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Abstract. VeriFast is a separation logic-based program verifier for Java.
This tutorial introduces the verifier’s features step by step.

1 Introduction

When writing programs, developers make design decisions that allow them to
argue — at least informally — why their program does what it is supposed to
do. For example, a developer may design a certain sequence of statements to
compute the average of an integer array and may implicitly decide that this
sequence should never be applied to null or to an empty array. A violation of
a design decision then corresponds to a bug in the program. However, keeping
track of all such implicit decisions and ensuring that the code satisfies those
decisions is hard. This is particularly true for concurrent programs where the
effect of concurrently executing threads must be taken into account to avoid
data races.

To help developers manage their design decisions, certain programming lan-
guages provide a type system where developers can express decisions regarding
the kind of data memory locations can hold. For example, consider the signature
of the method Arrays.copyOf in the standard Java library:

public static int[] copyOf (int[] original, int newLength)

The types in the method signature make explicit the decision that newLength is
an integer and that both original and the return value are integer arrays. The
Java compiler statically checks that the code and the decisions described by the
types are consistent. For example, the statement

int[] copy = Arrays.copyOf (true, 10);

is rejected as ill-typed by the compiler, as true is not an integer array. By
checking consistency of the code and the types at compile-time, the compiler
rules out certain run-time errors. In particular, if a Java program typechecks,
then that program does not contain field- and method-not-found errors.

The expressive power of traditional type systems is limited. For example, while
the signature of Arrays. copy0f expresses that the list of actual parameters must
consist of an array and an integer, the requirements that the array must be
non-null and that the integer must be non-negative lies beyond the expressive
power of the Java type system. Instead, these requirements are included only in
the informal documentation and an unchecked exception is thrown when they
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are violated. Similarly, the implicit guarantee that the return value is non-null
and that it is a proper copy of original is documented informally, but it is
not expressed in copyOf’s return type. However, contrary to the requirement
described above violations of the guarantee do not give rise to an exception,
allowing erroneous results caused by a bug in the implementation to spread to
other components potentially causing these components to malfunction.

Formal verification is a program analysis technique where developers can in-
sert assertions to formally specify detailed design decisions that lie beyond the
expressive power of traditional type systems and where consistency of these de-
cisions and the code can be checked at compile-time by a program verifier. In
general, if a program verifier deems a program to be correct, then that program’s
executions do not perform assertion violations.

In this tutorial, we describe a particular separation-logic based] program ver-
ifier for Java named VeriFasf?. VeriFast takes a number of Java source files an-
notated with preconditions, postconditions and other specifications describing
assumptions made by the developer as input, and checks whether the assump-
tions hold in each execution of the program for arbitrary input. If VeriFast deems
a Java program to be correct, then that program does not contain assertion vi-
olations, data races, divisions by zero, null dereferences, array indexing errors
and the program makes correct use of the Java API. This tutorial is targeted
at users of VeriFast. We refer the reader to a technical report ] for a formal
description of the inner workings of the tool for a small imperative language. We
compare VeriFast with related tools and approaches in Section Bl

We proceed by introducing VeriFast’s features step by step. To try the exam-
ples and exercises in the paper yourself, download the VeriFast distribution from
the following website:

http://distrinet.cs.kuleuven.be/software / VeriFast

The distribution includes a command-line tool (verifast) and a graphical user
interface (vfide). The Java programs mentioned in this paper can be downloaded
from the website as well.

2 Verification

2.1 Assert Statements

A Java assert statement [0l section 10.14] consists of the keyword assert followed
by a boolean expression. By inserting an assert statement in the code, a developer
indicates that he or she expects the corresponding boolean expression to evaluate
to true whenever the statement is reached during the program’s execution. If the
expression evaluates to false, an AssertionError is thrown (provided assertion
checking is enabled). As an example, consider the method max shown below:

! Separation logic is an extension of Hoare logic oriented to reasoning about imperative
programs with aliasing. The theory behind separation logic for Java is explained by
Parkinson and Bierman in a different chapter of this book [I].

% In addition to Java, VeriFast supports C [213].
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class Max {
public static int max(int x, int y)
//@ requires true;
//@ ensures true;

{
int max;
if(x <= y)
max = 0;
else
max = X;

assert x <= max && y <= max;
return max;
}
}

The goal of this method is to compute the maximum of x and y. The assert
statement expresses the developer’s assumption that the variable max should be
larger than or equal to both x and y. The program is well-typed, and is therefore
accepted by the Java compiler. The assert statement holds when x is larger than
y, but fails for example when x equals 5 and y equals 10.

VeriFast is a Java source code analysis tool. Contrary to standard Java com-
pilers, VeriFast detects potential assertion violations (and other problems) at
compile-time. To apply the tool to our example program, start the VeriFast inte-
grated development environment (vfide), open Max.java and press the Verify
button (). You should now see the following window:

File Edit View Verify Window(Top) Window(Bottom) Help

E b4 y @ [ =Y B /\s=ertion might not hold: (and (<= x 0) (<= 1y 0))
\ | Max.java | _assume.javaspec | _listjavaspec | » |Local Value
class Max { max 0
public static int max(int x, int y) x X
¥ ¥
{
int max;
if(x <= y)
max = 0;
else
max = X;
assert x <= max &£ y <= max;
return max;
| Steps + | | Assumptions Heap chunks
e e
i
Executing statement Tl e
|= <=
Executing statement '8 (xw
Executing statement =

The large text box displays the source code of Max. java, the program being
analysed. The body of the assert statement is highlighted in red indicating that
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the tool has located a potential bug in the statement. A description of the error is
shown in red at the top of the window: Assertion might not hold. This error
message indicates that VeriFast was unable to prove that the assert statement
holds in each possible execution of the method. In other words, there might
exist a context where execution of the assert statement fails. The other parts of
the user interface contain information that can be used to diagnose verification
errors as explained in Section

To fix the bug, modify the then branch of the if statement and assign the
correct value to max. Reverify the program. VeriFast now displays O errors
found in green at the top of the window, meaning that for all possible values for
x and y the assert statement succeeds.

2.2 Method Contracts

The types in a method signature describe the kind of data expected and re-
turned by a method. Each method call is then typechecked with respect to the
callee’s signature, not with respect to the callee’s body. Therefore, typechecking
is modular.

Performing modular analysis has a number of advantages. First of all, it is
possible to analyse a method body with respect to the signature of a callee even
if the callee is an interface method, the callee’s body is not visible to the caller
or the callee has simply not been implemented yet. Secondly, modular analysis
scales to larger programs as each method body needs to be analysed only once
instead of once per call. Finally, modifying the implementation of a method
never breaks the correctness (e.g. type correctness in case of a type system) of
its callers.

For the reasons outlined above, VeriFast performs modular verification: each
method call is verified with respect to the callee’s signature. However, as ex-
plained in Section [l method signatures in traditional type systems can only
express simple assumptions. Therefore, VeriFast mandates that each method
signature is extended with a precondition and a postcondition. The precondi-
tion (keyword requires) refines the signature by defining additional constraints
on the method parameters, while the postcondition (keyword ensures) defines
additional constraints on the method’s return value.

The pre- and postcondition of a method can be viewed as a contract between
developers that call the method and those implementing the method body [6].
Implementers may assume that the precondition holds on entry to the method,
and in return they are obliged to provide a method body that establishes the
postcondition when the method returndd. Callers must ensure the precondition
holds when they call the method, and in return they may assume that the post-
condition holds when the method returns. VeriFast enforces method contracts.

As method contracts are mandatory in VeriFast, we have already annotated
the method max in our running example with a default contract. More specif-
ically, max’s current precondition is true, indicating that callers can pass any

3 For now, we consider only normal, non-exceptional termination.
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two integers for x and y. Similarly, the method’s postcondition is true, indicat-
ing that the method body is allowed to return any integer. Note that method
contracts — and all other VeriFast annotations — are written inside special
comments (/*@ ... @+*/). These comments are ignored by the Java compiler,
but recognized by VeriFast.

