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Abstract

A P300 Speller is a Brain-Computer Interface (BCI) that enables subjects to spell text on a computer screen by detecting P300
Event-Related Potentials in their electroencephalograms (EEG). This BCI application is of particular interest to disabled patients
who have lost all means of verbal and motor communication. Error-related Potentials (ErrPs) in the EEG are generated by the
subject’s perception of an error. We report on the possibility of using these ErrPs for improving the performance of a P300 Speller.
Overall 9 subjects were tested, allowing us to study their EEG responses to correct and incorrect performances of the BCI, compare
our findings to previous studies, explore the possibility of detecting ErrPs and discuss the integration of ErrP classifiers into the

P300 Speller system.

1. Introduction

Brain Computer Interfaces (BCls) are aimed at creating a
direct communication pathway between the brain and an exter-
nal device, bypassing the need for an embodiment. In the last
few years, research in the field of BCI has witnessed an impor-
tant development (see [1, 2]) and it is nowadays regarded as a
very promising application of neuroscience. Indeed, such sys-
tems can provide a significant improvement of the quality of life
of neurologically impaired patients suffering from pathologies
such as amyotrophic lateral sclerosis, brain stroke, brain/spinal
cord injury, etc.

In invasive BClIs, a micro-electrode array is implanted in the
brain (mainly in the motor or premotor frontal areas [3] or into
the parietal cortex [4]), while in non-invasive BCIs, mostly
electroencephalograms (EEGs) are recorded from the scalp.
There are several types of EEG-based BCIs. For example, some
are based on Steady State Visually Evoked Potentials (SSVEPs,
[5]): they work by detecting the activity of the brain at a specific
frequency corresponding to the flickering frequency of a visual
stimulus (see [6, 7] for applications). Another type of BClIs re-
lies on the detection of mental tasks (imagination of right/left
hand movements, calculation, word association, etc), which are
detected through Slow Cortical Potentials 8], Readiness Poten-
tial [9] and Event-Related Desynchronization [10].

The BCI presented here belongs to another category; it is
based on the detection of the P300 Event-Related Potential
(ERP: a stereotyped electrophysiological response to an inter-
nal or external stimulus, [11]). This brain potential is elicited in
the context of an oddball paradigm: when a subject perceives
two types of events, one of which occurs only rarely, the rare
event will elicit in the EEG an ERP with an enhanced positive-
going component at a latency of about 300 ms (the P300 ERP,
[12).

The first spelling system based on the detection of this ERP
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Figure 1: User display for the P300 Speller BCI. Left: intensification of a col-
umn of the matrix display. Right: Feedback moment (the identified symbol is
displayed on the screen).

was introduced in 1988 by Farwell and Donchin [13]. This ap-
plication is nowadays one of the most studied BCIs and the
work presented here deals with a similar system. The P300
Speller allows subjects to spell words by focusing on the desired
characters shown in a matrix while the rows and columns of the
matrix are consecutively and randomly intensified (Fig. 1-left).
The intensification of a row or column containing the target
symbol will elicit a P300 ERP and, by detecting this ERP, the
BClI is able to identify the target row and column and thus to
retrieve the symbol the subject has in mind.

Ideally, one sequence of intensifications of each row and col-
umn would be enough to identify the target symbol. Unfortu-
nately, the low signal-to-noise ratio of the P300 ERP makes it
almost undetectable in a single trial. It is therefore common
practice to repeat several times the sequence of intensifications,
in order to average the EEG responses and increase the signal-
to-noise ratio. Depending on the number of repetitions, this
approach can lead to a dramatic increase of the time needed to
communicate a symbol. It is thus important to work on robust
and efficient feature extraction and classification techniques to
reduce this number of repetitions.

