
ARENBERG DOCTORAL SCHOOL
Faculty of Engineering

Domain Specific Languages
for Hard Real-Time Safe
Coordination of Robot and
Machine Tool Systems

Markus Klotzbücher

Dissertation presented in partial
fulfillment of the requirements for the
the degree of Doctor in Engineering

April 2013





Domain Specific Languages for Hard Real-Time Safe
Coordination of Robot and Machine Tool Systems

Markus KLOTZBÜCHER

Jury:
Prof. dr. ir. P. Verbaeten, chair
Prof. dr. ir. H. Bruyninckx, supervisor
Prof. dr. ir. Y. Berbers
dr. S. Michiels
dr. ir. M. Engels
(FMTC)

dr. ir. F. Ingrand
(LAAS/CNRS Toulouse)

dr. ir. M. J. G. van de Molengraft
(Technische Universiteit Eindhoven)

Dissertation presented in partial
fulfillment of the requirements for
the degree of Doctor
in Engineering

April 2013



© KU Leuven – Faculty of Engineering
Celestijnenlaan 300B box 2420, B-3001 Heverlee (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd
en/of openbaar gemaakt worden door middel van druk, fotocopie, microfilm,
elektronisch of op welke andere wijze ook zonder voorafgaande schriftelijke
toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form
by print, photoprint, microfilm or any other means without written permission
from the publisher.

D/2013/7515/31
ISBN 978-94-6018-645-5



Preface

In 2007 I was becoming increasingly uneasy. This was, strangely enough, due
to my professional life going decidedly well. My job as a freelance consultant
was running smoothly, I was regularly teaching industrial seminars and had
in general reached a level of confidence necessary to make consulting fun. My
discomfort resulted from my long standing wish to pursue a PhD, to acquire
deeper knowledge of Robotics and Automation and to have the chance to spend
a significant amount of time focusing on one topic. I knew that if I didn’t start
soon, it was not going to happen anymore.

Moreover, the number of possibilities was further reduced by the self-imposed
constraint of wanting to work with Free and Open Source Software. All the
happier I was when Carsten Emde from OSADL pointed me in the direction
of Herman Bruyninckx of the robotics group at KU Leuven. After exchanging
a couple of emails and a first visit to Leuven, I was soon convinced to have
found the perfect place: a group of friendly and knowledgeable people, deep
involvement in Open Source through the OROCOS project, industrial robots
and a Professor who replied to email inline and in plain text. . .

This work would not have been possible without the help of many. Firstly, I
want to thank Herman for accepting me without hesitation as a latecomer and
for patiently helping me getting into the domain of robotics and control. I very
much appreciated your motivating, yet critical coaching style and your efforts
to literally almost always be available to discuss ideas, while at the same time
offering the freedom to work independently. I’ve also grown fond of eating ice
cream for supper.

I would like to thank the members of my assessor committee and jury Yolande
Berbers, René van de Molengraft and Marc Engels for continuously providing
valuable feedback to my research. Together with the other members of my jury,
Félix Ingrand and Sam Michiels, your comments have much improved my thesis.
Thank you Prof. Verbaeten for chairing my defence.

i



ii PREFACE

I also much appreciate the help of Joris de Schutter, who, though less directly
involved in my research, has repeatedly provided valuable suggestions and
feedback.

I am very grateful to Carsten Emde for pointing me in the right direction at
the right time.

I want to thank my former colleagues Wolfgang Denk and Detlev Zundel, who
supported my endeavor by helping me during the first hybrid working–pre-
doctoral year. Thank you Detlev for getting me into functional programming,
it has profoundly influenced the way I develop software.

I would also like to acknowledge the members of the BRICS project, in particular
those part of the Component Model Task Force, for the countless fierce but
constructive discussions, which have certainly influenced this work.

Thank you European taxpayers for funding my research through the BRICS
and Rosetta European FP7 research projects.

I would also like to acknowledge the Orocos community for the numerous, long
mailing list discussions, for testing and adopting my software and for providing
feedback that has helped to strengthen this work.

Thank you Tinne for having helped with almost everything which was important
to me throughout the last years: starting from questions on kinematics and
control theory over PhD school organizational issues to the topic of “kids and
babies in Belgium”. I also very much appreciate you translating my abstract to
Dutch on very short notice!

Thank you Peter Soetens for the friendly welcome in Leuven, for generously
sharing your experience as a former PhD student and for supporting my plans
to overhaul RTT’s scripting and state machines. Thank you Klaas for providing
industrial relevant use-cases and Ruben for having helped a lot to improve my
understanding of motion control and of course for the enjoyable hours of fighting
with early versions of the YouBot. Thank you Wilm for helping with questions
on control and of course for our enjoyable road-trip to Yosemite National Park
together with Nick.

I would also like to thank my fellow PhD students: Enrico for taking care
that the caffeine flow is not interrupted, Hans and Koen for helping me to
get Ernie and Bert back to life, Steven for the help with Observers, Nick,
Niccoló and Enea for early testing and adopting my software, Lin for showing
and explaining his newest gadgets, Azamat for the interesting discussions on
functional composition and Bart for proofreading my Dutch abstract.



PREFACE iii

I am very grateful to Omi Brigitta for all her help and for coming to Leuven
countless times to help out when I was traveling.

I want to sincerely thank my parents Kurt and Angela Klotzbücher for their
tireless support and encouragement, and the many visits to help with the kids.
Thank you Dad for inspiring me to become an engineer.

Dorothee, thank you so much for supporting me from the start, for having the
courage to start a family abroad and for taking such good care of our wonderful
kids. Thank you Yara and Lukas for reminding your Dad each day of what
really matters.

Markus Klotzbücher,
Leuven, March 2013.





Abstract

The software controlling modern robotic and machine tool systems is becoming
increasingly complex. This has several reasons: distributed system architectures
involving autonomous, loosely connected subsystems are becoming more and
more prevalent and are replacing simpler, centralized ones. At the same time, the
need to keep software development costs low mandates reuse and integration of
existing subsystems, which further contributes to complexity due to the need for
additional harmonization and adaptation layers. The increasing universality of
modern lightweight robots and mobile platforms is also reflected on the software,
which must cope with stronger demands in terms of variability, composability
and reconfigurability.

One approach to deal with this complexity is the Model Based Engineering
(MBE) paradigm, which has already been successfully applied to domains such
as automotive, aerospace and control engineering. In this approach the focus
is shifted from traditional programming to capturing the required information
in models. These models can subsequently be transformed to executable form,
but without having to assume beforehand how this will be done. Moreover,
these models can remain available at runtime to permit online adaptation by
the robot itself. This thesis explores the applicability of MBE to the domain of
distributed, real-time robotic and machine tools systems with a focus on the
coordination of the discrete behavior of such systems.

Coordination is a system level concern that governs how and when functional
subsystems interact. By explicitly modeling coordination, the desired behavior
of a system is formalized while permitting functional computations to remain
free of application logic and hence more reusable. More concretely, an approach
of modeling using domain specific languages (DSL) is chosen. In this approach,
dedicated and composable languages are constructed to model a well confined
domain. In contrast to rich, general purpose modeling languages, this approach
yields minimal models that capture the essence of the problem while avoiding
the overhead of generality.

v



vi ABSTRACT

The main contribution of this thesis is the development of a composable DSL
named rFSM for modeling coordination in distributed and real-time constrained
robotics and machine tool systems, and an associated approach of applying this
model. The advantages of providing a minimal, but extensible and composable
model are demonstrated. Further contributions support, make use of or extend
this contribution. Supporting work demonstrates how DSL models can be
instantaneously executed in hard real-time, and introduces the uMF DSL for
modeling structural constraints on DSL models themselves. The applicability
and potential for improving reuse is shown in experiments using a hybrid
force-velocity task specification language together within an rFSM model to
define an assembly task. The work on the Coordination–Configurator pattern
formalizes a frequently recurring architectural pattern that allows to increase
the performance and reusability of coordination.



Beknopte samenvatting

De controlesoftware voor hedendaagse robotica- en machinesystemen wordt
steeds complexer. Dit heeft verschillende redenen: gedistribueerde systeemar-
chitecturen met autonome, losjes met elkaar verbonden subsystemen komen
steeds meer voor en vervangen eenvoudigere en gecentraliseerde systemen. Om
de softwareontwikkelingskosten laag te houden is er tegelijkertijd nood aan
het hergebruiken en het integreren van bestaande subsystemen. Dit op zijn
beurt draagt bij tot een verhoging van de complexiteit door de nood aan
extra harmonisatie- en aanpassingslagen. De software weerspiegelt eveneens
de toegenomen universaliteit van moderne lichtgewicht robots en mobiele
platformen die moeten omgaan met de toegenomen vraag naar variabiliteit,
samenstelbaarheid en herconfigureerbaarheid.

Eén manier om met deze complexiteit om te gaan is gebaseerd op het Model-
Based Engineering (MBE) paradigma dat al succesvol is toegepast in domeinen
zoals de automobieltechnologie, luchtvaart encontroleontwerp. Deze benadering
verplaatst de aandacht van het traditioneel programmeren naar het vastleggen
van de vereiste informatie in modellen. Deze modellen kunnen vervolgens
omgezet worden naar een uitvoerbare vorm, zonder op voorhand vast te leggen
hoe dit zal gebeuren. Ze blijven bovendien beschikbaar tijdens de uitvoering
om het gedrag van de robot in reële tijd aan te passen. Dit proefschrift
verkent de toepasbaarheid van MBE en in het bijzonder de coördinatie van het
discrete systeemgedrag, op het domein van gedistribueerde reële tijd robotica-
en machinesystemen.

Coördinatie, een bezorgdheid op systeemniveau, regelt hoe en wanneer
functionele subsystemen met elkaar interageren. Het expliciet modelleren
van de coördinatie leidt tot het formaliseren van het gewenste systeemgedrag
terwijl de functionele berekeningen toch vrij blijven van toepassingsspecifieke
logica. Dit zorgt voor een verhoogde herbruikbaarheid. Dit proefschrift gebruikt
hiertoe domeinspecifieke talen (domain specific languages, DSL). In deze aanpak
worden domeinspecifieke en samenstelbare talen opgesteld die een goed afgelijnd

vii



viii BEKNOPTE SAMENVATTING

domein modelleren. Dit leidt tot minimale modellen die, in tegenstelling tot
programmeertalen voor algemeen gebruik, de essentie van het probleem bevatten
en tegelijkertijd de kosten ten gevolge van te grote veralgemening vermijden.

De belangrijkste bijdrage van dit proefschrift is de ontwikkeling van enerzijds
een samenstelbare DSL, genaamd rFSM, voor het modelleren van coördinatie in
gedistribueerde robotica- en machinesystemen en anderzijds een bijhorende
aanpak om dit model toe te passen. Het proefschrift demonstreert de
voordelen van een minimaal maar uitbreidbaar en samenstelbaar model. De
andere bijdrages ondersteunen, gebruiken of breiden deze kernbijdrage uit.
Ondersteunend werk toont de uitvoering van DSL modellen in reële tijd en
introduceert een uMF-DSL voor het modelleren van structurele beperkingen op
DSL-modellen zelf. Assemblagetaken gebruik makend van een taal voor hybride-
kracht-snelheidscontrole in combinatie met een rFSM model tonen experimenteel
de toepasbaarheid en het potentieel voor toegenomen hergebruik. Het werk
over het Coördinatie-Configuratiepatroon formaliseert een vaak terugkerend
architectuurpatroon en verhoogt de performantie en het hergebruik van de
coördinatie.



Abbreviations

3D,2D,1D Three-,two-,one- dimensional

AADL Architecture Analysis and Design Language
AOP Aspect Oriented Programming
API Application Programming Interface

CIM Computation Independent Model

DFA Discrete Finite Automaton
DSL Domain Specific Language

EMF Eclipse Modeling Framework

FMTC Flanders’ Mechatronics Technology Centre
FRI Fast Research Interface (KUKA)
FSM Finite State Machine
fUML Foundational UML (OMG standard)

iTaSC Instantaneous Task Specification using Con-
straints

LOC Lines of Code
LWR Light Weight Robot (e.g. Kuka LWR)

MARTE The UML profile for Modeling and Analysis of
Real-Time and Embedded Systems

MBE Model Based Engineering
MDA Model Driven Architecture (OMG standard)
MDE Model Driven Engineering
MiB Mebibyte= 10242 Byte (IEC 60027)

ix



x ABBREVIATIONS

MOF Meta Object Facility (OMG standard)

OCL OMG Object Constraint Language
OMG Object Management Group
OOP Object Oriented Programming
OROCOS Open Robot Control Software
OSADL Open Source Automation Development Lab

PID Proportional-integral-derivative Controller
PIM Platform Independent Model
PLC Programmable Logic Controller
PSM Platform Specific Model

QoS Quality of Service
QVT Query View Transformation (OMG standard)

rFSM reduced Finite State Machine
ROS Robot Operating System
RTES Real Time and Embedded Systems
RTT Real Time Toolkit

SAE SAE International (formerly Society of Automo-
tive Engineers)

SFC Sequential Function Charts
SysML OMG Systems Modeling Language

TFF Task Frame Formalism

uMF Micro Modeling Framework
UML Unified Modeling Language

XML Extensible Markup Language
XSD XML Schema Definition
xUML Executable UML



Contents

Abstract v

Contents xi

List of Figures xvii

List of Tables xxi

1 Introduction 1

1.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Background and Positioning 11

2.1 Model Based Engineering . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Domain Specific Languages . . . . . . . . . . . . . . . . . . . . 13

2.3 Separation of Concerns . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Real-Time Systems . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Behavioral Modeling Languages and Formalisms . . . . . . . . 15

2.6 Robot Software Architectures . . . . . . . . . . . . . . . . . . . 19

xi



xii CONTENTS

2.7 Coordination Languages . . . . . . . . . . . . . . . . . . . . . . 20

2.8 Separating the four C’s . . . . . . . . . . . . . . . . . . . . . . . 21

2.9 Conclusion of Literature Survey . . . . . . . . . . . . . . . . . . 22

3 Hard real-time Control and Coordination using Lua 23

3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5.1 Lua Cyclictest . . . . . . . . . . . . . . . . . . . . . . . 27

3.5.2 Event messages round trip . . . . . . . . . . . . . . . . . 28

3.5.3 Cartesian Position Tracker . . . . . . . . . . . . . . . . 30

3.5.4 Coordination Statechart . . . . . . . . . . . . . . . . . . . 31

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Coordinating Robotic Tasks and Systems using rFSM Statecharts 35

4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.1 Motivating example . . . . . . . . . . . . . . . . . . . . 37

4.2.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Review of Coordination Models . . . . . . . . . . . . . . . . . . . 41

4.3.1 Classical Finite State Automatons . . . . . . . . . . . . . 41

4.3.2 Harel Statecharts . . . . . . . . . . . . . . . . . . . . . . . 41

4.3.3 OMG UML State Machines . . . . . . . . . . . . . . . . 42

4.3.4 Statecharts in Robotics . . . . . . . . . . . . . . . . . . 42



CONTENTS xiii

4.3.5 IEC 61131-3 Sequential Function Charts . . . . . . . . . 43

4.3.6 Behavior Trees . . . . . . . . . . . . . . . . . . . . . . . 44

4.3.7 The Task Description Language . . . . . . . . . . . . . . 44

4.3.8 The Urbiscript Language . . . . . . . . . . . . . . . . . 45

4.3.9 Simulink Stateflow . . . . . . . . . . . . . . . . . . . . . 45

4.3.10 Statecharts in Modelica . . . . . . . . . . . . . . . . . . 46

4.3.11 ROS SMACH . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.12 Conclusion of Literature Review . . . . . . . . . . . . . 46

4.4 The rFSM Model . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.5 Structural Semantics . . . . . . . . . . . . . . . . . . . . . . . . 52

4.5.1 Fundamental State Machine Elements . . . . . . . . . . 52

4.5.2 Hierarchical State Machines . . . . . . . . . . . . . . . 55

4.5.3 UML Pseudo-States . . . . . . . . . . . . . . . . . . . . 58

4.5.4 State Machine Extension . . . . . . . . . . . . . . . . . 63

4.6 Execution Semantics . . . . . . . . . . . . . . . . . . . . . . . . 63

4.6.1 Fundamental Execution Semantics . . . . . . . . . . . . 64

4.6.2 Event Selection . . . . . . . . . . . . . . . . . . . . . . . 65

4.6.3 Computing the Enabled Transition Set . . . . . . . . . . 65

4.6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.6.5 Evaluating Composite Transitions . . . . . . . . . . . . 67

4.6.6 Transition Execution . . . . . . . . . . . . . . . . . . . . 68

4.6.7 rFSM Transition Semantics . . . . . . . . . . . . . . . . 68

4.7 Event Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.7.1 UML ChangeEvent . . . . . . . . . . . . . . . . . . . . . 70

4.7.2 UML Time Event . . . . . . . . . . . . . . . . . . . . . . 70

4.7.3 UML Call Event . . . . . . . . . . . . . . . . . . . . . . . 71

4.7.4 UML Completion Event and Final State . . . . . . . . . . 71



xiv CONTENTS

4.7.5 UML AnyReceiveEvent and unlabeled Transitions . . . 72

4.7.6 Edge- and Level-triggered Events . . . . . . . . . . . . . 72

4.7.7 Deferred Events . . . . . . . . . . . . . . . . . . . . . . 73

4.8 Concurrency Semantics . . . . . . . . . . . . . . . . . . . . . . 74

4.9 Reference Implementation . . . . . . . . . . . . . . . . . . . . . 75

4.9.1 Software Framework Integration . . . . . . . . . . . . . 77

4.9.2 Considerations for Hard Real-Time Execution . . . . . . 78

4.9.3 Representing Events . . . . . . . . . . . . . . . . . . . . 78

4.10 Patterns and Best Practices . . . . . . . . . . . . . . . . . . . . 78

4.10.1 Models of State Machine Progression . . . . . . . . . . . 79

4.10.2 Defining Platform and Robot independent Coordination
Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.10.3 Best practice Pure Coordination . . . . . . . . . . . . . 82

4.10.4 Event Memory . . . . . . . . . . . . . . . . . . . . . . . 83

4.10.5 Distributed Substates . . . . . . . . . . . . . . . . . . . 84

4.10.6 Serialised Locally Distributed States . . . . . . . . . . . 86

4.10.7 Discrete Preview Coordination . . . . . . . . . . . . . . 86

4.11 Example: constructing coordination for a dual-robot haptic
coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.12 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.13 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . 96

5 Reusable motion specifications with executable DSL 97

5.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.2.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3 Domain Specific Languages for M1, M2, M3 . . . . . . . . . . . . 101

5.3.1 M1- and M2-level TFF-DSLs . . . . . . . . . . . . . . . 102



CONTENTS xv

5.3.2 M3 model: Ecore . . . . . . . . . . . . . . . . . . . . . 103

5.3.3 Software Framework integration: from M1 to M0 . . . 104

5.3.4 Composing individual TFF-DSL motions into skills using
the rFSM statechart DSL . . . . . . . . . . . . . . . . . 105

5.3.5 Dealing with robot dependencies . . . . . . . . . . . . . 107

5.4 Experiments on PR2 and KUKA LWR . . . . . . . . . . . . . 108

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6 Specifying and Validating Internal DSL 111

6.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.2.1 Internal DSL in Lua . . . . . . . . . . . . . . . . . . . . 113

6.2.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . 114

6.3 The uMF micro-modeling framework . . . . . . . . . . . . . . . 115

6.3.1 uMF Types . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.3.2 uMF Specs . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.4 Real World DSL . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.4.1 The Task Frame Formalism DSL . . . . . . . . . . . . . 117

6.5 Evaluation and Results . . . . . . . . . . . . . . . . . . . . . . . 120

6.5.1 The limits of untyped conforms-to . . . . . . . . . . . . . 121

6.6 Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . 121

7 Pure Coordination using the Coordinator–Configurator Pattern 123

7.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.2.1 Prior usage . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.2.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126



xvi CONTENTS

7.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.5 Modeling configuration and its application . . . . . . . . . . . . 129

7.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.6.1 Deployment . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.6.2 Composition . . . . . . . . . . . . . . . . . . . . . . . . 132

7.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8 Conclusions 135

8.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

8.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

8.3 Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8.4 Suggestions for Future Work . . . . . . . . . . . . . . . . . . . . 144

A Tools 147

A.1 rFSM online visualization . . . . . . . . . . . . . . . . . . . . . 147

A.2 rFSM commander . . . . . . . . . . . . . . . . . . . . . . . . . 148

Bibliography 151

Curriculum 165

Publications 167



List of Figures

1.1 The KUKA lightweight robot (left) and the Universal Robots
UR5 (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Chapters ordered according to the OMG MOF metamodeling
layers of metametamodel (M3), metamodel (M2) and model (M1).
Higher levels can be understood as mechanisms used to realize
lower levels, while lower levels conform to higher levels. . . . . 8

