Structural and Multidisciplinary Optimization manuscrip t No.
(will be inserted by the editor)

Efficient topology optimization in MATLAB using 88 lines of code

Erik Andreassen - Anders Clausen - Mattias Schevenels- Boyan S. Lazarov - Ole
Sigmund

Received: date / Accepted: date

Abstract The paper presents an efficient 88 line MATLAB line topology optimization cod@Ol). The 99
code for topology optimization. It has been developed usindine code is intended for educational purposes and serves
the 99 line code presented u@OOl) as a startimgs an introductory example to topology optimization for
point. The original code has been extended by a densitstudents and newcomers to the field. The use of MATLAB,
filter, and a considerable improvementin efficiency has beewith its accessible syntax, excellent debugging tools, and
achieved, mainly by preallocating arrays and vectorizingextensive graphics handling opportunities, allows the use
loops. A speed improvement with a factor of 100 is obtainedo focus on the physical and mathematical background
for a benchmark example with 7500 elements. Moreovemf the optimization problem without being distracted by
the length of the code has been reduced to a mere 88chnical implementation issues. Other examples of simple
lines. These improvements have been accomplished withoMATLAB code used to provide insight in finite element
sacrificing the readability of the code. The 88 line code caranalysis or topology optimization include a finite element
therefore be considered as a valuable successor to thee99 linode for the solution of elliptic problems with mixed
code, providing a practical instrument that may help to easboundary conditions on unstructured grit al,
the learning curve for those entering the field of topolog)@), a similar code for problems in linear elasticity
optimization. The paper also discusses simple extensibns @Alberty et al, | 2002), a topology optimization code for
the basic code to include recent PDE-based and black-andempliant mechanism design and for heat conduction
white projection filtering methods. The complete 88 Iineproblems[(,B_e_D_ds_Q_e_a.n_d_S_igmbhii._ZOOS), a code for Pareto-
code is included as an appendix and can be downloadexptimal tracing in topology optimizatio@lo),
from the web sit@ww. topopt.dtu.dk. a discrete level-set topology optimization co@allis,
), and a Scilab code for two-dimensional optimization
problems based on the level set met 009).

Compared to high performance programming languages
such as C++ and Fortran, MATLAB is generally perceived
1 Introduction to be far behind when it comes to computational power.
This can partly be explained by (1) the fact that many users
MATLAB is a high-level programming language that allows apply the same programming strategies as in Fortran or
for the solution of numerous scientific problems with aC++, such as the extensive use fafr andwhile loops,

minimum of coding effort. An example is Sigmund's 99 and (2) the fact that MATLAB is relatively tolerant towards
bad programming practices, such as the use of dynamically

Keywords Topology optimization MATLAB - Education
Computational efficiency

g- A”gfeasfe?vMA- ﬁlaU_seln,EO._SigmﬂnB.SS.l_laal\zAaror\]/ _ growing variable arrays. In both cases the potential of
epartment or Mechanical Engineering, SOli echanics, . . L -

Technical University of Denmark, Nils Koppels Alle, B. 404, MATLAB s f‘_”lr f'?om optimally u?““z?d' Efficient use
DK-2800 Lyngby, Denmark of MATLAB implies loop vectorization and memory
*E-mail: sigmund@mek.dtu.dk preallocation(The MathWorks, 2010). Loop vectorizati®n i
M. Schevenels the use of vector and matrix operations in order to avoid
Department of Civil Engineering, K.U.Leuven, for andwhile loops. Memory preallocation means that
Kasteelpark Arenberg 40, B-3001 Leuven, Belgium the maximum amount of memory required for an array is
Preprint submitted to Structural and Multidisciplinary tgization 27 October 2010

Published versioftittp://dx.doi.org/10.1007/s00158-010-0594-7

http://dx.doi.org/10.1007/s00158-010-0594-7
www.topopt.dtu.dk

reserved a priori, hence avoiding the costly operation oin MATLAB convolution operator functionconv2. This
reallocating memory and moving data as elements are addedbdification implies a further reduction of the code to 71
to the array. Loop vectorization and memory preallocatiorlines and leads to a reduction of the memory footprint,
are used in combination with a number of more advancebut this comes at the expense of the code’s readability
performance improving techniques in the MILAMIN code, for those unfamiliar with theconv2 function. The second
a MATLAB program capable of solving two-dimensional alternative is based on the application of a Helmholtz type
finite element problems with one million unknowns in onepartial differential equation to the density or sensitivit
minute on a desktop computer (Dabrowski et al, 2008). field (Lazarov and Sigmund, 2010). This approach allows
In the 99 line topology optimization code, the perfor-for the use of a finite element solver to perform the
mance of several operations (such as the filtering procedufétering operation, which reduces the complexity of the
and the assembly of the finite element matrices) cafimplementation for serial and parallel machines, as well
be increased dramatically. Partly by properly exploitingas the computation time for large problems and complex
the strengths of MATLAB (using loop vectorization and geometries. Sectiop] 5 shows how to extend the 88 line
memory preallocation), partly by restructuring the progra code to problems involving different boundary conditions,
(moving portions of code out of the optimization loop so multiple load cases, and passive elements. Furthermare, th
that they are only executed once), a substantial increase inclusion of a Heaviside filter in order to obtain black-and-
efficiency has been achieved: for an example problem withvhite solutions is elaborated. In sectidn 6, the perforreanc
7500 elements, the total computation time has been reduc&dl the 88 line code and its variants is examined. The
by a factor 100. In addition, the original code has beercomputation time is analyzed for three benchmark examples
extended by the inclusion of density filtering, while redwri Solved with both the original 99-line code and the new
the length of the code to only 88 lines. versions of the code. The memory usage of the new code

The aim of this paper is to present the 88 line code. IS also briefly discussed.
should be considered as a successor to the 99 line code,
and it is published with the same objective: to provide ,
an educational instrument for newcomers to the field of Problem formulation
topology optimization. The main improvements with respec
pologyop . b ©SP .tl'he MBB beam is a classical problem in topology opti-
to the original code are the increased speed and the inolusio .~ . . -
L . mization. In accordance with the original pa und,
of a density filter. These are relevant improvements, as t

99 line code has been downloaded by a more than 80 .), the M_BB beam is used her_e_ as an example. The
esign domain, the boundary conditions, and the external

le si 1 is still is f
people since .999 an.d is stll used as a pa3|§ O Ny bad for the MBB beam are shown in figuré 1. The aim
developments in the field of topology optimization. The R .) . .
of the optimization problem is to find the optimal material

density filter is a useful addition as it paves the way for the . =~ "
. distribution, in terms of minimum compliance, with a
implementation of more modern filters such as the Heaviside

filters proposed by G } Bl (2004) 4nd Si 12007)_constrainton the total amount of material.

The present text is conceived as an extension of the
paper bymml). Large parts of the 88 line code
are identical to the original 99 line code, and the same
notation is adopted. This approach is followed in an attempt
to minimize the effort required to upgrade to the new
implementation.

The paper is organized as follows. The topology
optimization problem is formulated in sectidd 2. As in W
the original paper, the focus is restricted to minimum /
compliance problems with a constraint on the amoun
of material available. The 88 line code is explained in
section[B. Special attention is paid to the portions of
the code that have changed with respect to the original
99 line code. These two sections constitute the core of
the paper. The remaining sections have a supplementagyl Modified SIMP approach
character, addressing variants of and extensions of the
88 line code and discussing its performance. Sedilon Zhe design domain is discretized by square finite elements
presents two alternative implementations of the filteringand a “density-based approach to topology optimization”
operation. The first alternative is based on the builtis followed tB_endsdlé._lﬂbﬁ;_Zh_o_u_a.nd_RQzﬂima_i99l); ie.

