
Preprint submitted to Structural and Multidisciplinary Optimization 27 October 2010
Published version:http://dx.doi.org/10.1007/s00158-010-0594-7

Structural and Multidisciplinary Optimization manuscrip t No.
(will be inserted by the editor)

Efficient topology optimization in MATLAB using 88 lines of code

Erik Andreassen · Anders Clausen · Mattias Schevenels· Boyan S. Lazarov · Ole
Sigmund

Received: date / Accepted: date

Abstract The paper presents an efficient 88 line MATLAB
code for topology optimization. It has been developed using
the 99 line code presented by Sigmund (2001) as a starting
point. The original code has been extended by a density
filter, and a considerable improvement in efficiency has been
achieved, mainly by preallocating arrays and vectorizing
loops. A speed improvement with a factor of 100 is obtained
for a benchmark example with 7500 elements. Moreover,
the length of the code has been reduced to a mere 88
lines. These improvements have been accomplished without
sacrificing the readability of the code. The 88 line code can
therefore be considered as a valuable successor to the 99 line
code, providing a practical instrument that may help to ease
the learning curve for those entering the field of topology
optimization. The paper also discusses simple extensions of
the basic code to include recent PDE-based and black-and-
white projection filtering methods. The complete 88 line
code is included as an appendix and can be downloaded
from the web sitewww.topopt.dtu.dk.

Keywords Topology optimization·MATLAB · Education·
Computational efficiency

1 Introduction

MATLAB is a high-level programming language that allows
for the solution of numerous scientific problems with a
minimum of coding effort. An example is Sigmund’s 99

E. Andreassen, A. Clausen, O. Sigmund∗, B.S. Lazarov
Department of Mechanical Engineering, Solid Mechanics,
Technical University of Denmark, Nils Koppels Alle, B. 404,
DK-2800 Lyngby, Denmark
∗E-mail: sigmund@mek.dtu.dk

M. Schevenels
Department of Civil Engineering, K.U.Leuven,
Kasteelpark Arenberg 40, B-3001 Leuven, Belgium

line topology optimization code (Sigmund, 2001). The 99
line code is intended for educational purposes and serves
as an introductory example to topology optimization for
students and newcomers to the field. The use of MATLAB,
with its accessible syntax, excellent debugging tools, and
extensive graphics handling opportunities, allows the user
to focus on the physical and mathematical background
of the optimization problem without being distracted by
technical implementation issues. Other examples of simple
MATLAB code used to provide insight in finite element
analysis or topology optimization include a finite element
code for the solution of elliptic problems with mixed
boundary conditions on unstructured grids (Alberty et al,
1999), a similar code for problems in linear elasticity
(Alberty et al, 2002), a topology optimization code for
compliant mechanism design and for heat conduction
problems (Bendsøe and Sigmund, 2003), a code for Pareto-
optimal tracing in topology optimization (Suresh, 2010),
a discrete level-set topology optimization code (Challis,
2010), and a Scilab code for two-dimensional optimization
problems based on the level set method (Allaire, 2009).

Compared to high performance programming languages
such as C++ and Fortran, MATLAB is generally perceived
to be far behind when it comes to computational power.
This can partly be explained by (1) the fact that many users
apply the same programming strategies as in Fortran or
C++, such as the extensive use offor and while loops,
and (2) the fact that MATLAB is relatively tolerant towards
bad programming practices, such as the use of dynamically
growing variable arrays. In both cases the potential of
MATLAB is far from optimally utilized. Efficient use
of MATLAB implies loop vectorization and memory
preallocation (The MathWorks, 2010). Loop vectorization is
the use of vector and matrix operations in order to avoid
for and while loops. Memory preallocation means that
the maximum amount of memory required for an array is

http://dx.doi.org/10.1007/s00158-010-0594-7
www.topopt.dtu.dk

2

reserved a priori, hence avoiding the costly operation of
reallocating memory and moving data as elements are added
to the array. Loop vectorization and memory preallocation
are used in combination with a number of more advanced
performance improving techniques in the MILAMIN code,
a MATLAB program capable of solving two-dimensional
finite element problems with one million unknowns in one
minute on a desktop computer (Dabrowski et al, 2008).

In the 99 line topology optimization code, the perfor-
mance of several operations (such as the filtering procedure
and the assembly of the finite element matrices) can
be increased dramatically. Partly by properly exploiting
the strengths of MATLAB (using loop vectorization and
memory preallocation), partly by restructuring the program
(moving portions of code out of the optimization loop so
that they are only executed once), a substantial increase in
efficiency has been achieved: for an example problem with
7500 elements, the total computation time has been reduced
by a factor 100. In addition, the original code has been
extended by the inclusion of density filtering, while reducing
the length of the code to only 88 lines.

The aim of this paper is to present the 88 line code. It
should be considered as a successor to the 99 line code,
and it is published with the same objective: to provide
an educational instrument for newcomers to the field of
topology optimization. The main improvements with respect
to the original code are the increased speed and the inclusion
of a density filter. These are relevant improvements, as the
99 line code has been downloaded by a more than 8000
people since 1999 and is still used as a basis for new
developments in the field of topology optimization. The
density filter is a useful addition as it paves the way for the
implementation of more modern filters such as the Heaviside
filters proposed by Guest et al (2004) and Sigmund (2007).

The present text is conceived as an extension of the
paper by Sigmund (2001). Large parts of the 88 line code
are identical to the original 99 line code, and the same
notation is adopted. This approach is followed in an attempt
to minimize the effort required to upgrade to the new
implementation.

The paper is organized as follows. The topology
optimization problem is formulated in section 2. As in
the original paper, the focus is restricted to minimum
compliance problems with a constraint on the amount
of material available. The 88 line code is explained in
section 3. Special attention is paid to the portions of
the code that have changed with respect to the original
99 line code. These two sections constitute the core of
the paper. The remaining sections have a supplementary
character, addressing variants of and extensions of the
88 line code and discussing its performance. Section 4
presents two alternative implementations of the filtering
operation. The first alternative is based on the built-

in MATLAB convolution operator functionconv2. This
modification implies a further reduction of the code to 71
lines and leads to a reduction of the memory footprint,
but this comes at the expense of the code’s readability
for those unfamiliar with theconv2 function. The second
alternative is based on the application of a Helmholtz type
partial differential equation to the density or sensitivity
field (Lazarov and Sigmund, 2010). This approach allows
for the use of a finite element solver to perform the
filtering operation, which reduces the complexity of the
implementation for serial and parallel machines, as well
as the computation time for large problems and complex
geometries. Section 5 shows how to extend the 88 line
code to problems involving different boundary conditions,
multiple load cases, and passive elements. Furthermore, the
inclusion of a Heaviside filter in order to obtain black-and-
white solutions is elaborated. In section 6, the performance
of the 88 line code and its variants is examined. The
computation time is analyzed for three benchmark examples
solved with both the original 99-line code and the new
versions of the code. The memory usage of the new code
is also briefly discussed.

2 Problem formulation

The MBB beam is a classical problem in topology opti-
mization. In accordance with the original paper (Sigmund,
2001), the MBB beam is used here as an example. The
design domain, the boundary conditions, and the external
load for the MBB beam are shown in figure 1. The aim
of the optimization problem is to find the optimal material
distribution, in terms of minimum compliance, with a
constraint on the total amount of material.

Fig. 1 The design domain, boundary conditions, and external load for
the optimization of a symmetric MBB beam.

2.1 Modified SIMP approach

The design domain is discretized by square finite elements
and a “density-based approach to topology optimization”
is followed (Bendsøe, 1989; Zhou and Rozvany, 1991); i.e.