To see that VeriFast only uses the callee’s method contract to reason about a
call, extend the class Max with a new method max3 that computes the maximum
of three integers by calling max twice as shown below.

class Max {

public static int max3(int x, int y, int z)
{
int max;
max = max(x, y);
max = max(max, z);
assert x <= max && y <= max && z <= max;
return max;
}
}

When verifying this program, VeriFast asks us to provide a method contract for
max3 (Method must have contract). To resolve this problem, annotate max3
with the same contract as max and reverify the program. The verifier now re-
ports that the assertion in max3 might not hold. VeriFast is unable to prove
this assertion because max’s postcondition provides no information about its re-
turn value. According to the contract, max could potentially be implemented
as return 0;, which would clearly violate the assertion if either x, y or z is
larger than zero. Resolve the problem by strengthening max’s postcondition to
x <= result && y <= result. The variable result in the postcondition de-
notes max’s return value. After updating the postcondition, verification succeeds.

2.3 Symbolic Execution

How does VeriFast check that a program is correct (i.e. does not contain assertion
violations, null dereferences, ...)? When the developer presses the Verify button,
VeriFast checks that each method in the program satisfies its method contract
via symbolic execution. A method body satisfies a method contract if for each
program state s that satisfies the precondition, execution of the method body
starting in s does not trigger illegal operations (such as assertion violations
and divisions by zero) and the postcondition holds when the method terminates.
VeriFast only checks partial correctness so a method is not required to terminate.

The number of program states that satisfy the precondition is typically in-
finite. For example, consider a method with a parameter of type String. The
length of the String object passed to this method is only bounded by the avail-
able memory. Moreover, execution of the method body may not terminate for
certain inputs. Therefore, it is generally not feasible to enumerate all initial states
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satisfying the precondition and to check for each of these states that the body
satisfies the contract by simply executing the body.

To verify that a method body satisfies a method contract, VeriFast uses sym-
bolic instead of concrete execution. More specifically, the tool constructs a sym-
bolic state that represents an arbitrary concrete pre-state which satisfies the
precondition and checks that the body satisfies the contract for this symbolic
statdd. The verifier symbolically executes the body starting in the initial sym-
bolic state. At each statement encountered during symbolic execution, the tool
checks that the statement cannot go wrong and it updates the symbolic state to
reflect execution of that statement. Finally, when the method returns, VeriFast
checks that the postcondition holds for all resulting symbolic states.

A symbolic state in VeriFast is a triple (v, X, h), consisting of a symbolic store
v, a path condition X’ and a symbolic heap h. The symbolic store is a mapping
from local variables to symbolic values. Each symbolic value is a first-order term,
i.e. a symbol, or a literal number, or an operator (+, —, <, =, ...) or a func-
tion applied to first-order terms. A single symbolic value can represent a large,
potentially infinite number of concrete values. For example, during verification
of the method max the initial symbolic value of the parameter x is the symbol
x. This symbol represents all 232 possible values of x. The path condition is a
set of first-order formulas describing the conditions that hold on the path be-
ing verified. For example, when verifying the then branch of an if statement,
the path condition contains an assumption expressing that the condition of the
if statement was true when entering the branch. Finally, the symbolic heap is
a multi-set of heap chunks. The symbolic heap is the key to reasoning about
aliasing and preventing data races. Its purpose will be explained in Section[3 A
single symbolic state can represent a large, potentially infinite number of con-
crete states. For example, the symbolic pre-state of the method max represents
all 264 possible valuations of the parameters x and y.

When VeriFast reports an error, the symbolic states on the path leading to
the error can be examined in the IDE to diagnose the problem. That is, the box
in the bottom left of the IDE contains the list of symbolic states on the path
to the error. When a particular symbolic state is selected, the corresponding
statement or assertion is highlighted in yellow in the program. Moreover, the
three components of that symbolic state are displayed: the path condition is
shown in the bottom center, the symbolic heap in the bottom right and the
symbolic store in the top right box. The symbolic store is a table where the left
side contains the names of the local variables in scope, while the right side shows
their symbolic values. One can inspect the symbolic states on a path leading to a
particular statement by placing the cursor at that statement and by pressing the
Run to cursor button (#). Similarly, the symbolic states leading to the end of
the method can be examined by placing the cursor on the closing brace of the

4 This is similar to universal generalization where one proves Va e P(z) by using a
symbolic value x to represent an arbitrary concrete value and by showing that P
holds for z.
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method body and by pressing Run to cursor. Place your cursor at the closing
brace of max and examine the intermediate symbolic states.

The body of each pre- and postcondition consists of an assertion. For now,
an assertion is a side-effect free, heap-independent Java boolean expression, but
we will introduce additional types of assertions in the next sections. A key part
of VeriFast’s symbolic execution algorithm is checking whether a symbolic state
satisfies an assertion and recording the assumption that an assertion is true
in a symbolic state. We call the former operation consuming an assertion and
the latter producing an assertion. Consuming a Java boolean expression means
symbolically evaluating the expression yielding a first-order formula and checking
that this formula is derivable from the path condition. VeriFast relies on an SMT
solver[T], a kind of automatic theorem prover, to discharge such proof obligations.
Producing a Java boolean expression corresponds to evaluating that expression
yielding a first-order formula and adding it to the path condition.

Symbolic execution of each method starts by initializing the symbolic store
by assigning a fresh first-order symbol to each parameter. VeriFast selects the
symbol x as the fresh term representing the symbolic value of a parameter x. Ini-
tially, the path condition and the heap are both empty. The resulting symbolic
state thus represents an arbitrary concrete pre-state. To consider only states
that satisfy the precondition, VeriFast first produces the precondition. The veri-
fier then proceeds by symbolically executing the method body. At each return in
the method body, VeriFast checks that the symbolic post-state satisfies the post-
condition by consuming it. In the remainder of this section, we explain symbolic
execution for various statements in more detail.

Assignment. Symbolic execution of an assignment to a local variable x consists
of two steps. First, the right hand side is symbolically evaluated yielding a first-
order term. Afterwards, the value of z in the symbolic store is changed to this
first-order term. As an example, consider the method bar shown below:

public static int bar(int x)
//@ requires 0 < z;
//@ ensures 10 < result;
{x=x+ 10; return x; }

The contract of bar states that the method’s return value is larger than 10,
provided x is non-negative. Symbolic execution of bar starts by constructing a
symbolic pre-state that represents an arbitrary concrete pre-state by assigning
a fresh symbol to each method parameter: the initial symbolic value of x is a
fresh symbol x. To consider only program states that satisfy the precondition,
VeriFast produces the precondition: the assumption that the symbolic value of
the parameter x is non-negative is added to the path condition. Verification pro-
ceeds by symbolic execution of the method body. The assignment x = x + 10;

® To verify Bar.java, disable overflow warnings by unchecking Check arithmetic
overflow in the Verify menu. In the remainder of this paper, we assume overflow
checking is disabled.
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updates the symbolic value of x to x 4+ 10, encoding the fact that x’s new value is
equal to its original value plus ten. The return statement sets the ghostﬁ variable
result, which represents bar’s return value, to the symbolic value of x and ends
execution of the method body. VeriFast finally checks that the postcondition
holds in the symbolic post-state by consuming the postcondition. The postcon-
dition holds as the corresponding first-order formula, 10 < x + 10, is derivable
from the path condition, 0 < x by the SMT solver.

Assert. VeriFast checks that assert statements do not fail by consuming their
bodies. That is, VeriFast checks for each such statement that its boolean ex-
pression evaluates to true by proving that the corresponding formula follows
from the path condition. For example, consider the assert statement in the
body of max3. The path condition of the symbolic state right before execu-
tion of this statement contains three assumptions: true, x < max0 Ay < max0
and max0 < maxl A z < maxl. The first assumption represents the precondition
of max3 itself, while the second and third assumption respectively correspond to
the postcondition of the first and second call to max. Here, the symbols max0 and
max1 respectively represent the return value of the first and second invocation
of max. VeriFast concludes that the assert statement succeeds for all possible val-
ues for x, y and z as the SMT solver can prove that the corresponding formula,
x < maxl Ay < maxl A z < maxl, follows from the path condition.

