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Abstract

The importance of security and reliability of software systems makes formal methods

of paramount significance for guaranteeing that a system satisfies a particular

specification. Hyperproperties can be seen as an abstract formalization of security

policies. Because of this, it is desirable to establish a generic verification methodology

for at least the class of security-relevant hyperproperties. Unfortunately, such a generic

verification methodology is lacking. This is the main motivation of this dissertation.

We observe that most interesting hyperproperties that are relevant in practice come

from a class of security-relevant policies, specified using universal and possibly

existential quantification on traces, as well as relations on those traces. We formalize

such definitions and call them holistic hyperproperties. Then our goal becomes to find

a methodology for the verification of holistic hyperproperties. To that end, we explore

an incremental, coalgebraic perspective on systems and specifications and as a result

we arrive at a different, but related kind of specifications: incremental hyperproperties

(essentially coinductive predicates). Given some holistic hyperproperty H, the

respective incremental version is called H ′ and its definition naturally gives the

notion of an H ′-simulation relation. Such relations enable verification of holistic

hyperproperties: finding an H ′-simulation relation on a candidate system implies that

the incremental hyperproperty H ′ holds and thus the high-level, holistic hyperproperty

H holds for the candidate system. We also introduce techniques that are often helpful

in translating holistic hyperproperties into incremental ones.

To show that incremental hyperproperties are important in practice, we explore their

connection with the most closely related verification technique — via unwinding.

To achieve this, we propose a framework for coinductive unwinding of security

relevant hyperproperties based on Mantel’s MAKS framework [55] and our work

on holistic and incremental hyperproperties. Mantel’s MAKS framework cannot be

used directly as it is geared towards reasoning about finite behavior and is thus not

suitable to reason about holistic hyperproperties in general. However, our framework

has a similar structure to MAKS: coinductive unwinding relations compose (or imply)

coinductive Basic Security Predicates, which in turn compose a number of security-
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iv ABSTRACT

relevant, holistic hyperproperties. It turns out that the coinductive unwinding relations

we introduce are instances of H ′-simulation relations. More importantly, incremental

hyperproperties can be expressed in well-behaved logics and this opens the door to

their verification.

Finally, we propose a generic verification approach for incremental hyperproperties

via game-based model checking. To achieve this, we first show how to interpret

incremental hyperproperty checking as games. Although one might do regular model

checking of incremental hyperproperties on a transformed system, model checking

games are advantageous as they do not only produce a yes-no answer, but also

give more intuition about the security policy and what can potentially go wrong, by

producing a concrete winning strategy. In order to show that the theory developed

here is practical, we present and illustrate methods of using several off-the-shelf tools

for verification of incremental hyperproperties expressed in the polyadic modal mu-

calculus.



Samenvatting

Formele methodes zijn van groot belang om de veiligheid en betrouwbaarheid van

softwaresystemen te kunnen garanderen. Hyperproperties kunnen gezien worden

als een abstracte formalisering van een softwarebeveiligingsbeleid. Het is daarom

wenselijk om een generieke verificatiemethodologie vast te leggen voor op zijn minst

de klasse van hyperproperties die relevant zijn voor beveiliging. Een dergelijke

generieke methodologie bestaat helaas nog niet. Dit is de motivatie van dit

proefschrift.

We stellen vast dat de interessantste hyperproperties met praktische relevantie

deze zijn uit de klasse van softwarebeveiligingsregels die gespecificeerd worden

gebruikmakend van universele en mogelijk existentiële kwantificering over traces

en de verbanden tussen deze traces. Deze definities worden geformaliseerd en we

noemen ze holistische hyperproperties. Ons doel wordt vervolgens het vinden van een

methodologie om holistische hyperproperties te kunnen verifiëren. Hiervoor onderzoe-

ken we een incrementeel, coalgebraı̈sch perspectief op systemen en specificaties en

vinden een ander maar gerelateerd soort specificaties: incrementele hyperproperties.

Gegeven een holistische hyperproperty H wordt de respectievelijke incrementele

versie H ′ genoemd en zijn definitie leidt op natuurlijke wijze tot het begrip H ′-
simulatierelatie. Zulke relaties maken de verificatie van beveiligingsgerelateerde

hyperproperties mogelijk: het vinden van een H ′-simulatierelatie op een kandidaat-

systeem impliceert dat de incrementele hyperproperty H ′ geldig is, waaruit volgt dat

de hoog-niveau, holistische hyperproperty H geldig is voor het kandidaatsysteem. We

voeren ook technieken in die nuttig kunnen zijn voor het vertalen van holistische naar

incrementele hyperproperties.

Om de praktische relevantie van incrementele hyperproperties aan te tonen, onder-

zoeken we hun verband met de meest verwante verificatietechniek — via unwinding.

Daartoe stellen we een raamwerk voor om beveiligingsgerelateerde hyperproperties

coindicutief te unwinden. Dit raamwerk is gebaseerd op het MAKS-raamwerk [55]

van Mantel en op ons eigen werk over holistische en incrementele hyperproperties.

Aangezien het MAKS-raamwerk gericht is op het redeneren over eindig gedrag en
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dus niet geschikt is voor het redeneren over holistische hyperproperties, kunnen

we het niet rechtstreeks gebruiken. Ons raamwerk heeft evenwel een structuur

die vergelijkbaar is met MAKS: coindicutieve unwindingrelaties componeren (of

impliceren) coindicutieve Basic Security Predicates die op hun beurt een aan-

tal beveiligingsgerelateerde, holistische hyperproperties samenstellen. Het blijkt

dat de coindicutieve unwindingrelaties die we invoeren instanties zijn van H ′-
simulatierelaties. Belangrijker nog, incrementele hyperproperties kunnen in relatief

goed berekenbare logica’s worden uitgedrukt, wat toelaat om ze te verificeren.

Tenslotte introduceren we een generieke verificatiemethode voor incrementele hyper-

properties, via spelgebaseerde model checking. Hiervoor tonen we eerst aan hoe

het controleren van incrementele hyperproperties geı̈nterpreteerd kan worden als een

spel. Alhoewel men standaard model checking van incrementele hyperproperties

op een getransformeerd systeem zou kunnen toepassen, heeft spelgebaseerd model

checking bepaalde voordelen aangezien dit niet enkel een ja-nee-antwoord geeft

maar ook inzicht geeft in het beveiligingsbeleid en wat er mogelijk fout zou kunnen

gaan, door een concrete winnende strategie te produceren. Om aan te tonen dat de

ontwikkelde theorie bruikbaar is in de praktijk, presenteren en illustreren we methodes

die gebruikmaken van bestaande hulpmiddelen voor de verificatie van incrementele

hyperproperties uitgedrukt in de polyadische modale mu-calculus.
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Chapter 1

Introduction

The fast development of information and communication technologies and the

proliferation of network-enabled devices has empowered us to conveniently use and

share all kinds of data and computing resources. This contemporary “digital era” has

radically changed the way we live and interact with each other. In many ways, our day-

to-day life depends upon computing and networking technology. All this has brought

more convenience, our daily transactions and interactions are considerably simplified;

however, there is a price to pay: we have become extremely dependent on the software

systems running on this computing infrastructure for most spheres of our life. We can

hardly imagine our lives without this “digital cloud”, moreover we rely heavily on

its proper functioning. The ubiquity and importance of network-enabled devices and

computing in all spheres of modern life (ranging from governmental transactions to

personal, online banking) has made us dependent on the security and reliability of

software systems. In addition, issues of online privacy are only starting to emerge, as

more and more people realize they are neither in control of their data nor of the digital

traces of their actions on different networks. Thus, the problem of verification of a

system with respect to (security) policy specifications is becoming increasingly more

important.

Informally, a security policy can be seen as a specification of what is the normal

behavior of a system and what is prohibited. Until recently, there was no mathematical

formalization of security policies in general. This made the problem of verification

very difficult, as every individual system had to be verified with respect to a concrete

application-specific policy in a potentially different manner. That is why it became

important to invent a formal classification of security policies, in the hope of obtaining

verification methodologies corresponding to different types of security policies. Such

a formal classification of security policies as properties and hyperproperties was

1
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proposed by Clarkson and Schneider [18, 19]. Unfortunately, a generic verification

methodology for at least the security-relevant hyperproperties does not exist. This

dissertation starts a quest towards such a verification methodology.

1.1 A Historical Perspective

The problem of verifying that a system adheres to a given specification has been an

active research area for several decades. Substantial progress has been made in the

verification of policies that can be expressed as trace properties—first-order predicates

over system execution traces. Trace properties are well-understood: every trace

property can be seen as the intersection of a safety property, guaranteeing that “nothing

bad” happens and a liveness property, guaranteeing that “something good” eventually

happens, in any trace for which the property holds [5]. Well-known examples of

successful verification methodologies include the model checking techniques for an

abundance of logics for system specification [15, 16, 51, 43, 80, 81]. Moreover,

security policies that are safety properties, such as access control, can be enforced

at runtime by a technique called execution monitoring [79]. This technique is based

on encoding the property as a so-called security automaton and each step of the

application is allowed if and only if the automaton can also produce the same step.

Unfortunately, trace properties are not expressive enough to capture a large class

of security-relevant policies, such as the abundant variants of information flow

and noninterference policies, as well as some quality of service specifications.

Information flow policies try to regulate the direct and indirect flow of information

between subjects (typically software running on behalf of users). Other definitions

focus on implicit flow of information. For instance, the abundant variants of

noninterference policies on systems essentially try to prevent the possibility of

inferring authorized information from non-authorized information [32]. According

to the original definition by Goguen and Meseguer [31], a system is secure with

respect to noninterference if and only if any sequence of low inputs results in the

same low outputs, no matter how one varies the high level inputs. Finally, quality of

service (QoS) specifications define the expected performance of systems with respect

to certain parameters, such as response time, availability, etc. [18, 19]; the QoS

specifications based on inspecting and relating many, potentially all execution traces

in a system cannot be expressed as properties.

In an attempt to provide an expressive, uniform theory of system specifications,

Clarkson and Schneider formalized security policies as hyperproperties [18, 19]. A

hyperproperty is a set of trace properties or, alternatively, a set of sets of infinite

execution traces. Hyperproperties generalize properties and are expressive enough

to capture the known notions of noninterference and secure information flow [18, 19].
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Intuitively, a hyperproperty is the set of systems permitted by some policy. Although

arising in the context of security, hyperproperties are not necessarily limited to security

policies; they can be seen as very general and expressive system specifications, as

witnessed by a number of quality of service specifications mentioned above.

Clarkson and Schneider generalize safety and liveness properties to safety hyperprop-

erties and liveness hyperproperties, also known as hypersafety and hyperliveness [18,

19]. The main difference with safety and liveness is that traces are lifted to sets of

traces: for instance, the “bad thing” is now a number of finite traces, whose existence

makes the system necessarily and irremediably insecure. Similarly, the “good thing”

means that any set of finite traces can be extended to a set of infinite traces that satisfy

certain condition(s). Clarkson and Schneider also show that every hyperproperty is the

intersection of a safety hyperproperty and a liveness hyperproperty. In addition, the

notion of a k-safety hyperproperty is introduced based on a generalization of Terauchi

and Aiken’s 2-safety properties [84]: essentially a 2-safety property can be verified

by examining all 2-tuples of traces in a system. Similarly, a k-safety hyperproperty

can be verified by examining all k-tuples of traces in a system. Finally, Clarkson and

Schneider propose a verification methodology for k-safety hyperproperties based on

invariance arguments.

1.2 The Problem: Lack of a Generic Verification

Methodology for Hyperproperties

Unfortunately, a verification methodology for k-safety hyperproperties is not sufficient

simply because many interesting hyperproperties are not k-safety hyperproperties. For

instance, Clarkson and Schneider argue that all possibilistic information flow policies

are not safety hyperproperties [18, 19]. In addition, they show that it is possible

for a security definition (for instance that of relational noninterference [18, 19])

to be a safety hyperproperty in its termination-insensitive variant and not a safety

hyperproperty in its termination-sensitive reincarnation. Hence, one may conclude

that a significant number of interesting security-relevant hyperproperties cannot use

the proposed verification technique.

In this dissertation, we start a quest for a generic verification methodology for

security-relevant hyperproperties that is agnostic to the hypersafety/hyperliveness

classification. In other words, the goal is to find techniques that work for safety and

liveness hyperproperties alike. We next demonstrate that some of the most intuitive

ideas about approaching the problem are not adequate. Nevertheless, the solution

proposed in this work will result from adapting some of these ideas.

The most obvious idea would be to try and reuse existing methodologies for
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verification of properties, for instance the ones based on model checking properties

expressible in the modal mu-calculus [43] and its derivatives. Unfortunately, this is

not immediately feasible: it is well-known that the modal mu-calculus and its related

tree logics, such as CTL and CTL∗, are not expressive enough for hyperproperties [7].

Intuitively, the reason is that they cannot express specifications relating several paths in

an execution tree, yet the original notion of hyperproperties is based on the existence

of such relations (see [19, 63]). The first ones to formalize this observation were

Alur et al. [7] who presented a proof that secrecy, a policy defined as the existence

of uncertainty as to whether a particular property is true or not, is not expressible

in the modal mu-calculus. The proof can be straightforwardly adapted to show that

the modal mu-calculus and the related tree logics are not expressive enough for

hyperproperties.

Another intuitive idea would be to explore unwinding, a verification technique

proposed back in the 80s by Goguen and Meseguer in their seminal work [32].

Unfortunately, instead of a generic verification methodology, the work on unwinding

results in a number of specific verification methodologies for noninterference-based

definitions of security [32, 37, 72, 61, 74]. For each definition, there is an unwinding

theorem stating that the unwinding relation on the state space of the system implies the

high-level policy of interest or is equivalent to it (see Figure 1.1). There is no hint as to

how to approach the problem of getting an unwinding relation from some new policy.

The problem with such an approach is that every new high-level specification needs to

Security-relevant policies

Unwinding relations

Ri

SPi SPj

Rj

Figure 1.1: Illustration of the original unwinding relations

be examined in its own right and a specific verification method needs to be invented.

Further, the proofs have many commonalities, which do not seem to depend on the

particular notion of security. Mantel was the first to notice (and report) this and factor

out commonalities in unwinding theorems, which lead to his Basic Security Predicates

(BSPs) [55]. The BSPs can be seen as “building blocks” of the noninterference-
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based possibilistic security policies. The BSPs themselves can be composed from

or implied by unwinding relations. Based on these observations, Mantel proposed his

Modular Assembly Kit for Security Properties (MAKS) framework, which is suitable

for reasoning about noninterference-like policies on finite systems. The framework is

illustrated in Figure 1.2.

Security-relevant policies

Unwinding relations

SPi

Basic Security Predicates

BSPk

Rl RmRi
Rj

BSPn

Figure 1.2: Illustration of the structure of Mantel’s MAKS framework [55]

One might think that reusing Mantel’s ideas would lead to a solution to our problem

of finding a generic verification methodology for hyperproperties. However, his

framework was developed for systems modeled as sets of finite traces, i.e. necessarily

terminating, whereas hyperproperties (can) have infinite traces. Moreover, liveness

hyperproperties are necessarily defined as sets of infinite traces. The reason is that the

“good thing” about a set of observations should be “always possible” and “possibly

infinite” [18, 18]. This implies that some work needs to be done if we were to

adapt this framework to reason about hyperproperties. How much work is needed

will become clear in Chapter 4.
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1.3 Our Solution: Incremental Hyperproperties, a

Logic and a Verification Methodology

This dissertation does not propose a generic verification methodology for hyper-

properties. Instead, it proposes formal definitions of the classes of holistic and

incremental hyperproperties as well as a generic verification methodology for

incremental hyperproperties. The class of holistic hyperproperties (HHPs) formalizes

the typical security-relevant specifications of hyperproperties defined by relations

on whole traces, as well as universal and possibly existential quantification over

those traces, whereas the class of incremental hyperproperties (IHPs) are essentially

local, coinductive predicates on the state spaces of candidate systems. A process of

transforming holistic hyperproperties into incremental ones is also suggested. This

process is called incrementalization. The problem with incrementalization is that it is

not always trivial or may not even be possible to convert a hyperproperty specification

into an equivalent incremental one. However, it is typically possible to at least have

an incremental specification implying the higher-level one.

Holistic Hyperproperties

Incremental Hyperproperties

HPjHPi

  
  
In

c
re

m
e
n
ta

liz
a
ti
o
n

IHPi IHPj

Figure 1.3: Holistic and incremental hyperproperties, incrementalization

The proposed solution and methodology are next described in more depth. We

start off in Chapter 3 by exploring an incremental, coalgebraic perspective on

systems and specifications as an alternative to typical holistic specifications. This

results in formalizing incremental and holistic hyperproperties. Whereas holistic

hyperproperties are based on relations on whole traces of execution as well as

universal and possibly existential quantification over those traces [63], incremental

hyperproperties are coinductive predicates on the state-space of the system of interest,
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or alternatively on the resultant trees of executions. For each IHP, H ′, we introduce

the notion of an H ′-simulation — a relation on the state space of the system whose

existence implies that the IHP H ′ (and thus also H) holds for the candidate system.

H ′-simulation relations can be seen as a generalization of bisimulation relations. The

former relations are more general as they can be arbitrary, i.e. they need not be

equivalence, symmetric, or reflexive relations. More importantly, the existence of

an H ′-simulation implies (or is equivalent to) that a holistic hyperproperty H holds,

thus the relations enable us to indirectly reason about holistic specifications. Also in

Chapter 3, we present some incrementalization techniques, which could be helpful in

translating HHPs into IHPs.

H ′-simulations turn out to be closely related to Mantel’s unwinding conditions, a topic

that is explored in Chapter 4. As a result of this relation, we will be able to show that

a large class of possibilistic information flow hyperproperties can be verified via H ′-
simulations; in addition, we will argue that incremental hyperproperties indeed do

capture a large class of security-relevant policies. Moreover, H ′-simulations are a

novel, more general kind of coinductive predicates that go beyond the state-of-the-

art at the time (circa 2009), namely the (essentially pointwise) coinductive predicates

proposed by Niqui and Rutten [66]. The importance of the use of coinduction in a

“non-standard setting” (beyond proofs of bisimilarity and equality [45]) and of general

coinductive predicates similar to H ′-simulations has been reaffirmed by more recent

results [45, 38].

Another advantage of incremental hyperproperties is that they can be expressed

in relatively well-behaved logics, which are fragments of least fixed point logic

(LFP) [13]. This opens the door to verification (explored in Chapter 5), as it turns

out that one particular fragment of LFP — the polyadic modal mu-calculus [8] —

is expressive enough for all IHPs we are aware of. Finally, we propose a generic

verification approach for incremental hyperproperties via model checking. To that

end, we first show how to interpret incremental hyperproperty checking as games in

Chapter 5. Although one might do regular model checking of IHPs on a transformed

system, model checking games are advantageous as they do not only produce a

yes-no answer, but also give more intuition about the security policy and what can

potentially go wrong, by producing a concrete winning strategy. These problems are

explored in Chapter 6. In order to show that the theory developed here is practical,

we have illustrated and compared the use of several tools for verification of concrete

incremental hyperproperties in Chapter 6.
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1.4 Outline and Main Contributions

This section provides an outline of the chapters of the dissertation and states the

contributions of each chapter. Further, it lists the related publications.

Chapter 2 provides the necessary background material used throughout the disser-

tation. We start by introducing some basic lattice theory, needed to understand

coinduction and coinductive definitions, which are used throughout this work. We then

present a model of systems as sets of traces and an abstract formalization of security

policies as properties and hyperproperties due to Clarkson and Schneider [18, 18].

Then, important details of Mantel’s MAKS framework are summarized. To change

perspective and get an alternative, incremental view on policy specification and

verification, we need and present the notions of partial automata, coalgebra and

languages [73]. The incremental specifications are formalized by giving a logical

language, based on first order logic, its extension least fixed point logic and the

polyadic modal mu-calculus [8]. Therefore, we present the syntax and semantics of

these logics. Finally, we introduce a notion of games used in this work.

Chapter 3 presents the notions of holistic and incremental hyperproperties. Holistic

hyperproperties are a formalization of the specifications of security-relevant hyper-

properties, whereas incremental hyperproperties are coinductive predicates on system

behavior. The motivation for such a distinction is that holistic specifications tend to be

more intuitive but difficult to reason about, whereas incremental specifications have

a more feasible verification approach. Typically, a holistic hyperproperty H has a

corresponding incremental hyperproperty H ′, such that H ′ implies or is equivalent to

H. We introduce and illustrate the respective notion of H ′-simulation relation, which

facilitates verification; finding an instance of such a relation on a particular system

implies that the system satisfies the respective hyperproperty H. H ′-simulations are

a class of coinductive predicates that goes beyond pointwise coinductive predicates

(also generalizing bisimulation) proposed by Niqui and Rutten [66]. Moreover,

H ′-simulations are interesting as they have a security-relevant application. It is

noteworthy that at the time of their proposal, our general coinductive predicates

(H ′-simulations) were novel. In recent papers [38, 45], the importance of similar,

more general than bisimulation coinductive predicates and non-standard coinductive

reasoning has been reaffirmed.

As most interesting security-relevant hyperproperties are in the syntactic class of

holistic hyperproperties, we also introduce the process of incrementalization and use

it to convert holistic specifications into incremental ones. Incrementalization is a

set of techniques that can be used to convert holistic specifications into incremental

ones. Most importantly, we propose a generic framework and techniques to explore

the process of incrementalization and the usefulness of the resulting incremental

hyperproperties. We then use the framework to explore three incrementalizable classes
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of holistic hyperproperties and their respective incremental definitions. Finally, a

verification method for incremental hyperproperties is presented.

Next, Chapter 4 realizes a connection between incremental hyperproperties and

the most closely related verification technique — via unwinding relations. More

concretely, the chapter proposes a framework for coinductive unwinding of security

relevant hyperproperties based on Mantel’s MAKS framework [55] and our work

on holistic and incremental hyperproperties. Unwinding relations have been widely

used to prove that finite (i.e. terminating) systems are secure with respect to a

variety of noninterference policies. As hyperproperties are defined on potentially

infinite systems (and the good thing in a liveness hyperproperty is “always possible”

and “potentially infinite” [18, 18]), a new mathematical development is needed

in order to (re)use unwinding relations for generic verification of security-relevant

hyperproperties. This new development is based on coinduction: the technique

of choice for reasoning about infinite behavior [77]. This is not straightforward

since Mantel’s definitions of security policies typically refer inductively to the last

confidential event in a trace. This works well for finite traces, but unfortunately

not for infinite traces, because it is possible and common to have such traces having

confidential events occurring infinitely often. Traces of this kind are ignored by the

aforementioned security policy definitions. Hence, we need to redefine (taking a

coinductive reinterpretation of) the policies themselves and thus the respective BSP

definitions and unwinding relations. We do this by making all definitions coinductive,

which fixes the problem in a natural way and instead of referring to the last confidential

element we now refer to any such element in a trace. This is challenging, as we would

like to keep the framework and the type of results it offers, but at the same time the

definitions need to be changed. It is also not initially clear that such an approach

would work. However, we are able to present results demonstrating that our alternative

framework not only meets our specific requirements, but also has advantages similar

to the ones of MAKS.

In essence, we illustrate that Mantel’s BSPs, the noninterference policies they

compose, as well as their respective unwinding relations, have a meaningful

coinductive reinterpretation. We show that in a number of cases the coinductive

variants of the unwinding relations imply the respective coinductive variants of the

BSPs. Moreover, the latter can be used to compose high-level security-relevant

hyperproperties for both finite and infinite systems. The unwinding theorems we

have considered hold as expected. We argue that the proposed framework and

results are useful both theoretically in the study of hyperproperties and in practice

for verification of hyperproperties on infinite systems that cannot be approximated by

finite ones. Further, we demonstrate that our methodology can be used to reason about

a large class of holistic hyperproperties (via incremental ones), such as the relatively

large class of possibilistic information flow hyperproperties, which are instances of

liveness hyperproperties. This is a significant improvement over the state of the
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art: Clarkson and Schneider present a verification technique based on invariance

arguments for k-safety hyperproperties and argue that it does not work for liveness

hyperproperties [19]. We show that verification via H ′-simulations can deal with

some liveness hyperproperties. The problem whether our techniques can deal with

all liveness hyperproperties is open and left for future work.

Chapter 5 demonstrates that incremental hyperproperties have a clear verification

methodology by elaborating on a decidable model checking approach. We propose

a logic suitable for expressing the known incremental hyperproperties. This logic is

based on the polyadic modal mu-calculus [8] and has a decidable model checking

problem for finite systems. A novel characterization of the satisfaction relation

between a system and an incremental hyperproperty in the logic is proposed in terms

of playing a game. The games are called incremental hyperproperty checking games

(IHP checking games) and the correctness of such games is proven. Moreover, an

approach for converting these games into parity games is presented, relating the

problems of model checking IHP checking games and parity games. For both IHP

checking and parity games, finding a winning strategy for the verifier implies that

the incremental hyperproperty holds, whereas, finding a winning strategy for the

refuter implies that the incremental hyperproperty does not hold. Most importantly,

this chapter bridges the gap between the problem of model checking incremental

hyperproperties and the extensive work on model checking games for fixed point

logics.

Next, Chapter 6 presents several different approaches that can be used to model check

incremental hyperproperties. The first approach is based on a reduction of the problem

of model checking a formula in the polyadic mu calculus on a k-tuple of systems

to model checking a modified formula in the ordinary modal mu-calculus [43] on a

modified version of the original system. This means that one can use off-the-shelf

model checking tools (e.g. the mCRL2 toolset [34]) for verification of incremental

hyperproperties, as long as there is a convenient way to create the modified version

of the original system. Unfortunately, when the resultant system is not a model of

the formula in question, it is difficult to analyze where the problem lies. The other

approaches make such an analysis more intuitive and generally easier, because they are

phrased in terms of winning strategies. The second approach is based on converting an

IHP checking game into a parity game and directly solving the parity game using an

off-the-shelf tool such as PGSolver [29]. The third approach offers more automation

and is again based on model checking of a modified system with respect to a modified

specification formula, but this time via games. The second and third approaches have

the advantage that they are game-based and the respective model checking algorithms

generate winning strategies [82]. This is beneficial, as one may use such a winning

strategy to get intuition about the interaction between a system and a policy and,

even more importantly, to get a precise reason as to what goes wrong and why a

formula does not hold on a system. In case the formula holds, insight as to why
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this is the case on the concrete system can be given too. The use of such techniques

and visualizations of games may result in tools with intuitive debugging functionality.

To further demonstrate the advantages of model checking via games we propose two

different graph views, namely an extended game graph view and a tree view that can

be used for better visualization of strategies. An extended game graph view enhances

the game graph with the winning strategy of the winner from the initial node and also

presents information about winning positions for both players. A tree view is a list of

the different positions in the history of the play so far. It turns out that tree views are

a very intuitive representation of the game. In addition, we present a known idea for a

strategy-based interactive tool [83] (here based on the extended game graph and tree

views) that could be useful in our setting for understanding the interaction of systems

and security policies. We note that the main difference between the two game-based

approaches explored in this chapter is the degree of automation: the third one has the

potential for being fully automatic.

Finally, Chapter 7 summarizes the contributions and presents some promising

directions for future work.

The dissertation is based on the following research papers and technical reports:

• Dimiter Milushev and Dave Clarke. Towards incrementalization of holistic

hyperproperties. In Pierpaolo Degano and Joshua D. Guttman, editors,

proceedings of the First International Conference on Principles of Security and

Trust (POST 2012), volume 7215 of Lecture Notes in Computer Science, pages

329-348. 24 March – 1 April 2012. Tallinn, Estonia. Springer.

• Dimiter Milushev and Dave Clarke. Coinductive unwinding of security-relevant

hyperproperties. In Audun Jøsang and Bengt Carlsson, editors, proceedings

of the 17th Nordic Conference on Secure IT Systems (Nordsec 2012), volume

7617 of Lecture Notes in Computer Science, pages 121-136. 31 October – 2

November 2012. Karlskrona, Sweden. Springer.

• Dimiter Milushev and Dave Clarke. Decidable incremental hyperproperty

logics and model checking via games. Submitted for publication.

• Dimiter Milushev and Dave Clarke. Incremental hyperproperty model checking

via games. Submitted for publication.

• Dimiter Milushev and Dave Clarke. Towards incrementalization of holistic

hyperproperties: extended version. CW Reports, volume CW616, 32 pages,

Department of Computer Science, KU Leuven. December 2011. Leuven,

Belgium.

• Dimiter Milushev and Dave Clarke. Coinductive unwinding of security-relevant

hyperproperties: extended version. CW Reports, volume CW623 28 pages,

Department of Computer Science, KU Leuven. August 2012. Leuven, Belgium.
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Besides the contributions described in this dissertation, the author contributed to the

following research result during his PhD studies:

• Dimiter Milushev, Wim Beck and Dave Clarke. Noninterference via symbolic

execution. In Holger Giese and Grigore Rosu, editors, proceeding of the

IFIP International Conference on Formal Techniques for Distributed Systems

joint international conference 14th Formal Methods for Open Object-Based

Distributed Systems 32nd Formal Techniques for Networked and Distributed

Systems (FMOODS & FORTE 2012), volume 7273 of Lecture Notes in

Computer Science, pages 152-168. 13–16 June 2012. Stockholm, Sweden.

Springer.



Chapter 2

Background

This chapter provides the necessary background material and formal notation for the

remainder of the thesis. We start by presenting some basic lattice theory. Based

on it, we introduce coinductive definitions, which are widely used throughout this

work. We then present a typical model of systems as sets of traces, followed by an

abstract formalization of security polices in terms of properties and hyperproperties

due to Clarkson and Schneider [18, 19]. Some of the ideas in the work of Clarkson

and Schneider are closely related to Mantel’s noteworthy work on verification via

unwinding in his MAKS framework [55]. Hence, unwinding relations and the

framework are briefly introduced. Viewing systems as sets of traces or languages

is equivalent to viewing them as trees, moreover both trees and sets of traces can be

seen as the system behavior generated by partial automata. These are three equivalent

views on systems (sets of traces, trees and partial automata) and we often explicitly or

implicitly switch between them. Thus some theory about partial automata, coalgebra

and languages [73], needed to explain the views, is presented here. We then recall

the syntax and semantics of first-order logic (FOL), its extension with fixed points

called least fixed point logic (LFP) and the polyadic modal mu-calculus [8]; these

logics provide the basics for some of the new logical languages, used to formalize

hyperproperties. Finally, the chapter ends by presenting the notion of games, as used

in this work.

2.1 Some Lattice Theory

This section presents some results from lattice theory [21].

13
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Definition 2.1.1. A partially ordered set (poset) is a set P together with a binary

relation ≤⊆ P×P such that for all elements x,y,z ∈ P we have

• x ≤ x — reflexivity

• x ≤ y and y ≤ z implies x ≤ z — transitivity

• x ≤ y and y ≤ x implies x = y — antisymmetry

A well-known example of a poset is the set of natural numbers with the usual ordering

relation (≤). Another one is the set of real numbers with the same relation (now on

real numbers).

Definition 2.1.2. Let P be a poset and S ⊆ P. An element x ∈ P is an upper bound of

S if s ≤ x for all s ∈ S. The dual notion is that of a lower bound of S: an element x ∈ P

such that s ≥ x for all s ∈ S.

Definition 2.1.3. Let P be a poset. A least element of a subset S ⊆ P is an element

x ∈ S that is a lower bound of S. The least upper bound y of S is an upper bound such

that for all upper bounds z of S, z ≥ y. The least upper bound of S is also called the

join of S. The dual of the definition gives the greatest lower bound of S, i.e. the meet

of S.

An endofunction on a set S is a function from S to itself.

Definition 2.1.4. Let P be a poset. Let F be an endofunction on P.

• F is said to be monotone if x ≤ y implies F(x)≤ F(y) for all x,y ∈ P.

• An element x ∈ P is a pre-fixed point of F if F(x)≤ x.

• An element x ∈ P is a post-fixed point of F if x ≤ F(x).

• A fixed point of F is an element x ∈ P that is both a pre-fixed point and a post-

fixed point of F , i.e. F(x) = x.

• The least and greatest elements in the set of fixed points (if they exist) are called

least fixed point and greatest fixed point of F , respectively.

Definition 2.1.5. Let P be a poset. If every subset S ⊆ P has both a join and a meet,

then P is called a complete lattice.

The complete lattice that is most interesting for us throughout this work is described

next. Let S be a set. The powerset of S, denoted 2S is a complete lattice with respect

to the set inclusion relation ⊆. The bottom element of the complete lattice is the
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empty set /0, the top element is S. The join is given by set union and the meet by set

intersection.

The following theorem guarantees the existence of a least and a greatest fixed point of

a monotone endofunction on a complete lattice.

Theorem 2.1.6. [Knaster-Tarski Fixed Point Theorem] Let L be a complete lattice

and F a monotone endofunction. The least fixed point of F exists and is the meet of

all pre-fixed points of F. Dually, the greatest fixed point of F exists and is the join of

all post-fixed points of F.

On complete lattices generated by the powerset construction, we have the following

interpretation of Theorem 2.1.6. If F : 2X → 2X is monotone, then:

lfp(F) =
⋂

{S | F(S)⊆ S} and

gfp(F) =
⋃

{S | S ⊆ F(S)}.

2.2 Inductive and Coinductive Definitions

The material presented in this section is adapted from Sangiorgi’s book [76].

Definition 2.2.1 (Inductively and Coinductively Defined Sets). Given a complete

lattice L with points being sets (for instance, the complete lattice of the powerset) and

a monotone endofunction F : L → L, the sets inductively and coinductively defined by

F are respectively given as follows:

Find =
⋂

{x | F(x)≤ x}, the meet of pre-fixed points, and

Fcoind =
⋃

{x | x ≤ F(x)}, the join of post-fixed points.

Corollary 2.2.2 (Induction and coinduction proof principles). The following sound

proof principles follow from Definition 2.2.1:

• The induction proof principle: if F(x)≤ x then Find ≤ x.

• The coinduction proof principle: if x ≤ F(x) then x ≤ Fcoind.
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When F is monotone, by Theorem 2.1.6 we know that Find = lfp(F) and Fcoind =
gfp(F). Moreover, the meet of pre-fixed points is also a pre-fixed point and dually the

join of post-fixed points is also a post-fixed point. Hence, for a monotone endofunction

F , Corollary 2.2.2 is transformed into the following:

Corollary 2.2.3 (Induction and coinduction proof principles for monotone functions).

The following proof principles are sound:

• The induction proof principle: if F(x)≤ x then lfp(F)≤ x.

• The coinduction proof principle: if x ≤ F(x) then x ≤ gfp(F).

2.2.1 Rule-based Definitions

A ground rule on some set X is a pair (S,x), where S ⊆ X and x ∈ X . The inductive

interpretation is that from the premises in S we can conclude x. The coinductive one

is that x can be observed and reduced to the set S.

Lemma 2.2.4 ([76]). Any set of ground rules R on a set X produces a monotone

endofunction (also called functional) ΨR on the complete lattice of 2X , where ΨR is

given as:

ΨR (T ) = {x | (T ′,x) ∈ R for some T ′ ⊆ T}.

Since the functional ΨR is monotone, we know (from Theorem 2.1.6) that both the

greatest (gfp(ΨR )) and the least fixed point (lfp(ΨR )) exist. The coinductive proof

principle is then given as follows:

T ⊆ ΨR (T ) implies T ⊆ gfp(ΨR ).

This means that the coinductive hypothesis is that T is a post-fixed point of ΨR : for

all x in T , there must be some rule (S,x) in R such that S ⊆ T . If this is the case, we

may conclude that T ⊆ gfp(ΨR ), as we know that gfp(ΨR ) is the join all post-fixed

points (see Theorem 2.1.6).

Example 2.2.5 (The Set A∗ of Finite Lists over Alphabet A). Before presenting the

example, we need a definition of derivative. For elements a∈A and sets L⊆A∞, define

the a-derivative of L as La = {v ∈ A∞ | a · v ∈ L}. We often use the notation L
a−→ L′,

meaning that L′ = La. Consider the set of finite lists over A. We can define the set A∗

inductively by the following rules:

ε ∈ A∗
L

a−→ L′ L′ ∈ A∗

L ∈ A∗
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The inductively defined set A∗ specifies the objects that can be obtained with a finite

proof using the above-presented rules (note that the metavariables L and L′ are

implicitly universally quantified). Alternatively, A∗ is the set closed forward, i.e.

reading the rules in the usual direction. The empty list ε is in A∗ and if there is L′ ∈ A∗

such that L
a−→ L′ for some a ∈ A, then L ∈ A∗. Note that R A∗ for the rules above can

be given as follows:

R A∗ =̂ {( /0,ε)}∪{({L′},L) | L
a−→ L′ for some a ∈ A}.

The respective functional is

ΨR A∗ (T ) =̂ {L | L is the empty list or there are L′ ∈ T and a ∈ A s.t. L
a−→ L′}.

The set closed forward is the pre-fixed point of R A∗ , i.e. the least fixed point of ΨR A∗ .

Example 2.2.6 (The Set A∞ of Finite and Infinite Lists over Alphabet A). Next

consider the set of finite and infinite lists over A. We can define the set A∞ coinductively

by the following rules:

coind

ε ∈ A∞
L

a−→ L′ L′ ∈ A∞
coind

L ∈ A∞

This is the set of all objects that can be obtained with a finite or infinite proof using the

rules above. Note that although the rules are the same, the defined sets are different.

The difference is that in this example we take the greatest fixed point interpretation

of the rules. That is why each inference rule is denoted coind on its right-hand side.

In practice, this means we need and use the rules backwards: an element of the set

A∞ is either the empty list ε or if L ∈ A∞ then there is some L′ ∈ A∞ such that L
a−→ L′.

Alternatively, this can be described as the largest set closed backwards under the rules.

2.3 A Formal Model of Systems

At a high level of abstraction, a system can be modeled as a set of finite or infinite

sequences of events/actions/observations. These notions are formalized next.

Let us fix a finite alphabet A of abstract observations, also called events or actions. Let

2 be any two element set, for instance the one given as 2 = {true, false}. The symbol

ω denotes the set of non-negative integers. If X and Y range over sets, notation Y X

stands for the set of functions with signature X → Y .

Definition 2.3.1. A string is a finite sequence of elements of A. The set of all strings

over A is denoted A∗.
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Definition 2.3.2. A stream of A’s is an infinite sequence of elements of A. The set of

all streams over A is Aω = {σ | σ : {0,1,2, . . .}→ A}.

A stream σ can be specified in terms of its first element σ(0) and its stream derivative

σ′, given by σ′(n) = σ(n+ 1) [73] for all n ≥ 0; these operators are also known as

head and tail. In addition, σ(i) gives the i-th element in the stream.

Definition 2.3.3. A trace is a finite or infinite sequence of elements of A. The set of

all traces over A is denoted A∞ = A∗∪Aω.

Definition 2.3.4. A system is a (non-empty) set of traces. The set of all systems is

Sys = 2A∞
, the set of infinite systems is Sysω = 2Aω

.

Let Sysn denote the n-ary Cartesian product of Sys.

2.4 Abstract Formalization of Security Policies

Clarkson and Schneider proposed an abstract formalization of security policies based

on properties and hyperproperties [18, 19], which we define and illustrate next.

Generally speaking, a property is a Boolean function on objects and the extension of a

property is the set of objects for which the function evaluates to true. The extension of

a property (of single execution traces) is the set of traces for which the property holds,

and in that sense a property is called a set of traces [5].

Definition 2.4.1. A property is a set of traces. The set of all properties is Prop = 2A∞
.

Thus we say that a system satisfies some security policy P, which is a property, if all

traces of the system are in P. This is important in practice as each security property P

has a respective characteristic predicate on single execution traces [79]. The predicate

can be used to determine whether any particular execution satisfies the respective

property, i.e. whether the execution is in the set of traces P. A sample property is

presented next.

Example 2.4.2. The policy GServ is a property which guarantees a user that if she

pays for some digital content, she can always download it later:

GServ = {t ∈ Aω | ∀i, j ∈ N . paysu,cont(t(i))∧ j > i → canDownloadu,cont(t(j))},

where pays and canDownload are predicates on actions (parameterized by user and

content) and t(i) specifies the element at the i-th position of trace t.
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Unfortunately, properties are not expressive enough for a number of security policies,

such as (seemingly) all notions of noninterference and secure information flow

specifications [55, 18]. To remedy this, Clarkson and Schneider introduced the notion

of hyperproperties [18].

Definition 2.4.3. A hyperproperty is a set of sets of traces or equivalently a set of

properties. The set of all hyperproperties is HP = 22A∞

= 2Prop = 2Sys.

Our definition, unlike the original one, does not require all traces to be infinite; as

a result termination-sensitive definitions can be expressed in a more natural fashion.

Hyperproperties generalize properties and are expressive enough to capture not only

all notions of noninterference and secure information flow, but also many other

interesting policies on systems. Intuitively, a hyperproperty is the set of systems

permitted by some policy. Although arising in the context of security, hyperproperties

are not necessarily limited to security policies; they can be seen as very general

and expressive system specifications. Quality of Service (QoS) and Service Level

Agreement (SLA) properties can be expressed as hyperproperties.

Definition 2.4.4. The satisfaction relation for hyperproperties |= ⊆ Sys× 2Prop is

defined as follows:

C |= H =̂ C ∈ H

Although Sys = Prop, in general both names are used for emphasis. Throughout this

dissertation, we will follow this convention.

We now present an example hyperproperty, a variant of noninterference. Let τ /∈ A

represent unobservable elements of a trace. Let A = L ∪ H, L ∩ H = /0, Aτ = A ∪
{τ} and assume predicates low and high on elements of A such that low(a) =̂ a ∈ L,

high(a) =̂ a∈H and low is equivalent to ¬high. These predicates indicate whether an

event is non-confidential (low) or confidential (high). Coinductively define function

evZ : A∞ → A∞
τ to filter out events from a set Z ⊆ A:

coind

evZ(ε) = ε

evZ(x) = y a 6∈ Z
coind

evZ(a · x) = τ · y
evZ(x) = y a ∈ Z

coind

evZ(a · x) = a · y

This can be used to filter out events that are not in set L, i.e. to filter out confidential

events from set H. Next, coinductively define weak trace equivalence ≈⊆ A∞
τ ×A∞

τ

as:

coind
ε ≈ ε

x ≈ y
coind

τ · x ≈ y

x ≈ y
coind

a · x ≈ a · y
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This definition can be described as equivalence up to prefix and a form of stuttering.

To illustrate it, consider the traces abτττ and ab: they are related, as are the traces τω

and ab. Actually, τω is related to any trace. Using such an equivalence relation makes

definitions of security termination-insensitive 1. This definition can be thus seen as

potentially problematic. However, such definitions are often used in the literature

with the argument that the problems are negligible for some concrete applications (for

instance [87]).

Coinductively define predicate noZ : A∞
τ → 2, stating that there are no events from

some set Z in a trace:

coind

noZ(ε)

a 6∈ Z noZ(x)
coind

noZ(a · x)

In the next definition, we instantiate Z in noZ with H to get a definition of noH . Define

noninterference as follows:

NI = {T ⊆ Sys | ∀t0 ∈ T∃t1 ∈ T . noH(t1)∧ evL(t0)≈ t1}.

For every trace t0 in a candidate set T the definition of NI requires a low-equivalent

modulo weak trace equivalence trace t1 in T such that t1 has no high events.

This definition of noninterference is similar in spirit to strong non-deterministic

noninterference (NNI), originally proposed by Focardi and Gorrieri [26]. The major

difference is that NI does not distinguish between inputs and outputs; thus it is in a

sense stronger than similar definitions that guard the confidentiality of high inputs only

(NI ensures the confidentiality of high events, which implies confidentiality of high

inputs). Additionally, NNI is defined over elements of 2A∗
, whereas NI over elements

of Sys; finally, NNI uses string equality whereas NI uses weak trace equivalence (a

form of weak-bisimulation).

Example 2.4.5 (Noninterference). Given A = {a,b,c} such that high(a), high(c),
low(b) hold. Consider system C = {σ,γ}, where σ = (abc)ω, γ = bω. Note that

noH(γ) = true, evL(σ)≈ bω and evL(γ) = bω hold. From these we deduce:

1. for σ there exists t ∈C such that noH(t)∧ evL(σ)≈ t, namely t = γ.

2. for γ there exists t ∈C such that noH(t)∧ evL(γ)≈ t, namely t = γ.

Hence C |= NI: system C satisfies NI as well as variants of NNI.

1A termination-insensitive definition of noninterference allows leaks only via the system’s termination

behavior, namely whether the system terminates or not.
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The former definition of noninterference is relatively abstract. In order to additionally

illustrate the practical significance of the proposed approach, we also work with a

variant of reactive noninterference [11], which is a variant of Zdancewic and Myers’s

definition of observational determinism [87] for reactive systems. Without loss of

generality, assume that A may be partitioned into Ai and Ao, corresponding to input

and output events. Following the original work [11], assume that systems are input-

total, i.e. in every state all inputs are accepted. However, if the system is in a producer

state then the input is buffered and may never be processed. Moreover, assume that

every input event produces some finite or infinite output trace. The model assumes that

a system waits for input in some consumer state; whenever an input event is received,

the system produces a finite or infinite output trace; if the output trace was finite, the

system returns to a consumer state, waiting for further events; otherwise it diverges.

For the sake of illustration, we consider deterministic reactive systems. Formally, a

deterministic reactive system RS can be modeled as the set of traces produced by a

function fRS : A∞
i → A∞. Let fi : Ai → A∞

o be a function, taking one input event and

producing some output trace. Function fRS can be defined coinductively as:

coind

fRS(ε) = ε

fi(a) = σ σ ∈ A∗ fRS(r) = σm
coind

fRS(a · r) = a ·σ ·σm

fi(a) = σ σ ∈ Aω

coind

fRS(a · r) = a ·σ

Note that states in our definition are implicit. In practice, each input event is processed

by function fi in a consumer state (unless the system is diverging and never returns to

a consumer state, in which case the rest of the input trace is ignored), after every finite

output trace the system returns to a consumer state. Let FRS be the set of deterministic

reactive systems that can be characterized by a functional input-output relation. Let

x≈L y denote evL(x)≈ evL(y), and ≈Li
and ≈Lo be analogous definitions for input and

output events, respectively.

Reactive noninterference [11] can be defined as a hyperproperty as follows:

RN = {Tf ∈ FRS | ∀t0, t1 ∈ Tf (t0≈Li
t1 → t0≈L t1)},

where Tf = {t ∈ A∞ | ∃σ ∈ A∞
i ( f (σ) = t)}. Note that the relation t0≈L t1 is on whole

traces, not on output traces as it is typically defined. This is because t0≈L t1 implies

t0≈Lo t1, as Lo is a subset of L and the way traces are generated.