3

each elemente is assigned a densityxe that determines its
Young’s modulusEe:

Ee(xe) = Emin + xpe(E0 − Emin), xe ∈ [0, 1] (1)

where E0 is the stiffness of the material,Emin is a
very small stiffness assigned to void regions in order to
prevent the stiffness matrix from becoming singular, and
p is a penalization factor (typicallyp = 3) introduced to
ensure black-and-white solutions. Equation (1) corresponds
to the modified SIMP approach, which differs from the
classical SIMP approach used in the original paper in
the occurrence of the termEmin. In the classical SIMP
approach, elements with zero stiffness are avoided by
imposing a lower limit slightly larger than zero on the
densitiesxe. The modified SIMP approach has a number of
advantages (Sigmund, 2007), most importantly that it allows
for a straightforward implementation of additional filters, as
illustrated in section 5.

The mathematical formulation of the optimization
problem reads as follows:

min
x

: c(x) = U
T
KU =

N∑

e=1

Ee(xe)u
T
e k0ue

subject to: V (x)/V0 = f
KU = F

0 ≤ x ≤ 1

(2)

where c is the compliance,U and F are the global
displacement and force vectors, respectively,K is the global
stiffness matrix,ue is the element displacement vector,k0

is the element stiffness matrix for an element with unit
Young’s modulus,x is the vector of design variables (i.e.
the element densities),N is the number of elements used to
discretize the design domain,V (x) andV0 are the material
volume and design domain volume, respectively, andf is
the prescribed volume fraction.

2.2 Optimality criteria method

The optimization problem (2) is solved by means of a
standard optimality criteria method. A heuristic updating
scheme identical to the scheme used in the original paper
is followed:

xnewe =





max(0, xe −m) if xeBη
e ≤ max(0, xe −m)

min(1, xe +m) if xeBη
e ≥ min(1, xe −m)

xeB
η
e otherwise

(3)

wherem is a positive move limit,η (= 1/2) is a numerical
damping coefficient, andBe is obtained from the optimality

condition as:

Be =
− ∂c

∂xe

λ
∂V

∂xe

(4)

where the Lagrangian multiplierλ must be chosen so that
the volume constraint is satisfied; the appropriate value can
be found by means of a bisection algorithm.

The sensitivities of the objective functionc and the
material volumeV with respect to the element densitiesxe
are given by:

∂c

∂xe
= −pxp−1

e (E0 − Emin)u
T
e k0u (5)

∂V

∂xe
= 1 (6)

Equation (6) is based on the assumption that each element
has unit volume.

2.3 Filtering

In order to ensure existence of solutions to the topology
optimization problem and to avoid the formation of checker-
board patterns (Dı́az and Sigmund, 1995; Jog and Haber,
1996; Sigmund and Petersson, 1998), some restriction on
the design must be imposed. A common approach is
the application of a filter to either the sensitivities or
the densities. A whole range of filtering methods is
thoroughly described by Sigmund (2007). In addition to the
sensitivity filter (Sigmund, 1994, 1997), which is already
implemented in the 99 line code, the new 88 line code
also includes density filtering (Bruns and Tortorelli, 2001;
Bourdin, 2001).

The sensitivity filter modifies the sensitivities∂c/∂xe as
follows:

∂̂c

∂xe
=

1

max(γ, xe)
∑

i∈Ne

Hei

∑

i∈Ne

Heixi
∂c

∂xi
(7)

whereNe is the set of elementsi for which the center-to-
center distance∆(e, i) to elemente is smaller than the filter
radiusrmin andHei is a weight factor defined as:

Hei = max (0, rmin −∆(e, i)) (8)

The termγ (= 10−3) in equation (7) is a small positive
number introduced in order to avoid division by zero. This
is a difference as compared to the original paper, where
the classical SIMP approach is used. In the classical SIMP
approach, the density variables cannot become zero, and the
termγ is not required.

4

The density filter transforms the original densitiesxe as
follows:

x̃e =
1∑

i∈Ne

Hei

∑

i∈Ne

Heixi (9)

In the following, the original densitiesxe are referred to as
the design variables. The filtered densitiesx̃e are referred to
as the physical densities. This terminology is used to stress
the fact that the application of a density filter causes the
original densitiesxe to loose their physical meaning. One
should therefore always present the filtered density fieldx̃e
rather than the original density fieldxe as the solution to the
optimization problem (Sigmund, 2007).

In the case where a density filter is applied, the
sensitivities of the objective functionc and the material
volumeV with respect to the physical densitiesx̃e are still
given by equations (5) and (6), provided that the variable
xe is replaced with̃xe. The sensitivities with respect to the
design variablesxj are obtained by means of the chain rule:

∂ψ

∂xj
=

∑

e∈Nj

∂ψ

∂x̃e

∂x̃e
∂xj

=
∑

e∈Nj

1∑

i∈Ne

Hei

Hje

∂ψ

∂x̃e
(10)

where the functionψ represents either the objective function
c or the material volumeV .

3 MATLAB implementation

In this section the 88 line MATLAB code (see appendix) is
explained. The code is called from the MATLAB prompt by
means of the following line:

top88(nelx,nely,volfrac,penal,rmin,ft)

wherenelx and nely are the number of elements in the
horizontal and vertical direction, respectively,volfrac is
the prescribed volume fractionf , penal is the penalization
power p, rmin is the filter radiusrmin (divided by the
element size), and the additional argument (compared to
the 99 line code)ft specifies whether sensitivity filtering
(ft = 1) or density filtering (ft = 2) should be used.
When sensitivity filtering is chosen, the 88 line code yields
practically1 the same results as the 99 line code; e.g. the
optimized MBB beam shown in figure 1 of the original
paper by Sigmund (2001) can be reproduced by means of
the following function call:

top88(60,20,0.5,3,1.5,1)

The most obvious differences between the 88 line code
and the 99 line code are the following: (1) thefor loops

1 The slight difference which can be observed between the 88-line
and the 99-line code is due to the difference in the SIMP formulation.

used to assemble the finite element matrices, to compute the
compliance, and to perform the filtering operation have been
vectorized, (2) the remaining arrays constructed by means
of a for loop are properly preallocated, (3) a maximum
amount of code is moved out of the optimization loop to
ensure that it is only executed once, (4) a distinction is made
between the design variablesx and the physical densities
xPhys in order to facilitate the application of a density filter,
and (5) all subroutines have been integrated in the main
program.

The 88 line code consists of three parts: the finite
element analysis, the sensitivity or density filter, and the
optimization loop. These parts are discussed in detail in
subsections 3.1 to 3.3. Subsection 3.4 presents some results
obtained with the 88 line code.

3.1 Finite element analysis

The design domain is assumed to be rectangular and
discretized with square elements. A coarse example mesh
consisting of 12 elements with four nodes per element and
two degrees of freedom (DOFs) per node is presented in
figure 2. Both nodes and elements are numbered column-
wise from left to right, and the DOFs2n − 1 and 2n

correspond to the horizontal and vertical displacement
of node n, respectively. This highly regular mesh can
be exploited in several ways in order to reduce the
computational effort in the optimization loop to a minimum.

1 4 7 10

2 5 8 11

3 6 9 12
15,167,8

37,3829,3021,2213,145,6

35,3627,2819,2011,123,4

33,3425,2617,189,101,2

23,24 31,32 39,40

Fig. 2 The design domain with 12 elements.

The finite element preprocessing part starts with the
definition of the material properties (lines 4-6):E0 is the
Young’s modulusE0 of the material,Emin is the artificial
Young’s modulusEmin assigned to void regions (or the
Young’s modulus of the second material in a two-phase
design problem), andnu is the Poisson’s ratioν.

Next the element stiffness matrixk0 for an element with
unit Young’s modulus is computed (lines 8-12). This matrix
is denoted asKE. Due to the regularity of the mesh, this
matrix is identical for all elements.

