. direction (on ,statue ,hill )},
{sp.tr.lm. region .EC(on ,statue ,hill )},
{sp.tr.lm. direction .above(on ,statue ,hill )} }

see also Fig 4.1.b.

8.1.3 Joint Feature Mapping and the Main Objective
Function

Templates. To describe the structure of the joint feature functions, we
define the templates (see Section 7.1) in our model. We use four main types
of templates: Role templates, Composed-of templates, Is-a templates and
Negation templates.

• A Role template connects an input component to a single label indicating
the role of that component. We use a Role template, for instance, for
spatial indicators denoted as word.sp. The input type of this template
is a single word.

• A Composed-of template connects a composed input component to a
linked label. A linked label in this type of template contains sub-labels
that linking them constructs new complex parts of the output. We mainly
use two main Composed-of templates to connect trajectors/landmarks
and spatial indicators. These templates indicate whether a pair of
words have the trajector-of or landmark-of relationship and compose
a part of a spatial relation. We denote them as pair.tr, pair.lm. We
define an additional Composed-of template which is more complex and
connects the three labels trajector, landmark and spatial indicator. This
template indicates whether three words compose a spatial relation and
it is denoted as triplet.r0.

• An Is-a template connects a single or a composed component to a linked
label. The linked label contains sub-labels that have is-a relationships
to each other.
For all semantic types of spatial relations we use such a template that
connects triplets to their spatial relationship semantics, such as regional,
directional, etc. We show them as triplet.rγ indicating the type of input
that is triplet, and the semantic label rγ linked label. It connects the
spatial relation type to the more fine grained spatial semantics.

• A Negation template indicates when a single or linked label (referring to
a single or composed concept in the output) is not assigned as one. We
use two Negation templates. The first template is with a single label
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for non-spatial indicators denoted as word.nsp. The second contains a
negative linked label that indicates when a word is not a trajector nor a
landmark with respect to a spatial indicator candidate. This Negation
template is denoted as pair.nrol.

Now we specify the candidate generators and features of these templates.
Candidate generators. The spatial indicators are prepositions in our model
which are mostly tagged as IN and TO by parsers. Hence, we prune their
candidates based on the Pos-tags. Since prepositions belong to a closed lexical
category, we collect a lexicon for prepositions according to our corpus. For
the roles of trajector and landmark also a subset of words is selected. We
define three basic sets of useful words in our problem as,

C1 = {xi|Pos(xi) ∈ {IN, TO} ∨ xi ∈ PrepositionLexicon}. (8.13)

C2 = {xi|Pos(xi) ∈ {NN,NNS} ∨Dprl(xi) = SBJ ∨ xi = undefined},

C3 = {xi|Pos(xi) ∈ {NN,NNS,PRN} ∨ xi = undefined},

and choose the candidates for the labels based on these as follows:

Cnsp = Csp = C1, Csp.tr = Csp ⊗ C2, Csp.lm = Csp ⊗ C3,

Cnrol = C2 ∪ C3, Crγ = Csp ⊗ C2 ⊗ C3,

where each Clabel denotes the set of candidates for a label, Pos(xi) is a
function that returns the Pos-tag of a word xi and Dprl(xi) returns the label
assigned by the dependency parser to a word xi. PrepositionLexicon is the
collected list of possible prepositions according to the available corpus. For
the trajectors, the roles are assigned to singular (NNS) or plural nouns (NN)
or the words that are labeled as subject (SBJ) in the dependency tree. For the
landmarks the roles are assigned to singular, plural or proper nouns (PRN).
Moreover, undefined can be a candidate for both roles. These linguistic
features are extracted by the syntactic and the dependency parser.
Input feature functions. The input part of each template is characterized
by a binary input feature vector, which is produced based on the local and
relational features of the input components. We denote this feature vector
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using the symbol φ indexed by the relevant label,

φsp(xi) , φnsp(xi) , local features of the word xi.

φsp.tr(xi, xj) , φsp.lm(xi, xj) , φsp.nrol(xi, xj) , local features of the word xj ,

and relational features of the pair xi and xj .

φtripletrγ (xi, xj , xk) , local features of xi, xj , xk and,

relational features of the pair xi, xj and, the pair xi, xk ∀rγ ∈ H.

The local and relational features are described in Chapter 4.
Link-And-Label objective. Each instantiation of a template represents
a joint feature sub-mapping. It is calculated by the product of a vector
of the input features and an output label which is a single valued binary
variable. For example, φspi .spi refers to the input features of the ith spatial
indicator candidate multiplied by the value of spi, and φspitrj .spitrj refers to
the features of ith spatial indicator candidate with respect to jth trajector
candidate multiplied by the label spi.trj . We capsulate these two parts in a
joint feature function fp, associated to each template p with a label and its
relevant input. We represent these, for example, as fsp(spi) and fsptr(spitrj).
In this joint feature function, the label name and the index make the necessary
connection to the input candidate. There is no need to show the x component
explicitly. This function will be a zero vector if the label of the candidate is
zero and will be equal to the input features of the candidate if the label is
one. We have a block of weights for each template in the target model as,

W = [Wsp,Wnsp,Wsptr,Wsplm,Wspnrol,Wr0 , . . . ,WrΓ ].

To construct the objective function g = 〈W, f(x, y)〉, each candidate for each
label that is generated according to a template specification, is mapped to a
joint feature vector (referred to as local joint feature). The local joint feature
function is associated to a block Wp of weights for that template. In fact, the
parameters of the variables related to one template are tied. The objective
function is a linear function of feature values implying that we should sum
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over all the produced feature vectors multiplied by their weights,

〈Wsp, fsp(sp1)〉+ 〈Wsp, fsp(sp2)〉+ · · ·+ 〈Wsp fsp(spSP )〉+ (8.14)

〈Wnsp, fnsp(nsp1)〉+ 〈Wnsp, fnsp(nsp2)〉+ · · ·+ 〈Wnspfnsp(nspSP )〉+

〈Wsptr, fsptr(sp1tr1)〉+ 〈Wsptr, fsptr(sp1tr2)〉 · · ·+ 〈Wsptr, fsptr(sp1trTR)〉+

. . .

〈Wsptr, fsptr(spSP tr1)〉+ · · ·+ 〈Wsptr, fsptr(spSP trTR)〉+

〈Wsplm, fsplm(sp1lm1)〉+ · · ·+ 〈Wsplm, fsplm(sp1lmLM )〉+

. . . .

The above expression shows how we can compute the score of g for each input
sentence and a proposed output. During prediction when finding the best
assignments, we rewrite the fp local joint feature functions as the product of
input feature functions φ and the unknown output labels, as it is shown in
figure 8.1.
We obtain a function g in terms of the labels. We can rewrite and represent
the instances of a same template, which are associated to a same block of the
weight vector, compactly as,∑
i∈Csp

〈Wsp, φspi〉 · spi +
∑
i∈Csp

〈Wnsp, φnspi〉 · nspi+

∑
i∈Ctr

∑
j∈Csp

〈Wsptr, φspitrj 〉 · spitrj +
∑
i∈Clm

∑
j∈Csp

〈Wsplm, φspilmj 〉 · spilmj+

∑
i∈Cnrol

∑
j∈Csp

〈Wnrol, φspinrolj 〉 · spinrolj+

Γ∑
γ=1

∑
i∈Csp

∑
i∈Ctr

∑
i∈Clm

〈Wγ , φspitrj lmkrγ 〉 · spitrj lmkrγ . (8.15)

This is the objective function that we need to maximize in the prediction time
in order to find the best label assignments considering the global constraints
mentioned in Section 8.1.2. We refer to the first three lines in 8.15 as the
FSpRL and the last line as the FSpQL. The constraints can be between the
variables related to one template, for example the counting constraints over
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Figure 8.1: The input sentence is segmented according to the templates’
generators, and the produced features over the input components are
joined to unknown labels.

spatial indicators; or can be formulated more globally across templates, for
instance by the spatial reasoning constraints.

8.1.4 Component Based Loss

As described in Section 2.1 , in structured training models we need to find
the most violated output in Formula 2.22 for each training example per
training iteration. Moreover, as mentioned in Chapter 7, to have a loss which
factorizes similar to the feature function, we define a component-based loss
for each label l according to Formula 7.5. We write a loss by considering all
the instantiated labels according to the templates as follows,
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∆sp(Λsp,Λ′sp) =
∑
i∈Csp

(1− 2sp′i)spi +
∑
i∈Csp

sp′i

∆nsp(Λnsp,Λ′nsp) =
∑
i∈Csp

(1− 2nsp′i)nspi +
∑
i∈Csp

nsp′i

∆sptr(Λsptr,Λ′sptr) =
∑
i∈Csp

∑
j∈Ctr

(1− 2sp′itr′j)spitrj +
∑
i∈Csp

∑
j∈Ctr

sp′itr
′
j

∆splm(Λsplm,Λ′splm) =
∑
i∈Csp

∑
j∈Clm

(1− 2sp′ilm′j)spilmj +
∑
i∈Csp

∑
j∈Clm

sp′ilm
′
j

∆spnrol(Λspnrol,Λ′spnrol) =
∑
i∈Csp

∑
j∈Cnrol

(1− 2sp′inrol′j)spinrolj+

∑
i∈Csp

∑
j∈Cnrol

sp′inrol
′
j

∆rγ (Λrγ ,Λ′rγ )) =
Γ∑
γ=1

∑
i∈Csp

∑
i∈Ctr

∑
i∈Clm

ωγ(1− 2r′γsp′itr′j lm′k)spitrj lmkrγ+

Γ∑
γ=1

∑
i∈Csp

∑
i∈Ctr

∑
i∈Clm

ωγsp
′
itr
′
j lm

′
kr
′
γ . (8.16)

In fact, we count all the wrong label assignments which have been made for
all the template instantiations (see Hamming loss Formula 7.2). The first five
lines in 8.16 are related to the SpRL labels which are averaged and aggregated
with the loss of spatial semantic labels related to the SpQL layer. In the SpQL
part, the preferences ωγ of the labels rγ inversely depend upon the distance
of the label node from the r0 node in the spatial ontology. The nodes closer
to the leaves are assigned a lower value. This implies that we give a higher
priority to the classification of more general semantics than the fine-grained
spatial semantics in the leaf nodes of the tree. This is very straightforward
and corresponds to the semantics of our problem. More specifically, we set
the preferences such that firstly all the siblings with a common parent have a
similar preference, secondly the preference of the parent is two times larger
than the preference of its children, and thirdly the sum of all the preferences
in the ontology is equal to one, so that we have a loss value between 0 and 1.
Given these conditions we have a unique way to assign preferences to labels
in the ontology.
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8.2 Local-Global Training and Prediction Models