3.1 Sequence diagram of event round trip test. . . . . . . . . . . . . 29

3.2 Coordinating the grasping of an object. . . . . . . . . . . . . . . 31

3.3 Dealing with low memory. . . . . . . . . . . . . . . . . . . . . . 32

4.1 Data-flow architecture of Ball tracking application. . . . . . . . 37

4.2 Ball-tracking coordination state machine. . . . . . . . . . . . . 38

4.3 Complete rFSM Ecore model. . . . . . . . . . . . . . . . . . . . 48

4.4 Coordinating a gripper. . . . . . . . . . . . . . . . . . . . . . . 52

4.5 Hierarchical state machine. . . . . . . . . . . . . . . . . . . . . 56

4.6 Boundary crossing. . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.7 UML Junction. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.8 UML Junction with split. . . . . . . . . . . . . . . . . . . . . . 59

4.9 UML History states. . . . . . . . . . . . . . . . . . . . . . . . . 62

4.10 Scope of transitions. . . . . . . . . . . . . . . . . . . . . . . . . 64

xvii



xviii LIST OF FIGURES

4.11 Flowchart of the step procedure. . . . . . . . . . . . . . . . . . 69

4.12 Dealing with inter-step history. . . . . . . . . . . . . . . . . . . 83

4.13 Distributed state. . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.14 Distributed substate. . . . . . . . . . . . . . . . . . . . . . . . . 84

4.15 Object retrieval without Preview Coordination. . . . . . . . . . 87

4.16 Object retrieval with Preview Coordination. . . . . . . . . . . . 88

4.17 The youbot coupling demo at the Automatica trade fair. The
forces of pulling on one robot arm are felt on the other side. Once
the forces rise above a threshold, the coupling is disabled and
both robot arms are put into floating mode. . . . . . . . . . . . 89

4.18 Computational component architecture of the dual youbot haptic
coupling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.19 Component architecture with extensions to support coordination. 92

4.20 Constructing the coordinator, step 1: modeling the communica-
tion quality constraint. . . . . . . . . . . . . . . . . . . . . . . . 92

4.21 Constructing the coordinator, step 2: modeling the force
threshold constraint. . . . . . . . . . . . . . . . . . . . . . . . . 93

4.22 Constructing the coordinator, step 3: adding modes . . . . . . 94

5.1 The four levels in OMG’s standard for the role of Domain Specific
Languages in Model Driven Engineering. . . . . . . . . . . . . 100

5.2 The alignment task executed by the KUKA LWR, with an
implementation based on Orocos/RTT. . . . . . . . . . . . . . . 101

5.3 The alignment task executed by the PR2, with an implementation
based on Orocos/RTT and ROS. . . . . . . . . . . . . . . . . . 102

5.4 The Ecore metamodel (M2 level in Figure. 5.1) that represents
the formal model that all DSLs for hybrid force/velocity control
should conform-to. . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.5 rFSM Statechart for the alignment skill. . . . . . . . . . . . . . 105

5.6 Harmonizing the KUKA FRI operational modes. . . . . . . . . 107

5.7 Forces, velocities and positions of the PR2 robot. . . . . . . . . 109



LIST OF FIGURES xix

7.1 Bidirectional youBot coupling demonstration: each robot copies
the cartesian position of its peer robot. . . . . . . . . . . . . . . 125

7.2 The relationship between the Coordinator, the Configurator and
Computational components. . . . . . . . . . . . . . . . . . . . . 127

7.3 rFSM Coordination Statechart for the youBot coupling demo. . 128

7.4 Component diagram illustrating the components and connections
running on each of the youBots in the example. . . . . . . . . . 129

A.1 rFSM online visualization tool. . . . . . . . . . . . . . . . . . . 148

A.2 rFSM online interaction tool. . . . . . . . . . . . . . . . . . . . 149





List of Tables

3.1 Cyclictest results (µs) . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Comparison of impact of garbage collector modes . . . . . . . . 28

3.3 Results of event round trip test. . . . . . . . . . . . . . . . . . . 29

3.4 Results of Cartesian Position Tracker Benchmark . . . . . . . . . 31

5.1 Platform-independent code . . . . . . . . . . . . . . . . . . . . 109

5.2 Robot and Framework specific code. . . . . . . . . . . . . . . . 110

xxi





Chapter 1

Introduction

The domain of robotics is concerned with construction and control of mechanical
systems that interact with their environment to carry out tasks. Today, robots
are being applied to an ever-growing number of application domains, including
medical systems such as surgical robots, applications in factories and warehouses
to assist workers or service robots in domestic environments for supporting
humans with everyday tasks, just to name some.

As a result of this growing diversity of applications, there is a trend towards
developing robot systems that are increasingly universally applicable. Figure 1.1
shows two examples of such robots, the KUKA lightweight robot (LWR) and
the Universal Robots UR5 robot. This generality implies the need to carry out
a broader range of tasks, to support higher degrees of task variability and the
possibility to assign multiple robots to a task when one is insufficient by itself.
At the same time, the need to keep development costs low mandates reusing as
many existing software elements as possible.

A second major trend is the deployment of robots in environments that are shared
with humans or even in which robots and humans engage in physical interaction.
This merging of workspaces poses many challenges; most importantly the robot
system must be safe for humans. On the other hand, also the robot must
be capable of protecting itself from damage. Such measures are necessary for
intelligent factories, in which humans and robots work together but even more
so for personal service robots supporting people in home environments. This
safety can be achieved in different ways: as of today the majority of personal
service robots (as for instance vacuum cleaning robots) are designed to be
inherently safe by lacking the force to harm humans. However, for more generic
and useful robots this will not be possible, hence the ultimate responsibility

1



2 INTRODUCTION

Figure 1.1: The KUKA lightweight robot (left) and the Universal Robots UR5
robot1(right).

of safe operation is placed on the robot control software. The IEC standard
61508 (International Electrotechnical Commission 2010) provides requirements
and guidelines to realize functional safety, which go beyond the scope of this
work. Here the focus is on software reliability as one prerequisite for safety.
The ISO/IEC/IEEE standard 24765:2010 defines software reliability as “the
probability that software will not cause the failure of a system for a specified time
under specified conditions” Systems and Software Engineering – Vocabulary
(ISO/IEC/IEEE 2010).

Moreover, shared environments often introduce uncertainty. As a consequence,
robots must cope with unexpected conditions, such as obstructed paths, vanishing
and reappearing objects or even collisions. Operating reliably in such
environments places high requirements on the robustness of robot control
mechanisms. The ISO/IEC/IEEE standard 24765:2010 defines robustness as
“the degree to which a system or component can function correctly in the presence
of invalid inputs or stressful environmental conditions” (ISO/IEC/IEEE 2010).

These trends, and the requirements resulting therefrom lead to a drastic increase
in complexity of robot software systems. Robot task related complexity arises
from the need for reusable and thus robot and software platform independent
tasks, which can be customized for different use-cases or composed as subtasks
within larger applications. Building safe systems requires introducing additional

1Picture courtesy of Intermodalics BVBA.



REQUIREMENTS 3

safety mechanisms to self-monitor and respond in case of anomalies. Likewise,
shared and uncertain environments further contribute to complexity, since
fewer assumptions can be made about the state of the world, and thus more
conservative self-validation becomes necessary to ensure reliability.

If the complexity arising from these sources is not dealt with, a system may
exhibit undefined or invalid behavior or perform insufficiently. This thesis aims
to contribute to the ongoing discussion on how to deal with this complexity
by applying the Model Based Engineering (MBE) approach to the domain
of Robotics. The MBE approach shifts the focus from writing programs to
specifying models, that then can be transformed to executable form. This
approach promises several advantages. Firstly, the necessary information is
captured without having to assume beforehand how it will be used, thus
contributing to reusability. Model checking facilitates early detection of defects,
which in turn improves reliability and robustness. A further advantage is that
the MBE paradigm is suited to bring structure to the development process
by introducing tools and workflows to guide the evolution of models. The
fundamental research question investigated in this work is:

How can Model Based Engineering Techniques improve
the Software of Industrial and Service Robotic Systems in
terms of Robustness, Reliability, Safety and Reusability?

1.1 Requirements

The goal of this thesis is to develop methodologies and tools based on the Model
Based Engineering paradigm for supporting the development of the software of
complex robot systems. This section formulates in more detail the requirements
for these developments and defines the term complex robot system in the context
of this work.

An important characteristic of this class of systems is that these do not
only consist of one single computational node, but instead of a number of
distributed nodes, that may be connected through unreliable communication
such as Ethernet or wireless connections. Hence, it is a requirement that in the
event of communication failures, these subsystems behave robust and maintain
autonomous operation (even though this can be at a lower Quality of Service
(QoS)).

A similar requirement exist in terms of reliability: in many cases it is acceptable
that a run-time fault leads to a temporary degradation of the service provided
by the system as a whole, in contrast fatal, unrecoverable errors should be



4 INTRODUCTION

avoided at all costs. In this manner, this work shall contribute to safety of these
systems by improving reliability; on the other hand, efforts such as Risk and
Hazard Analysis (International Electrotechnical Commission 2010) are outside
the scope of this thesis.

Moreover, complex robot systems often exhibit real-time constraints, such as
maximum permitted worst case durations after which a controller switch must
have completed, or maximum permissible response times to failure events. It is
crucial that this requirement is taken into account from the start, since real-time
safety is not a property that a system can easily be extended with later.

The software development for a complex robotic system almost never starts from
scratch, since the costs of this approach would be too high. Instead, by reusing
existing application elements, software development costs can be reduced. This
requirement needs to be foreseen by any developed tooling or development
methodology. Likewise, it is necessary to define how new software elements shall
be developed to facilitate their reuse in different applications. A requirement
related to reusability is the need for composable models. Composability may
refer both to constructing complex models from simple models of the same type
as well as combining heterogeneous models into a new composite model.

A further requirement is that models are both available and can be adapted
at run-time. This is, on the one hand, to support high availability of robot
systems by facilitating software updates to be applied to the running system.
On the other hand this is to support models that can be adapted according to
changes in robot task or environment.

Lastly, the approach shall permit and encourage specification of models that
are minimal. A minimal model is a model containing only those primitives
necessary to express the concepts of the respective domain. Composability
plays an important role to achieve minimality by permitting i) to include
existing models instead of redefining concepts and ii) to avoid new primitives by
expressing these in terms of existing ones. This way, the minimality requirement
serves to increase the potential of model reuse by avoiding specialized, rich
models, and on the other hand to encourage simple models that are easy to
understand.

Improving the performance (e.g. in terms of speed, accuracy, stability of
controllers) of the systems developed is not a primary requirement. On the
other hand, the devised approach shall not introduce any constraints that
would lead to a significant degradation of performance compared to existing
approaches.



APPROACH 5

1.2 Approach

The modeling approach taken in this thesis is based on the concept of domain
specific languages (DSL). A DSL is a formal language that is tailored to express
the concepts of a particular domain. In contrast to general purpose modeling
languages like the Unified Modeling Language (UML), DSL incorporate the
concepts and terminology of the respective domain and are developed for use
by the human domain expert.

More specifically, this work makes extensive use of so called internal or embedded
DSL. An internal DSL is constructed on top of a general purpose host language,
whose infrastructure and run-time is reused. In contrast, an external DSL
is developed from scratch, which generally requires more effort since it also
involves the definition of syntax and associated parsers.

An important aspect is the host language employed to define the internal DSL.
While in principle most programming languages can be used, this work opted
for a scripting language. This choice has the following advantages. Models can
be instantaneously executed without offline transformation and compilation.
Verification and model transformations within the final execution environment
are facilitated, while additional code-generation steps are avoided. Moreover,
safety and robustness are improved, since the scripting environment acts as a
virtualized sandbox that limits the impact of model execution failures.

For this work the Lua programming language was chosen as a host language
for internal DSL, since it combines multiple desirable properties. These include
the suitability for building DSL with a human readable syntax, the feasibility
to be embedded within resource constrained environments and the suitability
to be extended such as to permit execution satisfying real-time constraints. A
disadvantage of this approach is that the possible DSL syntax is constrained by
the Lua language. Furthermore, the challenge of executing the interpreted Lua
DSL in hard real-time needs to be addressed.

1.3 Research Objectives

The research objectives investigated in this work fall into three categories. The
first are related to addressing limitations hindering the application of internal
DSL to the domain of real-time robotics and machine tools. The second are
concerned with identifying and realizing robotics specific DSL. The third aim
to implement applications using these DSL and to identify recurring patterns.



6 INTRODUCTION

An overview showing these categories and the corresponding chapters is given
in Figure 1.2.

The following introduces the objectives of this work in terms of research questions,
which have been explored. The given order largely reflects the sequence in
which the research was carried out, though Chapter 4 on rFSM Statecharts was
subject to ongoing work throughout the entire thesis.

The chosen approach of using an interpreted scripting language as an DSL
execution environment poses the question of how such dynamic interpretation
can be combined with the need for temporal determinism. More concretely, the
following research questions is investigated in Chapter 3:

How can models be executed safe, embeddable, instanta-
neously and satisfying real-time constraints?

A major area of focus is the coordination of complex robotic systems.
Coordination is a system level concern dealing with supervising and monitoring
of the functional parts of a system such that the system as a whole behaves as
expected. The following research question is explored in Chapter 4:

Which minimal and composable model is suitable to
coordinate complex, distributed robot systems involving
real-time constraints and legacy components?

As a more specific case of Coordination, the topic of specifying robot tasks in a
reusable way is investigated. Reusability can be challenging, since a robot task
specification not only depends on the robot used, but also on the underlying
software framework and the respective coordination mechanism employed. The
following research question is investigated in Chapter 5:

How can robot tasks be modeled in a robust, yet robot and
software platform independent way?

The approach of modeling with internal domain specific languages blends the
activities of modeling with traditional programming. While this increases the
flexibility and permits taking advantage of the host language, it also places a
higher burden on the internal DSL developer who has to account for the lesser
formalization by implementing more manual validation. This observation lead
to the investigation of the following research question in Chapter 6:



OUTLINE 7

How can the structure of internal DSL be formalized and
validated?

After developing the coordination of several complex robot systems, recurring
patters begin to emerge. Identifying such patterns is essential to support
inexperienced developers to make optimal design choices. Furthermore, the
formalization of recurring patterns facilitates development of dedicated tooling.
Thus, the research question explored in both Chapter 4 and 7 is:

What are patterns and best practices for developing the
coordination of robot systems?

1.4 Outline

Each of the core Chapters 3-7 is based on a peer reviewed conference or workshop
paper, except Chapter 4 on rFSM Statecharts, which is based on a journal
paper published in the JOSER journal.

Chapter 2 explores the literature relevant to the requirements and research
objectives of this thesis. Since the core chapters are based on publications
and include discussions of related work, this literature survey provides a broad
overview of the state of the art without anticipating individual chapters.

Chapter 3 describes an approach for using the Lua programming language in
systems with hard real-time constraints. This chapter lays the groundwork for
successive chapters, that introduce multiple real-time safe Lua DSL.

Chapter 4 introduces the rFSM Statechart model, that was developed for the
purpose of modeling coordination in complex robot systems. This chapter can
be divided into four parts. Firstly, the rFSM coordination model is derived by
means of an extensive discussion of state-of-art coordination models. Next, a
real-time safe reference implementation of this model as an internal Lua DSL is
described. To illustrate the use and extension of rFSM, several usage patterns
and best practices are provided. Lastly, a step-by-step example explains the
suggested methodology to derive the coordination for a given system.

Chapter 5 introduces a DSL to model motion specifications expressed in a
hybrid force-velocity control formalism, and illustrates how such a task DSL
can be composed within a rFSM Statechart. To demonstrate the reusability, an
alignment task is specified and executed on a Willow Garage PR2 and a KUKA
Lightweight Robot (LWR). The resulting application is analyzed with respect
to its reusability among different software and robot platforms.



8 INTRODUCTION

M3
Foundations

Chapter 3: Hard real-time 
scripting and DSL execution

M2
Robotic DSL

M1
Models and
Applications

Chapter 4: Coordinating
Robotic Tasks and 
Systems using 
rFSM Statecharts

Chapter 7: Pure Coordination using
the Coordinator-Configurator Pattern

Chapter 5: Reusable Hybrid
Force-Velocity controlled Motion 
Specifications with executable
Domain Specific Languages 

Chapter 6: Modeling constraints
on internal DSL

Figure 1.2: Chapters ordered according to the OMG MOF metamodeling layers
of metametamodel (M3), metamodel (M2) and model (M1). Higher levels can
be understood as mechanisms used to realize lower levels, while lower levels
conform to higher levels.

One shortcoming of the internal DSL approach is the lack of strict formalization
of metamodels. Chapter 6 describes the uMF metameta modeling language
that permits formalizing and validating structural constraints on embedded Lua
DSL. Also, the notion of an open model is introduced, which is a model who’s
structure is only partially constrained.

Chapter 7 describes the Coordinator–Configurator architectural pattern, that
enables increased reusability, robustness and deterministic timing behavior.

An alternative arrangement to the chronological ordering of the chapters is
given by Figure 1.2, which groups the chapters according to the three modeling
levels of metametamodel, metamodel and model as defined by the OMG MOF
specification (Object Management Group 2006). Chapters 3 and 6 are concerned
with establishing the metametamodels (M3), that are then used to construct
robotic DSL (M2, metamodels), which are introduced in Chapters 4 and 5.
However, the latter two chapters not only describe the languages themselves, but
also provide case studies using concrete models (M1) that were developed using
these DSL. Chapter 7 is likewise situated at M1, since it describes a blueprint
of an application. Since all described DSLs are instantaneously executable, the
implementation level (M0) is omitted.

The core chapters are based on publications and are as such self-contained.
Therefore no strict reading order is necessary. Nevertheless, earlier chapters



OUTLINE 9

introduce mechanisms used by later chapters. For instance, Chapter 6 introduces
an approach to constrain domain specific languages which is used by a concrete
DSL defined in Chapter 7, and Chapter 4 introduces rFSM Statecharts which
are used in several subsequent chapters. Hence, following the suggested order
will result in the best understandability.





Chapter 2

Background and Positioning

This section provides a broad survey of existing tools and methods related to the
requirements formulated in section 1.1. Since each individual chapters includes
a related work section, this chapter will not duplicate but refer to these where
appropriate. This chapter concludes with a discussion of the limitations of the
state of the art with respect to satisfying the requirements of this research.

2.1 Model Based Engineering

Model Driven Engineering (MDE) or Model Based Engineering (MBE) describe
a software development approach that promises to improve the quality of
developed software. The central idea is to define a modeling language (also
called a meta-model) suitable to capture the aspects relevant to a particular
domain. This language is then used to specify concrete models that can then
be analyzed, validated, transformed or even executed. The latter activities are
greatly facilitated by having a formalization of the meta-model available. The
main benefit of this approach is the clean separation of the domain knowledge
from technical implementation details.

MDE has been described and standardized by different entities. One of the most
widespread efforts is the Model Driven Architecture (MDA) initiative (Miller
and Mukerji 2003) by the Object Management Group. MDA describes several
modeling levels: the computation independent model (CIM) is an informal,
high level description. The Platform Independent Model (PIM) describes the
software system independently of the Software Platform it will later run on; that

11



12 BACKGROUND AND POSITIONING

information is added during the transformation to the Platform Specific Model
(PSM). The latter model can then be transformed to programming language
code. A thorough introduction including a discussion of the promises of MDA
can be found in Bézevin (Bézivin 2005).

MDA is built around different other OMG standards: the Meta-Object Facility
(MOF) specification (Object Management Group 2006) describes the meta-meta
modeling language and architecture that is used to specify meta-models. The
Query View Transformation (QVT) (Object Management Group c) standard
provides several languages to support describing model transformations. The
Unified Modeling Language (UML) (Object Management Group 2011) provides
a comprehensive list of standard diagram types for modeling different aspects of
software (and is itself described using MOF). The Object Constraint Language
(OCL) (Object Management Group a) is used to specify additional constraints
on models that can not be expressed by UML alone.

A shortcoming of the OMG approach is the lack of rigid semantic formalization
or reference implementation, which leads to tool vendors making mutually
incompatible implementation choices. Executable UML (xUML) (Mellor and
Balcer 2002) attempts to close this gap by formalizing the semantics of a subset
of UML. The idea of xUML evolved out of the Shlaer-Mellor method (Shlaer
and Mellor 1988) and has been adopted by OMG as foundational UML (fUML)
(Object Management Group d). According to the fUML standard, the intention
is “to encourage use of the broadest possible subset of UML constructs that can
be reduced to a small set of elements” and to provide a “precise definition of
the execution semantics of that subset.” (Object Management Group d, p. 1).

Within mainstream MDE, two fundamental modeling philosophies can be
distinguished: profiling and meta-modeling. The UML based profiling approach
encourages the extension or redefinition of existing UML meta-models for use
in the context of a specific domain. To this end Stereotypes permit refining
existing model elements, Stereotype attributes can introduce new named values.
Constraints, typically expressed using OCL, permit to specify conditions that
must be satisfied after the profile has been applied. This can be important when
multiple profiles are applied simultaneously. Today, a multitude of profiles exists
for different domains. Relevant in the context of this thesis are the following
profiles: The System Modeling Language (SysML) (Object Management Group
2012) defines a general purpose systems engineering language. It is worth
mentioning that SysML does not make any modifications to UML State
Machines, apart from excluding protocol state machines, noting that standard
FSM are considered sufficient for expressing protocols too. The MARTE profile
(Modeling and Analysis of Real-Time and Embedded Systems) introduces
concepts to support the development of Real Time and Embedded Systems
(RTES).