5

In order to allow for an efficient assembly of the
stiffness matrix in the optimization loop, a matrixedofMat
is constructed (lines 13-15). Thei-th row of this matrix
contains the eight DOF indices corresponding to thei-
th element (in a similar way as theedof vector in the
original 99 line code). The matrixedofMat is constructed
in three steps. First, a(nely + 1) × (nelx + 1) matrix
nodenrs with the node numbers is defined. The MATLAB
functionreshape is used; this function returns a matrix with
the size specified by the second and third input argument,
whose elements are taken column-wise from the first input
argument (which is in this case a vector containing the node
numbers). Next, the matrixnodenrs is used to determine
the first DOF index for all elements, which are stored in
a vectoredofVec. Finally, the matrixedofVec is used to
determine the eight DOF indices for each element. To this
end, the MATLAB functionrepmat is called twice. This
function copies a matrix the specified number of times in
the vertical and horizontal direction. The first call to the
repmat function returns a matrix with eight columns which
are all copies of the vectoredofVec. The second call returns
a matrix of the same size where all rows are identical; this
matrix relates the indices of the eight DOFs of an element to
the index of its first DOF stored in the vectoredofVec. The
results are added up and collected in the matrixedofMat.
For the example mesh shown in figure 2, this procedure
yields the following result:

edofMat =




3 4 11 12 9 10 1 2

5 6 13 14 11 12 3 4

7 8 15 16 13 14 5 6

11 12 19 20 17 18 9 10
...

...
...

...
31 32 39 40 37 38 29 30




← Element 1
← Element 2
← Element 3
← Element 4

← Element 12

In each iteration of the optimization loop, the assembly
of the global stiffness matrixK is efficiently performed by
means of thesparse function in MATLAB, so avoiding the
use offor loops. The procedure followed here is inspired
by the approach described by Davis (2007). Thesparse

function takes three vectors as input arguments: the first
and second contain the row and column indices of the non-
zero matrix entries, which are collected in the third vector.
Specifying the same row and column indices multiple times
results in a summation of the corresponding entries.

The row and colums index vectors (iK and jK,
respectively) are created in lines 16-17 using theedofMat

matrix. Use is made of a Kronecker matrix product with a
unit vector of length 8, followed by a reshaping operation.
The resulting vectorsiK andjK are structured so that the
indicesiK(k) andjK(k) correspond to the(i, j)-th entry of
the stiffness matrix for elemente, wherek = i+8(j− 1)+

64(e− 1).

The third vector, containing the entries of the sparse
stiffness matrix, is computed in the optimization loop (line
54), as it depends on the physical densitiesx̃. This vector
sK is obtained by reshaping the element stiffness matrixKE

to obtain a column vector, multiplying this vector with the
appropriate Young’s modulusEe(x̃e) for each element, and
concatenating the results for all elements. The multiplication
and concatenation are implemented as a matrix product
followed by a reshaping operation.

The actual assembly of the stiffness matrixK is
performed on line 55 by means of thesparse function,
using the index vectorsiK andjK and the vector with non-
zero entriessK. This procedure could be further improved
by using thesparse2 function from CHOLMOD (Davis,
2008), which is faster than the standard MATLABsparse
function due to the use of a more efficient sorting algorithm
for the indices, but this is beyond the scope of the present
paper. The second statement on line 55 ensures that the
stiffness matrix is perfectly symmetric. This is importantas
it determines the algorithm used by MATLAB to solve the
system of finite element equations. If the stiffness matrix is
sparse, symmetric, and has real positive diagonal elements,
Cholesky factorization is used. If the stiffness matrix is
not symmetric (due to rounding errors in the assembly
procedure), LU factorization is used instead, resulting ina
longer computation time.

The boundary conditions and the load vector are defined
on lines 18-23. These lines are almost identical to those in
the original 99 line code and are therefore not discussed in
the present paper. The main difference with the original code
is that these lines are moved out of the optimization loop.

The system of finite element equations is finally solved
on line 56.

3.2 Filtering

The application of a sensitivity filter according to
equation (7) involves a weighted average over different
elements. This is a linear operation; it can therefore be
implemented as a matrix product of a coefficient matrix
and a vector containing the original sensitivities∂c/∂xi
(multiplied with the design variablesxi). Dividing the
result by a factormax(γ, xe)

∑
i∈Ne

Hei yields the filtered
sensitivities ̂∂c/∂xe. This operation is performed on line 64.
The matrixH and the vectorHs contain the coefficientsHei

and the normalization constants
∑

i∈Ne
Hei, respectively.

The use of a density filter not only implies filtering of
the densities according to equation (9) but also a chain rule
modification of the sensitivities of the objective function
and the volume constraint according to equation (10).
Both operations involve a weighted average over different
elements. The density filtering is performed on line 77, the

6

modification of the sensitivities on lines 66-67. Use is made
of the same coefficientsH and normalization constantsHs as
described above.

Both the matrixH and the vectorHs remain invariant
during the optimization and are computed a priori. The
(nelx × nely) × (nelx × nely) coefficient matrixH
establishes a relationship between all elements. However,
as the filter kernel defined in equation (8) has a bounded
support, only neighboring elements affect one another. As a
consequence, the majority of the coefficients is zero and the
matrixH is sparse. It is constructed by means of the built-in
sparse MATLAB function. Row and column index vectors
iH andjH as well as a vectorsH with non-zero entries are
assembled by means of four nestedfor loops on lines 25-
42. In order to avoid continuous resizing of these vectors as
entries are added, a sufficient (but slightly too high) amount
of memory is preallocated. The entries that remain unused
in the vectorsiH, jH, andsH have no effect: they preserve
their initial value (1, 1, and 0, respectively) and result in
the addition of a zero term to the first element of the sparse
matrix H. The assembly of the matrixH from the vectors
iH, jH, andsH is performed on line 43. The vectorHs is
subsequently computed on line 44.

3.3 Optimization loop

The main part of the 88 line code is the optimization
loop. The loop is initialized on lines 46-49. All design
variablesxe are initially set equal to the prescribed volume
fraction f . The corresponding physical densitiesx̃e are
identical to the design variablesxe: in the sensitivity
filtering approach, this equality always holds, while in the
density filtering approach, it holds as long as the design
variables represent a homogeneous field. For other types
of filters (especially non-volume-preserving filters), it may
be necessary to compute the initial physical densitiesx̃e by
explicit application of the filter to the initial design variables
xe, and to adjust the initial design variables in such a way
that the volume constraint is satisfied (as this constraint is
specified in terms of the physical densitiesx̃e).

Each iteration of the optimization loop starts with the
finite element analysis as described in subsection 3.1 (lines
54-56).

Next, the objective function (the compliance)c is
computed, as well as the sensitivitiesdc and dv of
the objective function and the volume constraint with
respect to the physical densities (lines 58-61). Compared
to the original 99 line code, efficient use is made of the
edofMatmatrix to compute the compliance for all elements
simultaneously: theedofMatmatrix is used as an index into
the displacement vectorU, resulting in a matrix with the size
of edofMat that contains the displacements corresponding
to the DOFs listed inedofMat.

The sensitivities are subsequently filtered (if sensitivity
filtering is used) or modified (if density filtering is used) as
explained in subsection 3.2 (lines 63-68).