If. In a concrete execution, the condition of an if statement evaluates to either
true or false. If the condition evaluates to true, then the then branch is executed;
otherwise, the else branch is taken. However, symbolic evaluation of the condition
of an if statement results in a first-order formula. Based on this formula, it
is generally not possible to decide which branch must be taken. For example,
consider the method foo shown below.

public static int foo(int x)
//@ requires 5 <= z;
//@ ensures 10 <= result;
{
int res = 0;
if (10 <= x)
res = X;
else if (x < 5)
assert false;
else
res = x + 4;
return res;

5 A ghost variable is a variable introduced only to facilitate verification but which does
not exist during concrete execution of the program.
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During symbolic execution of the body it is not known whether the condition of
the outermost if statement, 10 <= x, holds. For that reason, VeriFast examines
both branches of the if statement: the then branch (and all subsequent state-
ments after the if statement) are verified under the assumption that 10 < x, while
the else branch (and again all subsequent statements) are verified assuming the
negation of the condition 10 > x. The same strategy applies to the if statement
in the else branch. This tactic for dealing with branches leads to the following
symbolic execution tree:

The leftmost branch of the tree corresponds to a path where the method termi-
nates and the resulting symbolic state satisfies the postcondition. More specifi-
cally, the formula corresponding to the postcondition, 10 < x, is derivable from
the final path condition (5 < x and 10 < x). The diamond node represents a
symbolic state with an inconsistent path condition. Such states are not reach-
able during concrete executions of the program. Indeed, the assert statement can
never be reached as x cannot be both larger than or equal to 5 and at the same
time less than 5. VeriFast does not examine infeasible paths any further. Finally,
the rightmost branch of the tree ends in a verification error: a postcondition
violation was detected by VeriFast. The formula representing the postcondition,
10 < x+ 4, is not derivable from the path condition (5 < x, 10 > x and x > 5).
Indeed, the postcondition does not hold if x equals 5.

VeriFast traverses execution trees in a depth-first manner. Furthermore, the
tool does not report all problems on all paths but stops when it finds the first
error or when all paths successfully verify. The symbolic states that can be
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examined in the IDE are those on the path leading to the error. For our example,
the IDE only displays the path from the root to the bottom right node.

Call. As explained in Section 22 VeriFast uses the callee’s method contract to
reason about a method call. More specifically, symbolic execution of a call con-
sists of two steps: (1) consumption of the callee’s precondition and (2) production
of its postcondition. Both steps are executed under the callee’s symbolic store.
During production of the postcondition, the callee’s return value is represented
by the ghost variable result. This variable is initialized to a fresh symbol that
represents an arbitrary concrete return value in the callee’s symbolic store just
before production of the postcondition. As an example, consider the symbolic
execution tree of the method max3:

produce x <= result && y <= result

max = max(max, z);

consume true

produce x <= result && y <= result

consume x <= max && y <= max && z <= max

Each call to max is symbolically executed by consuming max’s precondition and
afterwards producing its postcondition. To aid developers in understanding ver-
ification of method calls, the VeriFast IDE displays the signature of the callee
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and the callee’s symbolic store in addition to the call site itself as shown below.
For example, the callee’s symbolic store (shown in the top right) for the second
call to max maps the variable x to max0, the symbolic value returned by the first
call to max.

File Edit View Verfy Window(Top) Window(Bottom) Help
E i [ S VIl 5rcakpoint reached.

" Max,java | _assume,javaspec | _list.javaspec | _natjavaspec |* lLocal Value
class Max { Nk max0
public statie int max(int x, int y) = v e
® <= result && y <= result; -

‘] Maxjava _assume.javaspec | _listjavaspec _natjavaspec | ' |Local Value

max max0
public static int max3(int x, int y, int z)
2 es t e X X
L3} ¥
{
int max; o i
max = max(x, y): ‘
max : o
assert X <= max && y <= max && z <= max; "
return max;
Steps + | | Assumptions Heap chunks
Executing statement true
[ Verifying cal || {and (<=1 max0} (<= y max0)}
1l
Consuming assertion

Producing assertion

Executing statement | m 3

3 Classes and Objects

In a Java program without objects and without static fields, the only program
state visible to a method are the values of its local variables. Local variables are
not shared among activation records, meaning that a local variable can only be
read and written by the method itself. In particular, it is impossible for a callee
to modify the local variables of its caller. As local variables are not shared,
reasoning about such variables during verification is easy: one does not need to
worry that a method call will unexpectedly modify the caller’s local variables or
that multiple threads concurrently access the same local variable.

In Java programs with objects, the program state visible to a method consists
not only of its local variables but also includes all objects in the heap transi-
tively reachable from those variables. The set of objects reachable from distinct
activation records can overlap because of aliasing. Two expressions are aliases if
they refer to the same object. This means that one activation record can directly
access state visible to another activation record. In particular, if a caller and a
callee share a reference to the same object, then the callee can modify the state
of that object. Moreover, if activation records in different threads concurrently
access the same memory location, a data race may arise. Thus, the state visi-
ble to a method can change even though the method itself does not explicitly
perform an assignment.

Modular verification in the presence of aliasing is challenging. Suppose that at
a particular point in the analysis of a method the verifier knows that property P
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holds for part of the heap. For example, P might state that calling a particular
method of a certain object will return 5 or that some object is in a consistent
state. Whenever the method performs a call, P can potentially be invalidated
by the callee. Even if the method itself does not perform any calls, P could be
invalidated under its feet by a different thread. To perform modular verification,
VeriFast applies an ownership regime. That is, the tool tracks during symbolic
execution what part of the program state is owned by the method, meaning that
properties about that part are stable under actions performed by callees and by
other threads.

Aliasing also complicates reasoning because it can introduce hidden depen-
dencies. Suppose that at a particular point in the analysis the verifier knows that
the properties P and () hold. If P and @ involve classes that hide their internal
state, the verifier does not know exactly which heap locations P and @) depend
on. However, they might depend on the same heap location because of alias-
ing. As such whenever the method performs an operation that affects P, @ also
may no longer hold. To perform modular verification, the verifier must somehow
be able to deduce which properties are independent of each other. Note that a
property that does not contain any direct or indirect dereferences cannot contain
hidden dependencies. The set of memory locations that such a property depends
on are the local variables it mentions. This set can be determined syntactically.
We will refer to such properties as pure assertions.

To support modular verification in the presence of aliasing, VeriFast explicitly
tracks the set of heap locations owned by the method being analysed during
symbolic execution. That is, the symbolic heap is a multiset of heap chunks.
Each heap chunk represents a memory region that is owned by the method.
In addition to indicating ownership, the chunk can contain information on the
state of that memory region. For example, the heap chunk C f(o,v) represents
exclusive ownership of the field C.f of object 0. The chunk additionally describes
the property that the field’s current value is v. Here, both o and v are symbolic
values.

All heap chunks in the symbolic heap represent mutually disjoint memory re-
gions. In particular, if the heap contains two field chunks C f(o1,v) and C f(o0z, w),
then o; and o, are distinct. As chunks on the symbolic heap do not share hidden
dependencies, the verifier can safely assume that an operation that only affects
a particular chunk does not invalidate the information in the remaining chunks.

VeriFast enforces the program-wide invariant that at any time each heap loca-
tion is exclusively owned by at most one activation record’]. Moreover, a method
is only allowed to access a heap location if it owns that location. By enforc-
ing these rules, the verifier guarantees that information about a memory region
cannot be invalidated by callees or other threads, as long as the method retains
ownership of that region. For example, as long as a method owns the heap chunk

" VeriFast also supports non-exclusive, partial ownership via fractions [8]. Partial own-
ership allows the owning method to read but not write the memory region. The
program-wide invariant then states that for each heap location the total sum of
fractions over all activation records is at most one.
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C f(o,v), the property that o.f equals v cannot be invalidated by other activa-
tion records, as these activation records lack the permission to assign to o.f.
Conversely, if a method does not own a particular memory location o.f, then
that method has no direct information on the value of that field (as that infor-
mation is attached to the heap chunk). In addition, the ownership methodology
ensures the absence of data races. A data race occurs if two threads concurrently
access the same heap location at the same time, and at least one of these accesses
is a write operation. As no two activation records can own the same memory lo-
cation at the same time and hence cannot concurrently access the same memory
location, such races cannot occur.

A method is only allowed to access a memory region if it owns that region.
How can a method acquire ownership of a memory region? First of all, a con-
structor in a class C gains ownership of the fields of the new object declared in
C right after calling the superclass constructor. For this reason, the constructor
of the class Account shown below is allowed to initialize balance to zero. Sec-
ondly, a method can indicate in its precondition that it requires ownership of a
particular memory region in order to execute successfully. Ownership of the field
f of an object el with value e2 is denoted in assertions as el.f |-> e2. Here,
el and e2 are side-effect free, heap-independent Java expressions. This assertion
is read as el.f points to e2. For example, the precondition of deposit specifies
that the method requires ownership of this.balance. Because of this precondi-
tion, the method body is allowed to read and write this.balance. The question
mark (?) before the variable b indicates that the precondition does not impose
any restrictions on the field’s pre-state value, but binds this value to b. By nam-
ing the pre-state value, the postcondition can relate the field’s post-state value
to the pre-state value. Thirdly, a method can acquire ownership of a memory
region by calling another method. As an example, consider the method clone.
This method creates a new Account object named copy and then assigns to
copy.balance. This assignment is allowed because the constructor’s postcondi-
tion includes this.balance |-> 0. This postcondition specifies that ownership
of the field balance of the new object is transferred from the constructor to its
caller when the constructor terminates.