MODEL BASED ENGINEERING 13

For the robotics domain, the OMG robotics domain task force (DTF) is
promoting and extending OMG standards for the purpose of developing
component based robotics systems. Several standards have been defined,
including the Robotic Technology Component (RTC) upon which the OpenRTM
framework is based (Ando, Suehiro, and Kotoku 2008), the Robotic Localization
Service (RLS) and the Robotic Interaction Service (RoIS). Burmester et al.
(Burmester, Giese, and Tichy 2004) introduce Mechatronic UML as an extension
to UML for modeling hybrid real-time systems.

In contrast to profiling, the second approach of meta-modeling advocates defining
a completely new meta-model from scratch. This process is carried out by
defining the desired concepts and relationships of the new modeling language by
using a so called meta-modeling language. This approach is mainly supported
by the Eclipse Modeling Framework (EMF) project (Eclipse Foundation b) and
its Ecore meta-modeling language, although OMG MOF could be used equally.
Modeling with the micro-modeling framework (uMF) described in Chapter 6
also falls into the meta-modeling category. Which approach is more appropriate
when is subject of ongoing discussion. Obvious advantages of the profiling
approach are the ability to reuse significant amounts of models and of tooling.
On the other hand, meta-modeling from scratch can yield much smaller models
that are (arguably) better adapted to the needs of the respective domain.

The Architecture Analysis and Design Language (AADL) (SAE International )
is a textual and graphical modeling language standardized by SAE. Although
originally designed for the domain of avionics (thus the former name Avionics
Analysis and Design Language), AADL has evolved into a more general modeling
language for real-time and embedded systems. Similar to MARTE, AADL
can model applications, hardware execution platforms and deployment. A
comparison between both is given by Mallet (Mallet and Simone 2009). AADL
has been criticized for not raising the abstraction level significantly compared to
an implementation in a programming language (Delanote, Van Baelen, Joosen,
and Berbers 2008).

AUTOSAR (Autosar Consortium 2003) is a component based software
architecture and modeling language driven by a consortium of automotive
OEMs and suppliers. The AUTOSAR mantra is “Cooperate on standards,
compete on implementation” (Autosar Consortium 2003), therefore unlike UML
or AADL no support for modeling behavior is provided. Early in the project
AUTOSAR models were described using an UML profile, later on a meta-model
based approach was chosen.



14 BACKGROUND AND POSITIONING

2.2 Domain Specific Languages

A Domain Specific Language, contrary to a general purpose language, is a
language that has been specifically tailored to express the concepts of a particular
domain. DSL have been used for decades, especially in Unix and were first
described as little languages by Bentley (Bentley 1986). Famous DSL are the
make language to describe software builds, sed and awk for text processing or
XML to described hierarchically structured data. A comprehensive overview
of research on DSL can be found in (van Deursen, Klint, and Visser 2000).
(Spinellis 2001) and (Mernik, Heering, and Sloane 2005) describe patterns and
tradeoffs involved in developing DSL.

DSL are central to Model Driven Engineering; any meta-model can essentially
be understood as a DSL, although the term seems to be stronger associated
with textual than graphical modeling languages. Generally, two types of DSL
are distinguished (Fowler 2005). External DSL are constructed from scratch,
usually by using tools such as lex and yacc or ANTLR1. In contrast, internal
or embedded DSL are constructed within an existing host language. Examples
of languages that are frequently used for developing internal DSL are bash,
Haskell, Ruby or Lisp, though many others have been used too.

Both approaches have their merits: external DSL offer more freedom over the
DSL syntax, but require more effort to implement, since a parser for that syntax
must be realized. On the other side, internal DSL are typically constrained to a
similar syntax as the host language, but in return can reuse the host language’s
infrastructure for parsing, error reporting and computing.

DSLs have a been used in robotics for a long time (Kaelbling 1987; Kaelbling
1988; Gat 1991). MAESTRO (Coste-Maniere and Turro 1997) is a language
for specification, validation and control of robotic missions. Frob (Petersson,
Hudak, and Elliott 1999) and AFRP (Hudak, Antony, Nilsson, and Peterson
2003) are internal DSL built using the Haskell language for programming robots
based on the Functional Reactive Paradigm. Bjarnason et al. (Bjarnason,
Hedin, and Nilsson 1999) describe a toolchain to interactively develop DSL. A
case study based on an industrial robot programming language is presented and
the need for parametrizable and composable DSL is identified (e.g to compose
DSLs for specifying the application and motion control level). Two solutions,
based on multi-layered grammars and procedure inheritance are proposed.

1Which are itself DSLs for describing parsers!



SEPARATION OF CONCERNS 15

2.3 Separation of Concerns

The term Separation of Concerns, firstly used by Dijkstra (Dijkstra 1982), refers
to modularizing a system such that the individual parts overlap as little as
possible.

The paradigm of Aspect Oriented Programming (AOP) (Kiczales 1996) recognizes
that any modularization is only optimal with respect to the chosen primary
modularization criteria. Thus, secondary concerns are often spread out across
the program or tightly coupled with other aspects (called scattered and tangled
in AOP terminology). Canonical examples of such concerns are logging, caching
or security checks. To avoid scattering and tangling, AOP languages introduce
Aspects as first-class entities. Aspects consist of point-cuts and advice. Point-
cuts specify where or when in a program a piece of advice shall be applied and
typically takes the form of a programming language specific regular expression.
Advice is executed on the matches of the point-cut (the so-called join points) and
can modify or extend it, thereby automatically merging the concern. Applying
aspects to program code is carried out by a tool called an aspect weaver.

The ideas of aspect orientation have been applied to a wide range of domains,
including to MDE in form of Aspect Oriented Modeling (AOM) (Elrad, Aldawud,
and Bader 2002). While this thesis does not use AOP or AOM tools directly, it
is influenced by its ideas as well as the principle of Separation of Concerns (see
the 5Cs in Section 2.8).

2.4 Real-Time Systems

A real-time system can be defined as a system that delivers a response to a
stimuli within bounded time. If this boundary is permitted to be violated,
the system is called a soft real-time system. A software example for this is an
audio player; while it is obviously desirable that music playback takes place
smoothly, a sporadic “stuttering” will remain without consequences. This is not
true for a hard real-time system. The term hard refers to the strictly bounded
worst-case response time; violating this will have severe consequences such as
damage of equipment or even loss of life. Classical examples are aerospace,
automotive or chemical process control systems. Robotic systems may also
exhibit different types of real-time constraints: for example, to guarantee safety
a system may be required to complete the enabling of its brakes within a
maximum time frame. A second example is a periodically triggered control loop
that controls the active compliance of a robot system (Albu-Schäffer, Haddadin,
Ott, Stemmer, Wimböck, and Hirzinger 2007). Besides not being allowed to



16 BACKGROUND AND POSITIONING

miss an update, such periodic systems often place further constraints on the
permissible deviation from the expected trigger time. This deviation is called
jitter.

2.5 Behavioral Modeling Languages and Formalisms

A wide variety of architectures and formalisms exist to model behavior of
discrete or hybrid systems. This section gives a broad overview over the topic.
Prior art related to state-based formalisms is discussed in detail in section 4.3.

Petri nets were introduced by Petri (Petri 1962) as a mathematical model to
study concurrency. A good overview is given by Hruz and Zhou (Hrúz and Zhou
2007). Basic Petri nets consist of places, transitions and directed arcs. Places
are connected to each other by an arc emanating from a place to a transition
and a second arc emanating from the transition to the place. The state of a
Petri net is represented by tokens residing on places and is called a marking.
The marking changes atomically when the Petri net fires: tokens on the input
place are consumed and placed on the output places of the transition. Weighted
input arcs permit defining the amount of tokens required on the input place for
the transition to fire, while weighted output arcs define the amount of tokens
that will be placed on the output place. Petri net models can be analyzed to
determine different properties, such as to show whether a certain marking can
be reached from a given initial marking. A discussion of Petri net properties
can be found in Hruz (Hrúz and Zhou 2007). Over the years, the basic Petri
net model has been extended in various ways: colored petri nets extend the
tokens with identity (the color) (Jensen 1987), which permits more compact
descriptions. Ramchandani introduced Timed Petri nets in which firing of a
transition takes non-zero time. An approach is described to use Petri-nets for
modeling the interconnections of finite state machines. Petri Nets have also
found application in Robotics, such as to describe assembly tasks (McCarragher
1994) (Rosell 2004). The IEC standardized sequential function charts (SFC)
(International Electrotechnical Commission 2003) have ultimately been derived
from Petri Nets and are discussed in chapter 4.

Reactive Systems are systems that respond to stimuli from their environment.
Many models and tools have been developed for this class of systems.
Synchronous Languages such as Esterel, Lustre, and Signal have been in use
for decades for modeling real-time, safety critical, reactive systems. Akin to
hardware description languages, synchronous languages rest on the synchrony
hypothesis that defines that reactions to stimuli occur instantaneously and
without delay. Since this simplification obviously does not hold true for physical



BEHAVIORAL MODELING LANGUAGES AND FORMALISMS 17

time, synchronous languages introduce a virtual clock, that permits satisfying
this assumption by permitting reactions to complete before the next event
arrives. The synchrony hypothesis greatly facilitates validation of temporal
requirements and improves the determinism of the generated program. On the
other hand the approach is restricted to closely collocated computations.

In contrast to synchronous languages, Communicating Sequential Processes
(CSP) (Hoare 1978) (Hoare 1985) can be used to describe asynchronously
executing processes that by means of message passing can engage in rendezvous
with each other. Owing to the mathematical formalization, systems described
in CSP can be analyzed to detect common errors such as dead or livelocks. CSP
is a representative of the family of process calculi. The OCCAM programming
language is based upon CSP.

The Actor Model (Hewitt, Bishop, and Steiger 1973) is closely related to CSP.
The most prominent difference between the CSP and the Actor Model is that in
CSP communicating an event (a message in Actor terms) is synchronous, since
the sender side will effectively block until the receiving side participates in the
rendezvous. In contrast, sending a message in the Actor model is asynchronous.

Supervisory Control Theory (SCT) (Ramadge and Wonham 1987) is a method
introduced by Ramadge and Wonham for automatically synthesizing a discrete
controller to supervise a discrete process. The system to be supervised can be
described by the events it generates; these events can be understood as forming
a regular language that can be modeled using a discrete finite automaton (DFA).
Events are partitioned into the two sets of controllable and uncontrollable events.
Given a specification of the desired behavior (also in form of a DFA), a third
supervisor DFA can be generated that controls the controllable events with the
goal of satisfying the specification in a maximally permissive way.

Discrete Event System Specification (DEVS) is a formal method introduced
by Zeigler (Zeigler 1976) for modeling and simulating discrete reactive and
hierarchically composable systems. Using DEVS, elementary systems are
modeled using a variant of FSM called atomic DEVS. The FSM changes state
either based on externally received events or when a certain time has elapsed
(internal events). Composite systems are modeled using Coupled DEVS, which
describes the components (either atomic or coupled DEVS) that form the system
and how they are interconnected. A coupled DEVS model is closed under the
coupling property, which means it can be transformed to an equivalent atomic
DEVS model. This way, an execution environment for atomic DEVS is sufficient
to simulate a coupled DEVS model.

Today DEVS is widely used and still subject of ongoing research. A multitude of
extensions have been developed to permit use of DEVS for different applications



18 BACKGROUND AND POSITIONING

such as for hybrid or real-time systems. A recent overview can be found in
Wainer et al. (Wainer and Mosterman 2011). Borland (Borland 2003) shows
how to transform Statechart models to DEVS to exploit its simulation and
validation capabilities.

Hybrid automata are a formalism to describe systems that exhibit both discrete
and continuous properties (Henzinger 1996). A model consists of a DFA and a
finite set of continuous variables described by ordinary differential equations.
The discrete control modes are represented by a DFA, defining the initial
condition, the invariant condition that must hold while the state is active and
the flow condition governing the evolution of the continuous variables. The
edges of the DFA are labeled with jump conditions that, together with the
invariant condition of the edge, define when switches between control modes
take place.

Timed Automata (Alur and Dill 1994) are a special case of hybrid automata
where the continuous variables represent a set of real-valued clocks. Timed
automata have been thoroughly studied and used for analyzing and proving
properties of real-time systems.

BIP (Behavior, Interaction, Priority) is a methodology and language for
modeling real-time components and architectures (Basu, Bozga, and Sifakis
2006). The focus of BIP is on modeling heterogeneous components; heterogeneity
referring to component execution and interaction semantics (synchronous
vs. asynchronous) and to variations in abstraction level of the models used.
Components are constructed from three basic elements: atomic components,
connectors and priority relations. Atomic components are defined as a set of
ports, variables and a Mealy Machine (with guard predicates) that transitions
when an interaction involving the specified port takes place. Connectors specify
the nature of an interaction by defining which ports must and can be involved,
thereby permitting to specify various degrees of synchronization between atomic
components. Analog to atomic components, interactions may specify a guard
predicate and a statement to be executed when the interaction takes place.
Lastly, priorities permit to prioritize interactions that might be simultaneous
enabled. Compound components are components that are defined by composing
existing (atomic or compound) components, specifying connectors between these
and defining their priorities. The BIP approach is supported by tooling for
validation and C++ code generation.

Besalem et al. (Bensalem, de Silva, Ingrand, and Yan 2011) apply the BIP
approach to construct a complex, autonomous robot system. To that end GenoM
module specifications (Fleury, Herrb, and Chatila 1997) are automatically
transformed to BIP components, which can then be formally verified to detect
possible deadlocks. Furthermore, it is shown how connectors can be used to



BEHAVIORAL MODELING LANGUAGES AND FORMALISMS 19

define constraints that are checked at run-time. Abdellatif et al. (Abdellatif,
Bensalem, Combaz, de Silva, and Ingrand 2012) extend this approach by
introducing a textual DSL for specifying these constraints in a more succinct
and user-friendly form; these constraints are then automatically transformed to
the lower level connector based specification. Furthermore, a real-time version
of BIP is described, that permits expressing real-time constraints of components
using timed automata. The real-time BIP engine will schedule the activated
transitions according to their priorities and report violations of deadlines.

The Abstract State Machines (ASM) Method (Börger and Stärk 2003) is a
uniform, software and hardware systems engineering approach that aims to
bring together requirement engineering with actual development. The approach
is centered around the operational ASM model which permits describing systems
at different abstraction levels; starting from a high level ground model that
captures the requirements, the system is step-wise refined while simultaneously
validation through simulation and more formal verification is carried out. Later,
the ASM model can be used for testing and validating the implementation.

A basic ASM model consists of the following: a vocabulary that identifies
the domain concepts (function-, predicate and domain names) and a set of
states which assign values, called interpretation, to the vocabulary. Different
types of transition rules define state changes by describing when and how the
interpretation changes. This is achieved by using update instructions that
modify the (memory) location of a value. During an ASM step all transition
rules of the current state whose guards are true are executed simultaneously.
As a consequence the system is switched to the next state, provided there
are no inconsistencies. If there are, the system remains in the current state.
Inconsistencies are defined by multiple updates of the same location within one
step.

While formal methods have proven useful for developing highly reliable and
provably correct systems, these methods have some disadvantages. Generally,
formal methods are more costly than traditional development, due to the
necessary, rigorous formalization. Moreover, formal methods typically do not
deal well with legacy systems, since to be able to prove properties of systems it is
necessary to model these entirely using the method in question. These limitations
have spawned interest in so-called lightweight formal methods (Jackson and
Wing 1996), (Agerholm and Larsen 1999). The lightweight approach suggests
to focus on validation of selected subsystems opposed to validating the entire
system, to use dedicated (domain specific!) validation tools opposed to universal
ones and to carry out partial analysis when complete analysis is infeasible. Tools
supporting lightweight verification are Alloy (Jackson 2002) or IDP (Wittocx,
Mariën, and Denecker 2008).



20 BACKGROUND AND POSITIONING

2.6 Robot Software Architectures

Bass et al. (Bass, Clements, and Kazman 2003) define a software architecture
as follows: “The software architecture of a program or computing system is
the structure or structures of the system, which comprise software elements,
the externally visible properties of those elements, and the relationships among
them.”

Important aspects of robotic architectures include the underlying paradigm
used (Medeiros 1998), the programming system used to develop the architecture
(Biggs and MacDonald 2003) and the communication mechanisms used to
connect software elements (Shakhimardanov, Hochgeschwender, Reckhaus, and
Kraetzschmar 2011). As pointed out by (Kortenkamp and Simmons 2008,
pg 202), devising a robot architecture is (still) more of an art than a science.
This is because it involves trading off between a number of requirements such
as flexibility, usability or performance, which can be both difficult to measure
and significantly influenced by personal preferences.

For a more detailed overview including a list of concerns for consideration
when choosing an architecture, the interested reader is referred to the Robotics
Systems Architectures and Programming chapter of the Springer Handbook of
Robotics (Kortenkamp and Simmons 2008, p. 187). It is also worth noting that
the coordination approach introduced in this thesis is not tied to any particular
architectural choice.

2.7 Coordination Languages

A comprehensive introduction to Coordination is given by Arbab (Arbab 1998),
who defines Coordination as follows: “[. . . ] the study of the dynamic topologies
of interactions among Interaction Machines, and the construction of protocols
to realize such topologies that ensure well-behavedness.”

Arbab classifies coordination languages according to two characteristics. Firstly,
a language may be data- or control-oriented. For the former, coordination
emerges as a result of interacting with data, while the latter is concerned with
defining activation and deactivation of control flow. Secondly, a language may
be endogenous or exogenous. An endogenous language requires computations to
make use of specific primitives to be able to be coordinated (e.g. Linda), while
an exogenous language can do so with coordination-agnostic computations. As
pointed out by Arbab, endogenous languages have the fundamental disadvantage
of intermixing computation with coordination.



COORDINATION LANGUAGES 21

A thorough survey of Coordination languages is given by Papadopoulos and
Arbab (Papadopoulos and Arbab 1998).

Gelernter was the first to introduce an explicit coordination model and language
in form of Linda (Gelernter 1985). This language defines a mechanism to
communicate between and coordinate concurrent computations. To achieve
that, four primitives are used that operate on a global, shared and associative
data-structure called a tuple-space. Tuples can be read or written in a blocking
or non-blocking manner, new tuples can be output and new processes can be
created. In the context of this thesis, the fundamental insight of this approach
is orthogonality (Gelernter and Carriero 1992). Orthogonality refers to the
achieved separation of computation from coordination by use of a dedicated
coordination language; this is essentially an early advocation of the concept of
a coordination DSL.

Manifold (Arbab, Herman, and Spilling 1993) is an exogeneous, control-
oriented coordination language to manage the interactions among concurrent
computations. The primitives involved are processes, events, ports and streams.
Processes define ports and can be of two types: atomic processes are black-box
computational components. Manifolds, specified using the Manifold language,
are used to coordinate atomic processes by connecting and disconnecting
ports using streams and by reacting to events. The Reo model (Arbab 2004)
extends Manifold and defines components as entities that execute in a location.
Components communicate using connectors, which are essentially composed of
a graph of nodes and channels. The coordination protocol between components
is a result of the topology of channels within the connector.

A more recent example of a coordination language is the Hierarchical Timing
Language (HTL) (Ghosal 2008), which focuses on specification, verification and
compilation of hierarchically decomposed real-time systems.

The rFSM formalism presented in Chapter 4 is an exogeneous, control-
oriented Coordination model and language, designed for dynamic2 real-time
safe Coordination of component based systems.

Ptolomy is a methodology and framework (Eker, Janneck, Lee, Liu, Liu, Ludvig,
Neuendorffer, Sachs, and Xiong 2003) that supports constructing systems from
heterogeneous components. Heterogeneity refers to the paradigm (and thus
assumptions) used to realize individual components, as for instance continuous
time models like ODE or discrete FSM models. Ptolomy addresses the problem
that a composition of components developed with different paradigms will not
necessarily be well-defined. To achieve this, the fundamental idea is to compose
heterogeneous components using a model of computation (MOC) that governs

2dynamic referring to the ability to support run-time changes



22 BACKGROUND AND POSITIONING

both control and dataflow among the components. Since this composition
can be considered atomic at the next level, it can again be aggregated with
other components using a different MOC. That way, Ptolomy permits treating
systems as locally homogeneous and well-defined, while simultaneously enabling
hierarchical composition of heterogeneous models. Today Ptolomy supports a
wide variety of MOC including CSP, ODE, different forms of Process Networks,
Synchronous Languages and FSM.