An elegant way to improve the performance of a BCI is
the detection of the so-called Error-related Potentials (ErrPs).
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ErrPs were suggested to be generated in the anterior cingulate
cortex with a spatial distribution over the fronto-central regions
of the scalp, and related to the subject’s perception of an error
[14, 15]. If the first studies on the presence of an ErrP in the
EEG were dealing with brain responses to errors made by the
subject himself [16, 17], more recent work discusses the pres-
ence of such potential in the context of a BCI, when the user
realizes that the interface failed to recognize properly his in-
tention [15, 18-21]. This latter phenomenon is what we will
refer to as ErrP in the article. In [19], ErrPs were observed in
the context of a vertical cursor controlled with mu/beta waves,
while in [18] it was in the context of a simulated BCI, where the
subject manually delivers commands to move a horizontal cur-
sor. This experiment was successfully reproduced in a situation
where the BCI was still simulated with an a priori error rate but
this time the subjects were performing movement imagination
[15]. To our knowledge only researchers from the Politecnico
di Milano University [20, 21] recently presented some work on
the error potential in the context of a P300 Speller.

This paper is an extension of the work presented in [22] and
reports on a study performed in our laboratory where 2 series of
experiments were conducted. In the first one, 6 subjects were
tested on the P300 Speller developed by our group [22-24], and
their EEG responses to correct and incorrect feedback (i.e., the
moment when the BCI displays what it identifies as the tar-
get symbol, see Fig. 1-right) were recorded. Each subject per-
formed one session of maximum 2 hours during which he/she
used the system to type several words of his/her choice. For the
second series of experiments, 3 new subjects were recruited and
the same recording sessions as just described were repeated 6
to 7 times over a maximum period of 2 weeks for each one of
them. The data from the first series of experiments allowed us
to observe the ErrP elicited in the EEG of the participants and
to compare our observations with the ones reported in the stud-
ies previously mentioned. The second series of experiments al-
lowed us to study the possibility of detecting the ErrP by build-
ing several classifiers using training data and measuring their
accuracy on test data. We finally discuss the possibility and in-
terest of including an ErrP detection tool into the P300 Speller.

2. Data acquisition

2.1. Material

The EEG recordings were performed using a prototype of an
ultra low-power 8-channels wireless EEG system, which con-
sists of two parts: an amplifier coupled with a wireless transmit-
ter and a USB stick receiver (Figs. 2a, 2c). The data are trans-
mitted with a sampling frequency of 1 kHz for each channel.
The prototype was developed by imec [25]. We used a brain-
cap with large filling holes and sockets for active Ag/AgCl elec-
trodes (ActiCap, Brain Products, Fig. 2d).

The recordings were collected with eight electrodes placed
over the frontal, central and parietal areas of the brain, namely
in positions Fz, FCz, Cz, CP1, CP2, P3, Pz and P4 according
to the international 10-20 system (Fig. 2b). The reference and
ground electrodes were positioned on the left and right mas-
toids, respectively (TP9, TP10). The recording sites were the
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Figure 2: (a) Wireless 8 channels amplifier. (b) Locations of the electrodes on
the scalp. (c) USB stick receiver. (d) Active electrode.

same as in [22] (see also [26, 27] for some guidelines on how
to choose the recording sites).

The visual stimulation consisted of a matrix of 6-by-6 sym-
bols (Fig. 1). For both the training and testing stages, each se-
quence of intensifications consisted in the highlighting of each
row and column of the matrix only once and in random order.
Each highlighting lasted for 100 ms, followed by 100 ms of no
intensification. All recordings and stimulation were performed
with MATLAB, the display of the stimuli and their precise tim-
ing was achieved using the Psychophysics Toolbox Extensions
[28, 29].

2.2. Recording session

Each recording session lasted between one and two hours,
and maximum effort was made to keep the subject fully con-
centrated; the experiments were stopped when the participants
started to feel tired.

The first step of the experiment was to familiarize the subject
with the P300 Speller BCI and to train the system to recognize
the P300 ERP. Hence, prior to any “mind-spelling”, we per-
formed a training session during which the participants were
asked to focus consecutively on 8 symbols randomly selected
by the interface. An indication of the symbol to focus on was
first presented to the subject, then the random sequence of in-
tensifications of all the rows and columns was repeated 10 times
and, finally, the target symbol was presented to the subject in the
middle of the screen for 2 seconds (feedback moment, Fig. 1-
right). This was repeated for all 8 symbols.