Unlike batch-job program models, where all program inputs are available at the start

of execution and all program outputs are available at program termination, reactive

programs receive inputs and send outputs to their environment during execution.
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RIMP [11] is a language geared towards writing reactive systems, allowing agents

to interact with the system by sending and receiving messages. Messages are typically

considered secret to certain agents and public to others. Inputs in RIMP are natural

numbers sent over channels and outputs are natural numbers over channels or a tick (τ),

signifying an internal action. For instance, chi
H(0) and chi

L(0) inputs 0 on the high

and low channels respectively, whereas cho
H(0) and cho

L(0) outputs 0 on the high and

low channels. The channels model users or security levels in some security lattice;

typically, L and H model the low and high channel respectively. The detailed syntax

and semantics of RIMP are available in the original paper [11].

Example 2.4.6. The following RIMP program illustrates reactive noninterference:

input chH(x) {i := x;}

input chL(x) {if i <= x then output chL(0);
else output chL(1);}

Program 2.1: Simple program in RIMP

Let σin = [chi
H(0),chi

L(0)] and γin = [chi
H(1),chi

L(0)] be input strings. Clearly

σin≈Li
γin. The traces generated by the input traces σin and σout are σ =

[chi
H(0),τ,τ,chi

L(0),τ,cho
L(0),τ] and γ = [chi

H(1),τ,τ, chi
L(0),τ,cho

L(1),τ] respec-

tively; because they are not weak trace equivalent at L, it follows that P is not secure,

i.e. P 6|= RN.

2.5 MAKS Framework Overview

The original notion of unwinding dates back to the work of Goguen and Meseguer [32].

As they describe it, unwinding is the process of translating a security policy, first, into

local constraints on the transition system, inductively guaranteeing that the policy is

satisfied, and second, into a finite set of lemmas such that any system that satisfies the

lemmas is guaranteed to satisfy the policy.

There is a substantial amount of work on unwinding of information flow policies [32,

37, 72, 61, 74]. Such contributions typically result in unwinding theorems that

give more practical means of proving the respective high-level security policy.

Unwinding theorems are developed for specific definition(s) and hence their proofs

lack modularity. This is unfortunate, as it results in the need to reprove many similar

results.

In an attempt to remedy this, Mantel [52, 55] introduced the Modular Assembly

Kit for Security Properties (MAKS) framework — a modular framework in which

most well-known information flow policies can be composed from a set of basic

security predicates (BSPs). A major advantage of Mantel’s framework is precisely its
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modularity: BSPs common to different definitions need to be verified only once per

system; the same holds for unwinding relations on systems. Prominent examples of

policies specifiable in Mantel’s framework include generalized noninterference [58],

noninference [86], generalized noninference [86], separability [59], perfect security

property [86] etc. One may also use the framework to create new policies.

Interestingly, some BSPs are equivalent to, and can be constructed as, conjunctions

of unwinding relations, whereas other BSPs are over-approximated by conjunctions

of unwinding relations. Mantel’s unwinding relations are noteworthy for at least two

major reasons. First, because they can be arbitrary relations rather than equivalence

relations, as are typically found in the literature. And second, because they can

be specified locally, on states of the system (inspired by Rushby’s technical report

[72]), as opposed to the more traditional, global, trace-based unwinding relations. In

addition to the local unwinding relations for his BSPs, Mantel presented unwinding

theorems for most known possibilistic security policies.

As mentioned above, security policies may be decomposed into their building blocks,

the so-called BSPs, which in turn can be constructed from unwinding relations. A

Security-relevant policies

Unwinding relations

SPi

Basic Security Predicates

BSPk

Rl RmRi
Rj

BSPn

Figure 2.1: Illustration of the structure of Mantel’s MAKS framework [55]

high level view of this hierarchy can be seen in Figure 2.1. Note that conjunctions are

hidden in the figure. Consider a security policy called SPi. It is a (hidden) conjunction

of building block BSPs, here BSPk and BSPn. A BSP is a conjunction of unwinding

relations, here BSPk is the conjunction of Ri and Rj, similarly BSPn is the conjunction

of Rl and Rm. Note however, that Ri ∧Rj is equivalent to BSPk, whereas Rl and Rm
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implies BSPn. This framework is both conceptually appealing and well-established,

hence we would like to have similar results for security-relevant hyperproperties.

2.5.1 Definitions and Notation

Next, we present definitions adopted from Mantel’s MAKS framework [55]. The first

two definitions are needed to understand some of Mantel’s definitions presented in

Chapter 4.

Definition 2.5.1. A state-event system (SES) can be given as the following sextuple

(S,s0,A,Ai,Ao,T ), where S is the state-space, A is the alphabet, Ai and Ao are inputs

and outputs respectively and T ⊆ S×A×S is a transition relation.

The transition relation is denoted s1
a−→ s2. It is extended to finite traces in the obvious

way and denoted s1
t−→ s2, where t is a finite trace.

Definition 2.5.2. Consider some state event system SES. A state s ∈ S is reachable,

denoted reachable(SES,s), if there is a finite trace t such that s0
t−→ s.

Definition 2.5.3. For alphabet A define a view to be a tuple V = (Av,An,Ac), where

A = Av ∪An ∪Ac is a partition of A, corresponding to visible, neutral (neither visible

nor confidential) and confidential events.

Let H denote the view (L, /0,H) where H and L are the sets of high and low

confidentiality events, and the set of neutral events is empty. Let sets I and O represent

inputs and outputs such that I ⊆ A, O ⊆ A and I ∩O = /0. Let HI denote the view

(L,H \HI,HI), where HI is the set of high inputs, i.e. H ∩ I. Let the set of all views

(partitions of A) be V and ρ be a function from views to subsets of A, i.e. ρ : V → 2A.

In the following definition ≈Z is a binary relation on finite traces, defined as equality

of the projections of the traces to a set Z ⊆ A.

Definition 2.5.4. An event is defined to be ρ-admissible in a tree T after a

possible finite trace β for some view V = (Av,An,Ac) if Adm
ρ
V(T,β,e) holds, where

Adm
ρ
V(T,β,e) is defined as follows:

Adm
ρ
V(T,β,e) =̂ ∃γ ∈ A∗.(γ · e ∈ T ∧ γ≈ρ(V ) β).

The idea of policies based on ρ (a function from a view to a subset of A) is to

create uncertainty about the nonoccurrence of events. Typical instantiations of ρ are

ρAc(Av,An,Ac) = Ac and ρA(Av,An,Ac) = A. For instance, one policy on some system

T with respect to ρAc might be defined as follows: given some view (Av,An,Ac),
observing events in Av one should not be able to deduce the nonoccurrence of ρ-

admissible events in system T from the set Ac. This is the intuition behind policy
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IA
ρo
V from Section 4.3.2. Depending on the particular policy one tries to enforce, other

instantiations of ρ may be meaningful.

2.6 Partial Automata, Coalgebras and Languages à

la Rutten

We next present some theory about partial automata, coalgebra and languages, based

on work by Rutten [73].

Let F be an arbitrary endofunctor F : Set → Set, where Set is the category whose

objects are sets.

Definition 2.6.1. An F-coalgebra is a pair 〈S, f 〉, where S is the system state space

and f : S → F(S) is a function giving the transition structure of the system.

Definition 2.6.2. An F-coalgebra is final if there is a unique homomorphism from

any other F-coalgebra to it.

Definition 2.6.3. A partial automaton with input alphabet A is defined coalge-

braically as a 3-tuple 〈S,o, t〉, where set S is the possibly infinite state space of the

automaton, the observation function o : S → 2 says whether a state is accepting or not,

and the partial function t : S → (1+S)A gives the transition structure.

Notation 1+ S is used for the set {⊥}∪ S: if the function t(s) is defined for some

a ∈ A, then t(s)(a) = s′ gives the next state; otherwise, if t(s) is undefined for some

a ∈ A, then it is mapped to ⊥. The symbol δ /∈ A is used to represent deadlock. Let

A∗ ·δ = {w ·δ | w ∈ A∗} be the set of finitely deadlocked words.

Definition 2.6.4. An automaton is in a deadlock state sδ if for all a ∈ A, t(sδ)(a) =⊥
(the transition function is undefined for all a ∈ A).

Definition 2.6.5. Any language acceptable by partial automata is a subset of A∞
δ =

A∗∪ (A∗ ·δ)∪Aω.

Example 2.6.6. Consider Figure 2.2, presenting a partial automaton, having a

corresponding language L = {abδ,(ac)ω,bc}, graphically. There is a deadlock state,

namely s2, and thus abδ is in the language L. State s5 is an accepting state, hence

bc ∈ L. The infinite word (ac)ω is also in L. No other words are in L.

Let the truncation of an infinite word w = a1a2a3 . . . to the first n (n ∈ N) letters be

denoted w[n] = a1 . . .an.

Definition 2.6.7. For words w ∈ A∗ and sets L ⊆ A∞
δ , define the w-derivative of L to

be Lw = {v ∈ A∞
δ | w · v ∈ L}.
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Figure 2.2: A partial automaton accepting the language L = {abδ,(ac)ω,bc}

Definition 2.6.8. Define a set L ⊆ A∞
δ to be closed if for any infinite word w, if ∀n ≥ 1

we have Lw[n] 6= /0, then it has to be that w ∈ L.

For instance, the set a∞ is closed. In contrast, a∗ is not closed.

Definition 2.6.9. Define a set L ⊆ A∞
δ to be consistent if for all words w in A∗, δ ∈ Lw

iff Lw = {δ}.

For instance, the set {aδ,bc,ba} is consistent. In contrast, set {bδ,bc,ba} is not.

Definition 2.6.10. The language of a partial automaton is a non-empty, closed and

consistent subset of A∞
δ . The set of all such languages is

L = {L | L ⊆ A∞
δ ,L is non-empty, closed and consistent}.

Any state of a partial automaton accepts some language having three kinds of words:

firstly, all finite words that leave the automaton in an accepting state, secondly, all

infinite words that cause the automaton to run indefinitely and thirdly, words that lead

to a deadlock state. Figure 2.2 illustrates the three kinds of words. Intuitively, the

language of a partial automaton is the language accepted by the start state.

Definition 2.6.11. The set L can be thought of as an automaton L = 〈L ,oL , tL〉 [73]:

oL (L) =

{
true if ε ∈ L

false if ε 6∈ L
tL (L)(a) =

{
La if La 6= /0

⊥ if La = /0.

Definition 2.6.12. A bisimulation between two automata S1 = 〈S,o, t〉 and S2 =
〈S′,o′, t ′〉 is a relation R ⊆ S×S′ such that for all s in S, s′ in S′ and a in A

s R s′ =⇒ o(s) = o′(s′)
∧

t(s)(a) (1+R) t ′(s′)(a).



FIRST-ORDER LOGIC 27

Condition t(s)(a) (1+R) t ′(s′)(a) holds iff either t(s)(a) = ⊥ and t ′(s′)(a) = ⊥ or

t(s)(a) R t ′(s′)(a). The maximal bisimulation ∼, also called bisimilarity, is the union

of all bisimulation relations.

Theorem 2.6.13 ([73]). (1) The automaton L = 〈L ,oL , tL〉 satisfies the coinduction

proof principle. In other words, for all languages L and K in L we have: L ∼ K ⇐⇒
L = K. (2) The automaton L = 〈L ,oL , tL〉 is final: for any automaton (S,o, t), there is

a unique homomorphism h : S → L such that for all s1,s2 ∈ S, s1 ∼ s2 iff h(s1) = h(s2).

The first part of Theorem 2.6.13 guarantees that bisimilarity implies equality. This is

the coinduction proof principle: if we can find a bisimulation between two languages,

we have shown that they are equal. The second part presents the coinductive definition

principle [73]: we can define a function from a set S into L , by defining an output

function o and transition function t on S. Because L is final, this results in a unique

homomorphism hl : S → L , which assigns to each state s the language that s accepts.

Coalgebras of the polynomial functor G : Set → Set, given by GX = 2× (1+X)A,

will be called G-coalgebras or G-systems. As partial automata are in a one-to-one

correspondence with G-coalgebras [73], all the theory presented in this section is

applicable to G-coalgebras. In this work the functor G is fixed; thus, whenever we

talk about G-coalgebras, they are of this particular functor.

Definition 2.6.14. A coalgebra together with a start state is called a pointed coalgebra.

A pointed G-coalgebra will be denoted 〈S,o, t,s0〉, where s0 is the start state.

2.7 First-Order Logic

This is a standard exposition of First-Order Logic (FO) as found in the literature [49].

Definition 2.7.1. A vocabulary σ is a collection of constant symbols (c1, . . . ,cn, . . .),
predicate, or relation symbols (P1, . . . ,Pn, . . .), and function symbols ( f1, . . . , fn, . . .).
Each predicate and function symbol has a respective arity.

A vocabulary is called relational, if it contains only relations and constants. This

restriction is not severe, as each k-ary function corresponds to a (k + 1)-ary

relation [49].

Definition 2.7.2. A σ-structure (also called a model) is M =(S,{cM
i },{PM

i },{ f M
i }),

where S is the universe and there is an interpretation mapping

• each constant symbol ci from vocabulary σ to cM
i ∈ S.
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• each predicate symbol Pi from vocabulary σ to a k-ary relation on S, i.e. to

PM
i ⊆ Sk.

• each k-ary function symbol fi from vocabulary σ to a function f M
i : Sk → S.

A structure is called finite if its universe S is a finite set. Let STRUCT[σ] denote the

class of all finite, σ-structures.

2.7.1 Syntax

Assume a countably infinite set of variables Var = {x,y,z, . . .}.

Definition 2.7.3. Inductively define the terms and formulae of first-order logic as

follows:

• Each variable x is a term.

• Each constant symbol c is a term.

• If t1, . . . , tk are terms and f is a function symbol with arity k, then f (t1, . . . , tk) is

a term.

• If t1 and tk are terms, then it follows that t1 = tk is an atomic formula.

• If P is a predicate symbol of arity k and t1, . . . , tk are terms, then it follows that

P(t1, . . . , tk) is an atomic formula.

• If ψ1 and ψ2 are formulae, then it follows that ψ1 ∧ψ2, ψ1 ∨ψ2 and ¬ψ1 are

formulae.

• If ψ is a formula, then it follows that ∃xψ and ∀xψ are formulae.

The typical assumption that ψ → φ stands for ¬ψ∨ φ and ψ ↔ φ stands for (ψ →
φ)∧ (φ → ψ) are in order.

Definition 2.7.4. A free variable (of a term or formula) is defined as follows:

• A term x has only one free variable and that is x. A constant term has no free

variables.

• The free variables of t1 = tk are the free variables of t1 and tk. The free variables

of P(t1, . . . , tk) and of f (t1, . . . , tk) are the free variables of t1, . . . , tk.

• The free variables of ¬ψ are the same as the ones of ψ. The free variables of

ψ1 ∧ψ2 and ψ1 ∨ψ2 are the free variables of ψ1 and ψ2.
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• The free variables of ∃xψ and ∀xψ are the free variables of ψ without x.

Variables that are not free are called bound. A sentence is a formula which has no free

variables.

2.7.2 Semantics

For some structure/model M , define inductively for each term t with free variables

(x1, . . . ,xk) the value tM (a), where a ∈ Sk.

• If t is a constant symbol c, then the value of t in M is cM .

• If t is a variable xi, then the value of tM (a) is ai.

• If t = f (t1, . . . , tk), then the value of tM (a) is f M (tM
1 (a), . . . , tM

1 (a)).

In addition, for each formula define the satisfaction relation M |=ψ(a) (where a∈ Sk),

by case analysis of ψ:

• If ψ ≡ (t1 = tk), then M |= ψ(a) iff tM
1 (a) = tM

k (a).

• If ψ ≡ P(t1, . . . , tk), then M |= ψ(a) iff (tM
1 (a), . . . , tM

1 (a)) ∈ PM .

• If ψ ≡ ¬ψ(a) iff M |= ψ(a) does not hold.

• M |= ψ1(a)∧ψ2(a) iff M |= ψ1(a) and M |= ψ2(a).

• M |= ψ1(a)∨ψ2(a) iff M |= ψ1(a) or M |= ψ2(a).

• If ψ ≡ ∃yψ(y,x), then M |= ψ(a) iff M |= ψ(a′,a) for some a′ ∈ A.

• If ψ ≡ ∀yψ(y,x), then M |= ψ(a) iff M |= ψ(a′,a) for all a′ ∈ A.

2.8 Least Fixed Point logic (LFP)

We next present Least Fixed Point logic (LFP), the extension of first-order logic with

fixed point operators. Let σ be a relational vocabulary and R a relation symbol R 6∈ σ.

Suppose ψ(R,x1, . . . ,xk) is a formula of vocabulary σ∪{R}. Note that R is an explicit

parameter, as formula ψ gives rise to an operator on σ-structures.
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For each σ-structure M in STRUCT[σ], formula ψ(R,x) gives rise to the operator

Fψ : 2Sk → 2Sk
given as:

Fψ(X) = {a | M |= ψ(X/R,a)}.

Note that ψ(X/R,a) means that R has to be interpreted as X in formula ψ. More

formally, if M ′ is a (σ∪{R})-structure expanding M (with R) and where R can be

interpreted as X , then it has to be that M ′ |=ψ(a). For a formula ψ and relation symbol

R, an occurrence of R in ψ is positive if it is under the scope of an even number of

negations. Dually, an occurrence of R in ψ is negative if it is under the scope of an odd

number of negations. A formula ψ is positive in R, if there are no negative occurrences

of R in ψ.

Lemma 2.8.1. If ψ(R,x) is positive in R, then the operator Fψ is monotone.

Now, we are ready to define the logic LFP.

Definition 2.8.2. LFP is an extension of FO with the following rule:

• Let ψ(X/R,x) be a formula positive in R, with free second-order variable R and

free first order variables x1, . . . ,xk. Let t be a k-tuple of terms. Then

[lfp
R,x

ψ(R,x)](t)

is an LFP formula. The free variables (of the formula) are the ones of t.

The semantics is given as follows:

M |= [lfp
R,x

ψ(R,x)](a) iff a ∈ lfp(Fψ).

Note that sometimes we shall write [lfpR x . ψ(R,x)](a) instead of [lfpR,x ψ(R,x)](a).

2.9 The Polyadic Modal Mu-calculus over Trees

The polyadic modal mu-calculus [8] is a logic whose formulae are interpreted over

k-tuples of transition systems. It can be seen as an extension of the modal mu-

calculus [43] with different diamond and box modalities associated with each system

(from the k-tuple). In this work, formulae will be interpreted over k-tuples of trees,

denoted T . The elements of these tuples will be referred to as T i, where 1 ≤ i ≤ k.

Note that each T i implicitly defines a state space, namely the set of subtrees of T i.
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Finally, for a k-tuple of trees T we use notation T
a−→i T ′ to mean that T ′

i = t(T i)(a),
where for all j s.t. 1 ≤ j ≤ k and j 6= i, T ′

j = T j.

Assume a set Var2 = {X ,Y,Z, . . .} of second-order variables and a set P = {Qi,Oi, . . . |
1 ≤ i ≤ k} of propositional constants. Formulae in the polyadic modal mu-calculus

Lk
µ have the following syntax:

Φ ::= tt | ff | Z | Φ1 ∧Φ2 | Φ1 ∨Φ2 | [a]iΦ | 〈a〉iΦ | νZ.Φ | µZ.Φ,

where tt and ff are the constant true and false formulae, for a ∈ A, [a]i (“box-i a”)

and 〈a〉i (“diamond-i a”) are the typical modal operators relativized to the i-th tree,

where 1 ≤ i ≤ k (see Figure 2.3). As usual, µZ and νZ are the least and greatest

fixed point operators respectively. Every second-order variable gets bound by a fixed

point quantifier at most once in a formula. Assume that operators ν and µ have wider

scope than the other operators. Sometimes, for K ⊆ A it will be more convenient

to abbreviate
∧

a∈K [a]iΦ as [K]iΦ and
∨

a∈K〈a〉iΦ as 〈K〉iΦ. Finally, propositional

variables are ranged over by second-order variables from Var2.

Formally, a valuation V is a function from Var2 to k-tuples of trees. V is also

overloaded to assign to each propositional constant Qi a subset V(Qi) ⊆ SubT(T i
0 ),

where SubT(T i
0 ) is the set of subtrees of T i

0 , including T i
0 itself. The propositional

constant O will have a special meaning in the logic — intuitively, Oi indicates

whether (the root of) tree Ti is accepting or not. Formally, define the valuation of

the propositional constant O in tree i as follows: V(Oi) =̂ {T ∈ SubT(T i
0 ) | o(T )}.

Propositions Oi, where 1 ≤ i ≤ k, correspond to the observation function o of ti.

Let V[T/Z] be the valuation V′ that is the same as V everywhere except at Z where

V′(Z) = T.

The satisfaction relation, relative to some valuation V, is denoted |=V and defined

inductively in Figure 2.3. Let ||Φ||TV denote the set of k-tuples of trees in SubT(T )

satisfying a formula Φ under valuation V, defined as ||Φ||TV =̂ {T ∈ SubT(T ) | T |=V

Φ}. Note that here SubT is lifted to mean the set of k-tuples of subtrees of the original

k-tuple of roots. It should be noted that negation is defined implicitly (we have no ¬
operator), by taking the complement of each formula in the grammar.

Although the full expressive power of Lk
µ is never really needed for the specifications

we have encountered so far, the IHP checking games we propose in Section 5.4 for the

full Lk
µ turn out to be interesting from both theoretical and practical points of view. In

an exploration of the practical significance of this work, in Section 5.6 we propose a

fragment of Lk
µ , expressive enough to capture all incremental hyperproperties we are

aware of.
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T |=V tt

T 6|=V ff

T |=V Z iff T ∈ V(Z)

T |=V Φ∧Ψ iff T |=V Φ and T |=V Ψ

T |=V Φ∨Ψ iff T |=V Φ or T |=V Ψ

T |=V [a]iΦ iff ∀S ∈ {T ′ | T
a−→i T ′ and a ∈ A} such that S |=V Φ

T |=V 〈a〉iΦ iff ∃S ∈ {T ′ | T
a−→i T ′ and a ∈ A} such that S |=V Φ

T |=V νZ.Φ iff T ∈
⋃

{T ⊆ T | T ⊆ ||Φ||TV[T/Z]}

T |=V µZ.Φ iff T ∈
⋂

{T ⊆ T | ||Φ||TV[T/Z] ⊆ T}

Figure 2.3: Inductive definition of satisfaction relation |=V

It is noteworthy that any (hyper)property expressed in Lk
µ can be checked in

polynomial time [67]. To be more precise, we next recall a known result [8]: on

finite state systems, the model checking problem for Lk
µ is efficiently decidable.

Theorem 2.9.1 (Model-checking of Lk
µ is decidable). There exists an algorithm for

deciding T |= Φ in time O(|Φ|m(|S1| . . . |Sk|)m−1|T1| . . . |Tk|), where Φ is closed, T a

k-tuple of finite transition systems with state spaces S1, . . . ,Sk and m is the alternating

depth of Φ.

Here |Ti| denotes the size of the underlying state space plus the size of the transition

function plus 1 (the size of the initial state) and |Si| denotes the size of the state space.

Note that this theorem is applicable to our setting for reasoning about potentially

infinite trees, generated by finite-state partial automata, which are effectively transition

systems.

The following definitions are useful for working with the logic.

Definition 2.9.2. A formula Φ is normal if it satisfies two conditions.

1. If σZ1 and σZ2 are distinct subterms in formula Φ, then Z1 6= Z2.
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2. No free variable is also used in a binder, i.e. if Z is free, then σZ must not occur

in formula Φ.

Definition 2.9.3. Inductively define the set of subformulae Sub(Φ) of a certain
formula Φ as:

Sub(tt) = {tt}

Sub(ff ) = {ff}

Sub(Z) = {Z}

Sub(Φ1 ∧Φ2) = {Φ1 ∧Φ2}∪Sub(Φ1)∪Sub(Φ2)

Sub(Φ1 ∨Φ2) = {Φ1 ∨Φ2}∪Sub(Φ1)∪Sub(Φ2)

Sub([a]iΦ) = {[a]iΦ}∪Sub(Φ)

Sub(〈a〉iΦ) = {〈a〉iΦ}∪Sub(Φ)

Sub(νZ.Φ) = {νZ.Φ}∪Sub(Φ)

Sub(µZ.Φ) = {µZ.Φ}∪Sub(Φ)

Definition 2.9.4 (Subsumes). Let Φ be normal. Let σX .Ψ, σZ.Ψ′ ∈ Sub(Φ). We say

that variable X subsumes Z if σZ.Ψ′ ∈ Sub(σX .Ψ).

2.10 Games

The games [57] considered in this thesis have two players — verifier, denoted as

player V , and refuter, denoted as player R. A game consists of an arena and a winning

condition, as defined next.

Definition 2.10.1. An arena is a triple A = (VV ,VR,E), where VV is a set of vertices,

associated with player V , VR is a set of vertices, disjoint from VV , associated with

player R, VV ∪VR =V and E ⊆ V∪V is a set of edges representing possible moves.

A play can be imagined as follows: initially, there is a token on some vertex v ∈V . If

v ∈VV then player V makes a move, otherwise player R makes a move into one of the

possible next positions.

Definition 2.10.2. Define a play in the arena A to be a finite or infinite path over V,

i.e. a play is an element of V∗∪V
ω.
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There are different winning conditions used to determine the winner of a play.

Definition 2.10.3. A winning condition is a set Win ⊆ V
∗∪V

ω.

Formally, a game is a tuple (A ,Win), where A is the arena and Win is the winning

condition. Some well-known examples of winning conditions from the literature [57]

are Muller, Rabin, Streett and parity winning conditions. Let a strategy be a family of

rules prescribing how the players in a game move.

Definition 2.10.4. A strategy is a partial function fσ : V∗
Vσ → V, where σ = {V,R}.

A history-free strategy is a strategy that does not depend on what happened previously

in the play, but only on the current position. A game is determined if either V or R has

a winning strategy. A game of perfect information is a game in which each player is

aware of all previous moves in the game.

Definition 2.10.5. A parity game is a game of perfect information, played by two

players on a directed graph G = (N,−→,L). N is a finite set of vertices from the set of

natural numbers N, −→⊆ N ×N is a binary relation and L : N → {V,R} is a labeling

function, assigning elements from the set of players {V,R} to vertices.

All plays in a parity game have infinite length, i.e. for all n ∈ N there is some k ∈ N

such that n −→ k. A play always starts with a token on the least vertex. The winner of a

play is determined by a parity winning condition, i.e. by the label of the least vertex i

occurring infinitely often, i.e. if L(i) =V then V wins the game, otherwise R wins the

game. Such a game is also called min-parity to distinguish it from max-parity ones,

where the winner is determined by the label of the greatest vertex occurring infinitely

often. On finite graphs, the two types of games are equivalent [29].

Reasoning about parity games is considerably simplified by the fact that the games

are positionally determined: in other words the history of some play is not important,

only the current position matters. This is guaranteed by the following theorem:

Theorem 2.10.6 ([57]). Parity games are positionally determined: from each

vertex/position of the game either layer V or player R has a history-free winning

strategy.



Chapter 3

From Holistic to Incremental
Hyperproperties

This chapter introduces, motivates and formalizes incremental hyperproperties, which

are an essential part of our approach to the verification of hyperproperties.

In their original work Clarkson and Schneider used a relatively rich language to

express security-relevant hyperproperties as first-order predicates on sets of traces [18,

19], using universal and existential quantifiers over traces in a candidate set, as

well as relations (e.g. equality of projections with respect to different views, various

notions of observational equivalence, weak trace equivalence) on those traces. We

formalize this language (HL) and call the hyperproperties in this syntactic class

holistic as they talk about whole traces at once (and often about systems as a

whole). Their specifications tend to be relatively straightforward to read and write,

but unfortunately they are difficult to reason about. This is exemplified by the fact

that no general approach to verifying such hyperproperties exists, to the best of our

knowledge. To address this problem we adopt a coalgebraic perspective on systems

and hyperproperty specifications. Coalgebra provides an incremental approach to both

system specification and verification through the notion of derivative (see Section 2.6).

Taking a derivative of a language/property provides a way to reason incrementally

about the language/property. This is the basis of our proposed incremental perspective

on systems and hyperproperties.

More concretely, we propose to model systems as coalgebras of the functor GX =
2× (1+X)A and hyperproperties as coinductively-defined relations on systems’ state-

spaces. This is useful because, as already mentioned, coalgebras and coinductive

predicates are incremental and this makes verification more feasible. Intuitively, a

35
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system’s behavior corresponds to a unique tree, where the initial state of a system

corresponds to the root of the tree and possible executions build the branches by

continuously taking derivatives; incremental hyperproperties reason about such trees.

The problem of converting holistic specifications into incremental ones still remains.

We attempt to tackle it by introducing the process of incrementalization.

The main results presented in this chapter are first, formal definitions of the classes

of holistic and incremental hyperproperties, second, the introduction of the notion of

incrementalization — one way of converting holistic specifications into incremental

ones — and its application to three classes of holistic hyperproperties, and finally, an

illustration of a verification approach for incremental hyperproperties. The chapter is

based on an extended version of a recent paper of ours [63]. The relevant proofs can

be found in Appendix A.

3.1 Systems — from Sets of Traces to Trees

We start off by showing that instead of viewing a system’s behavior as a set of traces,

we can equivalently view it as a tree. Realizing this is an important prerequisite

to incrementalization: the conversion of system specifications on sets of traces to

specifications on trees. Interestingly, both these views on system behavior can be seen

as generated by coalgebra/partial automata and thus we will model systems as partial

automata. Since reasoning about trees and partial automata is often more convenient

than reasoning about sets of traces, it will be preferred in the rest of this work.

Although we predominantly reason about trees, we would like to have results

about sets of traces too. To achieve this we show that sets of traces, trees and

coalgebras/partial automata can be treated as equivalent perspectives on systems.

These perspectives are illustrated in Figure 3.1; note that ellipses indicate infinite

repetition of the string that has occurred so far. We next explain what we mean by

saying that a set of traces, a tree and a G-coalgebra/partial automaton are equivalent

views on systems. To that end, we show that going between these alternative

representations is relatively straightforward:

• Language→tree: A language can be seen as a tree by continuously taking

derivatives with respect to elements of A. An a branch, where a ∈ A, is present

in the tree if there are finite or infinite sequences beginning with a. The

subtree under the a branch corresponds to the a-derivatives (Definition 2.6.7).

A node in the tree is marked as a valid stopping state if the empty string is in

the derivative (see Definition 2.6.7) of the language under consideration. For

instance Lbc = {ε}, where ε is the empty string and hence the respective tree

node is marked as a valid stopping state.
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Figure 3.1: Illustration: equivalent representations of M = {(ab)ω,(ac)ω,bc} over

A = {a,b,c}: as a language/set of traces, a tree and a G-coalgebra. The branches of

the tree are labelled with elements of the alphabet A, its accepting nodes are marked

with a circle.

• Tree→language: The language of a tree is given by the paths from the root

that either end at a marked node or continue forever. For instance, bc is in the

language M (see Figure 3.1) as is (ab)ω.

• Language→G-coalgebra: Any language is an element of the final G-coalgebra L ;

the function h : Sys → L (see Figure 3.2) uniquely determines a pointed final

G-coalgebra (see Definition 2.6.14).

• G-coalgebra→language: The language of a G-coalgebra, seen as a partial

automaton, is given by the traces accepted by the automaton, where an infinite

word is accepted if it causes the automaton to run indefinitely.

• Tree→G-coalgebra: The root of the tree is mapped to the start state of the

corresponding G-coalgebra. Each subtree of the original tree is mapped to a

state of the G-coalgebra and the transitions arise from following the labeled

branches of the tree. Accepting subtrees are marked as final states of the

automaton.

• G-coalgebra→tree: A tree can be seen as the unfolding of a G-coalgebra [3].

The start state of the G-coalgebra is mapped to the root of the resulting unique

tree. An a-transition, for any a ∈ A, results in an a-labelled branch in the

corresponding tree; the resulting state in the G-coalgebra after an a-transition

corresponds to the respective subtree, arrived at by following the a branch of

the tree. Accepting states of the G-coalgebra are mapped to accepting subtrees.

Intuitively, the tree is the behavior of the respective G-coalgebra.
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The incremental view of systems, combined with Rutten’s observation that the set of

all languages is a final G-coalgebra (see Theorem 2.6.13), allows the use of coalgebra

and coinduction for reasoning about hyperproperties.

We next make the needed transition from sets of traces to G-coalgebras more concrete.

The functor G has the final coalgebra L (see Theorem 2.6.13). Recall that the

coinductive definition principle, presented in Chapter 2.6, gives a way to define maps

from arbitrary G-coalgebras into the final G-coalgebra. We use the principle to convert

an arbitrary set of traces into a G-coalgebra. To this end, take the state space to

be Sys = 2A∞
, the set of all possible sets of traces. Any pair 〈o, t〉 with signatures

o : Sys → 2 and t : Sys → (1+Sys)A induces a unique homomorphism h : Sys → L

that makes the diagram in Figure 3.2 commute. Thus the homomorphism h would

map any set of traces s ∈ Sys to a unique element in the final coalgebra L . Since the

elements of the final coalgebra can be seen as trees, we say that h maps a set of traces

to the root of a unique tree in L corresponding precisely to that set of traces.

Sys
!h

> L

2× (1+Sys)A

〈o, t〉∨
G(h)

> 2× (1+L)A

〈oL , tL〉∨

Figure 3.2: A commutative diagram to illustrate the unique homomorphism h

mapping any set of traces s ∈ Sys to a unique element L .

We now define a particular pair 〈o, t〉. Let C ⊆ Sys, a ∈ A and σ ∈ A∞. First define an

auxiliary function test : Sys → (A → 2) as follows:

testa(C) =̂ ∃ σ.σ ∈C∧σ(0) = a.

The functions o and t can be readily defined as follows:

o(C) =̂ ε ∈C t(C)(a) =̂

{
{σ′ | σ(0) = a} if testa(C)
⊥ if ¬testa(C).

The function pair 〈o, t〉 induces a unique element of the final coalgebra L corre-

sponding to the (not injective in general) map of Sys into L . Clearly Sys is closed,

following directly from Definition 2.6.8. In addition, Sys is consistent in the sense of

Definition 2.6.9: the reason is that there are no stuck words in Sys, i.e. there is no δ
element allowed by the definition of Sys. Because Sys is nonempty, closed, consistent,

and Sys ⊆ A∞
δ , it follows that Sys ⊆ L .
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In summary, any system defined as a set of traces can be uniquely seen as a tree

generated by a G-coalgebra. Hence we can reason about G-coalgebra and the

corresponding trees to get results about the behavior of systems seen as sets of traces.

3.2 Holistic and Incremental Hyperproperties

Switching the holistic perspective with an incremental one requires us to change not

only the model of systems, but also the manner in which they are specified. To achieve

this we need formalisms for reasoning about holistic and incremental specifications. In

this section we give such formalisms, namely, definitions of holistic and incremental

hyperproperties. The logical languages used are based on Least Fixed Point Logic

(LFP) [13] — an extension of first order logic with the addition of fixed point operators.

Details on LFP are available in Section 2.8. The new logical languages are holistic

hyperproperty logic HL , in which most interesting security-relevant hyperproperties

are expressible, and incremental hyperproperty logic IL . The key difference between

the languages is that the former has coinductive and/or inductive predicates over traces,

whereas the latter has only coinductive predicates over trees.

3.2.1 Holistic Hyperproperty Logic HL

Syntax of HL

Clarkson and Schneider specify hyperproperties as first-order predicates on sets of

traces [18, 19], using universal and possibly existential quantification over traces

(∀t ∈ T , ∃t ∈ T ) in a candidate set T , as well as relations on tuples of traces. The

hyperproperties NI and RN from Chapter 2.4 are such examples. We propose the

logical language HL to formalize hyperproperties specified in this style.

We first present a grammar for specifying coinductive predicates over traces. Let

var0 = {a,b,c, . . .} be a set of variables ranging over alphabet elements and var1 =
{x,y,z, . . .} be a set of variables ranging over traces. The syntax of terms is given as

follows:

t ::= a | x | ε,

where ε is a constant, denoting the empty trace.

Let p range over predicates in P and X range over coinductively or inductively-defined

predicate variables. Formulae used to specify (the body of) coinductive or inductive

predicates on traces have the following syntax:

φ0 ::= p(t) | X(t) | ⊥ | ¬φ0 | φ0 ∧φ0.
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As usual ⊤= ¬⊥, φ∨ψ = ¬(¬φ∧¬ψ) and the implication φ → ψ is ¬φ∨ψ.

Next we can define holistic hyperproperty logic HL with the following syntax:

φ1 ::=⊥ | ¬φ1 | φ1 ∧φ1 | ∃x.φ1 | [gfpX(x).φ0](t),

where X can occur only positively in φ1. Note that [gfpX(x).φ0](t) denotes the greatest

fixed point and is used to define coinductive predicates on traces — this means that the

terms in t range over traces only. The least fixed point operator is dual to the greatest

fixed point one, i.e. [lfpX(x).φ](t) =¬[gfpX(x).¬φ0](t), and can be used for inductive

definitions. Alternation of the fixed point operators is not allowed in HL . As usual

∀x.φ = ¬(∃x.¬φ). Note that x ∈ X iff X(x) = true, where the implicit predicate X is

an inductively or coinductively defined set. More formally, X(x) =̂ [gfpX(x).φ](t) or

X(x) =̂ [lfpX(x).φ](t).

Semantics of HL

The semantics of HL is straightforwardly derivable from the semantics of LFP, as

presented in Section 2.8. We next introduce the models used for this logic. Consider

structures of vocabulary σ = (P,F), where P = {=,{pi | i ∈ {1, . . . ,n}},{Ra | a ∈ A}}
is the set of predicates, F = { fi | i ∈ {1, . . . ,n}} is the set of functions and ε is the

sole constant. Note that the predicates in P typically have the following signatures:

= : A2 → 2, pi : A → 2, Ra ⊆ A∞ ×A∞ and the functions can be easily converted into

predicates. A σ-structure (model) is M = (S,PM ,FM ), where S ⊆ Sys and PM ,FM

are P and F relativized to the concrete interpretation of the model. It should be noted

that the transition function is converted into a transition relation parameterized by

elements of A. Essentially, for any traces s, t we have (s, t) ∈ Ra (or s
a−→ t) iff s(0) = a

and s′ = t. If s = ε (i.e. we have reached the end of a string), we have that (s,s) ∈ Rε.

Definition 3.2.1. A holistic hyperproperty is the set of systems (alternatively the set

of sets of traces) that can be specified by some formula φ ∈ HL . The set of all holistic

hyperproperties is {S ⊆ Sys | S |= φ}, where φ ∈ HL .

Sample Hyperproperties in HL

To illustrate the logic, some sample hyperproperties are presented next.

Example 3.2.2. Consider the hyperproperty FLIP that assures that for every stream

in a candidate set, its element-wise opposite is also in the set. Note that this

hyperproperty is chosen for its simplicity and is used for illustrative purposes only.

Start by defining the predicate flip ⊆ Aω ×Aω, relating each stream over A = {0,1} to
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its element-wise opposite:

flip =̂ gfpX(x,y) . (x
a−→ x′∧ y

b−→ y′∧ (¬(a = b))∧X(x′,y′)).

The simple hyperproperty FLIP can be given in HL as:

FLIP(X) =̂ ∀x0 ∈ X ∃x1 ∈ X . flip(x0,x1).

In order to make definitions like flip more readable, we will typically use a different

format for specifying coinductive trace predicates. The format is to simply give the

respective inference rules, which are to be interpreted coinductively (see Section 2.2.1

for details). The fact that the rules are interpreted coinductively is indicated using

coind on the right side of the respective inference rules. To illustrate this format, let

us give an equivalent definition of flip using inference rules:

¬(a = b) x
a−→ x′ y

b−→ y′ flipc(x′,y′)
coind

flipc(x,y)

The logic proposed here is fairly general as it captures most security-relevant hyper-
properties from the original hyperproperties paper [18]; the noteworthy exceptions
are service level agreement (SLA) polices such as mean response time (MRT), time
service factor and percentage uptime. Formal verification of systems with respect
to such policies is an inherently difficult problem. For instance, consider MRT as a
hyperproperty [18]:

MRT =̂ {T ∈ Prop | mean(
⋃

t∈T

respTimes(t))≤ 1}.

The function mean(S) specifies the mean of a set S of real numbers, whereas

respTimes(t) specifies the set of response times in a trace t. It is generally not clear how

to find the mean of a sequence of infinite number of response times in a trace because

the series might be diverging; moreover, when MRT is defined as a hyperproperty, an

additional problem arises, namely that the cardinality of the set of traces might be

infinite [18]. It is also not clear how to make such a specification incremental in the

general case. We do not address SLA policies in this work. However, we envision

that some of the techniques developed in this dissertation can be useful for at least

approximating some SLA policies on certain classes of systems.

Next, we demonstrate the proposed logic by presenting three example definitions.

First, recall several coinductively-defined trace predicates from Section 2.4. Define

evZ , filtering the Z-elements of a trace for some Z ⊆ A, as follows:
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coind

evZ(ε) = ε

evZ(x) = y a ∈ A\Z
coind

evZ(a · x) = τ · y
evZ(x) = y a ∈ Z

coind

evZ(a · x) = a · y

Note that to make the notation even more readable, we abbreviate it using pattern-

matching. For instance, evZ(x) = τ · y stands for (evZ(x))(0) = τ and (evZ(x))
′ = y.

Next, coinductively define predicate noZ : A∞ → 2 (parameterized by set Z), which

states that there are no events from some nonempty set Z in a trace:

coind

noZ(ε)

a ∈ A\Z noZ(x)
coind

noZ(a · x)

Define weak trace equivalence ≈⊆ A∞
τ ×A∞

τ as follows:

coind
ε ≈ ε

x ≈ y
coind

τ · x ≈ y

x ≈ y
coind

a · x ≈ a · y

This definition has a fairness problem as τω is equivalent to any trace. This also results

in the definition being termination insensitive, i.e. it allows leaks via the termination

behavior of the system. Finally, for all x,y ∈ A∞ and some nonempty set Z ⊆ A, define

weak trace equivalence with respect to Z as follows: x ≈Z y iff evZ(x)≈ evZ(y).

We are now ready to present some security-relevant hyperproperty definitions in HL .

Consider McLean’s formulation of a policy called generalized noninterference [60]

for non-deterministic systems. Informally, the policy states that any high-level input

behavior is compatible with any low level view of the system. The policy is based on

partitioning A into L and H (low and high confidentiality events), and then H into sets

HI and HO (high inputs and high outputs). The definition of GNI in HL is given as

follows:

GNI(X) =̂ ∀x0 ∈ X ∀x1 ∈ X ∃x2 ∈ X .x2≈HI x0 ∧ x2≈L x1.

If we slightly enhance our model, it is possible to express a variant of observational

determinism [87]. Recall that each trace can be seen as a set of states, where the next

state is obtained by taking the respective derivative. Let S be a set of states, associated

with the traces in a system. Let Var be a set of variables and L = {l1, . . . , lk} be a set

of low-confidentiality variables, which is a subset of Var. Let Val be a set of values

and V : S×Var → Val be a valuation. Define =L⊆ S×S as follows:

s1 =L s2 iff for all l ∈ L,V (s1)(l) =V (s2)(l).

Now, we can give a definition of termination insensitive observational determin-

ism [87] as follows:

OD(X) =̂ ∀x0 ∈ X ∀x1 ∈ X .(x0(0)=L x1(0)→ x0≈L x1),
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where ≈L is an indistinguishability relation on output traces, as defined above. OD

typically assumes the batch-job model: all variables are already initialized in the start

state. Any further changes of the low part of the state should be observable in the

resulting traces. The policy says that whenever any two possible executions of some

candidate system T are initialized with the same low-confidentiality variables, the

resulting low-observable behaviors are indistinguishable with respect to relation ≈L.

Finally, consider the following definition of generalized noninference GNF [86]:

GNF(X) =̂ ∀x0 ∈ X ∃x1 ∈ X .noHI(x1)∧ x0≈L x1.

The definition of GNF says that any candidate system T is secure with respect to

the policy iff for every possible trace t0 in T , there must be a trace t1 in T with the

following properties: t1 has no high inputs and the projections of t0 and t1 to low-

confidentiality security events are weak trace equivalent.

3.2.2 Incremental Hyperproperty Logic IL

Syntax of IL

We next present the logical language IL and use it to formalize incremental

hyperproperties [63]. IL is also based on a subset of least fixed point logic (details of

LFP are available in Section 2.8).

Let var0 = {a,b, . . .} be a set of variables ranging over alphabet elements in A

and var1 = {X ,Y,Xa,Ya, . . .} be a set of variables ranging over system states (or

alternatively over subtrees of the corresponding to the system unique tree). Let a

range over var0, X ,Y over var1 and I over predicate variables. The syntax of terms is

given as follows:

T ::= Y | a | ε.

Formulae in IL have the following syntax:

ψ ::= [gfp I(Y ).φ](T )

φ ::= p(T ) | I(T ) | ⊤ | ⊥ | φ∧φ | φ∨φ | ¬φ | ∀y.φ | ∃y.φ,

where p ranges over a set of predicates P, I can occur only positively (under an even

number of negations) in φ and [gfp I(X).φ](T ) denotes the greatest fixed point. The

typical least fixed point operator [lfp I(Y ).φ](T ) from LFP is not allowed in IL .

Note that in [gfp I(X).φ](T ) I can be seen as the predicate defined as the greatest

solution to the equation I(X) =̂ φ where X are parameters. That is, I is a coinductively
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defined tree predicate and it checks if some tuple of terms T (of type Sys) satisfies the

predicate I.

Definition 3.2.3. An incremental hyperproperty is a coinductive predicate on a k-tuple

of systems that can be specified by some formula φ ∈ IL . The set of all incremental

hyperproperties is {S ⊆ Sysk | S |= φ}, where φ ∈ IL .

Semantics of IL

The semantics of IL is straightforwardly derivable from the semantics of LFP, as

presented in Section 2.8. The main difference to HL is that now there are only

coinductive predicates and these are specified over trees.