2.8 Separating the four C’s

The separation of computation and coordination advocated by the field of
coordination languages is an important step towards reusability. Yet, in the
context of development of reusable component based systems the separation
of further concerns has been proposed: Andrade et al. (Andrade, Fiadeiro,
Gouveia, and Koutsoukos 2002) suggest to separate systems according to the
three aspects of Computation, Coordination and Configuration. Radestock
and Eisenbach (Radestock and Eisenbach 1996) propose separation of the
four aspects (the 4C’s) of Communication, Computation, Configuration and
Coordination. Bruyninckx et al. (Bruyninckx, Hochgeschwender, Gherardi,
Klotzbuecher, Kraetzschmar, Brugali, Shakhimardanov, Paulus, Reckhaus,
Garcia, Faconti, and Soetens ) extend the 4C’s with the concern of Composition,
leading to the 5C’s. This extension emphasizes the fact that separation of
concerns is only part of the solution to achieve reusability, the other challenge
being the re-composition of these concerns into a working system. One approach
permitting composition of multiple, possibly overlapping concerns is described
by (Tarr, Ossher, Harrison, and Sutton 1999), a second using DSL is described
in this thesis (see Section 4.10.2). A working hypothesis of this thesis is that
high levels of reusability and robustness of component based robotic systems
can be achieved when these aspects are kept separated.

2.9 Conclusion of Literature Survey

This chapter has given a broad overview of the state-of-the-art tools and methods
for developing complex robotic systems. Although individual approaches satisfy
some of the requirements of this thesis, none satisfy all. Most modern finite
state machine and statechart formalisms provide rich sets of primitives but
pay little attention to extensibility and composability with domain specific
models. Formal methods permit building highly reliable systems by means of
automated verification techniques. On the other hand, these approaches typically



CONCLUSION OF LITERATURE SURVEY 23

require rigorous application, which conflicts with the goal of supporting
legacy components and subsystems. Moreover, the majority of related
work does not follow an approach of separating concerns. Most approaches
couple several concerns and thus reduce reusability or robustness. Of those
approaches that do separate concerns, none separate the four or even five C’s.
Modern Coordination languages like Reo go furthest in separating Coordination
from Computation, but their rich semantics do not easily lend themselves to
application in hard real-time systems. Lastly, most of the prior art described
aims at providing generic and universally applicable tools and techniques. In
contrast, this thesis explores the benefits of exploiting domain specific
knowledge.





Chapter 3

Hard real-time Control and
Coordination using Lua∗

3.1 Abstract

Control and Coordination in industrial robot applications operating under
hard real-time constraints is traditionally implemented using languages such
as C/C++ or Ada. We present an approach to use Lua, a lightweight
and single threaded extension language that has been integrated in the
Orocos RTT framework. Using Lua has several advantages: increasing
robustness by automatic memory management and preventing pointer related
programming errors, supporting inexperienced users by offering a simpler syntax
and permitting dynamic changes to running systems. However, to achieve
deterministic temporal behavior, the main challenge is dealing with allocation
and recuperation of memory. We describe a practical approach to real-time
memory management for the use case of Coordination. We carry out several
experiments to validate this approach qualitatively and quantitatively and
provide robotics engineers the insights and tools to assess the impact of using
Lua in their applications.

∗This chapter is based on Klotzbücher, M., Bruyninckx, H. (2011). Hard Real-Time
Control and Coordination of Robot Tasks using Lua. Proceedings of the Thirteenth Real-Time
Linux Workshop. Czech Technical University, Prague, 20-22 October 2011 (pp. 37-43) Open
Source Automation Development Lab (OSADL) eG.

25



26 HARD REAL-TIME CONTROL AND COORDINATION USING LUA

3.2 Introduction

This work takes place in the context of component based systems. To construct
an application, computational blocks are instantiated and interconnected with
anonymous, data-flow based communication. Coordination refers to the process
of managing and monitoring these functional computations such that the
system behaves as intended. Keeping Coordination separate from Computations
increases reusability of the latter blocks as these are not polluted with application
specific knowledge. Examples of typical coordination tasks are switching between
controllers upon receiving events, reconfiguring computations (e.g. changing
controller gains) and dealing with erroneous conditions. A complex example of
an robot applications constructed using this paradigm can be found in Smits et
al. (Smits, De Laet, Claes, Bruyninckx, and De Schutter 2008).

To implement coordination we propose to use the Lua extension language
(Ierusalimschy, de Figueiredo, and Filho 1996). Using an interpreted language
for this purpose has several advantages. Firstly, the robustness and hence
safety, of the system is increased. This is because scripts, in contrast to
C/C++, can not easily crash a process and thereby bring down unrelated
computations that are executed in sibling threads. This property is essential
for the aspect of coordination, which, as a system level concern, has higher
robustness requirements than regular functional computations.

Secondly, the use of a scripting language facilitates less experienced programmers
not familiar with C/C++ to construct components. This is important for the
robotics domain, where users are often not computer scientists. Moreover, rapid
prototyping is encouraged while leaving the option open to convert parts of the
code to compiled languages after identification of bottlenecks. At last, the use
of an interpreted language permits dynamic changes to a running system such
as hot code updates. This is essential for building complex and long running
systems that can not afford downtime.

The major challenge of using Lua in a hard real-time context is dealing with
allocation and recuperation of memory. Previously we sketched two strategies
to address this: either running in a zero-allocation mode and with the garbage
collector deactivated or in a mode permitting allocations from a pre-allocated
memory pool using a O(1) allocator and with active but controlled garbage
collection (Klotzbuecher, Soetens, and Bruyninckx 2010). In practice, especially
when interacting with C/C++ code it may be inconvenient to entirely avoid
collections, hence now we consider it necessary to run the garbage collector.

The rest of this chapter is structured as follows. The next section gives an
overview over related work. Section 3.4 describes how we address the issue of
memory management in a garbage collected language used for coordination.



RELATED WORK 27

Section 3.5 describes four experiments with the two goals of demonstrating
the approach and giving an overview of the worst-case timing behavior to be
expected. Robustness is discussed in the context of the last experiment, a
coordination statechart. We conclude in section 3.6.

3.3 Related work

The Orocos RTT framework (Soetens 2006) provides a hard real-time safe
scripting language and a simple state machine language. While both are
much appreciated by the user community, the limited expressivity of the
state machine model (e.g. the lack of hierarchical states) and the comparably
complex implementation of both scripting language and state machines have
been recognized as shortcomings. This work is an effort to address this.

The real-time Java community has broadly addressed the topic of using Java in
hard real-time applications (Real-Time for Java Expert Group (RTJEG) 2005).
The goal is to use Java as a replacement to C/C++ for building multi-threaded
real-time systems. To limit the impact of garbage collection, parallel and
concurrent collection techniques are used (Sun Microsystems 2006). For our use-
case of building domain specific coordination languages we chose to avoid this
complexity, as coordination can be defined without language level concurrency.
In return this permits taking advantage of the deterministic behavior of a single
threaded scripting language.

The Extensible Embeddable Language (EEL) (Olofson 2005) is a scripting
language designed for use in real-time application such as audio processing or
control applications. Hence, it seems an interesting alternative to Lua. Lua was
ultimately chosen because of its significantly larger user community.

3.4 Approach

To achieve deterministic allocations, the Lua interpreter was configured to use
the Two-Level Segregate Fit (TLSF) O(1) memory allocator (Masmano, Ripoll,
Balbastre, and Crespo 2008). This way, memory allocations are served from a
pre-allocated, fixed pool. Obviously, this raises the question of how to determine
the required pool size such that the interpreter will not run out of memory.
We address this in two ways. Firstly, by examining memory management
statistics the worst case memory consumption of a particular application can
be determined and an appropriate size set. Due to the single threaded nature
of Lua a simple coverage test can give high confidence that this value will not



28 HARD REAL-TIME CONTROL AND COORDINATION USING LUA

be exceeded in subsequent runs. Furthermore, to achieve robust behavior the
current memory use is monitored online and appropriate actions are defined
for the (unlikely) case of a memory shortage. What actions are appropriate
depends on the respective application.

This leads to the second challenge for using Lua in a hard real-time context,
namely garbage collection. In previous work (Klotzbuecher, Soetens, and
Bruyninckx 2010) we suggested to avoid garbage collection entirely by excluding
a set of operations that resulted in allocations. However, in practical applications
that transfer data between the scripting language and C/C++ this is not always
possible. Consequently the garbage collector can not be disabled for long
periods and must be either automatically or manually invoked to prevent
running out of memory. For achieving high determinism, it is necessary to stop
automatic collections and to explicitly invoke incremental collection steps when
the respective application permits this. Only this way it can be avoided that
an automatic collection takes place at an undesirable time.

The Lua garbage collector is incremental, meaning that it may execute the
garbage collection cycle in smaller steps. This is a necessary prerequisite for
achieving low garbage collection latencies, although of course no guarantee;
ultimately the latency depends on various factors such as the amount of live
data, the properties of the live data1 and the amount of memory to be freed.
The control and coordination applications we have in mind generally tend to
produce little garbage, because the scripting language is primarily used to
combine calls to C/C++ code in meaningful ways. Nevertheless, to increase
robustness the worst-case duration of collection steps can be monitored for the
purpose of dealing robustly with possible timing violations.

The following summarizes the basic approach. First, the desired functionality is
implemented and executed with a freely running garbage collector. This serves
to determine the maximum memory use from which the necessary memory pool
size can be inferred by adding a safety margin (e.g. the maximum use times 2).
Next, the program is optimized to stop the garbage collector in critical paths
and incremental steps are executed explicitly. The worst case timing of these
steps is benchmarked, as is the overall memory consumption. The program
is then executed again with the goal to confirm that the explicitly executed
garbage collection is sufficient to not run low on memory.

1In Lua, for instance, tables are collected atomically. Hence large tables will increase the
worst-case duration of an incremental collection step.



EXPERIMENTS 29

3.5 Experiments

In this section we describe the experiments carried out to assess worst-case
latencies and overhead of Lua compared to using C/C++ implementations. All
tests are executed using Xenomai (Gerum 2004) (v2.5.6 on Linux-2.6.37) on
a Dell Latitude E6410 with an Intel i7 quad core CPU and 8 GiB of RAM,
with real-time priorities, current and future memory locked in RAM and under
load.2 Apart from the cyclictest all tests are implemented using the Orocos
RTT (Soetens 2006) framework. The source code is available here3.

3.5.1 Lua Cyclictest

The first test is a Lua implementation of the well known cyclictest (Gleixner
2011). This test measures the latency between scheduled and real wake up time
of a thread after a request to sleep using clock_nanosleep(2). The test is
repeated with different, absolute sleep times. For the Lua version, the test is run
with three different garbage collector modes: Free, Off or Controlled. Free
means the garbage collector is not stopped and hence automatically reclaims
memory (the Lua default). Off means the allocator is stopped completely4

by calling collectgarbage(’stop’). Controlled means that the collector is
stopped and an incremental garbage collection step is executed after computing
the wake up time statistics (this way the step does not add to the latency as
long as the collection completes before the next wake up).

The purpose of this test is to compare the average and worst case latencies
between the Lua and C version and to investigate the impact of the garbage
collector in different modes.

Results Table 3.1 summarizes the results of the cyclictest experiments. Each
field contains two values, the average (“a”) and worst case (“w”) latency given
in microseconds, that were obtained after fifteen minutes of execution.

Comparing the C cyclictest with the Lua variants as expected indicates that
there is an overhead of using the scripting language. The differences between the
three garbage collection modes are less visible. Table 3.2 shows the average of
the worst case latencies in microseconds and expressed as a ratio to the average

2ping -f localhost, and while true; do ls -R /; done.
3http://people.mech.kuleuven.be/~mklotzbucher/2011-09-19-rtlws2011/source.tar.

bz2
4This is possible because the allocations are so few that the system does not run out of

memory within the duration of the test.

http://people.mech.kuleuven.be/~mklotzbucher/2011-09-19-rtlws2011/source.tar.bz2
http://people.mech.kuleuven.be/~mklotzbucher/2011-09-19-rtlws2011/source.tar.bz2


30 HARD REAL-TIME CONTROL AND COORDINATION USING LUA

sleep time 500 1000 2000 5000 10000
a, w a, w a, w a, w a, w

C 0, 35 0, 31 0, 45 1, 35 1, 30
Lua/free 2, 41 2, 39 3, 39 3, 45 5, 46
Lua/off 2, 38 2, 39 3, 38 3, 43 5, 38
Lua/ctrl 2, 38 2, 42 3, 37 3, 36 5, 46

Table 3.1: Cyclictest results (µs)

test WC avg (µs) ratio to C
C 35.2 1
Lua/free 42 1.19
Lua/off 39.2 1.11
Lua/ctrl 39.8 1.13

Table 3.2: Comparison of impact of garbage collector modes

worst case of C. Note that the average of a worst-case latency is only meaningful
for revealing the differences between the four tests, but not in absolute terms.
A better approach might be to base the average on the 20% worst-case values.

This table reveals (unsurprisingly) that a freely running garbage collector will
introduce additional overhead in critical paths. Running with the garbage
collector off or triggered manually at points where it will not interfere adds
approximately 11% and 13% respectively compared to the C implementation.
Of course the first option is only sustainable for finite periods. 13% of overhead
does not seem much for using a scripting language, however it should be noted
that this is largely the result of only traversing the boundary to C twice: first
for returning from the sleep system call and secondly for requesting the current
time.

3.5.2 Event messages round trip

The second experiment measures the timing of timestamped event messages sent
from a requester to a responder component, as shown in Figure 3.1. The test
simulates a simple yet common coordination scenario in which a Coordinator
reacts to an incoming event by raising a response event, and serves to measure
the overhead of calls into the Lua interpreter. The test is implemented using the
Orocos RTT framework and is implemented using event driven ports connected
by lock free connections. Both components are deployed in different threads.



EXPERIMENTS 31

Req Resp

gcstep

store timestamp t2

and send response

timestamp t1

timestamp t3

Figure 3.1: Sequence diagram of event round trip test.

req (µs) resp (µs) total (µs) Lua/C of total
a, w a, w a, w a, w

C 9, 37 7, 18 16, 50 -
Lua 15, 47 11, 59 26, 106 1.63, 2.12

Table 3.3: Results of event round trip test.

Three timestamps are recorded: the first before sending the message, the
second at the responder side and the third on the requester side after receiving
the response. The test is executed using two different responder components
implemented in Lua and C++.

In this setup the Lua responder takes advantage of the fact that the requester
component will wait for 500us before sending the next message. This permits
executing an incremental garbage collection step after sending each response.
If this assumption could not be made, the worst-case garbage collection delay
would have to be added to the response time (as is the case for experiment 3.5.3).

Results Table 3.3 summarizes the average (“a”) and worst-case (“w”) duration
of this experiment for the request (t2 − t1), response (t3 − t2) and total round
trip time (t3 − t1); all values in microseconds.

On average, the time for receiving a response from the Lua component is 1.6
times slower than using the C responder. The worst case is 2.2 times slower. Of



32 HARD REAL-TIME CONTROL AND COORDINATION USING LUA

the 1 MiB memory pool, a maximum of 34% was in use. It is worth noting that
for the initial version of this benchmark, the response times were approximately
eight times slower. Profiling revealed that this was caused by inefficient access
to the time-stamp message; switching to a faster foreign function interface
yielded the presented results.

3.5.3 Cartesian Position Tracker

The following two experiments illustrate more practical use cases. The first
experiment compares both a Lua and C++ implementation of a so-called
“Cartesian position tracker”, typical in robotics, and running at 1KHz, by
measuring the duration of the controller update function. In contrast to the
previous example the incremental garbage collection step is executed during
the controller update and hence contributes to its worst case execution time.

Listing 3.1 shows the simplified code of the update function. Note that diff
function is a call to the Kinematics and Dynamics Library (KDL) (Smits,
Bruyninckx, and Aertbeliën 2001) C++ library, hence the controller is not
implemented in pure Lua. This is perfectly acceptable, as the goal is not to
replace compiled languages but to improve the simplicity and flexibility of
composing existing primitives.

pos_msr = rtt. Variable (" KDL. Frame ")
pos_dsr = rtt. Variable (" KDL. Frame ")
vel_out = rtt. Variable (" KDL. Twist ")
local vel , rot = vel_out .vel , vel_out .rot

function updateHook ()
if pos_msr :read( pos_msr ) == 'NoData ' or

pos_dsr :read( pos_dsr ) == 'NoData ' then
return

end

diff(pos_msr , pos_dsr , vel_out , 1)

vel.X = vel.X * K[0]
vel.Y = vel.Y * K[1]
vel.Z = vel.Z * K[2]
rot.X = rot.X * K[3]
rot.Y = rot.Y * K[4]
rot.Z = rot.Z * K[5]

vel_out : write ( vel_out )
luagc .step ()

end

Listing 3.1: Cartesian Position Tracker

Note that for Lua versions prior to 5.2 invoking the incremental garbage
collector (collectgarbage(’step’)) restarts automatic collection, hence



EXPERIMENTS 33

type duration (µs) Lua/C
a, w a, w

C 5, 19 -
Lua 68, 128 13.6, 6.7

Table 3.4: Results of Cartesian Position Tracker Benchmark

collectgarbage(’stop’) must be invoked immediately after the first state-
ment. The custom luagc.step function executes both statements.

Results Table 3.4 summarizes the results of the worst case execution times
in microseconds. The average execution time is approximately 14 times, the
worst case duration 7 times slower than the C version. The worst case garbage
collection time measured was 29us, of the 1MiB large memory pool a maximum
of 34% was in use.

In the current implementation the majority of both execution time spent and
amount of garbage generated results from the multiplication of the K gains
with the output velocity. If performance needed to be optimized, moving this
operation to C++ would yield the largest improvement.

3.5.4 Coordination Statechart

The second real-world example is a coordination Statechart that is implemented
using the Reduced Finite State Machine (rFSM) domain specific language
(Klotzbuecher 2011), a lightweight Statechart execution engine implemented
in pure Lua. The goal is to coordinate the operation of grasping an object in
an uncertain position. The grasping consists of two stages: approaching the
object in velocity control mode and switching to force control for the actual
grasp operation when contact is made. This statechart is shown in Figure 3.2.

The real-time constraints of this example depend largely on the approach
velocity: if the transition to the grasp state is taken too late, the object might
have been knocked over. To avoid the overhead of garbage collection in this hot
path, the collector is disabled when entering the approach state and enabled
again in grasp after the respective controllers have been enabled.

Besides the actual grasping, it is necessary to monitor the memory use to avoid
running out of memory. With an appropriately sized memory pool and sufficient
garbage collection steps, such a shortage should not occur. Nevertheless, to



34 HARD REAL-TIME CONTROL AND COORDINATION USING LUA

grasping

approach
entry:

   luagc.step()

   en_vel_ctrl()

   approach_object()

e_contact

grasp
entry:

    en_force_ctrl()

    grasp()

    luagc.start()

e_grasp_failed

e_grasp_ok

Figure 3.2: Coordinating the grasping of an object.

Root

operational mem_low
entry:
   robot_stop()
   luagc.full() 
exit:
  robot_start()

[ mem_use > 0.7 ]

[ mem_use < 0.6 ]
load(grasping.fsm)

Figure 3.3: Dealing with low memory.

guarantee robust and safe behavior this condition must be taken into account
and the robot put into a safe state. This is shown in Figure 3.3.

As the grasping task can only take place while enough memory is available, it is
defined as a substate of operational. This way, the structural priority rule of
the Statechart model (Harel and Naamad 1996) guarantees that the transition
to mem_low has always higher priority than any transitions in the grasping state
machine.

Identifying the required memory pool size currently has to be done by empirically
measuring the maximum required memory of a state machine and adding a safety
margin. To avoid this, it would be desirable to infer the expected memory use
from the state machine description. Predicting the static memory used by the
state machine graph is straightforward (Klotzbuecher, Soetens, and Bruyninckx
2010); also the run-time memory use of the rFSM core is predictable as it
depends on few factors such as the longest possible transition and the maximum
number of events to be expected within a time step. However, predicting



EXPERIMENTS 35

the memory use of the user supplied programs would require a more detailed
analysis/simulation, which is currently outside of the scope of this work. In
robotics most user supplied programs are in C/C++.

Results The previously described grasping coordination Statecharts are tested
by raising the events that effect the transitions from grasping, approach
to grasp. The time is measured from receiving the e_contact event until
completing the entry of the grasp state. After this, the same sequence of events
is repeated. The functions for enabling the controller are left empty, hence the
pure overhead of the FSM execution is measured. Running the test repeatedly
for five minutes indicates a worst-case transition duration between approach
and grasp of 180us. The memory pool size was set to 1 MiB and the TLSF
statistics report a maximum use of 58%. To test the handling of low memory
conditions, in a second experiment the collector is not started in the grasp
state. As a result no memory is recovered, eventually leading to a low memory
condition and a transition to the mem_low state. For this test the worst case
maximum memory use was as expected 70%.

This test does not take into account the latencies of transporting an event to
the state machine. For example, when using the Orocos RTT event driven
ports, the experiments from Section 3.5.2 can complement this one. Moreover
it should be noted that so far no efforts have been put into minimizing rFSM
transitions latencies; we expect some improvement by optimizing these in future
work.