Fig. 1 The design domain, boundary conditions, and external load f
the optimization of a symmetric MBB beam.

each element is assigned a density, that determines its condition as:
Young’s modulus?,.:

B dc

Ee(xe) = Emin + 22 (Eo — Enin), ze € [0,1] 1) Be = g‘x/e 4)
A

where E, is the stiffness of the materialE,;, is a de

very small stiffness assigned to void regions in order tqunere the Lagrangian multipliex must be chosen so that
prevent the stiffness matrix from becoming singular, andpe yojume constraint is satisfied; the appropriate value ca
p is a penalization chtor (typmally = 3) introduced 10 pa found by means of a bisection algorithm.

ensure black-and-white solutions. Equatigh (1) corredpon The sensitivities of the objective function and the

to the modified SIMP approach, which differs from the ,eria| yolumel with respect to the element densities
classical SIMP approach used in the original paper in, given by:

the occurrence of the termt,,;,. In the classical SIMP
approach, elements with zero stiffness are avoided byoc
imposing a lower limit slightly larger than zero on the dx,
densitiest.. The modified SIMP approach has a number of 9V
advantagemmm), most importantly that it allow 9, =1 6)
for a straightforward implementation of additional filteas
illustrated in sectiohl5.

The mathematical formulation of the optimization
problem reads as follows:

= 7p$£71(E0 — Emin)ugkou (5)

Equation[(6) is based on the assumption that each element
has unit volume.

N 2.3 Filtering
min: ¢(x) = UTKU = Z Ee(z)ulkou,
* e=1 In order to ensure existence of solutions to the topology
subjectto: V(x)/Vo = f (2) optimization problem and to avoid the formation of checker-
KU =F board patterns| (Diaz and Si Mgﬁwaber,

0<x<1 11996;| Sigmund and Peterss 998), some restriction on

the design must be imposed. A common approach is

where ¢ is the compliance,U and I are the global the application of a filter to either the sensitivities or

di_splacement_and fprce vectors, respectivKNs the global the densities. A whole range of filtering methods is
stlffness matrlx,ue|s the elemgnt displacement vec_thﬁ, thoroughly described %07)_ In addition to the
is the ,element stlffpess matrix for an _elemer_n with _umtsensitivity filter (Siamurld, 199 7), which is already
Young’s modulusx is the vector of design variables (i.e. implemented in the 99 line code, the new 88 line code

the element densities) is the number of elements used to also includes density filterind (B T lli. 2001
discretize the design domail,(x) andV, are the material Bourdin m)

volume and design domain volume, respectively, gnd
the prescribed volume fraction.

The sensitivity filter modifies the sensitiviti®g/dz. as

follows:
dc 1 dc
2.2 Optimality criteria method Or. max(y, 22) Z H Zg\; Hezzza_wz (7)

i€Ne
The optimization problem[{2) is solved by means of a ©

standard optimality criteria method. A heuristic updatingwhere N, is the set of elementsfor which the center-to-
scheme identical to the scheme used in the original papeenter distancel(e, ;) to element is smaller than the filter

is followed: radiusryin andH.; is a weight factor defined as:
max(0,z. —m) if z.B! < max(0,z. —m) He; = max (0, rmin — A(e, 7)) (8)
ze™ = Jmin(l,zc +m) if 2B > min(1, 2. —m) The termy (= 10~?) in equation [[¥) is a small positive
T B] otherwise number introduced in order to avoid division by zero. This

(3) is a difference as compared to the original paper, where
the classical SIMP approach is used. In the classical SIMP
wherem is a positive move limity) (= 1/2) is a numerical approach, the density variables cannot become zero, and the
damping coefficient, ané, is obtained from the optimality term-~ is not required.

The density filter transforms the original densitiesas used to assemble the finite element matrices, to compute the

follows: compliance, and to perform the filtering operation have been
1 vectorized, (2) the remaining arrays constructed by means
Te = —=<— Z Heiw; (9) of a for loop are properly preallocated, (3) a maximum
XN: Hei jen, amount of code is moved out of the optimization loop to
1€N,

ensure that it is only executed once, (4) a distinction isenad

In the following, the original densities, are referred to as between the design variablesand the physical densities

the design variables. The filtered densitiesare referred to xPhys in order to facilitate the application of a density filter,

as the physical densities. This terminology is used to streand (5) all subroutines have been integrated in the main

the fact that the application of a density filter causes thérogram.

original densitiesz, to loose their physical meaning. One ~ The 88 line code consists of three parts: the finite

should therefore always present the filtered density field element analysis, the sensitivity or density filter, and the

rather than the original density field as the solution to the optimization loop. These parts are discussed in detail in

optimization proble d, 2007). subsection 311 {0 3.3. Subseciion 3.4 presents somesresult
In the case where a density filter is applied, theobtained with the 88 line code.

sensitivities of the objective function and the material

volumeV with respect to the physical densiti@s are still

given by equationd{5) anf]l(6), provided that the variable3.1 Finite element analysis

x. is replaced withz,.. The sensitivities with respect to the

design variables; are obtained by means of the chain rule: The design domain is assumed to be rectangular and

discretized with square elements. A coarse example mesh

g_¢ = Z gf/’ g‘%e = Z #Hjeg—f/} (10) consisting of 12 elements with four nodes per element and
Ti een, 9Te9Ti Jen, Z H,; Te two degrees of freedom (DOFs) per node is presented in
i€N, figure[2. Both nodes and elements are numbered column-

wise from left to right, and the DOF&n — 1 and 2n

correspond to the horizontal and vertical displacement
of node n, respectively. This highly regular mesh can
be exploited in several ways in order to reduce the
3 MATLAB implementation computational effort in the optimization loop to a minimum.

where the function) represents either the objective function
¢ or the material volumé’.

In this section the 88 line MATLAB code (see appendix) is

explained. The code is called from the MATLAB prompt by o o2 9,10 17,18 25,26 33,34
means of the following line:
g S 1 4 7 10
top88(nelx,nely,volfrac,penal,rmin,ft) AN 3,4 11,12 19,20 27,28 35,36
. N
wherenelx andnely are the number of elements in the NI 5 8 11
horizontal and vertical direction, respectiveiyglfrac is N0 13,14 21,22 29,30 87,38
.) : o N
the prescribed volume fractiofy penal is the penalization] 3 6 9 12
power p, rmin is the filter radiusry,;, (divided by the |78 15,16 23,24 31,32 39,40

element size), and the additional argument (compared to
the 99 line code¥t specifies whether sensitivity filtering
(ft = 1) or density filtering £t = 2) should be used.
When sensitivity filtering is chosen, the 88 line code yields

practicallf] the same results as the 99 line code; e.g. the The finite element preprocessing part starts with the
optimized MBB beam shown in figure 1 of the original definition of the material properties (lines 4-&0 is the
paper by Sigmund (20D1) can be reproduced by means gbung's modulusF, of the materialEmin is the artificial

the following function call: Young’s modulusE,,;, assigned to void regions (or the
t0p88(60,20,0.5,3,1.5,1) Young’s modulus of the second material in a two-phase

))) design problem), angl is the Poisson’s ratio.
The most obvious differences between the 88 line code Next the element stiffness matik for an element with

and the 99 line code are the following: (1) tfier loops

Fig. 2 The design domain with 12 elements.

unit Young’s modulus is computed (lines 8-12). This matrix

1 The slight difference which can be observed between théngs-1 1S denoted axE. Due to the regularity of the mesh, this
and the 99-line code is due to the difference in the SIMP fdatinn. matrix is identical for all elements.

