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Abstract: In this paper, we investigate the accuracy of linear classification techniques for a P300 Brain-Computer Inter-
face used in a typing paradigm. Fisher’s Linear Discriminant Analysis (LDA), Bayesian Linear Discriminant
Analysis (BLDA), Stepwise Linear Discriminant Analysis (SLDA), linear Support Vector Machine (SVM)
and a method based on Feature Extraction (FE) were compared. Experiments were performed on patients
suffering from Amyotrophic Lateral Sclerosis (ALS), middle cerebral artery (MCA) stroke and Subarachnoid
Hemorrhage (SAH), in on-line and off-line mode. Our results show that BLDA yields a significantly higher
accuracy than the other linear techniques we have compared, at least for our group of subjects.

1 INTRODUCTION

Research on brain-computer interfaces (BCIs) has
witnessed a tremendous development in recent years
(Sajda et al., 2008), and has enjoyed much attention
even in popular media. Although a lot of research
was done on invasive BCIs, leading to brain implants
decoding neural activity directly, which are primarily
tested on animals, noninvasive BCIs, e.g., based on
electroencephalograms (EEG) recorded on the sub-
ject’s scalp, have recently enjoyed an increasing at-
tention since they do not require any surgical pro-
cedure, and can therefore be more easily tested on
human subjects. Several noninvasive BCI paradigm
have been described in the literature, but the one we
concentrate on, relies on the event-related potential
(ERP, a stereotyped electrophysiological response to
an internal or external stimulus (Luck, 2005)).

One of the most explored ERPs is the P300. It can
be detected while the subject is shown two types of
events with one occurring much less frequently than
the other (”rare event”). The rare event elicits an ERP
consisting of an enhanced positive-going signal com-
ponent with a latency of about 300 ms after stimulus
onset (Luck, 2005). In order to detect the ERP, the
recording of one trial is usually not enough, and the

recordings of several trials need to be averaged. Aver-
aging is required because the recorded signal is a su-
perposition of the activity related to the stimulus and
all other ongoing brain activity. By averaging, the ac-
tivity that is time-locked to a known event (e.g., the
onset of the attended stimulus) is extracted as an ERP,
whereas the activity that is not related to the stimu-
lus onset is expected to be averaged out. The stronger
the ERP signal, the fewer trials are needed, and vice
versa.

There has been a growing interest in the ERP de-
tection problem, as witnessed by the increased avail-
ability of BCIs that rely on ERP detection. A noto-
rious example is the P300 mind-typer (Farwell and
Donchin, 1988), and with which subjects are able to
type words and sentences on a computer screen. This
application meets the BCI’s primary goal, namely, to
improve the quality of life of neurologically impaired
patients suffering from pathologies such as: amy-
otrophic lateral sclerosis, brain stroke, brain/spinal
cord injury, cerebral palsy, muscular dystrophy, etc.
But, as is mostly the case with BCI research, they
have been tested primarily on healthy subjects. Only
very few attempts have been made on patients (Ni-
jboer et al., 2008; Sellers and Donchin, 2006; Pic-
cione et al., 2006; Hoffmann et al., 2008; Silvoni



et al., 2009; Sellers et al., 2010). Several of these
patient tests (Nijboer et al., 2008; Sellers et al., 2010)
deal with P300-based on-line typing, however, since
only very few patients were tested, it is still must be
investigated whether the P300 mind-typer is suited for
them.