Robustness considerations As described, basic robustness of coordination
state machines is achieved by monitoring of memory and current real-time
latencies. However, the system level concern of coordination unfortunately
combines the two characteristics of (i) requiring higher robustness than
functional computations and (ii) being subject to frequent late modifications
during system integration, the latter of course being susceptible to introduce new
errors. The combination of scripting language and rFSM model can mitigate
this effect in two ways. Firstly the scripting language inherently prevents fatal
errors caused by memory corruption, thereby making it impossible to crash the
application. Secondly, rFSM statecharts execute Lua user code in safe mode5.
This way errors are caught and converted to events that again can be used to
stop the robot in a safe way.

5Using the Lua pcall function



36 HARD REAL-TIME CONTROL AND COORDINATION USING LUA

3.6 Conclusions

We have described how the Lua programming language can be used for hard
real-time coordination and control by making use of an O(1) memory allocator,
experimentally determining worst-case memory use and manually optimizing
garbage collection to not interfere in critical paths. Several experiments are
carried out to determine worst-case latencies and to illustrate the approach.

As usual, benchmark results should be judged with caution and mainly serve
to remind that appropriate validation should be repeated for each critical use.
In particular when real-time allocation and collection is involved, run time
validation of real-time constraints must be considered as an integral part of the
application.

The major shortcoming of the current approach is that worst-case memory use
can be difficult to predict. To deal with this we currently allocate additional
safety margins. As the overall memory usage of the Lua language is comparably
small, such a measure will be acceptable for many systems, save the very
resource constrained.

To conclude, we believe the results demonstrate the feasibility of our approach
to use a scripting language for hard real-time control and coordination and
permits to significantly improve robustness and safety of a system. The price
of these improvements are (i) increased, yet bounded worst-case latencies, (ii)
additional computational overhead, as well as (iii) requiring extra effort such as
manual scheduling of garbage collection. In summary, we believe this constitutes
a modern and practical approach to building hard real-time systems that shifts
the focus from lowest possible latency to sufficient latency while maximizing
reliability.

Future work will take place in two directions. On the high level we are exploring
how to automatically generate executable domain specific languages from formal
descriptions. Implementationwise we intend to investigate if and how the
presented worst case timing behavior can be improved by using the luajit (Pall
2011) implementation, a high performance just-in-time compiler for Lua.



Chapter 4

Coordinating Robotic Tasks
and Systems using rFSM
Statecharts∗

4.1 Abstract

Coordination is a system-level concern defining execution and interaction
semantics of functional computations. Separating coordination from functional
computations is a key principle for building complex, robust and reusable robotic
systems. This work introduces a minimal variant of Harel statecharts called
rFSM designed to model coordination of robotic tasks and systems with a
minimal number of semantic primitives. Firstly, the semantics of the rFSM
language are derived by analyzing state-of-the-art discrete event models and
implementations and extracting a motivated and semantically well-defined
subset that is considered best practice for the domain of robotic coordination.
Secondly, a real-time capable reference implementation of rFSM is presented,
which has been loosely integrated into the OROCOS/RTT framework. The
application of rFSM is illustrated using a detailed description of a dual robot
coordination problem. Lastly, several best practices and patterns are presented
with the goal of i) supporting development of robust Coordination models,
ii) illustrating how limitations of the statechart model can be overcome by

∗This chapter is based on Klotzbücher, M., Bruyninckx, H. (2012). Coordinating Robotic
Tasks and Systems with rFSM Statecharts. JOSER: Journal of Software Engineering for
Robotics, 3 (1), 28-56.

37



38 COORDINATING ROBOTIC TASKS AND SYSTEMS USING RFSM STATECHARTS

extending the execution semantics, and iii) offering guidance in designing pure
coordination components that optimize reusability.

4.2 Introduction

The design of todays complex robot systems is driven by multiple and often
partically conflicting requirements. Apart from the primary functionality, these
requirements commonly include the need to reuse existing parts, for the system
to behave robust or safe in the presence of errors or to facilitate reconfiguration
of the system due to changed requirements.

The extent to which these goals can be fulfilled is strongly influenced by
the approach used to divide the system into parts. This work builds on
the suggestion of Radestock and Eisenbach (Radestock and Eisenbach 1996)
to separate the systems according to the four concerns of Communication,
Computation, Configuration and Coordination: Communication defines how
entities communicate. Computation defines the functionality and hence what
is communicated. Configuration defines how computations are configured and
which computations communicate with each other. Lastly, Coordination is
responsible for managing the individual entities such that the system as a whole
behaves as specified.

Most of today’s robotic software frameworks support the separation of
Communication, Computation and Configuration. For example, the Orocos
RTT framework (Soetens 2006) permits to separately specify communication
connections between components and the respective parameters such as buffering
policies. Component configurations can be defined separately and need only be
applied to the respective component instances at runtime. Similarly, the ROS
framework (Willow Garage 2008) permits separate storage of node configuration
using the so called parameter service.

In contrast, the concern of Coordination is not yet recognized as a first-class
design aspect in many of today’s complex robotic systems. Instead, Coordination
is often implicitly incorporated into Computation and Communication. For
example, in the Orocos RTT framework prior to version 2, coordination was
often realized using the RTT::Event mechanism. Using this, a computational
component declares the ability to raise an event represented as a parametrized
function. Other computational components register handlers matching the event
interface, which are then called to be notified of the event occurrence. As a
result of this tight coupling, the event recipient is polluted with system-level
coordination that limits its reusability. Moreoever, such implicit coordination



INTRODUCTION 39

Camera 1

Camera 2

image

2D pos

3D pos

image

BallExtractor 1

BallExtractor 2

2D pos

Estimator ArmController

Figure 4.1: Data-flow architecture of Ball tracking application.

can lead to reduced robustness by requiring to compromise between reusability
and robustness. The following example further elaborates these issues.

Although the idea of explicit coordination is not limited to component based
systems, we assume this context throughout this chapter, since the majority
of modern robotics software frameworks (Soetens 2006; Ando, Suehiro, and
Kotoku 2008; Korean Institute for Advanced Intelligent Systems ; Quigley,
Conley, Gerkey, Faust, Foote, Leibs, Wheeler, and Ng 2009) are component
oriented. When using the term coordination or computation, we are referring
to the concern, unless explicitely stated otherwise as in coordination component.

4.2.1 Motivating example

The following example introduces the concern of coordination. A ball swinging
on a string is observed using two cameras and shall be followed by a robot
manipulator. The data-flow component diagram in Figure 4.1 shows the involved
computational components and the communicated data. 2D ball positions are
extracted from the camera images by BallExtractor components and passed
to an estimation component. The estimated 3D position is then sent to the
RobotController actuating the robot arm. To avoid confusion with state machine
diagrams, we utilize the SysML flowport notation (Object Management Group
2012), a small box with an arrow pointing in or out to describe component
input or output data-flow ports respectively.

This system behaves as intended for the nominal case of the ball being visible
to the cameras. However, if the ball swings out of the observed camera range
the behavior is not well-defined, since different estimators will produce different
results; for instance an estimator based on a constant velocity model will predict
the ball motion to continue with the last estimated velocity, while one based on
a constant position model will continuously predict the last estimated position.

This example constitutes a typical coordination problem, characterized by
undesirable behavior at the system level even though the individual parts are
functioning correctly.



40 COORDINATING ROBOTIC TASKS AND SYSTEMS USING RFSM STATECHARTS

Assume the requirement that the robot arm shall stop close to the last observed
ball position. A naive solution to this problem would be to extend the estimator
to stop the robot controller once the ball left the field of view of the camera. This
solution is suboptimal for several reasons: firstly, the reusability of the estimator
is severely reduced by adding this application-specific feature. Secondly, the
exchange of this component with one not making this application-dependent
assumption is prevented. Lastly, the solution provides limited robustness in
case of communication failures between BallExtractor and Estimators, even
though short interruptions may well be dealt with gracefully.

The latter shortcoming illustrates the previously mentioned compromise between
robustness and reusability: the developer is forced to choose between either
reduced reusability or to accept undefined behavior in corner cases or in the
event of errors. The proposed solution to avoid these shortcomings is described
by the following steps:

1. Making relevant internal state visible: the estimation component
is extended to raise two events: e_untracked and e_tracked1 when the
ball becomes invisible and visible respectively (i.e. when the confidence
in the ball position drops beneath/rises above a configurable threshold).
This extension is both generic and non-intrusive to the estimator, as it
only makes its internal state explicit but does not alter its behaviour.

2. Introducing explicit coordination: The dependency between Esti-
mator and ArmController is encapsulated by introducing a separate
Coordinator entity (typically, but not necessarily, deployed in a component
itself) that reacts to the estimator’s events. The state machine in Figure 4.2
models the desired behavior: the events e_untracked and e_tracked
trigger the transitions from the nominal following state to paused and
back respectively. The robot arm is stopped when entering and restarted
when exiting the paused state.

This way, the reusability of the estimator is preserved while the desired behavior
is specified in an explicit manner. Moreover, the proposed Coordination will deal
gracefully with communciation failures between BallExtractor and Estimator; a
sufficiently long interruption will result in the raising of the e_untracked event
that stops the robot, while a short interruption will be dealt with gracefully.
If a distinct reaction to this condition is required, it can be easily specified by
extending the Coordination FSM to react to an event that represents the loss
of communication.

1To improve readability events are prefixed with e_ throughout this chapter.



INTRODUCTION 41

following

paused
entry:
    ArmController.stopArm()
exit:
    ArmController.startArm()

e_untracked e_tracked

Figure 4.2: Ball-tracking coordination state machine.

4.2.2 Contributions

This chapter advocates the introduction of explicit Coordination components
into every robotics software system and offers guidelines to do so. Its
contributions can be divided into four parts. Firstly, it presents a study
of task and system coordination mechanisms with respect to their suitability
for the robotics domain. Secondly, based on the identified shortcomings of
existing models a minimal variant of Harel statecharts addressing these issues
is proposed, in form of the restricted Finite State Machine (rFSM) model. The
term minimal is to be understood in terms of the smallest number of primitives
necessary for humans to construct practical coordination statecharts, and not as
minimal, yet with equal computational expressiveness. Thirdly, a real-time safe
reference implementation of rFSM as an executable Domain Specific Language
(DSL) is presented and the integration into robotic frameworks described. Lastly,
to facilitate adoption of the described approach, a set of best practice patterns
and guidelines are provided, to help system and component developers with the
design of efficient, robust and reusable coordination.

4.2.3 Related Work

This Section summarizes previous work on analysis, formalization and
classification of finite state machine semantics. A detailed review of state-
of-the art coordination models themselves is presented in Section 4.3.

Von der Beeck (von der Beeck 1994) compares twenty different statechart
variants according to a set of distinctive features. Some suggestions are given
about which features should be included in a statechart formalism, however it
is not clear what the motivation for inclusion or not is.



42 COORDINATING ROBOTIC TASKS AND SYSTEMS USING RFSM STATECHARTS

Eshuis (Eshuis 2009) identifies a set of constraints for which subsets of the three
common statechart semantics—STATEMATE, Fixpoint and UML—behave
identically. Besides suggesting improvements to statechart semantics, this work
differs significantly from ours that is focussed on using statecharts for the
particular purpose of coordination.

Breen (Breen 2004) identifies several shortcomings of Harel statecharts for
the purpose of system specification. Most issues are related to parallel states
(modeling concurrency), and hence do not affect our rFSM model that excludes
this model element. Breen observes that the difficulty of understanding the
complex relationship between parallel states (which is a consequence of broadcast
event communication and the inevitable non-determinism of communication
delays) can be avoided by simply using separate statecharts instead of parallel
states. This observation, albeit for different reasons discussed in Section 4.8,
confirms our approach to exclude the parallel state element. Furthermore, Breen
describes the following shortcoming of the statechart model that is related to
hierarchy and also affects the rFSM model: by observing just the graphical
model of a state machine, the designers’ motivation for using hierarchy is not
always obvious. This is due to multiple use-cases for using hierarchical states. To
this end, the following use-cases are identified: clustering, abstraction, transition
dependence, state variable instantiation and expression of constraints. Breen
concludes by pointing out that the described problems will not be significant in
relatively simple models.

Simons (Simons 2000) examines the semantics of UML State machines and
suggests a revised interpretation. Extensions are identified that can be
considered either redundant or harmful to the compositional properties of
the model. The latter class include the inversion of conflict resolution
priorities in UML with respect to Harel statecharts and the special semantics
of completion transitions. Moreover, the revised semantics attempt to improve
the differentiation between statecharts and flowcharts. The rFSM semantics
described later follow several, but not all, of these suggestions.

4.2.4 Outline

The rest of this work is structured as follows. Section 4.3 reviews existing
coordination models and implementations. After briefly introducing the rFSM
model in Section 4.4, the insights gained from these reviews are used in the
discussion of structural, execution and event semantics in Sections 4.5–4.7, that
ultimately lead to the derivation of rFSM. Section 4.8 is dedicated to motivate
the exclusion of the widely used parallel state element from the rFSM model.
Section 4.9 describes the reference implementation that was developed. Best



REVIEW OF COORDINATION MODELS 43

practices and patterns are described in Section 4.10. Section 4.11 presents a
detailed example that illustrates step by step the process of developing the
coordination for a dual robot haptic coupling system. We provide a discussion
of our contributions in Section 4.12, and conclude in Section 4.13.

4.3 Review of Coordination Models

4.3.1 Classical Finite State Automatons

Finite state machines (FSM), sometimes called finite state automata, are
mathematical models of behaviour. FSM are widely used, ranging from
application in computational linguistics to language parsing and artificial
intelligence. A FSM consists of a finite set of states connected by transitions.

Commonly, two types of FSM are distinguished: acceptors and transducers.
Acceptors, which are also known as recognisers, return a binary result of
whether or not a certain input was recognized, and are mostly used in language
recognition. Transducers can generate output with the help of actions, and
can be divided into two classes: Moore and Mealy state machines. In the
Moore model, the output is a function only of the current state, while in the
Mealy model the output is a function of the input and the current state. While
both models are equally expressive, in practice often formalism as UML2 state
machines are used, where the output can be a function only of state or of state
and input.

4.3.2 Harel Statecharts

The Harel statechart (Harel 1987; Harel and Naamad 1996) is the first state
machine based formalism to extend classical flat automatons with hierarchy,
parallelism and broadcast events. Hierarchical states may contain states
themselves, thereby facilitating abstraction and modularization of larger models.
Additionally, hierarchy enables transition prioritisation using a strategy named
structural priority: in case of two or more conflicting transitions the one with the
least nested source state (within the global hierarchy) takes priority. Parallelism
permits substates contained in a so called AND state to be simultaneously active.
Broadcast events are a more controversial feature (Breen 2004) causing that
events raised in one sub-statechart (such as a parallel substate) are observed and
hence can trigger transitions throughout the entire statechart, thus violating
the scope introduced by each level of hierarchy. The aforementioned controversy



44 COORDINATING ROBOTIC TASKS AND SYSTEMS USING RFSM STATECHARTS

arises from the fact that the behaviour of a large statechart can become
considerably intricate, especially in combination with statechart parallelism.

The quasi-standard statechart semantics are documented and implemented in
the STATEMATE model and tool (Harel and Naamad 1996), (Harel, Lanchover,
Naamad, Pnueli, Politi, Sherman, Shtull-Trauring, and Trakhtenbrot 1990).
Apart from STATEMATE, numerous other variations exist (von der Beeck 1994),
which is to some extent a consequence of the fact that a detailed description of
statechart semantics was only provided years after the initial proposal. Today,
the most widely used variants are UML2 (Object Management Group 2009)
state machines, the W3C State Chart XML (SCXML) (W3C 2010) model and
the commercial Simulink Stateflow tool of the MathWorks (MathWorks ).

4.3.3 OMG UML State Machines

UML state machines (Object Management Group 2011) are derived from Harel
statecharts and introduce various syntactic and semantic extensions with the
goal to enable application in an object oriented context. One limitation of UML
in general are the so-called semantic variation points that intentionally leave
the precise semantics of model entities open; for example, the order in which
events are dequeued from the internal event queue is left undefined. This is to
give tool-implementers of the standard more liberty to define these semantics
themselves. As a consequence, practically all implementations of UML state
machines yield incompatible execution behaviour, and the precise semantics
often remain hidden in the implementation of the tool.

A second issue with UML statecharts arises from semantic deviations made
from Harel statecharts with the goal to make UML statecharts behave more
like objects as in the object-oriented programming paradigm; the consequences
are discussed in Section 4.6.

In spite of these limitations, UML state machines are widely used and supported
by many modeling tools. Hence, the statecharts proposed in this work
follow these semantics wherever appropriate, in order to facilitate automatic
transformation of UML state machines to rFSM models.

4.3.4 Statecharts in Robotics

Statecharts have been previously used in robotic systems. Merz et. al. (Merz,
Rudol, and Wzorek 2006) use an augmented flavor of Statecharts called Extended
State Machines (ESM) to specify control and data flow in a robotic control
framework. In contrast to our approach that advocates the separation of



REVIEW OF COORDINATION MODELS 45

the concerns of computation and coordination, ESM states tightly couple
control and data-flow by permitting these to also output data via data ports.
While this combination might be convenient, reusability is reduced by tightly
coupling application coordination with functional computations. Billington et.
al. (Billington, Estivill-Castro, Hexel, and Rock 2010) propose an approach
to requirement engineering using UML Statemachines that are extended with
non-monotonic logic for describing domain knowledge. This logic is used to
describe the behavior of single FSM and the corresponding predicates to be used
as guard conditions. This formulation then allows to validate certain properties
such as the exclusivity of guards. Similarly to our approach, the behavior of
the system is defined by multiple interacting state machines, though the focus
is on modeling complex high-level behavioral protocols. In contrast, our work
is concerned with preserving reusability of computational components.

4.3.5 IEC 61131-3 Sequential Function Charts

Sequential function charts (SFC) are a PLC programming language specified in
the IEC 61131-3 (International Electrotechnical Commission 2003) standard.
The SFC language is based on the Grafcet language (David and Alla 1992),
which in turn is derived from Petri nets. This heritage reflects in the SFC
semantics that generally impose less constraints with respect to hierarchies and
permitted transitions.

SFCs are constructed by linking steps with transitions. Each transition has a
condition that defines when control passes to the next step. Simultaneous
divergence permits to activate two successor states simultaneously while
simultaneous convergence permits to synchronize the parallel execution again.
In order to specify the in-step behaviour, steps can be associated with Action
blocks. Action qualifiers define the exact manner in which the action is executed.
Example qualifiers are N (non-stored) for executing an action as long as the
state is active, S (stored) for executing an action permanently until disabled
by the R (reset) qualifier, P (pulse) executing an action only when entering
and/or leaving a state, or L and D for limiting or delaying the execution of the
action to/for a certain time period. SFCs support hierarchical decomposition
by recursive specification of an action with a SFC (or any other IEC diagram).

Bauer and Engell (Bauer and Engell 2002) compare SFC to statechart semantics.
Summarised, the major differences are:

• Although SFC support hierarchical steps by recursively specifying an
action with a SFC, none of the constraints of statecharts are enforced.
This is because there is no transitively upwards closed active state list. In



46 COORDINATING ROBOTIC TASKS AND SYSTEMS USING RFSM STATECHARTS

contrast, if a hierarchically nested state is active in a statechart, then so is
the parent state. For SFC it is possible that a parent step is deactivated
but the child step remains active.

• In contrast to statecharts, SFC do not permit to specify inter-level
transitions.

• A statechart will behave non-deterministically if conflicting transitions are
unable to be resolved by means of the conflict resolution mechanisms. If
conflicting transitions are found in a SFC then all transitions in question
will be enabled.2

• IEC 61131-3 does not define the order of action execution and transition
evaluation for SFCs, however this ordering may influence the overall
behaviour.

• In statecharts, higher priority transitions can prevent lower-level
transitions from triggering. Whether this is possible in SFC depends
on the respective implementation of hierarchy.

Bauer and Engell conclude by suggesting that a combination of statecharts (for
specifying the high level operational modes and safety aspects) and Sequential
Function Charts (for defining the sequences of lower-level computations), would
yield the benefits of both models. A possible execution semantics for the
combined model is proposed.

4.3.6 Behavior Trees

Behaviour trees (BT) (Dromey 2003) are a graphical language to support
the process of behavior engineering. The BT language consists of different
types of states that are organized in a tree form to express behavior. For
example, states can represent conditions (IF, WHEN), dataflow (Data-out) or
state (System, Internal). The behavior engineering process consists of several
steps, each producing a new behavioral tree. Firstly, individual functional
requirements are modelled using requirements behavioral trees (RBT). Next,
these requirements are integrated into the design behavioral tree (DBT) that
composes all requirements. Using the DBT, the component interaction network
(CIN) and the component’s behavior tree (CBT) are derived. The first describes
which components interact and the seconds models each components behavior.

2According to IEC61131-3, pg. 100, this is an error.