We next present the models used for this logic. Consider structures of vocabulary

σ1 = (P,F), where P = {=,{pi | i ∈ {1, . . . ,n}},{Ra | a ∈ A}} is the set of predicates,

F = { fi | i ∈ {1, . . . ,n}} is the set of functions and ε is the sole constant, here

denoting the empty tree. Note that the predicates in P have the following signatures:

= : A2 → 2, pi : A → 2, Ra ⊆ Sys×Sys. A σ1-structure (model) is M = (S,PM ,FM ),

where S ⊆ Sysk and PM ,FM are P and F relativized to the concrete interpretation

of the model. It should be noted that the transition function is converted into a

transition relation parameterized by elements of A. Moreover, the transition function

is implicitly relativized to a single tree in S. Formally, for any trees S,T we have

(S,T ) ∈ Ra (or S
a−→ T ) iff test(a)(S) = true and t(S)(a) = T , where S ∈ SubT(Si) and

T ∈ SubT(Si) for some i ∈ 1, . . . ,k. Note that Si gives the i-th tree in S.

3.2.3 Sample Incremental Hyperproperties in IL

As an example, consider the coinductive tree predicate FLIP′(x,y), giving the

incremental version of FLIP from Example 3.2.2 and defined as follows:

FLIP′ =̂ gfp I(X ,Y ).(∀Xa.X
a−→ Xa → (∃Yb.Y

b−→ Yb ∧¬(b = a)∧ I(Xa,Yb))).

Definition 3.2.4. A hyperproperty H ∈ HL is incrementalizable iff there exists an

H ′ ∈ IL such that for all T ⊆ Sys we have that H(T )≡ H ′(T̄ ).

The logic is general enough to capture a number of interesting incremental hyperprop-

erties (examples will be presented in Sections 3.3 and 3.4 of this chapter, as well as in

Chapters 4 and 5). In the next section we introduce the process of incrementalization

— one method to arrive at incremental hyperproperties. Further, we demonstrate the

incrementalization process on three classes of holistic hyperproperties.
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3.3 Incrementalization of Holistic Hyperproperties

In this section, we present a syntactic approach to incrementalization for three classes

of holistic hyperproperties. The first class is called PHH and it includes an existential

and universal quantifiers on traces, as well as pointwise coinductive predicates,

similar to the ones proposed by Niqui and Rutten [66] (with the restriction that the

pointwise relation is functional). The class does not seem to contain security-relevant

hyperproperties and is used mainly for illustrative purposes, as well as to establish

a connection with related work [66]. The second class is called SHH and consists

of security-relevant, holistic hyperproperties defined on infinite systems, e.g. NI from

Section 2.4. The definitions in class SHH state that a system is secure if its set of traces

is closed under removal of a certain type of events, e.g. confidential ones (see, for

instance, [60]). Hyperproperties in this class are liveness ones. The third class is called

OHH, a class of security-relevant, holistic hyperproperties, including termination-

sensitive variants of observational determinism. This class contains (some) 2-safety

hyperproperties, i.e. the policy can be refuted by presenting two traces that do not

satisfy the respective condition. In this section, we give a detailed explanation of the

incrementalization process for the first class. The details for all of them are available

in Appendix A.

At a high level, incrementalization of a holistic hyperproperty H amounts to finding a

coinductive tree/system predicate H ′ and a functional ΨH ′ such that H ′ is the greatest

fixed point of ΨH ′ (i.e. H ′ = gfpΨH ′) and for all T ⊆ Sys, the equivalence H(T ) iff

H ′(T, . . . ,T ) holds. An incremental hyperproperty is based on a monotone function

and hence a verification methodology can be developed (see Section 3.4). In essence,

we lift the fixed point operator defining coinductive (and/or inductive) trace predicates

in a holistic specification to the outermost level in an incremental specification on

trees. The techniques used include generalizing the definition of H to n parameters,

unfolding H and rewriting it using derivatives, unfolding the coinductive definitions,

swapping quantifiers, rearranging expressions and folding the holistic definition. This

process results in an incremental definition equivalent to H.

3.3.1 The Class PHH and its Incrementalization

In this section, we define the class of holistic hyperproperties PHH and then present

its incrementalization. Let cR be a pointwise, coinductive predicate parameterized by

some functional relation R ⊆ A×A (i.e. R can be seen as a function) and defined as

follows:

coind

cR(ε,ε)

a R b cR(x,y)
coind

cR(a · x,b · y)
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Definition 3.3.1. Let PHHR be the class of pointwise, holistic hyperproperties defined

in HL as follows:

PHHR(X) =̂ ∀x ∈ X ∃y ∈ X .cR(x,y).

Both PHH and the coinductive predicate c are explicitly parameterized by R. However,

this will be left out from the notation in the rest of this work.

We next proceed with the incrementalization of PHH. Start by generalizing PHH to

take a pair of systems as parameters as follows:

PHH2(X ,Y ) =̂ ∀x ∈ X ∃y ∈ Y.c(x,y).

Clearly, we have that for all T ⊆ Sys, PHH(T ) iff PHH2(T,T ). Each of the following

lemmas is one or more steps of the incrementalization process. First, unfold the

holistic definition of PHH2.

Lemma 3.3.2. The predicate PHH2(X ,Y ) holds iff

(ε ∈ X → ε ∈ Y )∧ (∀a ∈ A ∀w ∈ A∞. aw ∈ X →

∃b ∈ A ∃u ∈ A∞.bu ∈ Y ∧ a R b∧ c(aw,bu)).

Second, rewrite the definition using derivatives and unfold the coinductive definition

of c once.

Lemma 3.3.3. The predicate PHH2(X ,Y ) holds iff

(o(X)→ o(Y ))∧ (∀a ∈ A ∀ Xa ⊆ Sys. X
a−→ Xa → (∀w ∈ A∞. w ∈ Xa →

∃b ∈ A ∃ Yb ⊆ Sys. Y
b−→ Yb ∧a R b∧∃u ∈ A∞. u ∈ Yb ∧ c(w,u))).

Third, swap the quantifiers ∃b and ∀w; this can be done as b depends only on a.

Lemma 3.3.4. The predicate PHH2(X ,Y ) holds iff

(o(X)→ o(Y ))∧ (∀a ∈ A ∀ Xa ⊆ Sys. X
a−→ Xa → (∃b ∈ A ∃ Yb ⊆ Sys. Y

b−→ Yb ∧a R b ∧

(∀w ∈ A∞. w ∈ Xa →∃u ∈ A∞. u ∈ Yb ∧ c(w,u)))).

Fourth, rearrange the resulting expression and fold the definition of PHH2.

Lemma 3.3.5. The predicate PHH2(X ,Y ) holds iff

o(X)→ o(Y )

∧ (∀a ∈ A ∀ Xa ⊆ Sys. X
a−→ Xa →∃b ∈ A ∃ Yb ⊆ Sys. Y

b−→ Yb ∧a R b ∧PHH2(Xa,Yb)).
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Finally, define the incremental hyperproperty PIH2 as follows:

PIH2 =̂ gfp I(X ,Y ). (o(X)→ o(Y )

∧ (∀a ∈ A ∀ Xa ⊆ Sys. X
a−→ Xa →∃b ∈ A ∃ Yb ⊆ Sys. Y

b−→ Yb ∧a R b∧ I(Xa,Yb))).

Theorem 3.3.6 (Incrementalization of PHH2). For all S,T ⊆ Sys, we have that

PHH2(S,T ) iff PIH2(S,T ).

Corollary 3.3.7. For all T ⊆ Sys, we have that PHH(T ) iff PIH2(T,T ).

Corollary 3.3.7 illustrates the fundamental significance of incrementalization: for

verification purposes, one may ignore the holistic hyperproperty (e.g. PHH) and verify

the incremental hyperproperty (e.g. PIH2) instead.

3.3.2 The Class SHH and its Incrementalization

We next present the class SHH of security-relevant, holistic hyperproperties defined

on infinite systems. The definitions in class SHH state that a system is secure if its set

of traces is closed under removal of confidential (high) events (see, for instance, [60]).

Let p : A→ 2 be a predicate and f : A→ A a function. Define the coinductive predicate

∼p : Aω ×Aω → 2 as follows:

p(a) p(b) x∼p y b = f (a)
coind

a · x∼p b · y
¬p(a) p(b) x∼p b · y

coind

a · x∼p b · y

p(a) ¬p(b) a · x∼p y
coind

a · x∼p b · y

Define the coinductive predicate ps : Aω → 2, generalizing noH from Section 2.4:

p(a) ps(x)
coind

ps(a · x)

To define SHH, an additional restriction on Sysω is needed. First note that we can

convert any predicate p : A → 2 to a propositional constant as follows: for a trace t we

say that t |= p iff p(t(0)) holds. Then we will work only with systems satisfying the
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property P�♦ = {t ∈ Aω | t |= �♦p}, based on temporal logic modalities eventually

(♦) and always (�) [68]. This means that for this section, the formal parameters X ,Y
are of type P�♦.

We next give some motivation and intuition about the restriction for systems to be in

the class P�♦. First, note that the predicate p : A → 2 could be thought of as denoting

the visibility of events to agents at a certain security level. Let us call events for which

p evaluates to true p-events, dually there are ¬p-events. Intuitively, many security-

relevant systems (e.g. reactive systems such as servers) have infinite traces and can

be characterized as follows: each trace has some p-event appearing eventually, and

that happens infinitely often. These are the type of properties we expect from a server,

for instance: each non-confidential request needs to be eventually serviced and that

should happen infinitely often. The latter is captured by the property P�♦. P�♦ is a

liveness property, as defined by Alpern and Schneider [5]: formally, such a liveness

property is given as follows: ∀α ∈ A∗ ∃β ∈ Aω.αβ |=�♦p.

Definition 3.3.8. Let SHHp, f be the class of holistic hyperproperties parameterized

by predicate p and function f . Recall that X ranges over P�♦. SHHp, f is defined as

follows:

SHHp, f (X) =̂ ∀x ∈ X ∃y ∈ X . ps(y)∧ x∼p y

In the rest of this work we leave out the parameters and write SHH instead of

SHHp, f . In order to work with only one predicate, we combine ps and ∼p into a

new coinductive predicate c1:

p(a) p(b) f (a) = b c1(x,y)
coind

c1(a · x,b · y)
¬p(a) c1(x,y)

coind

c1(a · x,y)

Thanks to the following lemmas we can change the original definition of SHH with an

equivalent definition.

Lemma 3.3.9. For all s, t ∈ Aω, we have that (ps(t)∧ s∼p t)→ c1(s, t).

Lemma 3.3.10. For all s, t ∈ P�♦, we have that c1(s, t)→ (ps(t)∧ s∼p t).

The equivalent definition of SHH by Lemmas 3.3.9 and 3.3.10 is given as follows: for

all T ∈ P�♦

SHH(T ) ⇐⇒ ∀x ∈ T ∃y ∈ T. c1(x,y).

First, we generalize SHH to take a pair of systems as a parameter as follows:

SHH2(X ,Y ) =̂ ∀x ∈ X ∃y ∈ Y. c1(x,y).
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Clearly, for all T ⊆ P�♦, it is the case that SHH(T ) iff SHH2(T,T ).

We next continue with similar steps as in the incrementalization of PHH from

Section 3.3.1. The steps can be used to derive the following version of SIH2 (details

available in Appendix A):

SIH2 =̂ gfp I(X ,Y ).

(∀a ∈ A ∀ Xa ⊆ Sys. (X
a−→ Xa ∧ p(a))→∃Yb ⊆ Sys. Y

f (a)−−→ Yb ∧ I(Xa,Yb)

∧∀a ∈ A ∀ Xa ⊆ Sys. (X
a−→ Xa ∧¬p(a))→ I(Xa,Y )).

Theorem 3.3.11 (Incrementalization of SHH2). For all S,T ⊆ P�♦, we have that

SHH2(S,T ) iff SIH2(S,T ).

Corollary 3.3.12. For all T ⊆ P�♦, we have that SHH(T ) iff SIH2(T,T ).

Corollary 3.3.12 tells us that reasoning about the incremental hyperproperty SIH2

is enough for verification of the holistic SHH. In essence, the problem of holistic

hyperproperty verification is reduced to reasoning about incremental specifications.

Because the incremental SIH2 is the greatest fixed point of a monotone operator, a

multitude of techniques for calculating such a fixed point are possible (such techniques

will be illustrated in Section 3.4 and will be further explored in Chapters 5 and 6).

3.3.3 The Class OHH and its Incrementalization

In this section we present OHH, a class of security-relevant, holistic hyperproperties

defined on systems in Sys, and its incrementalization. Given a predicate p : A → 2 and

a function f : A → A, define ∼pt : A∞ ×A∞ → 2, on traces as follows:

coind
ε∼pt ε

p(a) p(b) b = f (a) x∼pt y
coind

a · x∼pt b · y

¬p(a) ¬p(b) x∼pt y
coind

a · x∼pt b · y

Note that ∼pt is actually parameterized by p and f , but we do not indicate it explicitly

to make notation more reasonable. Let ∼pti be the restriction of the relation on input

elements in Ai, given as follows:
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coind
ε∼pti ε

p(a) p(b) a ∈ Ai b ∈ Ai b = f (a) x∼pti y
coind

a · x∼pti b · y

¬p(a) ¬p(b) x∼pti y
coind

a · x∼pti b · y

p(a) p(b) a ∈ Ao b ∈ Ao x∼pti y
coind

a · x∼pti b · y

Definition 3.3.13. Let OHHp, f be the class of holistic hyperproperties parameterized

by predicate p and function f and defined as follows:

OHHp, f (X) =̂ ∀x ∈ X ∀y ∈ X . (x∼pti y → x∼pt y).

In what follows, we will just write OHH. Again, the first step is to generalize OHH to

take a pair of systems as a parameter as follows:

OHH2(X ,Y ) =̂ ∀x ∈ X ∀y ∈ Y. (x∼pti y → x∼pt y).

The process of incrementalization is used to derive the following, incremental version

of OHH2 (details available in Appendix A):

OIH2 =̂ gfp I(X ,Y ). (o(X)↔ o(Y )

∧∀a,b ∈ Ai ∀ Xa,Yb ⊆ Sys. X
a−→ Xa ∧Y

f (a)−−→ Yb ∧ p(a)→ I(Xa,Yb)

∧∀a,b ∈ Ao ∀Xa,Yb ⊆ Sys. X
a−→ Xa ∧Y

b−→ Yb ∧ p(a)∧ p(b)→

b = f (a)∧ I(Xa,Yb)

∧∀a,b ∈ A ∀Xa,Yb ⊆ Sys. X
a−→ Xa ∧Y

b−→ Yb ∧¬p(a)∧¬p(b)→ I(Xa,Yb)).

Theorem 3.3.14 (Incrementalization of OHH2). For all S,T ⊆ Sys, we have that

OHH2(S,T ) iff OIH2(S,T ).

Corollary 3.3.15. For all T ⊆ Sys, we have that OHH(T ) iff OIH2(T,T ).

An interesting, security-relevant hyperproperty in OHH is weak time-sensitive

noninterference [4]. To formalize it, first define its key ingredient ∼ts, which is an

instantiation of ∼pt with f being the identity function and p = low = ¬high:

coind
ε∼ts ε

low(a) x∼ts y
coind

a · x∼ts a · y
high(a) high(b) x∼ts y

coind

a · x∼ts b · y
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Note that this definition guarantees that both traces terminate in an equal number

of steps and are low-view indistinguishable, or both diverge and are still low-view

indistinguishable. Thus, the definition is also termination-sensitive.

Let ∼tsi
be the same as ∼ts, but restricted to inputs. To formalize it, first define its key

ingredient ∼ts, which is an instantiation of ∼pt with f being the identity function and

p = low = ¬high:

coind
ε∼tsi

ε
low(a) a ∈ Ai x∼tsi

y
coind

a · x∼tsi
a · y

high(a) high(b) x∼tsi
y

coind

a · x∼tsi
b · y

low(a) low(b) a ∈ Ao b ∈ Ao x∼tsi
y

coind

a · x∼tsi
b · y

Based upon the former definitions, define weak time-sensitive noninterference:

WTSNI(X) =̂ ∀x ∈ X ∀y ∈ X .(x∼tsi
y → x∼ts y).

It should be noted that the definitions of ∼ts and ∼tsi
exploit the time-sensitivity

of WTSNI. This takes care of issues such as fairness and productivity, which are

encoded in the definition itself, and allows the incremental definition to be elegant.

Intuitively, the reason is that the relations are defined in a way that always requires

both (related) states to advance. In contrast, this is not the case in Section 3.3.2 with

relation ∼p; hence, there we needed the extra restriction P�♦ to guarantee the fairness

and productivity of the definitions in Section 3.3.2.

3.4 Towards Verification of Incremental Hyperprop-

erties

Incremental hyperproperties are based on monotone operators and hence enjoy a

feasible verification methodology. In this section, we explore some first steps towards

verification, the topic is continued in Chapters 5 and 6.

First, recall some fixed point theory. Let Ψ : 2X1×...×Xn → 2X1×...×Xn be a monotone

operator over the complete lattice of set-theoretic n-ary relations on the Cartesian

product of sets Xi, i ∈ 1..n, and gfp(Ψ) be the greatest fixed point of Ψ. For any
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x = (x1, . . . ,xn) ∈ X1 × . . .×Xn and R ⊆ X1 × . . .×Xn the following principle is sound:

R(x) R ⊆ Ψ(R)

gfp(Ψ)(x)
(3.1)

This is the Knaster-Tarski coinduction principle [48], generalized to n-ary relations.

The process of incrementalization makes the original holistic definition H irrelevant

for verification. Instead, the resulting coinductive predicate H ′ has to be verified to

show that H holds. For a coinductive predicate H ′, we introduce the notion of an

H ′-simulation.

Definition 3.4.1. Let H ′ be an incremental hyperproperty and ΨH ′ be its respective

functional, known to be monotone by definition (as H ′ is expressible in IL). An H ′-
simulation is an n-ary relation R such that R ⊆ ΨH ′(R). We define H ′-similarity to be

the union of all H ′-simulations.

Corollary 3.4.2. Finding an H ′-simulation on some n-tuple of systems T is sufficient

for showing that H ′(T ) holds.

The verification of a holistic hyperproperty H would typically take two steps. First,

one needs to find an appropriate (equivalent) notion of an H ′-simulation. It is typically

hard to massage the definition of H into an H ′-simulation; one way to tackle this

problem is to use some of the incrementalization techniques presented in this chapter.

The most difficult part of the problem is typically the swapping of the universal and

existential quantifiers (an important property behind some well-known theorems in

analysis). Fortunately, the incrementalization has to be done only once for each

holistic hyperproperty class H. Second, one needs to find a specific H ′-simulation

for the system of interest. Showing that there is no H ′-simulation implies that the

coinductive predicate does not hold and hence H does not hold. The second step of

searching for an H ′-simulation relation on the system of interest can be automatic,

adapting known model checking techniques. The soundness of this verification

methodology follows directly from Knaster-Tarski’s coinduction principle [48].

Note that the statement “no H ′-simulation implies H does not hold” is valid only

in the case when H ′ is equivalent to H. If we can find some H ′ such that H ′(T )
only implies H(T ), we may only use H ′ to verify that H(T ) holds; if there is no H ′-
simulation relation, we do not know whether H holds for the system of interest or not.

This is important to note, as sometimes it may not be possible to find an equivalent

definition, however the techniques presented here may still be used to prove systems

secure, provided that a proper definition of H ′ (i.e. H ′(T )→ H(T )) is found.

Theorem 3.4.3. The predicate H ′(S1, . . . ,Sk) on G-systems (Si,αi,xi) for i∈ 1..k holds

iff there exists some H ′-simulation Q s.t. the k-tuple of the start states (x1, . . . ,xk) ∈ Q.
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It should be noted that Theorem 3.4.3 is not constructive: it does not give an algorithm

for finding H ′-simulations. Nevertheless, model checking techniques provide a

practical means to compute or approximate the greatest fixed point of a monotone

operator at least on finite-state systems. There are well-known iterative schemata

for computing the greatest fixed point on a complete lattice [82]. We are usually

interested in the complete lattice (2S) of the state space S of interest. In this case, the

bottom and top elements of the lattice are the empty set and the set S respectively,

the partial order relation is set inclusion. When approximating (or calculating for

finite state spaces) the greatest fixed point one starts with S and iteratively applies

the functional Ψ. Formally Ψ0 = id and Ψn+1 = Ψ ◦ Ψn where id is the identity

function and operator ◦ denotes composition. The greatest fixed point of Ψ can be

found as follows: gfpΨ =
⋂

n≥0 Ψn(S). Finding algorithms for deciding whether an

H ′-simulations holds in general will be explored in Chapters 5 and 6.

We next illustrate the feasibility of verification of incremental hyperproperties from

the classes PHH, SHH and OHH presented above.

3.4.1 Sample Hyperproperties in PHH

Consider the holistic hyperproperty FLIP from Section 3.2.1: it is in the class PHH.

Hence, we can instantiate the incremental definition of PIH2 and find the appropriate

notion of FLIP′-simulation. A FLIP′-simulation on systems S,T is a relation Q ⊆
S×T , s.t. for all s ∈ S, t ∈ T we have the following: if (s, t) ∈ Q then

o(s)→ o(t)

∧ ∀a ∈ A ∀sa ∈ Sys. s
a−→ sa →∃b ∈ A ∃tb ∈ Sys. t

b−→ tb ∧¬(b = a)∧ (sa, tb) ∈ Q.

Note that the elements of Sys may be seen as both states and sets of traces, as discussed

in Section 3.1. Thus we may write both sa ∈ Sys and Xa ⊆ Sys.

Example 3.4.4. Consider the system T1, two copies of which are represented by

the automata in Figure 3.3. To (attempt to) show that FLIP(T1) holds, we have to

search for a FLIP′-simulation relation, containing the pair (s0,s0). This can be done

iteratively: by using the definition of FLIP′ we see that pairs (s0,s1) and (s1,s0) have

to also be in such a relation. We arrive at relation Q = {(s0,s0),(s0,s1),(s1,s0)}:

this is the needed FLIP′-simulation and the reader is invited to check this. Hence we

conclude that FLIP(T1) holds, i.e. T1 |= FLIP.

Example 3.4.5. Let T2 be the system resulting from removing the transition from state

s1 to itself from T1 (see Figure 3.4). The goal is again to check whether FLIP(T2)
holds. We show that there is no FLIP′-simulation Q such that (s0,s0) ∈ Q. To that

end, assume that there were such a Q. By the assumption we have that (s0,s0) is
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s0start s1

s0start s1

1

0

0 1

1

0

0 1

Q Q Q

Figure 3.3: Illustration of a FLIP′-simulation

s0start s1

s0start s1

1

0

0

1

0

0

Q Q

Figure 3.4: Illustration of the lack of a FLIP′-simulation

in Q. By the definition of FLIP′-simulation it follows that the pair (s1,s0), resulting

from (t(s0)(1), t(s0)(0)), and (s0,s1), resulting from (t(s0)(0), t(s0)(1)), should be in

Q. As it should be that (s1,s0) ∈ Q, it follows that (t(s1)(1), t(s0)(0)) should also be

in Q. However, this is not the case as t(s1)(1) = ⊥, whereas t(s0)(0) = s0. This is a

contradiction, implying that there is no Q that is a FLIP′-simulation and (s0,s0) ∈ Q.

Hence we conclude FLIP(T2) does not hold, i.e. T2 6|= FLIP.

3.4.2 Sample Hyperproperties in SHH

Consider NI from Section 2.4 on systems satisfying P�♦. NI is in the class SHH.

Hence we can instantiate the definition of SIH2 and get an incremental definition of

NI, called NI′ and corresponding to an NI′-simulation. An NI′-simulation on systems

S,T is a relation Q ⊆ S×T , s.t. for all s ∈ S, t ∈ T we have the following: if (s, t) ∈ Q
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then

∀a ∈ A ∀sa ∈ Sys . (s
a−→ sa ∧¬high(a))→∃ta ∈ Sys . t

a−→ ta ∧ (sa, ta) ∈ Q

∧∀a ∈ A ∀sa ∈ Sys . (s
a−→ sa ∧high(a))→ (sa, t) ∈ Q.

Example 3.4.6. Consider alphabet A = {a,b,c,d} and define predicate high as

high(a), high(b), ¬high(c), ¬high(d). Take the system T given by the omega-regular

expression (acbd|cd)ω (see Figure 3.5). To check whether NI(T ) holds, we have to

search for an NI′-simulation relation, containing the pair (T,T ). Using the same

iterative approach as in Examples 3.4.4 and 3.4.5, we obtain the relation Q, defined

as follows: Q = {(T,T ),(Ta,T ),(Tac,Tc),(Tacb,Tc), (Tc,Tc)}. Q is an NI′-simulation

such that (T,T ) ∈ Q and thus we conclude that NI(T ) holds, i.e. T |= NI.

T

T

T

T

T

T

c

a

d

c

b

d

c

a

d

c

b

d

Figure 3.5: Illustration of an NI′-simulation

Note that in the last example, we implicitly switched from reasoning on states of a G-

coalgebra (of the fixed functor GX = 2× (1+X)A) to reasoning on trees representing

the system behavior. This can be done, as explained in Section 3.1, thanks to the

unique homomorphism from any state space S to the final G-coalgebra L .

3.4.3 Sample Hyperproperties in OHH

Recall hyperproperty WTSNI from the class OHH. We can get an incremental
definition, corresponding to a WTSNI′-simulation. A WTSNI′-simulation on systems
S,T is a relation Q ⊆ S×T such that for all s ∈ S and t ∈ T we have the following: if
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(s, t) ∈ Q then

o(s)↔ o(t)

∧∀a ∈ Ai ∀sa, ta ∈ Sys . (s
a−→ sa ∧ t

a−→ ta ∧¬high(a))→ (sa, ta) ∈ Q

∧∀a,b ∈ Ao ∀sa, ta ∈ Sys . (s
a−→ sa ∧ t

b−→ tb ∧¬high(a)∧¬high(b))→ (a = b∧ (sa, ta) ∈ Q)

∧∀a,b ∈ A ∀sa, ta ∈ Sys . (s
a−→ sa ∧ t

b−→ tb ∧high(a)∧high(b))→ (sa, tb) ∈ Q.

To illustrate the applicability of our abstract notions to programs, consider the RIMP

program called P:

input chH(x) {i := x;}

input chL(x) {if i <= x then output chL(0);
else output chL(1);}

Note that inputs come from the set {0,1} and outputs from {0,1,τ}. The possible

behaviors of two copies (called P0 and P1) of program P are presented visually in

Figure 3.6. We show that there is no WTSNI′-simulation Q such that (P0,P1) ∈ Q. To

that end assume there were such a Q; states that should be related in any WTSNI′-
simulation, including the pair of start states, are connected by the dashed line in

Figure 3.6. By the assumption and the definition of WTSNI′-simulation, it follows that

(t(P0)(chi
H(1)), t(P1)(chi

H(0))) ∈ Q. We can continue using the definition of WTSNI′-
simulation to find further pairs of states that have to be in the hypothetical relation Q

(these are given in Figure 3.6). One of these is the pair (s0,s1). If (s0,s1) ∈ Q,

then the definition requires that cho
L(1) = cho

L(0), by the rule for low outputs. This

is a contradiction as the outputs clearly differ, thus there is no Q that is a WTSNI′-
simulation and (P0,P1) ∈ Q. Hence P 6|= WTSNI. Note that program P is also insecure

with respect to other, less strict definitions, such as RN (see Section 2.4).

To make a contrast between termination-sensitive and insensitive definitions, consider

program P2:

input chH(x) {i:=x; if i = 0 then while 1 do skip};

output chL(0);

Program P2 is termination-insensitive noninterferent (for instance, with respect to the

definition of reactive noninterference RN from Section 2.4). To see this, let σin =
[chi

H(1)] and γin = [chi
H(0)] be input strings. Clearly, σin≈L γin and the resultant traces

are σ = [chi
H(1),τ,τ,τ,cho

L(0),τ] and γ = [chi
H(0),τ,τ,τ, . . .]. Since σ≈L γ, and σ and

γ are all traces, it follows that P2 is secure. However, this program is not secure w.r.t.

WTSNI. The reader is invited to check that this is indeed the case.
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Figure 3.6: Illustration of the lack of a WTSNI′-simulation for program P

3.5 Discussion

The process of incrementalization of some holistic hyperproperty H may result in

an incremental hyperproperty H ′ that only implies H. This means that although for

all T ⊆ Sys, H ′(T ) → H(T ), it is possible to have a system Te ⊆ Sys, for which

H(Te) holds, however ¬H ′(T ). In such cases we may say that H ′ under-approximates

H. Such definitions of H ′ can be useful to (only) show that a system satisfies a

policy. Intuitively, the reason is that H ′-simulations are more fine-grained relations

than holistic predicates on sets of traces. This is a generalization of the known fact

that although bisimilarity implies trace equivalence, the converse is not necessarily

true [27]; in other words, we may have systems that are trace equivalent but not

bisimilar. Further, it is possible (in theory) that the definition of H ′ (seen as a set

of systems) specifies the empty set and in such cases the verification methodology via

H ′-simulations cannot be used. However, we have not seen such a case in practice.

We acknowledge that the problem needs further exploration.

The holistic hyperproperties we propose capture the known security-relevant hy-

perproperties (but not SLA policies on systems, such as percentage uptime, mean

response time etc. [18, 19]), however holistic hyperproperties are a strict subset of

hyperproperties. For instance, the hyperproperty

H(T ) =̂ ∀t0 ∈ T∃t1 ∈ T.(t0, t1) ∈ R,
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where R is an arbitrary relation on traces is not necessarily a holistic hyperproperty.

The reason is that R may not be definable as a coinductive (or inductive) predicate.

However, we claim that holistic hyperproperties capture security-relevant hyperprop-

erties (e.g., known variants of noninterference, information flow and secrecy, requiring

uncertainty about the real state of the system), which are the most well-studied

and important class of hyperproperties. The claim that holistic and respectively

incremental hyperproperties capture a large class of interesting, security-relevant

policies will be reaffirmed in Chapter 4.

After Clarkson and Schneider proposed a methodology for verification of k-safety

hyperproperties based on invariance arguments [18, 19] (generalizing Terauchi and

Aiken’s work on 2-safety [84]), this is a second attempt to develop a generic

verification methodology for a large class of hyperproperties. As already mentioned,

our approach is based on transitioning from a trace-based holistic view of systems

and hyperproperties to an incremental perspective of systems as G-coalgebras and

hyperproperties as coinductive predicates. Incremental hyperproperty definitions

are a generalization of bisimulation relations on the state space of systems and

verification amounts to checking whether such a relation exists. In the next chapter

we demonstrate that our methodology (via H ′-simulations) goes beyond the state-of-

the-art in being able to also handle a relatively large class of liveness hyperproperties,

such as a number of variants of possibilistic information flow security definitions. The

problem of determining precisely which class of hyperproperties is incrementalizable,

and thus directly benefits from the methodology, is open. In addition, we would

like to explore the possibility of abstracting even further and potentially coming

up with an incrementalization technique and a notion of H ′-simulation working for

all of (but not limited to) the classes presented here. Finally, we plan to explore

the difficulty in rearranging quantifiers, which was identified as a main problem for

incrementalization.

Although the proposed methodology is generic and useful, it has some limitations. It

cannot tackle arbitrary hyperproperties, such as mean response time and percentage

uptime [18], which perform some operation over all traces of a system (such as taking

the mean). Although one might think that these definitions would be excluded from

consideration simply because the abstract representation of systems as sets of traces

excludes time, time can be included by having a richer alphabet, e.g. each element

being a pair of an action and a real/natural number. However, working with such

hyperproperties is difficult, regardless of the methodology (holistic or incremental),

even if we rule out potential divergence due to computing with infinite traces. One

possible idea to dealing with such policies is via metric coinduction [44].
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3.6 Related Work

Clarkson and Schneider show that labelled transition systems can be encoded as sets

of traces [19]. They argue that bisimulation-based hyperproperties, notably Focardi

and Gorrieri’s bisimulation nondeducibility on composition (BNDC), can be converted

into trace sets. This is in effect the opposite to what we suggest in this chapter. We

propose to go from trace sets to trees and state-based systems because the latter are

well-understood and enjoy well-established verification techniques, as well as mature

verification tools (see Chapter 6 for an illustration of the use of off-the-shelf tools). It

is arguable, but we believe that such an approach is more natural and generic enough

to work for a large number of applications.

That incrementalization is useful can be seen from recent work on noninterference

for reactive systems [11]; Bohannon et al. start with a holistic definition of reactive

noninterference and convert it into a relation on program states that they call ID-

bisimulation; they effectively make the definition incremental. The authors use that

latter incremental definition in order to prove that well-typed RIMP programs are

secure. They also show that an ID-bisimulation implies the high level, holistic policy.

It should be noted that H ′-simulations are similar to coinductive predicates proposed

by Niqui and Rutten [66] in a categorical setting. They essentially show that

coinductive predicates can be seen as final coalgebras in a a category of relations.

As concrete examples, they consider a number of coinductive predicates on streams,

however they present examples that are not related to security. Niqui and Rutten’s

work gives a different, categorical perspective on coinductive predicates. However,

our H ′-simulations are coinductive predicates on systems/trees and are presented using

Knaster-Tarski semantics, which we find more intuitive. Moreover, in later chapters

we generalize the definition of H ′-simulations to include (a restricted variant of) mixed

coinductive/inductive predicates, which are more complex than what Niqui and Rutten

present.

At first sight, incrementalization is somewhat similar to unwinding [32]. As Goguen

and Meseguer describe it, unwinding is the process of translating a security policy first

into local constraints on the transition system that inductively guarantee that the policy

is satisfied and second in a finite set of lemmas such that any system that satisfies

the lemmas is guaranteed to satisfy the policy. The main difference to our work

is that unwinding is still a trace based property, whereas incrementalization results

in coinductive predicates and reasoning on trees. Moreover, our H ′-simulations are

coinductively defined relations, which allow reasoning about infinite traces and hence

hyperproperties. Finally, we present a framework for reasoning about hyperproperties

and not a methodology for a concrete security-relevant hyperproperty.

It turns out that incremental hyperproperties are inherently related to Mantel’s work
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on unwinding of possibilistic security properties [53]. He proposes a modular

framework in which most well-known security properties can be composed from a

set of basic security predicates (BSPs); he also presents unwinding conditions for

most BSPs. His unwinding conditions are specified locally on states of the system

(inspired by Rushby’s work [72]) as opposed to the more traditional global (trace-

based) unwinding conditions. These unwinding conditions can be seen as simulation

relations on system states and in that sense are similar to our incremental security

hyperproperties. A major difference is that Mantel reasons about traces that are only

finite, i.e. his systems are in 2A∗
. This implies that his framework cannot express

liveness hyperproperties, whereas our framework can. Moreover, our framework

is agnostic to the hyperproperty/hyperliveness classification. Interestingly, Mantel’s

unwinding conditions can be seen as instances of incremental hyperproperties on finite

systems. This is further explored in Chapter 4.

Recent work [23] has proposed an automata-theoretic technique for model checking

the possibilistic information flow hyperproperties from Mantel’s framework [53] on

finite state systems. The authors show how to model check Mantel’s BSPs, which are

the building blocks of the respective holistic hyperproperties. This is a nice theoretical

result, supporting our thesis that incremental hyperproperties are amenable to model

checking. On the negative side, the authors show that the model checking problem

is undecidable for the class of pushdown systems. The proposed model checking

approach is based on deciding set inclusion on regular languages. The latter question

can be answered by standard automata-theoretic techniques. This approach is not

directly applicable to hyperproperties, because the presence of infinite traces means

that the languages (sets of traces) under consideration are not regular. The problem of

model-checking incremental hyperproperties (via games) is explored in Chapter 5.

There has been a substantial amount of work on verifying other specific hyper-

properties, most notably of secure information flow from both the language-based

security [75] and process calculi security [26, 74] communities. Language-based

secure information flow has traditionally relied on information flow type systems, with

a recent trend to incorporate program logics or a combination of both [75, 9, 20, 36].

There have also been attempts to address noninterference using results from process

algebra [74, 26]. Common for this line of work is formalizing different definitions of

security and showing that they all depend on some notion of equivalence of processes,

e.g. strong, weak, power bisimulation. The difference with our work is that we propose

a framework for reasoning about hyperproperties and not a concrete methodology for

verification of a concrete security policy.
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3.7 Summary

This chapter presents a formal classification of hyperproperties into holistic and

incremental ones. It furthermore motivates the shift from a holistic to an incremental

approach to hyperproperty specifications, dictated by the fact that the incremental

approach has a clearer verification methodology. We argue that identifying the class

of hyperproperties that are incrementalizable and finding a generic methodology for

incrementalization of holistic hyperproperties are important problems. We propose a

generic framework and techniques to explore the process of incrementalization and the

usefulness of the resulting incremental hyperproperties. We identify three classes of

incrementalizable hyperproperties. We introduce the notion of H ′-simulation relations

and suggest a verification methodology based on these.

The following chapter explores the connection between incremental hyperproperties

and unwinding relations. Further on, Chapters 5 and 6 focus on the verification of

incremental hyperproperties via games.





Chapter 4

Coinductive Unwinding of
Security-Relevant
Hyperproperties

In this chapter we explore the connection between incremental hyperproperties and the

most closely-related work, namely on the verification of security-relevant policies via

unwinding. We demonstrate that combining ideas from both approaches is beneficial

for the verification of hyperproperties.

Unwinding is a well-known technique used to prove that systems are secure with

respect to a variety of noninterference policies. The main benefit of unwinding is that

it reduces the problem of high-level policy verification to searching for an unwinding

relation on the state-space of the system of interest. The idea is intuitively appealing

because the connection between the transitions of the system and the higher level

policy, often expressed as difficult to check relations on execution traces, is instead

given by an unwinding theorem: the existence of a particular unwinding relation

implies/is equivalent to the high-level policy. It should be noted that an unwinding

relation in this sense is still a trace-based relation.

Mantel works with a different notion of unwinding in his MAKS framework [55].

This framework uses unwinding relations that have several advantages in comparison

with the typical ones. The advantages are that these unwinding relations can be

arbitrary (i.e. not necessarily symmetric, transitive, etc.) and they are also completely

local (and thus not trace-based). These advantages are clearly shared with our H ′-
simulation relations from Chapter 3. In addition, the MAKS framework is modular,

a feature that is also beneficial when reasoning about hyperproperties. Hence, the

63
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following natural question arises: is it possible to use the MAKS framework directly

or indirectly (and possibly in combination with the theory from Chapter 3) for the

purpose of hyperproperty verification?

In this chapter we answer the former question. We show that directly using Mantel’s

framework for the verification of security-relevant hyperproperties is problematic, as

the framework is geared towards reasoning about terminating-only behaviors (finite

systems). However, hyperproperties are defined as sets of sets of (potentially) infinite

traces (see Definition 2.4.3). Intuitively, infinite traces are needed to reason about

liveness properties (and hyperproperties), as the good thing is “always possible” and

“possibly infinite” [18, 19]; this is in contrast to the somewhat simpler verification

of safety properties (and hyperproperties), as if a counter-example exists, it can be

finitely determined (e.g. by computing least fixed points [35]). To enable reasoning

about infinite behavior, we propose a coinductive reinterpretation of security-relevant

hyperproperties, Basic Security Predicates and unwinding relations. The reason to

use coinduction is that it has emerged as the technique of choice for reasoning about

infinite data types and automata with infinite behavior [77]. Another strength of

coinductive reasoning is that it is suitable for automation, allowing the potential reuse

of enhancements, such as up to techniques [69]. Such techniques strive to keep the

candidate relations, implying the needed high-level policy, as small as possible and

thus reduce the amount of work for verification. Exploring these techniques for H ′-
simulations is left for future work.

4.1 Synopsis

We start by sharing some of the motivation for this work. To deal with security-

relevant hyperproperties in general, we need to be able to reason about infinite systems

that cannot be approximated by finite ones. Intuitively, these are systems that have,

at least for some infinite traces, relevant behavior in the whole infinite trace. In

contrast, there are infinite systems that can be approximated by finite ones, i.e. for

each execution trace, the interesting behavior stops at some point, followed by trivial

behavior (e.g. low only events or internal events). Moreover, for some policies

(e.g. liveness (hyper)properties) it is not sufficient to consider finite only traces, as

each finite trace needs to have a possible extension to an infinite trace, satisfying a

certain condition. It is not possible to directly use the MAKS framework or typical

unwinding conditions for such policies and systems (potential problems with non-

well-foundedness). We thus propose to reason about infinite systems (that cannot

be approximated by finite ones) by the use of coinductive variants of the definitions,

which are given in the new mathematical development presented in the rest of this

chapter.
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The new development starts with a coinductive reinterpretation of a number of

security-relevant hyperproperties (essentially by replacing the trace predicates with

coinductive or coinductive/inductive ones) and their corresponding BSPs and unwind-

ing relations. The security-relevant hyperproperties are defined based on coinductive

predicates, due to the fact that, as discussed above, systems may be possibly infinite

in a non-trivial way (on finite systems the hyperproperties in question have the same

semantics as the original ones). This results in coinductive definitions of the BSPs

and the respective unwinding relations, allowing reasoning about elements of non-

well-founded sets [2]. Whereas the typical, inductive interpretation gives semantics

of policies on terminating systems exclusively, the coinductive interpretation gives

semantics of security policies on both finite and infinite systems. We should note

that the coinductively defined BSPs have in some cases different semantics on finite

systems compared to the ones presented by Mantel [55]. This is not problematic, as

BSPs are typically used as a pure means to reasoning about the high level policies.

What is important is that the high level policies presented in the work of Mantel and

the respective coinductive interpretations that we propose have the same semantics on

finite systems.

Further, we show that the basic structure of the MAKS framework is still intact,

although the definitions have changed. This is indicated by the fact that the respective

variants of a number of the unwinding theorems, unwinding-conditions-to-BSPs

theorems and BSPs-to-holistic-hyperproperties theorems hold as expected. We show

that the new unwinding relations are instances of H ′-simulations. Hence, we have

demonstrated that the class of incremental hyperproperties is substantial. Moreover,

we can reuse the verification techniques introduced in Chapter 3 (via H ′-simulations)

for verification of security-relevant hyperproperties from the class of possibilistic

information flow policies [55] which are instances of liveness hyperproperties. This

means that our verification method is novel as it works for a class of liveness

hyperproperties. Whether it works for all liveness hyperproperties is an interesting

question for future work.

The chapter is based on an extended version of a recent paper of ours [62]. The

relevant proofs can be found in Appendix B.

4.2 Motivation

The majority of security-relevant policies (for instance, all the ones presented in

Mantel’s thesis [55]) reason about finite only traces. As a result such definitions are

termination-insensitive: all diverging computations are considered to be “the same”

and are thus ignored. A typical argument for this is that systems satisfying such

definitions are secure most of the time, i.e. as long as they terminate, which is their
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expected behavior. The possibility of leaks through the termination channel, which is

a type of covert channel [47] 1, is essentially ignored. Although such definitions might

suffice for some types of programs, e.g. for some batch-job programs, they are clearly

not satisfactory when reasoning about systems supposed to be infinite by specification.

Examples are reactive systems, such as servers, embedded systems, operating systems,

etc.

For instance, consider the simple system S1 = {(hl)ω, lll}, where A = L∪H, L = {l}
is the set of low confidentiality events and H = {h} is the set of high confidentiality

events. Clearly, termination insensitive definitions, such as NFo introduced in

Section 4.3.1, distinguish this system as trivially secure: as only one of the traces

is in A∗ and it has low events only. However, the system is intuitively not secure as

termination is low-observable, i.e. the low observer can distinguish the two traces. In

fact, an attacker having control over a similar system can in theory leak any secret

to the low-level user by sending bits via the termination channel. In practice, this is

particularly dangerous when the attacker can run the program multiple times, as every

run can transmit one bit.

As another motivating example, consider systems with nonterminating behavior such

that confidential events in all traces occur infinitely often (this is a liveness property,

similar to P�♦ from Section 3.3.2). In such situations it is impossible to declare

a system secure by examining only finite prefixes. A typical policy, for instance

given by Mantel’s deletion of events (based on deleting the last confidential event

in any trace and requiring a particular modification of the resulting trace to be in the

candidate system, see Section 4.3.2 for the formal definition) or a naive coinductive

interpretation of the latter, such as DNV from Section 4.3.2, would not be able to

properly reason about such systems. Such policies would accept any system having

only infinite behavior as being trivially secure. Clearly, this is not desirable.

As systems exhibiting infinite behaviors which have no last confidential event, are

abundant in practice, they are important for both specification and verification. Since

hyperproperties are generic system specifications, it is natural that they should be able

to express and reason about such behavior. To achieve this, we give systems and

hyperproperties a coinductive semantics and use coinduction as a reasoning tool for

such systems. In general, theoretical machinery is needed in order to reason about

potentially infinite behaviors allowed by system specifications. Such machinery, at

least for reasoning about security-relevant hyperproperties in general, is currently

lacking. Providing such machinery is the main motivation of this chapter.

1A covert channel is one that is not meant to be used for transmitting information at all.



COINDUCTIVE INTERPRETATION OF SECURITY-RELEVANT HYPERPROPERTIES 67

4.3 Coinductive Interpretation of Security-Relevant

Hyperproperties

The coinductive interpretation of well-known, holistic, security-relevant hyperprop-

erties requires coinductively defined predicates on traces and sometimes functions

(often treated as relations). We start off by giving the needed definitions. It should be

noted that the holistic hyperproperties presented here are defined based on coinductive

predicates and not on functions.

Definitions. The definition of noZ is repeated here for convenience; all others are new

except evz, which is redefined. Coinductively define bisimulation ∼: A∞ ×A∞ → 2 as

follows:

coind
ε ∼ ε

x ∼ y
coind

a · x ∼ a · y

Coinductively define predicate noZ : A∞ → 2 (parameterized by set Z), which states

that there are no events from set Z in a trace:

coind

noZ(ε)

a ∈ A\Z noZ(x)
coind

noZ(a · x)

Note that noZ(t) is the coinductive version of predicate (t|Z = ε), where notation t|Z
is from the MAKS framework [55] and denotes the Z-projection of a trace t.

Next, inductively define w Z a ·w′ (w Z-reveals a with tail w′):

ε Z ε

a ∈ Z

a ·w Z a ·w
b ∈ A\Z w Z a ·w′

b ·w Z a ·w′

We need a coinductive relation evZ , relating any trace to its projection onto Z.