In addition, studies that report on the perfor-
mance of different P300 classifiers were only made
for healthy subjects. It, thus, remains to be seen how
the comparison will look like for disabled subjects,
and how this will affect the choice of the best classi-
fier. This is indeed an important question since the
P300 responses from healthy subjects and disabled
patients can be quite different (Sellers and Donchin,
2006). Thus, the results of the classification perfor-
mance comparison for healthy subjects could possi-
bly not be valid for disabled ones. In addition, the
outcomes of the comparison, performed on healthy
subjects, also lead to slightly different conclusions.
In (Krusienski et al., 2006) a comparison of several
classifiers (Pearson’s correlation method, Fisher’s lin-
ear discriminant analysis (LDA), stepwise linear dis-
criminant analysis (SLDA), linear support-vector ma-
chine (SVM) and Gaussian kernel support vector ma-
chine) was performed on 8 healthy subjects. It was
shown that SLDA and linear SVM render the best
overall performance. In (Mirghasemi et al., 2006) it
was shown that, among linear SVM, Gaussian kernel
SVM, multi-layer perceptron, LDA and kernel LDA,
the best performance was achieved by LDA. Based on
these studies, albeit different sets of classifiers were
used in the comparison, one can conclude that lin-
ear classifiers work better than nonlinear ones, at least
for the P300 BCI. This statement is also supported by
other researchers (e.g., in (Lotte et al., 2007)).

In this paper, we report on tests performed on
a group of partially disabled patients suffering from
Amyotrophic Lateral Sclerosis (ALS), Middle Cere-
bral Artery (MCA) stroke, and Subarachnoid Hemor-
rhage (SAH). We compare several linear techniques
for P300 BCI classification. In addition to the linear

Figure 1: Typing matrix of the Mind Speller. Rows and
columns are flashed in random order; one trial consists of
flashing all six rows and all six columns. The intensification
of the third column (left panel) and the second row (right
panel) are shown.

techniques mentioned above, we also add two more
methods (i.e., Bayesian linear discriminant analysis
and a method based on feature extraction). Thus, in
our study we compare a much more extensive set of
linear classification techniques, and perform our com-
parison on disabled patients, instead of healthy sub-
jects, both of which distinguishes our approach from
others.

2 METHODS

2.1 EEG data acquisition

The EEG recordings were performed using a proto-
type of an ultra low-power 8-channels wireless EEG
system. The wireless EEG system was developed
by IMEC1 and built around their ultra-low power 8-
channel EEG amplifier chip (Yazicioglu et al., 2006).
The data are transmitted with a sampling frequency
of 1000 Hz for each channel. We used a brain-cap
with large filling holes and sockets for active Ag/AgCl
electrodes (ActiCap, Brain Products). The recordings
were made with eight electrodes located primarily on
the parietal pole, namely at positions Cz, CPz, P1, Pz,
P2, PO3, POz, PO4, according to the international
10–20 system. The reference electrode and ground
were placed on the left and right mastoids.

2.2 Experiment design

Twelve subjects, naı̈ve to BCI applications, partici-
pated in the experiments (ten male and two female,
aged 37–66 with an average age of 51.25). The sub-
jects were suffering from different types of brain dis-
orders. The experimental protocol was approved by
the ethical committee. After the recordings were
made, four subjects were excluded from further clas-
sifier comparison, since their performance was close
to chance level, which could be due to the nature of
their brain disorder or because they did not understand
the experiment. The information about the patients
(EEG data of which where used for the analysis) in-
cluding their diagnoses, age and gender is presented
in Table 1.

We have used the same visual stimulus paradigm
as the one used in the first P300-based speller, which
was introduced by Farwell and Donchin in (Farwell
and Donchin, 1988): a matrix of 6×6 symbols. Each
experiment was composed of a training and several
testing stages. During both stages, columns and rows

1Interuniversity Microelectronics Centre (IMEC),
http://www.imec.be



Table 1: Information about the patients.

Patient ID Age Gender Diagnosis
subject 1 43 M Amyotrophic lateral sclerosis (2002). Moderate bulbar palsy. Severe weakness

of upper and lower limbs and spasticity in lower limbs.
subject 2 51 M Right MCA stroke (2008) with hypertension (stage II) and mild left hemipare-

sis.
subject 3 58 M Spontaneous SAH and secondary intracerebral hemorrhage in the right hemi-

sphere (2002) with hypertension (stage III) and severe left hemiparesis.
subject 4 54 F Left MCA stroke (2005) with mild motor aphasia and right hemiparesis.
subject 5 52 M Posterior circulation stroke (2002). Right hemiparesis with dysarthria.
subject 6 54 M Left MCA stroke (16.10.2009) with right hemiparesis and motor aphasia.
subject 7 36 M Acute left MCA stroke with partial motor aphasia, right hemisensory loss.
subject 8 65 M Right MCA stroke (2008) with hypertension (stage III) and mild left hemipare-

sis.