Based on the data recorded during the training session, we
built a classifier for the detection of the P300 ERP. The sig-
nals were beforehand filtered between 0.3 and 15 Hz (zero-
phase 3"order Butterworth filter), and then cut into 800 ms
epochs starting from the stimuli onsets. Those epochs were then
average-downsampled to 80 data points (each new data point
corresponds to the average of the signal over a 10 ms window)
and finally, the data of the same classes were averaged over the
desired number of trials (corresponding to the desired number
of repetitions of the sequence of intensification for the spelling
mode).

For each trial (stimulus), we thus have 8 channels x 80 data
points = 640 features to classify as a response to either a tar-
get stimulus or a non-target stimulus. A linear Support Vector
Machine (SVM, [30, 31]) with a 10-fold cross-validation and
a linesearch for the optimization of the regularization parame-
ter was built from those training features. Training the linear



Table 1: Details of the performances of each participant to the first series of experiments.

Total number of mistyped

Subject Gender Age Number of words typed Total number of typed symbols symbols (%)

S1 M 24 5 32 6 (19%)

S2 F 23 7 65 10 (15%)

S3 M 34 5 37 7 (19%)

S4 M 27 7 59 16 (27%)

S5 F 22 9 60 13 (22%)

S6 M 29 7 56 19 (34%)

Table 2: Details of the performances of each participant to the second series of experiments.
. Total number of typed Total number of mistyped . Number of typed Number of mistyped
Subject Gender Age symbols symbols (%) Session symbols symbols (%)

1 83 23 (28%)
2 98 25 (26%)
3 100 35 (35%)
S7 M 27 659 171 (26%) 1 128 35 (27%)
5 124 29 (23%)
6 126 24 (19%)
1 93 12 (13%)
2 146 24 (16%)
3 177 12 (7%)
S8 F 24 963 114 (12%) 4 110 14 (13%)
5 154 17 (11%)
6 139 21 (15%)
7 144 14 (10%)
1 128 12 (9%)
2 134 21 (16%)
3 92 22 (24%)
S9 F 24 758 121 (16%) 1 140 21 (15%)
5 133 21 (16%)
6 131 24 (18%)

SVM on 2000 feature vectors with the modified finite Newton
method proposed in [32] typically took around one minute.

In the second step of the experiment, the subjects used the
P300 Speller with the previously built classifier. This classifier
was applied online to the data in order to detect the P300 ERP
and identify the target symbols. They would first use the sys-
tem with 10 repetitions of the sequence of intensifications, in
order to make them confident about the accuracy of the system.
Most of them spelled their first word with no mistake. As the
aim was to record EEG responses to erroneous feedback, we
then reduced this number of repetition to 5, 4 and even to 3,
depending on how accurately the subjects were typing.

2.3. Experiment design

As mentioned earlier, two series of experiments were per-
formed. For the first one, 6 healthy subjects (4 male, 2 female,
age 22-34, 5 right handed and 1 left handed) were recruited.
They all performed one session during which they spelled be-
tween 32 and 65 symbols with a number of errors comprised
between 6 and 19 (see Table 1).

For the second series of experiments, three new subject were
tested (2 female, 1 male, age 24-27, 2 right handed and 1 left
handed); they performed between 6 and 7 sessions. The detail
of those sessions are presented in Table 2.

We will refer to the subjects as S1-S6 for the ones participat-
ing in the first study and S7-S9 for the ones who engaged in the
second study.

3. First study: presence of an ErrP

This section reports on the results obtained from the first se-
ries of experiments; we present here the average EEG responses
to correct and incorrect feedback, compare our observations
with results from recent studies, and assess of the statistical sig-
nificance of the difference between those two type of feedback
responses.