Technically, the relation is a partial function that filters out events from set Z, and

it will be defined and used as one, mainly to keep the connection to t|Z , as evZ(t) is

the coinductive version of t|Z .

coind

evZ(ε) = ε

w Z a ·w′ evZ(w
′) = u

coind

evZ(w) = a ·u

Note that evZ can be seen as a relation: (w,u) ∈ evZ iff evZ(w) = u. This definition is

an improved version of the same definition from Section 2.4. The first difference

is that the alphabet for the traces considered here is A instead of A ∪ {τ}. The



68 COINDUCTIVE UNWINDING OF SECURITY-RELEVANT HYPERPROPERTIES

second difference is that, unlike the purely coinductive definition from Section 2.4,

this version is productive [10] when the function is defined. The reason (and

difference) is that this definition of function evZ only computes by calling its inductive

component Z and thus it satisfies a form of eventually predicate (eventually an a ∈ Z

is found as a head of the resultant stream). After finding the head, computation goes on

with a recursive call on data computed in the inductive part. In essence this recursive

call guarantees the infinitely often predicate. The idea of such eventually and infinitely

often predicates comes from the literature: these were used to show how to formalize

a filter function in Coq [10].

Finally, coinductively define weak bisimulation (parameterized by set Z) ≈Z : A∞ ×
A∞ → 2 as follows:

coind
ε≈Z ε

w Z a ·w′ u Z a ·u′ w′≈Z u′
coind

w≈Z u

Although this definition is coinductive, it is again based on an inductive definition

of  Z . This is important as it helps avoiding the potential fairness problems: for

instance, the definition of weak trace equivalence from Section 2.4 has the problem

that τω is equivalent to any trace. That is why similar definitions have been called

equivalence up to stuttering and prefix [87] (i.e. it relates two traces if one is a prefix

of the other) and it results in termination-insensitive definitions. The problem is that

there are separate rules for both related states. Intuitively, this means that one state

may get arbitrarily ahead of the other. Further details are available in Section 2.4.

In contrast, the definition of weak bisimulation above does not have a fairness problem

and it is termination-sensitive. There is no fairness problem, since both related states

may only proceed together, where their “moves” are given by the inductive definition

of  Z , or alternatively both related states are accepting, i.e. both related traces are

finite.

Finally, the extension of predicate test to the obvious inductive definition test∗ : Sys →
(A∗ → 2) on words is given as follows. For a ∈ A, w ∈ A∗ and ε the empty trace, test∗

is defined as:

o(X)

test∗ε(X)

testa(X) test∗w(Xa)

test∗a·w(X)

For tree T and word w, the predicate test∗w(T ) is true whenever the finite sequence w

can be performed, starting at the root of the tree T .
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4.3.1 Coinductive View on some Well-known, Holistic, Security-
relevant Hyperproperties

In this section we give coinductive semantics to some of the well-known, holistic,

security-relevant hyperproperty definitions. The definitions presented next are known

from the literature, however, for each original definition we present its respective

variant on potentially infinite systems (i.e. as a hyperproperty). The difference

between each pair of definitions lies in the core definitions of the ingredients: in the

new versions, these definitions are coinductive. This is needed to lift the original

definitions to potentially infinite systems and thus convert them into hyperproperties.

The old definitions have subscript o, whereas the new, coinductive definitions are

presented in a box. It is noteworthy that the new and old definitions coincide on

finite systems.

Noninference

This policy will be called NFo (the original version of NF) and it is originally defined

on finite systems as follows [86]:

NFo(X) =̂ ∀x ∈ X . x|L ∈ X .

The definition says that any candidate system T is secure with respect to noninference

iff the projection of each trace t in T to low-confidentiality security events is a possible

trace of the candidate system T .

The coinductive variant of noninference NF is given using the coinductive analogue

of x|L called evL:

NF(X) =̂ ∀x ∈ X . evL(x) ∈ X .

Generalized Noninference

This policy was originally proposed by Zakinthinos and Lee [86] and it was given as

follows:

GNFo(X) =̂ ∀x0 ∈ X ∃x1 ∈ X . (x1|HI = ε∧ x1|L = x0|L).

The definition says that any candidate system T is secure with respect to generalized

noninference iff the following holds: for every possible trace t0 in T , there must be

a trace t1 in T such that t1 has no high inputs and the projections of t0 and t1 to low-

confidentiality security events are equal.
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The coinductive interpretation of generalized noninference GNF is:

GNF(X) =̂ ∀x0 ∈ X ∃x1 ∈ X . (noHI(x1)∧ x1≈L x0).

Generalized Noninterference

This policy will be called GNIo. It was originally defined as follows [58]:

GNIo(X) =̂ ∀x1,x2,x3 ∈ A∗ . [(x1 · x2 ∈ X ∧ x3|A\HI = x2|A\HI)→

∃x4 ∈ A∗. (x1 · x4 ∈ X ∧ x4|L∪HI = x3|L∪HI)].

The definition says that any candidate system T is secure with respect to generalized

noninterference iff the following holds: for every trace t1 · t2 in T and every possible

trace t1 · t3 that differs from t1 · t2 only in high level input events, there exists a trace

t1 · t4 in T that differs from t1 · t3 only in high-level output and high-level internal

events.

Using coinductive relations on traces, we define generalized noninterference GNI as

a hyperproperty:

GNI(X) =̂ ∀x1 ∈ A∗ ∀x2,x3 ∈ A∞ . [(x1 · x2 ∈ X ∧ x3≈A\HI x2)→

∃x4 ∈ A∞. (x1 · x4 ∈ X ∧ x4≈L∪HI x3)].

Note that the equality of projections is replaced by the coinductively defined relation

≈Z (parameterized by L∪HI).

Perfect Security Property

The policy presented next was originally proposed by Zakinthinos and Lee [86]:

PSPo(X) =̂ (∀x ∈ X .x|L ∈ X)∧ (∀α ∈ A∗∀β ∈ A∗. [(β ·α ∈ X ∧α|H = ε)→

∀h ∈ H. (β ·h ∈ X → β ·h ·α ∈ X)]).

The definition says that any candidate system T is secure with respect to the perfect

security property iff the following conditions hold: for every possible trace t in T , its
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projection to low-confidentiality security events must be a possible trace in T . Further,

any finite trace t ∈ A∗ that can be formed from a possible trace in T by adding a high-

level event h, not followed by any other high-level event in t, should also be a possible

trace of T .

Finally, our coinductive interpretation of the perfect security property PSP is:

PSP(X) =̂ (∀x ∈ X .evL(x) ∈ X)∧ (∀α ∈ A∞∀β ∈ A∗.

[(β ·α ∈ X ∧noH(α))→∀h ∈ H. (β ·h ∈ X → β ·h ·α ∈ X)]).

We have presented only a few information flow definitions in order to illustrate what

is needed to represent them as hyperproperties. It is relatively straightforward to

convert any of the ones not presented here. Nevertheless, the examples are enough

to cover a number of important BSPs and unwinding relations, as well as to raise

some interesting questions, which will be considered in the following sections.

The examples suggest a possible technique to adapt Mantel’s unwinding relations

to reason about security-relevant hyperproperties and a connection with incremental

hyperproperties, namely that an H ′-simulation (see Chapter 3), implying that an

incremental hyperproperty H ′ holds, is a(n) (conjunction of) unwinding relation(s).

This is further explored in Section 4.4.

4.3.2 Coinductive View on BSPs

Mantel introduced the MAKS framework [55, 52], which can represent most well-

known possibilistic security policies as conjunctions of Basic Security Predicates.

Mantel classified his BSPs in two dimensions. In the first dimension fall BSPs that

essentially hide the occurrence of confidential events (Ac-events), whereas in the

second dimension are BSPs that hide the non-occurrence of Ac-events. This means

roughly the following: in the first dimension, whenever a confidential event occurs, it

should be also possible that it did not occur, i.e. a respective trace without the event

should exist. In the second dimension, whenever a confidential event did not occur,

there should be an alternative trace in which it did occur.

Mantel’s BSPs and security policies are defined on finite traces only. In this section

we present a coinductive perspective on a number of the BSPs, parameterized by a

security view (a partition of the alphabet A, as introduced in Section 2.5). Whereas

the coinductively-defined security policies from Section 4.3.1 work on both finite

and infinite systems and on finite systems have the same semantics as the originals,

the situation is fundamentally different with the BSPs. The BSPs presented here
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(except the first one, removal of events RV ) have different semantics on finite systems

compared with the Mantel’s BSPs. The reason is that lifting Mantel’s BSPs to infinite

systems is not simply a matter of coinductive interpretation of the definitions. More

precisely, often it does not make sense to refer to the last confidential event in an

infinite trace, as there is no such event, at least by specification; this will be further

clarified by Example 4.3.1. Instead, we need to change the rules but still try to keep

the structure of the framework. Although we have changed the definitions, we have

kept their original names in order to illustrate that the structure of the framework (see

Figure 2.1) is preserved. The original definitions are again presented for comparison.

The old definitions have subscript o, whereas the new, coinductive definitions are

presented in a box.

Note, and this applies to all definitions presented in this section, that these are closure

operators. They take some set T and say what other traces should be in T . Although

it is important what the application of the operator does for every particular trace, we

are also interested in what the operator collectively does for all traces in the set T .

We start with some BSPs from the first dimension.

Removal of Events RV

Predicate RV(T ) requires for any trace σ ∈ T the existence of another trace γ which

has no Ac-events and which has the same Av-events (essentially allowing “corrections”

of An-events). The original definition [55] is:

RV
o(T ) =̂ ∀σ ∈ T ∃γ ∈ T . (γ|Ac = ε ∧ σ|Av = γ|Av).

Our definition is:

RV(T ) =̂ ∀σ ∈ T ∃γ ∈ T . (noAc(γ) ∧ σ≈Av γ).

Note that we have replaced the relations on traces in the original work with coinductive

ones, similarly to the modifications of the definitions from Section 4.3.1. Interestingly,

such a straightforward modification will not be possible for the rest of the BSP

definitions we explore.

Stepwise Deletion of Events DV

The original definition [55] changes any trace σ in a candidate set T by deleting the

last occurrence of a confidential event and requires that the resulting trace can be
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corrected (by possibly inserting/deleting events from An if it is not empty) resulting in

a possible trace γ in T .

DV
o(T ) =̂ ∀α,β ∈ A∗ ∀c ∈ Ac . [(β · c ·α ∈ T ∧α|Ac = ε)→

∃α′,β′ ∈ A∗ . (β′ ·α′ ∈ T ∧α′|Av = α|Av ∧α′|Ac = ε∧β′|Av∪Ac = β|Av∪Ac)].

If we naively convert Mantel’s definition to potentially infinite traces, we get the

following:

DNV(T ) =̂ ∀α ∈ A∞ ∀β ∈ A∗ ∀c ∈ Ac . [(β · c ·α ∈ T ∧noAc(α))→

∃α′ ∈ A∞,β′ ∈ A∗ . (β′ ·α′ ∈ T ∧α′≈Av α∧noAc(α
′)∧β′≈Av∪Ac β)].

This definition would work as expected on finite traces. Unfortunately, it is not well-

suited for infinite traces. To illustrate this, consider the following example:

Example 4.3.1. Let V =(Av,An,Ac) be a view such that Av = {l1, l2}, An = /0 and Ac =
{h1,h2}. Consider system S1 = {(l1h1h2l2)

ω}. Intuitively, system S1 is not secure, as

every time l2 is observed it is clear that h1 and h2 must have occurred. Unfortunately,

the definition of DNV does not capture this intuition, as system S1 is trivially secure

with respect to the definition. The reason for this problem is that confidential events

appear infinitely often, thus there is no suffix t for which noAc(t) holds.

Potentially infinite traces are allowed in many useful systems (operating systems,

servers, embedded systems etc.) and often there is no last confidential event, as

confidential events occur infinitely often. To further demonstrate that such systems

and policies exist, recall that one of the incrementalizable classes from Chapter 3,

namely SHH, deals with such systems. Thus the definition of DNV needs to be

changed. We propose the following definition to fix the problem:

DV(T ) =̂ ∀α ∈ A∞ ∀β ∈ A∗ ∀c ∈ Ac . [β · c ·α ∈ T →

∃α′ ∈ A∞,β′ ∈ A∗. (β′ ·α′ ∈ T ∧β′≈Av∪Ac β∧α′≈Av∪Ac α)].

This definition deletes some occurrence of a confidential event in a trace and then

perturbs the resulting trace. Unfortunately, as already mentioned, on finite traces the

definition is not semantically equivalent to the original one. To see this consider the

following:
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Example 4.3.2. Let V = (Av,An,Ac) be a view such that Av = {l1, l2}, An = /0 and

Ac = {h1,h2}. Consider system S2 = {l1h1h2l2, l1h1l2, l1l2}. It is easy to check that

DV(S2) does not hold — as l1h2l2 has to be in S2, but it is not. Nevertheless S2 is

secure with respect to Mantel’s original definition DV
o, as well as with respect to our

naive definition DNV .

It should be noted that the definition DV , proposed here and used throughout the

chapter, is stronger — it requires more possible traces and hence higher uncertainty

for the attacker than DNV . In other words, DV(X)→ DNV(X). Moreover, DV properly

rejects systems exhibiting the pattern of S1 as insecure; to see one reason why, note

that l1h2l2(l1h1h2l2)
ω 6∈ S1.

More importantly, the BSP definitions presented in this chapter are not simply

Mantel’s BSPs lifted to potentially infinite traces (we have shown that doing this would

not be meaningful). The BSP definitions presented here may have different semantics

(compared to Mantel’s) on finite systems, in fact they are more restrictive and

guarantee higher uncertainty. This is not problematic as they still fulfill their purpose:

they allow us to reason about the high level policies (i.e. holistic hyperproperties)

in a very convenient way. Moreover, the holistic hyperproperties presented in this

chapter, if restricted to finite systems, have the same semantics as the respective

policies presented by Mantel. The proof of this statement is straightforward and

based on the following observation. The coinductive definitions of all the relations

on traces used to build the holistic hyperproperties if instantiated on finite only traces

are equivalent to Mantel’s definitions of trace predicates. For instance, noHI(t1) is

equivalent to t1|HI = ε and t1|L = t0|L is equivalent to t1≈L t0 for all t0, t1 ∈ A∗.

Backwards Strict Deletion BSD

The next BSP is called BSD. The intuitive idea is that the occurrence of an Ac-event

should not be deducible. BSD is very similar to DV . The only difference to DV is that

the part of the trace that has already occurred (β) cannot be changed, i.e. the “past” of

the trace cannot be changed. The original definition [55] is:

BSDo
V (T ) =̂ ∀α,β ∈ A∗ ∀c ∈ Ac . [β · c ·α ∈ T ∧α|Ac = ε →

∃α′ ∈ A∗. (β ·α′ ∈ T ∧α′|Av = α|Av ∧α′|Ac = ε)].

Our definition of BSDV (T ) is given next:
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BSDV (T ) =̂ ∀α ∈ A∞ ∀β ∈ A∗ ∀c ∈ Ac . [β · c ·α ∈ T →

∃α′ ∈ A∞. (β ·α′ ∈ T ∧α′≈Av∪Ac α].

It should be noted that a similar modification as to DV was used here and the reason

again is to enable tackling systems which do not have a last confidential event.

Although the BSP definitions have changed, the following theorem reestablishes a

connection between the BSPs, known from Mantel’s framework [55].

Theorem 4.3.3. Let V = (Av,An,Ac) be a view and T be a set of traces. Then the

following implications hold: BSDV (T )→ DV(T ) and DV(T )→ RV(T ).

This theorem gives convenience when reasoning about the high-level policies. For

instance, it is enough to prove BSDV (T ), then DV(T ) and RV(T ) hold “for free”.

Strict Deletion SDV

Mantel’s original definition of strict deletion [55] is given first:

SDo
V(T ) =̂ ∀α,β ∈ A∗ ∀c ∈ Ac . [(β · c ·α ∈ T ∧α|Ac = ε)→ β ·α ∈ T ].

This BSP is similar to BSDV presented above, but it is even stricter. It claims that

whenever we look at the last confidential event c of a trace, it should be possible to

delete c, and the rest of the trace (β ·α) should be a possible trace of T . In other words,

the “past” of the trace and its “future” should remain unchanged when deleting c and

then the rest of the trace should be a possible trace of T .

Our version of the BSP is again different than Mantel’s: as in the previous definition,

it does not search for the last Ac-event. Our coinductive version of SDV(T ) is given

next:

SDV(T ) =̂ ∀α ∈ A∞ ∀β ∈ A∗ ∀c ∈ Ac . [β · c ·α ∈ T → β ·α ∈ T ].

The rest of the presented BSPs are from the second dimension, hiding the non-

occurrence of Ac-events.
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Backwards Strict Insertion BSIV

Mantel’s original definition [55] is given first:

BSIo
V(T ) =̂ ∀α,β ∈ A∗ ∀c ∈ Ac . [(β ·α ∈ T ∧α|Ac = ε)→

∃α′ ∈ A∗. (β · c ·α′ ∈ T ∧α′|Av = α|Av ∧α|Ac = ε)].

This BSP is in a sense dual to BSDV — instead of deleting an Ac-event, it requires

the possible insertion of such an event before any possible finite suffix α having no

confidential events. Of course, we have again modified the definition to a coinductive

one and it does not search for the last Ac-event, hence it works on infinite traces. The

same also holds for all the following definitions. Our coinductive version of BSIV(T )
is given as follows:

BSIV(T ) =̂ ∀α ∈ A∞ ∀β ∈ A∗ ∀c ∈ Ac . [β ·α ∈ T →

∃α′ ∈ A∞. (β · c ·α′ ∈ T ∧α′≈Av∪Ac α)].

Backwards Strict Insertion of Admissible Events BSIA
ρo
V

Mantel’s original definition [55] is given first:

BSIA
ρo
V (T ) =̂ ∀α,β ∈ A∗ ∀c ∈ Ac .

[(β ·α ∈ T ∧α|Ac = ε∧Adm
ρ
V (T,β,c))→

∃α′ ∈ A∗. (β · c ·α′ ∈ T ∧α′|Av = α|Av ∧α′|Ac = ε)].

This BSP is similar to BSIV , but it hides the non-occurrence of admissible events only.

This is useful, as hiding the occurrence of all possible confidential events Ac might be

too extreme in practice. Instead, we might need to hide the occurrence of only some

subset of Ac. Our coinductive version of BSIA
ρ
V(T ) is given as follows:

BSIA
ρ
V(T ) =̂ ∀α ∈ A∞ ∀β ∈ A∗ ∀c ∈ Ac .

[(β ·α ∈ T ∧Adm
ρ
V (T,β,c))→

∃α′ ∈ A∞. (β · c ·α′ ∈ T ∧α′≈Av∪Ac α)].
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Strict Insertion SIV

Mantel’s original definition [55] is given first:

SIo
V(T ) =̂ ∀α,β ∈ A∗ ∀c ∈ Ac . [(β ·α ∈ T ∧α|Ac = ε)→ β · c ·α ∈ T ].

This BSP requires the possibility to insert any Ac-event at any place in a stream, it

is strict because neither the past nor the future part of the trace may be changed by

perturbing An-events. Our coinductive version of SIV(T) is given as follows:

SIV(T ) =̂ ∀α ∈ A∞ ∀β ∈ A∗ ∀c ∈ Ac . [β ·α ∈ T → β · c ·α ∈ T ].

Strict Insertion of ρ-admissible Events SIA
ρ
V

Mantel’s original definition [55] is given first:

SIA
ρo
V (T ) =̂ ∀α,β ∈ A∗ ∀c ∈ Ac .

[(β ·α ∈ T ∧α|Ac = ε∧Adm
ρ
V (T,β,c))→ β · c ·α ∈ T ].

This BSP requires the possibility to insert any ρ-admissible Ac-event at any place

(where admissible) in a trace such that it would be the last confidential event in the

trace. Our coinductive version of SIA
ρ
V(T ) is given as follows:

SIA
ρ
V(T ) =̂ ∀α ∈ A∞ ∀β ∈ A∗ ∀c ∈ Ac .

[(β ·α ∈ T ∧Adm
ρ
V (T,β,c))→ β · c ·α ∈ T ].

Note again that the definition is lifted to potentially infinite systems. More importantly,

we drop the restriction of necessarily dealing with the last Ac-event.
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Insertion of ρ-admissible Events IA
ρ
V

Mantel’s original definition [55] is given first:

IA
ρo
V (T ) =̂ ∀α,β ∈ A∗ ∀c ∈ Ac.

[(β ·α ∈ T ∧α|Ac = ε∧Adm
ρ
V (T,β,c))→

∃α′,β′ ∈ A∗. (β′ · c ·α′ ∈ T ∧α′|Av = α|Av ∧α′|Ac = ε∧β′|Av∪Ac = β|Av∪Ac)].

This BSP is similar to SIA
ρ
V , except that the definition is not strict (perturbations of the

front and back parts of the trace are possible). Our ƒuctive version of IA
ρ
V(T ) is given

as follows:

IA
ρ
V(T ) =̂ ∀α ∈ A∞ ∀β ∈ A∗ ∀c ∈ Ac.

[(β ·α ∈ T ∧Adm
ρ
V (T,β,c))→

∃α′ ∈ A∞.∃β′ ∈ A∗. (β′ · c ·α′ ∈ T ∧α′≈Av∪Ac α∧β′≈Av∪Ac β)].

4.4 Coinductive Interpretation of Unwinding

Relations

So far we have explored the coinductive interpretation of security-relevant hyper-

properties and their building block BSPs. We now focus on coinductive unwinding

relations. Instead of verifying BSPs directly or via global unwinding conditions,

Mantel uses local unwinding conditions in his work [52]. Essentially, in order to

prove that a number of BSPs hold and hence a particular policy is respected (see

Figure 2.1) the existence of an unwinding relation satisfying a set of unwinding

conditions has to be shown. In this section, we present a coinductive reinterpretation

of Mantel’s unwinding relations, which is needed in order for them to be suitable

for non-terminating systems. We also show that the relations are instances of our

H ′-simulations.
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4.4.1 Defining oscV-simulation

The first relation is historically called output-step consistency and denoted oscV . The

original definition [55] is given as follows:

osco
V(T,R) =̂ ∀s1,s

′
1,s

′
2 ∈ S . ∀a ∈ A\Ac .

(reachable(SES,s1)∧ reachable(SES,s′1)∧ s′1
a−→T s′2 ∧ (s′1,s1) ∈ R)→

∃s2 ∈ S ∃α ∈ (A\Ac)
∗ . (α|Av = a|Av ∧ s1

α−→T s2 ∧ (s′2,s2) ∈ R).

Recall that SES is a state-event system given as a sextuple (S,s0,A,Ai,Ao,Tr), where

S is the state-space, A is the alphabet, Ai and Ao are input and output alphabets

respectively and Tr is a transition relation. Predicate reachable(SES,s) means that

state s is connected to the initial state s0. Note that this definition is inductive in

nature [1]. The use of predicate reachable means that the definition only refers to

states that can be reached by the transition relation of the SES (and thus the set

considered is well-founded2). This is a way to guarantee that there are no infinite

decreasing sequences (of pairs) in R. As a result of this, the recursive calls are always

applied to smaller arguments.

An oscV -simulation on systems S,T is:

a relation R ⊆ S×T defined as follows: for all states s ∈ S, t ∈ T if (s, t) ∈ R, then

o(s)↔ o(t) ∧ ∀a ∈ A\Ac ∀sa ∈ S . (s
a−→ sa →

∃σ ∈ (A\Ac)
∗ ∃tσ ∈ T . (t

σ−→ tσ ∧σ≈Av a∧ (sa, tσ) ∈ R)).

The predicate oscV(S,T,R) holds iff R is an oscV -simulation on systems S and T .

The gist of the definition of oscV is very similar to the definition of osco
V , but note

that it needs to be coinductive, namely taking the greatest fixed point interpretation

of the respective rules, otherwise it would be potentially non-well-founded on infinite

systems. Moreover, reachable is not in the definition, because the latter is coinductive:

this means that there is no hierarchy of states, i.e. all pairs are on par for such a

relation, and the relations are completely local [76]. Further note that because in trees

there might be superimposed finite traces in addition to infinite ones (see Section 2.6),

2A set is well-founded [2] with respect to some accessibility relation R if all its elements are reachable

by R.
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we have the condition o(s)↔ o(t). This condition imposes termination-sensitivity in

the definition. Finally, the definition of oscV is more general than osco
V , as it needs not

be on two copies of the same system; thus, it can be used for hyperproperty-preserving

refinement.

4.4.2 Defining lrfV-simulation

This relation is historically denoted lrfV (locally respects forwards). It means that

the state after performing a confidential event is related to the state before: the

intuitive idea is that removing a confidential event should not have any effect on the

low-observations, where the latter are typically formalized by oscV (conditions on)

relations. The original definition [55] is given as follows:

lrf o
V(T,R) =̂ ∀s,s′ ∈ S . ∀a ∈ Ac.

((reachable(SES,s)∧ s
a−→T s′)→ (s′,s) ∈ R).

We define an lrfV -simulation coinductively as follows:

a relation R ⊆ S×T such that for all s ∈ S, t ∈ T if (s, t) ∈ R, then

o(s)↔ o(t) ∧ ∀a ∈ Ac ∀sa ∈ S. (s
a−→ sa → (sa, t) ∈ R).

The predicate lrfV(S,T,R) holds iff R is an lrfV -simulation on systems S and T . Again

the rules of the relation are similar (modulo differences in the models), but we take

a coinductive interpretation and will show that it is meaningful for reasoning about

potentially infinite systems. As before, the predicate reachable is not needed for the

coinductive version.

4.4.3 Defining lrbV-simulation

This relation is historically denoted lrbV (locally respects backwards). It means that

at any state it is possible to perform any confidential event and the former state is

related to the resulting state: the idea is that adding a confidential event should not

have any effect on the low-observations, where the latter are typically formalized by

oscV (conditions on) relations.



COINDUCTIVE INTERPRETATION OF UNWINDING
RELATIONS 81

The original definition [55] is given as follows:

lrbo
V(T,R) =̂ ∀s ∈ S . ∀a ∈ Ac

(reachable(SES,s)→∃s′ ∈ S . (s
a−→T s′∧ (s,s′) ∈ R).

Next, define an lrbV -simulation coinductively as follows:

a relation R ⊆ S×T such that for all s ∈ S, t ∈ T if (s, t) ∈ R, then

o(s)↔ o(t) ∧ ∀a ∈ Ac ∀ta ∈ T. t
a−→ ta ∧ (s, ta) ∈ R.

The predicate lrbV(S,T,R) holds iff R is an lrbV -simulation on systems S and T . Again

the rules of the relation are similar except for the coinductive interpretation and the

predicate reachable is not needed for the coinductive version.

4.4.4 Defining lrbe
ρ
V-simulation

Intuitively, this relation is similar to lrbV , except that we are only interested in hiding

some subset of enabled (confidential) events (and not all confidential events). First,

we define our version (i.e. for our model of systems) of En
ρ
V (X ,s,a), specifying

whether event a is enabled in state s of system X with respect to a set of admissible

events given by function ρ (see Sections 2.5.1 and 4.3). This is essentially the

definition of Adm
ρ
V(T,β,e) from Sections 2.5.1, but lifted to partial automata/trees

(see Section 3.1).

En
ρ
V (X ,s,a) =̂ ∃β,γ ∈ A∗.[test∗β(X) ∧ Xβ = s ∧ γ≈ρ(V ) β ∧ test∗γ·a(X)].

The original definition [55] is given as follows:

lrbe
ρo
V (T,R) =̂ ∀s ∈ S . ∀a ∈ Ac.

(reachable(SES,s)∧En
ρ
V (T,s,a)→∃s′ ∈ S . (s

a−→T s′∧ (s,s′) ∈ R)).

Next, define an lrbe
ρ
V -simulation relation as follows:
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a relation R ⊆ S×T such that for all s ∈ S, t ∈ T if (s, t) ∈ R, then

o(s)↔ o(t)∧∀a ∈ Ac. (En
ρ
V (T, t,a)→ (∃ta ∈ T . t

a−→ ta ∧ (s, ta) ∈ R)).

The predicate lrbe
ρ
V(S,T,R) holds iff R is an lrbe

ρ
V -simulation on systems S and T .

The rules of the relation are similar except for the coinductive interpretation and the

predicate reachable is not needed for the coinductive version.

4.4.5 Coinductive Unwinding Relations as H ′-simulations

Next, we show that the coinductive unwinding relations defined so far are indeed H ′-
simulations. First, recall that incremental hyperproperties are coinductive predicates

on trees [63]. Formally, an H ′-simulation is an n-ary relation R such that R ⊆ ΨH ′(R).
An H ′-simulation corresponds to a monotone operator ΨH ′ whose greatest fixed point

is the coinductive predicate H ′. Hence showing the existence of such a relation is

sufficient to show that H ′ holds [63]. Because of the way the coinductive unwinding

relations presented above are defined, it is obvious that R ⊆ ΨH ′(R) holds and ΨH ′ is

monotone (the defined relation occurs only positively in the formula); informally, ΨH ′

is the “step” of the relation. Thus, the relations are indeed H ′-simulation relations.

4.5 Coinductive Unwinding Framework

We have taken a coinductive perspective on Mantel’s unwinding relations [55]. The

high-level goal is to properly incorporate the unwinding relations in our framework

in order to facilitate the verification of security-relevant hyperproperties. To show

that we have succeeded in this endeavor, we present three types of theorems, similar

to the ones initially introduced by Mantel in his framework: firstly, theorems

connecting unwinding conditions and BSPs, secondly, ones connecting BSPs and

holistic hyperproperties and finally, a version of Mantel’s unwinding theorems.

The fact that we can prove these theorems implies that our definitions of unwinding

relations, BSPs and holistic hyperproperties are reasonable and, more importantly, that

unwinding in our framework is suitable for the verification of a number of security-

relevant hyperproperties.
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4.5.1 Unwinding Conditions for BSPs Theorems

The following two lemmas prove the property that states related by an oscV -simulation

relation are Av-indistinguishable.

Lemma 4.5.1. Let T,S ⊆ Sys be arbitrary systems and R ⊆ T × S be a relation. If

oscV (T,S,R) holds then we have

∀α1 ∈ (A\Ac)
∗.(test∗α1

(T ) →

∃α2 ∈ (A\Ac)
∗. (test∗α2

(S)∧α1≈Av α2 ∧ (Tα1
,Sα2

) ∈ R)).

This is a helper lemma, used to prove the following Lemma 4.5.2.

Lemma 4.5.2. For all T,S ⊆ Sys if there exists R ⊆ T ×S s.t. oscV (T,S,R) holds, then

the following is valid:

∀α1 ∈ (A\Ac)
∞.(α1 ∈ T →

∃α2 ∈ (A\Ac)
∞.(α2 ∈ S∧α1≈Av α2)).

This lemma tells us that whenever oscV (T,S,R) holds, we have the following. For

every trace t1 in T , there must be a trace s2 in S such that t1 and s2 are indistinguishable

with respect to Av.

The next result gives logically sufficient conditions (conjunctions of unwinding

relations) for a number of BSPs. This is not surprising (Mantel presents a similar

result), but it is nevertheless important, as the underlying definitions have changed.

Theorem 4.5.3. Let T be an arbitrary system and R ⊆ T ×T be a relation on T . The

following implications are valid:

1. lrfV(T,T,R)∧oscV(T,T,R)→ BSDV(T)

2. lrfV(T,T,R)∧oscV(T,T,R)→ DV(T )

3. lrfV(T,T,R)∧oscV(T,T,R)→ RV(T )

4. lrbe
ρ
V(T,T,R)∧oscV(T,T,R)→ BSIA

ρ
V(T)

5. lrbV(T,T,R)∧oscV(T,T,R)→ BSIV(T).

The following theorem gives a conditional completeness result (when An = /0) for

some BSPs.
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Theorem 4.5.4. Consider a view (Av,An,Ac) s.t. An = /0 and some function ρ from

views to subsets of A (see Section 2.5.1). The following are valid:

1. BSDV (T ) implies there exists a relation R ⊆ T × T s.t. lrfV(T,T,R) and

oscV(T,T,R) hold.

2. BSIA
ρ
V (T ) implies there exists a relation R ⊆ T × T s.t. lrbe

ρ
V (T,T,R) and

oscV(T,T,R) hold.

4.5.2 Coinductive Version for BSPs to Holistic Hyperproper-
ties Theorems

This section presents interesting results about using BSPs to compose the known,

security-relevant hyperproperties introduced in Section 4.3.1. First, recall that HI =
(L,H \HI,HI). The instantiation of BSDV with view HI is given as follows:

BSDHI (T ) =̂ ∀α ∈ A∞ ∀β ∈ A∗ ∀c ∈ HI . [(β · c ·α ∈ T →

∃α′ ∈ A∞. (β ·α′ ∈ T ∧α′≈L∪HI α)].

The instantiation of BSIV with view HI is given as follows:

BSIHI (T ) =̂ ∀α ∈ A∞ ∀β ∈ A∗ ∀c ∈ HI . [(β ·α ∈ T →

∃α′ ∈ A∞. (β · c ·α′ ∈ T ∧α′≈L∪HI α)].

The following result establishes the connection between certain BSPs and GNI.

Theorem 4.5.5. For all T ⊆ Sys we have BSDHI (T )∧BSIHI (T ) iff GNI(T ).

This means that generalized noninterference GNI can be composed from the BSPs

BSD and BSI, both instantiated with view HI .

The next theorem establishes that the holistic hyperproperty NF is equivalent to the

BSP removal of events instantiated with view H .

Theorem 4.5.6. For all T ⊆ Sys we have RH (T ) iff NF(T ).

The following result is for the holistic hyperproperty GNF: GNF is equivalent to the

BSP removal of events, when instantiated with view HI .
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Theorem 4.5.7. For all T ⊆ Sys we have RHI (T ) iff GNF(T ).

The following lemma is crucial for proving Theorem 4.5.11.

Lemma 4.5.8. For all T ⊆ Sys, the following hold:

1. SDV (T )→ BSDV (T ) 2. SIA
ρ
V (T )→ BSIA

ρ
V (T )

3. BSDV (T )→ RV(T ) 4. BSIA
ρ
V (T )→ IA

ρ
V (T ).

The following two lemmas are important for proving a result (Theorem 4.5.11) about

PSP.

Lemma 4.5.9. For all T ∈ Sys, the following holds: PSP(T ) → (SDH (T ) ∧
SIA

ρA

H
(T )).

Lemma 4.5.10. For all T ∈ Sys, the following holds: (RH (T )∧ IA
ρA

H
(T ))→ PSP(T ).

Finally, we have proven the following main PSP Theorem 4.5.11.

Theorem 4.5.11. For all T ⊆ Sys we have BSDH (T )∧BSIA
ρA

H
(T ) iff PSP(T ).

Proof. By mutual implication.

(⇒) From the assumption and Lemma 4.5.8 (3 and 4) we get (BSDH (T ) ∧
BSIA

ρC

H
(T )) → (RH (T )∧ IA

ρA

H
(T )). Then from Lemma 4.5.10 we get PSP(T ), as

needed.

(⇐) From the assumption and Lemma 4.5.9 we get PSP(T )→ (SDH (T )∧SIA
ρA

H
(T )).

Then from Lemma 4.5.8 (1 and 2) we get BSDH (T )∧BSIA
ρC

H
(T ), as needed.

The theorem tells us that PSP(T ) is equivalent to BSDH (T )∧BSIA
ρA

H
(T ) for all T ⊆

Sys. This theorem is important, because it significantly simplifies the problem of

reasoning about PSP. We can instead reason about two BSPs, namely BSDH (T ) and

BSIA
ρA

H
(T ). The latter are connected to specific unwinding conditions, as discussed in

Section 4.5.1.

4.5.3 Coinductive Version of Mantel’s Unwinding Theorems

Finally, we present the coinductive unwinding theorems for a number of known

security-relevant hyperproperties. These unwinding theorems allow the specification

and verification of the high-level policy by reasoning about the local states of the

candidate system. Interestingly, there is a completeness result only for the definition

of PSP. This means that only PSP is equivalent to a conjunction of unwinding

relations; in the other cases, the proposed conjunctions of unwinding relations
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imply the high-level policy (but they are not equivalence relations). Not having an

equivalent incremental definition H ′ to a holistic hyperproperty H means that the non-

existence of an H ′-simulation does not imply that H does not hold for the system of

interest. Similar theorems have been shown before [55], but for different unwinding

relation, BSP and hyperproperty definitions and a different model (e.g. in the MAKS

framework [55]).

Noninference NF

We have proven an unwinding theorem for NF that gives logically sufficient conditions

for when the high-level policy NF holds for a system.

Theorem 4.5.12 (Unwinding of NF). If there exists a relation R ⊆ T ×T such that

lrfH (T,T,R)∧oscH (T,T,R), we have that NF(T ) holds.

Proof. Assume there exists a relation R ⊆ T × T such that lrfH (T,T,R) and

oscH (T,T,R). From the unwinding conditions for BSPs Theorem 4.5.3 (3), it follows

that RH (T ). Then RH (T ) implies NF(T ) by Theorem 4.5.6.

Generalized Noninference GNF

Further, we have proven an unwinding theorem for GNF, again giving logically

sufficient conditions for when the high-level policy GNF holds for a system.

Theorem 4.5.13 (Unwinding of GNF). If there exists a relation R ⊆ T ×T such that

lrfHI (T,T,R)∧oscHI (T,T,R), we have that GNF(T ) holds.

Proof. Assume there exists a relation R ⊆ T × T such that lrfHI (T,T,R) and

oscHI (T,T,R). From the unwinding conditions for BSPs Theorem 4.5.3 (3), it follows

that RHI (T ). Then RHI (T ) implies GNF(T ) by Theorem 4.5.7.

Perfect Security Property PSP

The Perfect Security Property is special, as there are equivalent to it necessary as well

as sufficient unwinding conditions. We have been able to show this in our framework

as well. First, recall that ρA(Av,An,Ac) = A.

Theorem 4.5.14 (Unwinding of PSP). If there exist relations R,Q ⊆ T ×T such that

lrfH (T,T,R)∧oscH (T,T,R), as well as lrbe
ρA

H
(T,T,Q)∧oscH (T,T,Q), we have that

PSP(T ) holds.
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Proof. Assume there exist relations R,Q ⊆ T × T such that lrfH (T,T,R) and

oscH (T,T,R), as well as lrbe
ρA

H
(T,T,Q) and oscH (T,T,Q) hold. By Theorem 4.5.3

(1 and 4), it follows that BSDH (T )∧BSIA
ρA

H
(T ). By Theorem 4.5.11 it follows that

PSP(T ) holds.

Theorem 4.5.15 (Completeness of Unwinding for PSP). If PSP(T ) holds then there

exist relations R,Q ⊆ T × T such that lrfH (T,T,R) ∧ oscH (T,T,R), as well as

lrbe
ρA

H
(T,T,Q)∧oscH (T,T,Q).

Proof. Assume that PSP(T ) holds. From Theorem 4.5.11 we get BSDH (T ) ∧
BSIA

ρA

H
(T ). From Theorem 4.5.4 it follows that there exist relations R,Q ⊆ T × T

s.t. lrfH (T,T,R), oscH (T,T,R), lrbe
ρA

H
(T,T,Q) and oscH (T,T,Q). Note that for H

we have An = /0.

Generalized Noninterference GNI

We have also been able to prove an unwinding theorem for GNI, giving logically

sufficient conditions for when the high-level policy GNI holds for a system. Un-

fortunately, such conditions are sufficient but not necessary, which can be shown by

counterexamples.

Theorem 4.5.16 (Unwinding of GNI). If there exist relations R,Q ⊆ T × T s.t.

lrfHI (T,T,R)∧ oscHI (T,T,R), as well as lrbHI (T,T,Q)∧ oscHI (T,T,Q), we have

that GNI(T ) holds.

Proof. Assume there exist relations R,Q⊆ T ×T such that lrfHI (T,T,R), oscHI (T,T,R),
also lrbHI (T,T,Q) and oscHI (T,T,Q). By Theorem 4.5.3 (1 and 5) it follows that

BSDH I (T ) and BSIH I (T ). Then Theorem 4.5.5 gives us GNI(T ).

The meaning of Theorem 4.5.16 in the context of the presented framework is

illustrated in Figure 4.1. The different planes show respectively unwinding relations,

BSPs and security-relevant hyperproperties. The arrows capture implications vs.

equivalence statements, but these are also interacting with hidden conjunctions. For

instance, there is a hidden conjunction present in Figure 4.1: BSIHI (T )∧BSDHI (T )
is equivalent to GNI(T ). Similarly, there is a hidden implication in the figure:

lrfHI (T,T,R)∧oscHI (T,T,R) implies BSDHI (T ).
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Security-relevant policies

Unwinding relations

Basic Security Predicates

BSIHI(T ) BSDHI(T )

GNI (T )

lrbHI(T ,T ,Q) oscHI(T ,T ,Q) lrfHI(T ,T ,R) oscHI(T ,T ,R)

Figure 4.1: Meaning of Theorem 4.5.16

4.6 Coinductive Unwinding Theorems in Practice

This section demonstrates the potential use of the coinductive unwinding framework

and particularly the unwinding theorems for the verification of concrete systems w.r.t.

different policies. Before exploring these, recall the significance of H ′-simulations for

verification (see Chapter 3 and our recent paper [63]). In order to demonstrate that two

systems T and S are H ′-similar, it suffices to find an H ′-simulation relation containing

the pair (T,S). In order to show that H(T ) holds for some system T one needs to find

an H ′-simulation on T (see Section 3.4 for details).

Define the following sets: L = {l1, l2}, H = {h1,h2}, HI = {hi1,hi2}, HO =
{ho1,ho2}. Recall that HI = (L,H \HI,HI) whereas H = (L, /0,H). Now we are

ready to explore the use of the theory for the verification of sample systems with

respect to security-relevant hyperproperties.

4.6.1 Noninference NF

Consider the security-relevant hyperproperty noninference NF from Section 4.3.1 and

system S = {(l2h1l1l2 | l2l1l2)
ω} with respect to view H . It turns out that there exists

relation R given as

R = {(S,S),(Sl2h1
,Sl2),(Sl2h1l1 ,Sl2l1),(Sl2l1 ,Sl2l1),(Sl2 ,Sl2)}
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and illustrated in Figure 4.2, such that oscH (R), lrf H (R) and (S,S) ∈ R. The reader

is invited to check that this is indeed the case. Hence, by Theorem 4.5.12 we have

that system S is secure with respect to policy NF. Note that to make the figures more

readable we use the following convention: whenever a pair of states in R resulted from

an oscH step, the states are connected with a dashed line. Alternatively, if the pair

resulted from an lrf H step, the states are connected with a solid line. Initial states are

connected with a dotted line. This convention about relations is respected throughout

this section.

S

SS

S

S

l2

h1

l1

l2

l1 l2

l2

h1

l1

l2

l1 l2

Figure 4.2: Illustration of an NF-simulation

Note that the definition of NF is very similar to the definition of NI from Section 2.4.

However, our definition of NF includes the fairness constraint in itself, namely in

the definition of evL, whereas the formalization of NI (as a part of class SHH) in

Section 3.3.2 relied on the extra condition of systems to be in L�♦ (eventually

a low event occurs in each trace and that happens infinitely often). It is also

noteworthy that we had an equivalence of the incremental and holistic hyperproperty

(i.e. SHH(T ) iff SIH2(T,T )). The reason is that the view we considered did not have

neutral events, i.e. An = /0. Such a result (about completeness of the unwinding of

NF when An = /0) is also presented by Mantel [55] and can be easily adapted to our

definition of NF.

4.6.2 Generalized Noninference GNF

The next security-relevant hyperproperty we consider is generalized noninference

GNF from Section 4.3.1. The only difference between GNF and NF is the use of view

HI instead of view H . Recall that HI = (L,H \HI,HI) whereas H = (L, /0,H). Now

consider system S = {(l1l2ho1ho2l2 | l1l2ho1hi1ho2l2)
ω}. The relation R, as illustrated
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in Figure 4.3, is given as follows

R = {(S,S),(Sl1 ,Sl1),(Sl1l2 ,Sl1l2),(Sl1l2ho1
,Sl1l2ho1

),(Sl1l2ho1ho2
,Sl1l2ho1

),

(Sl1l2ho1ho2
,Sl1l2ho1ho2

),(Sl1l2ho1hi1 ,Sl1l2ho1
),(Sl1l2ho1hi1ho2

,Sl1l2ho1ho2
)}.

R satisfies the conjunction lrf HI (R)∧oscHI (R). Again, the reader is invited to check

that this is indeed the case. Hence by Theorem 4.5.13 system S is secure with respect

to GNF.

S

SS

S

SS

l1 l2 ho1

ho2

l2

hi1 ho2 l2

l1 l2 ho1

ho2

l2

hi1 ho2 l2

Figure 4.3: Illustration of a GNF-simulation

4.6.3 Perfect Security Property PSP

The next security-relevant hyperproperty we consider is the Perfect Security Property

PSP from Section 4.3.1. Consider system S = {(l2l1l2 | l2h1h2l1l2 | l2h1l1l2)
ω}. The

relation R is given as follows:

R = {(S,S),(Sl2 ,Sl2),(Sl2l1 ,Sl2l1),(Sl2h1
,Sl2),

(Sl2h1h2
,Sl2),(Sl2h1h2l1 ,Sl2l1),(Sl2h1l1 ,Sl2l1)}.

R satisfies the conjunction oscH (S,S,R)∧ lrf H (S,S,R). The relation can be seen in

Figure 4.4.

The relation Q is given as follows:

Q = {(S,S),(Sl2 ,Sl2),(Sl2l1 ,Sl2l1),(Sl2 ,Sl2h1
),

(Sl2 ,Sl2h1h2
),(Sl2l1 ,Sl2h1h2l1),(Sl2l1 ,Sl2h1l1)}.
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S

S

S

S

S

S

S

S

l2 h1

h2 l1 l2

l1

l2

l1

l2

l2 h1

h2 l1 l2

l1

l2

l1

l2

Figure 4.4: Illustration of a relation R such that oscH (S,S,R) and lrf H (S,S,R)

Relation Q, as depicted in Figure 4.5, satisfies the conjunction oscH (S,S,Q) ∧
lrbe

ρA

H
(S,S,Q). Note that the part of Q resulting from oscH is dashed and the part

from lrbe
ρA

H
is solid. The existence of R and Q, together with Theorem 4.5.14 imply

that system S is secure with respect to PSP.

S

S

S

S

S

S

S

S

l2 h1

h2 l1 l2

l1

l2

l1

l2

l2 h1

h2 l1 l2

l1

l2

l1

l2

Figure 4.5: Illustration of a relation Q s.t. oscH (S,S,Q) and lrbeH (S,S,Q)
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4.6.4 Generalized Noninterference GNI

By Theorems 4.5.16 and 4.5.13, we have that GNI is stronger that GNF. That is, in

order for GNI to hold for some S it has to be that GNF holds and there must also exist

some Q s.t. lrbHI (S,S,Q) and oscHI (S,S,Q). That means that in order to check GNI,

one has to first check GNF as in Section 4.6.2 and then in a similar way try to check

the existence of a relation Q with lrbHI (S,S,Q) and oscHI (S,S,Q) satisfied. This

demonstrates that the framework is still modular.