On lines 70-82, an optimality criteria method is used to
update the design variables according to equation (3). The
update is performed in a similar way as in the original 99
line code, except that (1) the sensitivitydv of the volume
constraint is explicitly taken into account, (2) the Lagrange
multiplier lmid is determined using the physical densities
instead of the design variables, and (3) the stop condition
is specified in relative terms. The first change is made for
the sake of the density filter: in the sensitivity filtering
approach, the sensitivitiesdv are identical for all elements
and can therefore be omitted from the definition of the
heuristic updating factorBe, but in the density filtering
approach, this is no longer true due to the modification of
the sensitivities performed on line 67. The second change is
strictly speaking not necessary: the density filter is volume-
preserving, which means that the volume constraint can
equally well be evaluated in terms of the design variables.
When another (non-volume-preserving) filter is applied,
however, it is absolutely necessary to evaluate the volume
constraint in terms of the physical densities. The third
change is simply made to optimize the balance between
accuracy and computation speed.

Finally, the intermediate results are printed (lines 84-85)
and plotted (line 87) in the same way as in the original 99
line code.

The optimization loop is terminated when theL∞ norm
of the difference between two consecutive designs (in terms
of design variables) is less than 1 percent.

3.4 Results

The 88 line code is used to optimize the MBB beam. Three
different mesh sizes are considered, consisting of60 × 20

elements,150× 50 elements, and300× 100 elements. The
volume constraint is set to50% and the usual valuep = 3

is used for the penalization exponent. The problem is solved
using sensitivity and density filtering. The filter radiusrmin

equals 0.04 times the width of the design domain, i.e. 2.4, 6,
and 16 for the different meshes.

Figure 3 shows the optimized design and the cor-
responding compliancec. The figures demonstrate that
both sensitivity filtering and density filtering suppress
checkerboard patterns and lead to mesh independent
designs; refining the mesh only leads to a refinement of the
solution, not to a different topology.

7

c = 216.81 c = 219.52 c = 222.29

c = 233.71 c = 235.73 c = 238.31

Fig. 3 Optimized design of the MBB beam and corresponding compliance c obtained with the 88 line code using sensitivity filtering (top) and
density filtering (bottom). A mesh with60× 20 elements (left),150 × 50 elements (middle), and300× 100 elements (right) has been used.

4 Alternative implementations

This section presents two alternatives to the 88 line code
discussed in the previous section. The focus is on the
implementation of the filters.

The first alternative makes use of the built-in MATLAB
functionconv2. This approach is mathematically equivalent
to the implementation presented in the previous section, and
it allows for a reduction of the code to 71 lines. It also
leads to a reduction of the memory requirements, as will
be discussed in subsection 6.2. A possible disadvantage of
this approach is that it may obfuscate the filtering procedure
for readers unfamiliar with theconv2 function and that its
applicability is limited to regular meshes.

The second alternative presents the use of filtering
based on a Helmholtz type partial differential equation
(PDE). This approach allows for the use of a finite element
solver to perform the filtering operation, which speeds
up significantly the filtering process for three-dimensional
problems and simplifies parallel implementations of filtered
topology optimization problems. The results obtained with
the PDE filter are similar to those obtained using an
exponentially decaying filter kernel (Bruns and Tortorelli,
2001).

4.1 Filtering using the CONV2 function

The optimization problem discussed in the previous
sections has two properties that allow for a more concise
implementation. First, a rectangular mesh consisting of
rectangular (square) finite elements is used. Second, the
filter kernel is invariant in space (or, loosely speaking, the
filter radiusrmin is the same at all positions in the design
domain). As a consequence, the filtering operation can be
interpreted as a two-dimensional discrete convolution. In
the following paragraphs, the convolution based approach is
elaborated for the filtering of the densities. The filtering or
modification of the sensitivities can be addressed in a similar
way.

The density filter, defined in equation (9), is reformu-
lated as follows:

x̃(k,l) =

∑

m,n

H(m,n)x(k−m,l−n)

∑

m,n

H(m,n)
(11)

wherex(i,j) and x̃(i,j) denote the design variable and the
physical density, respectively, for the element in thei-th row
and thej-th column. The filter kernelH(m,n) is a function
of the discrete variablesm andn:

H(m,n) = max (0, rmin − δ(m,n)) (12)

where δ(m,n) represents the center-to-center distance
between two elements separated bym rows andn columns.
Both sums in equation (11) must be taken over all indices
m andn for which the kernelH(m,n) is non-zero and for
which (k −m, l− n) refers to an existing element.

The non-zero part of the filter kernelH(m,n) can be
expressed as anM ×N matrixh defined as:

h(m+M+1

2
,n+N+1

2) = H(m,n) (13)

Introducing equation (13) in equation (11) yields the
following expression:

x̃(k,l) =

∑

m,n

h(m+M+1

2
,n+N+1

2)x(k−m,l−n)

∑

m,n

h(m+M+1

2
,n+N+1

2)

(14)

The sum in the numerator corresponds to the(k, l)-th ele-
ment of the central part of the two-dimensional convolution
of the matricesx andh, which is obtained in MATLAB as
conv2(x,h,’same’). The sum in the denominator must
be taken over the same indices, which is most easily
accomplished by using the same MATLAB code as for the
numerator, substituting the matrixx with a unit matrix of
the same size.

8

Using the convolution based approach for the density
filter, the modification of the sensitivities, and the sensitivity
filter allows for a reduction of the 88 line code to 71 lines.
Three modifications are required.

First, the preparation of the filter (lines 25-44) is
replaced with the following lines:

[dy,dx] = meshgrid(-ceil(rmin)+1:ceil(rmin)-1, ...

-ceil(rmin)+1:ceil(rmin)-1);

h = max(0,rmin-sqrt(dx.^2+dy.^2));

Hs = conv2(ones(nely,nelx),h,’same’);

where the matrixh is the non-zero part of the filter kernel
and the matrixHs represents the sum in the denominator
on the right hand side of equation (14). This sum does
not change during the optimization loop and is therefore
computed in advance. Note that the matrixHs computed
here is identical to the matrixHs in the 88 line code.

Second, the filtering or modification of the sensitivities
(lines 63-68) is replaced with the following code:

if ft == 1

dc = conv2(dc.*xPhys,h,’same’)./Hs./max(1e-3,xPhys);

elseif ft == 2

dc = conv2(dc./Hs,h,’same’);

dv = conv2(dv./Hs,h,’same’);

end

Third, the filtering of the densities (line 77) is replaced
with the following line:

xPhys = conv2(xnew,h,’same’)./Hs;

4.2 Filtering based on Helmholtz type differential equations

The density filter given by (9) can be implicitly rep-
resented by the solution of a Helmholtz type PDE
(Lazarov and Sigmund, 2010) with homogeneous Neumann
boundary conditions:

−R2
min∇2ψ̃ + ψ̃ = ψ (15)

∂ψ̃

∂n
= 0 (16)

whereψ is a continuous representation of the unfiltered
design field, andψ̃ is the filtered field. The solution
of the above PDE can be written in the form of a
convolution integral which is equivalent to the classical
filter. The parameterRmin in (15) plays a similar role as
rmin in (8). An approximate relation between the length
scales for the classical and the PDE filter is given by
(Lazarov and Sigmund, 2010):

Rmin = rmin/2
√
3 (17)

The PDE filter is volume preserving, i.e. the volume of the
input field is equal to the volume of the filtered field. The
same idea can be applied as a sensitivity filter with the input

field in (15) replaced byψ = x ∂c
∂x

and the output field given

by ψ̃ = x ∂̃c
∂x

(Lazarov and Sigmund, 2009).
The filter properties have been discussed extensively by

Lazarov and Sigmund (2010), and here only the main ad-
vantages with respect to memory usage and computational
cost are highlighted. The classical filter requires information
about the neighbor elements, which for irregular meshes and
complex geometries is obtained by a relatively expensive
search. Clearly the approach presented in subsection 3.2
speeds up the filtering process if the search procedure is
performed only once as a preprocessing step, however, the
computational complexity and the memory utilization are
proportional tor2min in two dimensions and tor3min in three
dimensions, respectively. The PDE filter approach utilizes
the mesh used for the state problem and does not require
any additional information, which avoids excessive memory
usage. Furthermore, the computational cost depends linearly
on the length parameterRmin if the solution of the PDE
(15) is obtained by an iterative method. Therefore, for
a large filter radius, especially in three dimensions, the
PDE filtering scheme should be the preferred choice. In
the presented two-dimensional examples with a regular
mesh, the concept will not result in improved performance,
however, we include it here for educational reasons and
inspiration.