of the matrix were intensified (see Figure 1) in a ran-
dom manner. The intensification duration was set to
100 ms, followed by a 100 ms of no intensification.
Each column and each row flashed only once during
one trial, so each trial consisted of 12 stimulus pre-
sentations.

During the training stage, 11 symbols, taken from
the typing matrix, were presented to the subject. For
each symbol, 10 intensification for each row/column
were performed. The subject was asked to count the
number of intensifications of the corresponded sym-
bol. The counting was used only for keeping subject’s
attention on the symbol.

The recorded data was filtered (in the 0.5–15 Hz
frequency band with a fourth-order zero-phase dig-
ital Butterworth filter) and properly cut into signal
tracks. Each of these tracks consisted of 1000 ms
of recording, starting from the stimulus onset. Then,
each of these tracks was downsampled, by retaining
every 25th sample, and assigned to one of two pos-
sible groups: target and nontarget, according to the
stimuli that they were locked to. For classifier train-
ing, we constructed a set of 1000 target-, and the same
amount of non-target averaged brain responses, where
the averages were taken based on k randomly selected
responses from the corresponding groups. The num-
ber k was equal to the number of intensification se-
quences (trails), for each stimulus, during the testing
stage.

Amplitude values at specific moments in time, of
the downsampled EEG signal, restricted to the in-
terval 100–750 ms after stimuli onset, were taken
as features. All these features were normalized to
their Z-score through the estimation of fn,t = (xn(t)−
xn(t))/σxn(t), where xn(t) is the EEG amplitude of n-
th channel (electrode) at time t, after the stimulus on-
set, xn(t) the average of xn(t) and σxn(t) the standard

deviation for all training examples of both the target
and nontarget recordings of the training set. Com-
bining all those features, we obtained a feature vector
f = [ f1, ..., fN ]

T , which was used as input for the lin-
ear classifier w1 f1 +w2 f2 + · · ·+wn fn +b = wT f+b
(see further) 2. After substitution of the feature vec-
tor f into the abovementioned equation, we obtain a
distance (multiplied by factor

√
wT w) from the point

in feature space to the separating hyperplane, with the
sign indicating to which side of the hyperplane the
point belongs, i.e., the target or non-target class.

After training the classifier, each subject per-
formed several on-line test sessions during which
(s)he was asked to mind-type a few words. The typing
performance (ratio of correctly typed symbols) was
used for estimating the classification accuracy. For
these on-line test sessions, we used the classifier that
was trained on data averaged over 15 trials. Thus,
each subject attempted to type a symbol based on 15
row/column intensifications. During typing, the EEG
data was stored for further off-line analysis based on
a smaller amount k of trials (in this case we used all
k-combination of 15 trails for each typed letter for as-
sessing the accuracy).

The testing stage differs from the training stage
by the way the signal tracks were grouped. During
training, the system “knows” exactly which one of 36
possible symbols is attended by the subject at any mo-
ment of time. Based on this information, the collected
signal tracks can be grouped into only two categories:
target (attended) and non-target (not attended). How-
ever, during testing, the system does not know which
symbol is attended by the subject, and the only mean-
ingful way of grouping is by stimulus type (which in

2Since we use Z-scores as features, and since we use
a balanced training set (equal numbers of target and non-
target responses), the parameter b should be close to zero.



the proposed paradigm can be one of 12 types: 6 rows
and 6 columns). Thus, during the testing stage, for
each trial, we had 12 tracks (from all 12 groups) of
1000 ms EEG data recorded from each electrode. The
averaged EEG response for each electrode was deter-
mined for each group. The selected features of the av-
eraged data were then fed into the classifier. As a re-
sult, the classifier produces 12 (for each row/column)
values (c1, . . . ,c12) which describe the distance to a
separating hyperplane in the feature space together
with the sign. The row index ir and the column in-
dex ic of the classified symbol were calculated as:

ir = argmax
i=1,...,6

{ci}, and ic = argmax
i=7,...,12

{ci}−6.