3.1. The shape of the ErrP

The averaged EEG responses to correct and incorrect feed-
back for each subject at electrode FCz and the grand average
over all subjects for each electrode are plotted in Figs. 3 and 4
(the signal were filtered between 0.5 and 15 Hz with a zero-
phase 3"order Butterworth filter). We also plotted the error-
minus-correct difference potentials (difference between aver-
aged responses to erroneous feedback and averaged responses
to correct feedback).

In [19], Schalk et al. observed a error-minus-correct differ-
ence consisting of a positive potential that peaked about 180 ms
followed by a negative potential (4 subjects were tested). In
[15] and [18], this difference was characterized by a first posi-
tive peak at 200 ms after the feedback, followed by two larger
negative and positive peaks at about 250 ms and 320 ms and a
wider negative peak at 450 ms after the feedback (5 subjects
were tested). Finally in [20] and [21] (2 and 5 subjects tested,
respectively), this error-minus-correct difference showed a neg-
ative peak occurring at about 300 ms followed by a positive
peak at around 400 ms after the feedback.
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Figure 3: EEG responses for each subject at electrode location FCz for 1 second from the feedback onset. Left: EEG responses averaged over all the correct (green)
and erroneous (red) feedbacks. Right: averaged error-minus-correct. Units are ms for the x-axes and pV on the y-axes
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Figure 4: EEG responses averaged over all subjects at each electrode location for 1 second from the feedback onset. Left: EEG responses averaged over all the
correct (green) and erroneous (red) feedbacks. Right: averaged error-minus-correct. Units are ms for the x-axes and PV on the y-axes

All three studies show quite different results concerning the
shape of the ErrP. As they all involve different tasks for con-
trolling the BCI, this could explain the differences. In [19], the
subjects were first trained to control their mu and beta waves
so as to later on use them to manipulate a cursor. In [15, 18],
the subjects were also controlling a cursor through a manual
command in [18] and a motor imagination paradigm in [15]
(imagination of left hand and right foot movements). Lastly,
in [20, 21], the subject’s task was, as in our case, to count the
number of occurrences of a target stimulus.

Another potentially influential parameter could be the na-
ture of the feedback: the brain might respond differently when
reaching (or not) a target with a cursor [19] than when moving
the cursor towards (or away from) the target [15, 18] or to the
display of a (non) desired symbol [20, 21]. If a cursor mov-
ing task could involve the motor area of the brain, a spelling
task might involve language related cognitive processes, and
this could lead to a different error feedback processing.

Moreover, each study uses a different time line and presenta-
tion mode for the display of the feedback: in [19] the feedback
is presented after the subject performed the task (7-8 seconds)
and consists of 3 flashes of the detected target within 3 sec-
onds; in [15, 18] the feedback correspond to the movement of
the cursor every 2 seconds and in [20, 21] the target symbol is
presented for 2 to 3 seconds after 15 seconds of stimulation
and 1 second of pause. The importance given to the feedback
by the subject as well as the frustration that an error would gen-
erate could influence the shape of the recorded EEG response
and might depend on how often the feedback is presented and
on whether it corresponds to the achievement of the task (de-

tecting a symbol, reaching a target [19-21]) or just one step of
the task (moving towards a target [15, 18]).

In our case, when looking at the grand average error-minus-
correct (Fig. 4-right), we can observe a negative peak followed
by positive one at about 320 ms and 450 ms respectively. Those
peaks are most prominent at the electrode sites Fz and FCz.
These results are in concordance with [20, 21] where a similar
P300 Speller as the one presented here was used.

3.2. Statistical significance

In order to assess the significance of the difference between
responses to erroneous feedback and responses to correct feed-
back, we analyzed the data of each subject at the electrode lo-
cation FCz. We first “average-downsampled” the signals from
1000 Hz to 100 Hz. Then, for each time step i = 1,..., N, and
for all M trials of a given subject, we calculated the coefli-
cient of determination R(i)*> (square of the correlation coeffi-
cient, [33]) indicating the fraction of the total variance of the
EEG feedback responses xy;, that was explained by the class y;
of the corresponding trial k (correct feedback versus erroneous
feedback):