FE discretization of equation (15) leads to the following
system of linear equations:

KFx̃N = TFx (18)

whereKF is the standard FE stiffness matrix for scalar
problems,TF is a matrix which maps the element design
valuesx to a vector with nodal values, and̃xN is the
nodal representation of the filtered field. The element-wise
representation of the filtered field is obtained as:

x̃ = T
T
F x̃N (19)

The PDE filter requires minor changes of the 88 line
code and reduces it to 82 lines. The preparation of the filter
(lines 25-44) is replaced with the following lines:

Rmin = rmin/2/sqrt(3);

KEF = Rmin^2*[4 -1 -2 -1; -1 4 -1 -2; ...

-2 -1 4 -1; -1 -2 -1 4]/6 + ...

[4 2 1 2; 2 4 2 1; ...

1 2 4 2; 2 1 2 4]/36;

edofVecF = reshape(nodenrs(1:end-1,1:end-1),nelx*nely,1);

edofMatF = repmat(edofVecF,1,4) + ...

repmat([0 nely+[1:2] 1],nelx*nely,1);

iKF = reshape(kron(edofMatF,ones(4,1))’,16*nelx*nely,1);

jKF = reshape(kron(edofMatF,ones(1,4))’,16*nelx*nely,1);

sKF = reshape(KEF(:)*ones(1,nelx*nely),16*nelx*nely,1);

KF = sparse(iKF,jKF,sKF);

LF = chol(KF,’lower’);

iTF = reshape(edofMatF,4*nelx*nely,1);

jTF = reshape(repmat([1:nelx*nely],4,1)’,4*nelx*nely,1);

sTF = repmat(1/4,4*nelx*nely,1);

TF = sparse(iTF,jTF,sTF);

9

c = 218.79 c = 217.88 c = 219.44

c = 237.60 c = 235.36 c = 236.62

Fig. 4 Optimized design of the MBB beam and corresponding compliance c obtained with the variant of the 88 line code using PDE based
sensitivity filtering (top) and density filtering (bottom).A mesh with60× 20 elements (left),150× 50 elements (middle), and300× 100 elements
(right) has been used.

whereKF corresponds to the tangent filter matrix andTF
corresponds to the transformation matrix on the right hand
side of equation (18). In order to keep the MATLAB code
readable, the linear system obtained by FE discretization
of equation (15) is solved by factorization instead of an
iterative method, which hides some of the filter advantages.
The second change is a replacement of the filtering or
modification of the sensitivities (lines 63-68) with the
following code:

if ft == 1

dc(:) = (TF’*(LF’\(LF\(TF*(dc(:).*xPhys(:)))))) ...

./max(1e-3,xPhys(:));

elseif ft == 2

dc(:) = TF’*(LF’\(LF\(TF*dc(:))));

dv(:) = TF’*(LF’\(LF\(TF*dv(:))));

end

Finally, the filtering of the densities (line 77) is replacedwith
the following line:

xPhys(:) = (TF’*(LF’\(LF\(TF*xnew(:)))));

Figure 4 shows the optimized MBB beam and the
corresponding compliancec obtained with the PDE filter,
using the same input parameters as in subsection 3.4. The
figure shows that the PDE filter leads to a mesh independent
design without checkerboard patterns. The optimized design
and the corresponding compliancec are similar to those
obtained with the standard density and sensitivity filters
shown in figure 3. They are not identical, however. The
difference is due to the fact that the PDE filter is based on
an exponentially decaying filter kernel, while the standard
filters are based on a linearly decaying filter kernel.

5 Extensions

Sigmund (2001) describes how to extend the 99 line code
to account for different boundary conditions, multiple load
cases, and passive elements, and how to replace the optimal-
ity criteria based optimizer with a more general optimization
scheme. In this section, the extensions discussed in the

original paper are reconsidered, now starting from the 88
line code. In addition, the implementation of a black-and-
white projection filter is also addressed.

5.1 Other boundary conditions

Fig. 5 The design domain, boundary conditions, and external load for
the optimization of a cantilever beam (left) and the optimized design
obtained with a variant of the 88 line code using sensitivityfiltering
(right).

Changing load and support conditions in order to solve other
optimization problems is very straightforward. In order to
solve the short cantilever example shown in figure 5, line 19
of the 88 line code must be changed to:

F = sparse(2*(nely+1)*(nelx+1),1,-1, ...

2*(nely+1)*(nelx+1),1);

Line 21 must be changed to:

fixeddofs = [1:2*nely+1];

With these changes, the optimized design shown in figure 5
is obtained by means of the following function call:

top88(160,100,0.4,3,6,1)

5.2 Multiple load cases

It is also very simple to extend the algorithm to account for
multiple load cases. As an example, the problem outlined in
figure 6 is considered.

10

Fig. 6 The design domain, boundary conditions, and external loads
for the optimization of a cantilever beam with two load cases(left and
middle) and the optimized design obtained with a variant of the 88 line
code using sensitivity filtering (right).

In the case of two load cases, the force and displacement
vectors must be defined as two-column vectors, which
means that lines 19 and 20 are changed to:

F = sparse([2*(nely+1)*nelx+2,2*(nely+1)*(nelx+1)], ...

[1 2],[1 -1],2*(nely+1)*(nelx+1),2);

U = zeros(2*(nely+1)*(nelx+1),2);

The support conditions (line 21) are defined in the same way
as in the previous subsection. The equilibrium equations
must be solved for both load cases, which is accomplished
by changing line 56 as follows:

U(freedofs,:) = K(freedofs,freedofs)\F(freedofs,:);

The objective function is now defined as the sum of two
compliances:

c(x) =

2∑

i=1

U
T
i KUi (20)

Lines 58-60 are thus replaced with the following code:

c=0;

dc=0;

for i = 1:size(F,2)

Ui = U(:,i);

ce = reshape(sum((Ui(edofMat)*KE).*Ui(edofMat),2), ...

nely,nelx);

c = c + sum(sum((Emin+xPhys.^penal*(E0-Emin)).*ce));

dc = dc - penal*(E0-Emin)*xPhys.^(penal-1).*ce;

end

The optimized design shown in figure 6 can now be obtained
by means of the following function call:

top88(150,150,0.4,3,6,1)

5.3 Passive elements

In some cases, certain areas of the design domain may be
required to be void or solid (e.g. to allow for the passage
of a pipe or to support a secondary structure). This can
be easily accomplished by means of the 88 line code
through the definition of passive elements, i.e. elements

with a density fixed to be zero or one. As an example, the
optimization problem defined in figure 7 is addressed. A
circular region of the design domain with radiusnely/3 and
center(nely/2, nelx/3) is fixed to be void.

Fig. 7 The design domain, boundary conditions, and external load for
the optimization of a cantilever beam with a fixed hole (left)and the
optimized design obtained with a variant of the 88 line code using
sensitivity filtering (right).