The symbol on the intersection of the ir-th row and
ic-th column in the matrix was then taken as the result
of the classification and presented, as a feedback, to
the subject in the on-line session.

3 CLASSIFICATION METHODS

3.1 Fisher’s Linear Discriminant
Analysis

Fisher’s Linear Discriminant Analysis (LDA) is one
of the most widely used classifiers in P300 BCI sys-
tems (Krusienski et al., 2006; Panicker et al., 2010).
It was reported that it can even outperform other clas-
sifiers (Mirghasemi et al., 2006). Its main idea is
to find a projection from the N-dimensional feature
space onto a one dimensional space wT f for which
the ratio of the variance between the two classes (tar-
get and non-target) vs. the variance within the classes
is maximal. This ’optimal’ projection is estimated as
w = (Σ−1 +Σ+1)

−1(µ+1− µ−1), where Σ and µ de-
fine the covariances and the means of the two classes
(target and non-target) that need to be separated.

3.2 Stepwise Linear Discriminant
Analysis

Stepwise Linear Discriminant Analysis (SLDA) was
used in the patient studies of P300 BCI (Nijboer
et al., 2008; Sellers and Donchin, 2006). It can be
considered as an extension of LDA with an incor-
porated filter feature selection. SLDA adds and re-
moves terms from a linear discriminant model based
on their statistical significance in regression, thus,
producing model that is adjustable to the training data.
It was shown that SLDA performs equally well or
even better than several other classification methods

in P300 BCI (Krusienski et al., 2006). For our com-
parison analysis, we have used the same procedure
as in (Krusienski et al., 2006) (in the forward step,
the entrance tolerance p-value < 0.1; in the backward
step, the exit tolerance p-value > 0.15). The process
is iterated until convergence, or until it reaches a pre-
defined number of 60 features.

3.3 Bayesian Linear Discriminant
Analysis

Bayesian Linear Discriminant Analysis (BLDA) was
used for P300 BCI in patients (Hoffmann et al., 2008).
It is based on a probabilistic regression network. As-
sume that the targets ti (in the case of a classification
problem these are +1 and −1) are linearly dependent
on the observed features fi = [ f i

1, ..., f i
N ]

T with an ad-
ditive Gaussian noise term εn: ti = wT fi + εi. As-
suming further an independent generation of the ex-
amples from a data set, the likelihood of all data is
p(t|w,σ2) = ∏

N
i=1(2πσ2)−1/2 exp

(
− (ti−wT fi)2

2σ2

)
. Ad-

ditionally to this, we have to introduce a prior dis-
tribution over all weights as a zero-mean Gaus-
sian p(w|α) = ∏

n
j=1

(
α

2π

)1/2 exp
(
−α

2 w2
j

)
. Using

Bayes’s rule, we can define the posterior distribu-
tion p(w|t,α,σ2) = (p(t|w,σ2)p(w|α))/p(t|α,σ2),
which is Gaussian with mean µ=(FT F+σ2αI)−1FT t
and covariance matrix Σ = σ2(FT F+σ2αI)−1, where
I is an identity matrix and F is a matrix with each
row corresponding to a training example in feature
space, t a column-vector of true labels (classification)
for all corresponding training examples. As a result,
our separation plane will have the form µT f. This so-
lution is equivalent to a penalized least-square esti-
mate E(w) = 1

2σ2 ∑
N
i=1(ti−wT fi)2 + α

2 ∑
n
j=1 w2

j (Tip-
ping, 2004).