REVIEW OF COORDINATION MODELS 47

4.3.7 The Task Description Language

The Task Description Language (TDL), introduced by (Simmons and Apfelbaum
1998), is a language to describe Robot Tasks. TDL is based on the task tree
datastructure, whose nodes can contain commands, goals, monitors or exceptions.
Goals describe higher level tasks whos children may be goals or commands.
Monitors are invoked repeatedly to validate certain conditions; exceptions
can be used to signal and handle erronous conditions. When a goal node is
expanded, new children (goals or commands) are added to the goal itself, thus
defining what needs to be handled before the goal completes. This way, the tree
datastructure implies an ordering between execution of parent and child nodes.
In contrast, sibling nodes are executed concurrently unless ordering constraints
are imposed using one of the synchronization mechanisms. A TDL program is
a C++ program with additional syntax that is transformed to pure C++ by a
dedicated compiler.

4.3.8 The Urbiscript Language

The urbiscript language (Baillie 2004) by GOSTAI is a multi-paradigm scripting
language targeted towards the domain of robotics. To that end, it provides
syntax to specify concurrent execution of statements and primitives to supporting
event driven programming. The GOSTAI Studio IDE supports development of
hierarchical state machines that can be transformed to urbiscript. However, as
of today no information about the semantics of this state machine formalism is
publicly available; with the exception that, according to GOSTAI, the semantics
are close to a subset of UML2.

4.3.9 Simulink Stateflow

Stateflow (MathWorks ) is a synchronous statechart extension to the
Matlab/Simulink environment into which it is tightly integrated. Stateflow
offers an even larger set of primitives than statecharts: Condition actions are
executed if a guard is true, even if the transition itself is not taken, inner
transitions emanate from the inner boundary of a composite state and are
similar to self-transitions but do not result in exiting and entering the source
state.

Apart from these convenience features, major differences to Harel statecharts
are that Stateflow only supports processing of one event at a time and does not
transition based on more than one event.



48 COORDINATING ROBOTIC TASKS AND SYSTEMS USING RFSM STATECHARTS

Stateflow models can be configured in great detail, for instance to define
transition priorities on the chart or state level or to define if supersteps may
occur or not. This permits fine grained configuration and optimization, though
at the price of compromising compatibility with other implementations, and
reuse in other application contexts.

4.3.10 Statecharts in Modelica

Modelica (Modelica Association ) is a language and toolchain for modeling and
simulation of physical systems. Modelica offers support for hierarchical state
machines in form of the StateGraph2 package (Otter, Malmheden, Elmqvist,
Mattson, and Johnsson 2009). These state machines are derived from the
Graphcet language (David and Alla 1992). Pohlmann et al. (Pohlmann,
Dziwok, Suck, Wolf, Loh, and Tichy 2012) extend StateGraph2 with support
for modeling asynchronous and synchronous communication as well as with
real-time constraints. An overview of the different state-based models available
in Modelica can be found in (Elmqvist, Gaucher, Mattsson, and Dupont 2012).

4.3.11 ROS SMACH

ROS SMACH (Bohren and Cousins 2010; Willow Garage 2008) is a Python
library for specifying models of robotic behaviour. States encapsulate
computations that are executed while a state is active. Depending on the
result of a computation, a state is exited via a so called state outcome. These
outcomes are used to model different accept conditions such as sucess or failure.
Additionally, states may specify userdata that is either required by a state
to do processing or provided as an output of the computation of the state.
When specifying a SMACH state machine the connections between input and
output userdata can be defined. SMACH supports parallel execution of state
behaviours as well as controlled preemption.

Nevertheless, in contrast to its name the SMACH library has actually more in
common with a flowchart than with a classical state machine: (i) states do not
represent conditions of the system but rather processing steps, and (ii) SMACH
does not foresee a mechanism to react to external events.

4.3.12 Conclusion of Literature Review

Based on the previous analysis, we have selected Statecharts as a starting
point for deriving a minimal coordination mechanism suitable for the robotics



REVIEW OF COORDINATION MODELS 49

domain. This choice was based on the following requirements. To support reuse
of coordination, the model must be composable and permit recombination of
existing models within each other. Since the Statechart model allows states to
contain states this is easily possible. It is worth noting that the reuse potential
of statecharts has also been recognized by other domains such as Game AI
development (Dragert, Kienzle, and Verbrugge 2011) or for building reusable
webservices (Gamha, Bennacer, Ben Romdhane, Vidal-Naquet, and Ayeb 2007).

Moreover, compositionality is of primary concern, since the goal is to support
construction of complex models by combining simple ones while maintaining
predictability of the global system behaviour. Compositional robustness is
closely related to compositionality; we define this property as follows: a system
which is constructed from elementary parts is compositionally robust if it
behaves robustly as a whole under changes or errors in individual parts. This
characteristic is given particular attention in the following, because robotic
coordination can often be conveniently modelled as a composition of multiple,
heterogeneous layers of abstraction.

The ability to satisfy real-time constraints is a fundamental requirement for robot
coordination related to aspects such as motion control or safety mechanisms.
This does not only involve guaranteeing deterministic timing behaviour but also
the ability to provide introspective information about the temporal behaviour.
On the other hand, building complex, multi-robot systems requires distribution
of such local real-time safe coordination over unreliable networks. As a
consequence, coordination must be robust under (event) communication failures
or varying latency. For example, reordering or loss of events may never lead to
a coordination dead- or live-lock. Structural priorities and time-events facilitate
this.

Lastly, statecharts and its variants are widely known and many developers are
familiar with these. As this chapter aims at providing a minimal subset of the
statechart model, the reuse of existing tools becomes possible.

For our purposes, the main alternatives to statecharts are behavioral trees or
hierarchical petri-nets. Behavior trees can be composed in a similar way as
statecharts, but offer a richer model and require more rigorous commitment to
the approach, compared to this work’s approach of superposing a statecharts
to coordinate computational components. Moreoever, statecharts are better
suited for modeling reactive and preemptable behavior by using non-local state
transitions (i.e. a top level transition causing the deactivation of an entire
sub-branch) taking into account the proper invocation of associated exit and
entry functions. Similar limitations apply to hierarchical petri-nets (HPN) or
variations of these as SFCs. Moreoever, the implementation of concurrency in
Petri-nets requires making similar assumptions as those which we choose to



50 COORDINATING ROBOTIC TASKS AND SYSTEMS USING RFSM STATECHARTS

avoid by excluding parallel states in rFSM. Furthermore, petri-nets abstract
away communication (e.g. for synchronization) between concurrent threads
of execution. Thus, especially distributed Petri-Nets would require making
additional assumptions on communication properties, which we can avoid for
rFSM. Lastly, statecharts are, to some extent, also applicable to modeling
of sequences (such as assembly tasks) that are traditionally the domain of
petri-nets.

4.4 The rFSM Model

The rFSM model is a minimal subset of UML2 and Harel statecharts
consisting of only three model elements: states, transitions and connectors.
Additionally, a virtual model element named node is introduced to simplify
explanations concerning both states and connectors. Figure 4.3 shows the
structural model as an Ecore diagram.

States can be composite or leaf states, depending on whether they contain
child nodes or not. For example in Figure 4.4, the outer rounded rectangle
(labelled root) is a composite state; the rounded rectangles opening, grasping,
and closing are leaf states of the tree formed by the hierarchical composition
of states; the arrows are transitions; and the filled black circle is an initial
connector.

Distinguishing between leaf and composite states is important for modeling
additional constraints that must be satisfied by valid rFSM models. For example,
an important constraint that simplifies validation and execution semantics is,
that, for an active, well-formed rFSM statechart, exactly one leaf state must
be active (unless during transitioning, where it may be zero). Moreover, this
constraint permits representing the entire active state of a rFSM statechart by
means of a single leaf state. This is owned to the constraint of the statechart
semantics, requiring that for any active state all parent states are active too.

At the top-level, a rFSM model is always contained within a state; that way
any state machine model is inherently composable within other state machines.
This composability is essential to enable the reuse of Coordination functionality
represented by rFSM models.

Transitions connect nodes in a directed way, and may define a side-effect free,
Boolean-valued guard function (whose result determines whether the transition
is enabled or not), as well as an effect function (invoked when transitioning).
Note that defining a specific trigger language in the core model is avoided by
deferring the responsibility of determining the triggering of a transition to the



THE RFSM MODEL 51

Node
name : EString

State Connector
public : EBoolean

Transition
priority_number : EIntFunction

History
depth : EInt
hot : EBoolean

subnodes 0..*

parent
1

transitions
0..*

src
1

tgt
1

effect

0..1

guard

0..1

entry
0..1 do

0..1 exit
0..1

owner
1

history
0..1

Figure 4.3: Complete rFSM Ecore model.

guard function. The latter can then be extended (in an automated way, e.g., by
a plugin) to validate any event specification specified on a transition against
the current set of events.3

Transitions are owned by composite states and not, as often assumed, by the
states from which they originate (more explanation is given in Section 4.5.2).
As this constraint is not expressed by the Ecore model, the OCL constraint
shown in Listing 4.1 is added. The formulation assumes a function LCA to
compute the least common ancestor and a predicate ancestor to check whether
the first argument is an ancestor of the second.

context : Transition inv:
let lca : State = LCA(self.src , self.tgt) in

self. owner =lca or ancestor (self.owner , lca)

Listing 4.1: OCL constraint on transition ownership.

Following UML, rFSM permits states to be associated with behaviours that
are executed at different points in time. These behaviours are the entry and
exit actions that are executed upon entering and leaving a state respectively,

3Throughout the chapter we assume a basic trigger language that permits specifying a list
of events of which each triggers the respective transition.



52 COORDINATING ROBOTIC TASKS AND SYSTEMS USING RFSM STATECHARTS

and the in-state do activity. While actions are generally short, activities are
composed of atomic actions themselves and can run over longer periods, during
which they are interruptible at the granularity of actions. Hence, to simplify
execution semantics, the do activity is restricted to leaf states only. Moreover,
rFSM states may define internal transitions, that permit reacting to events by
executing an effect, though in contrast to regular transitions without leaving
the state. In the rFSM model, all behavior is modelled as opaque functions.

Connectors can be used for constructing composite transitions by interconnecting
two or more elementary ones. When such a transition is taken, the scope of
connectors is honoured, permitting to define exactly which states are exited
and entered throughout the composite transition. Connectors have multiple
uses: for example they can be used to define the interface of a composite state
by providing different entry or exit points. The initial connector has special
semantics: when a transition ending on the boundary of a composite state is
executed, the execution will continue with the transition emanating from the
initial connector. To avoid stuck transitions, a constraint is introduced to enforce
that each composite state that is target of a transition also defines an initial
connector. This is expressed by the first OCL constraint in Listing 4.2; the
second enforces that a composite state may define at most one initial connector.

context :
State inv: self. subnodes .size >0 and

Transition . allInstances () ->select (t | t.tgt=self) implies
(self. subnodes () ->select (c | c. isTypeOf ( Connector ) and c.name ="

initial "))->size () = 1

State inv: self. subnodes .size >0 implies
(self. subnodes () ->select (c | c. isTypeOf ( Connector ) and c.name =" initial

"))->size () <= 1

Listing 4.2: OCL constraint on existence of initial states.

As with states, multiple transitions may emanate from a connector. This
permits to implement dispatching transitions that are triggered by two or more
events and that dispatch to different states (see Section 4.5.3 for an example).
The rFSM connector model element unifies the four very similar UML model
elements junction, initial, entry- and exit pseudostates.

A state-machine is entered for the first time by transitioning via the transition
emanating from the initial connector of the root state, resulting in the target
state of this transition to be entered.

The elementary way to advance a rFSM state machine is to call the step function
on it. This function retrieves all events that accumulated since the last step
and attempts to find an enabled transition. This process starts top-down, from
the root composite state down to the active leaf state. The rFSM semantics



THE RFSM MODEL 53

require that, as soon as an enabled transition is found, the searching terminates
and the transition is executed.

This approach of identifying the next transition has the advantage that it
assigns explicit priorities to transitions, so-called structural priorities (Harel and
Naamad 1996). The higher the source state of a transition is located in the state
machine’s tree, the higher the priority of the transition. The priority is visible in
the state graph: given a set of events, the current active states, and the value of
the guard predicates, it is immediately visible which transition will be selected.
This follows the approach chosen for the STATEMATE semantics. Furthermore,
through structural priority conflicts between transitions are largely avoided,
leaving only the possibility of local conflicts among transitions exiting the same
state. These conflicts can be eliminated either by additional guard conditions,
or by a mechanism such as priority numbers

The minimum requirement for events is to carry identity and hence to be
comparable between (possibly distributed) connected state machines. The
simplest approach that remains comprehensible to humans and that is real-time
safe4 is to use string events.

The rFSM model does not include a parallel state element. The reason for this
is that this element requires making a large number of fundamental, platform-
specific assumptions. These are, for instance, the order in which parallel states
are entered and exited, which underlying concurrency mechanisms such as
threads are being used to execute the state machine instances or what the
priorities of different parallel regions are. Instead of parallelism, a loosely
coupled approach of distributed state machines is used, that permits multiple
rFSM instances to interact by means of the available communication middleware
(Sec. 4.8).

Moreover, rFSM does not adopt the STATEMATE execution time requirement
which enforces that changes occurring in stepn can only be sensed in stepn+ 1,
because of the complexity involved to manage such delayed processing of effected
changes. But also, more importantly, because of the impossibility of delaying
changes in open environments, as it is inherently the case in robotics. rFSM
also differs with respect to the greediness property of transition selection, by
choosing a simpler take first approach to computing the set of transitions to
execute. In contrast to STATEMATE, external and internal events are not
distinguished.

The ability to simulate a statechart before execution is a useful feature that
can facilitate early detection of errors. However, often subtle corner cases

4Obviously assuming that memory is appropriately pre-allocated for the longest possible
event.



54 COORDINATING ROBOTIC TASKS AND SYSTEMS USING RFSM STATECHARTS

root
opening

do: open_gripper()

closing
do: closing_gripper()

grasping
entry:
    enable_grasp_control()
exit:
    disable_grasp_control()

e_tactile_lost / 
log("object dropped")

e_release

e_tactile
 [gripper_closed=false]

e_close

e_
op

en

e_
ta

ct
ile

 [g
rip

pe
r_

cl
os

ed
=

tr
ue

]

Figure 4.4: Coordinating a gripper.

remain in which simulation and real system behaviour differ, as is the case for
STATEMATE. The rFSM reference implementation avoids this problem by
unifying simulation and real system in form of an executable model. Obviously,
this is possible only because the rFSM model targets the domain of coordination
(in software) and need not be synthesised to targets such as VHDL (Very High
Speed Integrated Circuit Hardware Description Language).

For convenience, we use the graphical notation of UML to visualise rFSM
statecharts throughout the chapter. The only deviation is necessary to
distinguish between initial and non-initial connectors: the first are (as in
UML) shown as filled circles while the latter are depicted as empty circles.
Public connectors must be drawn on the border of composite states.

4.5 Structural Semantics

This Section discusses in detail the implications of different semantics of finite
state machine model elements. Since the rFSM model is derived from Harel
statecharts and UML state machines, the discussion is based upon these
standards. Other models are included in the discussion where appropriate.

4.5.1 Fundamental State Machine Elements

The fundamental elements of UML state machines are introduced using an
example of a gripper coordination FSM shown in Figure 4.4. The required
behavior is the following. Initially the gripper shall be opened. After receiving
a request e_close the gripper shall start to close. The closing will be aborted
and the gripper reopened if the request e_open is received. If a successfull



STRUCTURAL SEMANTICS 55

grasp is detected, the grasp control loop shall be activated and remain active
until either the object is dropped (represented by e_tactile_lost) or releasing
the object is requested (e_release). If the grasp fails, the gripper shall be
reopened in preparation of a new attempt.

The required behavior is realized as follows. Three states opening, closing
and grasping are introduced, each representing a distinguishable and exclusive
state of the gripper. The filled circle is the initial pseudo-state and together
with the transition to opening ensures that the latter will be the first state
entered. Transitions connect states in a directed manner and carry a label of
the following form:

trigger [guard condition] / transition effect

A trigger (typically one or more events) enables a transition between a source
and a target state if and only if the optional guard condition evaluates to true.

An example of a guard condition can be found in Figure 4.4 on the transition
from state closing to grasping labelled with e_tactile [gripper_closed
= false]. This expression defines a successful grasp as an event from the
tactile sensor (e_tactile) and the condition that the gripper is not fully closed.
Likewise, a failed grasp is detected by a tactile event and a fully closed gripper;
this triggers the transition back to opening.

Guard conditions constrain transitions and often permit reducing the amount
of states necessary. On the other hand, guards also hide state (hidden by not
being represented by a state model element) and can thus lead to conflicting
transitions if two guards are simultaneously true. Therefore, it is considered
a best practice to define these such that the exclusive disjunction of all guard
conditions is true at any time.

A transition effect is an action that is executed during a transition between
states. In Figure 4.4 the transition triggered by event e_tactile_lost from
state grasping to opening uses the effect for logging a message that the
grasped object has been dropped. Effects are necessary to define actions that
are specific to transitions and not to source or target states. For the grasping
example, the log message is only required when the transition to opening takes
place as a result of unintentionally dropping the grasped object (triggered by
e_tactile_lost), and not when the object is deliberately released (e_release).

The Matlab Stateflow model (MathWorks ) includes a condition action, that is
already executed when the guard condition evaluates to true, but before the
transition as a whole is enabled. That way, condition actions behave similar



56 COORDINATING ROBOTIC TASKS AND SYSTEMS USING RFSM STATECHARTS

to transitions connected by UML Choice pseudo-states (describes in Section
4.5.3), and are not included in the rFSM model for the same reason.

Actions can be associated with states too. The entry and exit actions are
executed when a state is entered or exited respectively. For instance, when
the state grasping is entered, force control is enabled and disabled when the
state is left. Like transition effects, entry and exit actions are always executed
atomically as part of a transition and are never interrupted. In contrast, a state’s
do activity is executed as long as the state is active. In contrast to entry and
exit actions, UML defines that (but not how!) the do activity can be interrupted
if an event occurs that triggers an outgoing transition. For the example given
in Figure 4.4, in state closing the gripper motors are continuously stepped by
the closing_gripper() activity until the gripper is fully closed. Executing
this operation in the do-activity permits it to be interrupted by a request to
re-open the gripper or an event from the tactile sensors.

It is important to note that for robotic coordination this interruptibility can not
be achieved by forced preemption, as for instance used to preempt operating
system threads. This is because in systems interacting with real hardware some
code paths must be treated as atomic in order to avoid non-deterministic and
potentially dangerous behaviour.

For achieving safe preemption of the do activity, rFSM adopts the idea of
GenoM codels (Fleury, Herrb, and Chatila 1997). A codel is the smallest non-
interruptible unit of execution. Codels can be composed into larger computations
that are interruptible at the granularity of the individual codel. By defining
the do activity in terms of codels, its execution can be safely interrupted. The
worst case latency for exiting the do program is defined by the execution time of
the longest codel. The rFSM reference implementation realises this behaviour
by implementing do using coroutines (Conway 1963).

The last fundamental primitive is the internal transition. The behaviour of this
transition type is best explained by contrasting it to a self-transition, which is
a regular transition starting and ending on the same state. When the latter
transitions, the state is exited and entered, including invocation of the respective
exit and entry actions. In contrast, when an internal transition is taken, the
defining state is not exited. Consequently, the only action invoked is the internal
transitions effect. Syntactically, internal transitions are drawn within a state
and otherwise have the same form
trigger [guard] / effect as regular ones.

Interestingly, this seemingly simple model element already illustrates the issue of
implicit semantic variation points in UML. For instance, it is undefined whether,
in case of conflicts, internal or external transitions take priority. Furthermore,



STRUCTURAL SEMANTICS 57

it is unclear if and how an internal transition affects a running do activity.
Does it cause the do activity to restart or does the internal transition effect run
interleaved?

According to Simons (Simons 2000), internal transitions are redundant since
all behaviour associated with a state can be modelled using a substate. This is
however, only true for an internal transition defined within a leaf-state. Internal
transitions defined within non-leaf composite states can not be converted to
self-transitions, since the execution of the effect action implies exiting and
entering of all child states. In practice, a typical use-case for internal transitions
is to model secondary mode switches. For the grasping FSM of Figure 4.4, this
could be to permit runtime switching between different controller configurations,
but without otherwise interfering with the nominal grasping task. Such mode
switches can be conveniently modelled using internal transitions defined at the
root level.

With respect to variation points, the rFSM model assumes the following:
regarding priorities, internal transitions are given equal priority to external
ones unless made explicit by priority numbers. As to interference with the
do activity, it is assumed that the internal transition execution takes place
interleaved, though in a safe way honouring the atomicity of codels.

In summary, the rFSM model adopts the following fundamental state machine
elements from the UML2 standard: state, transition, internal transitions, event,
entry, exit and transition effect actions, do activity and guard condition.

4.5.2 Hierarchical State Machines

Hierarchical state machines were first introduced by Harel (Harel 1987). The
key idea is to permit nesting of states within states. This is illustrated by
Figure 4.5 showing a model of a robot performing a force-controlled operation
on a work piece. The actual operation is modelled using a nested state machine
within the operational state. Such a state machine containing other states
is also called a composite state, since it can be understood as the composition
of multiple state machines. When the operational state is entered via the
transition triggered by e_range_clear, it immediately continues entering the
approaching state, since this is connected from the initial connector. As a
consequence the work piece is approached until the event e_contact is received,
that triggers the transition to the in_contact state, in which force control is
enabled.