The load vector (line 19) and the support conditions
(line 21) in this example are defined in the same way as in
subsection 5.1. In order to distinguish between active and
passive elements, anely×nelxmatrixpassive is defined
with 0 at elements free to change, 1 at elements fixed to be
void, and 2 at elements fixed to be solid:

passive = zeros(nely,nelx);

for i = 1:nelx

for j = 1:nely

if sqrt((j-nely/2)^2+(i-nelx/3)^2) < nely/3

passive(j,i) = 1;

end

end

end

These lines must be inserted in the 88 line code before the
start of the optimization loop. The optimality criteria method
must be modified by adding the following code between
lines 78 and 79:

xPhys(passive==1) = 0;

xPhys(passive==2) = 1;

With these modifications, the 88 line code can be used to
generate the optimized design shown in figure 7 by means
of the following function call:

top88(150,100,0.5,3,5,1)

5.4 Heaviside projection filter

This subsection focuses on the implementation of a
black-and-white projection filter. As an example, the
implementation of the filter proposed by Guest et al (2004)
is explained. This filter is referred to as the Heaviside
projection filter in the present paper. The aim of the
Heaviside projection filter is (1) to achieve a minimum
length scale in the optimized design, and (2) to obtain black-
and-white solutions. Guest et al (2004) apply this filter using

11

nodal design variables, but as shown by Sigmund (2007), it
is equally applicable when element design variables are used
(which is the case in the present paper).

The Heaviside filter is a modification of the original
density filter (9) with a Heaviside step function that projects
the densitỹxe (from now on called the intermediate density)
to a physical densitȳxe. The physical densitȳxe equals one
if x̃e > 0 and zero ifx̃e = 0. In order to allow for the
use of a gradient-based optimization scheme, the Heaviside
function is replaced with the following smooth function:

x̄e = 1− e−βx̃e + x̃ee
−β (21)

The parameterβ controls the smoothness of the approxi-
mation: forβ equal to zero, the Heaviside filter is identical
to the original density filter; forβ approaching infinity, the
approximation approaches a true Heaviside step function. In
order to avoid local minima and to ensure differentiability
in the optimization, a continuation scheme is used where
the parameterβ is gradually increased from 1 to 512 by
doubling its value every 50 iterations or when the change in
terms of design variables between two consecutive designs
becomes less than 0.01.

It should be noted that Guest et al (2004) include an
extra term in equation (21) to ensure that the lower bound on
the densities̄xe is satisfied; this term is not necessary here
due to the use of the modified SIMP approach (Sigmund,
2007).

The sensitivities of a functionf(x̄e) with respect to the
intermediate densities̃xe are obtained by means of the chain
rule:

∂f

∂x̃e
=

∂f

∂x̄e

∂x̄e
∂x̃e

(22)

where the derivative of the physical densityx̄e with respect
to the intermediate densitỹxe is given by:

∂x̄e
∂x̃e

= βe−βx̃e + e−β (23)

The implementation of the Heaviside filter in the 88 line
code as a third filter option (ft = 3) involves the following
modifications.

First, theβ parameter (beta) must be defined and the
densities must be filtered before the start of the optimization
loop. To this end, line 47 is replaced with the following
lines:

beta = 1;

if ft == 1 || ft == 2

xPhys = x;

elseif ft == 3

xTilde = x;

xPhys = 1-exp(-beta*xTilde)+xTilde*exp(-beta);

end

This code will lead to initial physical densities̄xe that do
not satisfy the volume constraint, which could be avoided
by adjusting the initial values of the design variablesxe.
In the present code, however, the optimality criteria update
scheme is relied upon to correct the violation of the volume
constraint.

Second, the modification of the sensitivities is accom-
plished by inserting the following supplementaryelseif
statement on line 68:

elseif ft == 3

dx = beta*exp(-beta*xTilde)+exp(-beta);

dc(:) = H*(dc(:).*dx(:)./Hs);

dv(:) = H*(dv(:).*dx(:)./Hs);

Third, the application of the Heaviside filter to the
densities is realized by means of the following additional
elseif statement, to be inserted on line 78:

elseif ft == 3

xTilde(:) = (H*xnew(:))./Hs;

xPhys = 1-exp(-beta*xTilde)+xTilde*exp(-beta);

Finally, the continuation scheme for the regularization
parameterβ is implemented by inserting the following block
of code at the end of the optimization loop:

if ft == 3 && beta < 512 && ...

(loopbeta >= 50 || change <= 0.01)

beta = 2*beta;

loopbeta = 0;

change = 1;

fprintf(’Parameter beta increased to %g.\n’,beta);

end

The additional counterloopbeta must be initialized and
incremented in the same way as the existing counterloop.

The modified code is used to optimize the MBB beam.
The same parameter values are used as in subsection 3.4,
except for the filter radius, which is reduced to 0.03 times
the width of the design domain. The motivation for this
reduction is that the material resource constraint prohibits
the transformation of the topology obtained in the initial
phase of the continuation scheme (which is similar to the
topology obtained in subsection 3.4) into a black-and-white
design consisting of bars with a large thickness.

Figure 8 shows the optimized design obtained with the
three meshes. The optimized design is almost perfectly
black-and-white and does not exhibit structural details
smaller than the filter radiusrmin. The Heaviside projection
filter relies on the compact support of the classical filter
function to impose length scale in the solid regions, and
therefore the Heaviside projection cannot be directly applied
with the PDE filter. It can be observed also that the minimum
length scale imposed on the material distribution does
not prevent the occurrence of very small holes. This can
be avoided by using a more advanced filter such as the
morphological close-open or open-close filter (Sigmund,
2007) or by following a robust approach in the formulation

12

c = 189.14 c = 191.49 c = 193.24

Fig. 8 Optimized design of the MBB beam and corresponding compliancec obtained with the 88 line code extended by a Heaviside filter.A mesh
with 60× 20 elements (left),150× 50 elements (middle), and300× 100 elements (right) has been used.

of the optimization problem (Sigmund, 2009; Wang et al,
2010).

5.5 Other extensions

The implementation of additional extensions to the 88 line
code should be relatively straightforward. The extension
to three-dimensional problems may require a lot of
modifications, but the general structure of the code would
remain unchanged. Following the guidelines given by
Bendsøe and Sigmund (2003), the 88 line code can be
converted to a code for mechanism synthesis or for
heat conduction problems. The optimality criteria based
optimizer can be replaced with a more versatile optimization
scheme, such as the method of moving asymptotes (MMA)
introduced by Svanberg (1987), in order to enable the
solution of problems with more than one constraint.

6 Performance

6.1 Computation time

In this subsection, the computation time for the 88 line code
(and the variants presented sections 4 and 5.4) is compared
with the original 99 line code. The MBB beam optimization
problem introduced earlier is considered as a benchmark
problem, using the same parameter values as in subsection
3.4.

Table 1 Computation time in seconds per iteration for the optimization
of the MBB beam using sensitivity filtering.

Mesh size 60 × 20 150×50 300×100

99 line code 0.65 75.19 -
88 line code 0.15 0.72 1.85
CONV2 based filtering code 0.13 0.69 1.98
PDE based filtering code 0.13 0.78 2.18

Table 1 gives an overview of the computation time in
seconds per iteration for the optimization of the MBB beam
using sensitivity filtering. Results are given for four variants
of the optimization code and for three different mesh sizes.
The computation times have been determined as the average

over the first ten iterations of the optimization loop, using
a Lenovo Thinkpad X301 laptop with an Intel Core2 Duo
U9400 processor, 2 GB memory, Windows XP with SP3
(32-bit x86), and MATLAB R2010a. It is clear from the
table that the new 88 line implementation is significantly
faster than the original 99 line code. For the mesh with
150 × 50 elements, a factor of 100 speed improvement is
accomplished. The 99 line code has not been tested using
the mesh with300× 100 elements as the computation time
becomes excessively large. The computation time for the
alternative implementations usingconv2 based filtering and
PDE based filtering is almost equal to the computation time
for the 88 line code.