In order to allow for an efficient assembly of the The third vector, containing the entries of the sparse
stiffness matrix in the optimization loop, a matedofMat stiffness matrix, is computed in the optimization loop €lin
is constructed (lines 13-15). Thieth row of this matrix 54), as it depends on the physical densiteshis vector
contains the eight DOF indices corresponding to the sK is obtained by reshaping the element stiffness m&tix
th element (in a similar way as thedof vector in the to obtain a column vector, multiplying this vector with the
original 99 line code). The matrigdofMat is constructed appropriate Young’s modulus, (z.) for each element, and
in three steps. First, &nely + 1) x (nelx + 1) matrix concatenating the results for all elements. The multifibca
nodenrs with the node numbers is defined. The MATLAB and concatenation are implemented as a matrix product
functionreshape is used; this function returns a matrix with followed by a reshaping operation.
the size specified by the second and third input argument, The actual assembly of the stiffness matrix is
whose elements are taken column-wise from the first inpuperformed on line 55 by means of thgarse function,
argument (which is in this case a vector containing the nodeasing the index vectorsk and jK and the vector with non-
numbers). Next, the matrixodenrs is used to determine zero entriessk. This procedure could be further improved
the first DOF index for all elements, which are stored inby using thesparse2 function from CHOLMOD)
a vectoredofVec. Finally, the matrixedofVec is used to), which is faster than the standard MATLABarse
determine the eight DOF indices for each element. To thigunction due to the use of a more efficient sorting algorithm
end, the MATLAB functionrepmat is called twice. This for the indices, but this is beyond the scope of the present
function copies a matrix the specified number of times inpaper. The second statement on line 55 ensures that the
the vertical and horizontal direction. The first call to thestiffness matrix is perfectly symmetric. This is importast
repmat function returns a matrix with eight columns which it determines the algorithm used by MATLAB to solve the
are all copies of the vectedofVec. The second call returns system of finite element equations. If the stiffness magix i
a matrix of the same size where all rows are identical; thisparse, symmetric, and has real positive diagonal elements
matrix relates the indices of the eight DOFs of an element t@holesky factorization is used. If the stiffness matrix is
the index of its first DOF stored in the vecidofVec. The not symmetric (due to rounding errors in the assembly
results are added up and collected in the maddxfMat. procedure), LU factorization is used instead, resulting in
For the example mesh shown in figurk 2, this proceduréonger computation time.

yields the following result: The boundary conditions and the load vector are defined
on lines 18-23. These lines are almost identical to those in
[3 411129101 27 <« Elementl the original 99 line code and are therefore not discussed in
5613141112 3 4 | <« Element2 the present paper. The main difference with the originaécod
7 815161314 5 6 | <« Element3 is that these lines are moved out of the optimization loop.
edofMat = 1111219201718 9 10| <« Element4 The system of finite element equations is finally solved
oo on line 56.
| 31 323940 37 38 29 30 | « Element 12

In each iteration of the optimization loop, the assembly3.2 Filtering
of the global stiffness matriK is efficiently performed by
means of theparse function in MATLAB, so avoidingthe The application of a sensitivity filter according to
use offor loops. The procedure followed here is inspiredequation [[¥) involves a weighted average over different
by the approach described m@om). Hparse elements. This is a linear operation; it can therefore be
function takes three vectors as input arguments: the firstnplemented as a matrix product of a coefficient matrix
and second contain the row and column indices of the norand a vector containing the original sensitivitiés/dz;
zero matrix entries, which are collected in the third vector(multiplied with the design variables;). Dividing the
Specifying the same row and column indices multiple timesesult by a factomax(v, z.) >, . He; yields the filtered
results in a summation of the corresponding entries. sensitivitiesde/dz... This operation is performed on line 64.

The row and colums index vectorsik and jK, The matrixH and the vectoHs contain the coefficientsl,;
respectively) are created in lines 16-17 usingéhefMat and the normalization constars, v H.i, respectively.
matrix. Use is made of a Kronecker matrix product with a The use of a density filter not only implies filtering of
unit vector of length 8, followed by a reshaping operationthe densities according to equati@h (9) but also a chain rule
The resulting vectorsK and jK are structured so that the modification of the sensitivities of the objective function
indicesik(k) andjK(k) correspond to th€i, j)-th entry of and the volume constraint according to equatibnl (10).
the stiffness matrix for element wherek =i+ 8(j5 — 1)+ Both operations involve a weighted average over different
64(e —1). elements. The density filtering is performed on line 77, the

modification of the sensitivities on lines 66-67. Use is made The sensitivities are subsequently filtered (if sensitivit
of the same coefficientsand normalization constariis as filtering is used) or modified (if density filtering is used) as
described above. explained in subsectidn 3.2 (lines 63-68).

Both the matrixd and the vectoHs remain invariant On lines 70-82, an optimality criteria method is used to

during the optimization and are compgt_ed a priqri. Theupdate the design variables according to equafibn (3). The
(nelx x mely) x (nelx x nely) coefficient matrixH ,qate is performed in a similar way as in the original 99
establishes a relationship between all elements. Howevepy, code, except that (1) the sensitivity of the volume

as the filter kernel defined in equatidd (8) has a boundegy,giraint is explicitly taken into account, (2) the Laggan
support, only neighboring elements affect one another. AS g, injier 1mid is determined using the physical densities

consequence, the majority of the coefficients is zero and thfﬁstead of the design variables, and (3) the stop condition

matrixH is sparse. It is constructed by means of the built-ing gpaified in relative terms. The first change is made for
sparse MATLAB function. Row and column index vectors o ‘sake of the density filter: in the sensitivity filtering

iH and jH as well as a vectagH with non-zero er?trles are approach, the sensitivitiesr are identical for all elements
assembled by means of four nestiet loops on lines 25- 54 can therefore be omitted from the definition of the

42. In order to avoid continuous resizing of these vectors agqristic updating factom., but in the density filtering
entries are added, a sufficient (but slightly too high) amoun, 640k this is no longer true due to the modification of
of memory is preallocated. The entries that remain unusege sensitivities performed on line 67. The second change is
in the vectorsiH, jH, andsH have no effect: they preserve gy speaking not necessary: the density filter is vaum
their initial value (1, 1, and 0, respectively) and result 'npreserving, which means that the volume constraint can
the addition of a zero term to the first element of the sparsgq a1y well be evaluated in terms of the design variables.
matrix H. The gssembly of the matrlbt from the vectgrs When another (non-volume-preserving) filter is applied,
iH, jH, andsH is performed.on line 43. The vectds is however, it is absolutely necessary to evaluate the volume
subsequently computed on line 44. constraint in terms of the physical densities. The third

change is simply made to optimize the balance between
3.3 Optimization loop accuracy and computation speed.