The set of memory locations owned by a method can not only grow as the
method (symbolically) executes, but also shrink. First of all, at each method
call ownership of the memory locations described by the callee’s precondition is
conceptually transferred from the caller to the callee. Secondly, when a method
returns, the method loses ownership of all memory locations enumerated in its
postcondition. Ownership of those locations is conceptually transferred from
the method to its caller when it returns. For example, deposit’s postcondition
returns ownership of this.balance to its caller. In both cases, if the method
does not own the required memory location, symbolic execution terminates with
a verification error.
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class Account {
int balance;

public Account ()

//@ requires true;

//@ ensures this.balance [-> 0;
{

super () ;

this.balance = 0;

}

public void deposit(int amount)

//@ requires this.balance [-> ?b;

//@ ensures this.balance [-> b + amount;
{

this.balance += amount;

}

public int getBalance()

//@ requires this.balance [-> ?b;

//@ ensures this.balance [-> b &*& result == b;
{

return this.balance;

}

public Account clone()
//@ requires this.balance [-> ?b;
/%@ ensures this.balance [-> b &8 result /= null &x&
result.balance [-> b; 0*x/

{
Account copy = new Account();
copy.balance = balance;
return copy;

}

public void transfer (Account other, int amount)
/#@ requires this.balance [-> ?bl E%*E other != null &+
other.balance [-> 2?2b2; Ox/
/*@ ensures this.balance [-> bl - amount Ex€
other.balance [-> b2 + amount; @x/
{
balance -= amount;
other.deposit (amount) ;
¥
}

Assertions can be subdivided into two categories: pure and spatial assertions.
Pure assertions such as 0 <= x specify constraints on local variables. Spatial
assertions such as o.f |-> v on the other hand denote ownership of a heap
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subregion and information about that region. As explained in Section 2.3 pro-
ducing and consuming a pure assertion involves respectively extending and
checking the path condition. Consumption and production of a spatial assertion
however affects the symbolic heap. That is, production of a spatial assertion
corresponds to the acquisition of ownership by the current activation record of
the memory regions described by the assertion. Therefore, producing such an
assertion is implemented by adding the corresponding heap chunk to the heap.
Consumption of a spatial assertion corresponds to the current activation record
relinquishing ownership of the memory regions described by the assertion. It is
hence implemented by searching the heap for a chunk that matches the assertion
and by removing this chunk from the symbolic heap. An assertion el.f |[-> e2
matches a chunk C g(v,w) if f equals g, f is declared in class C and it follows
from the path condition that the symbolic values of el and e2 are respectively
equal to v and w. If no matching chunk is found, VeriFast reports a verifica-
tion error: No matching heap chunk. For example, weakening the precondition
of getBalance to true causes VeriFast to report an error at the field access
this.balance (as the method does not have permission to read the field).

Multiple atomic assertions can be conjoined via the separating conjunction,
denoted &*&. For example, clone’s postcondition specifies that the method re-
turns ownership of this.balance and result.balance to its caller and that
result is non-null. Semantically, A &+*& B holds if both A and B hold and A’s foot-
print is disjoint from B’s footprint. The footprint of an assertion is the set of mem-
ory locations for which that assertion claims ownership. Consuming (respectively
producing) A &+*& B is implemented by first consuming (respectively producing)
A and afterwards B. Note that if A is a pure assertion, then A &*& A is equivalent
to A. However, this property does not necessarily hold for spatial assertions. In
particular, as a method can only own a field once, it cannot give up ownership
of that field twice. For that reason, the assertion el.f |-> _ &*& el.f |-> _
is equivalent to false.

To gain a better understanding of ownership and ownership transfer, it is in-
structive to inspect the symbolic states encountered during verification of the
method transfer. Open Account. java, place the cursor after the closing brace
of the method transfer and press Run to cursor. As before, VeriFast starts sym-
bolic execution of the method by constructing a symbolic pre-state that represents
an arbitrary concrete pre-state. The symbolic store of this initial state contains
fresh symbols for the parameters this and other, its path condition contains the
assumption that this is non-null, and its symbolic heap is empty. To consider
only program states that satisfy the precondition, VeriFast produces the three sub-
assertions in the precondition from left to right. The pure assertion other != null
is added to the path condition, while the symbolic heap is extended with two heap
chunks, one for each spatial assertion. As the precondition does not constrain the
values of the balance fields, VeriFast initializes both fields with fresh symbolic
values. These values are respectively bound to b1 and b2. Note that the first argu-
ments of both heap chunks are equal to the symbolic values of respectively this
and other. After producing the precondition, Verifast proceeds by executing the
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method body. To symbolically execute the assignment to this.balance, the ver-
ifier first checks that the method is allowed to read and write the field by checking
that the heap contains a matching heap chunk. The heap contains the required
chunk: Account balance(this, bl). The effect of the assignment is reflected in the
symbolic state by replacing this chunk with Account balance(this,bl — amount).
To verify the subsequent method call, VeriFast first symbolically evaluates all
method arguments. As explained in Section 2.3]symbolic execution of the method
call itself consists of two steps: consumption of the precondition and after-
wards production of the postcondition. Consumption of the precondition removes
Account balance(other, b2) from the symbolic heap. As transfer loses ownership
of other.balance during the call, the verifier cannot (wrongly) assume that
other.balance’s value is preserved by deposit. Moreover, transfer retains
ownership of this.balance during the call. Therefore, VeriFast can deduce that
the callee will not modify this.balance. Production of deposit’s postcondi-
tion adds the heap chunk Account balance(other, b2 + amount) to the symbolic
heap. setBalance has effectively borrowed ownership of other.balance from
transfer in order to update its value. Finally, VeriFast checks that the post-
condition of transfer holds by consuming it. Consumption of transfer’s post-
condition removes the two heap chunks from the symbolic heap.

Account. java successfully verifies. It is useful though to consider how Veri-
Fast responds to incorrect variations of the program:

— If we weaken the precondition of deposit to true, then VeriFast reports an
error (No matching heap chunks) which indicates that the method might
not own the field this.balance when it reads the field. A method is only
allowed to read a field when it owns the permission to do so.

— If we strengthen the precondition of deposit by adding the requirement that
amount must be non-negative, then verification of transfer fails (Cannot
prove condition) with a precondition violation. Indeed, transfer’s pre-
condition does not impose any constraint on amount and therefore the value
passed to deposit might be negative.

— If we insert a bug in deposit’s body, e.g. we replace += with =, then a post-
condition violation (Cannot prove amount == (b + amount)) is reported
by VeriFast. Although the method owns the correct memory location after
execution of the method body (this.balance), the value of that location is
not the one expected by the postcondition.

— If we weaken the postcondition of deposit to true, then verification of
transfer fails with a postcondition violation (No matching heap chunks).
The method call other.deposit(amount) then consumes ownership of the
field other.balance, but does not return ownership of this field when it
terminates.

Note that the ownership methodology described in this section does not impose
any restrictions on aliasing. For example, an object is allowed to leak internal ref-
erences to helper objects to client code. However, the methodology does impose
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restrictions on the use of aliases. In particular, a method can only dereference a
reference (i.e. access a field) if it owns that reference.

4 Data Abstraction

Data abstraction is one of the pillars of object-oriented programming. That is,
an object typically does not permit client code to directly access its internal
state. Instead, the object provides methods that allow clients to query and up-
date its state in a safe way. If an object hides its internals and forces clients
to use a well-defined interface, then those clients cannot depend on internal
implementation choices. This means that the object’s implementation can be
changed without having to worry about breaking clients, as long the observable
behaviour remains the same. Moreover, clients cannot inadvertently break the
object’s internal invariants.
As an example of client code, consider the main method shown below:

class AccountClient {

public static void main(String[] args)
//@ requires true;
//@ ensures true;

{
Account a = new Account(); a.deposit(100);
Account b = new Account(); b.deposit(50);
a.transfer (b, 20);

int tmp = a.getBalance();
assert tmp == 80;
}
}

This client program creates and interacts with Account objects by calling the
class’ public methods. VeriFast can prove correctness of this program with re-
spect to Account’s method contracts. Unfortunately, those method contracts
are not implementation-independent as they mention the internal field balance.
The correctness proof of main constructed by VeriFast therefore also indirectly
depends on Account’s internal representation. If we would make internal modi-
fications to the class, for example we could store the balance as a linked list of
transactions instead of in a single field, we would have to update the method
contracts and consequently have to reconsider the correctness of all clients. More-
over, if Account were an interface, then it would be impossible to specify the
behavior of the methods by declaring their effect on fields as interfaces do not
have fields.