. cov(X, ¥)* .
R} = ——"—_ i=1,....N
® var(X;) var(Y) !
1
X =, k=1,..., M} M
with
Y={wel-1,1Lk=1,..., M}

These values are plotted in Fig. 5 (left). While due to the low
signal-to-noise ratio of the EEG signals, the values of this coef-
ficient of determination remain quite low, we can still observe
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Figure 5: Coefficient of determination versus time after feedback onset for each subject independently (left) and for all subjects together (right). The red diamonds
indicates the values for which the permutation test gives a p-value lower than 0.05. Units are ms for the x-axes and the y-axes represent the value of R2.

some peaks along the time line. Some of those peaks have the
same latency time as the negative and positive peaks that we
accounted for as ErrP in the EEG feedback responses. To have
an idea about how significant those peaks are with respect to
the labeling as ErrP and non-ErrP, we performed a permutation
test at each time point (significance level 0.05, [34]). For most
subjects (except subject S1), the time intervals corresponding
to at least one of the 2 peaks associated with the ErrP were sta-
tistically significant (red diamonds on Fig. 5-left). The same
study was performed by regrouping the data from all subjects
together and the coefficient of determination for both time in-
tervals appeared statistically significant (Fig. 5-right).

If those results suggest an apparent discriminability between
EEG responses to both kinds of feedback, the high variability
between the responses of the same type among trials and partic-
ipants indicates the necessity of training a classifier to recognize
the ErrP for each subject. In the case of a P300 Speller, this can
be problematic due to the long time needed to acquire a suffi-
cient amount of training and testing data to build and assess the
accuracy of the classifier. And, as shown by the comparison of
the results from [15, 18-21], the shape of the ErrP seems to be
closely related to the type of paradigm used for the BCI. Thus,
we should collect the training data in the exact context in which
we want to detect the ErrP.

4. Second study: classifying the feedback responses

This section reports on the results obtained from the second
series of experiments. We aim here at gaining insight into the
possibility of correctly classifying the EEG responses of a par-
ticular subject as ErrP (incorrect feedback) and non-ErrP (cor-
rect feedback). We are also interested in the amount of training
data required to reach an acceptable accuracy. for this purpose,
we performed, with 3 new subjects, 6 to 7 recording sessions
similar to the ones presented in the previous section. We could
thus gather for each subject an amount of EEG responses to er-
roneous feedback large enough to first confirm the shape and
statistical significance of the error-minus-correct presented in
the previous section, and then to carry on with an attempt to
correctly classify our EEG data.

4.1. ErrP Shape and statistical significance
In order to confirm the observations of our first study, we per-
formed the same analysis on the new data. The EEG responses
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Figure 6: EEG responses for each subject at electrode location FCz for 1 second
from the feedback onset. Top: EEG responses averaged over all the correct
(green) and erroneous (red) feedbacks. Center: error-minus-correct. Bottom:
Coeflicient of determination versus time after feedback onset for each subject.
The red diamonds indicates the values for which the permutation test gives a
p-value lower than 0.005.

to feedback, the error-minus-correct and the correlation coeffi-
cients with their statistical significance are shown in Fig. 6 for
each of the three subjects for the electrode site FCz.

While, for the first study, the variability in the shape of the
EEG responses to feedback across subjects could be explained
by the low signal to noise ratio of the EEG combined with the
low number of responses to erroneous feedback, the data here
are in a sufficient amount to rule out such an explanation.

When looking at Fig. 6, the common feature which we can
observe for responses to correct and incorrect feedback for all 3
participants is that those responses are composed of 2 positive
peaks appearing respectively, between 200 and 220 ms and be-
tween 340 and 450 ms after the feedback onset. For all 3 sub-
jects, the second peak is higher, broader and appears later in the
case of a response to an incorrect feedback than in the case of a
response to a correct feedback; this results in the positive peak
that we can observe in the error-minus-correct between 410 and
460 ms after the feedback onset for all 3 subjects.