In this section we collect the required pieces from the last sections and
chapters and discuss the model variations belonging to the spectrum of totally
local and totally global training and prediction models that we design.
The global loss augmented objective is the following function,∑
i∈Csp

[〈Wsp, φspi〉+ (1− 2sp′
i)

|Csp|
] · spi +

∑
i∈Csp

[〈Wnsp, φspi〉+ (1− 2nsp′
i)

|Csp|
] · nspi+

∑
i∈Csp

∑
j∈Ctr

[〈Wsptr, φspitrj 〉+
(1− 2sp′

itr
′
j)

|Csp||Ctr|
] · spitrj+

∑
i∈Csp

∑
j∈Clm

[〈Wsplm, φspilmj 〉+
(1− 2sp′

ilm
′
j)

|Csp||Clm|
] · spilmj+

∑
i∈Csp

∑
j∈Cnrol

[〈Wspnrol, φspinrolj 〉+
(1− 2sp′

inrol
′
j)

|Csp||Cnrol|
] · spinrolj+

Γ∑
γ=1

∑
i∈Csp

∑
j∈Ctr

∑
k∈Clm

[
〈Wγ , φspitrj lmkrγ 〉+ ωγ(1− 2sp′

itr
′
j lm

′
kr

′
γ)
]
· spitrj lmkrγ+

1
|Csp|

∑
i∈Csp

[nsp′
i + sp′

i + 1
|Ctr|

∑
j∈Ctr

sp′
itr

′
j + 1
|Clm|

∑
j∈Clm

sp′
ilm

′
j+

1
|Cnrol|

∑
j∈Cnrol

sp′
inrol

′
j ] +

Γ∑
γ=1

∑
i∈Csp

∑
j∈Ctr

∑
k∈Clm

ωγsp
′
itr

′
j lm

′
kr

′
γ . (8.17)

We train the parametersW of the function g in the framework of discriminative
inference-based structured prediction models such as structured SVM,
structured perceptron and average perceptron algorithms described in
Section 2.1.3. To train the parameters W including all Wp blocks of weights
jointly, we need to maximize this objective function globally. This yields the
most violated outputs for each training example per training iteration. This
MAP problem over loss-augmented g containing both semantic layers of SpRL
and SpQL is computationally highly complex. Moreover, the solution to this
inference should fulfill the structural constraints discussed in Section 8.1.2,
which makes it even harder. The feasible output space contains the space of all
possible triplets multiplied by all possible ontological semantic assignments for
each triplet, that is O(n3× 2Γ) where n is the number of candidate words per
sentence, which is assumed to be in the order of the length of the sentence n
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and Γ is the number of nodes in the ontology. Even the above formulation for
the two layers in 8.17 is computationally complex, because of the large number
of spitrj lmkrγ variables, which is O(n3 ∗ Γ) in this formulation, given that
for each i, j, k all the r1..rγ variables are also correlated and should fulfill the
ontological constraints. To solve this as a combinatorial optimization problem
using off-the-shelf solvers is still challenging. We consider this objective
as a linear function and provide a linear formulation of the constraints as
formulas 8.18-8.26 and solve it with LP-relaxation techniques. The global
constraints 8.1-8.9 involve the variables of the SpRL layer and help to exploit
the internal structure of the triplets and their global correlations in the
sentence. The constraints are described in section 8.1.2 and here their linear
formulation is provided. The last three additional constraints 8.23 are to
limit the number of roles per sentence.

spi + nspi = 1, spitrj + spilmj + spinrolj = 1 (8.18)

spitrj − spi ≤ 0, spilmj − spi ≤ 0 (8.19)

spi −
∑
j

(spitrj) ≤ 0, spi −
∑
j

(spilmj) ≤ 0 (8.20)

spitrj + spilmj ≤ 1 (8.21)∑
i

(spitrj) ≤ 1,
∑
i

(spilmj) ≤ 1 (8.22)

∑
i

spi ≤MaxSp,
∑
i

spitrj ≤MaxTr,
∑
i

spilmj ≤MaxLm. (8.23)

The ontological constraints over the semantic assignments represented in
the constraints 8.10-8.12 involve the variables of the SpQL layer. Here, the
linear formulation of these constraints (that are described in section 8.1.2) is
provided,

spitrj lmkrγ′ − spitrj lmkrγ ≤ 0, ∀γ ≺ γ′ γ, γ′ ∈ H (8.24)∑
γ∈QSRh

spitrj lmkrγ ≤ 1, ∀h, ∀QSRh ⊂ Hleafs (8.25)

∑
γ∈Hleafs

spitrj lmkrγ ≥ spitrj lmkr0. (8.26)

Now that we have the global objectives 8.15 and 8.17 along with the features
and all the constraints, we can easily formulate different LO, L+I and IBT
learning models described in Section 7.2. We design and experiment with
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various models per semantic layer. Afterwards, we build a global model for
both layers which necessitates going beyond off-the-shelf solvers and using
our proposed communicative inference approach. In the models listed below
we increase the level of globality in the training and prediction gradually. By
the level of globality we literally mean the number of output variables that
are considered collectively/jointly during training and prediction.

• LO setting per layer. A basic model which can be still practical,
depending on the application, is the LO model. In the LO setting,
independent binary classifiers are built for each single/linked label in
the SpRL and SpQL layers referred to as LOSpRL and LOSpQL
respectively. As discussed before, this setting can be seen as a kind of
decomposed learning in which the cross templates constraints as well as
autocorrelations are ignored and the individual input components are
treated as i.i.d. examples for the relevant binary classifiers. These local
models make independent binary predictions per label.

• (L+I) setting per layer. In this setting, locally trained models are
used, but the joint prediction is performed by constrained optimization of
objective 8.15 subject to the constraints 8.18-8.26. The main prediction
time objective function is split into two parts, each of which relates to
one layer with its own independent constraints. We refer to these models
as LISpRL and LISpQL for the SpRL and SpQL layers.

• IBT setting per layer. In this setting, the objective 8.17 is solved
during training per layer. In other words, it is split into two parts each
part containing its own loss function and considering its own independent
constraints. These models are referred to as IBTSpRL and IBTSpQL,
for the SpLR and SpQL respectively.

Since the second layer is an extension of the first, all the unknown labels of the
first layer are also unknown in the second, making the learning in the second
layer as complex as the global learning over both layers. Therefore in all above
mentioned models when modeling the learning and prediction in the second
layer we assume the first layer of spatial relations are available and the focus
of the training prediction is on the semantics of the relations. This assumption
is useful for analyzing the difficulties of the two layers independently in the
experimental section. However, we need to connect the two layers and make
global training and prediction models encompassing both layers. Therefore
the following models are designed:

• L+I setting joining two layers. In this model, we use the above
mentioned IBT models per layer but make a global optimization jointly
for both layers during prediction time. We use communicative inference
Algorithm 4 during the prediction while solving each sub-problem using
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constraint optimization and LP-relaxation. We call this model EtoE-
IBTCP.

• IBT setting joining two layers. To train a model jointly for both
layers, we use the communicative inference (algorithm 4), which connects
the two LP-relaxation subproblems in the training time for solving the
global loss augmented inference. This globally trained model makes
a joint prediction for the two layers too. We call this model EtoE-
IBTCTCP.

In Section 8.3, the communicative approach is compared to the instantiations
of the decomposed learning DecL-1, DecL-2 described in Section 7.2.3.
Moreover, we use another instantiation based on decomposing the two layers
referred to as DecL-SpRL-SpQL. We compare all mentioned models to
pipelining the IBT models of the two layers in the EtoE-pipe model.

8.3 Experimental Results and Analysis

We provide an empirical investigation of the efficiency and the performance
of the designed structured learning models for mapping natural language to
spatial ontologies. The experiments are organized based on the evaluation
and comparison of LO, L+I and IBT learning schemes. In the end, our global
model based on communicative inference is compared to some DecL variations
and the pipeline model.
The applied base learning techniques are the structured SVM using the
SVM-struct Matlab wrapper [157] (coded as SSVM) based on Algorithm 1
in Chapter 2 and our implementation of structured perceptron (coded as
SPerc) and averaged structured perceptron (coded as AvgSPerc) based on
Algorithm 2 in Chapter 2. For local learning settings, a binary SVM (coded
as BSVM) is used. For the LP-solver, we use the Matlab optimization tool
(bintprog) which employs branch and bound techniques.
The experiments of this chapter are based on the SemEval-1 edition of the
annotated data described in Chapter 3. Table 8.1 shows statistics about the
spatial roles in this edition and the influence of the candidate pruning, which
leads to some missed positive roles in these experiments. The evaluation
methodology is according to the metrics described in Chapter 2.1 For the
statistical significance of the differences we use the t-test over ten folds. Due
to the computational complexity and the motivations described in section 8.2,
the empirical investigations are also structured in three main parts, first we
1The evaluations are over the positive class of each label and all are denoted with a similar

symbol to the related label but in bold e.g. (sp=1 as sp), etc.
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Component Annotated Pos.candidates
sp 1466 1437
tr 1588 1555
lm 1184 1152
r0 1706 1619

Num. of sentences 1213
Num. of all words 20,095

Table 8.1: Spatial roles statistics, positives after candidate selection.

investigate the SpRL layer, then the SpQL layer given the SPRL ground-truth
triplets, and finally the connection between the two layers using communicative
inference is discussed.

8.3.1 SpRL

The goal of the experiments described in this section is to answer the following
questions about learning the SpRL layer in the three LO, L+I and IBT settings
pointed out in Section 8.2,

Q8.1. What is the performance of local models which make local predictions
for the output variables in this layer (i.e. LOSpRL evaluation)?

Q8.2. Does global prediction in the L+I setting improve the results (i.e.
LISpRL vs. LOSpRL)?

Q8.3. Does considering correlations between output variables in the IBT model
improve the results (i.e. IBTSpRL vs. LISpRL)?

Q8.4. What is the influence of the local and relational features in the IBT
model? What is the influence of the applied constraints in the IBT
model (i.e. IBTSpRL features and constraints)?