Performing internal modifications to a class that do not change its observable
behaviour should only require reverification of the class itself but should not
endanger the correctness of its clients. To achieve this goal, we must answer the
following question: How can we specify the observable behaviour of a class or
interface without exposing its internal representation?
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VeriFast’s answer to this question is predicates [9]. More specifically, asser-
tions describing the state associated with instances of a class can be hidden
inside predicates. A predicate is a named, parameterized assertion. For example,
consider the predicate definition shown below:

//@ predicate account (4dccount a, int b) = a.balance [-> b;

account is a predicate with two parameters named a and b, and with body
a.balance |-> b. The assertion account(el, e2) is a shorthand for the as-
sertion el.balance |-> e2. The body of the predicate is visible only inside the
module defining the class Account. Outside of that module, a predicate is just
an opaque container of permissions and constraints on its parameters.

The extra level of indirection provided by predicates allows us to write
implementation-independent contracts: instead of directly referring to the in-
ternal fields, pre- and postconditions can be phrased in terms of a predicate. As
an example, consider the new version of Account shown below. The implemen-
tation is exactly the same as before, but the contracts now specify the effect of
each method with respect to the predicate account.

class Account {
private int balance;

public Account ()

//@ requires true;

//@ ensures account (this, 0);
{

super () ;

this.balance = 0;

//@ close account (this, 0);
}

public void deposit(int amount)
//@ requires account (this, ?2b);
//@ ensures account (this, b + amount);
{
//@ open account (this, b);
this.balance += amount;
//@ close account (this, b + amount);

}

public int getBalance()
//@ requires account (this, ?2b);
//@ ensures account (this, b) &x*& result == b;
{
//@ open account (this, b);
return this.balance;
//@ close account (this, b);
}
}
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From the client’s point of view, the constructor returns an opaque bundle of
permissions and constraints that relates the newly created object to 0, a value
representing the balance of the account. Although the client is unaware of the
exact permissions and constraints inside the bundle, he or she can deduce from
the contracts of deposit and getBalance that the bundle can be passed to those
methods to respectively increase and query the value representing the balance
associated with the account.

VeriFast by default does not automatically fold and unfold predicates. In-
stead, developers must explicitly use ghost statements to switch between the
external, abstract view offered by the predicate and the internal definition of the
predicate. The close ghost statement folds a predicate: it consumes the body
of the predicate, and afterwards adds a chunk representing the predicate to the
symbolic heap. For example, symbolic execution of the close statement in the
constructor replaces the chunk Account balance(this, 0) by account(this, 0). With-
out the ghost statement, the constructor does not verify as the heap does not
contain a chunk that matches the postcondition. The open ghost statement un-
folds a predicate: it removes a heap chunk that represents the predicate from
the symbolic heap and afterwards produces its body. For example, verification
of deposit starts by producing the precondition: the chunk account(this, 0) is
added to the symbolic heap. However, when accessing the field this.balance,
the heap must explicitly contain a chunk that represents ownership of the field.
As the necessary chunk is nested inside account(this, 0), the predicate must
opened first. If we omit the ghost statement, VeriFast would no longer find a
chunk that matches the field assertion Account_balance(this, _) on the heap
and report an error. The open and close statement respectively correspond to
Parkinson and Bierman’s OPEN and CLOSE axioms [9, Section 3.2].

Inserting open and close ghost statements in order for VeriFast to find the
required chunks on the heap is tedious. To alleviate this burden, programmers
can mark certain predicates as precise. VeriFast automatically opens and closes
precise predicates (in many cases) whenever necessary during symbolic execution.
A predicate can be marked as precise by using a semicolon instead of comma
somewhere in the parameter list. The semicolon separates the input from the
output parameters. VeriFast syntactically checks that the values of the input
parameters together with the predicate body uniquely determine the values of the
output parameters. In our example, account can be marked precise by placing
a semicolon between the parameters a and b. All open and close statements
in the class Account shown above can be omitted once account is marked as
precise. Although open and close statements need not be inserted explicitly in
the program text, the symbolic execution trace does contain the corresponding
steps.

AccountClient.main verifies against the new, more abstract method con-
tracts for Account. To demonstrate that internal changes can be made to Account
without having to change the method contracts — and hence without having to
reverify any client code —, consider the alternative implementation of the class
shown below.
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class Transaction {
int amount; Transaction next;

public Transaction(int amount, Transaction next)

//@ requires true;

//@ ensures this.amount [-> amount &+%& this.next [-> next;
{ this.amount = amount; this.next = next; }

}

/*@

predicate transactions(Transaction t; int total) =
== null ?
total ==

t.amount [-> 2amount &+*& t.next [-> Pnext E9*&
transactions (next, ?ntotal) €% total == amount + ntotal;

predicate account (4dccount a; int b) =
a.transactions [-> 2?ts %6 transactions (ts, b);
o*/

class Account {
private Transaction transactions;

public Account ()

//@ requires true;

//@ ensures account (this, 0);
{ transactions = null; }

public void deposit(int amount)
//@ requires account (this, 2b);
//@ ensures account (this, b + amount);
{ transactions = new Transaction(amount, transactions); }

public int getBalance()

//@ requires account (this, ?b);

//@ ensures account (this, b) &x*& result == b;
{ return getTotal(transactions); }

private int getTotal(Transaction t)
//@ requires transactions(t, ?total);

//@ ensures transactions(t, total) &*& result == total;
{

//@ open transactions(t, total);

return t == null ? O : t.amount + getTotal(t.next);
}

}
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The method contracts are exactly the same as before. However, the implementa-
tion now stores the balance of the account as a linked list of Transaction objects
instead of in single field. The body of deposit prepends a new Transaction ob-
ject to the list, while getBalance traverses the list to compute the total sum.
The new body of the predicate account reflects the changes in the implemen-
tation. account(a, b) now means that a.transactions is the head of linked,
null-terminated list of Transaction objects whose total sum equals b.

Note that account is defined in terms of transactions, a recursive predicate.
Such recursive predicates are crucial for specifying data structures without a
static bound on their size. The body of transactions is a conditional assertion:
if t isnull, then total is equal to zero; otherwise, total is the sum of t.amount
and the total of the remaining Transactions at t.next. Just as in symbolic
execution of an if statement, VeriFast separately examines both branches when
producing and consuming a conditional assertion.

Predicates typically specify what it means for an object to be in a consis-
tent state. For example, consistency of an Account object as described by the
predicate account implies that the list of Transactions is non-cyclic. As such,
predicates play the role of object invariants [I0]. VeriFast does not impose any
built-in rules that state when invariants must be hold and when they can be tem-
porarily violated. Instead, if a certain object is supposed to satisfy a particular
invariant, then the method contract must explicitly say so.

5 Inheritance

A Java interface defines a set of abstract methods. For example, the interface
java.util.List defines methods for modifying and querying List objects such
as add, remove, size and get. Each non-abstract class that implements the in-
terface must provide an implementation for each interface method. For example,
ArrayList implements get by returning the object stored at the given index
in its internal array, while LinkedList implements the method by traversing a
linked list of nodes.

In order to be able to modularly verify client code, each interface method must
be annotated with a method contract. A straightforward, but naive approach to
specifying interfaces is phrasing the method contracts in terms of a predicate
with a fixed definition. For example, applying this approach to (part of) the
interface List would look as follows:

//@ predicate list(List 1, int size);

interface List {
public void add(Object o);
//@ requires list(this, ?size);
//@ ensures list(this, size + 1);
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This approach is problematic as a predicate can only have a single definition.
Yet multiple classes can implement List and each such class requires a different
definition of the predicate. For example, ArrayList requires the predicate to
include ownership of the internal array, while LinkedList requires the predicate
to contain ownership of the linked sequence of nodes.