The negative peak observed in the error-minus-correct at
around 350 ms for subjects S8 and S9 is due to the difference
in latency of this second peak between the responses to correct
and erroneous feedback and, in the case of subject S8, also to
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Figure 7: Accuracy, specificity and sensitivity for all 3 subjects and both classifying techniques. The x-axis represents on each graph the size of the time window
taken into account for the classification (from 20 to 1000 ms starting from the feedback onset). The y-axes relates to the amount of training data used to build the
classifiers: for the the accuracy graphes, it represents the total number of training data, for the specificity graph, this is the number of non-ErrP data contained in the
training set and for the sensitivity graph, the number of ErrP data contained in the training set.

the fact that the negative deflection between the 2 positive peaks
in the case of an incorrect feedback is stronger than in the case
of a correct one (this is why this negative peak in the error-
minus-correct is stronger for subject S8, while her response to
incorrect feedback is very similar to that of subject S9). These
differences are not present in the responses for subject S7; this
explains why, in his case, we do not observe any significant neg-
ative peak in the error-minus-correct. However, for this subject,
the first positive peak in the response to feedback is signifi-
cantly higher in the case of an error than in the correct case;
leading to a positive peak in the error-minus-correct at around
200 ms after the feedback onset. This was observed neither in
our other subjects nor in [20, 21]. The fact that this subject was
the only non-naive participant to the experiment might explain
this difference, although, as each subject performed 6 to 7 ses-
sions, they all quickly became experienced with the system and
the shape of their EEG responses to feedback were quite stable
across sessions.

This seems to indicate a significant variability in the way the
brain processes errors across subjects for a given context. Nev-
ertheless, in our case, the concern is the fact that the observed

differences between both types of feedback are significantly dif-
ferent, giving us good hopes about the possibility of classifying
accurately those EEG responses.

4.2. Classifying the feedback responses

We aimed at studying the influence of the amount of training
data on the accuracy of the classification of the EEG responses
as ErrP and non-ErrP. For this, we built several datasets for each
subject with an increasing number of training data. Each dataset
was composed of a training and a testing dataset respectively
used to build the classifier and measure its accuracy. Each data
point was associated to a label corresponding to its class (+1
for ErrP and —1 for non-ErrP).

The data were taken in the same order as they were recorded
(to stay close to reality). To build the first training set, we
started from the data corresponding to the first feedback and
included the following ones, until we reached 5 responses to
incorrect feedback. The rest was used as the first test set. To
build the other datasets, we incremented this method by adding
each time the group of data containing the 5 next responses to
incorrect feedback. We made sure that the last testing set con-



tained at least 10 responses to incorrect feedback. In this way,
we obtained 32 datasets for subject S7, 20 for S8 and 22 for S9
(the y-axes on Figs. 7a and 7b show the corresponding amount
of training data).

As a preprocessing step, the EEG signals from the 8 channels
were filtered between 0.5 and 30 Hz (zero-phase 4™order But-
terworth filter) and downsampled to 250 Hz. We performed the
ErrP classification using a Fisher Linear Discriminant Analy-
sis (FLDA) and a linear Support Vector Machine (with a 10-
folds cross-validation for the optimization of the regularization
parameter, [32]) on a growing time window starting from the
feedback onset until 1 second after, with steps of 20 ms (this
corresponds to the x-axes on Figs. 7a and 7b).

The results are plotted for each subject in Fig. 7a for the
FLDA and in Fig. 7b for the SVM. The color corresponds to
the classification accuracy (from 0 to 100% as the color bars in-
dicate). Due to the fact that the datasets are highly unbalanced
(the amount of ErrP data represents between 12% and 26% of
the data) and that it is very important to minimize the number
of false negatives (amount of non-ErrP classified as ErrP), we
also plotted for each participant the specificity (proportion of
non-ErrP data that are correctly classified) and the sensitivity
(proportion of ErrP data that are correctly classified).

Our interest in assessing not only accuracies but also speci-
ficities and sensitivities lies in the fact that, for strongly unbal-
anced dataset, a high accuracy could be due to a substantial bias
towards the class with the largest training size, thus leading to a
classification of most data as belonging to this class. This could
not be observed by only looking at the global accuracy.