3.4 Linear Support Vector Machine

In P300 BCI research, Support Vector Machine
(SVM) is regarded as one of the more accurate classi-
fiers (Thulasidas et al., 2006; Krusienski et al., 2006).
The principal idea of a linear SVM is to find the
separating hyperplane, between two classes, so that
the distance between the hyperplane and the clos-
est points from both classes is maximal. In other
words, we need to maximize the margin between
the two classes (Vapnik, 1995). Since it is not al-
ways the case that the two classes are linearly sep-
arable, the linear SVM idea was also generalized to
the case where data points are only required to fall
within the margin (and even are on the wrong side
of the decision boundary) by adding a regularization



Figure 2: Classification accuracy as a function of the number of intensifications for every subject, and for all discussed
classification methods.

term. For our analysis, we used use method proposed
in (Combaz et al., 2010), which uses linear least-
squares SVM (Suykens et al., 2002) to solve the min-
imization problem minw,b,e(

1
2 wT w) + γ∑

N
i=1 e2

i with
respect to yi(wT fi + b) = 1− ei, i = 1, ...,n, where fi

corresponds to training points in feature space, and yi
is the associated output (+1 for the responses to the
target stimulus and −1 for the non-target stimulus).
The regularization parameter is estimated through a
line search on cross-validation results.

3.5 Method based on Feature
Extraction

Another classification method in P300 BCI research
(Chumerin et al., 2009) relies on the one-dimensional
version of a linear feature extraction (FE) ap-
proach proposed by Leiva-Murillo and Artés-Rodrı́-
guez in (Leiva-Murillo and Artes-Rodriguez, 2007).
The method searches for the ”optimal” subspace max-
imizing (an estimate of) the mutual information be-

tween the set of projections Y = {wT fi} and the set
T of corresponding labels ti = {−1,+1}. Accord-
ing to (Leiva-Murillo and Artes-Rodriguez, 2007), the
mutual information between the set of projections Y ,
and the set of corresponding labels C can be estimated
as: I(Y,C) = ∑

Nt
p=1 p(tp)(J(Y |tp)− logσ(Y |tp)) −

J(Y ), with Nt = 2 the number of classes, Y |tp the
projection of the p-th class’ data points onto the di-
rection w, σ(·) the standard deviation, and J(·) the
negentropy, estimated using Hyvärinen’s robust esti-
mator (Hyvärinen, 1998).

4 RESULTS

The performance results are shown in Figure 2 for in-
dividual subjects, and in Figure 3 as a grand average
among all subjects. In order to verify the statistical
significance of the comparison, we used the nonpara-
metric Friedman’s test (Corder and Foreman, 2009)
between each pairs of different methods to test the



difference in the medians of the accuracy results. We
have found that the accuracy based on BLDA is sig-
nificantly (p < 0.001) better than any other. Linear
SVM is second. As for SLDA and LDA, there is no
any significant difference between them.

We have also analyzed the mistyped (erroneously
detected) symbols [results not shown]. We have found
that, for all classification method, the misclassifica-
tions mostly occur for either a misclassified row or
column, and the erroneously typed symbols are in
close proximity on the screen to the desired ones.

We observed that some subjects were not com-
fortable with the visual stimulation protocol we used
during the on-line sessions. This discomfort was ex-
pressed by the frequent (3–8 Hz) eye blinking of the
subjects. For those subjects, we had to adapt the stim-
ulation protocol in terms of the interstimuli interval,
which was increased up to 300 ms (150 ms of inten-
sification followed by 150 ms of no intensification).
This shows that working with patients can be quite
different.

5 CONCLUSIONS

We have compared five linear classification methods
for a P300-based BCI, tested on disabled patients. We
have found that BLDA yields significantly better re-
sults compared to the other classification methods we
considered, with linear SVM as the second one in
accuracy. These results can be helpful in deciding
what classifier to use for patients. Additionally to this,
since the classifiers could produce different outcomes,
one could benefit from combining them using a co-
training approach (Panicker et al., 2010), to improve
the classification performance.
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Figure 3: Average classification accuracy as a function of
the number of intensifications for all discussed classifica-
tion methods.
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