One could solve the aforementioned problem by case splitting in the contracts
on the dynamic type of this. In our example, we could check whether this is
an ArrayList or a LinkedList as shown below.

interface List {
public void add(Object o);
/*@ requires this.getClass() == ArraylList.class ?
arraylist (this, ?size)

linkedlist (this, %?size); @*/
/*@ ensures this.getClass() == ArrayList.class ?
arraylist (this, size + 1)

linkedlist (this, size + 1); ©@x/
}

The complete set of subclasses is typically not known when writing the interface.
In particular, clients of the interface can define their own subclasses. Each time a
new subclass is added, the contracts of the interface methods must be extended
with another case (which means all clients must be reverified). Clearly, this
approach is non-modular and does not scale.

VeriFast solves the conundrum described above via dynamically bound in-
stance predicates [I1]. An instance predicate is a predicate defined inside a class
or interface. For example, the method contracts of List can be phrased in terms
of the instance predicate 1ist as follows:

interface List {
//@ predicate list(int stize);

public void add(Object o);
//@ requires list(?size);
//@ ensures list(size + 1);

}

Just like an instance method, an instance predicate does not have a single, closed
definition. Instead, each subclass must override the instance predicate’s definition
and provide its own body. For example, the body of 1ist in ArrayList involves
ownership of the internal array (i.e. array_slice denotes ownership of the array
itself) and states that size lies between zero and the length of the array as shown
below. Note that the variable this in the body of the instance predicate refers
to the target object of the predicate.
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class ArraylList implements List {
/*@
predicate list(int size) =
this.elements [-> 2a &+ this.size [-> size E*E
array_slice<Object>(a, 0, a.length, _) E*€
0 <= size &*& size <= a.length;
ex/

private Object[] elements;
private int size;

}

The body of 1ist in LinkedList on the other hand states that first is the
head of a valid sequence of nodes ending in null with size elements. The body
is phrased in terms of the recursive, non-instance predicate 1seg. The assertion
lseg(nl, n2, s) denotes that nl is the start of a valid sequence of nodes of
length s ending in (but not including) n2.

/%@
predicate lseg(Node first, Node last; int size) =
first == last ?
size == 0
first.value [-> _ &% first.next [-> ?Pnext &
lseg(next, last, ?nsize) &*& size == nsize + 1;
ox/

class LinkedList implements List {
/*@ predicate list(int size) =
this. first [-> ?first &*€ this.size [-> size E*&
lseg(first, null, size); @*/

private Node first;
private int size;

}

An instance predicate has multiple definitions, one per subclass. For that rea-
son, each heap chunk corresponding to an instance predicate has an additional
parameter indicating what version of the predicate the chunk represents. For
example, heap chunks corresponding to the predicate 1list are of the form
List#list(target, C, size), where target and size are the symbolic values of respec-
tively the implicit target object and the parameter size and where C is a sym-
bolic value that represents the class containing the definition of the predicate.
Hence, the chunk List#list(l, ArrayList, s) states that | refers to a valid list with s
elements, where the definition of valid list is the one given in the class ArrayList.

When producing and consuming an instance predicate assertion of the form
e0.p(el, ..., en), the verifier generally selects the dynamic type of e0 as the
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class containing p’s definition. As an example, consider the steps in the symbolic
execution of the method addNull shown below:

public static void addNull(List 1)
//@ requires 1.list(?size);
//@ ensures 1l.list(size + 1);

{ 1.add(null); }

Open Lists. java, place the cursor after the closing brace of addNull and press
Run to cursor. As shown in the symbolic execution trace, production of the
precondition adds the chunk List#list(l, getClass(l), size) to the symbolic heap.
Here, getClass is a function that represents the dynamic type of its argument. To
symbolically execute the method call 1.add(null), VeriFast first consumes add’s
precondition, and subsequently produces its postcondition. As 1.add(null) is a
dynamically bound call, the version of the instance predicate denoted by its pre-
and postcondition is the one defined in the dynamic type of the target object, 1.

There are a number of exceptions to the rule that the dynamic type of
the target object is used as the version of an instance predicate chunk. First
of all, when opening or closing an instance predicate, the definition in the
static type of the target object is used. For example, if the static type of 1
is LinkedList, then execution of the statement close 1.1ist(5); first con-
sumes the body of 1list as defined in LinkedList and afterwards adds the
chunk List#list(l, LinkedList, 5) to the symbolic heap. Secondly, when
verifying the body of an instance method defined in a class C or a statically
bound call of a method (e.g. super and constructor calls), instance predicate
assertions of the form p(el, ..., en) in the contract where the implicit ar-
gument this has been omitted are treated as statically bound meaning that
the term representing the definition of p is equal to C. For example, when ver-
ifying List.add in LinkedList, production of the precondition produces the
chunk List#list(this, LinkedList, size). This is sound since VeriFast checks that all
methods are overridden [12].

VeriFast can prove correctness of the method addNull with respect to List’s
method contracts. Correctness of addNull implies that there do not exist values
for 1 or states of the heap that trigger an assertion violation during execution
of the method body. However, consider the class BadList shown below.

Even though each method in BadList satisfies its method contract, execution
of BadList.main triggers an assertion violation. The cause of the problem is
the fact that the contract used for verifying the method call 1.add(null) in
addNull and the contract used for verifying the implementation of BadList.add
(which is executed when the dynamic type of 1 is BadList) are not compatible.
In particular, the precondition of BadList.add states that the method should
never be called, while List.add’s precondition does allow calls provided 1 is a
valid list.

To avoid problems such as the one described above, VeriFast checks that the
contract of each overriding method is compatible [I1] with the contract of its
overridden method. VeriFast checks that the contract of an overriding method
with precondition P and postcondition ) is compatible with the contract of an
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overridden method with precondition P’ and postcondition @’ by checking that
the body of the overridden method could statically call the overriding method:
the verifier first produces P’, then consumes P and afterwards produces @, and
finally consumes @QQ’. When verifying BadList, Verifast reports that the contract
of BadList.add is not compatible with the contract of List.add as false is not
provable after producing the chunk List#list(this, BadList, 0).

class BadList implements List {
/*@ predicate list(int stize) = true; @*/

public BadList()
//@ requires true;
//@ ensures list(0);
{
//@ close list(0);
}

public void add(Object o)
//@ requires false;
//@ ensures true;

{ assert false; }

public static void main(String[] args)
//@ requires true;
//@ ensures true;

{
BadList bad = new BadList();
addNull (bad) ;

}

}

6 Inductive Data Types and Fixpoints

The contract of List.add is incomplete. More specifically, its postcondition
states that add increments the number of elements in the list by one, but it
does not specify that the object o should be added to the end of the list. As a
consequence, an implementation that prepends o to the front of the list or even
inserts a different object altogether is considered to be correct.

To rule out such implementations, we must strengthen add’s postcondition.
However, the current signature of the instance predicate 1ist does not allow us
to do so as it only exposes the number of elements in the list via the parameter
size. The predicate does not expose the elements themselves and their positions.

To allow developers to specify rich properties, VeriFast supports inductive
data types and fixpoints. For example, we can represent a sequence using the
inductive data type list:

//@ inductive list<t> = nil | cons(t, list<t>);
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This declaration declares a type 1ist with two constructors: nil and cons. nil
represents the empty sequence, while cons(h, t) represents a concatenation
of a head element h and a tail list t. The definition is generic in the type of
the list elements (here t). For example, the sequence 1,2,3 can be written as
cons(1, cons(2, cons(3, nil))).

A fixpoint is a total, mathematical function that operates on an inductively
defined data type. For example, consider the fixpoints length, nth and append
shown below. The body of each of these functions is a switch statement over
one of the inductive arguments. The function length for instance returns zero if
the sequence is empty; otherwise, it returns the length of the tail plus one. Note
that default_value<t> is a built-in function that returns the default value for
a particular type t.

To ensure that fixpoints are well-defined, VeriFast syntactically checks that
they terminate. In particular, VeriFast enforces that whenever a fixpoint g is
called in the body of a fixpoint £ that either g appears before f in the program
text or that the call decreases the size of the inductive argument (i.e. the argu-
ment switched on by the fixpoint’s body). For example, the call length(xs0) in
the body of length itself is allowed because xs0 is a subcomponent of xs (and
hence smaller than xs itself).