This is also why we chose to compare performances of the
SVM and FLDA classifiers; indeed if SVMs are known to re-
act to unbalanced training dataset by creating a relative bias
towards the most represented class (see [35]), the LDA tends
to be less influenced by such a disproportion (see [36]). This
behavior seems to be confirmed by the results plotted in Fig. 7:
the results from the linear SVM show for all 3 subjects very
high values for the specificity and relatively lower values for
the sensitivity (mainly for subjects S7 and S9). Whereas the
results from the FLDA show more balanced performances for
specificity and sensitivity. Although for the global accuracy, the
linear SVM seems to outperform the FLDA.

It would be tempting to stress the much better sensitivity
coming from the FLDA with respect to the SVM (after all, our
aim is to detect correctly ErrP responses), however, one should
keep in mind that before managing to identify properly ErrP
responses, the first task of the classifier is to avoid the misclas-
sification of non-ErrP responses. The first reason for this is that,
as mentioned earlier, non-ErrP responses are more present and
have thus a stronger influence on the global accuracy. The sec-
ond reason is the frustration that ensues from the misclassifica-
tion of an EEG response to the feedback of a correctly detected
symbol; if this happens too often, the subject might not even
consider the advantage of detecting ErrPs.

Those results also show that the amount of training data
seems to be more influential on the sensitivity than on the speci-
ficity (certainly due to the unbalanced dataset) and that, in or-
der to reach a sensitivity stabilized over 50%, we need training

datasets containing at least 25 instances of ErrP for the FLDA
classifier and 50 for the SVM (except in the case of subject S8
who gets high sensitivity values almost immediately, although
we observe a decrease in the sensitivity between 25 and 50).

Concerning the influence of the time window, we observe,
in most cases, an important increase in the performance around
350 ms which corresponds to the time interval of the statisti-
cally significant peaks of the error-minus-correct for all 3 sub-
jects (cf. Fig. 6)

5. Discussion

5.1. ErrP detection for the Mind Speller

The question arises now about how to use an ErrP detection
tool in the particular context of the P300 Speller. To detect the
target symbol, the classification algorithm computes a score for
each row and column of the matrix and then selects the best
row and column. From those scores, we can deduce a ranking
of all the symbols of the matrix. One simple strategy could be,
after ErrP detection, to simply repeat the sequence of intensifi-
cations, with eventually a lower number of repetitions, and to
update this ranking. But this would lead to an important in-
crease in the time taken to communicate the symbol. Another
strategy could be, when the presence of an ErrP is detected, to
select the second best symbol according to the classifier’s rank-
ing. This approach has the advantage of not increasing the stim-
ulation time. This is supported by the fact that in many cases of
wrong symbol detection, we could observe in our experiments
that at least the column or the row of the target symbol was
correctly identified. When looking at Table 3, we can see that
for subjects S2 and S8, in 70% of the case when a letter was
misspelled, the correct symbol was ranked in second position
by the classifier. Table 3 also shows how such a strategy could
improve the performance of the Mind Speller for all 9 subjects.
We can observe a substantial theoretical increase in the typing
performance (up to 15%).

However, the accuracy presented in the last column of Ta-
ble 3 assumes a perfect detection of the ErrP. In a more realistic
case, we have to keep in mind that not all ErrPs are correctly
detected and new mistakes can appear when responses to cor-
rect feedback are wrongly classified. From the classification re-
sults of our second study, we measured the gain of this method
based on ErrP classification and symbol ranking compared to
the original results with no ErrP detection. In Fig. 8, we present,
for each subject and both classification methods, the accuracy
difference on the test sets between those two approaches with
respect to the amount of training data. The results are presented
for the classifiers trained and tested on EEG data with a time
window of 700 ms length starting from the feedback onset. The
y-axis indicates thus the accuracy gain in percent of the new
method with respect to the original accuracy, so that negative
values actually indicate a loss in typing accuracy. The gain for
the linear SVM classifier (green curves) and from the FLDA
(red curves) can be compared to the maximum theoretical gain
(assuming a perfect ErrP classification, blue curves). We can
observe that for all 3 subjects the SVM outperforms the FLDA,