LO and L+I Models

A variety of local models can be trained for prediction of the single and linked
labels in the SpRL layer. In this section we implement a variety of LOSpRL
and LISpRL models and present our experimental results and analysis.
LOSpRL-1. This is a basic LO model with one BSVM classifier. The
training examples are the positive and the negative candidate triplets of
sp.tr.lm linked label. In fact these examples are produced with the same
basis as the triplet Composed-of template described in Section 8.1.3 with the
same features. Each candidate triplet acts as an i.i.d positive or negative
example. The binary output of the classifier indicates whether a triplet is
spatial or not spatial. The classified triplets then imply which words play
which single spatial roles.
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The problem of this setting is the enormous amount of negative examples
compared to the positive ones. There are 10,809,000 possible combinations of
three words in the corpus without pruning the candidates. This amount will
be even more if the undefined roles are considered. Even by pruning the set of
possible candidate words, 193,890 triplets are generated while there are only
1706 positive ones in the corpus. Moreover, 87 positive triplets are missed
due to the candidate pruning. This means only 1619 positive examples will
remain at the end.
The LOSpRL-1 given our base features, failed to yield meaningful results.
However, this setting is useful if more combinatory relational features based
on the training data are used in the presence of some stronger heuristics for
candidate pruning. The work in [121] uses such a model and uses automatic
feature selection methods to obtain a large number of combinatory features.
In addition, it exploits some linguistic resources such as Penn TreeBank for
pruning the candidates. In this way they could achieve reasonable results
for this task compared to other more sophisticated settings. In our model
in Chapter 6 also the long distance contextual features used by exploiting
a graph kernel yielding reasonable results with binary classification of the
triplets. However, our cross domain experiments in chapter 5 show SpRL is
very sensitive to the domain of the data and achieving a domain independent
model for it is difficult. According to our analysis, using models that are
trained on more domain specific and complex patterns that are automatically
drawn from the training data gives a higher chance to a failure over the cross
domain experiments. To our knowledge the spatio-linguistically motivated
features and background knowledge that are independent from a specific
training set are more reliable for achieving a domain independent model.
Therefore, it is necessary to design models that are able to exploit more
abstract and higher level structural and relational features in addition to the
background knowledge, in a more sophisticated and structured way.
LOSpRL-2. This is an LO model with three BSVM classifiers. The training
examples for each classifier are positive and negative candidate single words
associated with the sp, tr and lm single labels. In fact these examples are
produced with the same basis as the single Role templates described in
Section 8.1.3 with the same features. Each candidate word acts as an i.i.d
positive or negative example. A word is a positive example for a role classifier
if it plays that role in at least one spatial relation in the sentence. The binary
output of each classifier indicates whether a word has a role or not. In this
model, the triplets are predicted by a naive use of the predicted single roles.
We produce all possible combinations of the positive predicted roles. This
means simply calculating the Cartesian product of the three predicted sets of
roles per sentence, sp×tr×lm. The undefined roles are simply produced when
a specific role set is empty. If the sp set is empty, this is an indication that



EXPERIMENTAL RESULTS AND ANALYSIS 179

there is no spatial relation in the sentence even if a trajector or a landmark
are predicted.
The total number of words in the corpus is about 20,095 words (ignoring
punctuation). More than 85% of the examples are negatives. We pruned the
set of examples by using only the candidate roles described in Section 8.1.3
in the training phase. In this way, we reduced the number of negatives
dramatically and this lead to a reasonable accuracy for classification of each
individual component.
The first points in all graphs of figure 8.2 show the results of this experiment
that is using LOSpRL-2 for each label. It is reasonable that the naive way
of producing the pairs and triplets yields a low value for F1 for these linked
labels since the relational features that should help the prediction of the links,
have not been used in this experiment.
LISpRL-1. This is an L+I model based on the trained LOSpRL-1 model.
This model uses SpRL constraints 8.3-8.4 for the joint prediction of the
roles and triplets. During the joint optimization if there are any trajectors
and landmarks then there should be a spatial indicator in the sentence
detected. Adding these two constraints improves the classification of trajectors
and landmarks compared to the LOSpRL-2 model. However, to fulfill the
constraints, it recalls every possible spatial indicator leading to a dramatic
decrease in the precision of this label. The drop in the precision of spatial
indicators causes a clear decrease mostly in the precision of the pair and
triplet predictions and consequently a decrease in F1, e.g. this decrease
is about 10% in F1 for the triplets. All LISpRL-1 points of the graphs in
figure 8.2 show the results of this experiment in precision, recall and F1 and
for all the labels (i.e. roles, pairs and triplets).
LISpRL-2. We gradually add more constraints at prediction time. We add
multi-label Constraint 8.6 which allows maximum one label for each word with
respect to a specific spatial indicator. Apparently the system distinguishes
between the trajectors and landmarks based on their local features and does
not assign the two roles simultaneously to one word. Hence, adding this
constraint in this setting does not make any improvements in the predictions
compared to LSpRL-1.
The next two constraints that we add to LISpRL-2 at prediction time, are
the spatial reasoning constraints 8.7-8.8. These do not allow a trajector or
a landmark to be connected to more than one spatial indicator. By adding
these constraints, the predictions about some single roles are corrected and
an increase about 2% for trajectors and 3% for landmarks in F1 is achieved.
Even with such an improvement for single roles we observe a drop in the
performance of the prediction of pairs and triplets. Adding the additional
composed-of constraint 8.5 which imposes the prediction of trajector and
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landmark when there is an indicator, increases the precision of all these roles
compromising the previous constraints 8.3-8.4.
Although the results of LISpRL-2 outperform the results of LISpRL-1, still
the graphs show a lower F1 for the pairs and triplets in LISpRL-2 compared
to the LOSpRL-2. This observation is reasonable. Since no relational features
are used to give priority to certain pairs compared to others, the connections
are chosen almost randomly because of the lack of distinguishing features.
The constraints drop the recall of the connections and after all we get a drop
in both recall and precision in prediction of the pairs and consequently the
triplets. Adding the relational features is the subject of the next experiment.
The results of the final LISpRL-2 using all constraints is presented in the
graphs of figure 8.2.
LISpRL-3. This is an L+I model which is trained with more complex local
models compared to the above mentioned L+I models. It uses two BSVM
pair classifiers instead of single role classifiers. The training examples for
each classifier are, positive and negative candidate pairs of words associated
with the sp.tr and sp.lm linked labels. In fact these examples are produced
with the same basis as the Composed-of templates for the pairs described
in Section 8.1.3 with the same features. Each candidate pair acts as an i.i.d
positive or negative example. The binary output of each classifier indicates
whether two words are spatially linked to each other or not. The advantage
of using these binary classifiers is that the relational features between words
are considered and this can help the prediction of the links between the roles.
In this setting the link between triplets can be produced based on the link
between pairs. Before pruning there are 424500 pairs. For sp.tr, 21773 is
the number of the training pairs after pruning. For sp.lm, this number is
25284 after pruning. The experiments without pruning the candidates did
not yield any meaningful results, pruning the candidates using the same rules
for individual candidates but using only local features did not provide any
significant improvement over a random classifier. However, after pruning
the candidates and then adding relational features of ’before’ and ’distance’,
a noticeable difference is made in the performance of the L+I model, this
increase is about 24% in F1 for triplets. Since the evaluation done after
pruning, there is a drop in the recall given the missed positive candidate pairs
(about 2% − 3%). A triplet is produced when two predicted pairs share a
spatial indicator. We simply introduce the undefined roles when a pair of sp.tr
is predicted and a pair of sp.lm for the same sp is not predicted and vice versa.
To see the effect of the constraints in this model, we experiment by gradually
adding the constraints 8.6-8.9. The constraints effect the precision and recall
in different ways, and no improvement achieved for F1 of the triplets which
is of the most interest. The third point of the graphs in figure 8.2 show the
results of this setting. By comparing these results with the previous one for
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Figure 8.2: Performance of labeling spatial relations and their
components based on training local models using BSVMs, 10-fold cross
validation on SemEval-1.
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the prediction of the individual basic components, it can be seen that the
main problem in this setting is the lower recall of sp compared to all previous
settings. In contrast to the previous models, the LISpRL-3 model does not
train for this label independently. In general prediction of sp seems easier
than prediction of trajectors and landmarks but the influence of the errors in
sp prediction is higher in the final performance since it will multiply the errors
of the triplet prediction. This is the motivation of the next experiment. In
the next step we try to exploit the high performance of the spatial indicator’s
binary classifier in a joint optimization with the pair classifiers.
LISpRL-4. This is an L+I model by training three independent BSVM
binary classifiers including one for single sp role and two for the pairs of sp.tr
and sp.lm. The horizontal constraints 8.6-8.9 are applied during prediction.
Here also the examples for each classifier are produced based on sp Role
template and the Composed-of pair templates. A joint optimization is
performed by combining the binary model for the classification of spatial
indicators and the pairwise setting for trajectors and landmarks. We impose
the composed-of constraints that imply if a pair is predicted as positive
then the spatial indicator also should have been labeled as positive; These
constraints do not improve the results, since the recall of sp is already as
high as its singular classification in this setting. In the graphs of figure 8.2
LISpRL-4 shows the maximum performance we could obtain from training
these three model separately and performing a joint optimization by imposing
the horizontal constraints.
Overall, these experiments show the essential importance of considering
relational features in the LO and L+I models. The constraints mostly were
not significantly improving the F1 measure of the spatial triplets, which is in
our most interest. In the next section we experiment with joint training of
the components.