Finally, the intermediate results are printed (lines 84-85

The main part of the 88 line code is the optimizationand plotted (line 87) in the same way as in the original 99
loop. The loop is initialized on lines 46-49. All design |ine code.

variablesz, are initially set equal to the prescribed volume
fraction f. The corresponding physical densitiés are
identical to the design variables.: in the sensitivity
filtering approach, this equality always holds, while in the
density filtering approach, it holds as long as the design

variables represent a homogeneous field. For other types

of filters (especially non-volume-preserving filters), iayn

be necessary to compute the initial physical densitiely

explicit application of the filter to the initial design vables 3.4 Results
Z., and to adjust the initial design variables in such a way

that the volume constraint is satisfied (as this constraint i _] o
specified in terms of the physical densities. The 88 line code is used to optimize the MBB beam. Three

Each iteration of the optimization loop starts with the différent mesh sizes are considered, consistingiok 20

finite element analysis as described in subse¢tidn 3_15(|ineelements;l50 X .50 glements, and00 x 100 elements. The
54-56). volume constraint is set t80 % and the usual valug = 3

is used for the penalization exponent. The problem is solved
computed, as well as the sensitivities and dv of using sensitivity and density filtering. The filter radiyg;,
the objective function and the volume constraint with €duals 0.04 times the width of the design domain, i.e. 2.4, 6,

respect to the physical densities (lines 58-61). Compare@nd 16 for the different meshes.

to the original 99 line code, efficient use is made of the Figure [3 shows the optimized design and the cor-
edofMat matrix to compute the compliance for all elementsresponding compliance. The figures demonstrate that
simultaneously: thedofMat matrix is used as an index into both sensitivity filtering and density filtering suppress
the displacement vectdt resulting in a matrix with the size checkerboard patterns and lead to mesh independent
of edofMat that contains the displacements correspondinglesigns; refining the mesh only leads to a refinement of the
to the DOFs listed irdofMat. solution, not to a different topology.

The optimization loop is terminated when the, norm
of the difference between two consecutive designs (in terms
of design variables) is less than 1 percent.

Next, the objective function (the compliance) is

AV AN AN AN

c=216.81 c = 219.52 c=222.29
c=233.7T1 c=235.73 c=238.31

Fig. 3 Optimized design of the MBB beam and corresponding compdiarobtained with the 88 line code using sensitivity filteringp and
density filtering (bottom). A mesh witb0 x 20 elements (left)150 x 50 elements (middle), angD0 x 100 elements (right) has been used.

4 Alternative implementations The density filter, defined in equatiol] (9), is reformu-
lated as follows:
This section presents two alternatives to the 88 line code

discussed in the previous section. The focus is on the ZH(man)m(kfnL,lfn)
implementation of the filters.
> H(m,n)

m,n

Ty = (11)

The first alternative makes use of the built-in MATLAB
functionconv2. This approach is mathematically equivalent

to the implementation presented in the previous sectiah, an h d4i denote the desi bl dth
it allows for a reduction of the code to 71 lines. It also "o ¢ ¥ (i) 8NAT(,) denotetnhe design variable and the

leads to a reduction of the memory requirements, as WiIPhySICaI density, respectively, for the element intis row

be discussed in subsectibnl6.2. A possible disadvantage 3 d they-th column. The filter kemed(m, n) is a function

this approach is that it may obfuscate the filtering procedurO the discrete variables andn:
for r_eadgrs gnfgmiliar with theonv2 function and that its H(m,n) = max (0, Fmin — 8(m, n)) (12)
applicability is limited to regular meshes.

The second alternative presents the use of filteringvhere §(m,n) represents the center-to-center distance
based on a Helmholtz type partial differential equationpetween two elements separatediyows andn columns.
(PDE). This approach allows for the use of a finite elemenBoth sums in equatiofi {11) must be taken over all indices
solver to perform the filtering operation, which speeds;;, andn for which the kernel(m,n) is non-zero and for
up significantly the filtering process for three-dimensionayhich (k —m, 1 — n) refers to an existing element.
problems and simplifies parallel implementations of filtere The non-zero part of the filter kern&l(m, n) can be

topology optimization problems. The results obtained withexpressed as aW x N matrix h defined as:
the PDE filter are similar to those obtained using an

exponentially decaying filter kernel (Bruns and Tortorelli h(m+%_’

) = H(ma n) (13)
2007). ’

n+
Introducing equation[{13) in equatiof_{11) yields the

following expression:
4.1 Filtering using the CONV2 function

E h(m+ ZW;»I et N2+1)m(kfm.,lfn)

m,n

The optimization problem discussed in the previous
sections has two properties that allow for a more concisé(::)) =
. > - D Bt vy
implementation. First, a rectangular mesh consisting of o 2 2
rectangular (square) finite elements is used. Second, the

filter kernel is invariant in space (or, loosely speaking th The sum in the numerator corresponds to thg)-th ele-
filter radiusr,;, is the same at all positions in the design ment of the central part of the two-dimensional convolution
domain). As a consequence, the filtering operation can bef the matricesx andh, which is obtained in MATLAB as
interpreted as a two-dimensional discrete convolution. Irconv2(x,h,’same’). The sum in the denominator must
the following paragraphs, the convolution based appraach be taken over the same indices, which is most easily
elaborated for the filtering of the densities. The filterimg o accomplished by using the same MATLAB code as for the
modification of the sensitivities can be addressed in aamil numerator, substituting the matrix with a unit matrix of
way. the same size.

(14)

Using the convolution based approach for the densityield in CIE) replaced by = $6° and the output field given

filter, the modification of the sensitivities, and the senisjt by) = 5‘76 (Lazarov and Sigmuhf, 2009).
filter allows for a reduction of the 88 line code to 71 lines. The filter properties have been discussed extensively by
Three modifications are required. Lazarov and Sigm!!hd_(;QhO), and here only the main ad-
First, the preparation of the filter (lines 25-44) is yantages with respect to memory usage and computational
replaced with the following lines: cost are highlighted. The classical filter requires infotiora
[dy,dx] = meshgrid(-ceil (rmin)+1:ceil(rmin)-1, ... about the neighbor elements, which for irregular meshes and
—ceil(rmin)+1:ceil (xmin)-1); complex geometries is obtained by a relatively expensive

h = max(0,rmin-sqrt(dx. 2+dy."2));
Hs = conv2(ones(nely,nelx),h,’same’);

search. Clearly the approach presented in subseCfion 3.2
speeds up the filtering process if the search procedure is
where the matrix is the non-zero part of the filter kernel performed only once as a preprocessing step, however, the
and the matrixtis represents the sum in the denominatorcomputational complexity and the memory utilization are
on the right hand side of equation {14). This sum doesroportional tor? in two dimensions and te?; in three

not change during the optimization loop and is thereforalimensions, respectively. The PDE filter approach utilizes
computed in advance. Note that the mafiiix computed the mesh used for the state problem and does not require

here is identical to the matriks in the 88 line code. any additional information, which avoids excessive memory
Second, the filtering or modification of the sensitivitiesusage. Furthermore, the computational cost dependslinear
(lines 63-68) is replaced with the following code: on the length parameteR,,;, if the solution of the PDE
if ft == (@I3) is obtained by an iterative method. Therefore, for
dc = conv2(dc.*xPhys,h,’same’)./Hs./max(1e-3,xPhys) ; a large filter radius, especially in three dimensions, the
elseif ft == PDE filtering scheme should be the preferred choice. In
de = conv2(dc./Hs,h, same’); the presented two-dimensional examples with a regular
dv = conv2(dv./Hs,h,’same’); . .
end mesh, the concept will not result in improved performance,

however, we include it here for educational reasons and
Third, the filtering of the densities (line 77) is replacedmspwaﬂon

with the following line: FE discretization of equatioh {IL5) leads to the following

xPhys = conv2(xnew,h,’same’)./Hs; system of linear equations:
KF;(N = TFX (18)

4.2 Filtering based on Helmholtz type differential equatio Where Kr is the standard FE stiffness matrix for scalar
problems, Ty is a matrix which maps the element design

The density filter given by[{9) can be implicitly rep- valuesx to a vector with nodal values, angly is the
resented by the solution of a Helmholtz type PDEnOdal representation of the filtered field. The element-wise

dLazaer and Sigmt nd 2d10) with homogeneous Neumankepresentation of the filtered field is obtained as:
boundary conditions:

% = TEXN (19)
Ry VP + =1 (15) The PDE filter requires minor changes of the 88 line
o code and reduces it to 82 lines. The preparation of the filter

on 0 (16) (lines 25-44) is replaced with the following lines:

where is a continuous representation of the unﬁlteredlen = rmin/2/sqre(3);
Rmin~2*[4 -1 -2 -1; -1 4 -1 -2; ...

design field, andy is the filtered field. The solution 2 -1 4 -1; -1 -2 -1 4]/6 + ...
of the above PDE can be written in the form of a 4 2 1 2; 2 4 2 1; ...
convolution integral which is equivalent to the classical 12 4 2; 2 1 2 4]/36;
edofVecF reshape (nodenrs (1:end-1,1:end-1) ,nelx*nely,1);

filter. The parameteRR,,;, in (I5) plays a similar role as
rmin N (). An approximate relation between the length
scales for the classical and the PDE filter is given byikr

dLaZaer and S|gm||[|~|b Zle): jKF = reshape (kron(edofMatF,ones(1,4))’,16*nelx*nely,1);

sKF = reshape (KEF (:)*ones(1,nelx*nely),16*nelx*nely,1);

Ronin = Timin/2V/3 (L7) KE 7 parse(iR K, ok
LF = chol(KF,’lower’);

The PDE filter is volume preserving, i.e. the volume of thel,TF reshape (edofMatF, 4*nelx+nely, 1) ;
reshape (repmat ([1:nelx#*nely],4,1)’,4*nelx*nely,1);

TF
input field is equal to the volume of the filtered field. The STF = repmat (1/4,4%nelx*nely,1);
same idea can be applied as a sensitivity filter with the inputr = sparse (iTF, jTF,sTF);

edofMatF = repmat(edofVecF,1,4) + ...
repmat ([0 nely+[1:2] 1],nelx*nely,1);

reshape (kron(edofMatF,ones(4,1))’,16*nelx*nely,1);

AVANRYANVAN

c=218.79 c=217.88 c=219.44
c=237.60 c=235.36 c = 236.62

Fig. 4 Optimized design of the MBB beam and corresponding comgpéianobtained with the variant of the 88 line code using PDE based
sensitivity filtering (top) and density filtering (botton.mesh with60 x 20 elements (left)150 x 50 elements (middle), angbo x 100 elements
(right) has been used.

whereKF corresponds to the tangent filter matrix afiel original paper are reconsidered, now starting from the 88
corresponds to the transformation matrix on the right handine code. In addition, the implementation of a black-and-
side of equation[(18). In order to keep the MATLAB code white projection filter is also addressed.

readable, the linear system obtained by FE discretization

of equation [(Ib) is solved by factorization instead of an .

iterative method, which hides some of the filter advantagesls.'1 Other boundary conditions

The second change is a replacement of the filtering or
modification of the sensitivities (lines 63-68) with the
following code:

if ft ==
dc(:) = (TF’*(LF’\(LF\(TF*(dc(:).*xPhys(:)))))) ...
./max(le-3,xPhys(:));
elseif ft == 2
de(:) = TF’*(LF’\(LF\(TF*dc(:))));
dv(:) = TF’*(LF’\(LF\(TF*dv(:)))); Y
end

T,

) o o))) Fig. 5 The design domain, boundary conditions, and external load f
Finally, the filtering of the densities (line 77) isreplaseith the optimization of a cantilever beam (left) and the optiedizlesign
the following line: obtained with a variant of the 88 line code using sensitifiitgring

(right).
xPhys(:) = (TF’>*(LF’\(LF\(TF*xnew(:)))));

F'gure:" shows '_[he optlml_zed M.BB beam aqd theChanging load and support conditions in order to solve other
corresponding compliance obtained with the PDE filter, ST . .
.) . ogt|m|zat|on problems is very straightforward. In order to

using the same input parameters as in subseCfidn 3.4. Th . o .

.) . splve the short cantilever example shown in figdre 5, line 19
figure shows that the PDE filter leads to a mesh mdependercl) the 88 line code must be chanaed to:
design without checkerboard patterns. The optimized desig g '
and the corresponding complianceare similar to those F = SPZT?Q(i*irl“;lfli*g‘;l’l‘;l)’1"1’

. . . e . . * * ,1);
obtained with the standard density and sensitivity filters netyrhaTinex
shown in figure B. They are not identical, however. TheLine 21 must be changed to:
difference is due to the fact that the PDE filter is based ORixeddofs = [1:2%nely+1];
an exponentially decaying filter kernel, while the standar

filters are based on a linearly decaying filter kernel. quth these changes, the optimized design shown in fighre 5

is obtained by means of the following function call:

top88(160,100,0.4,3,6,1)
5 Extensions

Sigmund [(2001) describes how to extend the 99 line cods.2 Multiple load cases

to account for different boundary conditions, multipledoa

cases, and passive elements, and how to replace the optimHlis also very simple to extend the algorithm to account for
ity criteria based optimizer with a more general optimiaati multiple load cases. As an example, the problem outlined in
scheme. In this section, the extensions discussed in tHegureld is considered.

[any

0

A with a density fixed to be zero or one. As an example, the
optimization problem defined in figuig 7 is addressed. A
circular region of the design domain with radiusly/3 and
center(nely/2,nelx/3) is fixed to be void.

i
i,

Y

Fig. 6 The design domain, boundary conditions, and external loads
for the optimization of a cantilever beam with two load ca@def and
middle) and the optimized design obtained with a varianhef@8 line
code using sensitivity filtering (right). Y

i

Fig. 7 The design domain, boundary conditions, and external load f

In the case of two load cases. the force and dis Iacemet e optimization of a cantilever beam with a fixed hole (lefitd the
’ P Optimized design obtained with a variant of the 88 line codma

vectors must be defined as two-column vectors, whicRensitivity filtering (right)
means that lines 19 and 20 are changed to:

F = sparse([2+(nely+1)*nelx+2,2* (nely+D)*(nelx+D)], ... The load vector (line 19) and the support conditions
[1 2],[1 -1],2*(nely+1)*(nelx+1),2);
U = zeros(2*(nely+1)*(nelx+1),2); (line 21) in this example are defined in the same way as in

N _)) subsectiofi 5]1. In order to distinguish between active and
The support conditions (line 21) are defined in the same Wayassive elements 1y x nelx matrixpassive is defined

as in the previous subsection. The equilibrium equation§ith o at elements free to change, 1 at elements fixed to be
must be solved for both load cases, which is accomplisheghiq and 2 at elements fixed to be solid:

by changing line 56 as follows:

passive = zeros(nely,nelx);
U(freedofs,:) = K(freedofs,freedofs)\F(freedofs,:); for i = 1:nelx
. for j = 1:nely
The objective function is now defined as the sum of tWo if sqrt((j-nely/2)~2+(i-nelx/3)"2) < nely/3
compliances: passive(j,i) = 1;
end
2 end
c(x) =Y UKU; (20) end
=1 These lines must be inserted in the 88 line code before the
Lines 58-60 are thus replaced with the following code: start of the optimization loop. The optimality criteria et
o must be modified by adding the following code between
de=0; lines 78 and 79:
for i = 1:size(F,2) xPhys (passive==1) = 0;
Ui = U(:,i); ive==9) = 1-
xPhys (passive==2) = 1;
ce = reshape (sum((Ui(edofMat)*KE) .*Ui(edofMat),2), ...
nely,nelx); With these modifications, the 88 line code can be used to

c = ¢ + sum(sum((Emin+xPhys. penal*(EO-Emin)) .*ce));
dc = dc - penal*(EO-Emin)*xPhys.” (penal-1).%*ce;
end

generate the optimized design shown in figure 7 by means
of the following function call:

- . - . 88(150,100,0.5,3,5,1
The optimized design shown in figtirke 6 can now be obtained”™® ¢)

by means of the following function call:

1 1 .4 1 - . . .
£op88(150,150,0.4,3,6,1) 5.4 Heaviside projection filter

This subsection focuses on the implementation of a
5.3 Passive elements black-and-white projection filter. As an example, the

implementation of the filter proposed m 004)
In some cases, certain areas of the design domain may lige explained. This filter is referred to as the Heaviside
required to be void or solid (e.g. to allow for the passagerojection filter in the present paper. The aim of the
of a pipe or to support a secondary structure). This caileaviside projection filter is (1) to achieve a minimum
be easily accomplished by means of the 88 line codéength scale in the optimized design, and (2) to obtain black
through the definition of passive elements, i.e. elementand-whitesolutionm 04) apply this filtengsi

11

nodal design variables, but as show@@ZOO?), ithis code will lead to initial physical densities that do
is equally applicable when element design variables am usenot satisfy the volume constraint, which could be avoided
(which is the case in the present paper). by adjusting the initial values of the design variables

The Heaviside filter is a modification of the original In the present code, however, the optimality criteria updat
density filter [9) with a Heaviside step function that pragec scheme is relied upon to correct the violation of the volume
the densityz. (from now on called the intermediate density) constraint.
to a physical density.. The physical density. equals one Second, the modification of the sensitivities is accom-
if Z. > 0 and zero ifz, = 0. In order to allow for the plished by inserting the following supplementasyseif
use of a gradient-based optimization scheme, the Heavisidggatement on line 68:
function is replaced with the following smooth function: _;_.¢ ¢ = 5

dx = beta*exp(-beta*xTilde)+exp(-beta);
Te=1—e PP 4 g.e7P (21) de(:) = Hx(dc(:).*dx(:)./Hs);
dv(:) = Hx(dv(:).*dx(:)./Hs);

The parametef controls the smoothness of the approxi- Third, the application of the Heaviside filter to the

mation: for3 equal to zero, the Heaviside filter is identical jensities is realized by means of the following additional
to the original density filter; fo approaching infinity, the .1 .1 f statement. to be inserted on line 78:
approximation approaches a true Heaviside step function. |

elseif ft == 3

order to avoid local minima and to ensure differentiability) B

i L. K . i X xTilde(:) = (H*xnew(:))./Hs;

in the optimization, a continuation scheme is used Where ,pnys = 1-exp(-beta*xTilde)+xTildexexp(-beta);

the parametep is gradually increased from 1 to 512 by . . _ o
doubling its value every 50 iterations or when the change in Finally, the continuation scheme for the regularization
terms of design variables between two consecutive desigirametes isimplemented by inserting the following block

becomes less than 0.01. of code at the end of the optimization loop:
It should be noted thdt Guest et Mbm) include anif ft == 3 && beta < 512 && ...
extraterm in equatiofi(21) to ensure that the lower bound on (loopbeta >= 50 || change <= 0.01)

beta = 2x*beta;

the densities,. is satisfied; this term is not necessary here loopbeta = 0;
due to the use of the modified SIMP approMund, change = 1; ’

). fprintf (’Parameter beta increased to %g.\n’,beta);
The sensitivities of a functiori(z.) with respect to the end
intermediate densitie. are obtained by means of the chain he aqgitional countetoopbeta must be initialized and

rule: incremented in the same way as the existing couniep.
of af 97, The modified code is used to optimize the MBB beam.
97 01. 0% (22) The same parameter values are used as in subsécfion 3.4,

except for the filter radius, which is reduced to 0.03 times
where the derivative of the physical densitywith respect the width of the design domain. The motivation for this
to the intermediate densifl, is given by: reduction is that the material resource constraint preibi
the transformation of the topology obtained in the initial
phase of the continuation scheme (which is similar to the
topology obtained in subsectibn B.4) into a black-and-avhit
design consisting of bars with a large thickness.

The implementation of the Heaviside filter in the 88 line Figure[® shows the optimized design obtained with the
code as a third filter optiorf¢ = 3) involves the following three meshes. The optimized design is almost perfectly
modifications. black-and-white and does not exhibit structural details

First, the3 parametertfeta) must be defined and the smaller than the filter radius,;,. The Heaviside projection
densities must be filtered before the start of the optinozati fiiter relies on the compact support of the classical filter

loop. To this end, line 47 is replaced with the following function to impose length scale in the solid regions, and

0%,
0%,

= Be PP 7P (23)

lines: therefore the Heaviside projection cannot be directly ieplpl
beta = 1; with the PDE filter. It can be observed also that the minimum
if ft == 1 || ft = 2 length scale imposed on the material distribution does
xPhys = x; not prevent the occurrence of very small holes. This can
elseif ft == be avoided by using a more advanced filter such as the
xTilde = x; . .
xPhys = 1-exp(-beta*xTilde)+xTilde*exp(-beta); morphological close-open or open-close f”tmundv

end) or by following a robust approach in the formulation

12

c=189.14 c=191.49 c=193.24

Fig. 8 Optimized design of the MBB beam and corresponding compéiambtained with the 88 line code extended by a Heaviside filtenesh
with 60 x 20 elements (left)150 x 50 elements (middle), angD0 x 100 elements (right) has been used.

of the optimization problem_(Sigmund, 2009; Wang =t al,over the first ten iterations of the optimization loop, using
2010). a Lenovo Thinkpad X301 laptop with an Intel Core2 Duo
U9400 processor, 2 GB memory, Windows XP with SP3
(32-bit x86), and MATLAB R2010a. It is clear from the
5.5 Other extensions table that the new 88 line implementation is significantly
faster than the original 99 line code. For the mesh with
The implementation of additional extensions to the 88 linej 50 « 50 elements, a factor of 100 speed improvement is
code should be relatively straightforward. The extensioyccomplished. The 99 line code has not been tested using
to three-dimensional problems may require a lot ofthe mesh witt800 x 100 elements as the computation time
modifications, but the general structure of the code woulghecomes excessively large. The computation time for the
remain_unchanged. Following the guidelines given byjjternative implementations usirgnv2 based filtering and

Bendsge and Sigmund_(2003), the 88 line code can bepE pased filtering is almost equal to the computation time
converted to a code for mechanism synthesis or fofgrthe 88 line code.

heat conduction problems. The optimality criteria based

optimizer can be replaced with a more versatile optimizatio

scheme, such as the method of moving asymptotes (MMA)'abIeZ Computation time in seconds per iteration for the optinidarat

introduced byl Svanberg (1987), in order to enable theOfthe MBB beam using density filtering.

solution of problems with more than one constraint. Mesh size 60x20 15050 300 x 100
88 line code 0.12 0.94 5.67
CONV2 based filtering code 0.16 0.78 3.30

6 Performance PDE based filtering code 0.19 1.79 10.08

6.1 Computation time

In this subsection, the computation time for the 88 line code Table[2 shows the results obtained with a density filter,

(and the variants presented sectighs AGTH 5.4) is compargaing the same configuration as for the sensitivity filter. No

with the original 99 line code. The MBB beam optimization results are given for the 99 line code as it does not include

. o . density filter. The computation time is slightly higherriha
problem introduced earlier is considered as a benchmar, I o .
. . .for the sensitivity filter, due to the application of the digns
problem, using the same parameter values as in subsecti