/*@
fixpoint int length<t>(list<t> zs) {
switch (zs) {
case nil: return O;
case cons(z, xs0): return 1 + length(zs0);
}
}

fixpoint t nth<t>(int n, list<t> zs) {
switch (zs) {
case ntl: return default_value<t>;
case cons(xz, ©s0O): return n == 0 2 ¢ : nth(n - 1, zs0);
}
}

fixpoint list<t> append<t>(list<t> zs, list<t> ys) {
switch (zs) {
case ntl: return ys;
case cons(z, xs0): return cons(z, append(zsO, ys));
}
}
©ex*/

We can now make the specification of the interface List complete as shown
below. First of all, we modify the signature of the instance predicate 1ist such
that it exposes a sequence of Objects. Secondly, we refine the method contracts
by defining the return value and the effect of each method in terms of a fixpoint
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function on the exposed sequence of objects. For example, the postcondition of
add specifies that the method adds o to the end of the list.

interface List {
//@ predicate list(list<Object> elems);

public void add(Object o);
//@ requires list(?elems);
//@ ensures list(append(elems, cons(o, nil)));

public int size();
//@ requires list(?elems);
//@ ensures list(elems) &*& result == length(elems);

public Object get(int i);
//@ requires list(Pelems) &*& 0 <= 1 &4 ¢ < length(elems);
//@ ensures list(elems) éx*€ result == nth(i, elems);

}

The specification of the interface List is idiomatic in VeriFast. That is, specifying
the behaviour of a class or interface typically involves the following steps:

1. Define an inductive data type T to represent the abstract state of instances
of the class. In our example, we defined the inductive data type list to
represent the state of List objects.

2. Define an instance predicate p with a single parameter of type T. For example,

the interface List defines the instance predicate 1ist. Its parameter elems

is of type list.

The postcondition of each constructor guarantees that the predicate holds.

4. The contract of each instance method requires that the predicate holds on
entry to the method and guarantees that the predicate holds again when the
method terminates. The effect and return value of the method are related to
the abstract state via fixpoint functions. For example, size’s postcondition
relates the return value to the sequence of elements via the function length.

@

Each inductive data type constructor has a corresponding first-order function.
For example, the inductive data type list has two corresponding functions
named nil and cons. Instances of inductive data types are encoded as appli-
cations of these functions. For example, the expression cons(o, nil) in the
postcondition of add symbolic evaluates to the term cons(o, nil). The fact that
all constructors are distinct is given as an axiom to the SMT solver. For the
inductive data type list, the solver can hence deduce that nil # cons(h,t), for
arbitrary h and t.

Each fixpoint function also has an associated first-order function. For exam-
ple, the fixpoint length has a corresponding first-order function named length.
Applications of fixpoints are encoded as applications of the corresponding func-
tion. The behaviour of the fixpoint is encoded in the SMT solver via one or more
axioms that relate the function to the fixpoint’s body. In particular, if the body
of the fixpoint is a switch over one of its arguments, then one axiom is generated
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for each case. For example, the behavior of length is encoded via the following
axioms:

length(nil) =0
Vh, t e length(cons(h,t)) = 1 + length(t)

The SMT solver can use these axioms to simplify terms and formulas involving
fixpoint functions. For example, the aforementioned axioms allow the solver to
deduce that length(cons(1, cons(2,1))) and 2 + length(l) are equal.

7 Lemmas

To determine whether a particular formula follows from the path condition — for
example when consuming a pure assertion — VeriFast relies on an SMT solver.
The SMT solver however does not perform induction. For that reason, it can fail
to prove properties that require proof by induction. For example, proving that
the function append is associative requires induction.

Lemma functions allow developers to prove properties about their fixpoints
and predicates, and allow them to use these properties when reasoning about
programs. A lemma is a method without side effects marked 1lemma. The contract
of a lemma function corresponds to a theorem, its body to the proof, and a lemma
call to an application of the theorem. VeriFast has two types of lemma methods:
pure lemmas and spatial lemmas.

A lemma is pure if its contract does not contain spatial assertions. The con-
tract of a pure lemma corresponds to a theorem that states that the precondition
implies the postcondition for all possible values of the lemma parameters. The
lemma append_assoc shown below is an example of a pure lemma that states
that applying the fixpoint append is associative. The lemma’s body proves the
theorem by induction on xs. More specifically, the case nil of the switch state-
ment corresponds to the base case, while the case cons corresponds to the induc-
tive step. The recursive call in the case cons is an application of the induction
hypothesis.

/*@
lemma void append_assoc<t>(list<t> zs, list<t> ys, list<t> zs)
requires true;
ensures append(append(zs, ys), zs) == append(xzs, append(ys, zs));
{
switch (zs) {
case ntl:
case cons(h, t): append_assoc(t, ys, zs);
}
}
ox/

Contrary to pure lemmas, spatial lemmas can mention spatial assertions in their
method contracts. The contract of a spatial lemma corresponds to a theorem
that states that the symbolic state described by the precondition is equivalent
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to the one described by the postcondition. Equivalent means that the symbolic
state described by the postcondition can be reached by applying a finite num-
ber of open and close statements to the state described by the precondition. A
spatial lemma does not modify the values in the heap, but only rewrites the
representation of the symbolic state. Spatial lemmas are crucial whenever the
symbolic state is required to have a particular form but the current state can-
not be rewritten to the required one by a statically known number of open and
close statements. Moreover, a spatial lemma allows a class to expose properties
to clients without having to reveal its internal representation. As an example,
consider the spatial lemma lseg_merge shown below. This lemma states that
two list segments, one from a to b and another from b to c, are equivalent to a
single list segment from a to c, provided there exists an additional list segment
from c to null.

/*@
lemma void lseg_merge(Node a, Node b, Node c)
requires lseg(a, b, ?elemsl) &+ lseg(b, c, Pelems2) E9x&
lseg(c, null, Zelems3);
ensures lseg(a, c, append(elemsl, elems2)) E*ES
lseg(c, null, elems3);
{
open lseg(a, b, elemsl);
open lseg(c, null, elems3);
if (a != b) lseg_merge(a.next, b, c);

}
©*/

VeriFast checks termination of a lemma method by allowing only direct recur-
sion and by checking each recursive call as follows: first, if, after consuming the
precondition of the recursive call, a field chunk is left in the symbolic heap,
then the call is allowed. This is induction on heap size. Otherwise, if the body
of the lemma method is a switch statement on a parameter whose type is an
inductive data type, then the argument for this parameter in the recursive call
must be a constructor argument of the caller’s argument for the same parameter.
This is induction on an inductive parameter. Finally, if the body of the lemma
function is not such a switch statement, then the first heap chunk consumed by
the precondition of the callee must have been obtained from the first heap chunk
consumed by the precondition of the caller through one or more open operations.
This is induction on the derivation of the first conjunct of the precondition.
The method LinkedList.add shown below adds an object o to the end of
the list. If the list is empty, then the method body assigns a new node holding
o to first; otherwise, the method transverses the linked list in a loop until it
reaches the last node and assigns a new node holding o to the next pointer
of the last node. The method calls the lemmas 1seg_merge and append_assoc
to prove that the loop body preserves the loop invariant and to prove that the
postcondition follows from the invariant and the negation of the condition.
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public void add(Object o)
//@ requires list(?elems);
//@ ensures list(append(elems, cons(o, nil)));
{
if (first == null) {
//@ open lseg(first, null, _);
first = new Node(null, o);
} else {
Node first = this.first, curr = this.first;
while(curr.next != null)
/*@ invariant curr /= null &€&
lseg(first, curr, ?elemsl) &+*& lseg(curr, null, Zelems2) &*&
elems == append(elemsl, elems2);
ox/
//@ decreases length(elems2);
{
//@ Object v = curr.value;
//@ Node oldcurr = curr;
curr = curr.next;
//@ open lseg(curr, null, _);
//@ lseg_merge(first, oldcurr, curr);
//@ append_assoc(elemsl, cons(v, nil), tail(elems2));
}
//@ open lseg(null, null, _);
Node nn = new Node(null, o); curr.next = nn;
//@ lseg_merge(first, curr, null);
//@ append_assoc(elemsl, elems2, cons(o, nil));
}
this.size++;

}

Like many other verification tools, VeriFast requires each loop to be annotated
with a loop invariant (keyword invariant), describing the assertion that must
hold right before evaluation of the condition in each iteration. For example, the
loop invariant in the method add states (1) that curr is non-null, (2) that the
method owns two valid list segments, one from first to curr and another from
curr to null and (3) that the concatenation of the elements of both segments
is equal to the elements of the original list. VeriFast verifies a loop as follows.