IBT Model

In this section we experiment with the main global model which considers
local and relational features as well as the constraints during both training
and prediction. We perform loss-augmented inference using LP-relaxation
(see formula 8.17) to train a global model for the SpRL layer. We empirically
investigate how individual features and constraints influence such a model,
starting with the SSVM framework. As mentioned before, to generate the joint
feature maps we perform a candidate pruning step which is computationally
trivial but to some extent essential for achieving a tractable model. The
candidates are selected based on the provided definitions in 8.14. This
pruning inevitably leads to a number of missed positives. The number of
missed positives are about 2%-3% for each role. For spatial indicators we
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could cover all positives by building a lexicon. Performing experiments on
the ground truth data shows that the candidate pruning leads to about 5%
drop in the final recall of spatial relations.
Feature analysis in IBT. In this part of the experiments, the local and
relational features described in Chapter 4 are gradually added to the model.
As mentioned above the evaluations are over all singular, pairwise and triplet
components in the output. The graphs in figure 8.3 represent the trend of
the changes in the performance in terms of precision, recall and F1 for all
aforementioned components. Each point in the horizontal axis is labeled
with the features used in the evaluated model. The vertical axis shows
the performance in terms of the corresponding evaluation metrics. In the
evaluated models in these graphs the constraints 8.1-8.9 are used in both
training and prediction. Naturally, the binary constraint of 8.1 is used only if
the nsp label is employed in the model.
The first three graphs show the performance over the singular components.
For trajectors, adding the local and relational features smoothly increases
the precision, recall and F1. However, the two features of spc and und (see
Chapter 4) are less relevant for trajectors since the first is related to spatial
indicators and the second mostly to the landmarks. Therefore, a slightly
negative impact on the classification of trajectors is observed when adding
those two features. For the landmarks the impact of the first three local
features is sharply increasing. The remaining features have a smoother impact
on improving the classification of this role. For spatial indicators the most
influencing feature is the word form and adding all other features causes a
2% improve in total, for this role. However, the accuracy of spatial indicator
has more impact on the final classification of the spatial triplets because each
missed or wrongly recalled spatial indictor can lead to several mistakes in the
prediction of the pairs and triplets.
The second row of figure 8.3, shows the performance over the pairwise
components. The expected observation in these two graphs is the high
impact of the relational features, as it is theoretically expected. The local
features have a very smooth increasing effect on classification of pairwise
roles. A similar trend is observed for the influence of the features on the
classification of the spatial triplets in the last row of the figure. Relational
features have a stronger influence in classification of pairs and triplets than
local features.
Constraint analysis in IBT. In the integrated structured learning model,
the constraints 8.1-8.4 are essential to establish a meaningful relationship
between the labels in the inference objective function. Looking into the learnt
parameters in the experiments of section 8.3.1 showed that the weight of the
negative features of the spatial indicator (related to the nsp label) are nearly
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Figure 8.3: Performance of the spatial triplets and their components
when adding local and relational features and nsp to the IBT model
(SSVM), 10 fold-cross validation, SemEval-1.
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the same as the weights of its positive features (related to sp) but with an
opposite sign. Therefore, this component has a minor effect on the overall
performance of the model. Obviously, the constraint over these two opposite
labels in Formulas 8.1 is needed only if nsp is included in the model. In the
final results we preserved this component for its positive, though minor final
impact. On the contrary, keeping the none roles against being trajector and
landmark and imposing constraint 8.2 was essential to obtain meaningful
results. Similarly making the connections between pairwise variables and the
singular sps via composed-of constraints in 8.3-8.4 is essential. Without these
constraints, no acceptable results are achieved due to the critical inference
task of finding the most violated constraints.
The spatial reasoning constraints in 8.7-8.8 and counting constraints (with the
linear Formulation 8.23) aim to provide some background knowledge related
to the spatial language. When using spatial reasoning constraints, there is a
drop of about 0.01 in F1 of the triplet prediction, but the difference is not
statistically significant. However, by investigating the errors, we observe that
by imposing the hard spatial reasoning constraints, the model is less robust
to the noise present in the annotated data. Therefore, it decreases the recall
in some cases that the sentences are annotated different from our spatial
reasoning concerned guidelines. The counting constraints also decrease the
recall of the model without any improvement in the precision. Therefore, we
did not use them in our final experiments.

To conclude the experiment on the SpRL layer, we show the detailed results
of the three main models that use the same local and relational features but
in the three final LOSpRL, LISpRL-4 and the final IBTSpRL model using
SSVM in Tables 8.2, 8.3, 8.4. Moreover, we implemented our best model,
which is the IBT, with structured perceptron and also structured average
perceptron. The averaged perceptron results IBTSpRL-AvgPerc shown in
Table 8.5 are about 3% better than the basic structured perceptron model (F1
(SpRL)=0.574). It also outperforms SSVM for the SpRL layer, the differences
are statistically significant (p=0.05). We remind that the instances of the
spatial relation node are produced according to the (r0) using the property
in Formula 8.9.
Overall. The important findings related to experimental questions Q8.1-
Q8.4, are as follows; Exploiting the structure of the output via a global
constraint optimization during prediction increases the performance of labeling
spatial relations in the SpRL layer compared to local predictions. Moreover
the IBT model is the best performing one compared to the other two settings.
The relational features were essential for obtaining reasonable results over
pair and triplet predictions. Constraints were often useful but sometimes lead
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to a drop in recall, for example when using spatial reasoning and counting
constraints.

Target Precision Recall F1 Annotated Pos. cand Neg. cand
sp 0.875 0,944 0,907 1466 1437 1992
sp.tr 0.776 0.590 0.668 1693 1640 20133
sp.lm 0.868 0.793 0.827 1196 1161 24123
r0 0.498 0.510 0.503 1703 1619 –
Table 8.2: LO: Local training-Local prediction for single label sp, linked
labels sp.tr, sp.lm and producing r0 using rule 8.9, BSVM, LOSpRL.

Target Precision Recall F1 Annotated Pos. cand Neg. cand
sp 0.881 0,942 0,909 1466 1437 1992
sp.tr 0.752 0.622 0.678 1693 1640 20133
sp.lm 0.853 0.815 0.832 1196 1161 24123
r0 0.526 0.533 0.529 1703 1619 –
Table 8.3: L+I: Local training-Global prediction for single label sp,
linked labels sp.tr, sp.lm and producing r0 using rule 8.9, BSVM,
LISpRL-4.

Target Precision Recall F1
sp 0.886 0.899 0.892
sp.tr 0.674 0.678 0.676
sp.lm 0.753 0.763 0.757
r0 0.578 0.581 0.579

Table 8.4: IBT: Global training-Global prediction over sp, sp.tr, sp.lm (using
nsp, sp.nrol) building r0 using rule 8.9 SSVM, IBTSpRL-1.

Target Precision Recall F1
sp 0.905 0.8416 0.871
sp-tr 0.728 0.610 0.662
sp-lm 0.828 0.766 0.794
r0 0.663 0.554 0.602

Table 8.5: IBT: Global training-Global prediction over sp, sp.tr, sp.lm (using
nsp, sp.nrol) building r0 using rule 8.9 IBTSpRL-2.
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8.3.2 SpQL Given SpRL

The goal of the experiments in this section is to answer the following questions
about the spatial qualitative labeling (SpQL) given ground truth spatial
triplets.

Q8.5. What is the performance of an LO model for SpQL layer given the
spatial triplets (i.e. LOSpQL evaluation)?

Q8.6. Does the global prediction in the L+I setting improve the results of this
layer (i.e. LOSpQL vs. LISpQL) ?

Q8.7. Does considering correlation between output variables in the IBT model
improve the results of this layer (i.e. LISpQL vs. IBTSpQL)?

Q8.8. What is the influence of lexical and syntactical features in the IBT
model? What is the effect of the applied constraints such as is-a and
mutual exclusivity constraints (i.e IBTSpQL features and constraints)?

LO and L+I

LOSpQL. This is an LO model which contains a BSVM binary model for
classification of each semantics type in the ontology. The training examples
are ground truth spatial triplets which can be positive or negative with
respect to each semantic type. Given the spatial triplets, the linked labels
of the SpQL layer contain only one single semantic variable each, which
reduces the number of candidates to a great extent and makes training local
models feasible. Table 8.6 shows that LOSpQL model works fairly well in
classification of course-grained semantics and particularly for the labels with
a larger number of positive examples.
LISpQL. This is an L+I model which uses locally trained binary classifiers
for each semantics type but performs global prediction and imposes the
ontological constraints 8.10-8.12 for the SpQL layer. Table 8.7 shows the
results of this experiment. For the single labels of the ontology (when using
ground truth triplets) as expected imposing the constraints decreases the
number of false positives leading to an increase in the overall weighted average
of precision and a drop in recall. However the overall F1 measure increases
by 0.007 when compared to the local predictions in table 8.6. In the nodes
EC, PP, PO, BELOW, RIGHT, BEHIND, FRONT and ABOVE a dramatic
increase is visible. Only in two nodes of LEFT and DC there is a drop in
F1. In these two nodes though the precision increases, the decrease in the
recall is comparatively more. Distinguishing between LEFT and RIGHT is
difficult for our model since their features are often similar except for the
lexical form. In general, these results indicate that imposing the constraints
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Class Precision Recall F
Region 0.9428 0.8927 0.916
Direction 0.8421 0.9189 0.8761
Distance 0.1143 0.8354 0.1985
EQ 0.3 0.7 0.1
DC 0.4073 0.6249 0.4495
EC 0.5328 0.8415 0.631
PO 0.0137 0.6071 0.0255
PP 0.5678 0.8405 0.6713
BELOW 0.68 0.76 0.5973
LEFT 0.3703 0.9606 0.5038
RIGHT 0.1075 0.9923 0.1872
BEHIND 0.492 0.9762 0.6357
FRONT 0.2338 0.9638 0.3632
ABOVE 0.6796 0.7706 0.6961
W.Avg. 0.69178 0.87708 0.73472

Table 8.6: LO, Given G-truth triplet, Local training-Local prediction for
labels r1..O, BSVM, LOSpQL, 10-fold cross validation, SemEval-1.

dramatically increases the performance of the lower level nodes in the ontology
compensating the lack of examples for those nodes.