B3 filter in every iteration of the bisection algorithm used to
' determine the Lagrangian multipliev. This is especially

true for the problem with the largest mesh, and for the

Table 1 Computation time in seconds per iteration for the optimiarat ~ code using PDE based filtering, where the application of

of the MBB beam using sensitivity filtering. the density filter involves a relatively costly backsuhgtn
Mesh size 60 x20 150x50 300 x 100 operation. As the PDE based filter is volume-preserving,
: this could be avoided using the design variables instead of
99 line code 065 7519 "= the physical densities to check the volume constraint in th
88 line code 0.15 0.72 1.85 1€ physical densities o check the volume constra N
CONV?2 based filtering code 0.13 0.69 1.08 Dbisection algorithm. Moreover, the computational cost can
PDE based filtering code 0.13 0.78 2.18 be significantly reduced by employing an iterative solver

(Lazarov and Sigmund, 2010).
Finally, the performance of the code extended by a
Table[1 gives an overview of the computation time inHeaviside filter is described in tablé 3. Compared to the
seconds per iteration for the optimization of the MBB beamstandard density filtering code, the additional Heaviside
using sensitivity filtering. Results are given for fouraaris projection has no significant impact on the computation
of the optimization code and for three different mesh sizestime. The computation time per iteration is slightly lower
The computation times have been determined as the averadee to the use of a smaller filter radius,, in the

13

Table 3 Computation time in seconds per iteration for the optimiarat to the use of a smaller filter radius,;, in the example

of the MBB beam using Heaviside filtering. problem, the coefficient matrid becomes sparser, and a
problem with 350 x 117 = 40950 elements could be
solved. The original 99 line code has not been tested, as the
computation time becomes prohibitively large for problems
of these dimensions.

Mesh size 60 x 20 150 x 50 300 x 100

Code with Heaviside filter 0.13 0.86 4.65

example problem, which leads to a sparser coefficient
matrix H, reducing the number of operations required to
multiply the coefficient matrixt with the design variables - ~gncjusion
or the sensitivities. It should be noted, however, that the

use of the Heaviside filter requires the application of 3T his paper presents a MATLAB code for topology

F:ontlﬁuatlon scheme, W_h'Ch implies that the number Ofoptimization.The code is considered as the successor to the
iterations becomes considerably larger.

99 line code presented mwoon. It is published
with the same objective: to provide students and newcomers
to the field with a very simple implementation of a topology
optimization algorithm that can serve as an introductory
example and as a basis for further developments. The code
fgan be download from the web siiew . topopt.dtu.dk.

6.2 Memory usage

While the use of thesparse function to assemble the
stiffness matrix leads to a vast improvement in terms o

computation time, it also increases the program’s memor}{ The m.ajor difference ,W'th regpect to th(—?‘ original 99
footprint. The index vectorsk and jK and the vectosk ine code is the computational efficiency. An improvement

with non-zero entries are relatively large and remain in" speed with a fac.:tor of 100 has been. measurgd for an
memory throughout the entire optimization loop. Each of€X@Mple problem with 7500 elements. This has mainly been

these vectors has the size of the element stiffness matrBCCOMPlished by means of loop vectorization and memory
times the number of elements, which is considerably mor@éallocation. _
than the size of the stiffness matrix itself. Moreover, the In add!tlon, Fhe code has. begn extended by a density
sparse function requires the index vectot® and jK to filter. The inclusion of a density filter has an important ed-
be defined as double precision arrays, prohibiting the usdcational value, as it paves the road for the implementation
of a more memory efficient integer type. In contrast to0f more sophisticated filters such as the Heaviside filter als
the sparse function built-in in MATLAB, the sparse2 discussed in the paper.

function from CHOLMOD does accept integer type index Special care has been taken not to compromise the
vectors. simplicity of the code. As a result, the new code is

In order to get a rough idea of the memory requirement§haractel’ized by the same readability as the original @9 lin
for the 88 line code and its variants, an informal test hagode, although the number of lines has been reduced to 88.
been conducted: the example problem from the previous The paper also presents two alternative implementations.
subsection has been solved multiple times, each tim&he first alternative takes advantage of thav2 function
incrementing the mesh size, until the computer ran oubuilt-in in MATLAB to filter densities and sensitivities, so
of memory. The same computer has been used as foeducing the number of lines to 71 without affecting the
the determination of the computation time. The test hagsomputational cost or the readability of the code (for those
been performed using both sensitivity and density filteringfamiliar with the conv2 function). The second alternative
leading to identical results. uses a filter based on a Helmholtz type differential equation

The largest problem that could be solved with the 88llowing for the use of a finite element solver to perform
line code consisted df00 x 100 = 30000 elements. The the filtering operation. This is beneficial for problems with
code usingconv2 based filtering requires less memory a complex geometry or when the optimization problem is
as it avoids the definition of the (sparse but nonethelessolved in parallel.
large) coefficient matrid, using a small matrix instead
that represents the non-zero part of the filter kernel. As %Cknowledgements This work was financially supported by the
consequence, this code allowed for the solution of a problerRurohorcs/ESF European Young Investigator Award (EURMY),a
with 700 x 233 = 163100 elements. The code based Center of Advanced User Support (CAUS) grant from the Danish
on PDE fiterng performs n betuween and allowed us tof 1% SoeTlic Carpns (C50) by an Eie S
solve a problem witt600 x 200 = 120000 elements. The ,osiqoctoral fellow of the Research Foundation - Flanders a
extension of the 88 line code with a Heaviside filter hasmember of K.U.Leuven-BOF PFV/10/002 OPTEC-Optimization i
no noticeable influence on memory usage; however, duéngineering Center.

www.topopt.dtu.dk

14

References Lazarov B, Sigmund O (2010) Filters in topology opti-
mization based on Helmholtz type differential equations
Alberty J, Carstensen C, Funken S (1999) Remarks around (submitted for publication)
50 lines of Matlab: short finite element implementation.Sigmund O (1994) Design of material structures using
Numerical Algorithms 20(2-3):117-137 topology optimization. PhD thesis, DCAMM S-report
Alberty J, Carstensen C, Funken S, Klose R (2002) Matlab S69, Department of Solid Mechanics, Technical Univer-
implementation of the finite element method in elasticity. sity of Denmark
Computing 69(3):239-263 Sigmund O (1997) On the design of compliant mechanisms
Allaire G (2009) Shape and topology usingtopology optimization. Mechanics of Structures and
optimization by the level set method. URL Machines 25(4):493-524

http://www.cmap.polytechnique.fr/~allaire Sigmund O (2001) A 99 line topology optimization
Bendsge M, Sigmund O (2003) Topology Optimization. code written in Matlab. Structural and Multidisciplinary
Theory, Methods and Applications. Springer Optimization 21(2):120-127

Bendsge M (1989) Optimal shape design as a materi@digmund O (2007) Morphology-based black and white
distribution problem. Structural optimization 1:193-202 filters for topology optimization. Structural and Multielis

Bourdin B (2001) Filters in topology optimization. Inter- ciplinary Optimization 33(4-5):401-424
national Journal for Numerical Methods in EngineeringSigmund O (2009) Manufacturing tolerant topology opti-
50(9):2143-2158 mization. Acta Mechanica Sinica 25(2):227-239

Bruns TE, Tortorelli DA (2001) Topology optimization of Sigmund O, Petersson J (1998) Numerical instabilities
non-linear elastic structures and compliant mechanisms. in topology optimization: A survey on procedures
Computer Methods in Applied Mechanics and Engineer- dealing with checkerboards, mesh-dependencies and

ing 190(26-27):3443-3459 local minima. Structural Optimization 16(1):68-75
Challis VJ (2010) A discrete level-set topology optimipati Suresh K (2010) A 199-line Matlab code for Pareto-

code written in Matlab. STRUCTURAL AND MULTI- optimal tracing in topology optimization. Structural and