4.7 Discussion and Related Work

We have presented a new mathematical development enabling the application of

unwinding relations to the verification of security-relevant hyperproperties. We

have also demonstrated the potential of a modular framework for coinductive

reasoning about hyperproperties. This is achieved by combining the framework

from Chapter 3 with a coinductive reinterpretation of a class of possibilistic security-

relevant hyperproperties, Mantel’s BSPs and unwinding relations. It should be

reiterated that our proposed coinductive variants of the BSPs are not equivalent to

Mantel’s on finite systems, nevertheless their conjunctions still imply the desired high-

level hyperproperties.

The coinductive reinterpretation of Mantel’s unwinding relations are instances of our

H ′-simulations (see Chapter 3). More precisely, an H ′-simulation is a (conjunction

of) unwinding relation(s). This realizes a connection between unwinding relations

and our incremental hyperproperties: incremental security hyperproperties can be

seen as conjunctions of coinductively-defined unwinding relations, or alternatively as

(conjunctions of) H ′-simulations, implying the respective high level policies. This

is obvious if we consider some of the incrementalizable classes from Chapter 3,

particularly SHH and OHH. Their equivalent simulation relations can be seen as a

conjunction of unwinding relations.

We have demonstrated that the class of incremental hyperproperties is substantial.

Moreover, we can reuse the techniques introduced in Chapter 3 (via H ′-simulations)

and further developed in Chapters 5 and 6 for verification of security-relevant hyper-

properties from the class of possibilistic information flow policies [55] (instances of

liveness hyperproperties). As a result, our verification method is the first one that

works on a class of liveness hyperproperties. Finding the precise class for which the

methodology works is an interesting direction for future work.

To the best of our knowledge, the only related paper that explores nonterminating

behaviors and identifies the need for a coinductive interpretation of noninterference

for potentially nonterminating systems is by Bohannon et. al [11]. They introduce
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the notion of reactive noninterference and explore variants suitable for reactive

systems. The main similarity with our work is that they use coinductive and

inductive/coinductive definitions in order to define relations on finite and infinite

streams. They convert their high-level, holistic definition into a relation (called ID-

bisimulation) on program states; they show that their ID-bisimulation implies the high-

level, holistic policy. Their ID-bisimulation is an incremental hyperproperty.

It should be noted that many of the theorems presented in this chapter are not

constructive: they do not give an algorithm for finding unwinding relations/H ′-
simulations. Nevertheless, as we argued in Chapter 3, there are model checking

techniques giving a practical means to compute or approximate the greatest fixed

point of a monotone operator. Such model checking techniques will be explored in

Chapters 5 and 6.

4.8 Summary

We have proposed a framework suitable for coinductive reasoning about holis-

tic hyperproperties in general and illustrated its usefulness by exploring a new

coinductive reinterpretation of known noninterference policies as hyperproperties.

The framework is modular, as it permits the expression of a number of security-

relevant hyperproperties as conjunctions of variants of Mantel’s BSPs. We have

demonstrated the usefulness of coinductive unwinding relations for reasoning about

hyperproperties. In particular, we have presented unwinding theorems for generalized

noninterference [58], noninference [86], generalized noninference [86] and the

perfect security property [86]. Moreover, we have proven results connecting

unwinding relations and BSPs, relating different BSPs and relating BSPs and holistic

hyperproperties.

To the best of our knowledge, the results are novel in several ways. First they

further extend our recently proposed framework for reasoning about hyperproperties

(presented in Chapter 3) and establish a connection with the most relevant (in our

opinion) work on verification via unwinding [52]. They also identify and illustrate the

potential of unwinding relations (which turn out to be instances of our H ′-simulations)

for generic verification of hyperproperties. In particular, H ′-simulations can be used to

verify a class of liveness hyperproperties (so far, there was a verification methodology

for k-safety hyperproperties only [18, 19]). Further, the results show that coinductively

defined hyperproperties are important not only from a theoretical standpoint, but also

in practice, due to the abundance of reactive systems. Finally, the results shed light on

the significance of incremental hyperproperties.

In the next chapter, we present a verification methodology for incremental hyperprop-

erties via games.





Chapter 5

Incremental Hyperproperties
as Games

In this chapter we zoom in on the problem of incremental hyperproperty verification.

The main contribution is a game semantics for incremental hyperproperties. We

demonstrate that interpreting incremental hyperproperties as games is important not

only theoretically, but also in practice: it can be used as a basis for model checking

incremental hyperproperties.

In Chapter 3 we defined an incremental hyperproperty H ′ to be the greatest fixed

point of a monotone function over k-tuples of systems. The respective notion of

an H ′-simulation relation is convenient for verification: showing the existence of

such a relation is sufficient to show that H ′ holds. Furthermore, searching for an

H ′-simulation can be done using the notion of fixed point approximants [82]. In

practice, however, calculating fixed points is tedious and error prone, especially

when alternation of fixed point operators is present [82]. To deal with this problem

we propose to interpret incremental hyperproperties as games. This enables the

conversion of the search for an H ′-simulation into the search for a history-free,

winning strategy in the respective incremental hyperproperty game. That search can

be performed using game-based model checking techniques.

5.1 Synopsis

We start by revisiting incremental hyperproperty logic IL from Chapter 3 and demon-

strate that the logic is not expressive enough for certain incremental hyperproperties.

95
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We next introduce H ′-simulation games, which can be seen as a generalization

of Stirling’s equivalence games [82]. H ′-simulation games result directly from

definitions of H ′-simulations. The approach offers a very intuitive way of thinking

about incremental hyperproperties and coinductive predicates in general. It is also a

good demonstration of both the type of results we would like to have for incremental

hyperproperty games and some of the respective shortcomings (e.g. the lack of

generality).

Further, we show that Andersen’s polyadic modal mu-calculus Lk
µ [8], presented in

Section 2.9, is a suitable logic for expressing all known incremental hyperproperties

and H ′-simulation relations. The main contribution of this chapter is then presented: a

novel characterization of the satisfaction relation between a system and an incremental

hyperproperty given in Lk
µ , in terms of playing a game. To be as general as possible,

we present incremental hyperproperty checking games for the full Lk
µ . This is useful,

as some incremental hyperproperties happen to fall outside of our initially proposed

LFP fragment IL , but are expressible in Lk
µ . Instances of such relations include some

of our coinductive unwinding relations from Chapter 4.

It turns out that a fragment of Lk
µ suffices for expressing the known notions of

incremental hyperproperties, including the instances from Chapter 4, as well as the

relevant fairness constraints. The new logic is called ILk
µ and allows (a restricted

variant of) coinductive/inductive definitions or in other words both greatest and least

fixed points in the logic. As the proposed logic is expressive enough to capture the

known H ′-simulations including our coinductive unwinding relations and thus the

coinductive reinterpretation of Mantel’s framework, we argue that it captures a large

class of interesting security policies. The chapter is based on extended versions of

recent papers of ours [65, 64]. The relevant proofs can be found in Appendix C.

5.2 Revisiting Incremental Hyperproperty Logic

In Chapter 3 we presented the logical language IL and used it to formalize incremental

hyperproperties. Unfortunately, it was later realized that IL is not expressive enough

to capture all incremental hyperproperties of interest. For instance, some of the H ′-
simulations presented in Chapter 4 are not expressible in IL . The relations in question

require not only least and greatest fixed point operators, but also alternation of the

fixed points. To illustrate the problem we will present one such example based on

definitions from Chapter 4.

Recall that the extension of predicate test to the obvious inductive definition test∗ :

Sys → (A∗ → 2) on words is given as follows. For a ∈ A, w ∈ A∗ and ε the empty

trace, test∗ is defined as:
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o(X)

test∗ε(X)

testa(X) test∗w(Xa)

test∗a·w(X)

For tree T and word w, the predicate test∗w(T ) is true whenever the finite sequence w

can be performed, starting at the root of the tree T .

We also recall the inductively defined relation w Z a ·w′ — for Z ⊆ A, w Z-reveals a

with tail w′, is defined as:

ε Z ε

a ∈ Z

a ·w Z a ·w
b ∈ A\Z w Z a ·w′

b ·w Z a ·w′

Finally, recall the definition of weak bisimulation ≈Z : A∞ ×A∞ → 2 (parameterized

by set Z):

coind
ε≈Z ε

w Z a ·w′ u Z a ·u′ w′≈Z u′
coind

w≈Z u

We are now ready to present the promised incremental hyperproperty that is not

expressible in IL . This is a variant (identical to our original definition, but using

test and test∗) of the coinductively defined oscV -similarity — the union of all oscV -

simulations (see Chapter 4 for a definition of oscV -simulation):

oscV(X ,Y ) =̂ gfpR(X ,Y ) . (o(X)↔ o(Y )
∧

∀a ∈ A\Ac. (testa(X)→

∃σ ∈ (A\Ac)
∗.(test∗σ(Y )∧a≈Av σ∧R(Xa,Yσ)))).

The definition cannot be expressed in IL . Intuitively, the reason is the alternation

of the greatest and least fixed point operators, which arise, for instance, in the

definition of ≈Av , but also from the interaction of test∗ with the outermost gfp operator.

Unfortunately, such alternation is not available in IL .

In order to preempt the problem of discovering definitions that require further

extension to some more expressive LFP fragment, we choose to work with a relatively

large but still tractable fragment of LFP: the polyadic modal mu-calculus Lk
µ [8]. Most

importantly though, Lk
µ is able to express all incremental hyperproperties we have

considered.

Here is a short outline of the rest of this chapter. First, we motivate the work by

presenting a direct approach to converting H ′-simulations into games. Second, we

propose our incremental hyperproperty checking games for the full polyadic modal

mu-calculus Lk
µ . Finally, we motivate and present the logic ILk

µ .
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5.3 From H ′-simulations to H ′-simulation Games

In Chapter 3 we identified several (classes of) incremental hyperproperties and their

respective simulation relations. One way to represent an H ′-simulation relation is

in terms of playing a game. The prototypical example of such a game is Stirling’s

equivalence game [82] — an interactive game played by two players, namely R

(refuter) and V (verifier). The arena of the game is a pair of systems; the rules require

that for every turn, first R chooses one system and performs an action a ∈ A, then V

has to respond with the same action a in the other system. A player wins when the

other one cannot move. Additionally, V wins all infinite plays.

Definition 5.3.1. A game is determined if there is a winning strategy for one of the

players from each position.

Stirling shows that equivalence games are determined and that two processes are

bisimilar iff they are game equivalent [82], i.e. iff V has a history-free winning strategy

for the respective equivalence game. The H ′-simulation games we introduce here are

different, though, as they are far more general and need not correspond to equivalence

relations. Furthermore, H ′-simulation games generalize equivalence games.

Definition 5.3.2. An H ′-simulation game, denoted GH′(X1, . . . ,Xk), is an interactive

game played by players R and V , making choices in turns what the next transition is.

The arena is given by a k-tuple of trees T 1, . . . , T k. A play of an H ′-simulation game

is a finite or infinite sequence of k-tuples of trees

(T 1
0 , . . . ,T

k
0 ), . . . ,(T

1
i , . . . ,T

k
i ), . . . .

In an H ′-simulation game player R tries to show that a certain coinductive predicate

H′(T1, . . . ,Tk), given in IL and corresponding to the game played GH′(T 1, . . . ,T k), is

false. V tries to show that H′(T1, . . . ,Tk) holds. The rules of the game depend on the

concrete definition of H ′-simulation. They can be roughly seen as coming from the

model checking games for first-order logic [33]. The rules are not formalized here, as

IL is not the right logic for incremental hyperproperties, as argued in Section 5.2.

Nevertheless, the potential approach is outlined to give some intuition about the

connection between H ′-simulations and games.

Definition 5.3.3. Any position (T 1
i , . . . ,T

k
j ) where R can perform an action and V

cannot respond to the R-move, but is required to do so by the rules of the game, is

called an R-win.

We have chosen to model the fact that player V is not always forced to make a move, by

introducing the notion of null move: a null move does not change the current position

in a game, however it changes whose turn it is.
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Initially, all trees have an R-token or a V -token placed on their roots. The refuter makes

the first move(s) and the verifier responds with a transition(s), obeying the rules of the

game. A play goes on until one of the players wins. A play is won by R if it reaches an

R-win position. Any other play is won by V , i.e. the verifier wins all infinite plays and

any finite play that reaches a position (T 1
i , . . . ,T

k
j ) in which the refuter cannot move.

We continue by recalling some definitions from Section 2.10. A strategy is a family of

rules prescribing how the players move. A history-free strategy is a strategy that does

not depend on what happened previously in the play. A player P uses a strategy if all

her moves conform to the rules of the strategy. A winning strategy for player P is a

strategy that guarantees that player P wins all plays using the strategy.

Next, we present a sample H ′-simulation game and its related results.

Example 5.3.4. We first recall some definitions and notation from Section 3.3.2. Let

p : A → 2 be an arbitrary predicate. We can convert any predicate p : A → 2 to a

propositional constant as follows: for a trace t we say that t |= p iff p(t(0)) holds. Let

P�♦ = {t ∈ Aω | t |= �♦p} be the set of infinite traces satisfying the temporal logic

formula �♦p, based on the temporal logic modalities eventually (♦) and always (�).

The hyperproperty class SIH2 from Section 3.3.2, which is only defined for systems in

P�♦, can be given as follows:

SIH2 =̂ gfp I(X ,Y ).

(∀a ∈ A ∀ Xa ⊆ Sys. X
a−→ Xa ∧ p(a)→∃Yb ⊆ Sys. Y

f (a)−−→ Yb ∧ I(Xa,Yb)

∧∀a ∈ A ∀ Xa ⊆ Sys. ¬p(a)→ I(Xa,Y )).

where p is a predicate on A and f is an endofunction on A (i.e. f : A → A).
Instantiating H ′ with SIH2, we first get the notion of a SIH2-simulation relation
and then its corresponding SIH2-simulation game GSIH2(X ,Y ). Recall that a SIH2-
simulation on systems S,T is a relation Q ⊆ S×T , s.t. for all s ∈ S, t ∈ T we have the
following: if (s, t) ∈ Q then

∀a ∈ A ∀sa ∈ Sys . s
a−→ sa ∧ p(a)→ (∃b ∈ A ∃tb ∈ Sys . t

b−→ tb ∧b = f (a)∧ (sa, tb) ∈ Q

∧∀a ∈ A ∀sa ∈ Sys . s
a−→ sa ∧¬p(a)→ (sa, t) ∈ Q).

Recall also that two systems S and T are SIH2-similar iff there exists a SIH-simulation

relation Q on the state spaces of S and T , such that (s0, t0) ∈ Q, where s0 and t0 are

the respective start states.

Rules of the SIH2-simulation game GSIH2(X ,Y ).
The rules of GSIH2(X ,Y ) are based on the definition of SIH2-simulation (or alterna-

tively on the definition of SIH2). At position (T 1
i ,T

2
j ), player R makes a move by
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choosing some a ∈ A such that testa(T
1

i ). Then player V has to respond with move

f (a), but only if p(a) holds. Otherwise, V responds with a null move and R has her

turn again. The verifier always knows the move of the refuter. Any position (T 1
i ,T

2
j )

where R can perform an action a ∈ A such that p(a) holds and V cannot respond to

the R-move is an R-win. A play goes on until one of the players wins. Any play that

is not won by R is won by V , i.e. the verifier wins all infinite plays and any finite play

that reaches a position (T 1
i ,T

2
j ), from which the refuter cannot move.

A substantial difference between H ′-simulation games and Stirling’s equivalence

games [82] is that in the former each player has their own token and uses it to traverse

their own tree individually; in equivalence games, however, both players share the

tokens and at each round R may choose in which tree (i.e. with which token) to make

the next move, whereas V has to respond in the other tree(s). This is a consequence

of the fact that only equivalence relations are considered. Another difference is that in

H ′-simulation games it is possible that R goes arbitrarily ahead of V , because player

V may make a null move. This results in potential fairness problems, which will be

dealt with in the next section.

Proposition 5.3.5. For any SIH2-simulation game GSIH2(S,T ), where S,T ⊆ P�♦,

either player R or player V has a history-free winning strategy.

This proposition says two things:

1. Any SIH2-simulation game GSIH2(S,T ) is determined.

2. It is sufficient to consider history-free strategies, which considerably simplifies

the problem of searching for a strategy.

Of course we have to prove that SIH2-simulation games indeed capture what we hope,

namely the meaning of the coinductive predicate SIH2(S,T ). The following theorem

guarantees this.

Theorem 5.3.6 (Correctness of SIH2-simulation games). The coinductive predicate

SIH2(S,T ), where S,T ⊆ P�♦, holds iff V has a history-free winning strategy for

GSIH2(S,T ).

This theorem gives a game theoretic characterization of when a coinductive predicate

from the class SIH2 holds. Next, we further explore the repercussions of Theo-

rem 5.3.6. Recall the holistic hyperproperty class SHH, which gives rise to SIH2.

SHH was defined as follows:

SHH(X) =̂ ∀x ∈ X ∃y ∈ X . ps(y)∧ x∼p y,
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where ∼p : Aω ×Aω → 2 and ps : Aω → 2 are as defined in Section 3.3.2.

In Chapter 3, we showed that for all T ⊆ P�♦, we have that SHH(T ) iff SIH2(T,T ).
As a consequence of this and Theorem 5.3.6, we have the following result:

Corollary 5.3.7. A system T ⊆ P�♦ satisfies a holistic hyperproperty from class SHH,

i.e. SHH(T ), iff V has a history-free winning strategy for GSIH2(T,T ).

Example 5.3.8. To further illustrate the usefulness of Theorem 5.3.6, consider the

definition of an NI′-simulation relation from Chapter 3. An NI′-simulation on systems

S,T is a relation Q ⊆ S×T , s.t. for all s ∈ S, t ∈ T we have the following: if (s, t) ∈ Q

then

∀a ∈ A ∀sa ∈ Sys . s
a−→ sa ∧¬high(a)→∃ta ∈ Sys . t

a−→ ta ∧Q(sa, ta)

∧∀a ∈ A ∀sa ∈ Sys . s
a−→ sa ∧high(a)→ Q(sa, t),

where low and high are predicates on A s.t. low = ¬high. Note that NI′ is in the

syntactic class SIH2.

Rules of the NI′-simulation game GNI′(X ,Y ).
The NI′-simulation game GNI′(X ,Y ) is an instantiation of GSIH2(X ,Y ) with function f

being identity on A and p being low. At any position (T 1
i ,T

2
j ), player R choses some

move a ∈ A such that T 1
i

a−→ T 1
i+1. Then player V has to respond with move a, but only

if low(a) holds. Otherwise V responds with a null move and R has her turn again.

Any position (T 1
i ,T

2
j ) where R can perform an action a such that low(a) holds and V

cannot respond is an R-win. As usual, a play goes on until one of the players wins.

Any play that does not lead to an R-win is won by V , including all infinite plays.

Next, we illustrate the game on a concrete system. Let A = {a,b,c,d} be the alphabet

and define predicates high and low on elements of A as follows: high(a), high(b),
low(c), low(d). Consider the infinite tree T in Figure 5.1, containing (acbd)ω, (cda)ω

and all streams resulting from some interleaving of acbd and cda. Formally, the traces

of the tree T can be given as (acbd | cda)ω. Alternatively, the tree can be given as the

coinductive interpretation of the following grammar:

T = acbdT | cdaT.

One possible play of GNI′(T,T ), displayed in Figure 5.2, is given as follows:

(T,T ),(Ta,T ),(Tac,Tc),(Tacb,Tc),(T,Tcd),(Ta,Tcd).

Note that the last position (Ta,Tcd) is an R-win, because R can move c which cannot

be matched by V . Another possible play is:

(T,T ),(Tc,Tc),(Tcd ,Tcd),(T,Tcd).
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T

TT
a

d

c
b

a

d

c d

Figure 5.1: Tree T

The last position is also an R-win, because R can move c but this cannot be matched

by V . These are the only possible nontrivial1 plays. The reader is invited to check that

verifier does not have a winning strategy for GNI′(T,T ); the reasons behind such an

argument have been presented above. Hence, we can conclude that ¬NI′(T,T ) holds.

By Corollary 5.3.7 and because NI is in class SHH, we also have that ¬NI(T ).

T

T

T

T

T

T

a

d

c
b

a

d

a
c

b
d

a

c d

c d

Figure 5.2: A play of the NI′-simulation game on two copies of T .

The approach outlined here is very intuitive and might form the underpinning of

efficient algorithms (as is the case for bisimulation [81]). However, we consider it

insufficient, because every instance of an H ′-simulation requires the construction of

a specific game and hence one would need to prove the correctness of the respective

game for each case, in a result similar to Theorem 5.3.6. As there are many different

security-relevant incremental hyperproperties (and corresponding H ′-simulations),

this is not optimal.

Moreover, we need a more expressive logic than IL . As we argued in Section 5.2 and

demonstrated in Chapter 4, in practice we want to reason about H ′-simulations that

also have alternation between the least and greatest fixed point operators. Constructing

such games and reasoning about them is not as intuitive and straightforward as in the

case for purely coinductive predicates (such as SIH2 and NI′ from Example 5.3.8).

Finally, the encoding of fairness also requires a least fixed point operator and

1Trivial plays are modifications of the presented ones, for which R immediately wins, e.g. when V

moves a c at position (T,Tcd).
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alternation. For instance, the fairness constraint for SIH2 was encoded into condition

P�♦, which needs to be checked separately. We would like to use a logic that is

expressive enough to include similar constraints in the incremental hyperproperty

definition itself, and at the same time be tractable enough so that we can perform

model checking. Such logics are presented in Sections 2.9 and 5.6. Obviously, the

existence of tool support would be a significant asset. This is further explored in

Chapter 6.

Nevertheless, H ′-simulation games can be considered important in their own right in

the same way that equivalence games are considered important. H ′-simulation games

also give a very intuitive account of the satisfaction relation between a system and

an incremental hyperproperty, facilitating reasoning about the latter. Moreover, H ′-
simulation games have given us an intuition of what results would be nice to have,

namely a generic incremental hyperproperty checking game (IHP checking game),

such that the incremental hyperproperty H ′ would hold iff V has a winning strategy

for the respective IHP checking game. Finding such games and a logic that is tractable

and expressive enough for IHPs is the main motivation and accomplishment of this

chapter.

5.4 Incremental Hyperproperty Checking Games

Andersen’s polyadic modal mu-calculus Lk
µ [8] was presented in Section 2.9. In

this section, we propose a game theoretic characterization of when an incremental

hyperproperty expressed in Lk
µ holds for a particular k-tuple of trees T , relative to

some second-order valuation V. As in Section 5.3, the games presented here will be

played by two players: refuter (R) and verifier (V ). Player R attempts to disprove that

a particular k-tuple of trees T satisfies an incremental hyperproperty H ′ expressed in

Lk
µ , whereas player V attempts to prove that H ′ holds for T . The idea is similar to

the property-checking games for the modal mu-calculus [82]: we present a game for

hyperproperty checking, such that a system satisfies a hyperproperty whenever player

V has a winning strategy for the respective game.

We start by giving some necessary definitions. Let σ = {µ,ν}.

Definition 5.4.1. Let Φ be a normal formula (see Definition 2.9.2) expressing an

incremental hyperproperty. A play of the incremental hyperproperty checking game

HGV((T
1, . . . ,T k),Φ) is a finite or infinite sequence of pairs of k-tuples of trees and

Lk
µ formulae:

((T 1
0 , . . . ,T

m
0 , . . . ,T k

0 ),Φ0), . . . ,((T
1

i , . . . ,T
m
j , . . . ,T k

l ),Φn), . . . .
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Note that each formula Φi is a subformula of Φ0 and each tree T
j

i is a subtree of T
j

0 .

Also note that T 1
0 , . . . ,T

m
0 , . . . ,T k

0 are not necessarily the same tree. The next move(s)

in a play from any position ((T 1
i , . . . ,T

m
j , . . . ,T k

l ),Φn), as well as who makes them,

depends on the main connective in Φn. The possible moves are given in Figure 5.3.

• If Φn = Ψ1 ∧Ψ2, then R choses one of the conjuncts Ψi (i ∈ {1,2}), the k-tuple

of trees (T 0
i , . . . ,T

m
j , . . . ,T k

l ) remains unchanged and formula Φn+1 = Ψi.

• If Φn = Ψ1 ∨Ψ2, then V choses one of the disjuncts Ψi (i ∈ {1,2}), the k-tuple

of trees (T 0
i , . . . ,T

m
j , . . . ,T k

l ) remains unchanged and formula Φn+1 = Ψi.

• If Φn = [a]mΨ, then R has to move along the transition T m
j

a−→ T m
j+1, the k-tuple of

trees (T 0
i , . . . ,T

m
j , . . . ,T k

l ) becomes (T 0
i , . . . ,T

m
j+1, . . . ,T

k
l ) and formula Φn+1 =

Ψ.

• If Φn = 〈a〉mΨ, then V has to move along the transition T m
j

a−→ T m
j+1, the k-

tuple of trees (T 0
i , . . . ,T

m
j , . . . ,T k

l ) becomes (T 0
i , . . . ,T

m
j+1, . . . ,T

k
l ) and formula

Φn+1 = Ψ.

• If Φn = σZ.Ψ, then formula Φn+1 becomes Z and the k-tuple of trees

(T 0
i , . . . ,T

m
j , . . . ,T k

l ) remains unchanged.

• If Φn = Z and the subformula of Φ0 identified by Z is σZ.Ψ, then formula

Φn+1 = Ψ and the k-tuple of trees (T 0
i , . . . ,T

m
j , . . . ,T k

l ) remains unchanged.

Figure 5.3: Rules specifying the next possible move(s) from some position

((T 1
i , . . . ,T

m
j , . . . ,T k

l ),Φn)

Unlike in the case with H ′-simulation games, players are not strictly required to take

turns. Player R has her turn when the next main connective is ∧ or [a]. Dually,

player V has her turn when the connective is ∨ or 〈a〉. When the position is

((T 1
i , . . . ,T

m
j , . . . ,T k

l ),σZ.Ψ), the next two positions are known: the following one is

((T 1
i , . . . ,T

m
j , . . . ,T k

l ),Z) and the one after is ((T 1
i , . . . ,T

m
j , . . . ,T k

l ),Ψ). Neither player

is responsible for the former two moves.

5.4.1 Winning Conditions for Players V and R

We next present the winning conditions for both players in Figure 5.4.

First of all, consider finite length plays. Player R wins if a false configuration is

reached: the evaluated formula Φn is ff , or position ((T 1
i , . . . ,T

m
j+1, . . . ,T

k
l ),Z) is

reached where Z is free in Φ0 and (T 1
i , . . . ,T

m
j+1, . . . ,T

k
l ) 6∈ V(Z), or V is supposed
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Winning conditions for player R:

1. The play so far is ((T 1
0 , . . . ,T

m
0 , . . . ,T k

0 ),Φ0) . . .((T
1

i , . . . ,T
m
j , . . . ,T k

l ),Φn) and

• Φn = ff or

• Φn = Z and Z is free in Φ0 and (T 1
i , . . . ,T

m
j , . . . ,T k

l ) 6∈ V(Z) or

• Φn = 〈a〉mΨ for some a ∈ A, m ∈ {1, . . . ,k} but T m
j 6 a−→.

2. The play ((T 1
0 , . . . ,T

m
0 , . . . ,T k

0 ),Φ0) . . .((T
1

i , . . . ,T
m
j , . . . ,T k

l ),Φn) . . . has infinite

length. There is a unique variable X , occurring infinitely often and subsuming

(see Definition 2.9.4) all other variables occurring infinitely often, and this

variable identifies a least fixed point formula (i.e. µX .Ψ).

Winning conditions for player V :

1. The play so far is ((T 1
0 , . . . ,T

m
0 , . . . ,T k

0 ),Φ0) . . .((T
1

i , . . . ,T
m
j , . . . ,T k

l ),Φn) and

• Φn = tt or

• Φn = Z and Z is free in Φ0 and Φ0 and (T 1
i , . . . ,T

m
j , . . . ,T k

l ) ∈ V(Z) or

• Φn = [a]mΨ for some a ∈ A, m ∈ {1, . . . ,k} but T m
j 6 a−→.

2. The play ((T 1
0 , . . . ,T

m
0 , . . . ,T k

0 ),Φ0) . . .((T
1

i , . . . ,T
m
j , . . . ,T k

l ),Φn) . . . has infinite

length. There is a unique variable X , occurring infinitely often and subsuming

all other variables occurring infinitely often, and this variable identifies a

greatest fixed point formula (i.e. νX .Ψ).

Figure 5.4: Winning conditions for players R and V

to move, but such a move is impossible. The rules for V are dual to the ones

for R. V wins if a true configuration is reached: the evaluated formula Φn is

tt, or position ((T 1
i , . . . ,T

m
j+1, . . . ,T

k
l ),Z) is reached where Z is free in Φ0 and

(T 1
i , . . . ,T

m
j+1, . . . ,T

k
l ) ∈ V(Z), or R has to move, but such a move is impossible.

Second, consider infinite length plays. The winner in such games depends on the

outermost fixed point subformula that gets unfolded infinitely often: whenever it is

a least fixed point formula, the refuter wins; dually, whenever this is a greatest fixed

point formula, the verifier wins.
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5.4.2 Sample Incremental Hyperproperty Checking Games

To illustrate IHP checking games, we present two examples. The correctness theorems,

guaranteeing the results presented, can be found in Section 5.4.3.

Example 5.4.2. Consider the IHP NI′ from Chapter 4, which is the greatest fixed
point of an NI′-simulation. NI′ can be given in L2

µ as:

NI′ =̂ νX .
∧

a∈Av

[a]1〈a〉2X ∧
∧

a∈Ac

[a]1X .

Let view V0 = (Av,An,Ac), where Av = {l1, l2}, An = /0 and Ac = {h}. The definition
of NI′ then becomes:

NI′V0
=̂ νX .[l1]1〈l1〉2X ∧ [l2]1〈l2〉2X ∧ [h]1X .

Consider the tree T , given in Figure 5.5: it is the infinite tree containing (l1hl2)
ω,

(l1l2)
ω and all streams resulting from some interleaving of l1hl2 and l1l2. The traces

of tree T can be given by the omega regular expression (l1hl2 | l1l2)
ω

T

T
T

l1
h

l2

l2

Figure 5.5: Tree T

The game HGV((T,T ),NI′) has the positions given in Figure 5.6. Arrows from a

position indicate the possible subsequent positions. Certain positions are labeled,

indicating which player has to make the next move. Final positions are also labeled

below the node, signifying the player who wins the game at the respective positions.

For instance, position 5 is labeled V because it is a V -win. Informally, a play of the

game can be seen as a sequence of positions, starting from the root and ending at a

leaf of the game graph or looping forever. At position 16, V wins the game by the

third part of rule 1 for player V (in Figure 5.4): in essence, R has a turn, but is unable

to move. The situation is similar at positions 5,6,10 and 18: V wins the game as R

has a turn, but is unable to move. Positions 13 and 19 are again V wins, but for a

different reason: as these positions result in infinite plays and the variable X identifies

a greatest fixed point (see rule 2 for V in Figure 5.4). Thus, it is easy to see that V wins

all plays of the game HGV((T,T ),NI′). Hence, we may conclude that (T,T ) |= NI′.
By Corollary 5.3.7, we also have that NI(T ).

The previous example used only a greatest fixed point operator. Incremental

hyperproperty definitions are not always that simple. In the following example, we

show the game for a definition having alternation of least and greatest fixed point

quantifiers, needed to express a notion of fairness.
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1

2

3  R

4  R 5  R 6  R

7 V

8

9  R

12  R10  R 11  R

V 

13  V 14

15 R

16  R 17  R 18  R

19  V

V 

V V 

V 

1 : ((T,T ),νX .[l1]1〈l1〉2X ∧ [l2]1〈l2〉2X ∧ [h]1X) 11 : ((Tl1 ,Tl1), [l2]1〈l2〉2X)
2 : ((T,T ),X) 12 : ((Tl1 ,Tl1), [h]1X)
3 : ((T,T ), [l1]1〈l1〉2X ∧ [l2]1〈l2〉2X ∧ [h]1X) 13 : ((T,Tl1),〈l2〉2X)
4 : ((T,T ), [l1]1〈l1〉2X) 14 : ((Tl1h,Tl1),X)
5 : ((T,T ), [l2]1〈l2〉2X) 15 : ((Tl1h,Tl1), [l1]1〈l1〉2X∧
6 : ((T,T ), [h]1X) [l2]1〈l2〉2X ∧ [h]1X)
7 : ((Tl1 ,T ),〈l1〉2X) 16 : ((Tl1h,Tl1), [l1]1〈l1〉2X)
8 : ((Tl1 ,Tl1),X) 17 : ((Tl1h,Tl1), [l2]1〈l2〉2X)
9 : ((Tl1 ,Tl1), [l1]1〈l1〉2X ∧ [l2]1〈l2〉2X ∧ [h]1X) 18 : ((Tl1h,Tl1), [h]1X)
10 : ((Tl1 ,Tl1), [l1]1〈l1〉2X) 19 : ((T,Tl1),〈l2〉2X)

Figure 5.6: The game HGV((T,T ),NI′)

Example 5.4.3. Let view V0 = (Av,An,Ac), where Av = {l}, An = {τ} and Ac = {h}.
Consider our coinductive version of hyperproperty noninference NF′ from Chapter 4,
given in L2

µ as follows:

NF′ =̂ νX . O1 ↔ O2 ∧
∧

a∈Av

[a]1µZ.(〈a〉2X ∨〈τ〉2Z)∧
∧

a∈Ac

[a]1X .

This definition does not have a fairness problem: in fact the fairness constraint is
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encoded in the definition itself. The definition guarantees for any pair of systems

satisfying it, that whenever player R can make a visible a move in the first system,

player V can eventually get a turn to respond with the same move in the second system.

The definition of NI′ with respect to view V0 is:

NF′
V0

=̂ νX . O1 ↔ O2 ∧ ([l]1µZ.(〈l〉2X ∨〈τ〉2Z))∧ [h]1X .

Now consider the concrete system T , presented in Figure 5.7.

T

T

T
h

l

l

τ

Figure 5.7: Tree T

1

2

 3  R

15 R  16  R4 R

5 V  10 V 

18  R 

19 R 30 R 40 R 

20 V 25 V

6 8 11 13

7 9 12  14  

21  23 26  28  

22   24  27  29  

31
 

32  

33 V   

34 V  
 

35 V   

36  

37 V  

38 V  39 V

 

V 

V V 

V 

17  

V 

V 

Figure 5.8: The game graph of HGV((T,T ),NF′
V0
)
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1 : ((T,T ),νX . O1 ↔ O2∧ 20 : ((Th,T ),¬O1 ∨O2)
∧[l]1µZ.(〈l〉2X ∨〈τ〉2Z)∧ [h]1X) 21 : ((T,T ),¬O1)
2 : ((T,T ),X) 22 : ((T,T ), tt)
3 : ((T,T ),O1 ↔ O2∧ 23 : ((T,T ),O2)
∧[l]1µZ.(〈l〉2X ∨〈τ〉2Z)∧ [h]1X) 24 : ((T,T ), ff )
4 : ((T,T ),(¬O1 ∨O2)∧ (¬O2 ∨O1)) 25 : ((Th,T ),¬O2 ∨O1)
5 : ((T,T ),¬O1 ∨O2) 26 : ((T,T ),¬O2)
6 : ((T,T ),¬O1) 27 : ((T,T ), tt)
7 : ((T,T ), tt) 28 : ((T,T ),O1)
8 : ((T,T ),O2) 29 : ((T,T ), ff )
9 : ((T,T ), ff ) 30 : ((Th,T ), [l]1µZ.(〈l〉2X ∨〈τ〉2Z))
10 : ((T,T ),¬O2 ∨O1) 31 : ((T,T ),µZ.(〈l〉2X ∨〈τ〉2Z))
11 : ((T,T ),¬O2) 32 : ((T,T ),Z)
12 : ((T,T ), tt) 33 : ((T,T ),〈l〉2X ∨〈τ〉2Z)
13 : ((T,T ),O1) 34 : ((T,T ),〈l〉2X)
14 : ((T,T ), ff ) 35 : ((T,T ),〈τ〉2Z)
15 : ((T,T ), [l]1µZ.(〈l〉2X ∨〈τ〉2Z)) 36 : ((T,Tτ),Z)
16 : ((T,T ), [h]1X) 37 : ((T,Tτ),〈l〉2X ∨〈τ〉2Z)
17 : ((Th,T ),X) 38 : ((T,Tτ),〈l〉2X)
18 : ((Th,T ),O1 ↔ O2∧ 39 : ((T,Tτ),〈τ〉2Z)
[l]1µZ.(〈l〉2X ∨〈τ〉2Z)∧ [h]1X) 40 : ((Th,T ), [h]1X)
19 : ((Th,T ),(¬O1 ∨O2)∧ (¬O2 ∨O1))

Figure 5.9: Positions of the game HGV((T,T ),NF′)

The game graph of HGV((T,T ),NF′
V0
) is presented in Figure 5.8 and the game

positions in Figure 5.9. For this game, as is obvious from Figure 5.8, we have that

some plays are won by V and some by R. For instance, V wins configurations 7, 12,

22 and 27 — these are all true configurations. Dually, the false configurations 9, 14,

24 and 29 are won by R. Position 15 is won by V , because it is R’s turn but she cannot

move, position 40 is similar. Positions 34 and 39 are dual: it is V ’s turn but she cannot

move, hence R wins. Observing the game graph in Figure 5.8, it is straightforward to

see that player V has a winning strategy given in the following table:

Position 5 10 20 25 33 37

Choice 6 11 21 26 35 38

5.4.3 Correctness of Hyperproperty Checking Games

Next, we will argue that the incremental hyperproperty checking games are correct.

That is, formula Φ satisfied at state (T 1, . . . ,T m, . . . ,T k) is equivalent to player V

having a history-free winning strategy for the game HGV((T
1, . . . ,T m, . . . ,T k),Φ).
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Dually, formula Φ not satisfied at state (T 1, . . . ,T m, . . . ,T k) is equivalent to player

R having a history-free winning strategy for the game HGV((T
1, . . . ,T m, . . . ,T k),Φ).

Theorem 5.4.4. The following equivalences are valid:

1. (T 1, . . . ,T m, . . . ,T k) |=V Φ iff player V has a history-free winning strategy for

HGV((T
1, . . . ,T m, . . . ,T k),Φ).

2. (T 1, . . . ,T m, . . . ,T k) 6|=V Φ iff player R has a history-free winning strategy for

HGV((T
1, . . . ,T m, . . . ,T k),Φ).

Proof. Essentially by lifting Stirling’s proof for property checking games in the modal

mu-calculus to IHP checking games in Lk
µ . The details of the proof are available in

Appendix C.

Corollary 5.4.5. Incremental hyperproperty checking games are determined.

Proof. Follows directly from Theorem 5.4.4.

As a result of Theorem 5.4.4 and Corollary 5.4.5, we know that it is enough to reason

about the existence of a history-free winning strategy for V to verify (or refute) an

incremental hyperproperty expressed in Lk
µ . We can actually use tools to find such

a strategy, by converting the IHP checking game into a parity game — a two player

infinite game with perfect information [82]. This should not come as a surprise, as it

is known that the solving of a parity game has equivalent complexity to the model

checking problem for the modal mu-calculus [80]. This method of conversion is

similar to the one used by Stirling [82] to convert property checking games into parity

games and will be presented in the next section. The conversion is important as results

and tools developed for parity games may be reused for solving IHP checking games.

On the other hand, it does not make IHP checking games obsolete, because they are

sinificantly more intuitive to reason about.

5.5 From Incremental Hyperproperty Checking

Games to Parity Games

In this section, we show how to convert IHP checking games into parity games. The

exposition is based on Stirling’s conversion of his property checking games into parity

games [82]. The proof that the conversion is correct follows directly from the analysis

of the conversion process.
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5.5.1 Parity Games

We start by recalling some definitions from Section 2.10. A game of perfect

information is a game in which players move alternately and each player is aware

of all previous moves in the game. A parity game is a game of perfect information,

played by two players on a directed graph G = (N,−→,L). N is a finite set of vertices

from the set of natural numbers N, −→⊆ N ×N is a binary relation on the vertices and

L : N →{V,R} is a labeling function, assigning elements from the set of players {V,R}
to vertices. Note that the elements of N are the positions of the game and function

L assigns labels to the vertices, essentially signifying which player is supposed to

move at the position in question. We write j −→ k instead of ( j,k) ∈−→. All plays

in a parity game have infinite length. A play always starts with a token on the least

vertex. The winner of a play is determined by the label of the least vertex i occurring

infinitely often. The notion of a history-free strategy for a parity game is standard (see

Section 2.10). A player P’s strategy in a parity game is a set of rules that prescribe

what the next move j s.t. i −→ j should be at each position i, for which player P has a

turn. A history is winning if P wins any parity game that conforms to the strategy.

5.5.2 Conversion of Incremental Hyperproperty Checking
Games into Parity Games

As mentioned above, every play in a parity game is infinite. In practice, this is not

problematic for the conversion. The solution is simple: make finite plays of the IHP

checking games infinite by introducing a loop in the final position.

We next detail the conversion of IHP checking games into parity games. Recall that

for any tree T , SubT(T ) is the set of subtrees of T . Let HGV((T
1, . . . ,T k),Φ) be

some IHP checking game. Let E1 = (T 1
1 , . . . ,T

k
1 ), where T 1

1 = T 1, . . . , T k
1 = T k,

be the starting position. Let E1, . . . ,Em be the list of all possible k-tuples of trees

reachable (independent of the formula Φ) from the initial k-tuple (T 1
1 , . . . ,T

k
1 ). Let

Φ be a normal formula. Let Z1, . . . ,Zk be a list of the bound variables in Φ. Game

HGV((T
1, . . . ,T k),Φ) will be converted into parity game PGV((T

1, . . . ,T k),Φ) using

the following steps:

1. Create a list of all subformulae in Φ in decreasing order of size, except that all Zi

are inserted into special places. The list is constructed as follows. Let Φ1, . . . ,Φl

be a list of the formulae in Sub(Φ) \ {Z1, . . . ,Zk} in decreasing size, starting

with Φ1 = Φ. Extend the list by inserting each Zi after its respective fixed point

formula. For instance, the list may look as follows: Φ1, . . . ,σiZi.Ψi,Zi, . . . ,Φl .

The final list of formulae is Φ1, . . . ,Φn. All positions in the IHP checking game
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HGV((T
1, . . . ,T k),Φ) can be given as follows:

(E1,Φ1), . . . ,(Em,Φ1),(E1,Φ2), . . . ,(E1,Φn), . . . ,(Em,Φn).

2. Specify the set N. The set N of the parity game PGV((T
1, . . . ,T k),Φ) will

be {1, . . . ,m × n}. Any position (E j,Φk) of the IHP checking game has a

corresponding vertex i (in the parity game) given as follows: i = m×(k−1)+ j.

3. Specify the relation −→ and the labeling function L as follows: for any vertex

i, we define its label and edges by case analysis of the respective to i position

(F,Ψ), specified in Figure 5.10.

4. Remove all positions not reachable from (E,Φ), where E = E1 = (T 1
1 , . . . ,T

k
1 ).

We have described the parity game PGV((T
1, . . . ,T k),Φ). The next step is to

show that the winner of PGV((T
1, . . . ,T k),Φ) and HGV((T

1, . . . ,T k),Φ) are always

the same. Observe that the least vertex i, appearing infinitely often in game

PGV((T
1, . . . ,T k),Φ) (and determining the winner), corresponds to one of the

following positions:

• (F,Z) where Z is free in Φ

• (F, tt)

• (F, ff )

• (F, [a]kΨ) where F 6 a−→k

• (F,〈a〉kΨ) where F 6 a−→k

• (F,Z j)

In the first five cases the winner of the parity game is clearly the same as in the IHP

checking game, as specified in Figure 5.4. In the sixth case we have (F,Z j). It is

possible to have another vertex, say j′, which occurs infinitely often and corresponds

to another position (F ′,Zl). As i is the least vertex that occurs infinitely often, (F ′,Zl)
appears later than (F,Z j) in the ordering. Hence, there are two options: the two

positions coincide or the formula corresponding to Zl is strictly smaller than the one

corresponding to Z j. In the former case, the winner is the same as in the IHP checking

game. In the latter case, it has to be that Z j subsumes Zl . Thus, we may conclude

that, in both possible cases, if νZ j.Ψ j is in Sub(Φ), then player V wins the game.

Otherwise, µZ j.Ψ j is in Sub(Φ) and thus player R wins. This is guaranteed to be in

accordance with the outcome of the corresponding IHP checking game.
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Case analysis of position (F,Ψ):

• If Ψ = Z, where Z is free in Φ and F ∈ V(Z), then L(i) =V and i −→ i.

• If Ψ = Z, where Z is free in Φ and F 6∈ V(Z), then L(i) = R and i −→ i.

• If Ψ = tt, then L(i) =V and i −→ i.

• If Ψ = ff , then L(i) = R and i −→ i.

• If Ψ = Ψ1 ∧ Ψ2, then L(i) = R and there exist edges i −→ j1, i −→ j2 s.t. j1
corresponds to (F,Ψ1) and j2 corresponds to (F,Ψ2).

• If Ψ = Ψ1 ∨ Ψ2, then L(i) = V and there exist edges i −→ j1, i −→ j2 s.t. j1
corresponds to (F,Ψ1) and j2 corresponds to (F,Ψ2).

• If Ψ = [a]kΨ′ and F 6 a−→k, then L(i) =V and there exists an edge i −→ i.

• If Ψ = [a]kΨ′ and F
a−→k F ′, then L(i) = R and there exists an edge i −→ j s.t. j

corresponds to (F ′,Ψ′).

• If Ψ = 〈a〉kΨ′ and F 6 a−→k, then L(i) = R and there exists an edge i −→ i.

• If Ψ = 〈a〉kΨ′ and F
a−→k F ′, then L(i) =V and there exists an edge i −→ j s.t. j

corresponds to (F ′,Ψ′).

• If Ψ = νZ j.Ψ j, then L(i) = V . Moreover, there is an edge i −→ j′ s.t. j′

corresponds to (F,Z j).

• If Ψ = µZ j.Ψ j, then L(i) = R. Moreover, there is an edge i −→ j′ s.t. j′

corresponds to (F,Z j).