IBT

IBTSpQL-1. In this model we use LP-relaxation to solve the loss-augmented
inference during training for the SpQL layer subject to the vertical constraints
in the ontology. The employed features are the triplet features described in
Section 8.1.3. We observed that using the SpQL constraints 8.10-8.12 for
finding the most violated label assignments, provides a sharp improvement in
the results compared to training local models particularly in terms of precision.
The results of the IBTSpQL-1 model are shown in table 8.8. However, adding
the mutual exclusivity constraints during training improves the results very
slightly, but the convergence of the training is faster compared to not using
these constraints. Our analysis shows that this is due to the selection of
more elegant violating examples from the confusion set in the loss-augmented
inference, that respect the structure of the output in the initial training
iterations, from the confusion set. Imposing the constraints makes the LP-
solver slower but the number of iterations for the cutting-plane algorithm of
the SSVM to find a stable working set for Max-Margin optimization decreases
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Class Precision Recall F
Region 0.9387 0.9282 0.9325
Direction 0.693 0.9393 0.7854
Distance 0.1141 0.8354 0.1982
EQ 0.3 0.7 0.1
DC 0.6076 0.3555 0.3858
EC 0.6564 0.7515 0.6923
PO 0.7 0.4786 0.3698
PP 0.7713 0.7473 0.7536
BELOW 0.8667 0.81 0.7217
LEFT 0.561 0.2974 0.3302
RIGHT 0.2044 0.8305 0.3099
BEHIND 0.7476 0.9179 0.8108
FRONT 0.789 0.9199 0.8328
ABOVE 0.7247 0.7706 0.7261
W.Avg. 0.73909 0.81496 0.74172

Table 8.7: (L+I), Given G-truth triplet, Local training-Global prediction,
constraints 8.9- 8.11 with LP-relaxation for labels r1..O, BSVM, LISpQL,
10-fold cross validation, SemEval-1.

and consequently overall training time is to some extent faster then when
using constraints in this specific case.
IBTSpQL-2. This is the same IBT model as IBTSpQL-1, but it receives
only the lexical features of the ground truth triplets. This experiment
indicates whether the lexical information and the words (i.e. lexical form of
the trajector, landmark and spatial indicator) are sufficient to distinguish the
semantics of the spatial relation between the spatial entities. The results in
table 8.9 show that by removing the syntactical features such as dependency
labels, sub-categorization and other features, the total performance of the
model in terms of weighted macro average over F-measure decreases by 3%.
This observation implies that different spatial semantics are expressed by
using different linguistic constructs. For example, in directional relations,
the probability of having the subject of the sentence as a trajector is higher,
particularly in dynamic contexts. In topological relations both trajector
and landmark are mentioned explicitly in the sentence so that having an
undefined argument is less possible in this case. The drop in performance is
higher for the directional relations which means that these follow more regular
structural patterns compared to topological or distal relations. However, the
performance of the model which relies only on the lexical information is
still comparatively high. This result proofs the dominancy of this feature in
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Class Precision Recall F
Region 0.9359 0.9508 0.9427
Direction 0.8906 0.9179 0.9029
Distal 0.8196 0.7854 0.7896
EQ 0.9 0.7 0.6
DC 0.5962 0.6028 0.5816
EC 0.7243 0.7804 0.7466
PO 1 0.5286 0.5444
PP 0.7807 0.793 0.7833
BELOW 0.8167 0.76 0.6717
LEFT 0.5181 0.7551 0.5529
RIGHT 0.5174 0.3332 0.3488
BEHIND 0.9203 0.9024 0.9029
FRONT 0.8383 0.897 0.8593
ABOVE 0.8465 0.8212 0.8128
W.Avg. 0.8223 0.8442 0.82134

Table 8.8: (IBT) G-truth triplet, Global training-Global prediction for SpQL,
SSVM, IBTSpQL-1, 10-fold cross validation, SemEval-1.

distinguishing the spatial semantics.
Constraints only during training. One finding in the experiments is that
when the constraints are applied during training in the IBT model, applying
them during prediction is required for obtaining an accurate prediction. This
is expected because when using constraints during training, the trained model
relies on the structure of the output in addition to the weight vectors to
distinguish between labels. Consequently the absence of the constraints
during prediction time leads to an inaccurate prediction (F1=0.264).
IBTSpQL-3. The last experiment in the IBT framework for the SpQL layer,
is a model similar to IBTSpQL-1 but it makes use of the averaged structured
perceptron instead of SSVM. Table 8.10 shows the results. Although the
AvGSPerc yields the best results for the SpRL layer, for the SpQL layer the
SSVM yields results with a higher F1 measure (3%).

Overall. Answering the main experimental questions Q8.5-Q8.8 for this layer,
we consistently observe that IBT outperforms L+I and both of these models
outperform the LO model. Since the textual corpus contains descriptions about
images, the frequency of the topological relations is high. Therefore, in the
results of various settings for the SpQL layer, the performance of the models
is higher in recognizing the topological type of relationships compared to the
directional and distal categories. Particularly for the distal relations there are
only 82 annotated examples in the data set, therefore the models have a lower
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Class Precision Recall F
Region 0.9223 0.9097 0.9155
Direction 0.8063 0.8841 0.8415
Distance 0.7391 0.7688 0.738
EQ 0.8 0.7 0.5
DC 0.6259 0.6568 0.6284
EC 0.747 0.7214 0.7295
PO 0.85 0.5786 0.6031
PP 0.7941 0.7917 0.7907
BELOW 0.88 0.69 0.6127
LEFT 0.4544 0.6644 0.4986
RIGHT 0.4027 0.4403 0.395
BEHIND 0.9578 0.944 0.9458
FRONT 0.6479 0.7742 0.6992
ABOVE 0.8715 0.8212 0.8028
W. AVG 0.799 0.81733 0.79928

Table 8.9: G-truth triplet, Global training-Global prediction for SpQL,
SSVM, IBTSpQL-2 using only lexical features, 10-fold cross validation,
SemEval-1.

Class Precision Recall F
Region 0.9212 0.9479 0.933
Direction 0.9012 0.8676 0.883
Distal 0.6757 0.7672 0.6999
EQ 0.6 0.7 0.3
DC 0.4905 0.7141 0.5658
EC 0.7179 0.6466 0.67
PO 0.9 0.5786 0.5445
PP 0.709 0.7321 0.7162
BELOW 0.3313 0.76 0.3775
LEFT 0.6793 0.5286 0.5792
RIGHT 0.4155 0.564 0.4246
BEHIND 0.8821 0.8403 0.8489
FRONT 0.8406 0.8039 0.8151
ABOVE 0.9846 0.7201 0.7828
W.Avg. 0.80065 0.80468 0.79109

Table 8.10: (IBT) G-truth triplet, Global training-Global prediction for
SpQL, IBTSpQL-3, AvGSPerc, 10-fold cross validation, SemEval-1.
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performance for this category. The distal relations are often signaled by specific
words present in the sentence. The words such as far, close can decrease the
ambiguity about the distal semantics if the relation has been extracted correctly
from the sentence. We suppose by enriching the corpus with additional training
examples of distal and directional relations, our learning models will perform
more accurately in these two categories too.

8.3.3 End-to-End SpRL-SpQL

Although LP-solvers are very efficient, yet having the target global model for
each layer does not scale up for a global SpRL-SpQL model due to the large
number of candidate triplets and the large number of constraints. Hence in
the following sections we experiment on different solutions for building the end-
to-end SpRL and SpQL. Particularly we aim to answer the following research
questions empirically,

Q8.9. What is the performance of connecting the two IBT models trained
independently for the two layers and making the prediction in a pipeline
(i.e. EtoE-pipe evaluation)?

Q8.10. Can we use the above mentioned model, but practically make a global
prediction over both layers? Can the communicative inference algorithm
help to make this global prediction (i.e. EtoE-pipe vs. EtoE-IBTCP)?

Q8.11. Can we practically train a global model having a global loss-augmented
inference and jointly train for the two layers? Can the communicative
loss-augmented inference help to achieve such a global model over the
two layers (i.e. EtoE-pipe vs. EtoE-IBTCTCP)?

Q8.12. How can DecL variations help to have a globally trained model? What
are the difficulties given the empirical results (i.e. DecL vs. EtoE-
IBTCTCP)?

Pipeline. A straightforward approach is to use the separately trained models
of IBTSpRL and IBTSpQL in a pipeline for prediction of all the nodes in the
ontology. We refer to this models as EtoE-pipe.
EtoE-pipe-1. In this model the IBTSpRL-1 predicts the first layer and then
the prediction is piped to the IBTSpQL-1 while both use SSVM training. The
results of the two layers are shown in Tables 8.4 and 8.11.
EtoE-pipe-2. In this model the IBTSpRL-2 predicts the first layer and then
the prediction is piped to the IBTSpQL-3 model while both use AvGPerc
training. The results of the two layers are shown in Tables 8.5 and 8.12.
These tables clarify the answer to the question Q8.9, and build a baseline for
the connection between the two layers upon which we investigate the possibility
of any improvement by joint inference over the two layers.
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Class Precision Recall F
Region 0.5856 0.6027 0.5924
Direction 0.4941 0.5072 0.4986
Distal 0.4055 0.3671 0.368
EQ 0.9 0.7 0.6
DC 0.2789 0.3025 0.2815
EC 0.4649 0.5385 0.4898
PO 0.7 0.3143 0.325
PP 0.5653 0.5514 0.5564
BELOW 0.6619 0.525 0.4317
LEFT 0.2539 0.4322 0.2764
RIGHT 0.1511 0.1763 0.0985
BEHIND 0.5245 0.534 0.5213
FRONT 0.4421 0.4865 0.4548
ABOVE 0.5757 0.5555 0.5579
W.Avg. 0.498 0.522 0.4982

Table 8.11: Pipeline SpRL and SpQL, SSVM, 10-fold cross validation,
SemEval-1 (EtoE-pipe-1).

Class Precision Recall F
Region 0.6668 0.541 0.5937
Direction 0.6024 0.5442 0.57
Distal 0.633 0.4087 0.477
EQ 0.9 0.7 0.6
DC 0.3828 0.3044 0.3304
EC 0.5711 0.4419 0.4862
PO 0.85 0.4643 0.4584
PP 0.5774 0.48 0.5214
BELOW 0.6 0.55 0.49
LEFT 0.4486 0.292 0.331
RIGHT 0.372 0.537 0.359
BEHIND 0.602 0.563 0.573
FRONT 0.558 0.508 0.525
ABOVE 0.654 0.485 0.513
W.Avg 0.593 0.4934 0.5266

Table 8.12: Pipeline SpRL and SpQL AvGSPerc, 10-fold cross validation,
SemEval-1 (EtoE-pipe-2).
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It is worth to notice that in this experiment, the EtoE-pipe-1 using AvGPerc
outperforms the EtoE-pipe-2 using SSVM.
Communicative inference during prediction. Here the same indepen-
dently trained models are used for the two layers and the suggested algorithm
of communicative inference, Algorithm 4, is applied only during prediction.
EtoE-IBT-CP-1. The trained models are same as EtoE-pipe-1 based on
SSVM. The results over the two layers after using communicative inference
during prediction are reported in Tables 8.13 and 8.15.
EtoE-IBT-CP-2. The trained models are same as EtoE-pipe-2 based on
AvgSperc. The results over the two layers after using communicative inference
during prediction are reported in Tables 8.14 and 8.16.
The results of EtoE-IBT-CP-1, show about 0.001 improvement for SpQL and
about 0.01 (significant only for p = 0.1) improvement over the SpRL when
it receives feedback from SpQL during prediction compared to EtoE-pipe-1
model. The results on EtoE-IBT-CP-2 for the SpRL and SpQL are consistently
outperforming (∼ 0.003 ) compared to EtoE-pipe-2; the improvement for SpRL
is not significant and for SpQL is significant for p = 0.1. This experiment
provides a rather positive answer to the question Q8.10.