At the top level, the two states safe_mode and operational describe the basic
behaviour of the system. The safe_mode state stops the robot immediately



58 COORDINATING ROBOTIC TASKS AND SYSTEMS USING RFSM STATECHARTS

safe_mode
entry:
    safe_stop()

operational

in_contact
entry:
    enable_force_control()

e_close_obj e_range_clear

e_contact_lost e_contact

approaching
entry:
   enable_pos_control()

entry:
    motors_on()
exit:
    motors_off()

Figure 4.5: Hierarchical state machine.

and is entered when a sensor such as a laser scanner reports an object within
the safety range. Note that the execution of this transition will result in
exiting the operational state, no matter which substate is active. The event
e_range_clear signals that the safety range is clear again and triggers the
transition back to the operational state.

A fundamental property of hierarchical state machines is that multiple states
can be active at the same time. For example, if the state approaching is
active, then so is the parent state operational. In statecharts, the set of active
states, also called the active state configuration, is always transitively closed
with respect to the parent relation.

It is often helpful to visualise hierarchical state machines as a rooted tree. The
root is formed by the top level composite state with nested states as children.
This way, the active state configuration of any active hierarchical state machine
can be represented by a single state (assuming the transitivity relationship from
above).

Moreover, the tree structure facilitates unique identification of states within
a hierarchical state machine by making use of the concept of a fully qualified
state name. For instance in_contact becomes root.operational.in_contact.
This scheme solves the problem of naming conflicts between identically named
states in different composite states.

Hierarchical state machines serve multiple purposes. Firstly, composite states
can be used as an abstraction mechanism and to modularise systems. For the
sample model shown in Figure 4.5, the operational composite state can be



STRUCTURAL SEMANTICS 59

tracked

following

hitting

calibration

untracked

e_cmd_cali

e_untracked

e_done

e_tracked

e_cmd_hit

e_cmd_cali

ball_tracker

Figure 4.6: Boundary crossing.

developed and tested independently from the rest of the system.

Secondly, hierarchical states serve to express constraints in an efficient way.
For the example above, one of the constraints is the following: the motors are
only enabled while in the operational state. This is enforced by the entry and
exit actions of the operational composite state. Of course a non-hierarchical
flat state machine can model the same behaviour. However, in that case it
would be necessary to add transitions from all substates of operational to the
state safe_mode, thereby preventing the internals of the operational state to
be modelled separately from the safety measures.

Lastly, hierarchy is also used to define priority among groups of transitions.
This is discussed in Section 4.6.3.

The rFSM model supports hierarchical state machines and requires that these
can be composed within each other.

Boundary Crossing Transitions

A boundary crossing transition is defined as a transition crossing a composite
state’s boundary. An example is shown in Figure 4.6: the transition from
state following to calibration crosses the boundary of the tracked state.
There exists some controversy in literature about this type of transition.
Simons (Simons 2000) strongly suggest to prohibit boundary crossing for the
reason that such transitions violate encapsulation of the nested state. On the
contrary, UML2 and Harel statecharts permit and encourage boundary crossing.
According to Simons, one motivation for permitting this type of transition in
UML was to provide a way to signal multiple accept conditions of a composite
state by directly adding transitions from within the composite state to the
respective target states. Meanwhile, this issue has been addressed in UML



60 COORDINATING ROBOTIC TASKS AND SYSTEMS USING RFSM STATECHARTS

version 2.1 by introducing exit points. The latter model element provides an
explicit way to specify multiple accept conditions of a composite state. The
rFSM model supports exit points by means of the generic connector, as described
in the following Section.

Nevertheless, an important use of boundary crossing is to support structural
priority. This concept resolves many cases of conflicting transitions that would
otherwise result in non-deterministic behaviour. Structural priority is discussed
in more detail in Section 4.6.

Furthermore, taking a closer look at the ownership relation between states
and transitions reveals that boundary crossing does not necessarily violate
encapsulation as described by Simons. The frequently made, wrong assumption
is that transitions are owned by their source state. Under that assumption the
boundary crossing transition of the example indeed violates encapsulation of
the tracked and following states, because it introduces a dependency on a
state (calibration) not part of the composite. However, if this transition is
instead owned by the state ball_tracker, which is parent of both tracked
and calibration, the problem vanishes. From this perspective transitions are
viewed as layers added by surrounding composite states, thereby permitting
to extend the enclosed behaviours without breaking their encapsulation. The
recent version 2.3 of UML adds a paragraph making a similar observation
(Object Management Group 2011, p. 583):

The owner of a transition is not explicitly constrained [. . . ]. A
suggested owner of a transition is the LCA of the source and target
vertices.

The least-common ancestor (LCA) of a transition is the deepest nested state
which is a parent of both transition source and target. To ensure construction
of modular and reusable statecharts the rFSM semantics impose a stronger
constraint than UML: it is required that transitions are owned by no state
less nested than the transition LCA. This ensures that no state can contain a
transition with an unresolved reference to a state. As long as this constraint is
satisfied, the rFSM model permits boundary crossing transitions.

The LCA concept also plays an important role for describing the execution
semantics of hierarchical state machines (Sec. 4.6).

4.5.3 UML Pseudo-States

UML state machines introduce several types of so called Pseudo-States with
special semantics.



STRUCTURAL SEMANTICS 61

start end
event_a

Figure 4.7: UML Junction.

operational

error

e_error

e_sw_error

e_hw_error

hardware_err

software_err

Figure 4.8: UML Junction with split.

Initial State

The UML2 initial pseudo-state defines the sub-state of a composite state
that is entered by default when a transition ending on the composite state is
executed. UML permits only one transition to emerge from an initial state, that
furthermore may not define a guard condition. Apart from these constraints, the
initial state is semantically equivalent to the junction model element described
below.

Junction and Choice

The junction (available both in UML and STATEMATE) is used to create
composite transitions by chaining together multiple elementary transitions, as
shown in Figure 4.7.

Composite transitions formed by junctions are evaluated statically, meaning
that all elementary transitions up to the next state are checked before the
composite transition is enabled. Only when the conjunction of all transition
elements is enabled5 the composite transition is too. Junctions permit to create
splits and merges, that for instance are used in the dispatcher pattern illustrated
in Figure 4.8.

This pattern employs a junction as the entry point of a composite state. Internal
to the error state, further dispatching to specific handler states takes place
using multiple outgoing transitions. It is the responsibility of the state machine
designer to ensure that only one enabled path is found. Otherwise the state

5A transition is enabled when triggered by the current events and the guard condition
evaluates to true.



62 COORDINATING ROBOTIC TASKS AND SYSTEMS USING RFSM STATECHARTS

machine will make an arbitrary choice and thus become non-deterministic.
Mechanisms to avoid conflicts are discussed in Section 4.6.3.

UML Choices are similar to junctions, differing only by being dynamically
evaluated by the transition logic while the transition is already being executed.
Thus, choices have the dangerous property that composite transitions can get
stuck during execution if at some point none of the outgoing transitions are
enabled. To avoid this, the UML standard advises to always include an else
transition, that is automatically enabled if no other transition is true.

Entry and Exit Points

Entry and exit points were introduced in version 2.1 of the UML standard with
the goal of permitting to define multiple ways to enter a composite state, or to
exit it with different outcomes, respectively.

Examining the semantics of entry and exit points reveals that these are
semantically almost identical to the junction element described above. According
to (Object Management Group 2011, p. 551), only one outgoing transition is
permitted from the entry point to a state, while a junction permits multiple.
In our opinion, there is no need for this constraint. Hence the only remaining
difference is concerned with the graphical representation of whether the circle
is drawn on the border of the enclosing composite state or not.

The rFSM Connector: unifying Initial, Junction, Entry and Exit Pseu-
dostates

Given the large semantical similarities between the UML2.1 initial, junction,
entry and exit pseudo-states, the rFSM model unifies these under the name
Connector. This unification significantly reduces the amount of concepts, while
still providing the same semantic expressivity. The name Connector follows the
suggestion of Simons (Simons 2000), who pointed out that the term state (even
with the “pseudo” prefix) is misleading. This is because the element in question
does not represent a state (defined as a distinguishable condition of the system)
but rather constitutes part of a transition.

As entry and exit points represent public interfaces to a state machine, the
rFSM adds a Boolean-valued attribute public to the connector element. This
serves two purposes: (i) it can be used by a model checker to issue warnings if a
state machine designer adds transitions to non-public connectors from outside of
a composite state, and (ii) this attribute may be used by graphical visualisation
tools to draw public connectors according to the UML visual guidelines for entry



STRUCTURAL SEMANTICS 63

and exit points, which is on the border of a composite state. In the following we
represent connectors as small circles: initial connectors are filled in black while
all others are not filled. This avoids the ambiguity in UML resulting from both
initial and junction pseudo-states being graphically depicted as black, filled
circles. If this notation were used instead of UML, the middle junction in UML
diagram4.7 (connecting start with end would be not filled, since it is not an
initial connector. The junction in diagram4.8 would move to the border of
error state and be likewise not filled, unless it actually is the initial state.

Because of the dangerous property of permitting stuck transitions, the UML
choice pseudo-states is not included in the rFSM model.

Final State

Transitioning to a UML final state means that the enclosing state has completed.
In contrast to the initial pseudo-state, the final state is not a pseudo-state at
all, but a specialised regular state. The reason for this is not explained in the
standard, however it can be assumed that this is because a well-formed UML
state machine can actually be in the final state. In contrast, it is not possible
to be in the initial state, since this is part of a transition. When a final state
is entered, UML requires a completion event to be raised that may trigger
transitions emanating from a parent state. If no transitions are enabled, the
final state remains active.

The rFSM model does not introduce a special final state. Instead an empty,
user-defined regular state named final can serve this purpose. When no do
function is defined, the completion event is raised immediately after entry and
can hence be used to trigger transitions emanating from parent states.

Major semantic differences exist between UML and rFSM with respect to the
completion event itself; this is discussed in Section 4.7.4.

Terminate

The UML Terminate pseudo-state offers a mechanism to terminate the execution
of the entire state machine instance by transitioning to this connector. No
actions are executed except those associated with the transition. In our opinion,
there is no benefit of using a Terminate model element instead of a regular state
called terminate that executes the required shutdown procedure. Hence the
rFSM model does not include a terminate pseudo-state.



64 COORDINATING ROBOTIC TASKS AND SYSTEMS USING RFSM STATECHARTS

safe_mode
entry:
    safe_stop()

operational

in_contact
entry:
    enable_force_control()

e_close_obj e_range_clear

e_contact_lost e_contact

approaching
entry:
   enable_pos_control()
 

entry:
    motors_on()
exit:
    motors_off()

Figure 4.9: UML History states.

History States

The History state, graphically denoted by a circle around a capitalH, is an initial
connector with special semantics. Consider the example of Figure 4.5. After
returning from the state safe_mode (due to an interrupt caused by receiving
the e_close_obj event) the operational state is reentered. In this model the
execution of operational will be restarted, by re-executing the transition from
the initial to approaching. However, in some applications it is preferable to
resume the execution instead of restarting it. For instance this could be the
case if the force-controlled operation is to be performed only once and the robot
was paused in a position ready to resume. To achieve this behaviour, the initial
connector is replaced by a history connector, as illustrated in Figure 4.9.

The target of the e_range_clear transition is now a history connector of
the operational state, from which a second transition is defined to the
approaching state. The latter defines the default state to enter when a
composite state is entered via a history connector for the first time. So far,
the state machines shown in Figure 4.5 and 4.9 behave identically. However,
on subsequent entries of operational through the history connector, the last
active state configuration (i.e., the one active at the time when operational
was exited) will be restored. This effectively results in resuming the previously
interrupted task.

UML2 defines two types of history states: shallow and deep. Transitions to
the former result only in restoring the active configuration for states at the
same level as the history connector within the composite state. In contrast,



STRUCTURAL SEMANTICS 65

transitions to the latter type result in restoring the complete state configuration
including all substates.

History states permit (possibly recursively) resuming previously preempted
activities. This pattern is very common in robotics, both at the lower, hard
real-time level (such as for implementing safety mechanisms) and at higher
levels to model reactive agent architectures.

The rFSM model includes support for both shallow and deep types of history
connectors by including a generalised version offering a configurable depth
parameter, that defines up to which substates the active configuration is restored.
Additionally, taking advantage of the Codel based model of computation
described in Section 4.5.1, a Boolean-valued hot attribute is introduced. A hot
history connector will not only restore the active state configuration but also
resume the execution of the do codels at the point where it was preempted.
In contrast to UML, where a history connector always functions as an initial
connector, rFSM permits defining these attributes separately.

Fork and Join

The UML fork and join pseudo-states are used to create and merge concurrent
transitions in the context of parallel states: implicitly when entering and exiting
parallel regions, and explicitly to synchronise different parallel regions. As
discussed in detail in Section 4.8, the rFSM model does not include parallel
states, and hence also does not require fork and join model elements.

4.5.4 State Machine Extension

UML2 supports the concept of inheritance of state machines. A derived state
machine may override different aspects of its super state machine. This way,
inheritance permits defining abstract state machines6 that function as a common
interface for specialised versions. Inheritance may also improve reusability
by facilitating redefinition of existing models to support new use-cases that
otherwise would have required developing a new model.

In contrast to the previously discussed model elements, extension is a meta-level
feature that provides an alternate way to specify state machines. It does not
influence the semantics of concrete models. Therefore, rFSM does not include
primitives to support the definition of derived state machines. This is because
adding inheritance would pollute the core model with a feature that can be

6Not to be confused the Abstract State Machine (ASM) formal method.



66 COORDINATING ROBOTIC TASKS AND SYSTEMS USING RFSM STATECHARTS

root

tracked calibration untracked

following hitting

t4

t6

t5

t7

t2

t3

t1

Figure 4.10: Scope of transitions.

easily added as an extension, for instance, as a development tool that generates
a derived model from a super state machine and a list of overridden properties.
Since the rFSM reference implementation uses the fundamental Lua table data-
structure for specifying models, redefining, removing or adding elements is easily
possible.

4.6 Execution Semantics

While the previous Section predominantly deals with structural aspects of state
machine semantics, this Section focuses on the behavioural aspects, i.e., the
execution semantics. To this end, some terminology is introduced. As explained
in Section 4.5.2, the active configuration is the set of states that is active at
given point in time. A full transition (Harel and Naamad 1996, p. 302), is a
transition starting and ending on a state. A full transition can be either simple
or composite, the latter consisting of a sequence of simple transitions joined
together by connectors. The scope of a transition (Harel and Naamad 1996,
p. 309) is defined as the lowest common ancestor of source and target vertices
of a transition.7 This is best illustrated using a state machine visualised as a
tree as exemplified in Figure 4.10.

This Figure shows a similar FSM as in Figure 4.6. The dashed lines represent the
containment relationship between composite and contained states, the arrows
represent regular transitions. For instance the scope of the transition t4 from
tracked to untracked is root, as both source and target states are direct
children. The scope of transition t5 is also root, because the least common
ancestor state is root.

7For state machines with parallel states the definition is extended to: lowest common
non-parallel ancestor.



EXECUTION SEMANTICS 67

The scope of a transition is essential for statechart execution semantics because
it determines how the active configuration changes when a transition is taken.

4.6.1 Fundamental Execution Semantics

The basic mode of operation of a state machine is to transition in response to
events received. UML2 describes the run-to-completion assumption that defines
that a new event will only be processed after the processing of the current one
has completed. This conforms to the STATEMATE semantics that require
the following: "Reactions to external and internal events [. . . ] can be sensed
only after completion of the step" (Harel and Naamad 1996, p. 298). For both
semantics, this implies that in order to react to new events, the state machine
must be in a stable state; a stable state being defined as the execution of exit
action, transition effect and entry action having completed.8

Beside these similarities, major differences exist with respect to how and
which events are selected for computing a transition, how conflicts between
simultaneously enabled transitions are avoided or resolved, and what the
semantics of events are.

4.6.2 Event Selection

In UML2 events are stored in a global queue from which they are removed
one at a time. The standard does not specify the exact procedure (Object
Management Group 2011, p. 574), in order to permit modeling of different
priority-based schemes. After an event has been selected, it is used to compute
the set of enabled transitions. If none are triggered, the event is discarded.

The classical statechart semantics differ from this by taking all events that
occurred since the last transition into account for computing the set of enabled
transitions. These events are discarded after the step.

4.6.3 Computing the Enabled Transition Set

Next, the selected event(s) are used to compute the set of enabled transitions
given all transitions emanating from the current active configuration. With
both UML and Harel semantics it is possible that the set of enabled transitions

8It is theoretically impossible to encounter a STATEMATE statechart during transition,
since transitions are assumed to take zero time. This is the so-called perfect synchronicity
hypothesis, which seldom holds in modern robotic systems.



68 COORDINATING ROBOTIC TASKS AND SYSTEMS USING RFSM STATECHARTS

contains more than one transition. Apart from certain special cases,9 this
condition signifies a conflict: executing both transitions would result in an
invalid configuration of the state machine as multiple non-parallel states would
become active simultaneously.

Because conflicts are likely to happen, it is necessary to resolve these by applying
rules. The concept of structural priority, introduced by Harel (Harel and Naamad
1996, p. 328) largely resolves conflicts by assigning priorities to transitions based
on their location in the state machine tree. The initial approach was to assign
higher priorities the higher the position of the transition LCA was in the
hierarchy of states. Later versions of STATEMATE simplified this by using
the transition source state instead of the LCA. This priority rule solves most
conflicts; the remaining can be explicitly solved by assigning so-called priority
numbers to transitions or by using a domain specific mechanism realized as a
guard condition.

UML state machines adopt Harel’s approach of structural priority although the
order of priorities is reversed. This means that transitions with deeper nested
source states are assigned higher priority than less nested states. The reason
for this deviation is not explained in the UML standard but presumably has its
cause in the inherent object oriented focus of UML. Assigning higher priority
to deeper nested states permits substates to be interpreted as specialisations
that refine the behaviour of parent states.

4.6.4 Discussion

The different focus of UML state machines and Harel statecharts become
apparent by examining both execution semantics. The UML semantics, being
part of an Object Oriented modeling standard are more focused on introducing
object oriented concepts in state machines. In contrast, the original Harel
semantics are targeted towards building complex, reactive systems. Hence, it
comes as no surprise that the classical STATEMATE semantics are often better
suited to model complex, multi-robot systems.

The rFSM model adopts the classical statechart semantics of both event selection
and computation of the enabled event set, because of the reasons discussed
below.

Firstly, the behaviour of a classical statechart is largely predictable from the
graphical model since the next transition to be executed depends only on the
active configuration, the set of input events and the state of the guard conditions.

9Multiple transitions entering a parallel state are simultaneously enabled without being in
conflict.



EXECUTION SEMANTICS 69

This supports developers that can rely on the graphical model to understand
and predict the statechart behaviour. This is not as simple for an UML model,
that requires a developer to have additional knowledge about the particular
dequeuing implementation and about the currently deferred events (discussed
in Section 4.7.7).

Secondly, taking all events into account for determining which transitions to
execute has the advantage that the highest-priority events take effect while
lower-priority events are ignored. Moreover, the queue of events is less likely to
overflow by being emptied on each step. This is important for complex systems
for which floods of events are possible.

Thirdly, the classical statechart approach of conflict resolution supports
compositional robustness. The example in Figure 4.5 illustrates this. For
instance, assume the developer of the nested state machine in_contact adds a
self-transition for the event e_close_obj. This transition conflicts with the top-
level transition from operational to safe_mode. In the Harel semantics this
does not affect the behaviour of the state machine as a whole, since the (safety
relevant) transition from operational to safe_mode has higher structural
priority. The system is said to behave compositionally robust to a minor change
(minor being defined in terms of depth of the changed state) because a small
change results in little or no change of the system as a whole. However, in the
UML semantics this change will alter the behaviour of the entire state machine
because the new transition will take precedence and prevent transitioning to
safe_mode. Hence a minor local change results in a large change at system
level. For modeling complex and modular systems this is undesirable.

rFSM follows the STATEMATE approach of using the transition source depth
to define priorities. Furthermore, the mechanism of priority numbers is adopted
to resolve conflicts among transitions emanating from a single state.

4.6.5 Evaluating Composite Transitions

One important issue that is scarcely discussed for UML and STATEMATE
semantics is the extent to which composite transitions are checked prior to
being executed. Starting from the example shown in Figure 4.5 and assuming
that safe_mode is active and the event e_range_clear is in the queue, the
transition from safe_mode to operational is enabled. The question posed by
this scenario is whether the state machine logic may already start executing
the transition at this point, or if further checking is necessary. The imminent
danger of starting execution is that after the first part of the transition has been
executed, the second part from the initial connector to the approaching state
is not enabled, hence resulting in the FSM getting stuck. UML2.1 circumvents



70 COORDINATING ROBOTIC TASKS AND SYSTEMS USING RFSM STATECHARTS

this problem by prohibiting initial transitions to define guard conditions, and
by introducing a semantic variation point (Object Management Group 2011,
p. 560). The latter leaves open how to interpret transitions to composite states
without initial connectors. It is then up to tool-implementers to decide if this
is to be treated as an ill-formed state machine or as the intention to enter a
composite state but none of its substates.