DISCIPLINARY OPTIMIZATION 41(3):453-464 Multidisciplinary Optimization Published online

Dabrowski M, Krotkiewski M, Schmid D (2008) MIL- Svanberg K (1987) Method of moving asymptotes - a new
AMIN: MATLAB-based finite element method solver for method for structural optimization. International Journa
large problems. Geochemistry Geophysics Geosystems for Numerical Methods in Engineering 24(2):359-373
9(4) The MathWorks (2010) MATLAB Programming Funda-

Davis T (2007) Creating sparse finite-element matrices in mentals
MATLAB. Guest blog in Loren on the Art of MATLAB, Wang F, Lazarov B, Sigmund O (2010) On projection meth-

http://blogs.mathworks.com/loren/2007/03/01/cragtin ods, convergence and robust formulations in topology

sparse-finite-element-matrices-in-matlab/. URL optimization (submitted for publication)

http://blogs.mathworks.com/loren/ Zhou M, Rozvany G (1991) The COC algorithm, part
Davis T (2008) User Guide for CHOLMOD: a sparse |I: Topological, geometrical and generalized shape

Cholesky factorization and modification package. De- optimization. Computer Methods in Applied Mechanics
partment of Computer and Information Science and and Engineering 89(1-3):309-336
Engineering, University of Florida, Gainesville, FL, USA
Diaz A, Sigmund O (1995) Checkerboard patterns in layout
optimization. Structural Optimization 10(1):40-45
Guest J, Prevost J, Belytschko T (2004) Achieving minimum
length scale in topology optimization using nodal design
variables and projection functions. International Jolrna
for Numerical Methods in Engineering 61(2):238-254
Jog C, Haber R (1996) Stability of finite element models
for distributed-parameter optimization and topology
design. Computer Methods in Applied Mechanics and
Engineering 130(3-4):203-226
Lazarov B, Sigmund O (2009) Sensitivity filters in topology
optimisation as a solution to helmholtz type differential
equation. In: In Proc. of the 8th World Congress on
Structural and Multidisciplinary Optimization

http://www.cmap.polytechnique.fr/~allaire
http://blogs.mathworks.com/loren/

© ® N o s W N R

11
12
13
14

15
16
17

18

19

20

21

22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
il
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

Appendix - MATLAB code

%%%% AN 88 LINE TOPOLOGY OPTIMIZATION CODE %%%%
function top88(nelx,nely,volfrac,penal,rmin,ft)
%% MATERIAL PROPERTIES

EO = 1;
Emin = 1e-9;
nu = 0.3;

%% PREPARE FINITE ELEMENT ANALYSIS

A1 =[12 3 -6 -3; 312 3 0; -6 3
A2 = [6 -3 0 3; -3 -6 -3 -6; 0 -3
Bil1 = [-4 3 -2 9; 3-4-9 4; -2 -9

nodenrs = reshape(1:(1+nelx)*(1+nely),1+nely,1+nelx) ;

edofVec = reshape(2*nodenrs(1:end-1,1:end-1)+1,nelx*nely,1);
edofMat = repmat(edofVec,1,8)+repmat ([0 1 2*nely+[2 3 0 1] -2 -1],nelx*nely,1);

iK = reshape (kron(edofMat ,ones(8,1))’,64*nelx*nely,1);
jK = reshape (kron(edofMat,ones(1,8))’,64*nelx*nely,1);
% DEFINE LOADS AND SUPPORTS (HALF MBB-BEAM)

F = sparse(2,1,-1,2%(nely+1)*(nelx+1),1);

U = zeros(2+(nely+1)*(nelx+1),1);

fixeddofs = union([1:2:2*(nely+1)], [2*(nelx+1)*(nely+1)]);

alldofs = [1:2%(nely+1)*(nelx+1)];
freedofs = setdiff (alldofs,fixeddofs);
%% PREPARE FILTER
iH = ones(nelx*nely*(2*(ceil (rmin)-1)+1)"2,1);
jH = ones(size(iH));
sH = zeros(size(iH));
k = 0;
for il = 1l:nelx

for j1 = 1l:nely

el = (il-1)*nely+ji;

for i2 = max(il-(ceil(rmin)-1),1):min(il+(ceil(rmin)-1) ,nelx)

12 -3; -3 0 -3 12];
-6 3; 3 -6 3 -6];
-4 -3; 9 4 -3 -4];
Bi2=[2-3 4-9; -3 2 9-2; 4 9 2 3; -9 -2 3 2];
KE = 1/(1-nu~2)/24%([A11 A12;A12° A11l+nux[B11 B12;B12’ B11l);

for j2 = max(jl-(ceil(rmin)-1),1):min(jl+(ceil(rmin)-1) ,nely)

e2 = (i2-1)*nely+j2;

k = k+1;
iH(k) = el;
JH(K) = e2;
sH(k) = max(0,rmin-sqrt((i1-i2)°2+(j1-j2)"2));
end
end
end

end
H = sparse(iH, jH,sH);
Hs = sum(H,2);
%% INITIALIZE ITERATION
x = repmat (volfrac,nely,nelx);
xPhys = x;
loop = 0;
change = 1;
%% START ITERATION
while change > 0.01
loop = loop + 1;
%% FE-ANALYSIS

sK = reshape (KE(:)*(Emin+xPhys(:)’. penal*(EO-Emin)) ,64*nelx*nely,1);

K = sparse(ik,jK,sK); K = (K+K’)/2;
U(freedofs) = K(freedofs,freedofs)\F(freedofs);
%% OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS

ce = reshape (sum((U(edofMat)*KE) . *U(edofMat),2) ,nely,nelx);

¢ = sum(sum((Emin+xPhys. penal*(EO-Emin)) .*ce));
dc = -penal#*(EO-Emin)*xPhys. " (penal-1).*ce;
dv = ones(nely,nelx);
%% FILTERING/MODIFICATION OF SENSITIVITIES
if ft ==
dc(:) = Hx(x(:).*dc(:))./Hs./max(1le-3,x(:));
elseif ft ==
dc(:) = Hx(dc(:)./Hs);
dv(:) = Hx(dv(:)./Hs);
end

%% OPTIMALITY CRITERIA UPDATE OF DESIGN VARIABLES AND PHYSICAL

DENSITIES

70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88

16

en

11 = 0; 12 = 1e9; move = 0.2;
while (12-11)/(11+12) > 1e-3
1mid = 0.5%(12+11);
xnew = max(0,max(x-move,min(1,min(x+move,x.*sqrt(-dc./dv/1Imid)))));
if ft ==
xPhys = xnew;
elseif ft ==
xPhys(:) = (H*xnew(:))./Hs;
end
if sum(xPhys(:)) > volfrac*nelx*nely, 11 = lmid; else 12 = 1lmid; end
end
change = max(abs (xnew(:)-x(:)));
X = Xnew;
%% PRINT RESULTS
fprintf(’ It.:%5i Obj.:%11.4f Vol.:%7.3f ch.:%7.3f\n’,loop,c,
mean (xPhys (:)) ,change) ;
%% PLOT DENSITIES
colormap (gray); imagesc(1-xPhys); caxis([0 1]); axis equal; axis off; drawnow;
d

	Introduction
	Problem formulation
	MATLAB implementation
	Alternative implementations
	Extensions
	Performance
	Conclusion