Target Precision Recall F1
sp 0.888 0.861 0.874
sp-tr 0.675 0.648 0.661
sp-lm 0.770 0.7442 0.7566
r0 0.595 0.570 0.582

Table 8.13: SpRL by communicative inference during prediction, SSVM,
10-fold cross validation, SemEval-1, (EtoE-IBTCP-1).

Communicative inference during training. In this experiments a global
model is trained using communicative inference during training for finding the
most violated examples.

Target Precision Recall F1
sp 0.907 0.838 0.870
sp-tr 0.732 0.610 0.663
sp-lm 0.831 0.764 0.795
r0 0.669 0.556 0.605

Table 8.14: SpRL by communicative inference during prediction, AvGSPer,
10-fold cross validation, SemEval-1, (EtoE-IBTCP-2).
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Class Precision Recall F
Region 0.6059 0.6002 0.6018
Direction 0.4902 0.471 0.4793
Distal 0.4464 0.3504 0.373
EQ 1 0.7 0.7
DC 0.3252 0.2918 0.2923
EC 0.484 0.5329 0.4987
PO 0.7 0.3143 0.325
PP 0.5662 0.5472 0.5551
BELOW 0.64 0.545 0.473
LEFT 0.2474 0.381 0.2608
RIGHT 0.1775 0.2307 0.1328
BEHIND 0.5064 0.4994 0.4976
FRONT 0.463 0.4519 0.4535
ABOVE 0.5224 0.5389 0.5177
W.Avg. 0.50967 0.50983 0.49913

Table 8.15: SpQL by communicative inference during prediction SSVM,
10-fold cross validation, SemEval-1, (EtoE-IBT-CP-1).

Class Precision Recall F
Region 0.6672 0.5415 0.5945
Direction 0.6159 0.5472 0.5781
Distal 0.668 0.4087 0.4877
EQ 0.9 0.7 0.6
DC 0.3781 0.3044 0.3286
EC 0.571 0.4407 0.4849
PO 0.85 0.4643 0.4584
PP 0.5818 0.4822 0.5248
BELOW 0.6 0.55 0.49
LEFT 0.4522 0.292 0.3321
RIGHT 0.3767 0.5442 0.3649
BEHIND 0.6106 0.5627 0.5761
FRONT 0.565 0.5075 0.531
ABOVE 0.6544 0.4851 0.513
W.Avg. 0.5979 0.49456 0.52924

Table 8.16: SpQL by communicative inference during prediction, AvGSPerc,
10-fold cross validation, SemEval-1 (EtoE-IBT-CP-2).
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Target Precision Recall F1
sp 0.9046 0.84 0.8693
sp.tr 0.7332 0.6246 0.6726
sp.lm 0.831 0.7687 0.7969
r0 0.6731 0.5728 0.6171

Table 8.17: SpRL by communicative inference during training and prediction,
AvGSPerc, 10-fold cross validation, Semval-1, (EtoE-IBT-CTCP).

EtoE-IBT-CTCP. This model is trained based on AvgSperc which gives the
best results in the above experiments. The global training-time and prediction-
time inferences are both based on the communicative inference which connects
the solutions of the two IBT models over the two layers. The results on this
model are presented in Tables 8.17 and 8.18. These results show that the
communicative inference during training improves IBTSpRL-2 in table 8.14
(significant for p = 0.1). This improvement is due to the provided feedback
by the second layer about the type of the spatial relations to the first layer
for recognizing the spatial roles. However the performance of the second layer
dropped in this setting compared to EtoE-IBT-CP-2 (see table 8.16) which does
communicative inference only during prediction. This behavior can be due to the
high performance of the semantic type labeling in general (see tables 8.10, 8.8)
compared to the role labeling, therefore the feedback from the semantic types
can promote the role labeling while learning from the noisy role labels in the
presence of a small data set is more tricky for recognizing the semantic types.
This result is an answer to the question Q8.11.
Decomposed learning (DecL). In another set of experiments some variations
of the DecL algorithm in Section 7.2.3 are implemented to obtain a global
training model.
DecL-1. In this basic setting, each decomposition member contains one label
of an arbitrary type similar to the Pseudo-max approach.
DecL-2. In this setting, each decomposition member contains a pair of labels
each of which has an arbitrary type.
DecL-SpQL-SpRL-1. In this setting we use a relational decomposition based
on the types of the variables in each SpRL/SpQL layer defined as S = {S1,S2}
where S1 = {sp, sp.tr, sp.lm, nsp, sp.nrol} and S2 = {rγ}, γ > 0.
DecL-SpRL-SpQL-2. This is a different variation of DecL in which a heuristic
that we call piping violation is applied but it uses the same decomposition as
the DecL-SpRL-SpQL-1 setting. In this model the most violated SpRL is found
and then by fixing this MAP assignment the most violated SpQL is found.
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Class Precision Recall F
Region 0.6269 0.5454 0.581
Direction 0.6177 0.5738 0.5916
Distal 0.5127 0.3232 0.3451
EQ 0.9 0.7 0.7
DC 0.2379 0.2382 0.2183
EC 0.5061 0.3926 0.433
PO 0.85 0.4143 0.3917
PP 0.4947 0.5024 0.4954
BELWO 0.5583 0.575 0.38
LEFT 0.4674 0.255 0.1878
RIGHT 0.3389 0.5903 0.3729
BEHIND 0.607 0.5678 0.582
FRONT 0.5621 0.533 0.5377
ABOVE 0.5436 0.5033 0.518
W.Avg. 0.55317 0.49138 0.500

Table 8.18: SpQL by communicative inference during training and prediction,
AvGSPer, 10-fold cross validation, SemEval-1, (EtoE-IBT-CTCP).

None of the first three settings provide comparable results to the aforementioned
models. This outcome is due to: a) Relational nature of the problem; 2) Pipeline
nature of the two semantic layers.
In DecL-1, DecL-2 where the relational nature of the problem and the type
of the output labels is ignored, there will be a large number of sets in each
decomposition and we need to generate all possible local combinations (for DecL-
x and x>1 cases) and update the constraints based on the active variables for
each decomposition. This generation overhead is highly inefficient and resembles
a greedy generative search approach for inference which is both inefficient and
inaccurate for our relational problem. Even in the case of using LP-relaxation
for each sub-problem, updating the target objective and the global constraints
for each sub-problem is an overhead that can be even less efficient than doing a
global training using LP-relaxation.
In DecL-SpRL-SpQL-1 training, though we consider a relational decomposition
based on the type of labels and their semantics, the pipeline nature of the two
layers introduces new difficulties. If SpQL is set by the ground-truth to find the
most violated SpRL, then in the obtained violating example the most violating
relations are connected to null semantic labels and not to the true SpQL labels.
These false negative semantic labels result in extensive weight updating for the
SpQL variables. This provides a poor training for those blocks of weights which
feedbacks badly in finding the most violated SpRL in later iterations. Moreover,
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Pipe(SSVM) Pipe(AvGPer) Comm(AvGPer) DecL(AvGPer)
8h53m3s 1h16m9s 1h24m24s 2h9m7s

Table 8.19: Training time per fold AvGPer(20 Iter), SSVM(80 Iter); averaged
over 10 folds.

Communicative Pipeline
28.4s 15s

Table 8.20: Prediction time per fold; averaged over 10 folds.

this leads to finding an inappropriate most violated SpQL when setting SpRL
to ground-truth too. Consequently there is no improvement in learning the
blocks of the weights of the two layers.
The DecL-SpRL-SpQL-2, on the contrary, provides reasonable results (F1(SpRL)=
0.61, F1(SpQL)=0.50) compared to other DecL settings. In this model, using
the above mentioned heuristic, we alleviated the problem of DecL-SpRL-SpQL-1
setting caused by the pipeline nature of the two layers. The result is slightly
better than the pipeline model (significant for p = 0.1) for SpRL but it shows a
drop of about 0.02 in F1 measure for SpQL.
After all, obviously the DecL algorithm is appropriate for the cases where we
can naturally partition the variables ignoring some correlations. In our case
the labels in the second layer are all tightly correlated to the variables of the
first layer, therefore in one hand the decompositions that take this correlations
into account lead to the same complexity of the original problem and on the
other hand the split based on the two layers can not achieve better results
compared to the pipelining. Moreover, the basic local training models based
on the templates were more efficient and effective than performing all the local
decompositions of instantiated labels. These experiments imply the necessity
of a more sophisticated modeling for the decompositions in the case of such
a relational problem containing various types of components in the input and
various types of labels in the output. This last analysis clarifies our answer to
the above mentioned question, Q8.12.
Efficiency analysis. The AvGSPerc is highly efficient compared to SSVM.
Although the cutting plane algorithm in SSVM reduces the duration of each
training iteration, according to our experiments the number of iterations required
for SSVM are many more than AvGSPerc. We achieve the best models in 10-20
iterations for AvGSperc while for SSVM by setting the training error to less
than 0.1 at least 80 iterations are needed to converge. In table 8.19 the training
duration of the pipeline model, which is the sum of the training time of the two
layers, is reported per fold by averaging over 10 folds (iterations: SSVM=80,
AvGSPrec=20).
The time tables show that using the communicative inference for training
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global SpRL-SpQL is highly efficient. In fact the communicative inference is
converged in a few i.e. often less than 10 iterations. Therefore the efficiency of
communicative training is comparable to the pipeline model. In the decomposed
models of DecL-1 and DecL-2 the training is highly inefficient being about 10
times slower than the pipeline model due to generating the decompositions and
propagating the constraints. However the DecL reported in the table 8.19 is
the DecL-SpRL-SpQL case and has a reasonable training time. The reported
prediction durations of the communicative inference and the pipelining in
table 8.20 indicates the efficiency of the communicative inference. The numbers
are obtained by averaging over 10 folds.2

8.4 Related Work

Structured support vector machines and structured perceptrons are among
the most well-known discriminative structured learning approaches. These
techniques have been successfully applied on different structured output
prediction tasks in the natural language processing domains such as question
answering [16], natural language statistical parsing [25] and also in other domains
such as computer vision [103]. Our applied structured learning formulation is
very generic and similar to the works in [150, 130, 155]. There are other max-
margin based formulations of structured output prediction which are problem
specific or formulated for a certain type of loss function [79, 114]. To our
knowledge, we are the first to consider such techniques for a semantic task and
considering ontological constraints during both training and prediction. However,
considering global constraints during prediction in constrained conditional
models have been used in other tasks such as semantic role labeling [110, 140],
text compression and summarization [22], information extraction [126] and
coreference resolution [34]. Exploiting constraints during training in an efficient
way is investigated in [130], when proposing the DecL. This model has been
applied on multi-class classification and named entity recognition only, while
we pinpoint to the challenges of applying such training models in more complex
relational tasks and for semantic extraction.