1. First, the tool consumes the loop invariant. This step proves that the invari-
ant holds on entry to the loop.

2. Then, it removes the remaining heap chunks from the heap (but it remembers
them).

3. Then, it assigns a fresh logical symbol to each local variable that is modified
in the loop body.

4. Then, it produces the loop invariant.
5. Then, it performs a case split on the loop condition:
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— If the condition is true, it verifies the loop body and afterwards consumes
the loop invariant. This step proves that the loop body preserves the
invariant. After this step, this execution path is finished.

— If the condition is false, VeriFast puts the heap chunks that were removed
in Step 2 back into the heap and verification continues after the loop.

Notice that this means that the loop can access only those heap chunks that are
mentioned in the loop invariant.

By default, VeriFast does not check loop termination. However, developers
may provide an optional loop measure to force the verifier to check termination
of a particular loop. A loop measure (keyword decreases) is an integer-valued
expression. If the value of the expression decreases in each loop iteration but
never becomes negative, then it follows that the loop terminates. In the example,
the length of the list segment from curr to null is the measure.

The VeriFast distribution includes a specification library that contains many
commonly used inductive data types (such as 1ist, option and pair), fixpoints
(such as append, take and drop) and lemmas (such as length_nonnegative
and append_assoc). As a consequence, developers can use existing definitions
to define abstract states and the effect of methods.

8 Related Work

VeriFast is a separation logic-based program verifier. Separation logic [I3IT4UT] is
an extension of Hoare logic [I5] targeted at reasoning about imperative programs
with shared mutable state. It extends Hoare logic by adding spatial assertions to
describe the structure of the heap. Spatial assertions allow for local reasoning: the
specification of a sequence of statements S only needs to mention heap locations
accessed by S. The effect of S on other heap locations can be inferred via the
frame rule:

{r}s{Q}
(P+R} S {Q+*R}

The separating conjunction P * R (written P &*& R in VeriFast) holds if both
P and R hold and the part of the heap described by P is disjoint from the part
of the heap described by R. The frame rule then states that if the separating
conjunction P * R holds before execution of a statement S and S’s precondition
does not require R, then R still holds after execution of S. VeriFast’s symbolic
heap represents a separating conjunction of its heap chunks. The verifier implic-
itly applies the frame rule for example when verifying a method call: the chunks
not consumed by the callee’s precondition are stable under the call and remain
in the heap.

Parkinson and Bierman [9[IT] extend the early work on separation logic of
O’Hearn, Reynolds and Yang with abstract predicates and abstract predicate
families to allow for local reasoning for object-oriented programs. VeriFast sup-
ports abstract predicate families in the form of instance predicates. Each in-
stance predicate override in a class C corresponds to a predicate family member
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definition for C. Contrary to Parkinson and Bierman’s work, our verifier does
not support widening and narrowing to change the arity of a predicate family
definition.

The specification of a method in Parkinson and Bierman’s paper [I1] consists
of a static and a dynamic contract. Those contracts are respectively used to
reason about statically and dynamically bound calls. Developers need not ex-
plicitly write both static and dynamic contracts in VeriFast. Instead, a single
“polymorphic” contract suffices and the tool interprets this contract differently
for statically and dynamically bound calls [12].

Berdine, Calcagno and O’Hearn [16] demonstrate that a fragment of separa-
tion logic (i.e. without implication and magic wand) is amenable to automatic
static checking by building a verifier, called Smallfoot, for a small procedural
language. Smallfoot checks that each procedure in the program satisfies its sep-
aration logic specification via symbolic execution. The symbolic state consists
of a spatial formula and a pure formula. VeriFast extends the ideas of Berdine
et al. to full-fledged programming languages (Java and C). The symbolic heap
corresponds to Smallfoot’s spatial formula and the symbolic store and the path
condition to the pure formula. Smallfoot contains a small number of built-in
predicates, and rules for rewriting symbolic states involving these predicates.
Contrary to VeriFast, developers do not need to explicitly open and close pred-
icates and need not provide loop invariants because of these built-in rules.

In addition to VeriFast, Smallfoot has inspired several other separation logic-
based program verifiers. For example, jStar [I7] is another semi-automatic pro-
gram verifier for Java. Unlike VeriFast, jStar automatically infers certain loop
invariants. Whether the right loop invariant can be inferred depends on the
abstraction rules provided by the developer in a separate file. Heap-Hop [I8]
is an extension of Smallfoot targeted at proving memory safety and deadlock
freedom of concurrent programs that rely on message passing. HIP [19] is a vari-
ant of Smallfoot that focuses on automatically proving size properties (e.g. that
List.add increases the size of the list by one). Tuerk [20] has developed HOL-
Foot, a port of Smallfoot to HOL. He has mechanically proven that HOLFoot is
sound. An interesting feature of HOLFoot is that one can resort to interactive
proofs in HOL4 when the tool is unable to construct a proof automatically. As
it is challenging for fully automatic tools to prove full functional correctness,
several researchers [212223] have used separation logic within interactive proof
assistants. While this approach typically requires more input from the developer,
it has resulted in a number of impressive achievements. For example, Tuch et
al. [23] report on verifying the memory allocator of the L4 microkernel.

Besides separation logic, the research literature contains many other ap-
proaches for reasoning about imperative programs with shared mutable state
such as the Boogie methodology [12], dynamic frames [24], regional logic [25],
data groups [26], the VCC methodology [27], universe types [28], dynamic
logic [29], etc. These approaches are often implemented in a corresponding pro-
gram verifier [BOI3TI32I33I34129]. A strategy for dealing with aliasing common to
many of these approaches is to represent the heap as a global map from addresses
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to values. As a method can change the heap, verification of a method call entails
havocking (i.e. assigning a fresh value to) the global map. Each approach then
provides a way to relate the value of the map before the call to its new value.
For example, in the dynamic frames approach each method includes a modifies
clause describing a set of addresses. After each call, the verifier assumes via a
quantifier that the new map is equal to the old map except at addresses included
in the modified set.

Before starting the development of VeriFast, we contributed to several pro-
gram verifiers based on verification condition generation and automated theorem
proving [35/32/36]. However, the verification experience provided by those tools
left us frustrated for three reasons. First of all, verification can be slow (which we
believe is caused by the quantifiers needed to encode frame properties). Secondly,
it can be hard to diagnose why verification fails. Finally, automated theorem
proving can be unpredictable, as small changes to the input can cause huge dif-
ferences in verification time (or even whether the proof succeeds at all). For that
reason, we put a very strong premium on predictable performance and diagnos-
ability when designing VeriFast. The only quantifiers that are made available to
the SMT solver are those that axiomatize the inductive data types and fixpoint
functions; these behave very predictably. The VeriFast IDE allows developers to
diagnose verification errors by inspecting the symbolic states on the path leading
to the error.

9 Conclusion

VeriFast is a separation logic-based program verifier for Java. In this paper, we
have informally explained the key features of this verifier.

Based on our experience with VeriFast, we identify three main areas of future
work. First of all, in the separation logic ownership system used by VeriFast
a method either exclusive owns a memory region (meaning that it has permis-
sion to read and arbitrarily modify the state of that region), partially owns a
region (meaning it has permission to read but not write that region), or does
not have any permission on that region at all. However, for some programs —
in particular concurrent ones — more precise kinds of permissions are required.
For example, it is not possible to directly express a permission that allows a
memory location to be incremented but not decremented (which may be crucial
for proving correctness of a ticketed lock). As shown by Owicki and Gries [37]
and more recently by Jacobs and Piessens [38/39], arbitrarily “permissions” can
be constructed indirectly by adding ghost state to lock invariants and by us-
ing fractional permissions. However, using ghost state does not lead to intuitive
proofs. Therefore, we consider designing a more flexible ownership system where
the developer can construct his own permissions to relate the current state of a
memory region to earlier, observed states a key challenge for the future. Con-
current abstract predicates [40] and superficially substructural types [4I] form
promising directions in this area.

VeriFast sometimes requires developers to explicitly fold and unfold predicate
definitions. Moreover, to prove inductive properties, lemmas must be written



440 J. Smans, B. Jacobs, and F. Piessens

and called whenever the property is needed. A second important challenge to be
addressed in future work is reducing the annotation overhead by automatically
inferring more open and close statements and lemma calls.

Finally, VeriFast supports only a subset of Java. For example, generics are not
supported yet by the tool. In order for VeriFast to be applicable to large Java
programs, we must extend the supported subset of Java.
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