• If Ψ = Z j and νZ j.Ψ j ∈ Sub(Φ), then L(i) = V . Moreover, there is an edge

i −→ j′ s.t. j′ corresponds to (F,Ψ j).

• If Ψ = Z j and µZ j.Ψ j ∈ Sub(Φ), then L(i) = R. Moreover, there is an edge

i −→ j′ s.t. j′ corresponds to (F,Ψ j).

Figure 5.10: Case analysis of positions

Proposition 5.5.1. There exists a winning strategy for player P ∈ {V,R} in an IHP

checking game HGV((T
1, . . . ,T k),Φ) iff there exists a winning strategy for player P

in the corresponding parity game PGV((T
1, . . . ,T k),Φ).

Proof. Straightforward based on the above observations. The main proof idea is that

the winner of both games is always the same.



114 INCREMENTAL HYPERPROPERTIES AS GAMES

Example 5.5.2. Consider the game HGV((T
1, . . . ,T k),NI′) from Example 5.4.2.

To illustrate the conversion process, we shall construct the resultant parity game

PGV((T
1, . . . ,T k),NI′) here. First, create the list of states E1, . . . ,E9:

(T,T ),(T,Tl1),(T,Tl1h),(Tl1 ,T ),(Tl1 ,Tl1),(Tl1 ,Tl1h),(Tl1h,T ),(Tl1h,Tl1),(Tl1h,Tl1h).

Then create the list of subformulae in NI′ denoted Φ1, . . . ,Φ8 in decreasing order of

size:

νX .[l1]1〈l1〉2X ∧ [l2]1〈l2〉2X ∧ [h]1X , X , [l1]1〈l1〉2X ∧ [l2]1〈l2〉2X ∧ [h]1X , [l1]1〈l1〉2X ,

[l2]1〈l2〉2X , 〈l1〉2X , 〈l2〉2X , [h]1X .

The number of possible positions of the property checking game is 72 (n×m), but not

all of them are reachable. The positions are given in the following table:

E1 E2 E3 E4 E5 E6 E7 E8 E9

Φ1 1 2 3 4 5 6 7 8 9

Φ2 10 11 12 13 14 15 16 17 18

Φ3 19 20 21 22 23 24 25 26 27

Φ4 28 29 30 31 32 33 34 35 36

Φ5 37 38 39 40 41 42 43 44 45

Φ6 46 47 48 49 50 51 52 53 54

Φ7 55 56 57 58 59 60 61 62 63

Φ8 64 65 66 67 68 69 70 71 72

The resulting parity game is depicted in Figure 5.11. Positions of the verifier V are

in a box, positions of the refuter R in a circle. V wins all possible plays of this game

and thus has a trivial winning strategy: no matter what V does, she will win the game.

We next explain why this is the case. At each of positions 32,35,37,64,71, V wins

because they are labeled V and each of them is the least i occurring infinitely often in

the plays. In all other infinite paths (the one passing through positions 41 and 44), the

least i occurring infinitely often is 10 and it is labelled V , i.e. L(10) =V .

This small example demonstrates that creating and analyzing game graphs similar to

the one from Figure 5.11 is tedious and error prone. To address these problems, in

Chapter 6 we explore the use of game-based model checking tools. It should be noted,

however, that even small systems are bound to produce large state spaces. For instance

any system with state space S and formula Φ (interpreted on a k-tuple of systems) will

have a state space of the resulting parity game at most |S|k ×|Φ|. Thus finding useful,

well-behaving fragments of the logic and/or reusing existing (or finding new) efficient

algorithms for model checking is an important area for future work.
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49

32

23

14

41 68 17

26

35 44 71

56

Figure 5.11: Parity game corresponding to HGV ((T,T ),NI′).

5.6 A New Logic for Incremental Hyperproperties

This section presents the logic ILk
µ , which is a fragment of the polyadic modal

mu-calculus Lk
µ . Naturally, this logic is less expressive than the full Lk

µ , but we

find it expressive enough for a large class of useful, security-relevant, incremental

hyperproperties.

Formulae in ILk
µ have the following syntax:

Ψ ::= νZ.Φ Φ ::= tt | ff | Z | Φ1 ∧Φ2 | Φ1 ∨Φ2 | [a]iΦ | 〈a〉iΦ | µZ.Φ.

The games we propose for ILk
µ are essentially the same as the ones for Lk

µ . It is
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noteworthy that the maximal alternation depth of any formula in ILk
µ is 2, which

results in lower complexity than Lk
µ . This is reflected in the following result about

the complexity of model checking for ILk
µ , based on Theorem 2.9.1 :

Corollary 5.6.1. There exists an algorithm for deciding T |= Φ, running in time

O(|Φ|2(|S1| . . . |Sk|)|T1| . . . |Tk|), where Φ is closed and T a k-tuple of finite transition

systems with state spaces S1, . . . ,Sk.

The logic allows (a restricted variant of) coinductive/inductive definitions, which

are reminiscent of the idea that any hyperproperty is the intersection of a safety

hyperproperty and a liveness hyperproperty [18]: the latter are discussed in more

detail in Chapter 2, but essentially they can be seen as generalizations of safety

and liveness properties respectively. In essence, hypersafety can be expressed as a

greatest fixed point formula and hyperliveness as a least fixed point formula. Lk
µ and

ILk
µ seem suitable for expressing these, based on the examples we considered. The

characterization of hypersafety and hyperliveness in ILk
µ (or in Lk

µ ) is an interesting

thread for future work.

5.6.1 Sample Incremental Hyperproperties in ILk
µ

As an illustration of the logic, we first present an incremental hyperproperty class
from Chapter 3. The class is SIH2 (see its definition in Section 3.3.2) and it contains
incremental versions of notions of noninterference, such as NI from Chapter 3. SIH2

is defined in ILk
µ as follows:

SIH2 =̂ νX .
∧

a∈A∧p(a)

[a]1〈 f (a)〉2X ∧
∧

a∈A∧¬p(a)

[a]1X .

In an attempt to show that the logic can express a large class of other, useful, security-

relevant IHPs, we show that the coinductive unwinding relations from Chapter 4 can

be expressed in ILk
µ . As a result, we argue that a large number of security-relevant

IHPs can be expressed in the logic, because those can be seen as conjunction of the

unwinding relations.

The first relation we present here is oscV -simulation. First, recall that the union of all
oscV -simulations, namely oscV -similarity, can be given (in the proper extension of IL ,
allowing alternation of the fixed point operators) as follows:

gfpQ(x,y) . o(x)↔ o(y) ∧ ∀a ∈ A\Ac. (x
a−→ xa →

∃σ ∈ (A\Ac)
∗.(y σ−→ yσ ∧a≈Av

σ∧Q(xa,yσ))).
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Using the previous definition, two trees (systems) S and T are oscV -similar iff

[gfpQ(x,y) . o(x)↔ o(y) ∧ ∀a ∈ A\Ac. (testa(x)→

∃σ ∈ (A\Ac)
∗.(test∗σ(y)∧a≈Av

σ∧Q(xa,yσ)))](S,T ).

In ILk
µ , oscV -similarity can be represented as follows:

oscV =̂ νX . O1 ↔ O2 ∧
∧

a∈A\Ac

[a]1µZ.(〈a〉2X ∨〈An〉2Z).

The fact that two trees (systems) S,T are oscV -similar can be expressed in ILk
µ as

follows:

(S,T ) |= νX . O1 ↔ O2 ∧
∧

a∈A\Ac

[a]1µZ.(〈a〉2X ∨〈An〉2Z).

lrfV -similarity, the union of all lrfV -simulations, is defined coinductively in IL as:

gfpQ(x,y) . o(x)↔ o(y) ∧ ∀a ∈ Ac. (testa(x)→ Q(xa,y)).

In ILk
µ , lrfV -similarity can be represented as follows:

lrfV =̂ νX . O1 ↔ O2 ∧ [Ac]1X .

Finally, lrbV -similarity, the union of all lrbV−simulations, is defined coinductively in
IL as:

gfpQ(x,y) . o(x)↔ o(y) ∧ ∀a ∈ Ac. testa(y)∧Q(x,ya).

In ILk
µ , lrbV -similarity can be presented as follows:

lrbV =̂ νX . O1 ↔ O2 ∧ [Ac]2tt∧ [Ac]2X .
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5.7 Discussion and Related Work

To the best of our knowledge, we are the first to propose and explore the idea

of representing hyperproperties as games. More concretely, this chapter attempts

to bridge the gap between the problem of generic verification of incremental

hyperproperties and the extensive work on model checking games for fixed point

logics [80, 81, 82]. Thus, it shares features with work in both the security and game

theory communities.

It is well-known that the modal mu-calculus and other tree logics, such as CTL and

CTL∗, are not expressive enough for hyperproperties. Intuitively, the reason is that

they cannot express specifications relating several paths in a tree, yet the original

notion of hyperproperties is based on the existence of such relations (see [18, 63]).

Alur et al. [7] present a proof that secrecy, defined as uncertainty whether a particular

property is true or not (also expressible in our framework), is not expressible in the

modal mu-calculus. In a subsequent paper, Alur et al. [6] introduce two new logics,

enriching CTL and the modal mu-calculus with path equivalencies, making them

expressive enough for secrecy. The major difference to our work is in the generality:

definitions in our framework are not limited to secrecy and not necessarily based on

equivalence relations. Indeed, many H ′-simulations are not equivalence relations.

Standard fixed point logics and model checking techniques may be used for specific,

determinism-based definitions of noninterference. For instance, Huisman and

Blondeel [39] give a modal mu-calculus characterization of two such notions of

information flow: observational determinism and eager trace equivalence [71]. Their

characterization is based on self-composition [9, 20] of the transition system induced

by the program of interest. The major difference to our work is that our IHPs and IHP

checking games are more general. There is no restriction to deterministic systems

and equivalence relations. Thus we can handle a much larger class of system and

policy specifications. Due to the nature of our approach and the fact that IHPs need

not be defined on k copies of the same system, but on k different systems instead,

our framework may be used for reasoning about hyperproperty-preserving refinement.

Exploring this idea is left for future work. In addition, H ′-simulations go beyond

the state-of-the-art in giving a generic method to reason about (at least) a number

of interesting security-relevant liveness hyperproperties. Characterizing the class of

hyperproperties that benefit from H ′-simulations is an important direction for future

work.

In recent work, D’Souza et al. [23] have proposed an automata-theoretic technique

for model checking the possibilistic information flow hyperproperties from Mantel’s

framework [53] on finite state systems, to model check Mantel’s BSPs. This is

a nice theoretical result, supporting our thesis that incremental hyperproperties are

amenable to model checking. The proposed model checking approach is based on
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deciding set inclusion on regular languages. Their approach is not directly applicable

to hyperproperties, because the presence of infinite traces means that the languages

under consideration are not regular. Nevertheless, it seems worthwhile to adapt these

techniques to deal with omega-regular languages or arbitrary streams.

Hyperproperties generalize properties and it would be intuitively appealing if checking

hyperproperties would generalize checking properties. This is what we have shown

in this work for incremental hyperproperties. First, we have proposed to express

incremental hyperproperties in Lk
µ — a logic that generalizes the modal mu-calculus,

in which (regular) properties are typically expressed. The games we have presented

here can be seen as a generalization of the model checking games for the modal mu-

calculus [82]. Hence, our work is related to the abundant work on model checking

games for fixed point logics [80, 81, 82, for example]. The crucial contribution is

that we are the first to propose games for Lk
µ and its fragment ILk

µ with an interesting,

security-relevant application.

5.8 Summary

This chapter proposes a clear and feasible verification methodology for incremental

hyperproperties. The major contribution is a novel characterization of the satisfaction

relation between a system and an incremental hyperproperty in terms of playing a

game. To that end, we first introduce H ′-simulation games, an intuitive approach

of directly converting H ′-simulation relations into games. Further, we are the first

to propose the more general and sophisticated incremental hyperproperty checking

games for the polyadic modal mu-calculus Lk
µ . We have also argued that Lk

µ is

expressive enough for the known incremental hyperproperties and for some fairness

constraints. The proposed approach is feasible, because checking of incremental

hyperproperties expressible in Lk
µ is decidable and can be done in polynomial time.

A fragment of Lk
µ (called ILk

µ ), which has lower complexity and might be sufficient

for a large class of incremental hyperproperties, has also been proposed. However, we

also envision the possibility of devising more efficient tableau algorithms [12] for ILk
µ .

This is a promising direction for future work.

In the next chapter we consider the use of tools to automate the game-based

verification of incremental hyperproperties.





Chapter 6

Model Checking Incremental
Hyperproperties via Games

In this chapter we explore the significance of incremental hyperproperty checking

games and their corresponding parity games for practical model checking of

incremental hyperproperties. In particular, we present three different approaches for

model checking incremental hyperproperties and investigate some of their advantages

and disadvantages. The fact that these approaches can be automated is illustrated

by using particular off-the-shelf tools for model checking sample hyperproperties.

Two of the approaches are game-based and we show that this is advantageous, as

winning strategies can give useful intuition about the system-policy interaction. Most

importantly, this work demonstrates how to reuse algorithms and tools for practical

model checking mu-calculus games for model checking incremental hyperproperties.

6.1 Synopsis

The chapter starts by illustrating the problem of model checking systems via parity

games and thus motivates the need of model checking tools for IHP checking

games. Then the tools used in this chapter, namely mCRL2 [34], PGSolver [29] and

MLSolver [30], are briefly introduced. This is followed by the presentation of three

different approaches for model checking incremental hyperproperties.

The first approach discussed in this work was originally proposed by Andersen himself

to model check his polyadic modal mu-calculus Lk
µ [8]. The approach is based on a

reduction of the problem of model checking a formula φ in Lk
µ on a system S to model

121
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checking a modified formula (called prod(φ)) in the ordinary modal mu-calculus [43]

on a modified version of the original system (called prod(S)). This means that one can

use off-the-shelf model checking tools for verification of incremental hyperproperties,

as long as there is a convenient way to create the modified version of the original

system (we present one such method using mCRL2).

The second approach is based on converting an IHP checking game into a parity game

(as shown in Section 5.5) and solving the parity game using an off-the-shelf tool

such as PGSolver. The third approach offers more automation and is again based

on model checking of a modified system with respect to a modified specification

formula. The advantage of game-based model checking is that the algorithms generate

winning strategies [82]. This is beneficial, as one may use such a winning strategy

to get intuition about the interaction between a system and a policy and, even more

importantly, to get a precise reason as to what goes wrong and why a formula does not

hold on a system. In case the formula holds, insight as to why this is the case on the

concrete system can be given too. Using such techniques and visualizations of games

may result in tools with intuitive debugging functionality.

To further explore the advantages of model checking via games we propose two

different graph views, namely an extended game graph view and a tree view, that can

be used for better visualization of the interactions between a policy and a system. An

extended game graph view enhances the game graph with the winning strategy of the

winner from the initial node. Such a view also presents at each winning position the

winner and the complete position itself. A tree view is a list of the different positions

in the history of the play so far. It turns out that tree views can be visualized in

the same way as the H ′-simulation games from Section 5.3, which are an intuitive

representation of the game. In addition, we present a known idea for a strategy-based

interactive tool [83] (here based on our extended game graph and tree views) that

could be useful in our setting for understanding the interaction of systems and security

policies. We note that the main difference between the two game-based approaches

explored in this chapter is the degree of automation: the third one has the potential for

being fully automatic.

6.2 Illustration and Motivation

In Chapter 5 we introduced model checking incremental hyperproperties via IHP

games. However, reasoning about them “by hand” seems to be tedious and error-

prone (see, for instance, Examples 5.4.2 and 5.4.3). We also showed that IHP checking

games can be straightforwardly converted into parity games. In this section we argue

that as systems get larger, reasoning about parity games “by hand” is also tedious and
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error prone. This motivates the use of model checking tools, as explored in further

sections.

Example 6.2.1 (From an IHP Checking Game to a Parity Game). Let view V0 be given
as: Av = {l}, An = {τ} and Ac = {h}. Recall our coinductive version of hyperproperty
noninference NF′ from Chapter 5:

NF′ =̂ νX . O1 ↔ O2 ∧
∧

a∈Av

[a]1µZ.(〈a〉2X ∨〈An〉2Z)∧
∧

a∈Ac

[a]1X .

We will consider a termination insensitive definition here. Implicitly taking into
account the view V0, the definition becomes:

NF′
ti =̂ νX . ([l]1µZ.(〈l〉2X ∨〈τ〉2Z))∧ [h]1X .

1

2

 3  R

15 R  16  R

18  R 

30 R 40 R 

 

 

31
 

32  

33 V   

34 V  
 

35 V   

36  

37 V  

38 V  39 V

 

17  

V 

V 

Figure 6.1: The game graph of HGV((T,T ),NF′
ti)

Recall system T from Figure 5.7, also specified by the omega regular expres-

sion (hl | τl)ω. Before constructing the game graph of parity game PGV((T,T ),NF′
ti),
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we consider what is already known for this graph. First, the game graph of

PGV((T,T ),NF′
ti) can be obtained from the game graph of the respective IHP

checking game HGV((T,T ),NF′
V0
), presented in Figure 6.1.

Note that the only difference in the new version of HGV((T,T ),NF′
V0
) as compared to

the one in Figure 5.8 results from the fact that we have to remove the subtrees starting

at vertices 4 and 19 that correspond to formula O1 ↔ O2.

It is relatively straightforward to convert the game graph of HGV((T,T ),NF′
ti) into

parity game PGV((T,T ),NF′
ti), by making the final positions loop and labeling

or relabeling positions. In particular, nodes corresponding to greatest fixed point

formulae are labeled as V nodes, and dually, nodes corresponding to least fixed point

formulae are labeled as F nodes. In addition each final node is (re)labeled with the

winner of the IHP checking game and gets a loop to itself.

In this particular case, to convert the game graph from Figure 6.1 to the game graph

of its equivalent parity game, the following additional labels are needed. Positions

1 and 2 should be labelled V as they correspond to a greatest fixed point formula

and its respective bound variable, similarly 17 should be labelled V . Positions 31

and 32 should be labelled R as they correspond to a least fixed point formula and the

respective bound variable. Node 15 should have label V , whereas 34 and 39 should be

labelled R, because these are the respective winners of the final positions. In addition,

positions 28,64,75 and 85 get self-loops. It is also possible to convert back the parity

game into an IHP checking game isomorphic to the original one. Note that any parity

game, constructed as detailed in Section 5.5.2, can be converted into an IHP checking

game.

Example 6.2.2 (Creating a Parity Game from Scratch). We next use the procedure for

creating the parity game PGV((T,T ),NF′
ti) from scratch, as detailed in Section 5.5.2.

First, create the list of states E1, . . . ,E9:

(T,T ), (T,Th), (T,Tτ),(Th,T ), (Th,Tτ), (Th,Th), (Tτ,T ), (Tτ,Th), (Tτ,Tτ).

Then create a list of the subformulae in NF′
ti, denoted Φ1, . . . ,Φ10, in decreasing order

of size:

νX . ([l]1µZ.(〈l〉2X ∨〈τ〉2Z)∧ [h]1X), X , [l]1µZ.(〈l〉2X ∨〈τ〉2Z)∧ [h]1X ,

[l]1µZ.(〈l〉2X ∨〈τ〉2Z), µZ.(〈l〉2X ∨〈τ〉2Z), Z, 〈l〉2X ∨〈τ〉2Z, 〈l〉2X , 〈τ〉2Z, [h]1X .

There are 90 possible positions of the property checking game, but of course not all of

them are reachable. The positions are given in the following table:
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E1 E2 E3 E4 E5 E6 E7 E8 E9

Φ1 1 2 3 4 5 6 7 8 9

Φ2 10 11 12 13 14 15 16 17 18

Φ3 19 20 21 22 23 24 25 26 27

Φ4 28 29 30 31 32 33 34 35 36

Φ5 37 38 39 40 41 42 43 44 45

Φ6 46 47 48 49 50 51 52 53 54

Φ7 55 56 57 58 59 60 61 62 63

Φ8 64 65 66 67 68 69 70 71 72

Φ9 73 74 75 76 77 78 79 80 81

Φ10 82 83 84 85 86 87 88 89 90

The resulting parity game PGV((T,T ),NF′
ti) is depicted in Figure 6.2. Positions of

the verifier V are surrounded by a box, positions of the refuter R by a circle. V

has a history-free winning strategy for the game PGV((T,T ),NF′
ti). The history-free

winning strategy is given in the following table:

Position 1 10 28 13 85 55 57 73 66

Choice 10 19 28 22 85 73 66 48 10

Hence, we may conclude that (T,T ) |= NFti
V0

. This claim, as well as the precise

winning strategy are verified in Example 6.5.1 with the help of PGSolver.

The previous examples are based on a very simple system, having only 3 states.

Nevertheless, it should be clear that as the number of states gets larger, to create

and reason about parity games by hand becomes cumbersome and error-prone.

Fortunately, we can reuse parity game solvers for the verification of incremental

hyperproperties. We next present and later investigate the use of three different tools

for model checking IHPs.

6.3 The Tools

This section gives a brief introduction to the tools used in the chapter.
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Figure 6.2: Parity game PGV((T,T ),NF′
ti).

6.3.1 PGSolver

PGSolver is a toolset consisting of tools for generating, manipulating and solving

parity games [29]. It implements most of the known algorithms for solving parity

games, such as the recursive algorithm by Zielonka [88], the strategy improvement

algorithm by Vöge and Jurdziński [85], the optimal strategy improvement method by

Schewe [78], etc., as well as heuristics for making the solving faster. Depending on the

algorithm chosen, PGSolver solves the games either locally with respect to a concrete

vertex or globally with respect to the whole game graph. The typical use of PGSolver

is illustrated in Section 6.5.1.
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6.3.2 MLSolver

MLSolver is a tool targeting the satisfiability and validity problems for modal fixed

point logics [30]. In essence, the tool reduces the satisfiability and validity problem

to that of solving a parity game. The respective parity game is then passed on to

PGSolver. More details about our use of the tool can be seen in Section 6.5.2.

6.3.3 mCRL2

mCRL2 is a a formal specification language together with a toolset [34]. The typical

use of mCRL2 is for modelling and verification of concurrent systems and protocols.

We will use the language for specifying transformed systems. In addition, some of

the tools in the toolset will be used for performing the system transformation and

the actual model checking. More details about the use of mCRL2 are presented in

Section 6.4.1.

6.4 Traditional Model Checking of Lk
µ

This section presents the use of traditional model checking techniques for incremental

hyperproperties. Andersen proposes a model checking approach for the polyadic

modal mu-calculus Lk
µ [8]. The approach is a reduction of the problem of model

checking Lk
µ to model checking the ordinary modal mu-calculus Lµ on a product of the

original system. One tool that can be used to implement this model checking approach

is mCRL2. This is illustrated in Section 6.4.1, but we first present Andersen’s

approach.

Definition 6.4.1. Given an n-ary tuple of transition systems (T1, . . . ,Tn), define the

product prod(T ) of these to be the labelled transition system (S,−→, i), where S is the

state space given as S =̂ S1 × . . .× Sn, −→ is the transition relation and i the tuple of

the start states. Relation −→⊆ S× (A×N)×S is defined as follows:

(s1, . . . ,sn)
a,i−→ (s′1, . . . ,s

′
n) iff

si
a−→ s′i and ∀ j.(1 ≤ j ≤ n∧ j 6= i)→ s j = s′j.

Next, define prod(Φ) as the homomorphic map on formulae in Lk
µ such that

prod(〈a〉iΦ) = 〈(a, i)〉prod(Φ). Note that instead of 〈(a, i)〉Φ we typically write 〈ai〉Φ.

It is clear that prod(T ) is a single system (vs. tuple of systems) and prod(Φ) is defined

over such systems.
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Theorem 6.4.2 (Reduction of Lk
µ to Lµ [8]). Consider an n-tuple of transition systems

T and an Lk
µ formula Φ, as well as the respective prod(T ) and prod(Φ) as defined

above. Then the following equivalence is valid:

T |= Φ iff prod(T ) |= prod(Φ).

This result is important, as it suggests the use of standard model checking techniques

for verification of IHPs expressed in the polyadic modal mu-calculus Lk
µ .

6.4.1 Model Checking with mCRL2

In this section we illustrate the use of mCRL2 for model checking incremental

hyperproperties. Let us start with a formula Φ in Lk
µ expressing an IHP defined on

a tuple of systems T . We perform the following transformations (in accordance with

Andersen’s approach presented above) to reduce the problem of model checking T

with respect to Φ to an ordinary model checking problem of the product prod(T ) with

respect to the formula prod(Φ).

1. Make a product of systems prod(T ). In practice, we typically create systems

T1,T2, . . . ,Tk that are the same as T , except that each action has as subscript

1,2, . . . ,k, indicating which copy it belongs to. Then, we build the product

prod(T1,T2, . . . ,Tk). Tools such as mCRL2 can be used to facilitate the creation

of such a product; to achieve this, we use parallel composition but disable the

simultaneous occurrence of multiple actions, as they are not interesting for the

product. The result is an interleaving parallel composition of T1,T2, . . . ,Tk. In

essence, we specify that only multi-actions consisting of a single action are

allowed in the product. In mCRL2, this is done using the allow operator. For

the hyperproperties considered in this work the binary product prod(T1,T2), as

presented in Figure 6.4, is enough.

2. Convert formula Φ into prod(Φ), where Φ works on a k-tuple of systems (T )
and prod(Φ) on one system, namely on the product prod(T1,T2, . . . ,Tk). Each

action in the formula prod(Φ) is given a subscript, signifying to which system

it belongs.

Then, we can use mCRL2’s model checking tools to find out whether prod(T,T ) |=
prod(Φ), and hence by Theorem 6.4.2 whether (T,T ) |= Φ holds.

Example 6.4.3. Consider again the game HGV((T,T ),NF′
ti), where T is specified by

the omega regular expression (hl | τl)ω (visualized in Figure 6.3).

The first step is creating prod(T1,T2). The transition system of the product is specified

in mCRL2 as follows:
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Figure 6.3: System T

act

h1,h2, l1, l2,τ1,τ2;

proc

T1 = h1.l1.T1 + τ1.l1.T1;

T2 = h2.l2.T2 + τ2.l2.T2;

S = T1||T2;

init allow({h1,h2, l1, l2,τ1,τ2},S);

The act keyword is followed by a list of allowed actions, the proc keyword is followed

by a list of process definitions. The init keyword gives the initial process. Here, this

is process S, which is the interleaving parallel composition of the original system

copies T1 and T2. The allow keyword is used to specify the actions that should

be synchronized (i.e. happen in parallel). Our specification effectively says that no

actions should be synchronized. This specification results in the transition system

presented in Figure 6.4.

s0 s1

s2 s3

h1

τ1

h2
τ2

l1

h2
τ2

h1

τ1

l2

l1

l2

Figure 6.4: The product prod(T1,T2) produced by mCRL2

The second step is converting the IHP specification. In this case, the definition of NF′
ti,

namely

NF′
ti =̂ νX . ([l]1µZ.(〈l〉2X ∨〈τ〉2Z)∧ [h]1X),



130 MODEL CHECKING INCREMENTAL HYPERPROPERTIES VIA GAMES

is converted into prod(NF′
ti), given as

prod(NF′
ti) = νX . ([l1]µZ.(〈l2〉X ∨〈τ2〉Z)∧ [h1]X).

Using mCRL2 in a standard way, we model check the product prod(T1,T2) from

Figure 6.4 with respect to formula prod(NF′
ti). The latter is encoded as follows:

nu X . (([l1]mu Z . (〈l2〉X || 〈τ2〉Z)) && ([h1]X))

The following output is produced by the pbs2bool tool of the mCRL2 toolset:

Retrieving pbes_equations from equation system...

Computing a BES from the PBES....

Solving a BES with 5 equations.

Solve equations of rank 2.

Solve equations of rank 1.

The solution for the initial variable of the pbes is true.

Hence, we may conclude that prod(T1,T2) |= prod(NF′
ti) and thus (T,T ) |= NF′

ti.

6.5 Model Checking via Games

We next propose two model checking approaches for IHPs via games. The first

is based on the combination of IHP checking games and the parity game solver

PGSolver [29]. The second is based on the use of several tools and has the advantage

that it can be fully automated. Both approaches are based on creating and solving the

appropriate parity game, eventually using PGSolver [29].

6.5.1 Model Checking IHP Checking Games

This approach describes how to model check IHP checking games. Start with some

IHP checking game HGV((T
1, . . . ,T m, . . . ,T k),Φ).

1. Convert HGV((T
1, . . . ,T m, . . . ,T k),Φ) into the equivalent min-parity game

PGV((T
1, . . . ,T k),Φ). This conversion is straightforward, as explained in

Section 5.5.

2. Use PGSolver to convert PGV((T
1, . . . ,T k),Φ) to the equivalent max-parity

game PGmax
V ((T 1, . . . ,T k),Φ). Note that PGSolver solves max-parity games,

but also offers a converter between the two.

3. Use PGSolver to solve the parity game PGmax
V ((T 1, . . . ,T k),Φ). To know

whether (T 1, . . . ,T m, . . . ,T k) |=V Φ holds or does not hold, it is enough to solve
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the game locally for the starting node of the game graph. The tool reports which

player has a history-free winning strategy, as well as the strategy itself, which

is positional (see Section 2.10). If player V has such a strategy, then it has to be

that (T 1, . . . ,T m, . . . ,T k) |=V Φ. Dually, if player R has a history-free winning

strategy, it has to be that (T 1, . . . ,T m, . . . ,T k) 6|=V Φ. However, the strategy itself

is also very important, as it provides intuition why the policy holds or does not

hold and it can be used for the purpose of understanding and modifying the

system-policy interaction. This will be further investigated in Section 6.6.

Example 6.5.1. We next illustrate the use of PGSolver for solving IHP checking

games. If we start with game HGV((T,T ),NF′
ti) in Figure 6.1, we can easily convert

it into a parity game PGV((T,T ),NF′
ti). This was demonstrated in Example 6.2.1.

The parity game PGV((T,T ),NF′
ti) (see Figure 6.2) can be specified in PGSolver as

follows:

parity 17;

0 2 0 1 "1";

1 2 0 2 "10";

2 1 1 3,4 "19";

3 2 0 3 "28";

4 1 1 5 "82";

5 2 0 6 "13";

6 1 1 7,8 "22";

7 1 1 9 "31";

8 2 0 8 "85";

9 1 1 10 "37";

10 1 1 11 "46";

11 2 0 12,13 "55";

12 1 1 12 "64";

13 2 0 14 "73";

14 1 1 15 "48";

15 2 0 16,17 "57";

16 2 0 1 "66";

17 1 1 17 "75";

In this parity game specification, the first line is optional and gives the highest

identifier, used for optimization purposes. Each further line specifies a vertex by giving

it an identity number, its parity, its owner, the vertices that are successors and finally

an optional, symbolic name of the vertex [29].

Running PGSolver to solve the parity game globally produces the following output:

Player 0 wins from nodes:

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16}

with strategy

[0->1,1->2,3->3,5->6,8->8,11->13,13->14,15->16,16->1]

Player 1 wins from nodes:

{12, 17}

with strategy

[12->12,17->17]
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Thus PGSolver verifies that the strategy for game PGV((T,T ),NF′
ti), presented in

Example 6.2.2, is correct. Because V has a history-free winning strategy from the

start node (node 0), it follows that (T,T ) |= NF′
ti.

This solution actually tells us two facts: there exists a positional winning strategy from

the start node for player V and what that strategy is. The strategy itself is important

as it provides a witness as to why a hyperproperty holds or does not hold, as well as

some intuition.

Alternatively, if we were only interested in the validity of the checked formula, we

could use PGSolver as follows: perform local model checking to determine whether

player V has a winning strategy from the start node 0. Using any of the local model

checking algorithms implemented by PGSolver gives the following output:

Parsing ..................... 0.00 sec

Chosen local solver ‘modelchecker’ .. 0.00 sec

Visited 18 nodes.

Winner of initial node is player 0

We can also use PGSolver to produce a graph of the parity game PGV((T,T ),NF′
ti),

together with the solution. This can be seen in Figure 6.5. Each position is either a

rhombus or a rectangle. The positions at which player V has to move (i.e. all i s.t.

L(i) = V ) are rhombi and the positions at which player R has a turn are rectangles.

The positions from which player V has a winning strategy are shown in green (gray)

and the ones from which R can win are in red (black). Inside each rhombus/rectangle,

the number before the column is the symbolic name of the position and the number

after is the parity. The strategies are not explicitly given in the figure, however it

is possible to deduce them. Green positions have a winning strategy for V and the

winning strategy is to select a green transition going out of the respective position.

Dually, it is possible to read a winning strategy (if it exists) for R by choosing red

transitions at rectangles. The winning positions for V are in set WV , specified as

WV = {1,10,19,28,82,13,22,31,85,37,46,55,73,48,57,66},

given in green (gray) in Figure 6.5, and the winning positions for R are in set

WR = {64,75},

given in red (black) in Figure 6.5. As expected, WV ∪WR gives the set of all vertices of

the game, because the game is positionally determined (see Theorem 2.10.6).

This example demonstrated that we can use PGSolver to solve the parity game

corresponding to an IHP checking game. However, it would be better if we could

convert the transition system and formula automatically into a parity game, and

subsequently solve that game. To that end, we next show how to use a combination of

MLSolver and mCRL2.
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Figure 6.5: Parity game PGV((T,T ),NF′
ti) with winning positions for V in green

(gray) and R in red (black).

6.5.2 Model Checking without Going through IHP Checking
Games

An alternative approach that constructs the parity game automatically and does not

rely on an IHP checking game is presented next. The needed steps, given systems

(T 1, . . . ,T m, . . . ,T k) and formula Φ, are:

1. Make the product of the systems denoted prod(T 1, . . . ,T m, . . . ,T k), as outlined

in Section 6.4. We were able to do this in mCRL2 using the parallel composition
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operator (||) and disabling the simultaneous occurrence of multiple actions, as

we are not interested in those for the product (see Section 6.5.1).

2. Convert the resulting system prod(T 1, . . . ,T m, . . . ,T k) in a format recognizable

by MLSolver.

3. Convert formula Φ to work on the product prod(T 1, . . . ,T m, . . . ,T k). In essence,

each action in the formula is given a subscript linking it with a particular

transition system. The result is prod(Φ) (see Section 6.4).

4. Use MLSolver to create a parity game for system prod(T 1, . . . ,T m, . . . ,T k) and

formula prod(Φ).

5. Use PGSolver to solve the parity game resulting from step 4.

In principle, writing a tool for fully automating these steps is relatively easy. For the

proof of concept model checking performed in this section, we only wrote a script

performing step 2, as converting between formats of huge systems cannot be easily

done by hand. The feasibility and to some extent scalability of the proposed approach

are demonstrated by the following examples.

Example 6.5.2. Let view V0 be given as: Av = {l}, An = {τ} and Ac = {h}. Consider

system S presented in Figure 6.6.

S

S

S
h

h
τ

l

τ

Figure 6.6: System S

We again use mCRL2 to build the product prod(S1,S2), specified as follows:

act

h1,h2, l1, l2,τ1,τ2;

proc

T1 = h1.l1.T1 + τ1.h1.τ1.T1;

T2 = h2.l2.T2 + τ2.h2.τ2.T2;

S = T1||T2;

init allow({h1,h2, l1, l2,τ1,τ2},S);

The policy we want to check is again prod(NF′
ti), here in the proper format for

MLSolver:

nu X . (([l1]mu Z . (〈l2〉X | 〈τ2〉Z)) & ([h1]X)).
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Figure 6.7: The product prod(S1,S2)

The resulting transition system of prod(S1,S2) can be seen in Figure 6.7. The

transition system is encoded in MLSolver as follows:

lts 16;

start 1;

1 h1:2, tau1:3, h2:4, tau2:5;

2 l1:1, h2:6, tau2:7;

3 h1:8, h2:9, tau2:10;

4 h1:6, tau1:9, l2:1;

5 h1:7, tau1:10, h2:11;

6 l1:4, l2:2;

7 l1:5, h2:12;

8 tau1:1, h2:13, tau2:14;

9 h1:13, l2:3;

10 h1:14, h2:15;

11 h1:12, tau1:15, tau2:1;

12 l1:11, tau2:2;

13 tau1:4, l2:8;

14 tau1:5, h2:16;

15 h1:16, tau2:3;

16 tau1:11, tau2:8;

The specification format is simple. The first line says that the transition system has 16

states, the second line gives the start state 1. Each further line specifies a state and

lists its successors together with the respective labels.
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The output (checking whether prod(NFti
V0
) holds for prod(S1,S2)) in MLSolver is:

Modelchecking Procedure For Labelled Modal Mu Calculus

Game has 15 states.

Calling solver pgsolver...

Finished solving: 0.00 sec

Transition system is no model of the formula!

Hence, we may conclude that (S,S) 6|= NF′
ti.

Instead of solving the game (MLSolver creates the parity game internally and passes

it on to PGSolver by default), it is possible to display the parity game using MLSolver

and the strategy using PGSolver. The respective parity game is:

parity 15;

start 0;

0 2 0 1;

1 0 1 2,3;

2 0 1 2;

3 0 1 4;

4 2 0 5;

5 0 1 6,7;

6 0 1 8;

7 0 1 7;

8 1 0 9;

9 0 0 10,11;

10 1 0 10;

11 0 0 12;

12 1 0 13;

13 0 0 14,15;

14 1 0 14;

15 1 0 15;

The strategy is given as:

Player 0 wins from nodes:

{2, 7}

with strategy

[]

Player 1 wins from nodes:

{0, 1, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15}

with strategy

[1->3,3->4,5->6,6->8]

As player 1, i.e. player R, wins from the start node 0, it has to be that (S,S) 6|= NF′
ti.

Example 6.5.3. We next consider a somewhat larger example specified in mCRL2 as

follows:
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act

h1,h2, l1, l2,τ;

proc

T = (h1.((h2.l1.l2.h1.l2.τ)+(l1.((h1.l1.((l2.l1.T )+(l1.T )))+(h2.l1.T )))))
+(τ.((l1.τ.((τ.((l1.τ.((l2.τ.l1.T )+(l1.T )))+(τ.l1.T )))+(l2.τ.τ.l2.T )))
+(τ.l2.τ.τ.τ.τ.τ.τ.τ.τ.τ.τ.l2.τ.τ.τ.τ.τ.τ.τ.τ.τ.τ.l1.T )))
+(h2.((l2.h1.l1.h1.h1.h2.l2.h1.l1.h1.h1.h2.h2.l1.T )+(h1.l2.l2.h1.l1.T )))
+(h1.h1.h2.h1.T )
+(l2.τ.τ.τ.τ.τ.τ.τ.τ.τ.τ.l1.τ.τ.τ.τ.τ.τ.τ.l2.τ.τ.τ.τ.τ.l1.τ.l1.T );

init allow({h1,h2, l1, l2,τ},T );

Note that view V0 is here given as: Av = {l1, l2}, An = {τ} and Ac = {h1,h2}. This

example is somewhat artificial as it did not come as a result of analyzing a concrete

system. However, it is not difficult to imagine that it can be an abstraction of a possible

system. The construction of the system also reveals a pattern that may be useful: we

started by creating some traces, which were the “useful” behavior of the system, but

would make the system insecure as there were no respective low equivalent modulo τ
traces. Then we added behavior to create some uncertainty for the attacker, eventually

making the system secure with respect to the policy. In principle, one may use the

winning strategy for R to try to incrementally add more traces (uncertainty) to an

insecure system so that in the end the policy would be satisfied.

The product prod(T1,T2) is specified in mCRL2 as follows:

act

h10,h20, l10, l20,τ0,h11,h21, l11, l21,τ1;

proc

T1 = (h10.((h20.l10.l20.h10.l20.τ0)+(l10.((h10.l10.((l20.l10.T1)+(l10.T1)))+(h20.l10.T1)))))
+(τ0.((l10.τ0.((τ0.((l10.τ0.((l20.τ0.l10.T1)+(l10.T1)))+(τ0.l10.T1)))+(l20.τ0.τ0.l20.T )))
+(τ0.l20.τ0.τ0.τ0.τ0.τ0.τ0.τ0.τ0.τ0.τ0.l20.τ0.τ0.τ0.τ0.τ0.τ0.τ0.τ0.τ0.τ0.l10.T1)))
+(h20.((l20.h10.l10.h10.h10.h20.l20.h10.l10.h10.h10.h20.h20.l10.T1)+(h10.l20.l20.h10.l10.T1)))
+(h10.h10.h20.h10.T1)
+(l20.τ0.τ0.τ0.τ0.τ0.τ0.τ0.τ0.τ0.τ0.l10.τ0.τ0.τ0.τ0.τ0.τ0.τ0.l20.τ0.τ0.τ0.τ0.τ0.l10.τ0.l10.T1);

T2 = (h11.((h21.l11.l21.h11.l21.τ1)+(l11.((h11.l11.((l21.l11.T2)+(l11.T2)))+(h21.l11.T2)))))
+(τ1.((l11.τ1.((τ1.((l11.τ1.((l21.τ1.l11.T2)+(l11.T2)))+(τ1.l11.T2)))+(l21.τ1.τ1.l21.T2)))
+(τ1.l21.τ1.τ1.τ1.τ1.τ1.τ1.τ1.τ1.τ1.τ1.l21.τ1.τ1.τ1.τ1.τ1.τ1.τ1.τ1.τ1.τ1.l11.T2)))
+(h21.((l21.h11.l11.h11.h11.h21.l21.h11.l11.h11.h11.h21.h21.l11.T2)+(h11.l21.l21.h11.l11.T2)))
+(h11.h11.h21.h11.T2)
+(l21.τ1.τ1.τ1.τ1.τ1.τ1.τ1.τ1.τ1.τ1.l11.τ1.τ1.τ1.τ1.τ1.τ1.τ1.l21.τ1.τ1.τ1.τ1.τ1.l11.τ1.l11.T2);

S = (T1||T2);
init allow({h10,h20, l10, l20,τ10,h11,h21, l11, l21,τ11},S);

Note that the two copies are T1 and T2, the actions have an extra digit signifying

which copy they belong to (suffix 0 belongs T1 and 1 to T2). The product prod(T1,T2)
is constructed in mCRL2 and converted to the mCRL2 fsm format, which is textual.

The transition system of prod(T1,T2) has the following statistics (using the mCRL2

tool ltsstat):
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Number of states:18415

Number of state labels:18415

Number of action labels:11

Number of transitions:44572

Then we run our script for converting the mCRL2 specification of the transition

system prod(T1,T2) into the format acceptable by MLSolver. The specification is not

presented here due to its size. The formula to be checked against is prod(NF′
ti) and is

given as follows:

nuX .(([l10]muZ.(〈l11〉X |〈τ1〉Z))&([l20]muZ.(〈l21〉X |〈τ1〉Z))&[h10]X&[h20]X).

The result of feeding in the specification and the formula in MLSolver is a parity game

having 2463 nodes. The game is omitted here because it is too large. Then we use

PGSolver to solve the game: the output produced by the tool solving the parity game

locally is:

Parsing ..................... 0.01 sec

Chosen local solver ‘modelchecker’ .. 0.01 sec

Visited 940 nodes.

Winner of initial node is player 0

As a result we may conclude that (T,T ) |= NF′
ti (see Theorem 6.4.2). The winning

strategies given by PGSolver when solving the game globally are too large to be

displayed here. However, this example shows that it is possible to work with relatively

large systems. Empirically exploring the limits on such systems, based on building a

model generator given a formula in Lk
µ as well as converting RIMP programs to sets

of traces and model checking them is left for future work.

6.6 Advantages of Model Checking via Games

We have presented three different approaches to model checking incremental hy-

perproperties. Two of the approaches are game-based and this section presents

some of the advantages of model checking via games in comparison with traditional

approaches, such as the one presented in Section 6.4. Although game graphs similar

to the ones presented in Figures 5.6 and 5.8 are useful for visualizing the respective

games, there is more that can be done for understanding and analyzing IHP checking

games. To demonstrate this, we introduce two new views of IHP checking games.

These views are important to help us focus on interesting aspects of the game and are

based on information that is calculated by the model checking algorithm.

We first present some notation needed for the formalization of the game graphs (of

IHP checking games) and the new views. Let σ = {V,R} denote the set of players. A
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game graph can be formalized as the tuple (V,−→,L), where V is the set of positions

(vertices), −→⊆V×V is a binary relation on vertices, and the partial function L : V→
σ, when defined, denotes whose turn it is at a position. Note that this definition is

slightly different than the one of games from Section 2.10, as the function L is partial.

However, IHP checking games can be converted into parity games having labels on

each node (and thus making L total), as seen in Section 5.5. Recall that the games

we consider are positionally determined. Hence, the strategy for player σ is a partial

function fσ : Vσ → V, where v ∈ Vσ iff L(v) = σ. Let Winσ be the set of winning

positions for player σ, as described in Figure 5.4. Note that technically WinV and

WinR are not part of the game graph and need to be calculated by the model checking

algorithm on the respective game graph. However, we sometimes included them in

the visualizations of graphs for illustrative purposes (e.g. in Figures 5.6 and 5.9).

We next present the extended game graph view, which enhances the game graph with

the winning strategy and at each winning position the complete position itself.

Definition 6.6.1. An extended game graph view is a 3-tuple (G, f G
σ ,WinG), including

the graph view G, the winning strategy f G
σ , where σ ∈ {V,R}, for one of the players,

namely the winner from the start node, and the set of winning positions for both

players denoted WinG =WinG
V ∪WinG

R .

A simple extended game graph view is presented in Figure 6.6.3. The graph

additionally includes the progression of k-tuples of trees along the graph, which is

one possible visualization of the tree view presented next.

The second view presented here is called the tree view of the game. A tree view is a

finite list of the states (k-tuples of trees) visited in a play with stuttering states removed,

starting at the root of the game tree and ending at the respective position. Note that this

is essentially the projection of the history of a play to the states. Recall that SubT(T )
gives the set of k-tuples of subtrees of some k-tuple of trees T .

Definition 6.6.2. A tree view for an IHP checking game HGV((T
1, . . . ,T k),Φ) at

position HGV((T
1

l , . . . ,T
k

m),Φn) is a list of states, starting with (T 1, . . . ,T k) and ending

at (T 1
l , . . . ,T

k
m), without repeating stuttering states.

As an example, the tree view at position 12 in Figure 6.6.3 is: (T,T ),(Th,T ),(Thl ,T ).
The tree view is essentially a view showing the history of a game. The rules for

this game come from the policy to be checked; the arena of the game (the k-tuple of

trees) together with the current position and the rules determine which next moves

are possible. Such games are instances of H ′-simulation games (see Section 5.3) and

were used to illustrate H ′-simulations throughout this thesis (see Examples 3.5,3.6,4.3,

etc.). We think that they capture the intuition behind H ′-simulations well.