Table 3: Details of the performances of each participant to both series of experiments. The 4™ column details the number of mistyped symbols for which the real
target was ranked in second position by the classifier (and the proportion of this number with respect to the total number of mistyped symbols). The last column
shows the theoretical new accuracy, assuming a ideal ErrP classification and performing the selection of the secondly ranked symbol when an ErrP is detected.

. Total number of Typing Number of target ranked in second position New accuracy assuming perfect
Subject Gender Age typed symbols accuracy (percentage of total mistake) ErrP detection
S1 M 24 32 81% 4 (67%) 94%
S2 F 23 65 85% 7 (70%) 95%
S3 M 34 37 81% 3 (43%) 89%
S4 M 27 59 73% 9 (56%) 88%
S5 F 22 60 88% 8 (62%) 92%
S6 M 29 56 66% 7 (37%) 79%
S7 M 27 659 74% 93 (54%) 88%
S8 F 24 963 88% 80 (70%) 96%
S9 F 24 758 84% 77 (64%) 94%
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Figure 8: Gain in typing accuracy (%, y-axes) on test data with respect to the size of the training set for subjects S7 S8 and S9. The x-axes represent the total
amount of training data. The classifications were done for a time window of 700 ms starting from the feedback onset. The red curves (dash-dotted lines) represent
this gain for the FLDA, the green ones (dashed lines) for the linear SVM and the blue ones (solid lines) illustrate the maximum possible gain, assuming a perfect

ErrP/non-ErrP classification, for each test set.

although for subject S8, even with a high amount of training
data, the maximum gain remains close to zero. Subjects S7
and S9 seem to benefit from the SVM ErrP detection with an
amount of training data starting from around 100 and 250 re-
spectively. Subject S7 is the only one who seem to benefit from
the ErrP detection based on FLDA; for the 2 other subjects, this
method leads to a decrease of their typing performances. These
results illustrate the importance of minimizing the proportion
of false negatives, and the fact that having a classifier biased
towards the non-ErrP class is at our advantage in the specific
context of ErrP detection for the P300 Speller.

5.2. Combining ErrP detection with other strategies

One can think of several ways to improve the ErrP detection
accuracy in the context of the P300 Speller: a possibility would
be to weight the scores of each symbol with an a priori prob-
ability of occurrence given the previous symbol and the typing
language (e.g., Dasher [37]). Combining this approach with an
ErrP classification algorithm might lead to a better error detec-
tion. The disadvantage of such a technique is that it would be
language specific and not usable for proper nouns or non-text
based communication (e.g., icon-based communication).

Another way would be to use results from the P300 Speller
classifier itself. As previously mentioned, the classifier ranks
the symbols according to their scores. We could infer from
those scores a “certainty measure” of the classifier depending
how high the score of the first ranked letter is with respect to

the other scores. This “certainty measure” could then be used
as a prior probability of error to weight the results of the ErrP
classifier.

5.3. Conclusion

A first step towards the integration of ErrP detection in the
P300 Speller BCI was presented. Besides the undeniable prac-
tical advantages of ErrP detection, the necessity of gathering
enough training data, the importance of minimizing the amount
of false positives in a single trial detection and the strong noisy
component of the EEG signals make this task very challenging.
If, from a practical point of view, performing hours of training
in order to build an ErrP classifier is not acceptable for a com-
mercial device, a solution would be to let the user to utilize the
BCI and become familiar with the device before enhancing it
with the ErrP detection tool once a sufficient amount of train-
ing data has been collected. Combining the ErrP detection with
other techniques based or not on EEG processing might help
reduce the difficulty of the task. In such a case, the contribution
of all techniques involved should be measured, so as to know
whether the ErrP detection takes a determinant role in the cor-
rection of typing errors.
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