2The reported times are meant to give a fairly comparative assessment of the efficiency
of the approaches. They are not accurately measured based on the CPU running time, but
based on the time stamps of the saved results in the files.
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8.5 Conclusion

In this chapter, we designed a global learning model for populating our proposed
spatial ontology. The proposed model is able to flexibly exploit the local,
relational features and global constraints. The training is based on structured
SVMs and structured perceptrons. To perform inference during the training and
the prediction, we use an ILP formulation and LP-relaxation techniques. Due
to the complexity of populating the ontology in a joint setting for both SpRL
and SpQL layers, the experiments are first performed based on the independent
layers, and then the two layers are connected using the communicative inference
algorithm for a global loss-augmented optimization jointly over the two layers.
The experiments indicate that the global IBT learning models outperform
the LO and L+I models for both layers. Moreover, using relational features
is essential to achieve a reasonable performance for extraction of the spatial
relations, and global constraints can help improving the models.
Particularly for the second layer the is-a and mutual exclusivity constraints
are useful for both faster convergence in optimization and the accuracy of the
structured model. Our proposed communicative inference was a solution to
connect the two layers efficiently because learning an integrated end-to-end
model was not feasible using off-the-shelf solvers. By using the communicative
algorithm the second layer provides feedback to the first layer to adjust the
weights of the features given the predicted spatial semantics of the triplets.
The evaluation of the final end-to-end model using this algorithm shows an
improvement compared to a baseline pipelining when the communication is
used during prediction. Not only the final output, but also the performance of
the first layer improved, particularly in recognition of the landmarks after the
communicative inference.
According to our experiments the results of the communicative inference during
training are also promising. The improvement is small but consistent and
efficient. It seems that the communicative inference during learning can be
effective if the two communicating models are sufficiently accurate (e.g. about
0.80), otherwise the noisy feedback might drop the accuracy compared to training
independent models. In our case, the feedback of SpQL during training improves
the model for the SpRL layer, but not vice versa. However the negative side
effects of communicative inference can happen even in the case of communication
during prediction, which was not the case in our experiments. Our additional
experiments indicate that providing effective DecL decomposition models for
such a relational domain necessitates a particular attention to be paid to the
relational decompositions for inference. For example the types of the variables
in such problems can guide automatic decompositions that are more sensible
according to the semantics of the problem.
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Chapter 9

Conclusion and Future Work

In this chapter the main conclusions of this thesis are presented. We point to
the main future directions and the potential extensions of this research.

9.1 Conclusion

The outcome of this thesis on "Structured Machine Learning for Mapping Natural
Language to Spatial Ontologies", is relevant to three areas when building machine
learning models to connect natural language to spatial ontologies. These areas
are spatial cognition, computational linguistics and machine learning.

• Spatial cognition. From the spatial cognition point of view, our
computational models establish a long-needed bridge between earlier
formalizations of space and spatial language. The models are independent
from complex cognitively based linguistic principles, but are supported by
actual usage of natural language and based on intelligent computational
models that can learn from experience. This approach is language
independent and it is robust in dealing with the ambiguity and polysemy
in the spatial language.

• Computational linguistics. From the computational linguistic point
of view, this work has a number of contributions in this field. We
provide an annotation scheme, corpora and a well-formulated task for
a particular semantic extraction that is useful for many applications,
which received the attention as a standalone computational linguistic
challenge. We also investigate the linguistic properties and structural
characteristics of this problem that are useful for performing this task in

203
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a machine learning framework -given that machine learning is the most
dominant approach for most of the computational linguistic tasks.

• Machine learning. From the machine learning point of view the task
that we tackle goes beyond the classical applications of machine learning
and involves state-of-the-art challenges in this field. These challenges are
dealing with the rich internal structure of the language and extraction of
the semantics which possess rich structural characteristics. We design a
number of models in the well-known frameworks for such complex tasks
such as probabilistic graphical models, statistical relational learning
and non-probabilistic structured output prediction models. In the
last framework, we formalize a general model for extraction of the
semantics in text represented in any arbitrary ontology. We formalize a
structured learning model from relational data. We integrate efficient
techniques based on constraint optimization for inference during training
and prediction. In our developed framework we can consider relational
features, global ontological constraints and background knowledge
efficiently.

Now, we describe the conclusions and contributions of this thesis in a more
fine-grained way and align with the research questions and challenges of
Chapter 1.
The first phase of this research was to answer the questions Q 1 and Q 2
about spatial primitives and formal representations. These are the basis of
our further computational models. In this direction, we proposed a spatial
annotation scheme. The proposed scheme is modulated in two cognitive and
formal representation layers through which a bridge between the language and
multiple spatial calculi is established. Compared to the previous work, we use
generic and domain independent spatial notions and can cover dynamic as well
as static spatial information in our scheme. The spatial primitives are connected
to multiple calculi models. This utility aids to cover the various aspects of
spatial semantics in spatial expressions and to alleviate the problem of the
gap between natural language and formal spatial representation and reasoning
models. Mapping to formal models provides the possibility of spatial reasoning
over the extracted information which is not possible to do on natural language
directly. Due to the compatibility of the applied spatial notions with spatial
visual perception, this scheme has a high potential to be used in the applications
with multimodal settings. We started with a limited set of elements in this first
practice to be able to proceed with constructing feasible computational models.
However, the abstraction layers provide a modular view on the target spatial
ontology which is useful for further extensions at each layer. Providing this
scheme is the first major contribution of this thesis.
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The second phase of this research was to answer the questionsQ 3 andQ 4 about
the task and corpora. Given the ambiguity and polysemy in the language, we
assume machine learning models are best situated to deal with mapping natural
language to a spatial semantic representation by learning from experience.
To set up a supervised machine learning practice, we annotated rich corpora
according to the proposed scheme. These corpora have been used as the first
benchmark for spatial information extraction in SemEval2012. In this direction
we formulate a computational linguistic task in two layers of spatial role labeling
(SpRL) and spatial qualitative labeling (SpQL). We view and formalize this task
in the framework of ontology population. Formulating a new computational
linguistic task and corpora for statistical machine learning practices, is the
second major contribution of this thesis.
The third phase of this research was to investigate the necessity of defining
a standalone CL task and to answer empirically yet again question Q 3 and
question Q 5 about problem features and solution models. Our first experiments
confirm the importance of this task. We empirically show that a semantic role
labeler and a dependency parser, which can be helpful in this respect, mostly
fail to extract the basic spatial primitives and the spatial dependencies. We
hypothesize a set of features and properties according to the studies over spatial
language as well as similar semantic tasks such as spatial role labeling. These
properties are applied in two distinct classes: features and constraints. A variety
of state-of-the-art machine learning techniques are applied to investigate this
problem initially in the first SpRL layer.
For the experiments over the SpRL layer, first we designed learning models
based on probabilistic graphical models, particularly conditional random fields.
The experimental results show the importance of considering context dependent
features and long distance dependencies. The cross domain evaluations indicate
the importance of the lexical features which is expected. Using the additional
resources such as the preposition project data can improve the disambiguation
of the prepositions and increase the domain portability of the models.
The relational nature of the problem calls for considering statistical relational
learning approaches, particularly kLog. We provide a relational representation
of the data using an ER diagram. For the learning problem, we program
the learning problem declaratively using a logical language and exploit the
background knowledge in a very flexible setting. Instead of considering the
correlations between outputs a graph kernel can compensate for capturing the
global structure of the model by making an extensive use of contextual features.
This experiment shows fairly successful, though adding the sequential correlation
between the outputs using SVM-HMM in kLog still shows improvements. The
extensive usage of the contextual features can lead to over-fitting and motivates
exploiting more domain independent structural characteristics of the problem
via global constraints.
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Our empirical investigation provides, for the first time, a qualitative as well
as quantitative error analysis and pinpoints to the practical challenges of the
spatial role labeling task in its various aspects. These experimental results
obtained in two above mentioned main machine learning frameworks are the
third major contribution of this thesis.
In the fourth phase of this research, we extend the task and the machine learning
investigation of the previous stage by working on a full ontology population
task encompassing both the SpRL and SpQL layers. We explore the answer to
question Q 5 yet, but in a more complex setting. In this direction, we generalize
the problem and develop a unified structured prediction model for ontology
population.
We propose a model called Link-And-Label (LAL) model in which the objective
function is defined based on the notion of templates. The objective is produced
by unrolling a set of templates and producing a multinomial function to be
optimized subject to the linearly grounded first order constraints. The templates
provide a clear view on the structure of the learning models and the ways their
parameters are tied in the relational domains. The defined loss function also
is defined based on the Hamming distance between the components of each
type which is easy to integrate in the loss-augmented inference. Our model is
the first unified structured learning framework which is proposed for ontology
population. In previous works the ontology components are mostly dealt with
locally or in pipelines, and its most elaborated case can only consider hierarchical
relationships. The proposed global learning framework is instantiated for the
case of spatial ontology population. In this model we deal with ontological
relationships such as is-a and composed-of. We consider background linguistic
and common sense knowledge in the form of constraints. Formalizing this global
framework for supervised ontology population is the fourth and the most
important contribution of this work.
In the last phase of this research, while working in the global ontology population
framework, we need to answer the last research question Q 6, regarding the
efficiency issues of global inference. Though the inference in the proposed
LAL model is performed based on the combinatorial techniques and LP-
relaxation, it is still a challenge to solve this problem using off-the-shelf
solvers. In this direction we propose an approach for decomposing the inference
to simpler subproblems each of which can be solved using existing solvers
but those subproblems can communicate to each other. The approach we
call communicative inference uses the ideas of alternation optimization. The
decomposition is made by an expert. However, the LAL representation of the
learning model can direct the decomposition approaches to act more effectively
by considering the type of the variables particularly for further extensions of this
work and doing automatic decomposition. In practice, the global (joint) learning
model for all components of the ontology, was only feasible when we decomposed
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the two SpRL and SpQL layers and used the proposed communicative inference.
In our best results applying the proposed communicative inference during
training improves the results of the SpRL but not of the SpQL. Applying it
during prediction improved the results of both slightly compared to pipelining
the two tasks. The proposed inference technique in the context of ontology
population and the empirical study applied on the spatial ontology is the fifth
major contribution of this thesis.