Table 2 Computation time in seconds per iteration for the optimization
of the MBB beam using density filtering.

Mesh size 60× 20 150×50 300×100

88 line code 0.12 0.94 5.67
CONV2 based filtering code 0.16 0.78 3.30
PDE based filtering code 0.19 1.79 10.08

Table 2 shows the results obtained with a density filter,
using the same configuration as for the sensitivity filter. No
results are given for the 99 line code as it does not include
a density filter. The computation time is slightly higher than
for the sensitivity filter, due to the application of the density
filter in every iteration of the bisection algorithm used to
determine the Lagrangian multiplierλ. This is especially
true for the problem with the largest mesh, and for the
code using PDE based filtering, where the application of
the density filter involves a relatively costly backsubstitution
operation. As the PDE based filter is volume-preserving,
this could be avoided using the design variables instead of
the physical densities to check the volume constraint in the
bisection algorithm. Moreover, the computational cost can
be significantly reduced by employing an iterative solver
(Lazarov and Sigmund, 2010).

Finally, the performance of the code extended by a
Heaviside filter is described in table 3. Compared to the
standard density filtering code, the additional Heaviside
projection has no significant impact on the computation
time. The computation time per iteration is slightly lower
due to the use of a smaller filter radiusrmin in the

13

Table 3 Computation time in seconds per iteration for the optimization
of the MBB beam using Heaviside filtering.

Mesh size 60 × 20 150×50 300×100

Code with Heaviside filter 0.13 0.86 4.65

example problem, which leads to a sparser coefficient
matrix H, reducing the number of operations required to
multiply the coefficient matrixH with the design variables
or the sensitivities. It should be noted, however, that the
use of the Heaviside filter requires the application of a
continuation scheme, which implies that the number of
iterations becomes considerably larger.

6.2 Memory usage

While the use of thesparse function to assemble the
stiffness matrix leads to a vast improvement in terms of
computation time, it also increases the program’s memory
footprint. The index vectorsiK andjK and the vectorsK
with non-zero entries are relatively large and remain in
memory throughout the entire optimization loop. Each of
these vectors has the size of the element stiffness matrix
times the number of elements, which is considerably more
than the size of the stiffness matrix itself. Moreover, the
sparse function requires the index vectorsiK and jK to
be defined as double precision arrays, prohibiting the use
of a more memory efficient integer type. In contrast to
the sparse function built-in in MATLAB, the sparse2

function from CHOLMOD does accept integer type index
vectors.

In order to get a rough idea of the memory requirements
for the 88 line code and its variants, an informal test has
been conducted: the example problem from the previous
subsection has been solved multiple times, each time
incrementing the mesh size, until the computer ran out
of memory. The same computer has been used as for
the determination of the computation time. The test has
been performed using both sensitivity and density filtering,
leading to identical results.

The largest problem that could be solved with the 88
line code consisted of300 × 100 = 30000 elements. The
code usingconv2 based filtering requires less memory
as it avoids the definition of the (sparse but nonetheless
large) coefficient matrixH, using a small matrixh instead
that represents the non-zero part of the filter kernel. As a
consequence, this code allowed for the solution of a problem
with 700 × 233 = 163100 elements. The code based
on PDE filtering performs in between and allowed us to
solve a problem with600 × 200 = 120000 elements. The
extension of the 88 line code with a Heaviside filter has
no noticeable influence on memory usage; however, due

to the use of a smaller filter radiusrmin in the example
problem, the coefficient matrixH becomes sparser, and a
problem with 350 × 117 = 40950 elements could be
solved. The original 99 line code has not been tested, as the
computation time becomes prohibitively large for problems
of these dimensions.

7 Conclusion

This paper presents a MATLAB code for topology
optimization. The code is considered as the successor to the
99 line code presented by Sigmund (2001). It is published
with the same objective: to provide students and newcomers
to the field with a very simple implementation of a topology
optimization algorithm that can serve as an introductory
example and as a basis for further developments. The code
can be download from the web sitewww.topopt.dtu.dk.

The major difference with respect to the original 99
line code is the computational efficiency. An improvement
in speed with a factor of 100 has been measured for an
example problem with 7500 elements. This has mainly been
accomplished by means of loop vectorization and memory
preallocation.

In addition, the code has been extended by a density
filter. The inclusion of a density filter has an important ed-
ucational value, as it paves the road for the implementation
of more sophisticated filters such as the Heaviside filter also
discussed in the paper.

Special care has been taken not to compromise the
simplicity of the code. As a result, the new code is
characterized by the same readability as the original 99 line
code, although the number of lines has been reduced to 88.

The paper also presents two alternative implementations.
The first alternative takes advantage of theconv2 function
built-in in MATLAB to filter densities and sensitivities, so
reducing the number of lines to 71 without affecting the
computational cost or the readability of the code (for those
familiar with theconv2 function). The second alternative
uses a filter based on a Helmholtz type differential equation,
allowing for the use of a finite element solver to perform
the filtering operation. This is beneficial for problems with
a complex geometry or when the optimization problem is
solved in parallel.

Acknowledgements This work was financially supported by the
Eurohorcs/ESF European Young Investigator Award (EURYI),by a
Center of Advanced User Support (CAUS) grant from the Danish
Center of Scientific Computing (DCSC), and by an Elite Research
Prize from the Danish Minister of Research. The third authoris a
postdoctoral fellow of the Research Foundation - Flanders and a
member of K.U.Leuven-BOF PFV/10/002 OPTEC-Optimization in
Engineering Center.

www.topopt.dtu.dk

14

References

Alberty J, Carstensen C, Funken S (1999) Remarks around
50 lines of Matlab: short finite element implementation.
Numerical Algorithms 20(2–3):117–137

Alberty J, Carstensen C, Funken S, Klose R (2002) Matlab
implementation of the finite element method in elasticity.
Computing 69(3):239–263

Allaire G (2009) Shape and topology
optimization by the level set method. URL
http://www.cmap.polytechnique.fr/~allaire

Bendsøe M, Sigmund O (2003) Topology Optimization.
Theory, Methods and Applications. Springer

Bendsøe M (1989) Optimal shape design as a material
distribution problem. Structural optimization 1:193–202

Bourdin B (2001) Filters in topology optimization. Inter-
national Journal for Numerical Methods in Engineering
50(9):2143–2158

Bruns TE, Tortorelli DA (2001) Topology optimization of
non-linear elastic structures and compliant mechanisms.
Computer Methods in Applied Mechanics and Engineer-
ing 190(26-27):3443–3459

Challis VJ (2010) A discrete level-set topology optimization
code written in Matlab. STRUCTURAL AND MULTI-
DISCIPLINARY OPTIMIZATION 41(3):453–464

Dabrowski M, Krotkiewski M, Schmid D (2008) MIL-
AMIN: MATLAB-based finite element method solver for
large problems. Geochemistry Geophysics Geosystems
9(4)

Davis T (2007) Creating sparse finite-element matrices in
MATLAB. Guest blog in Loren on the Art of MATLAB,
http://blogs.mathworks.com/loren/2007/03/01/creating-
sparse-finite-element-matrices-in-matlab/. URL
http://blogs.mathworks.com/loren/

Davis T (2008) User Guide for CHOLMOD: a sparse
Cholesky factorization and modification package. De-
partment of Computer and Information Science and
Engineering, University of Florida, Gainesville, FL, USA

Dı́az A, Sigmund O (1995) Checkerboard patterns in layout
optimization. Structural Optimization 10(1):40–45

Guest J, Prevost J, Belytschko T (2004) Achieving minimum
length scale in topology optimization using nodal design
variables and projection functions. International Journal
for Numerical Methods in Engineering 61(2):238–254