The ability of users to see and cross-reference both views introduced above and to

play interactively in IHP checking games in the role of V can be useful for debugging
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purposes: the fact that the system does not satisfy some policy (in Lk
µ ) can be seen

interactively as the inability of V to win the respective game [83]. An advantage of

the views is that they are essentially computed during the model checking process. A

tool such as PGSolver can come up with a winning strategy and the winning positions

for the respective parity game automatically. Thus, the views can be constructed

automatically with relatively minor modifications of existing tools, e.g. PGSolver.

Such modifications would be very efficient as they would allow reuse of a large part

of the code, data structures and utilities, however they require understanding the code

of the respective tool. Alternatively, it is possible to construct a tool based on outputs

produced by existing tools, however this would require a more substantial coding

effort.

In order to better visualize the strategy-based evidence and show that it is useful to

enhance the user’s understanding (why a policy does not hold in cases when R has a

winning strategy), we propose to combine the extended game graph view with the tree

view. This visualization can be done by a specially constructed interactive tool, similar

to the one proposed for property checking games [83]. The visualization starts by

showing the part of the extended game graph view, for which no player is responsible

(such as initial positions) in combination with the respective tree view. At each point

in time there are several options. If the current vertex is labeled R, then V has no

choice but to observe what the next position is. This position is determined by the

winning strategy for R. The play goes into the new position, the extended view is

changed appropriately and the tree view is changed when necessary. If the current

vertex is labeled V , it is V ’s turn to choose a move and the tool presents the formulae

to choose from. If the current vertex is not labeled, the game progresses automatically.

At any time, both views are visualized to the user (for instance, see Figures 6.6.3 and

6.9) and the combined information helps V to make an informed choice. V is also able

to backtrack and explore different plays.

Example 6.6.3. To illustrate these ideas, consider the system T given by the omega-

regular expression (hlh | τhτ)ω. We want to check whether (T,T ) |= NF′
ti, where NF′

ti

is the termination insensitive version of NF′ (restricted to some view (Av,An,Ac) with

Av = {l},An = {τ} and Ac = {h}), given as follows:

NF′
ti =̂ νX . ([l]1µZ.(〈l〉2X ∨〈τ〉2Z))∧ [h]1X .

The extended game graph and the respective positions are given in Figure 6.8.

It is clear that player R has a winning strategy for the IHP checking game

HGV((T,T ),NF′
ti). The strategy is given as the red (grey) arrows.

We next illustrate a visualization, building incrementally the views, that may be helpful

for the user to understand why the policy NF′
ti is violated by system T . Figure 6.9



ADVANTAGES OF MODEL CHECKING VIA GAMES 141

1

V 

2

3

4
5

6

7

8 9

V 

10
11 12

13 14

15

16

17 18

((Thl, T ), 〈l〉2X)

((Thl, Tτ ), 〈l〉2X) ((Thl, Tτ ), 〈τ〉2X)

(T, T )

(Th, T )

R

R

R

V

V

V

(Thl, T )

(Thl, Tτ )

((T, T ), [l]1µZ.(〈l〉2X ∨ 〈τ〉2Z))

((Th, T ), [h]1X)

R

1 : ((T,T ),νX . ([l]1µZ.(〈l〉2X ∨〈τ〉2Z))∧ [h]1X)
2 : ((T,T ),X)
3 : ((T,T ),([l]1µZ.(〈l〉2X ∨〈τ〉2Z))∧ [h]1X)
4 : ((T,T ), [l]1µZ.(〈l〉2X ∨〈τ〉2Z))
5 : ((T,T ), [h]1X)
6 : ((Th,T ),X)
7 : ((Th,T ),([l]1µZ.(〈l〉2X ∨〈τ〉2Z))∧ [h]1X)
8 : ((Th,T ), [l]1µZ.(〈l〉2X ∨〈τ〉2Z))
9 : ((Th,T ), [h]1X)
10 : ((Thl ,T ),µZ.(〈l〉2X ∨〈τ〉2Z))
11 : ((Thl ,T ),Z)
12 : ((Thl ,T ),〈l〉2X ∨〈τ〉2Z)
13 : ((Thl ,T ),〈l〉2X)
14 : ((Thl ,T ),〈τ〉2Z)
15 : ((Thl ,Tτ),Z)
16 : ((Thl ,Tτ),〈l〉2X ∨〈τ〉2Z)
17 : ((Thl ,Tτ),〈l〉2X)
18 : ((Thl ,Tτ),〈τ〉2Z)

Figure 6.8: The extended game graph view of HGV((T,T ),NF′
ti)

presents the positions (and their respective tree views) corresponding to the interesting

plays of the game, namely the plays witnessing the winning strategy for R. The

visualization of the tree view can be seen as a game in its own right: on the arena

of two copies of T , player R moves in the first tree and has a red (light grey) token,

player V moves in the second tree and has a blue (dark grey) token. The rules are
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(d) State (Thl ,Tτ) corresponding

to positions 15, . . . ,18.

Figure 6.9: The tree views of game HGV((T,T ),NF′
ti) at different positions/states

implicit and depend on NF′
ti.

Initially, player V (i.e. the user playing as player V ) sees the extended graph until

position 3 and the tree view in Figure 6.9(a). The next two moves are automatic

and determined by the winning strategy for R. The play is now at position 6, the

extended view consists of positions 1, . . . ,6 and the tree view is the one in Figure 6.9(b).

At positions 7 and 8 player R follows her winning strategy. The extended game

graph progresses and is built to position 10, the respective tree view is the one in

Figure 6.9(c).

Positions 10 and 11 are not labeled so the play goes to position 12, which is the first

possible choice for player V : she is now asked to choose whether to go to position

((Thl ,T ),〈l〉2X) or ((Thl ,T ),〈τ〉2X). If V chooses the first option (position 13), she is

informed that she loses the game. This can be seen in the tree view, as player V has

to make an l-move in the second tree, but making such a move is impossible. The user



RELATION TO H ′-SIMULATION GAMES 143

can backtrack to position 12 and choose to go to position 14 instead. V continues

playing and now the tree view changes to the one in Figure 6.9(d). The play then goes

on until position 16, where V has to choose between positions ((Thl ,Tτ),〈l〉2X) or

((Thl ,Tτ),〈τ〉2X). Choosing either position, the user loses. Consulting the tree view in

Figure 6.9(d), the user can see that neither the action l nor τ can be performed (in the

second tree) at position (Thl ,Tτ) and this is the precise reason for losing. Interestingly,

this is also the reason why the policy does not hold on the system. The two views have

helped identify and visualize the problem. This shows that the views can be used to

provide useful intuition as to what goes wrong in the interaction system-policy.

The techniques presented here can be used to explore any IHP game in Lk
µ on any

finite-state system. The user can systematically explore different paths and strategies

to play against player R. As shown above, this helps with understanding both the

policy and system behavior, as well as their interaction and potential problems.

6.7 Relation to H ′-simulation Games

Recall that H ′-simulation games were introduced in Section 5.3 as games naturally

corresponding to H ′-simulation relations.The games were introduced to give intuition

about and better visualize the H ′-simulations. Interestingly, these are the same games

that we also used in the visualization of our tree views. However, now the rules of the

games have been formalized thanks to the introduction of IHP checking games and

the corresponding parity games. This means that we have succeeded in capturing the

intuition of H ′-simulations, but also have a formal representation of the rules of the

game. By introducing the two different views we can see the game itself in terms of

changes of positions and cleanly separate it from the rules of the game (given by an

Lk
µ formula), which helps clarify the system-policy interaction.

6.8 Discussion and Related Work

The main contribution of this chapter is bridging the gap between model checking

games and IHP checking games and thus enabling practical reasoning about security-

relevant hyperproperties. To achieve this, we proposed two game-based model

checking approaches, enabling the reuse of the plenitude of results on model checking

parity games, in particular algorithms and tools [83, 88, 85, 78]. In this sense, using

the tool PGSolver is particularly beneficial, as it implements most known algorithms

for model checking games, both local, on-the-fly and global ones, as well as some

heuristics to improve performance. Thus, depending on the particular problem, one

may choose an algorithm with good theoretical properties or simply experiment with
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a multitude of different algorithms. More importantly, such a tool seems to be an

excellent candidate to build upon, as it calculates all the data needed to create both

views. As a result, we can easily build an interactive visualization tool, allowing users

to play against player R to enhance their understanding of problematic system-policy

interaction. We have left building such a tool for future work.

The idea of using strategies for the analysis of why a system does not satisfy a policy

is actually not new. Stevens and Stirling [83] present a similar idea of using strategies

to construct and prove the correctness of local, on-the-fly model checking algorithms.

The proof technique is based on open games, which are a generalization of Stirling’s

model checking games allowing systematic exploration of parts of the game. They

also present the idea of visualizing why a property does not hold as a byproduct of the

local model checking algorithm finding the strategy. In comparison with our idea of

visualization via views, their visualization seems to be less intuitive and it is in fact

given by a command line tool. More importantly, our different views present a useful

separation of the states, moves and rules of the game. In addition, our views present a

visualization of the notion of H ′-simulations.

We have not experimented with model checking very large systems with respect to

incremental hyperproperties, as, due to our reduction of the problem to solving parity

games, doing so would be dependent on the concrete algorithms for solving parity

games. Instead, we present a short survey of the time complexity of such algorithms.

Currently, the existence of a polynomial time algorithm for solving parity games is

a major open problem [41]. The reason is that solving a parity game is equivalent

to the problems of model checking the mu-calculus and the complementation of

ω-tree automata [24, 80, 70]. Most of the algorithms for solving parity games

run in exponential time, for instance this is the case for the recursive algorithm by

Zielonka [88] and the strategy improvement one by Vöge and Jurdziński [85].

Surprisingly, the promising and well-behaved in practice (see [29]) policy iteration

algorithms, proposed by Vöge and Jurdziński [85] and Schewe [78], can also take

exponential time on some parity games [28]. The theoretically fastest algorithms for

the problem are randomized algorithms by Kalai [42] as well as by Matoušek, Sharir

and Welzl [56]. The fastest deterministic subexponential (in the size of the game)

algorithm for the solution of parity games uses only polynomial space and runs in

time 2O(
√

n log n), where n is the number of vertices in the game.

Although there is no proof that there are polynomial algorithms for solving parity

games, Friedmann and Lange [29] show that parity games can be solved efficiently in

practice. One of their results is that the recursive algorithm by Zielonka [88] has the

best performance in practice, being able to handle games of size up to 1 million nodes.

Although these results look promising, we acknowledge that the topic of practical

model checking of incremental hyperproperties needs further exploration.
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6.9 Summary

We have demonstrated the potential of practical model checking of incremental

hyperproperties using off-the-shelf tools. There are several potential approaches:

the traditional approach of reducing the problem to model checking a modal mu-

calculus formula on a transformed system as well as game-based approaches. The

latter rely on transforming IHP checking games into parity games or directly produce

a parity game (by transforming a formula and a system) and then solve it. The main

advantage of game-based approaches is the possibility of using a winning strategy

as a witness as to why a particular system is or is not secure with respect to some

policy. We proposed two views, namely the extended game graph view and tree view,

that have the potential to facilitate the illustration of the system-policy interaction.

Possible directions for future work include implementing a tool, based on PGSolver,

that presents the extended game graph view and tree view, as well as developing a

prototype interactive tool based on the views, allowing the user to play against player

R as a means to illustrate the interplay between a system and a policy. In addition, we

would like to extend the approach to decidable classes of infinite state systems and to

consider a game-theoretic semantics for IHP-preserving refinement.





Chapter 7

Conclusions

This dissertation focused on reasoning about hyperproperties, which are important as

they provide an abstract formalization of security policies. The main contributions are

the introduction, formalization and investigation of the classes of security-relevant

holistic and incremental hyperproperties and the development of a framework for

reasoning about these, including verification via model checking games. Our

incremental hyperproperties are instances of novel, general coinductive predicates,

which we discovered and whose importance has been recently reaffirmed [45, 38].

This work can also be seen as giving a blueprint and laying the foundations for a

generic verification methodology for holistic hyperproperties.

7.1 Main Contributions

This work started by identifying and formalizing the important class of holistic

hyperproperties (in Chapter 3), specified using universal and possibly existential

quantification on traces, as well as relations on those traces. We argued that holistic

hyperproperties are important in practice (see, for instance, [75, 18, 19]), however,

they lack a generic verification methodology as the combination of quantification over

traces and the relations on whole infinite traces is difficult to reason about.

To remedy this situation we proposed a framework for reasoning about holistic

hyperproperties based on alternative, coinductive, local specifications called incre-

mental hyperproperties. In addition, we presented some techniques to convert holistic

specifications into incremental ones. We argued (as demonstrated by Chapters 5 and

6) that incremental specifications enjoy feasible verification methodologies, although

147
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the specifications are less intuitive and elegant. By taking an incremental, coalgebraic

perspective on systems and specifications we were able to introduce a framework for

reasoning about both holistic and incremental hyperproperties. Corresponding to an

incremental hyperproperty is the notion of an H ′-simulation relation, a novel type

of coinductive predicate, generalizing bisimulation. These relations are convenient

for verification; moreover an H ′-simulation allows reasoning about the corresponding

holistic hyperproperty H.

To better situate our work in the security research field, we explored the connec-

tion between incremental hyperproperties and the most closely related verification

technique for high level security polices — via unwinding. To achieve this, we

proposed a framework for coinductive unwinding of security-relevant hyperproperties

based on Mantel’s MAKS framework and our work on holistic and incremental

hyperproperties. The resultant framework allows building (alternatively implying)

BSPs from coinductive unwinding relations and composing security-relevant hyper-

properties from BSPs. It turns out that the coinductive unwinding relations in the

enhanced framework are instances of H ′-simulation relations. Thus, we show that the

methodology (via H ′-simulations) can be used to reason about a large class of holistic

hyperproperties, such as (but not limited to) the class of possibilistic information

flow hyperproperties. The latter are instances of liveness hyperproperties, which is

noteworthy: we have gone beyond the current state of the art (boasting a methodology

for k-safety hyperproperties only [19]) and proposed a novel methodology that also

works for a class of liveness hyperproperties. Characterizing the precise class of

liveness hyperproperties, for which our techniques work, is left for future work.

Finally, the ability to reason about infinite systems that cannot be approximated

by finite ones, i.e. about systems in which security-relevant behavior never stops

occurring, also makes our framework noteworthy.

The claim that incremental hyperproperties enjoy feasible verification methodologies

is crucial for our framework for reasoning about hyperproperties. To demonstrate

this, we explored one such methodology based on model-checking games. We

showed that the polyadic modal mu-calculus Lk
µ (and in particular its fragment

ILk
µ ) is a suitable logic for expressing the known incremental hyperproperties. We

introduced H ′-simulation and incremental hyperproperty checking games allowing

the characterization of the satisfaction relation between a system and an incremental

hyperproperty in terms of playing a game. The practical significance of this

characterization is in the potential use of off-the-shelf game-based model checking

tools for incremental hyperproperties. The main advantage of this approach is the

possibility of using a winning strategy as a witness as to why a particular system is or

is not secure with respect to some policy. From a theoretical perspective, the proposed

approach is also feasible, as checking of incremental hyperproperties expressible in

Lk
µ is decidable and can be done in polynomial time.
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7.2 Future Work

In the future, we plan to add some of the missing pieces to the generic framework

presented in this work. One promising direction is characterizing the class of

incrementalizable holistic hyperproperties. In addition, it would be interesting to

explore the topic of hyperproperty-preserving refinement based on H ′-simulation

relations and the game theoretic semantics given here. Another interesting direction is

to incorporate reasoning about quantitative hyperproperties into the framework. The

exploration of methods for dynamic enforcement of hyperproperties and characteriz-

ing the class of dynamically enforceable hyperproperties is another exciting direction

for future work. Finally, we would like to extend the approach to decidable classes of

infinite state systems. We next present some of these ideas in more detail.

7.2.1 Incrementalizable Holistic Hyperproperties

How useful and interesting our proposed framework is depends significantly on

how large the class of incremental/incrementalizable security policies is. So far,

we have shown that such a class is substantial, by establishing a connection with

unwinding conditions, which are instances of H ′-simulation relations. It would be

interesting from both theoretical and practical perspectives to characterize the class

of incrementalizable holistic hyperproperties. That would mean that we have a

framework for reasoning about and verifying policies in that substantial class.

7.2.2 Hyperproperty-preserving Refinement

Stepwise refinement [46] is an important technique for software construction. One

typically starts with a very general system specification, which is made increasingly

more concrete until one gets to a specification so concrete that it can be directly

coded in a programming language. The technique has the advantage that bugs

can be found early on in the development life-cycle. At each level of refinement,

the system becomes more concrete and thus the set of allowed traces becomes

smaller [46]. For system specifications as properties the problem is trivial as

refinements (as subsets of a trace set) are guaranteed to preserve the property.

However, hyperproperties are in general not preserved under refinement [19, 54, 7]

(except for the class of subset-closed hyperproperties [19]). There are some results

for refinement of concrete information flow hyperproperties: Mantel proposes several

refinement operators that preserve the policy and Alur et al. [7] propose the use of

simulation relations for secrecy-preserving refinement. Based on these results and

on an initial investigation we believe that our H ′-simulations can be applied for

reasoning about hyperproperty-preserving refinement. Moreover, as we have given
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game semantics to hyperproperties, we are interested in exploring the potential of

game-based hyperproperty-preserving refinement.

7.2.3 Reasoning about Quantitative Hyperproperties

The hyperproperties we have explored are qualitative in nature: they are specifications

that either hold or do not hold, i.e. predicates Hi with signature Hi : X → 2.

However, there are a number of hyperproperties that are quantitative specifications,

i.e. predicates Qi with signature Qi : X → R. Such examples are quantitative

information flow [14], belief-based quantitative information flow [17], probabilistic

noninterference [40], etc. It is interesting to explore the applicability of our techniques

for such definitions. One immediate way to bootstrap such an exploration is

by studying the model checking games for (a fragment of) the quantitative mu-

calculus [25] on linear hybrid systems, using metric coinduction [44] as a reasoning

technique.

7.2.4 Towards Dynamic Enforcement of Hyperproperties

It is well-known that security policies that are safety properties can be enforced at

runtime by a technique called execution monitoring [79]. Schneider defined a class

of monitors (called security automata) to enforce safety properties; each step of

the application (on which the policy has to be enforced) is allowed if and only if

the respective automaton can also produce the same step. The monitors can only

enforce safety properties. Later on, it turned out that certain types of monitors (called

edit automata) can be used to enforce some nonsafety properties [50]. It would

be interesting whether a parallel can be drawn and results transferred to safety and

liveness hyperproperties. Some reasons for this speculation are presented next.

It is known that a version of secure information flow (essentially stipulating that the

low outputs of a program should not depend on high inputs, which is a 2-safety

hyperproperty) can be reduced to a safety property on a product of the system with

itself [84]. As a result, it seems natural that dynamic enforcement of at least some

safety hyperproperties should be feasible; these are at least the safety hyperproperties,

which can be reduced to a safety property on a k-product of the candidate system

(i.e. the k-safety hyperproperties). Indeed, Devriese and Piessens propose such an

enforcement method [22] (called secure multi-execution) for a particular definition of

secure information flow which is a 2-safety hyperproperty. Their main idea is that a

program, if executed multiple times, once for each security level and giving inputs

and outputs special treatment, becomes automatically secure. It would be interesting

to further explore the analogy with safety and liveness properties by considering the

following questions. Can all safety hyperproperties be dynamically enforced? If not,
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can at least the k-safety hyperproperties (which can be reduced to safety properties

on a k-product of the system of interest) be enforced at runtime? Can some liveness

hyperproperties be enforced at runtime and if yes, precisely which class? These are

exciting directions for future work and we believe that our framework has the suitable

machinery for exploring them.





Appendix A

Proofs from Chapter 3

A.1 Proofs for PHH2.

Lemma 3.3.2. The predicate PHH2(X ,Y ) holds iff

ε ∈ X → ε ∈ Y ∧ (∀a ∈ A ∀w ∈ A∞. aw ∈ X →

∃b ∈ A ∃u ∈ A∞. bu ∈ Y ∧a R b∧ c(aw,bu)).

Proof. By mutual implication.

(⇒) Straightforward unfolding of the holistic definition PHH2.

(⇐) By folding the resultant formula, we get the original definition of PHH2.

Lemma 3.3.3. The predicate PHH2(X ,Y ) holds iff

o(X)→ o(Y )∧ (∀a ∈ A ∀Xa ⊆ Sys . X
a−→ Xa → (∀w ∈ A∞. w ∈ Xa →

∃b ∈ A ∃Yb ⊆ Sys . Y
b−→ Yb ∧a R b∧∃u ∈ A∞. u ∈ Yb ∧ c(w,u))).

Proof. By mutual implication.

(⇒) Start with the result of Lemma 3.3.2 and lift the definition from sets of traces

to trees. An important fact is that trees have to be well-formed, so as to match the

requirement on languages of partial automata to be nonempty, closed and consistent

153
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(see Section 2.6).

(⇐) Convert back the definition lifted on trees to sets of traces. Then use the result of

Lemma 3.3.2.

Lemma 3.3.4. The predicate PHH2(X ,Y ) holds iff

o(X)→ o(Y )

∧ (∀a ∈ A ∀Xa ⊆ Sys . X
a−→ Xa → (∃b ∈ A ∃Yb ⊆ Sys . Y

b−→ Yb ∧a R b ∧

(∀w ∈ A∞. w ∈ Xa →∃u ∈ A∞. u ∈ Yb ∧ c(w,u)))).

Proof. By mutual implication.

(⇒) Start with the result of Lemma 3.3.3. Then swap the quantifiers ∃b and ∀w; this

can be done as b= f (a) and effectively b may be replaced with f (a) and the existential

quantifier on b can be safely removed; the function f is called a Skolem function.

(⇐) The backward swap of the quantifiers is not problematic because in general

∃y∀x.φ(x,y)→∀x∃y.φ(x,y). Then use the result of Lemma 3.3.3.

Lemma 3.3.5. The predicate PHH2(X ,Y ) holds iff

o(X)→ o(Y )

∧ (∀a ∈ A ∀Xa ⊆ Sys . X
a−→ Xa →∃b ∈ A ∃Yb ⊆ Sys . Y

b−→ Yb ∧a R b ∧PHH2(Xa,Yb)).

Proof. By mutual implication.

(⇒) Start with the result of Lemma 3.3.4. Rearrange the resulting expression and fold

the definition of PHH2.

(⇐) Unfold the definition of PHH2 and rearrange the resultant expression. Then use

the result of Lemma 3.3.4.

Define function fl : A∞ → A∞, applying f in a pointwise manner, coinductively:

coind

fl(ε) = ε

fl(x) = y f (a) = b
coind

fl(a · x) = b · y

The following lemma uses an equivalent definition of PHH2 that gets rid of the

existential.
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Lemma A.1.1. For all S,T ∈ Sys and for all x ∈ S, we have that PIH2(S,T )→ (x ∈
S → fl(x) ∈ T ).

Proof. By coinduction.

The CH is: ∀S,T ⊆ Sys ∀x ∈ S.PIH2(S,T )→ (x ∈ S → fl(x) ∈ T ). Destruct x as a ·w.

Unfold the coinductive definition of PIH2. Because a ·w ∈ S, w ∈ Sa. Because of the

definition of PIH2, we know that in S, one can take an a transition and in T , one will

be guaranteed to be able to make an f (a) transition and the resultant state would be

related by PIH2; that is PIH2(Sa,Tf (a)). By the CH, we have that fl(w) ∈ Tf (a). It

follows that fl(a ·w) ∈ T , as needed. The case when ε ∈ S is trivial.

Theorem 3.3.6 (Incrementalization of PHH2). For all S,T ⊆ Sys, we have that

PHH2(S,T ) iff PIH2(S,T ).

Proof. By coinduction.
(⇒) Coinduction hypothesis CH: for all S,T ⊆ Sys, PHH2(S,T )→ PIH2(S,T ).
By Lemma 3.3.5 PHH2(S,T ) is replaced by its equivalent definition:

o(S)→ o(T )

∧ (∀a ∈ A ∀Sa ⊆ Sys . S
a−→ Sa →∃b ∈ A ∃Tb ⊆ Sys . T

b−→ Tb ∧a R b ∧PHH2(Sa,Tb)).

Then PIH2(S,T ) is destructed as:

(o(S)→ o(T )

∧ (∀a ∈ A. ∀Sa ⊆ Sys . S
a−→ Sa →∃b ∈ A ∃Tb ⊆ Sys . T

b−→ Tb ∧a R b∧PIH2(Sa,Tb))).

Clearly, PHH2(S,T ) implies PHH2(Sa,Tb) whenever ∃Sa ⊆ Sys.S
a−→ Sa and b = f (a).

By the coinduction hypothesis CH it follows that PIH2(Sa,Tb). Thus we may conclude

that PIH2(S,T ). The case when ε ∈ S is trivial by applying CH.

(⇐) Directly follows from Lemma A.1.1, because ∀x ∈ S · fl(x) ∈ T is reformulation

of PHH2(S,T ).

Note that all proofs in Appendix A.1 have been verified in Coq.

A.2 Proofs for SHH2.

First, unfold the holistic definition of SHH2.
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Lemma A.2.1. The predicate SHH2(X ,Y ) holds iff

∀a ∈ A ∀w ∈ Aω. (p(a)∧aw ∈ X →

∃b ∈ A ∃u ∈ A∞.bu ∈ Y ∧ b = f (a)∧ c1(aw,bu))

∧∀a ∈ A ∀w ∈ Aω. (¬p(a)∧aw ∈ X →∃y ∈ A∞.y ∈ Y ∧ c1(aw,bu)).

Proof. By mutual implication.

(⇒) Straightforward unfolding of the holistic definition SHH2.

(⇐) By folding the resultant formula, we get the original definition of SHH2.

Lemma A.2.2. The predicate SHH2(X ,Y ) holds iff

∀a ∈ A. ∀Xa ⊆ Sys . X
a−→ Xa ∧ p(a)→∀w ∈ Aω.w ∈ Xa →

∃b ∈ A ∃Yb ⊆ Sys . Y
b−→ Yb ∧b = f (a)→∃u ∈ Aω.u ∈ Yb ∧ c1(w,u)

∧∀a ∈ A. ∀Xa ⊆ Sys . X
a−→ Xa ∧¬p(a)→∀w ∈ Aω.w ∈ Xa →

∃u ∈ Aω.u ∈ Y ∧ c1(w,u)

Proof. By mutual implication.

(⇒) Start with the result of Lemma A.2.1 and lift the definition from sets of traces to

trees.

(⇐) Convert back the definition lifted on trees to sets of traces. Then use the result of

Lemma A.2.1.

Lemma A.2.3. The predicate SHH2(X ,Y ) holds iff

∀a ∈ A. ∀Xa ⊆ Sys . X
a−→ Xa ∧ p(a)→∃b ∈ A ∃Yb ⊆ Sys . Y

b−→ Yb ∧b = f (a)→

∀w ∈ Aω.w ∈ Xa →∃u ∈ Aω.u ∈ Yb ∧ c1(w,u)

∧∀a ∈ A. ∀Xa ⊆ Sys . X
a−→ Xa ∧¬p(a)→∀w ∈ Aω.w ∈ Xa →

∃u ∈ Aω.u ∈ Y ∧ c1(w,u)

Proof. By mutual implication.

(⇒) Start with the result of Lemma A.2.2. Then swap the quantifiers ∃b and ∀w; this

can be done as b= f (a) and effectively b may be replaced with f (a) and the existential
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quantifier on b can be safely removed. (⇐) The backward swap of the quantifiers is

not problematic because in general ∃y∀x.φ(x,y) → ∀x∃y.φ(x,y). Then use the result

of Lemma A.2.2.

Lemma A.2.4. The predicate SHH2(X ,Y ) holds iff

∀a ∈ A. ∀Xa ⊆ Sys . X
a−→ Xa ∧ p(a)→∃Yb ⊆ Sys.Y

f (a)−−→ Yb ∧SHH2(Xa,Y f (a))

∧∀a ∈ A. ∀Xa ⊆ Sys . X
a−→ Xa ∧¬p(a)→ SHH2(Xa,Y ).

Proof. By mutual implication.

(⇒) Start with the result of Lemma A.2.3. Rearrange the resulting expression and fold

the definition of SHH2.

(⇐) Unfold the definition of SHH2 and rearrange the resultant expression. Then use

the result of Lemma A.2.3.

Now some helper lemmas to prove the main result: Theorem 3.3.11.

Lemma 3.3.9. For all s, t ∈ Aω, we have that (ps(t)∧ s∼p t)→ c1(s, t).

Proof. By coinduction.

The coinduction hypothesis CH is ∀s, t ∈ Aω.(ps(t)∧ s∼p t)→ c1(s, t). First, destruct

s and t as a ·w and b · u. Then use inversion on ps(t) (results in p(b) and ps(u)) and

s∼p t (resulting in the following case analysis, with two viable cases).

• p(a), p(b) and w∼p u. By CH we have c1(w,u). Because b = f (a) and by

definition of c1, p(a), p(b) and c1(w,u), it follows that c1(a ·w,b ·u).

• ¬p(a), p(b) and w∼p b · u. By CH we have c1(w,b · u). By definition of c1,

¬p(a) and c1(w,b ·u), we have c1(a ·w,b ·u).

Lemma 3.3.10. For all s, t ∈ P�♦, we have that c1(s, t)→ (ps(t)∧ s∼p t).

Proof. The proof of c1(s, t) → ps(t) follows by contradiction, assuming ∃s∃t · s ∈
P�♦∧ t ∈ P�♦∧ c1(s, t)→¬ps(t).
The proof of c1(s, t) → s∼p t proceeds by coinduction. The coinduction hypothesis

CH is ∀s, t ∈ P�♦.c1(s, t)→ s∼p t. First, destruct s and t as a ·w and b · u. Then use

inversion on s ∈ P�♦ (results in w ∈ P�♦) and c1(s, t) (resulting in the following case

analysis, with two viable cases).
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• p(a), p(b) and c1(w,u). By CH we have w∼p u. Because b = f (a) and by

definition of the first rule of ∼p, p(a), p(b) and w∼p u, it follows that a ·w∼p b ·
u.

• ¬p(a) and c1(w,b · u). By CH we have w∼p b · u. By definition of the second

rule of ∼p, ¬p(a) and c1(w,b ·u), we have a ·w∼p b ·u.

Let filter : P�♦ → P�♦ be the usual function filtering ¬p events. Such a function is

guaranteed to be productive as long as it is applied to streams in P�♦. Define function

fl : Aω → Aω, applying f in a pointwise manner, coinductively:

fl(x) = y f (a) = b
coind

fl(a · x) = b · y

Lemma A.2.5. For all x ∈ P�♦, the following predicate holds c1(x, f l(filter x)).

Proof. By coinduction.

The coinduction hypothesis CH is ∀x ∈ P�♦.c1(x, f l(filter x)). Destruct x as a ·w and

perform case analysis on a:

• p(a). By the CH c1(w, f l(filter w)). By the definition of c1, we have c1(a ·
w, f (a) · f l(filter w)).

• ¬p(a). Because a ·w ∈ P�♦, it is guaranteed that there will eventually be an

element b ∈ A such that p(b). Without loss of generality assume this b to be the

first such element in w. By reasoning as in the previous case and applying CH

and the first rule of the definition of c1, it follows that c1(x, f l(filter x)).

Lemma A.2.6. For all x ∈ P�♦, y,y1 ∈ Aω, c1(x,y) and c1(x,y1) imply that y ∼ y1.

Proof. By coinduction.

The coinduction hypothesis CH is ∀x ∈ P�♦∀y ∈ Aω∀y1 ∈ Aω.(c1(x,y)∧ c1(x,y1))→
y ∼ y1 Start by using inversion on c1(x,y) and c1(x,y1). Case analysis on the fist

element of x:

Case 1: p(x(0))
By the inversion of c1(x,y), we have that p(y(0)) and f (x(0)) = y(0) and c1(x

′,y′).
Also by the inversion of c1(x,y1), we have that p(y1(0)) and f (x(0)) = y1(0) and

c1(x
′,y′1). By CH we have y′ ∼ y′1. Also y(0) = y1(0), as needed. Thus y ∼ y1.
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Case 2: ¬p(x(0))
Since x ∈ P�♦ there exists a first k such that p(x(k)). By the inversion of c1(x,y), it

follows that p(y(0)) and y(0) = f (x(k)). Similarly p(y1(0)) and y1(0) = f (x(k)). It

follows that y(0) = y1(0) and by the coinduction hypothesis y′ ∼ y′1, as needed.

Lemma A.2.7. For all x,y,y1 ∈ P�♦, c1(x,y) and c1(x,y1) imply that y = y1.

Proof. Trivial as bisimilarity implies equality in the final coalgebra of streams. Note

that in all proofs about elements in P�♦, productivity of the definitions is guaranteed

by the fact they are in P�♦. This fact could also be seen as a fairness condition (such

that one side of the definition does not go infinitely far ahead of the other).

Lemma A.2.8. For all X ,Y ∈ P�♦,x ∈ P�♦, SIH2(X ,Y ) and x ∈ X imply that

fl( f ilter(x)) ∈ Y .

Proof. By contradiction.

Let Xγ denote the derivative of some system X w.r.t. a string γ. Assume there exist

systems S,T, stream s ∈ P�♦ with SIH2(S,T ), s ∈ S and fl( f ilter(s)) 6∈ T . Let t =
fl( f ilter(s)). Note that there exists some 2-tuple (Sse ,Tte) such that se · s′ = s and

te · t ′ = t, te = fl( f ilter(se)), s′(0) = a, p(a) hold, but ¬test f (a)Tte (because of the

restriction P�♦). This directly contradicts the assumption that SIH2(X ,Y ).

The following lemma uses an equivalent definition of SHH2 that gets rid of the

existential.

Lemma A.2.9. For all S,T ⊆ P�♦ and for all x ∈ S, we have that SIH2(S,T )→ (x ∈
S → (fl(filter x) ∈ T )).

Proof. By coinduction.

The CH is: ∀S,T ⊆ P�♦ ∀x ∈ S.SIH2(S,T )→ (x ∈ S → fl(filterx) ∈ T ). Destruct x as

a ·w. Unfold the coinductive definition of SIH2. Because a ·w ∈ S, w ∈ Sa. Because of

the definition of SIH2, we know that if in S, one can take an a transition s.t. p(a) then

in T , one will be guaranteed to be able to make an f (a) transition and the resultant

state would be related by SIH2. That is SIH2(Sa,Tf (a)). Alternatively, if testa(S) and

¬p(a), then SIH2(Sa,T ). By the CH and since a ·w ∈ P�♦, we have that fl(w) ∈ T . It

follows that fl(filter(a ·w)) ∈ T , as needed.

Theorem 3.3.11 (Incrementalization of SHH2). For all S,T ∈ P�♦, we have that

SHH2(S,T ) iff SIH2(S,T ).
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Proof. By coinduction.
(⇒) Coinduction hypothesis CH: for all S,T ∈ P�♦, SHH2(S,T )→ SIH2(S,T ).
By Lemma A.2.4 SHH2(S,T ) is replaced by its equivalent definition:

∀a ∈ A. ∀Sa ⊆ Sys . S
a−→ Sa ∧ p(a)→∃Tb ⊆ Sys.T

f (a)−−→ Tb ∧SHH2(Sa,Tf (a))

∧∀a ∈ A. ∀Sa ⊆ Sys . S
a−→ Sa ∧¬p(a)→ SHH2(Sa,T ).

Then SIH2(X ,Y ) is destructed as:

(∀a ∈ A ∀Sa ⊆ Sys . S
a−→ Sa ∧ p(a)→∃Tb ⊆ Sys.T

f (a)−−→ Tb ∧SIH2(Sa,Tf (a))

∧∀a ∈ A. ∀Sa ⊆ Sys . S
a−→ Sa ∧¬p(a)→ SIH2(Sa,T ))

Case 1: Whenever p(a) and testa(S), SHH2(S,T ) implies SHH2(Sa,Tf (a)) . By CH

it follows that SIH2(Sa,Tf (a)); therefore, it must be that SIH2(S,T ) (same definition,

taking the derivative is deterministic).

Case 2: Whenever ¬p(a) and testa(S), SHH2(S,T ) implies SHH2(Sa,T ). By CH it

follows that SIH2(Sa,T ); therefore, it must be that SIH2(S,T ).
(⇐) Directly from Lemma A.2.9.

Note that most proofs in Appendix A.2 (except some proofs related to filter and the

productivity of the definitions, notoriously difficult in Coq) have been verified in Coq.

A.3 Proofs for OHH.

The proofs are not too different from previous ones and some details are skipped. First,

unfold the holistic definition of OHH.

Lemma A.3.1. The predicate OHH2(X ,Y ) holds iff

∀a ∈ A ∀w ∈ A∞. aw ∈ X →

∀b ∈ A ∀u ∈ A∞.bu ∈ Y → a ·w∼pti b ·u → a ·w∼pt b ·u

Proof. By mutual implication.

Straightforward.
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Next, we proceed simplifying the formula:

∀a ∈ A ∀w ∈ A∞. aw ∈ X →

∀b ∈ A ∀u ∈ A∞.bu ∈ Y → a ·w∼pti b ·u → a ·w∼pt b ·u

with case analysis on a and b give the following interesting cases (remaining cases are
impossible):
Case 1: a ∈ Ai ∧ p(a) and b ∈ Ai ∧ p(b)
Under this restriction, we have the following

∀a ∈ Ai ∀w ∈ A∞.p(a)∧aw ∈ X →

∀b ∈ Ai ∀u ∈ A∞.p(b)∧bu ∈ Y → a ·w∼pti b ·u → a ·w∼pt b ·u

m

∀a ∈ Ai. ∀Xa ⊆ Sys . X
a−→ Xa ∧ p(a)→∀b ∈ Ai ∀Yb ⊆ Sys . Y

b−→ Yb ∧ p(b)→

∀w ∈ Xa∀u ∈ Yb.(b = f (a)∧w∼pti u → w∼pt u)

m

∀a ∈ Ai∀b ∈ Ai. ∀Xa ⊆ Sys ∀Yb ⊆ Sys . X
a−→ Xa ∧Y

b−→ Yb ∧ p(a)∧∧p(b)→

∀w ∈ Xa∀u ∈ Yb.(b = f (a)∧w∼pti u → w∼pt u)

m

∀a ∈ Ai ∀b ∈ Ai ∀Xa ⊆ Sys ∀Yb ⊆ Sys . X
a−→ Xa ∧Y

b−→ Yb ∧ p(a)∧ p( f (a))→

OHH2(Xa,Yb)
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Case 2: a ∈ Ao ∧ p(a) and b ∈ Ao ∧ p(b)
Under this restriction, we have the following

∀a ∈ Ao ∀w ∈ A∞.p(a)∧aw ∈ X →

∀b ∈ Ao ∀u ∈ A∞.p(b)∧bu ∈ Y → a ·w∼pti b ·u → a ·w∼pt b ·u

m

∀a ∈ Ao. ∀Xa ⊆ Sys . X
a−→ Xa ∧ p(a)→∀b ∈ Ao ∀Yb ⊆ Sys . Y

b−→ Yb ∧ p(b)→

∀w ∈ Xa∀u ∈ Yb.(w∼pti u → a ·w∼pt b ·u)

m

∀a ∈ Ao∀b ∈ Ao. ∀Xa ⊆ Sys ∀Yb ⊆ Sys . X
a−→ Xa ∧Y

b−→ Yb ∧ p(a)∧ p(b)→

∀w ∈ Xa∀u ∈ Yb.(w∼pti u → (b = f (a)∧w∼pt u))

m

∀a ∈ Ao ∀b ∈ Ao. ∀Xa ⊆ Sys ∀Yb ⊆ Sys . X
a−→ Xa ∧Y

b−→ Yb ∧ p(a)∧ p(b)→

b = f (a)∧OHH2(Xa,Yb).
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Case 3: a ∈ A∧¬p(a) and b ∈ A∧¬p(b)
Under this restriction, we have the following

∀a ∈ A ∀w ∈ A∞.¬p(a)∧aw ∈ X →

∀b ∈ A ∀u ∈ A∞.¬p(b)∧bu ∈ Y → a ·w∼pti b ·u → a ·w∼pt b ·u

m

∀a ∈ A. ∀Xa ⊆ Sys . X
a−→ Xa ∧¬p(a)→∀b ∈ A ∀Yb ⊆ Sys . Y

b−→ Yb ∧¬p(b)→

∀w ∈ Xa∀u ∈ Yb.(w∼pti u → w∼pt u)

m

∀a ∈ A. ∀Xa ⊆ Sys . X
a−→ Xa ∧¬p(a)→∀b ∈ A ∀Yb ⊆ Sys . Y

b−→ Yb ∧¬p(b)→

OHH2(Xa,Yb)

∀a ∈ A ∀b ∈ A ∀Xa ⊆ Sys ∀Yb ⊆ Sys . X
a−→ Xa ∧Y

b−→ Yb ∧¬p(a)∧¬p(b)→

OHH2(Xa,Yb)

Case 4: x = ε implies that ε∼pti y → ε∼pt y; thus y = ε by definition. y = ε implies

that x∼pti ε → x∼pt ε; thus x = ε by definition.

Lemma A.3.2. The predicate OHH2(X ,Y ) holds iff

(o(X)↔ o(Y )

∧∀a ∈ Ai ∀b ∈ Ai ∀Xa ⊆ Sys ∀Yb ⊆ Sys . X
a−→ Xa ∧Y

b−→ Yb ∧ p(a)∧ p( f (a))→ OHH2(Xa,Yb)

∧∀a ∈ Ao ∀b ∈ Ao. ∀Xa ⊆ Sys ∀Yb ⊆ Sys . X
a−→ Xa ∧Y

b−→ Yb ∧ p(a)∧ p(b)→

b = f (a)∧OHH2(Xa,Yb)

∧∀a ∈ A ∀b ∈ A ∀Xa ⊆ Sys ∀Yb ⊆ Sys . X
a−→ Xa ∧Y

b−→ Yb ∧¬p(a)∧¬p(b)→ OHH2(Xa,Yb)).

Proof. By mutual implication, using the 4 cases presented above.

Theorem 3.3.14 (Incrementalization of OHH2). For all S,T ⊆ Sys, we have that

OHH2(S,T ) iff OIH2(S,T ).
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Proof. By coinduction.

(⇒) Coinduction hypothesis CH: for all S,T ⊆ Sys, OHH2(S,T )→ OIH2(S,T ).

By Lemma A.3.2 OHH2(S,T ) is replaced by its equivalent definition:

(o(S)↔ o(T )

∧∀a ∈ Ai ∀b ∈ Ai ∀Sa ⊆ Sys ∀Tb ⊆ Sys . S
a−→ Sa ∧T

b−→ Tb ∧ p(a)∧ p( f (a))→ OHH2(Sa,Tb)

∧∀a ∈ Ao ∀b ∈ Ao. ∀Sa ⊆ Sys ∀Tb ⊆ Sys . S
a−→ Sa ∧T

b−→ Tb ∧ p(a)∧ p(b)→

b = f (a)∧OHH2(Sa,Tb)

∧∀a ∈ A ∀b ∈ A ∀Sa ⊆ Sys ∀Tb ⊆ Sys . S
a−→ Sa ∧T

b−→ Tb ∧¬p(a)∧¬p(b)→ OHH2(Sa,Tb)).

Then OIH2(S,T ) is destructed as:

(o(S)↔ o(T )

∧∀a ∈ Ai ∀b ∈ Ai ∀Sa ⊆ Sys ∀Tb ⊆ Sys . S
a−→ Sa ∧T

b−→ Tb ∧ p(a)∧ p( f (a))→ OIH2(Sa,Tb)

∧∀a ∈ Ao ∀b ∈ Ao. ∀Sa ⊆ Sys ∀Tb ⊆ Sys . S
a−→ Sa ∧T

b−→ Tb ∧ p(a)∧ p(b)→

b = f (a)∧OIH2(Sa,Tb)

∧∀a ∈ A ∀b ∈ A ∀Sa ⊆ Sys ∀Tb ⊆ Sys . S
a−→ Sa ∧T

b−→ Tb ∧¬p(a)∧¬p(b)→ OIH2(Sa,Tb)).

Clearly, OHH2(S,T ) implies OHH2(Sa,Tf (a)) whenever a ∈ Ai ∧ testa(X)∧ p(a)∧
test f (a)(T ). By the coinduction hypothesis CH it follows that OIH2(Sa,Tb). Because

the constructors are identical, it follows that OHH2(S,T ) → OIH2(S,T ). Similarly

for the case when a ∈ Ao ∧ b ∈ Ao ∧ testa(X)∧ p(a)∧ testb(Y )∧ p(b) and the case

a ∈ A∧b ∈ A∧ testa(S)∧¬p(a)∧ testb(Y )∧¬p(b).
(⇐) By coinduction.

The coinduction hypothesis is CH : for allS,T ⊆ Sys we have

OIH2(S,T )→∀x ∈ S ∀y ∈ T.x∼pti y → x∼pt y

Proof by inversion on the assumption x∼pti y, where x = a ·w and y = b ·u:

Case 1: a ∈ Ai ∧ p(a)∧ b ∈ Ai ∧ p(b). By our assumption (x∼pti y) we know that

b = f (a) and by OIH2(S,T ) we know OIH2(Sa,Tf (a)). By CH it follows that w∼pt u

and we can conclude by the definition of ∼pt (second rule) that aw∼pt bu.

Case 2: a ∈ Ao ∧ p(a)∧b ∈ Ao ∧ p(b). By our assumption (OIH2(S,T )) we know that

b = f (a) and OIH2(Sa,Tf (a)). By CH it follows that w∼pt u and we can conclude by

the definition of ∼pt (second rule) that aw∼pt bu.
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Case 3: ¬p(a)∧¬p(b). By assumptions we know that OIH2(Sa,Tb) and w∼pti u. By

CH it follows that w∼pt u. By the definition of ∼pt (third rule) we have aw∼pt bu.

Case 4: x = ε or y = ε: as before and by the CH and third rule ε∼pt ε.

Theorem 3.4.3. The predicate H ′(S1, . . . ,Sk) on G-systems 〈Si,αi,xi〉 for i∈ 1..k holds

iff there exists some H-simulation Q s.t. the k-tuple of the start states 〈x1, . . . ,xk〉 ∈ Q.