9.1.1 Additional Note on Various Learning Frameworks

Here we provide an overview and conclusion of the experimental results obtained
from various learning models for extraction of the elements in the spatial
ontology.
The extraction of the spatial roles and triplets in the first layer are examined
with various models in this thesis and in the works of participants in our
proposed SemEval-2012 [69] and SemEval-2013 [67] shared tasks.
In general, in structured output problems, the most simple learning setting is a
binary classification of the whole target structure. However, the experiments
confirm that, it is not easy to obtain reasonable results from this setting. The
main commonly known problem of such a setting is the large space of possible
output structures that can be paired with the input part of a training/test
example and relatively few true structures compared to the very large space
of possible wrong structures. This produces a very large number of negative
examples compared to the few positive ones for training a binary classifier.
Only an extensive preprocessing before training a model can make such a basic
approach functioning. This preprocessing can include, pruning the negatives
by some background knowledge, automatic feature extraction [121] and using
kernels as in Chapter 6 and in [4] to produce a higher dimensional feature
space. At a more technical level biasing the learning models towards giving
more importance to the errors in classification of positives compared to the
errors in classification of negatives in parameter settings of the models when
possible, is also a usual effort.
In this thesis, this type of models firstly are examined for the SpRL layer in our
experiments within kLog. In those experiments the pruning step is performed
based on some linguistic background knowledge about POS-tags of the roles
and then the features are produced by the kLog graph kernel. However, none of
these models were outperforming other settings. The best results in this binary
setting achieved by Roberts et al. [121], the first participant of the SpRL shared
task using the binary SVM classifier of LibLinear implementation. They could
outperform the previous CRF models according to the official train-test one
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split of the shared task of SemEval-2012. However, using 10-fold cross validation
our template based CRF model of Chapter 5 outperformed their model.
In the model of Roberts, et al., using the high recall heuristic for pruning
the negatives is important (as in kLog) and the automatic feature selection
approaches find the best set of features by analyzing the training data. Due
to the extreme use of various combinatorial features, the risk of such an
approach is over-fitting the model on the training data. This can happen
using extensive contextual features in kLog too. Another solution for dealing
with negative examples in the binary classification setting is a pipeline model.
After classification of the roles, they are piped to another step of relation
classification. In this way the training model of the second phase does not
suffer form the huge space of negatives but still from the errors made by the
first step. This approach also is experimented in kLog and also in the work of
the participant of SemEval-2013 [4]. In SemEval-2013 participant system, for
classification of the relations in the second step of the pipeline a tree kernel is
used to produce contextual features. The results of this work is not comparable
to other results due to the difference in the data sets and the evaluation setting,
but in the experiments performed in this thesis, the pipeline model within kLog
was performing poorly compared to other settings.
A different approach from the binary classification setting is to consider the
parts of the output structure and model the correlations among output parts
explicitly. This is in fact the structured learning approach. In this direction, our
conditional random field model considers the sequential relationships between
the spatial roles in their classification and constructs the relations based on
the extracted roles. In kLog a similar setting is used by calling SVM-HMM for
tagging the words in a sequence. However, the kLog language can not represent
these type of output correlations for the learning model hence the sequential
relations are read from the file format according to the applied SVM-HMM
implementation. The SVM-HMM is used by the second SpRL participant later
in SemEval-2013, in a first step of role classification in the same SpRL problem
and also an extended problem in which the motion indicator and path elements
are additionally classified. The results of the models are not comparable due
to the difference in the data and the evaluation settings. But within the
kLog framework the SVM-HMM setting was the best model compared to the
binary classification and pipeline settings. However, our CRF model is still
outperforming compared to the experiments with SVM-HMM on the same data.
All these experiments indicated the importance of considering the correlations
between the parts of the output explicitly. Hence, we targeted this approach
in a more flexible setting with non-probabilistic structured output prediction
models. Using structured SVMs and structured perceptrons, we modeled the
correlations between the roles that construct spatial relations. We worked
in the primal formulation using the original feature space with SVM-struct.
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The results show again that, with a slightly modified annotated corpus, the
CRF models perform better on the SpRL layer. However in our structured
learning setting the sequential relations are not modeled in contrast to the CRF
modes. The flexibility of this setting facilitates considering these correlations
in an extended model. For example, the Viterbi inference can be formulated
in a linear program [125] and integrated to improve the results obtained from
structured support vector machines and structured perceptrons.
The second layer of the ontology with all its nodes are considered only in this
thesis and the data has not been completely released yet. Hence the comparisons
and the results are towards investigation of the influence of increasing globality
of the learning model in the sense of considering output correlations compared
to training local models for the nodes and parts of the ontology. The results
show that the global constraints often help improving the learning models.
After all, each learning model evaluates some aspects of this problem. All
models indicate the importance of considering the contextual and relational
features. kLog and other kernel-based models are more flexible in automatically
producing and considering these features in the input level. The extensive
contextual features might capture global corrections between the parts of the
output. However, in the cases where there exist background knowledge about
the form of these global correlations then exploiting these is an advantage (e.g.
ontological constraints). The CRF models are vey efficient and capable as far as
the correlations are sequential or about very limited long distance dependencies.
Applying the very global correlations and constraints is technically difficult in
the graphical models. Hence, the structured output prediction models based on
constraint optimization techniques are best situated to consider these global
corrections.
We assume, the latter models are the most flexible frameworks to consider all
above mentioned elements. They are extendable for using kernels, for considering
sequential dependency as in linear chain models and in considering arbitrary
long distance dependencies. Decomposition approaches are well situated to deal
with the complexity of inference in such learning models. However automatic
decomposition and having a sufficiently general inference approach for all kinds
of problems is a very important and difficult research question to be worked out
by researchers in the future. Our Link-And-Label abstraction layer for learning
in relational data domains and the proposed component-based loss function
provide a framework that is sufficiently general for designing efficient global
learning and inference models for ontology population in various data domains.
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9.2 Future Directions

This thesis in its various dimensions opens up many potential future research
directions to which we point in the following sections.

9.2.1 Domain Portability

From a computational linguistic point of view, the problem faces the typical
challenges of the linguistic semantic tasks which is the lack of lexical information
in the training data. Although accounting for the structure of the output helps
improving the learning models, this shortage leaves always a challenge. In this
direction, semi-supervised learning and feature expansions using latent word
language models [35, 58, 36] are useful future directions. In the context of
spatial semantics, using the linguistic resources to make general abstractions
over the spatial entities can be useful, for example, to replace words with a
higher level of abstraction over them such as being a physical object.

9.2.2 Relational Learning and Efficient Inference

Although we use relational data including various types and components in
both input and output, we encode the propositionalized relations and linear
constraints directly into the model. Hence an automatic propositionalization of
the relational features and constructing the objective of the inference, starting
from a relational language remain as a future work. For example, ontology
representation languages such as OWL can be used in our context of ontology
population and then the relational data and the knowledge can be decoded
automatically into the learning model. Another future direction is to investigate
more sophisticated inference algorithms for such relational domains. Particularly,
an automatic decomposition by analyzing parts of the large ontologies and their
relevant subsets of constraints in the efficient framework of LP-relaxation and
dual decomposition techniques, seems as an optimistic research direction. A
relational decomposition using the first order abstraction that the ontologies
provide can guide a relational decomposition that is based on the types of
groups of variables rather than individual variables. In the same direction,
formalizing the usual pipelines of the computational linguistic tasks in a general
decomposition framework in which each layer can provide feedback to the other
layers in a principled way, seems a challenging research direction which is closely
related to the models and decomposition ideas in this thesis.
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9.2.3 Extended Applications

Our proposed ontology population model, can be applied on similar tasks where
the segments in the text are labeled with semantics that belong to a predefined
ontology. This applies to, for example, populating the concepts in the semantic
web, or to information extraction from biomedical texts considering biological
ontologies. Since our spatial annotation is compatible with the spatial perception
from visual data, a well-fitting application is to use our model in a setting where
the spatial information from images or videos are extracted using the same
representation. These sources of information can be integrated and complement
each other, for example, to help understanding a spatial configuration or a
scene.

9.2.4 Spatial Ontology

The proposed annotation scheme includes a number of elements that are not
considered in our computational models yet. These elements are mostly about
dynamic spatial information including motion, path and frame of reference. In
the current models, the classification of the roles and relations are word based.
These models can be extended to labeling and linking the phrase constituents
of a sentence such as in semantic role labeling.
The annotation scheme itself can be extended to cover the spatial adjectives
which are useful for dealing with more complex spatial notions such as size
and shape. Using this information expressed in the sentences can improve the
semantic assignments to the spatial relationships. More sophisticated treatment
of the distal relations is another dimension for extending the ontology which
necessitates providing additional data. Currently some extensions on the spatial
role labeling task regards motion indicators and path. They are the subject of the
second workshop hold in SemEval20131 based on our proposed task. Moreover
the resources that we pointed out in Section 4 are extended and annotated
with these elements. Finally mapping to other types of spatial ontologies such
as General Upper Model is beneficial given that it is well formalized in OWL
and using Description logic. The obstacle of this line of research is the lack of
annotated data to perform such a mapping in a supervised framework and for
evaluation of the learning models.

9.2.5 Spatial Reasoning

One goal of the proposed annotation scheme was to connect natural language
to qualitative spatial reasoning models. The recent research trend in this

1http://www.cs.york.ac.uk/semeval-2013/task3/
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area aims to provide models and tools that are able to reason over multiple
qualitative models such as SparQ [163]. Integrating our models with these
tools is an immediate step in order to ground the idea of spatial reasoning
over natural language which has not been possible before. Moreover, there are
very recent research works that model reasoning over probabilistic qualitative
spatial relations. In this direction the probabilistic label distributions can
be used directly if probabilistic graphical models are applied for the ontology
population task. In the case of using structured output prediction models
there are approaches to produce preference scores and use them as additional
information to the predicted output [94]. We assume that integrating spatial
reasoning in our learning models can provide additional feedback for checking the
inconsistencies in the predicted relations and improving the learning predictions.
This is a hypothesis that empirically can be investigated. This setting can
be compared to a setting in which we allow spatial reasoning with annotated
examples during training of the models. It can be investigated whether these
kinds of reasoning can be captured and learned by structured learning models.
Although, this latter setting seems rather complex than being feasible, it is,
worth an exploration.
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