Jog C, Haber R (1996) Stability of finite element models
for distributed-parameter optimization and topology
design. Computer Methods in Applied Mechanics and
Engineering 130(3–4):203–226

Lazarov B, Sigmund O (2009) Sensitivity filters in topology
optimisation as a solution to helmholtz type differential
equation. In: In Proc. of the 8th World Congress on
Structural and Multidisciplinary Optimization

Lazarov B, Sigmund O (2010) Filters in topology opti-
mization based on Helmholtz type differential equations
(submitted for publication)

Sigmund O (1994) Design of material structures using
topology optimization. PhD thesis, DCAMM S-report
S69, Department of Solid Mechanics, Technical Univer-
sity of Denmark

Sigmund O (1997) On the design of compliant mechanisms
using topology optimization. Mechanics of Structures and
Machines 25(4):493–524

Sigmund O (2001) A 99 line topology optimization
code written in Matlab. Structural and Multidisciplinary
Optimization 21(2):120–127

Sigmund O (2007) Morphology-based black and white
filters for topology optimization. Structural and Multidis-
ciplinary Optimization 33(4-5):401–424

Sigmund O (2009) Manufacturing tolerant topology opti-
mization. Acta Mechanica Sinica 25(2):227–239

Sigmund O, Petersson J (1998) Numerical instabilities
in topology optimization: A survey on procedures
dealing with checkerboards, mesh-dependencies and
local minima. Structural Optimization 16(1):68–75

Suresh K (2010) A 199-line Matlab code for Pareto-
optimal tracing in topology optimization. Structural and
Multidisciplinary Optimization Published online

Svanberg K (1987) Method of moving asymptotes - a new
method for structural optimization. International Journal
for Numerical Methods in Engineering 24(2):359–373

The MathWorks (2010) MATLAB Programming Funda-
mentals

Wang F, Lazarov B, Sigmund O (2010) On projection meth-
ods, convergence and robust formulations in topology
optimization (submitted for publication)

Zhou M, Rozvany G (1991) The COC algorithm, part
II: Topological, geometrical and generalized shape
optimization. Computer Methods in Applied Mechanics
and Engineering 89(1–3):309–336

http://www.cmap.polytechnique.fr/~allaire
http://blogs.mathworks.com/loren/

15

Appendix - MATLAB code

1 %%%% AN 88 LINE TOPOLOGY OPTIMIZATION CODE %%%%

2 function top88(nelx,nely,volfrac,penal,rmin,ft)
3 %% MATERIAL PROPERTIES

4 E0 = 1;

5 Emin = 1e-9;

6 nu = 0.3;

7 %% PREPARE FINITE ELEMENT ANALYSIS
8 A11 = [12 3 -6 -3; 3 12 3 0; -6 3 12 -3; -3 0 -3 12];

9 A12 = [-6 -3 0 3; -3 -6 -3 -6; 0 -3 -6 3; 3 -6 3 -6];

10 B11 = [-4 3 -2 9; 3 -4 -9 4; -2 -9 -4 -3; 9 4 -3 -4];

11 B12 = [2 -3 4 -9; -3 2 9 -2; 4 9 2 3; -9 -2 3 2];

12 KE = 1/(1-nu^2)/24*([A11 A12;A12’ A11]+nu*[B11 B12;B12’ B11]);
13 nodenrs = reshape(1:(1+nelx)*(1+nely),1+nely,1+nelx);

14 edofVec = reshape(2*nodenrs(1:end-1,1:end-1)+1,nelx*nely,1);

15 edofMat = repmat(edofVec,1,8)+repmat([0 1 2*nely+[2 3 0 1] -2 -1],nelx*nely,1);

16 iK = reshape(kron(edofMat,ones(8,1))’,64*nelx*nely,1);

17 jK = reshape(kron(edofMat,ones(1,8))’,64*nelx*nely,1);
18 % DEFINE LOADS AND SUPPORTS (HALF MBB-BEAM)

19 F = sparse(2,1,-1,2*(nely+1)*(nelx+1),1);

20 U = zeros(2*(nely+1)*(nelx+1),1);

21 fixeddofs = union([1:2:2*(nely+1)],[2*(nelx+1)*(nely+1)]);

22 alldofs = [1:2*(nely+1)*(nelx+1)];
23 freedofs = setdiff(alldofs,fixeddofs);

24 %% PREPARE FILTER

25 iH = ones(nelx*nely*(2*(ceil(rmin)-1)+1)^2,1);

26 jH = ones(size(iH));

27 sH = zeros(size(iH));
28 k = 0;

29 for i1 = 1:nelx

30 for j1 = 1:nely

31 e1 = (i1-1)*nely+j1;

32 for i2 = max(i1-(ceil(rmin)-1),1):min(i1+(ceil(rmin)-1),nelx)
33 for j2 = max(j1-(ceil(rmin)-1),1):min(j1+(ceil(rmin)-1),nely)

34 e2 = (i2-1)*nely+j2;

35 k = k+1;

36 iH(k) = e1;

37 jH(k) = e2;
38 sH(k) = max(0,rmin-sqrt((i1-i2)^2+(j1-j2)^2));

39 end

40 end

41 end
42 end

43 H = sparse(iH,jH,sH);

44 Hs = sum(H,2);

45 %% INITIALIZE ITERATION

46 x = repmat(volfrac,nely,nelx);
47 xPhys = x;

48 loop = 0;

49 change = 1;

50 %% START ITERATION

51 while change > 0.01
52 loop = loop + 1;

53 %% FE-ANALYSIS

54 sK = reshape(KE(:)*(Emin+xPhys(:)’.^penal*(E0-Emin)),64*nelx*nely,1);

55 K = sparse(iK,jK,sK); K = (K+K’)/2;

56 U(freedofs) = K(freedofs,freedofs)\F(freedofs);
57 %% OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS

58 ce = reshape(sum((U(edofMat)*KE).*U(edofMat),2),nely,nelx);

59 c = sum(sum((Emin+xPhys.^penal*(E0-Emin)).*ce));

60 dc = -penal*(E0-Emin)*xPhys.^(penal-1).*ce;

61 dv = ones(nely,nelx);
62 %% FILTERING/MODIFICATION OF SENSITIVITIES

63 if ft == 1

64 dc(:) = H*(x(:).*dc(:))./Hs./max(1e-3,x(:));

65 elseif ft == 2

66 dc(:) = H*(dc(:)./Hs);
67 dv(:) = H*(dv(:)./Hs);

68 end

69 %% OPTIMALITY CRITERIA UPDATE OF DESIGN VARIABLES AND PHYSICAL DENSITIES

16

70 l1 = 0; l2 = 1e9; move = 0.2;

71 while (l2-l1)/(l1+l2) > 1e-3

72 lmid = 0.5*(l2+l1);

73 xnew = max(0,max(x-move,min(1,min(x+move,x.*sqrt(-dc./dv/lmid)))));

74 if ft == 1
75 xPhys = xnew;

76 elseif ft == 2

77 xPhys(:) = (H*xnew(:))./Hs;

78 end

79 if sum(xPhys(:)) > volfrac*nelx*nely, l1 = lmid; else l2 = lmid; end
80 end

81 change = max(abs(xnew(:)-x(:)));

82 x = xnew;

83 %% PRINT RESULTS

84 fprintf(’ It.:%5i Obj.:%11.4f Vol.:%7.3f ch.:%7.3f\n’,loop,c, ...
85 mean(xPhys(:)),change);

86 %% PLOT DENSITIES

87 colormap(gray); imagesc(1-xPhys); caxis([0 1]); axis equal; axis off; drawnow;

88 end

	Introduction
	Problem formulation
	MATLAB implementation
	Alternative implementations
	Extensions
	Performance
	Conclusion