Proof. Straightforward using Q ⊆ ΨH ′(Q) and gfp(ΨH ′) = H ′ and the Knaster-Tarski

coinduction principle (see Equation 3.1).





Appendix B

Proofs from Chapter 4

Theorem 4.3.3. Let V = (Av,An,Ac) be a view and T be a set of traces. Then the

following implications hold: BSDV (T )→ DV(T ) and DV(T )→ RV(T ).

Proof. BSDV (T )→ DV(T ): from the definition and selecting β′ = β.

DV(T ) → RV(T ): proof techniques similar to the one used in Appendix A and our

recent work [63]. First, define DV
2(X ,Y ) and RV

2(X ,Y ) to be the same as DV and RV

but taking two parameters. In other words

DV(X ,Y ) =̂ ∀α ∈ A∞ ∀β ∈ A∗ ∀c ∈ Ac . [β · c ·α ∈ X →

∃α′ ∈ A∞,β′ ∈ A∗. (β′ ·α′ ∈ Y ∧β′≈Av∪Ac β∧α′≈Av∪Ac α)]

RV
2(X ,Y ) =̂ ∀σ ∈ X ∃γ ∈ Y . (noAc(γ) ∧ σ≈Av γ).

For all T ∈ Sys we have DV
2(T,T ) iff DV(T ), similarly we have RV

2(T,T ) iff RV(T ).
Proceed by coinduction with hypothesis: CH2 : ∀S,T ∈ Sys.DV(S,T ) → RV(S,T ).
Assume DV(T,T ) holds and let t0 be an arbitrary trace s.t. t0 ∈ T . Now destruct t0.

If t0 = ε the needed trace is ε. Otherwise, t0 is destructed as β · c ·α. Without loss

of generality assume that noAc(β). Because DV(T,T ) holds it has to be that there is

a trace t1 ∈ T s.t. t1 = β′ ·α′, β′ ∈ A∗,α′ ∈ A∞, β′≈Av β, noAc(β
′) and α≈Av∪Ac α′.

Because β′≈Av β · c, we are ready to apply CH with (Tβ·c,Tβ′). It follows that there

is trace α′′ ∈ A∞ s.t. α′′ ∈ Tβ′ , noAc(α
′′) and α≈Av α′′. Hence the required trace is

β′α′′.
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Lemma 4.5.1. Let T,S ∈ Sys be arbitrary systems and R ⊆ T × S be a relation. If

oscV (T,S,R) holds then we have

∀α1 ∈ (A\Ac)
∗.(test∗α1

(T ) →

∃α2 ∈ (A\Ac)
∗. (testα2

(S)∧α1≈Av α2 ∧ (Tα1
,Sα2

) ∈ R)).

Proof. Assume that oscV (T,S,R) holds for some T,S ∈ Sys. Let α1 be an arbitrary

trace such that α1 ∈ (A \Ac)
∗ and test∗α1

(T ). Proceed by induction on the length of

α1.

Base case: for α1 = ε take α2 = ε (and by definition of oscV ).

Induction case: assume that α1 has length k+1, i.e. it can be destructed as α1 = a ·w
for some a ∈ A \Ac and w ∈ A∗. It has to be that testa(T ). Hence there exists some

word σ ∈ (A \Ac)
∗ such that testσ(S) and a≈Av σ and (Ta,Sσ) ∈ R (by definition of

oscV ). By the inductive hypothesis there is u ∈ (A \ Ac)
∗ such that testu(Sσ) and

w≈Av u. Thus, for α1 = a · w there is a trace α2 = σ · u such that α1≈Av α2 and

(Tα1
,Sα2

) ∈ R.

Lemma 4.5.2. For all T,S ∈ Sys if there exists R ⊆ T ×S s.t. oscV (T,S,R) holds, then

the following is valid:

∀α1 ∈ (A\Ac)
∞.(α1 ∈ T →

∃α2 ∈ (A\Ac)
∞.(α2 ∈ S∧α1≈Av α2))

Proof. By coinduction. The CH is: oscV (T,S,R) → ∀α1 ∈ (A \ Ac)
∞.(α1 ∈ T →

∃α2 ∈ (A \Ac)
∞.α2 ∈ S∧α1≈Av α2). Let α1 be an arbitrary trace. The case when

α1 = ε is straightforward. Otherwise, destruct α1 as v ·w, where v is finite. By Lemma

4.5.1 we have that there is u ∈ (A\Ac)
∗ s.t. test∗u(S), v≈Av u and (Tv,Su) ∈ R. Hence,

we can complete the proof by coinduction.

Theorem 4.5.3. Let T be an arbitrary system and R ⊆ T ×T be a relation on T . The

following implications are valid: (implications given in the proof)

Proof. 1.lrfV(T,T,R)∧oscV(T,T,R)→ BSDV (T ):
By coinduction with CH

(T,S) ∈ R →

∀α ∈ A∞ ∀β ∈ A∗ ∀c ∈ Ac . [(β · c ·α ∈ T )→∃α′ ∈ A∞. (β ·α′ ∈ S∧α′≈Av∪Ac α)].

Let t0 be an arbitrary trace in T . Destruct t0 as β · c ·α where α ∈ A∞, β ∈ A∗, c ∈ Ac

and w.l.g. assume that noAc(β). Hence there are subtrees Tβ and Tβ·c such that α ∈ Tβ·c.
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Because oscV(T,T,R) and noAc(β) we have (Tβ,Tβ) ∈ R. Because lrfV (Tβ,Tβ,R), and

testc(Tβ) it follows that lrfV(Tβ·c,Tβ,R) (by definition of lrfV ). From (Tβ,Tβ·c) ∈ R and

applying the CH we get: ∀α′′ ∈A∞∀β′′ ∈A∗∀c′′ ∈Ac . (β′′ ·c′′ ·α′′ ∈ Tβ·c) implies there

exists α′′′ ∈ A∞.β′′α′′′ ∈ Tβ and α′′′≈Av∪Ac α′′, as needed. In case there are no more Ac

events after c, we can still apply Lemma 4.5.2 to get the needed result. In case t0 = ε,

the statement is vacuously true.

2.lrfV(T,T,R)∧oscV(T,T,R)→ DV(T ): applying Theorem 4.3.3(1).

3.lrfV(T,T,R)∧oscV(T,T,R)→ RV(T ): applying Theorem 4.3.3(2).

4.lrbe
ρ
V(T,T,R)∧oscV(T,T,R)→ BSIAV

ρ(T ): Let α ∈ A∞,β ∈ A∗,c ∈ Ac be arbitrary

such that β ·α∈ T and w.l.g. assume that noAc(β) holds. It follows that test∗β(T ) holds

and α ∈ Tβ. Clearly (Tβ,Tβ) ∈ R by the definition of oscV .

Case 1: Assume En
ρ
V (T,Tβ,c) holds. Then it has to be that testc(Tβ) and (Tβ,Tβ·c)∈R.

Then the proof proceeds by coinduction with CH :

(T,S) ∈ R →∀α ∈ A∞ ∀β ∈ A∗∀c ∈ Ac . [(β ·α ∈ T ∧Adm
ρ
V (T,β,c))→

∃α′ ∈ A∞.(β · c ·α′ ∈ S∧α′≈Av∪Ac α)]

Since (Tβ,Tβ·c) ∈ R, the result follows by coinduction.

Case 2: Assume that En
ρ
V (T,Tβ,c) does not hold. Then by Theorem B.0.3 it follows

that Adm
ρ
V(T,β,c) does not hold. Thus BSIA

ρ
V(T ) holds trivially.

5.lrbV(T,R)∧ oscV(T,R) → BSIV (T ): Let α ∈ A∞, β ∈ A∗, c ∈ Ac be arbitrary and

assume the following hold: β ·α ∈ T and w.l.g. noAc(β). Hence there is subtree Tβ s.t.

α ∈ Tβ. Clearly (Tβ,Tβ) ∈ R by the definition of oscV . Because lrbV(Tβ,Tβ,R) it has

to be that testc(Tβ) and (Tβ·c,Tβ) ∈ R hold. A straightforward proof by coinduction

(using the fact that (Tβ,Tβ·c) ∈ R holds) is in order.

Lemma 4.5.8. For all T ∈ Sys, the following hold:

1. SDV (T )→ BSDV (T ) 2. SIA
ρ
V (T )→ BSIA

ρ
V (T )

3. BSDV (T )→ RV(T ) 4. BSIA
ρ
V (T )→ IA

ρ
V (T ).

Proof. 1. From the definitions (choose α′ to be α). 2. From the definitions (choose

α′ to be α). 3. Directly from Theorem 4.3.3. 4. From the definitions (choose β′ to be

β).

Theorem 4.5.4. Consider a view (Av,An,Ac) with An = /0. The following are valid:

1. BSD(T ) implies there exists a relation R ⊆ T × T s.t. lrfV(T,T,R) and

oscV(T,T,R) hold.

2. BSIA
ρ
V (T ) implies there exists a relation R ⊆ T × T s.t. lrbe

ρ
V (T,T,R) and

oscV(T,T,R) hold.
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Proof. Similar to Mantel’s proof (Theorem 5.4.9 [55]), main difference is the use of

coinduction as a proof technique and the different definitions.

Lemma B.0.3. Let T be a tree. The following are valid: 1. For all subtrees s of T ,

En
ρ
V(T,s,a) implies there exists a finite trace β ∈ A∗ s.t. test∗β(T ) and Adm

ρ
V(T,β,a)

holds. 2. For all finite traces β ∈ A∗ if β ∈ T and Adm
ρ
V(T,β,a) holds then there is a

subtree s of T such that s = Tβ and En
ρ
V(T,s,a).

Proof. First proposition: assume En
ρ
V(T,s,a). By definition there are β,γ ∈ A∗ such

that test∗β(T ), s = Tβ, γ≈ρ(V ) β, test∗γ·a(T ). By definition of test∗ we have that there

is γ ∈ T , γ ·a ∈ T and β ∈ T . Finally γ≈ρ(V ) β holds and thus Adm
ρ
V(T,β,a). Second

proposition: assume β ∈ T and Adm
ρ
V(T,β,a). Because β ∈ T it follows that test∗β(T ).

Since Adm
ρ
V(T,β,a), we have a trace γ∈A∗ s.t. γ ·a∈ T and γ≈ρ(V ) β. Because γ ·a∈ T

it follows that test∗γ·a(T ).

Lemma B.0.4. For all T ∈ Sys we have:

1.BSDHI (T )∧BSIHI (T )→ GNI(T ) 2.GNI(T )→ BSDHI (T )

3.GNI(T )→ BSIHI (T )

Proof. BSDHI (T )∧BSIHI (T ) → GNI(T ): Similar to Mantel’s proof [55] (Lemma

4.4.2), but we use coinductive arguments, dictated by the nature of our definitions. Let

x1 ∈ A∗,x2,x3 ∈ A∞ be arbitrary such that x1 ·x2 ∈ T , x3≈A\HI x2 and w.l.g. assume that

noHI(x1) holds. By a coinductive argument and the definition of BSDH I (T ), there is a

trace y ∈ A∞ such that x1 ·y ∈ T and y≈L x2. Because x3≈A\HI x2 and y≈L x2 it follows

that y≈L x3. Now, applying the definition of BSIHI (T ) (plus a coinductive argument),

the high inputs in x3 can be inserted in y in a stepwise manner (left to right). The

resultant trace is called y1 and has the properties: y1≈L x3 and y1≈HI x3. Thus we

have shown that there is a trace x4 ∈ A∞ with x1 · x4 ∈ T and x4≈L∪HI x3. This trace is

precisely y1.

GNI(T )→ BSDHI (T ): The proof is similar to Mantel’s proof [55] (Lemma 4.4.2), but

again with coinductive arguments. Assume GNI(T ) holds. Let α ∈ A∞, β ∈ A∗, c ∈ HI

be arbitrary, such that β · c ·α ∈ T and w.l.g. noHI(β) holds. Because the assumption

is GNI(T ) we can apply the definition of GNI with x1 = β, x2 = c ·α and x3 = α and

we get: there exists some trace x4 ∈ A∞ such that x1 · x4 ∈ T and x4≈L∪HI x3. We

argue that x4 is the needed trace α′ in the definition of BSDH I : firstly, β ·α′ ∈ T and

secondly, α′≈L∪HI α.

GNI(T ) → BSIHI (T ): Assume that GNI(T ) holds. Let α ∈ A∞, β ∈ A∗, c ∈ HI be

arbitrary such that β ·α ∈ T and w.l.g. assume that noHI(β) holds. Because GNI(T )
holds, we can apply its definition with x1 = β, x2 = α and x3 = c ·α. It follows that:
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there exists some trace x4 ∈ A∞ such that x1 · x4 ∈ T and x4≈L∪HI x3. We argue that x4

is the needed trace c ·α′ in the definition of BSIH I . First, clearly β · c ·α′ ∈ T (by the

definition of GNI). Second, c ·α′≈L∪HI c ·α (by the definition of GNI), thus it has to

be that α′≈L∪HI α.

Theorem 4.5.5. For all T ∈ Sys we have BSDHI (T )∧BSIHI (T ) iff GNI(T ).

Proof. Follows directly from Lemma B.0.4.

Theorem 4.5.6. For all T ∈ Sys we have RH (T ) iff NF(T ).

Proof. By mutual implication.

(⇒) Let t0 be an arbitrary trace in T . Since RH (T ) there exists a trace γ ∈ T such

that noH(γ) and t0≈L γ. Use Lemma B.0.5 to get γ ≈ evL(t0), hence γ = evL(t0). Thus

NF(T ) holds.

(⇐) Assume NF(T ). Let t0 be an arbitrary trace in T . We know that evL(t0) ∈ T by

the assumption. Clearly noH(evL(t0)) (straightforward proof by coinduction). Also

t0≈L evL(t0) by Lemma B.0.6.

Theorem 4.5.7. For all T ∈ Sys we have RHI (T ) iff GNF(T ).

Proof. Follows immediately from the definitions, using view HI .

Lemma 4.5.9. For all T ∈ Sys, the following holds: PSP(T ) → (SDH (T ) ∧
SIA

ρA

H
(T )).

Proof. First, we prove that PSP(T ) → SDH (T ). Assume PSP(T ). Start with an

arbitrary trace t = β · c · α and w.l.g. assume that noH(β) holds. Consider trace

β · evL(α). From the first conjunct of the PSP definition it follows that β · evL(α) ∈ T .

Now, by the second conjunct of the definition of PSP and by a coinductive argument,

we can keep adding the high events from α (from left to right) until we have the trace

β ·α ∈ T .

Second, show PSP(T )→ SIA
ρA

H
(T ): Assume PSP(T ). Start with an arbitrary trace t =

β ·α, Adm
ρA
V (T,β,c) and w.l.g. assume that noH(β) holds. Clearly β ·evL(α)∈ T by the

first conjunction of PSP. By the second conjunction of PSP we have β ·c ·evL(α) ∈ T .

Finally by the second conjunction of PSP and a coinductive argument we have that

β · c ·α ∈ T .

Lemma 4.5.10. For all T ∈ Sys, the following holds: (RH (T )∧ IA
ρA

H
(T ))→ PSP(T ).
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Proof. First, note that RH (T ) implies the first conjunct in the definition of PSP,

namely ∀t ∈ T.evL(t) ∈ T (straightforward, using Lemma B.0.5). Second, by the

assumption IA
ρA

H
(T ) and substituting α for α′ and β for β′ we get that

∀α ∈ A∞∀β ∈ A∗∀h ∈ H.(β ·α ∈ T ∧ testh(Tβ))→ β ·h ·α ∈ T

Also note that Adm
ρA

H
(T,β,h) is equivalent to testh(Tβ). Here, we have in fact proven

a statement which is stronger. It implies that also it works when noH(α) holds.

Theorem 4.5.11. For all T ∈ Sys we have BSDH (T )∧BSIA
ρA

H
(T ) iff PSP(T ).

Proof. By mutual implication.

(⇒) From the assumption and Lemma 4.5.8 (3 and 4) we get BSDH (T )∧BSIA
ρC

H
(T )→

RH (T )∧ IA
ρA

H
(T ). Then from Lemma 4.5.10 we get PSP(T ), as needed.

(⇐) From the assumption and Lemma 4.5.9 we get PSP(T ) → SDH (T )∧ SIA
ρA

H
(T ).

Then from Lemma 4.5.8 (1 and 2) we get BSDH (T )∧BSIA
ρC

H
(T ), as needed.

Lemma B.0.5. For all t,γ ∈ A∞ we have: (noH(γ) ∧ t≈L γ)→ γ ≈ evL(t).

Proof. By coinduction with hypothesis CH : ∀t,γ∈A∞.(noH(γ) ∧ t≈L γ)→ γ≈ evL(t).
Assume noH(γ) and t≈L γ. Next destruct γ and t. If t = ε it has to be that γ = ε and

vice versa. Otherwise, destruct γ as a ·w and t as y · z: we know that a ∈ L, w ∈ A∞,

y ∈ A∗ and z ∈ A∞. Also y L a such that a ∈ L (because t≈L γ). We also have that

noH(w), w≈L z. By CH we get that aw ≈ yz

Lemma B.0.6. For all t ∈ A∞ we have: t≈L evL(t).

Proof. By coinduction. CH : ∀t ∈ A∞.t≈L evL(t). Let t0 be an arbitrary trace. Destruct

t0 as v ·w, where v ∈ A∗, w ∈ A∞ such that v L a ·w (by the definition of ≈L such v

exists). Apply the definition of evL we get a ·w≈L a · evL(w). Use inversion to get

w≈L evL(w). By the CH we get that t0≈L evL(t0).



Appendix C

Proofs from Chapter 5

We start by introducing some notation for the following proofs. Let P denote the

set of positions, at which R has to move next. Let W ⊆ P be the subset of positions

that are R-wins. Finally, let Force be the subset of positions from which R can win

by eventually entering W . These sets will be defined differently depending on the

concrete H ′-simulation game.

Proposition 5.3.5. For any SIH2-simulation game GSIH2(S,T ), where S,T ⊆ P�♦,

either player R or player V has a history-free winning strategy.

Proof. The proof of this proposition has a similar idea and structure to the proof of a

similar theorem for equivalence games [82].

Let filter : P�♦ → P�♦ be the usual function filtering ¬p events. Such a function

is guaranteed to be productive as long as it is called on streams in P�♦. The set of

possible R-positions is

P = {(S′,T ′) such that ∃w ∈ A∗ ·S w−→ S′ and T
filter(w)−−−−→ T ′}.

In other words, P contains the positions in which R moves next and W ⊆ P are the R-

win positions. Formally, W can be given as follows: ∀(S,T ) ∈W . ∃S′ . S
a−→ S′∧T 6 a−→.
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The set Force is defined iteratively using ordinals, where λ is some limit ordinal.

Force1 =W

Forceα+1 = Forceα ∪{(S,T ) ∈ P | ∃S′. S
a−→ S′ and p(a) and

∃T ′. T
f (a)−−→ T ′ then (S′,T ′) ∈ Forceα or

∃T ′. T
a−→ T ′ and ¬p(a) then (S′,T ) ∈ Forceα}

Forceλ =
⋃

{Forceα.α < λ}

Define Force as follows:

Force =
⋃

{Forceα | α > 0}.

Let the rank of any (S,T ) ∈ Force be the least ordinal α such that (S,T )∈ Forceα. For

each (S,T )∈ Force, player R has a history-free winning strategy for game GSIH2(S,T ).
This strategy is based on rules of the form: “at any (S′,T ′) choose transition t such

that, no matter whether V has to make a move or not, the resulting pair of trees has

lower rank”. Such a choice for R exists by the definition of Force.

Whenever (S,T ) 6∈ Force, player V has a history-free winning strategy, namely to

simply (play by the rules of the game and) avoid getting into Force. The initial pair

of trees (S,T ) are either in set Force or in P \Force. Thus one of the players has a

history-free winning strategy for GSIH2(S,T ).

Theorem 5.3.6 (Correctness of SIH2-simulation games). The coinductive predicate

SIH2(S,T ), where S,T ⊆ P�♦, holds iff V has a history-free winning strategy for

GSIH2(S,T ).

Proof. (⇒) Assume SIH2(S,T ). It follows that there is a SIH2-simulation

relation Q (see [63]) such that (S,T ) ∈ Q. We can construct a history-free winning

strategy for V (using Q) in the following manner: when a move a ∈ A such that p(a) is

made by R at position (S′,T ′), player V responds with such a move (again a), so that

the resulting pair (S′′,T ′′) ∈ Q; otherwise V makes a null move (i.e. no move). More

concretely: (S′,T ′)∈ Q means that if R moves S′ a−→ S′′ and p(a) then V should choose

T ′ a−→ T ′′ such that and (S′′,T ′′) ∈ Q: such T ′′ is guaranteed to exist by the definition

of Q; if R moves S′ a−→ S′′ and ¬p(a) then V makes a null move and (S′′,T ′) ∈ Q.

(⇐) Assume that V has a history-free winning strategy for GSIH2(S,T ). We show

that SIH2(S,T ) by proving that relation H, given as follows

H = {(S′,T ′) | V has a history-free winning strategy for GSIH2(S′,T ′)}
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and including (S,T ), is a SIH2-simulation. This proceeds by coinduction, with

hypothesis (S′,T ′) ∈ H. By the definition of H, V has a history-free winning strategy

for (S′,T ′). Suppose S′ a−→ S′′. This is a possible move by R and it follows that

either p(a) and V can reply with T ′ a−→ T ′′ such that (S′′,T ′′) ∈ H or else p(a) and

(S′′,T ′) ∈ H. Other options are not possible, because they would contradict the

existence of a history-free winning strategy for V at (S′,T ′). Apply the coinductive

hypothesis and we are done.

Next, we will present the proof of correctness of IHP checking games. But first, we

introduce some propositions (from [82], but generalized to Lk
µ ).

Proposition C.0.7. The following statements are valid:

1. X subsumes X.

2. X subsumes Y and Y subsumes Z imply that X subsumes Z.

3. X subsumes Y and X 6= Y imply that not Y subsumes X.

Proof. By straightforward reasoning about the respective sets of formulas.

For the following proofs, let Ei range over pairs of k-tuples of trees and formulas. Let

E0 = ((T 1
0 , . . . ,T

m
0 , . . . ,T k

0 ),Φ0), where T 1
0 = T 1,T m

0 = T m,T k
0 = T k and Φ0 = Φ. It is

known that the following proposition holds:

Proposition C.0.8. If (E0,Φ0) . . .(En,Φn) . . . is an infinite length play of the game

HGV(E0,Φ0), then there is a unique variable X that

1. occurs infinitely often, i.e. for infinitely many j, X = Φ j and

2. for all Y occurring infinitely often, X subsumes Y .

Proof. Essentially the same as Stirling’s [82]. Proof idea: let σ1X1.Φ1, . . . ,σnXn.Φn

be the fixed point subformulae in Φ0(and hence Φ). The idea is that since every

subformula is finite, an infinite play may only occur because some variable from the

set {X1, . . . ,Xn} occurs infinitely often. The variable is unique by the principle of

transitivity of subsumption (see Proposition C.0.7, rule 2).

Proposition C.0.9. The following implications are valid:

1. If E |=V µZ.Ψ, then there exists a least ordinal α s.t. E |=V µZα.Ψ and for all

β < α, we have E 6|=V µZβ.Ψ.
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2. Dually, if E 6|=V νZ.Ψ, then there exists a least ordinal α s.t. E 6|=V νZα.Ψ and

for all β < α, we have E |=V νZβ.Ψ.

Proof. 1. Assume that E |=V µZ.Ψ. For any E, we have that E 6|=V µZ0.Ψ. If E |=V

µZα.Ψ, then for all β > α we have that E |=V µZβ.Ψ holds (by monotonicity).

Hence, there exists a least ordinal α such that E |=V µZα.Ψ.

2. Assume that E 6|=V νZ.Ψ. For any E, we have that E |=V νZ0.Ψ. If E 6|=V νZα.Ψ,

then for all β > α we have that E 6|=V νZβ.Ψ holds (by monotonicity). Hence,

there exists a least ordinal α such that E 6|=V νZα.Ψ.

Proposition C.0.10. If F |=Vn
Ψ then there exists a smallest signature s s.t. F |=Vs

n
Ψ.

Proof. Proceed by induction on the structure of Ψ. If the formula is Ψ = tt, then the

proposition is vacuously true (the signature is a sequence of ordinals of length 0). If

Ψ = ff , then the signature is 0, because ff = µZ0.Φ for all Φ. The other cases:

• Ψ = Φ1∧Φ2. By the inductive hypothesis, the proposition holds for Φ1 and Φ2:

let s1 be the smallest signature of Φ1 (hence F |=V
s1
n

Φ1) and s2 the smallest

signature of Φ2 (hence F |=V
s2
n

Φ2). The smallest signature for Ψ is thus the

(lexicographically) smaller of s1 ·s2 and s2 ·s1, where notation s1 ·s2 denotes the

concatenation of s1 and s2. Let us denote the concatenated signature s′. Hence,

F |=Vs′
n

Φ1 ∧Φ2.

• Ψ = 〈K〉lΦ, where K ⊆ A. Let s1 denote the smallest signature of Φ. The

smallest signature of Ψ is s1, as there are no more fixed points in Ψ than in

Φ. By the inductive hypothesis, E |=V
s1
n

Φ (also by IH F |=Vn
Ψ ) and hence

F |=V
s1
n

Ψ (because signature does not change by 〈a〉).

• Ψ = Φ1 ∨ Φ2. Let s1 be the smallest signature of Φ1 and s2 the smallest

signature of Φ2. If both Φ1 and Φ2 hold, then the smallest signature of Ψ is

the (lexicographically) smaller of s1 and s2 (let us call it si). Otherwise, if only

one of Φi (i ∈ {1,2}) holds, then the signature is si. By the IH, F |=si

V Φi and

this implies F |=si

V Ψ.

• Ψ = [K]lΦ, where K ⊆ A. Let s1 denote the smallest signature of Φ. The

smallest signature of Ψ is s1, as there are no more fixed points in Ψ than in Φ.

By IH E |=V
s1
n

Φ. Because F |=Vn
Ψ, we have that F |=V

s1
n

Ψ.

• Ψ = νZ.Φ. Let s1 denote the smallest signature of Φ. The smallest signature of

Ψ is s1, as there are no more least fixed points in Ψ than in Φ. By IH E |=V
s1
n

Φ.

Because F |=Vn
Ψ and F = E, we have that F |=V1

n
Ψ.
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• Ψ = µZ.Φ. Let s1 denote the smallest signature of Φ. By Proposition C.0.9,

we know that there is some least ordinal α, s.t. µZα.Φ is true. Hence, the least

signature of Ψ is α · s1. By IH E |=V
s1
n

Φ. Because F |=Vn
Ψ and F = E, we

have that F |=
V

α·s1
n

Ψ.

Proposition C.0.11. If F 6|=Vn
Ψ then there exists a smallest signature s s.t. F 6|=Vs

n
Ψ.

Proof. Similar to the proof of Proposition C.0.10, using the duality of least and

greatest fixed point.

Theorem 5.4.4. The following equivalences are valid:

1. (T 1, . . . ,T m, . . . ,T k) |=V Φ iff player V has a history-free winning strategy for

HGV((T
1, . . . ,T m, . . . ,T k),Φ).

2. (T 1, . . . ,T m, . . . ,T k) 6|=V Φ iff player R has a history-free winning strategy for

HGV((T
1, . . . ,T m, . . . ,T k),Φ).

Proof. Statement 1.
The proof goes by lifting Stirling’s proof for property checking games in the modal

mu-calculus to IHP checking games in Lk
µ [82] (Section 6.3).

Proof strategy: show that whenever V has a turn, she can always choose a true next

position.

(⇒) Assume that (T 1, . . . ,T m, . . . ,T k) |= Φ. This is equivalent to having the formula

(T 1
0 , . . . ,T

m
0 , . . . ,T k

0 ) |= Φ0 hold. Assume that σ1Z1.Ψ1, . . . ,σnZn.Ψn are the fixed

point subformulae of Φ0 in decreasing order of size. Let T be the set of k-tuples

of trees reachable from (T 1
0 , . . . ,T

m
0 , . . . ,T k

0 ). Then define valuations V0, . . . ,Vn as

follows:

V0 = V

Vi+1 = Vi[Ti+1/Zi+1],

where Ti+1 = {T ∈ T : T |=Vi
σi+1Zi+1.Ψi+1}. Intuitively, valuation Vn captures the

meaning of all bound variables. In other words, some position ((T 1
i , . . . ,T

m
j , . . . ,T k

l ),Ψ)

is true whenever the formula (T 1
i , . . . ,T

m
j , . . . ,T k

l ) |=Vn
Ψ holds. Hence we have that

(T 1
0 , . . . ,T

m
0 , . . . ,T k

0 ) |=Vn
Φ0, because formula (T 1

0 , . . . ,T
m

0 , . . . ,T k
0 ) |=Φ0 holds by the

assumption.
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Next, a refined valuation, using the smallest least fixed point approximants that make

a certain game configuration true, is defined. Let µY1.Ψ
′
1, . . . ,µYq.Ψ

′
q be all least fixed

point formulae in Φ0 in decreasing order of size. Define a signature as a sequence

of ordinals α1, . . . ,αq and assume lexicographic ordering on signatures. Given some

signature s = α1, . . . ,αq, its associated valuation Vs
n is defined as:

Vs
0 = V

Vs
i+1 = Vs

i [Ti+1/Zi+1].

The only difference is that now Ti+1 depends on the fixed point:

1. When σi+1 = ν then Ti+1 = {T ∈ T : T |=Vs
i

σi+1Zi+1.Ψi+1}.

2. When σi+1 = µYj then Ti+1 = {T ∈ T : T |=Vs
i

σY
α j

j .Ψ′
j}.

The existence of a smallest signature s such that (T 1
i , . . . ,T

m
j , . . . ,T k

l ) |=Vs
n

Ψ if

(T 1
i , . . . ,T

m
j , . . . ,T k

l ) |=Vn
Ψ follows from Proposition C.0.10. For a true config-

uration ((T 1
i , . . . ,T

m
j , . . . ,T k

l ),Ψ), define a signature to be the least s such that

(T 1
i , . . . ,T

m
j , . . . ,T k

l ) |=Vs
n

Ψ.

Now, we are ready to define a history-free winning strategy for player V . This is done

by case analysis of true player V positions. If the position is (F,Ψ1 ∨Ψ2), then it has

to be that F |=Vs
n

Ψ1 ∨Ψ2. It has to be that one of the conjuncts (Ψi) holds. Add the

rule for V : “at position (F,Ψ1∨Ψ2) choose (F,Ψi)”. For the case when the position is

(F,〈K〉lΨ) and K is a set of events (K ⊆ A), we proceed in a similar way. Let s be the

position’s signature and thus F |=Vs
n
〈K〉lΨ. Thus, there is a transition F

a−→l F ′ (where

a ∈ K) such that F ′ |=Vs
n

Ψ. Hence, the rule for player V is “at position (F,〈K〉lΨ)
choose (F ′,Ψ)”. These rules result in a history-free strategy. It is only left to show

that this strategy is winning.

Assume the opposite, i.e. that R can win. It is clear (by the assumption that formula

(T 1, . . . ,T m, . . . ,T k) |= Φ holds) that the start position is true. We will show that if

player V uses the strategy defined above, a false position can never be reached. Note

that a signature will be identified with each position. The initial position is (E0,Φ0)
and E0 |=s0

Vn
Φ0. Assume that (Em,Φm) is the current position in the play and Em |=sm

Vn

Φm. If the position is final, then by the rules V is the winner. Otherwise, the play is

not complete and we have to explore how the game is extended into (Em+1,Φm+1) s.t.

Em+1 |=sm+1
Vn

Φm+1 (this is the “step” in the proof):
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• If Φm = Ψ1 ∧Ψ2, then R choses Ψi and the next position (Em+1,Φm+1) has

to be true, s.t. Em+1 = Em and Φm+1 = Ψi, and Em+1 |=sm+1
Vn

Φm+1. Note that

sm+1 ≤ sm (informally, sm+1 cannot be greater than sm for sure).

• If Φm = [K]lΨ, then R choses an a ∈ K such that E
a−→l E ′ and the next position

(Em+1,Ψ) has to be true, where Em+1 = E ′ and Φm+1 = Ψ, and Em+1 |=sm+1
Vn

Φm+1. Again note that again sm+1 ≤ sm.

• If Φm = Ψ1 ∨Ψ2, then V uses the strategy to chose the next position. This

preserves the truth as sm is the signature used to define the strategy. Note that

sm+1 ≤ sm.

• If Φm = 〈K〉lΨ, then V uses the strategy to chose a ∈ K such that E
a−→l E ′ and

the next position (Em+1,Ψ) has to be true, where Em+1 = E ′ and Φm+1 = Ψ,

and Em+1 |=sm+1
Vn

Φm+1. This preserves the truth as sm is the signature used to

define the strategy. Note that again sm+1 ≤ sm.

• If Φm = σiZi.Ψi, then the next configuration is the true position (Em+1,Φm+1),
where Em+1 = Em and Φm+1 = Zi.

• If Φm = Zi and σi = ν, then the next configuration is the true position

(Em+1,Φm+1), where Em+1 = Em and Φm+1 = Ψi and sm+1 = sm (see proof

of Proposition C.0.10, not related to the greatest fixed point).

• If Φm = Zi and σi = µ, then the next configuration is the true position

(Em+1,Φm+1), where Em+1 = Em and Φm+1 = Ψi and sm+1 < sm, since the

fixed point has been in effect unfolded.

So far, we have seen that V wins finite plays. Now, consider an infinite play.

Proposition C.0.8 guarantees the existence of a unique Zi, which occurs infinitely often

and subsumes any other Z j occurring infinitely often. Consider the infinite play from

position (Ek,Φk) on, i.e. play (Ek,Φk) . . ., such that any occurrence of Z j is subsumed

by Zi. Let k1,k2, . . . mark the positions of Zi in (Ek,Φk) . . .. It is impossible for Zi

to correspond to a least fixed point formula. Otherwise, there would be a strictly

decreasing sequence of signature sets sk1 > sk2 > .. .. But that is impossible and hence

Zi corresponds to a greatest fixed point formula. Hence V wins infinite plays and the

strategy is indeed winning.

(⇐) By induction on the structure of the formula Φ. Assume that V has a history-free

winning strategy for HGV(E,Φ).

Base cases: If Φn = tt we are done. Φn = ff is impossible, contradicts the existence of

a winning strategy for V . If Φ = Z and E ∈ V (Z) we are done. Φ = Z and E 6∈ V (Z)
is impossible (contradiction). Inductive case:
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• Φ = Ψ1 ∧Ψ2. From the assumption it follows that V has a history-free winning

strategy for HGV(E,Ψ1) and HGV(E,Ψ2). By the inductive hypothesis E |=Ψ1

and E |= Ψ2. Hence E |= Φ.

• If Φ = [K]lΨ. By the assumption (that V has a history-free winning strategy for

HGV(E,Φ)), it follows that for all a ∈ K and respectively E ′ s.t. E
a−→l E ′ that

R potentially chooses, V has a winning strategy for HGV(E
′,Ψ). Applying the

inductive hypothesis, we have that E ′ |= Ψ. This means that for all a ∈ K s.t.

E
a−→l E ′, E ′ |= Ψ. Hence E |= [K]lΨ.

• Φ = Ψ1 ∨Ψ2. By the assumption, it follows that V has a winning strategy for

HGV(E,Ψi), where i ∈ {1,2}. By the inductive hypothesis E |= Ψi. Hence

E |= Φ.

• If Φ = 〈K〉lΨ. By the assumption, V has a winning strategy for HGV(E,Φ).

Hence, there is some a ∈ K (according to the winning strategy) and E ′ s.t. E
a−→l

E ′ and V has a winning strategy for HGV(E
′,Ψ). Because V has a winning

strategy for HGV(E
′,Ψ) and by the induction hypothesis, it follows that E ′ |=Ψ.

Hence, E |= 〈K〉lΨ.

• If Φ = σZ.Ψi. By the assumption, V has a winning strategy for HGV(E,Φ).
Hence, V has a winning strategy for HGV(E,Z). By the inductive hypothesis

we have that E |= Z. Hence, E |= Φ.

• If Φ = Zi. By the assumption, V has a winning strategy for HGV(E,Φ). Hence,

V has a winning strategy for HGV(E,Ψi). By the inductive hypothesis we have

that E |= Ψi. Hence, E |= Φ.

Recall the second part of Theorem 5.4.4: (T 0, . . . ,T m, . . . ,T k) 6|= Φ iff player R has a

history-free winning strategy for HGV((T
0, . . . ,T m, . . . ,T k),Φ). This part of the proof

is dual to the one presented.

Proof. Statement 2.
The proof is dual to the one from Statement 1.
Proof strategy: to illustrate the existence of a history-free winning strategy for R, we

show that player R can always move so as to preserve false configurations when going

to the next position.

(⇒) Assume that (T 0, . . . ,T m, . . . ,T k) 6|= Φ. This can be written as

(T 0
0 , . . . ,T

m
0 , . . . ,T k

0 ) 6|= Φ0. Let σ1Z1.Ψ1, . . . ,σnZn.Ψn be the fixed point subformulae
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of Φ0 in decreasing order of size. Let T be the set of k-tuples of trees reachable from

(T 0
0 , . . . ,T

m
0 , . . . ,T k

0 ). Then define valuations V0, . . . ,Vn as follows:

V0 = V

Vi+1 = Vi[Ti+1/Zi+1],

where Ti+1 = {T ∈ T : T |=Vi
σi+1Zi+1.Ψi+1}. Intuitively, valuation Vn captures

the meaning of all bound variables. In other words, some position given as

((T 0
i , . . . ,T

m
j , . . . ,T k

l ),Ψ) is false whenever the formula (T 0
i , . . . ,T

m
j , . . . ,T k

l ) 6|=Vn
Ψ

holds. Hence we have that (T 0
0 , . . . ,T

m
0 , . . . ,T k

0 ) 6|=Vn
Φ0 by the assumption.

Next, a refined valuation, using the greatest fixed point approximants that make a

certain game configuration false, is defined. Let νY1.Ψ
′
1, . . . ,νYq.Ψ

′
q be all greatest

fixed point formulas in Φ0 in decreasing order of size. Define a signature as a

sequence of ordinals α1, . . . ,αq and assume lexicographic ordering on these. Given

some signature s = α1, . . . ,αq, its associated valuation Vs
n is defined as before:

Vs
0 = V

Vs
i+1 = Vs

i [Ti+1/Zi+1].

The only difference is that now Ti+1 depends on the fixed point:

1. When σi+1 = µ then Ti+1 = {T ∈ T : T |=Vs
i

σi+1Zi+1.Ψi+1}.

2. When σi+1 = νYj then Ti+1 = {T ∈ T : T |=Vs
i

σY
α j

j .Ψ′
j}.

The existence of a smallest signature s such that (T 0
i , . . . ,T

m
j , . . . ,T k

l ) 6|=Vs
n

Ψ if

(T 0
i , . . . ,T

m
j , . . . ,T k

l ) 6|=Vn
Ψ follows from Proposition C.0.11. For a false config-

uration ((T 0
i , . . . ,T

m
j , . . . ,T k

l ),Ψ), define a signature to be the least s such that

(T 0
i , . . . ,T

m
j , . . . ,T k

l ) 6|=Vs
n

Ψ.

Now, we are ready to define a history-free winning strategy for player F . This is done

by case analysis of false player F positions. If the position is (E,Ψ1 ∧Ψ2), then it

has to be that E 6|=Vs
n

Ψ1 ∧Ψ2. Choose one of the conjuncts (Ψi which is false, at

least one is guaranteed to be false) and add the rule “at position (E,Ψ1 ∧Ψ2) choose

(E,Ψi), where i ∈ {1,2})”. For the case when the position is (E, [K]lΨ) and K is a

set of events (K ⊆ A), we proceed in a similar way. Let s be the position’s signature

and thus E 6|=Vs
n
[K]lΨ. Thus, there is some a ∈ K s.t. E

a−→l E ′ and E ′ 6|=Vs
n

Ψ. Hence,

the rule for player F is “at position (E, [K]lΨ) choose (E ′,Ψ)”. These rules result in a

history-free strategy. It is only left to show that the strategy is winning.
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Assume the opposite, i.e. assume that V can win. It is clear (by the assumption) that

the start position is false. We will show that if player R uses the strategy defined

above, a true position can never be reached. Note that a signature is identified with

each position. The initial position is (E0,Φ0) and E0 6|=s0

Vn
Φ0. Assume that (Em,Φm)

is the current position in the play and Em 6|=sm

Vn
Φm. If the position is final, then by the

rules R is the winner. Otherwise, the play is not complete and we have to explore how

the game is extended into (Em+1,Φm+1):

• If Φm = Ψ1 ∨Ψ2 (is false), then both Ψ1 and Ψ2 are false. Then V choses

Ψi and the next position (Em+1,Φm+1) has to be false, where Em+1 = Em and

Φm+1 = Ψi, and Em+1 6|=sm+1
Vn

Φm+1. Note that sm+1 ≤ sm (informally sm+1

cannot be greater than sm for sure).

• If Φm = 〈K〉lΨ, then V choses an a ∈ K such that E
a−→l E ′ and the next position

(Em+1,Ψ) has to be false, where Em+1 = E ′ and Φm+1 = Ψ, and Em+1 6|=sm+1
Vn

Φm+1. Note that again sm+1 ≤ sm.

• If Φm = Ψ1 ∧Ψ2, then R uses the strategy to chose the next position. This

preserves the falsehood as sm is the same signature as when defining the strategy.

Note that sm+1 ≤ sm.

• If Φm = [K]lΨ, then R uses the strategy to chose a specific a ∈ K such that

E
a−→l E ′ and the next position (Em+1,Ψ) has to be false, where Em+1 = E ′ and

Φm+1 = Ψ, and Em+1 6|=sm+1
Vn

Φm+1. This preserves the falsehood as sm is the

same signature as when defining the strategy. Note that again sm+1 ≤ sm.

• If Φm = σiZi.Ψi, then the next configuration is the false position (Em+1,Φm+1),
where Em+1 = Em and Φm+1 = Zi. “The signature may increase if σi = ν”.

• If Φm = Zi and σi = µ, then the next configuration is the false position

(Em+1,Φm+1), where Em+1 = Em and Φm+1 = Ψi and sm+1 = sm.

• If Φm = Zi and σi = ν, then the next configuration is the false position

(Em+1,Φm+1), where Em+1 = Em and Φm+1 = Ψi and sm+1 < sm, since the

fixed point has been in effect unfolded.

So far, we have seen that F wins finite plays. Now, consider an infinite play.

Proposition C.0.8 guarantees the existence of a unique Zi, which occurs infinitely often

and subsumes any other Z j occurring infinitely often. Consider the infinite play from

position (Ek,Φk) on, i.e. play (Ek,Φk) . . ., such that any occurrence of Z j is subsumed

by Zi. Let k1,k2, . . . be the positions in (Ek,Φk) . . . where Zi occurs. It is impossible

for Zi to correspond to a greatest fixed point formula. Otherwise, there would be a

strictly decreasing sequence of signature sets sk1 > sk2 > .. .. But that is impossible
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and hence Zi corresponds to a least fixed point formula. Note that the other direction

is dual to the respective part of the proof of Statement 1.
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[70] Thoralf Räsch. Introduction to guarded logics, pages 321–341. Springer-Verlag

New York, Inc., New York, NY, USA, 2002. Cited on page 144.

[71] Andrew W. Roscoe. CSP and determinism in security modelling. In Proceedings

of the 1995 IEEE Symposium on Security and Privacy, SP ’95, pages 114–127,

Washington, DC, USA, 1995. IEEE Computer Society. Cited on page 118.

[72] John Rushby. Noninterference, transitivity and channel-control security policies.

Technical Report CSL-92-02, SRI International, 1992. Cited on pages 4, 22, 23,

and 60.

[73] Jan J. M. M. Rutten. Automata and Coinduction (An Exercise in Coalgebra).

In Davide Sangiorgi and Robert de Simone, editors, CONCUR, volume 1466 of

Lecture Notes in Computer Science, pages 194–218. Springer, 1998. Cited on

pages 8, 13, 18, 25, 26, and 27.



192 BIBLIOGRAPHY

[74] Peter Y. A. Ryan and Steve A. Schneider. Process algebra and non-interference.

Journal of Computer Security, 9(1/2):75–103, 2001. Cited on pages 4, 22,

and 60.

[75] Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow

security. IEEE Journal on Selected Areas in Communications, 21(1):5–19,

January 2003. Cited on pages 60 and 147.

[76] Davide Sangiorgi. An introduction to bisimulation and coinduction. Cambridge

University Press, 2012. Cited on pages 15, 16, and 79.

[77] Davide Sangiorgi and Jan Rutten. Advanced Topics in Bisimulation and

Coinduction. Cambridge Tracts in Theoretical Computer Science. Cambridge

University Press, Cambridge, 2011. Cited on pages 9 and 64.

[78] Sven Schewe. An optimal strategy improvement algorithm for solving parity and

payoff games. In Proceedings of the 22nd international workshop on Computer

Science Logic, CSL ’08, pages 369–384, Berlin, Heidelberg, 2008. Springer-

Verlag. Cited on pages 126, 143, and 144.

[79] Fred B. Schneider. Enforceable security policies. ACM Transactions of

Information Systems Security, 3(1):30–50, 2000. Cited on pages 2, 18, and 150.

[80] Colin Stirling. Local model checking games. In Proceedings of the 6th

International Conference on Concurrency Theory, CONCUR ’95, volume 962 of

Lecture Notes in Computer Science, pages 1–11. Springer-Verlag, 1995. Cited

on pages 2, 110, 118, 119, and 144.

[81] Colin Stirling. Bisimulation, modal logic and model checking games. Logic

Journal of the IGPL, 7(1):103–124, 1999. Cited on pages 2, 102, 118, and 119.

[82] Colin Stirling. Modal and temporal properties of processes. Springer-Verlag

New York, Inc., New York, NY, USA, 2001. Cited on pages 10, 53, 95, 96, 98,

100, 103, 110, 118, 119, 122, 173, 175, and 177.

[83] Colin Stirling and Perdita Stevens. Practical model-checking using games. In

TACAS 1998, number 1384 in LNCS, pages 85–101, 1998. Cited on pages 11,

122, 140, 143, and 144.

[84] Tachio Terauchi and Alexander Aiken. Secure Information Flow as a Safety

Problem. In Chris Hankin and Igor Siveroni, editors, SAS, volume 3672 of

Lecture Notes in Computer Science, pages 352–367. Springer, 2005. Cited on

pages 3, 58, and 150.
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