Regarding this issue, there are differences in STATEMATE between simulated
and generated code (Harel and Naamad 1996, p. 303): while the simulator will
not begin executing the transition, the generated code will, and hence get stuck
when the continuation transition is not enabled.

The rFSM model deals with the above-mentioned UML variation point by
defining a transition to a composite state without an initial connector as ill-
formed. Secondly, deep transition checking is required, meaning that for a
transition to be enabled the complete path until reaching a leaf state must
be enabled, thus including zero to many transitions from initial connectors
to states. This eliminates the possibility of transitions getting stuck during
execution. Because the rFSM model treats initial connectors and junctions
identically, no special logic is required. Moreover, the UML constraint that
forbids initial transitions to define guard conditions becomes unnecessary and
can be dropped.

4.6.6 Transition Execution

Once a transition is enabled, it is executed in the following sequence. Firstly,
all source states up to, but excluding, the LCA are exited by invoking their exit
functions. For each composite state of these states, the last active sub-state
is stored in preparation of a potential re-entry via a history connector. As
an example, for a transition between two states within the same composite
state only the source state is exited, as the LCA is the composite state. In
contrast, for transitions contained by different composite states, multiple states
are exited.

Secondly, the transition effect is executed, followed by the third part of the
transition execution in which the transition target state including its parent
states are entered. If this target is a leaf state, the transition execution is
completed. Otherwise, the transition execution is continued at the initial
connector of the composite state until a leaf state is reached. In case of
composite transitions this procedure is executed for each individual transition.

As an example, assume that the active state of the statechart in Figure 4.6
is following, and the event e_cmd_cali occurs. The LCA of this transition



EXECUTION SEMANTICS 71

step start

check for new
events

new events
available?

no yes

transition(s)
enabled by

events?

execute
transition

yesno

active do
function?

execute do
function?

step
completed

yesno

Figure 4.11: Flowchart of the step procedure.

is the root state (ball_tracker), hence first following and tracked will be
exited. Next, the transition effect (not used in the example) will be executed.
Lastly, the target states—for this example, only calibration—are entered.

4.6.7 rFSM Transition Semantics

Figure 4.11 summarises the process of executing a rFSM step. Executing a
step will advance the state machine in an atomic way, leading to, at most, the
execution of one composite transition.

Each step begins with the retrieval of all events that have accumulated since the
last step. Next, if new events are available, it is checked whether these trigger
any transitions. If yes, the one with the highest structural priority is selected
and executed. If no events exist, the rFSM core checks if the currently active
state has an enabled do function to execute. If yes, it is run. Otherwise the
step is completed.

To complement step, a mechanism called run is provided: when a state machine
is run, the step procedure is invoked either until no new events are available



72 COORDINATING ROBOTIC TASKS AND SYSTEMS USING RFSM STATECHARTS

and the active state has no enabled do function, or a maximum number of steps
(given as an argument to run) have been executed. The practical application of
step and run is described in detail in Section 4.10.

An active do function can be configured to be in one of two modes: idle and
non-idle. Which one is appropriate is strongly influenced by the model of state
machine progression (Sec. 4.10.1). If a do function is non-idle, the state machine
engine will recall it immediately, provided that no events enabling outgoing
transitions were received. This permits using the do function to carry out
a computation as fast as possible while at the same time remaining reactive
to incoming events. On the other hand, an idle do function is not recalled
immediately, but only upon the next step invocation. This mode is usually
appropriate when the do function is to be used to periodically carry out an
action while the current state is active.

4.7 Event Semantics

Previous Sections described how events enable transitions and what are the
ramifications thereof. This Section examines the semantics of events themselves,
their structure and specialisations.

In classical statecharts, such as the STATEMATE semantics, events can be
understood as messages which represent the occurrence of something. Events
can be compared to events specified on transitions and are hence required to
have identity. UML includes this basic event type using the name SignalEvent.
However, there exist other, more specialised types of events which are discussed
below.

4.7.1 UML ChangeEvent

A ChangeEvent is raised when a Boolean-valued condition evaluates to true. For
this, the syntax when <condition> on a transition is used. In principle, such
an event type seems useful for robotics coordination. The problem however, is
that the UML specification leaves open when and how the condition is evaluated
(Object Management Group 2011, p. 452). Obviously, for a hard real-time
robotic system this is not acceptable, as the condition checking will directly
influence the worst-case latency of the event generation and hence the transition
execution. This situation can be remedied in two ways. Either the ChangeEvent
is extended to take into account the additional semantics of evaluation frequency,
timing precision etc., or this event type is excluded from the core semantics



EVENT SEMANTICS 73

and realized outside of the statechart. In the latter approach the validation
is carried out by a separate component that raises the respective events. For
rFSM the latter approach was chosen, as it does not require extensions to the
core semantics and makes the involved assumptions explicit. Moreover, many
computational components such as robot driver components, control components
or estimators can easily provide such validation of internal conditions and the
respective event generation with little computational overhead. Therefore, it is
considered a best practice to extend computational components to raise events
based on configurable constraints on their internal state.

4.7.2 UML Time Event

UML defines a TimeEvent as an event which is raised at a relative or absolute
point in time. The syntax used is after <duration> or at <time>. For robotic
applications TimeEvents can be useful in various circumstances, yet they suffer
from a similar limitation as ChangeEvents, as no assumptions can be made
on the qualitative properties of the time used. Hence, the variation point can
be resolved likewise, by either extending the TimeEvent or by implementing
it outside of the scope of the core semantics. rFSM takes the latter approach
and does not include TimeEvents in the core semantics. Instead, TimeEvents
are realized as a plugin that must be explicitely configured with a source of
time. This way, the state machine developer is forced to consciously select a
time source that provides the necessary quality of service.

It is worth pointing out the danger of misusing time events for modeling flowchart-
like execution flow (Simons 2000). A state should reflect a distinguished
condition of the system or a part thereof, not a time-bounded computation.
The need for the latter is an indication to use a Flowchart formalism such as
UML Activity Diagrams. Conversely, TimeEvents have important use-cases,
most notably to model timeouts that trigger transitions to states for dealing
with the absence of the nominally expected event.

4.7.3 UML Call Event

A CallEvent is an event defined for state machines used in the context of Object
Oriented software systems. This event represents a request to invoke a certain
method on an object. The CallEvent is generated after the operation has been
invoked, thereby permitting the FSM to track the methods that are invoked.
As the rFSM semantics do not make any assumptions about the underlying
programming paradigm, no CallEvent is included.



74 COORDINATING ROBOTIC TASKS AND SYSTEMS USING RFSM STATECHARTS

4.7.4 UML Completion Event and Final State

According to UML, a completion event is raised either when the do behaviour
of a simple state completes or a final state is entered. Graphically it is depicted
by an unlabelled transition (called completion transition) emanating from a
simple state or from a composite state that contains a final state.

The UML completion event has special semantics and is implicitly assigned
highest priority among all events. For the UML semantics this is necessary, as a
CompletionEvent does not carry any information about which state completed.
Therefore, this event is only valid for the active configuration of the FSM at its
time of generation. Queuing a completion event would permit the triggering
of different unlabelled completion transitions from other states at a later time,
which would be undesirable.

The rFSM model avoids this problem by adding identity in form of the
fully qualified state name (Sec. 4.5.2) to the completion event. For instance,
the completion event of the in_contact state of Figure 4.5 would be
e_done@root.operational.in_contact. This way no special treatment of
the completion event is necessary. Moreover, by not assigning special priority
to this event, priorities are respected as a completion event must compete with
all other events stored in the event queue. Finally, the readability of completion
transitions is improved by labelling these explicitly. The semantics of unlabelled
transitions are discussed below.

As in UML, the rFSM model requires that the completion event is raised either
when the do function of a leaf state has completed, or immediately if no do
is defined. The use-case of UML final states is covered in rFSM by using an
empty, regular leaf state named final. Once this state is entered, the completion
event e_done@final will be raised. Transitions can then be defined to react to
this event.

4.7.5 UML AnyReceiveEvent and unlabeled Transitions

As the rFSM model (unlike UML) chooses to label completion transitions
explicitly, the question of the semantics of unlabelled transition arises. There
exist at least two natural interpretations of such a transition. The first is a
transition that is never enabled, because no events are specified that could trigger
it. The second, more useful interpretation is a transition that is enabled by any
event. Harel statecharts opt for this interpretation because such true-transitions
can be useful: when chaining multiple transitions by means of Connectors, true-
transitions permit to avoid repeating the enumeration of the events specified



EVENT SEMANTICS 75

on the previous transitions for all subsequent transitions, thereby reducing
redundancy. A second use-case is to avoid having to exhaustively enumerate all
possible events for a transition that is only constrained by a guard condition.
For UML state machines this interpretation can be realised by specifying the
AnyReceiveEvent which is denoted by the keyword any. Because simpler and
arguably more intuitive, the rFSM model adopts the Harel interpretation of
the unlabelled transition as a transition being triggered by any event.

4.7.6 Edge- and Level-triggered Events

In the simplest case, an event represents the one-time occurrence of something.
Based on all events that occurred since the last step, the FSM core reasons to
find and execute a transition and afterwards drops these events. However, in
some cases events are not only valid at a particular time instant, but persist
during a period of time and/or until some action takes place. These two types
of events are called edge and level triggered events, respectively.10 The first are
only valid at one point in time (on the rising or falling edge) while the second
persist for some time, i.e., as long as the level remains high.

Level triggered events are often useful to signal a condition requiring some form
of response. For example this could be a slight over-temperature condition of
a motor during a manipulation task. Eventually, it is necessary to react to
this event and reduce the overall speed, however this can take place after the
current manipulation has completed. Moreoever, level-triggered events permit
expressing the use case of deferred events, which are discussed below.

Level triggered events are quite similar to STATEMATE conditions (Harel and
Naamad 1996). The main difference is that in STATEMATE a condition value
is cached before each step while the rFSM semantics make no assumptions in
this regard. The recommended way to realize a level triggered event in rFSM is
by means of a guard function checking the condition in question. The details
of how this condition is realized strongly depends on the underlying software
framework in use.

4.7.7 Deferred Events

The UML standard permits a state to define a list of deferred events. When
such a state is active, receiving a deferred event will not trigger any outgoing
transitions. Instead this event remains in the queue until a state not deferring
it becomes active. Since deeper nested states deferring events take priority

10In analogy to edge-triggered interrupts in operating systems.



76 COORDINATING ROBOTIC TASKS AND SYSTEMS USING RFSM STATECHARTS

over less nested states (Object Management Group 2011, p. 576), deferred
events can be interpreted as an object-oriented specialisation mechanism
which permits refining the behaviour of less nested states. Because rFSM
adopts STATEMATE’s priority approach to resolve conflicts, a deferred
event mechanism would not violate the principle of compositional robustness.
Nevertheless, the rFSM model does not include deferred events because (i) this
primitive obscures the hierarchical conflict resolution, and (ii) the use-case of
deferred events can be accommodated by a level triggered event. This is because
a deferred event is effectively a level triggered event in disguise; it remains
active (stored in the queue) until it is convenient to be processed. By using
level triggered events, no special defer primitive is required and no additional,
hidden state is introduced in form of a queue of deferred events.

4.8 Concurrency Semantics

State machine parallelism was introduced by Harel and is currently supported
by most specifications, including UML, SCXML and Simulink Stateflow. This
feature permits more than one substate or state machine contained in so called
orthogonal regions to be active, and therefore the concurrent execution of their
associated behaviors.

As robotic applications are inherently concurrent, the concept of parallel states
is generally suitable for modeling these systems. Nevertheless, the weakly
specified semantics of the parallel state element introduce several ambiguities.
For instance, according to the UML standard (Object Management Group 2011,
p. 575), no assumptions are made about the underlying thread environment,
even though this greatly influences both performance and real-time properties of
the executed model. Furthermore, the level at which concurrency is implemented
is left undefined. In the simplest case, parallelism may only mean simultaneous
execution of do behaviours, whereas more elaborate implementations might
choose to implement concurrent entry of individual orthogonal regions. The
latter would require introducing more assumptions: for instance it has to be
decided which of the different regions is entered first and whether the entry is
executed interleaved or sequentially.11

The analysis of existing coordination state machines shows that robotic
coordination, unlike computation, rarely requires such tightly coupled
concurrency. This is due to the fact that coordinative actions generally
consist of issuing commands to lower level, concurrently running computation

11The latter example only holds true if multiple composite transitions emanate from the
same fork.



REFERENCE IMPLEMENTATION 77

components. Therefore, coordination does not benefit from parallelization in
terms of performance as intensive computations do.

On the other hand, supporting distributed state machines is more important to
robotics than the previously mentioned internal concurrency. This is particularly
true for multi-robot applications. Distributed state machine instances must
be able to observe each others’ state and share some events. This approach
has several advantages compared to parallel state machines: essentially, the
complexity of parallel states and the associated assumptions on the threading
environment can be avoided. Furthermore, the aspect of communication is moved
out of the implementation and thereby made explicit, which is a best practice
advocated in the 4Cs design paradigm. If, for instance, the communication
between two FSMs breaks, an explicit event can be raised. The system architect
can select a communication middleware suitable for the particular purpose.
The downside is that additional effort is required to deploy such a distributed
state machine. However, this process is generally suited to be automated by
deployment tools.

A generic pattern of distributed sub-states is described in Section 4.10.5.

4.9 Reference Implementation

To illustrate the applicability and the exact semantics of the described
model, a complete reference implementation of rFSM statecharts has been
developed(Klotzbuecher 2011). As of today, this execution engine provides
support for all mechanisms described in this chapter, apart from internal events
and history connectors, which are expected to be added soon.

This rFSM engine is implemented as an internal domain specific language (DSL)
(Fowler 2005) in the Lua programming language (Ierusalimschy, de Figueiredo,
and Filho 1996). Internal DSL are built on top of an existing programming
language, while external DSL are developed from scratch. By reusing existing
infrastructure, internal DSLs are significantly easier to create and maintain
than external ones. Moreover, internal DSLs can very easily be combined with
programs of the host language or even with other DSLs. This extensibility is
an important requirement for a state machine implementation, whose major
purpose is to execute user defined actions according to the specified state
machine model. The only disadvantage of an internal DSL is that its syntax is
constrained by the host language. In practice this limitation is often acceptable
given the reduction in development time and the simplicity gained for combining
DSLs together.



78 COORDINATING ROBOTIC TASKS AND SYSTEMS USING RFSM STATECHARTS

Besides being suitable for building DSLs, the Lua language was chosen for the
following reasons. Firstly, the language is designed to be both embeddable and
extensible, which is reflected by the small memory footprint and straightforward
foreign function interface. These properties are important since distributed
coordination implies multiple Lua instances executing state machine instances
embedded within components of a robotic software framework. Secondly, Lua
offers a simple syntax that facilitates less experienced programmers not familiar
with C++ or Java to build state machines; nevertheless, the language is mature
and semantically well grounded by being strongly influenced by the Scheme
language (Ierusalimschy, de Figueiredo, and Celes 2007). Moreover, the use of
a scripting language contributes to the robustness of a system, because scripts,
in contrast to C/C++, can not easily crash a process and thereby bring down
unrelated computations executed in sibling threads. This property is essential
for the aspect of coordination, that, as a system level concern, has higher
robustness requirements than regular functional computations.

The following Listing shows the textual input model corresponding to the model
of Figure 4.2.

return state {
following = state {},

paused = state {
entry = function () ArmController : stopArm () end ,
exit= function () ArmController : startArm () end

},

transition { src='initial ', tgt='following ' },

transition { src='following ', tgt='paused ',
events ={ 'e_untracked ' } },

transition { src='paused ', tgt='following ',
events ={ 'e_tracked ' } },

}

Listing 4.3: Textual model of Ball-tracking FSM.

This model is a valid Lua program representing a tree of states constructed
using the table data type. When loading this file, the Lua interpreter performs
basic syntax checking and instantiates the data structures. Note that this
requires no effort by the DSL developer; it comes for free for an internal DSL.
Next, the rFSM engine carries out basic validation and transformation of the
tree structure to a graph ready for efficient execution. The validation is very
limited and only concerned with detecting common structural errors. Formal
verification of Statecharts has been treated in literature (Borland 2003; Mikk,
Lakhnech, Siegel, and Holzmann 1998; Zhao and Krogh 2006) and outside the
scope of this work.



REFERENCE IMPLEMENTATION 79

Composition of states is supported through the rfsm.load primitive. For
instance, to reuse an existing following state machine defined in a file, line 2
of Listing 4.3 could be defined as follows:

following = rfsm.load (" following_fsm .rfsm ")

As illustrated by example 4.3, a state machine developer will use Lua functions
to implement behaviour in form of entry, do,12 exit and effect programs.
Calls to low-level C/C++ are easily integrated by means of the foreign function
interface, as described below for the OROCOS/RTT framework.

Hooks are the key mechanism to extend and embed rFSM statecharts by means
of custom, user defined functions. The most important hook is getevents, that
allows customizing where events are retrieved from. A getevents function is
expected to return a list of events that occurred since the last invocation and
will be called by the rFSM engine one or more times during the execution of a
step. The example in Listing 4.9 shows a sample getevents hook to retrieve all
new events from a port events_in in the context of the Orocos RTT framework.
The second part illustrates how the FSM is customized with this hook.

function rtt_getevents ()
local ret = {}
while true do

local fs , event = events_in :read ()
if fs ~= 'NewData ' then break end
ret [# ret +1] = event

end
return ret

end

return state {
getevents = rtt_getevents ,
following = state {},
...

}

Since retrieving events from ports is very common when using rFSM with
Orocos RTT, the auxillary function gen_read_events(port1, port2,... is
provided in the module rfsm_rtt to automatically generate a getevents hook
to read all events from the given ports.

Other hooks include pre_step_hook and post_step_hook that are called before
and after a step is executed respectively. These are lowlevel hooks mainly used
by extensions, such the time-event plugin that checks for expired timers or
the event memory plugin described in Section 4.10.4 to keep track of occurred
events. The rfsm module-level preproc hook allows registering functions that

12In the reference implementation do is renamed to doo to avoid conflicts with the
homonymous Lua keyword.



80 COORDINATING ROBOTIC TASKS AND SYSTEMS USING RFSM STATECHARTS

will be called at initalization time and can be used to preprocess or validate the
rFSM model prior to execution. An example use is for transforming platform
independent task models to rFSM hooks, as explained in Section 4.10.2.

4.9.1 Software Framework Integration

The reference implementation is implemented in pure Lua and has no
dependencies whatsoever. This permits standalone use which is convenient for
testing and debugging of statecharts. To use the implementation in the context
of robotic software frameworks requires a plugin to make the primitives of these
frameworks available within Lua. We have developed such bindings for the
OROCOS Real Time Toolkit (RTT) (Soetens 2006) that permit interacting with
Components, Services, Operations, Input- and Output Ports and data types. A
RTT LuaComponent is an initially empty container into which Lua programs
can be loaded. This approach permits treating Coordination components just
as regular computational components that are configured to load Coordination
statecharts. Event driven input ports can be used to trigger dormant components
upon receiving events and output ports are used to emit events. Using the
standard communication primitives of a framework avoids duplicating these
mechanisms for the sake of Coordination.

4.9.2 Considerations for Hard Real-Time Execution

The RTT framework provides a hard real-time safe execution environment for
components. Naturally, real-time requirements exists also at the Coordination
level. Satisfying hard real-time constraints for interpreted, garbage collected
languages poses several challenges. Firstly, the allocation of memory must take
place in a temporally deterministic way, which is typically not guaranteed to be
the case for the default memory allocators of general purpose operating systems
such as Linux. Secondly, the recuperation of unused memory must take place
in a way that does not interfere with the nominal execution.

Our approach achieves deterministic allocation by extending the Lua interpreter
to use an O(1) memory allocator (Masmano, Ripoll, Balbastre, and Crespo
2008). To achieve deterministic recuperation in critical real-time paths, the
Lua garbage collector is stopped and manually controlled. Further details can
be found in (Klotzbuecher, Soetens, and Bruyninckx 2010) (Klotzbuecher and
Bruyninckx 2011).



PATTERNS AND BEST PRACTICES 81

4.9.3 Representing Events

In the majority of examples and real applications we have represented events
using strings. While the rFSM implementation permits any comparable type to
be used, the string representation is convenient for humans and still reasonably
fast. Provided that memory is preallocated correctly, string events can even be
used in hard real-time. Nevertheless, depending on the application, significant
overhead could be avoided by denoting events using numbers. To take advantage
of the performance of the numeric representation and the readability of string
events, the latter could be transformed to the former at load time using an
rFSM pre-processing hook defined as a rFSM plugin.

4.10 Patterns and Best Practices

This Section discusses reoccurring patterns and best practices in robotic
coordination and their realization using rFSM.

4.10.1 Models of State Machine Progression

An important decision a statechart designer needs to take is to define how and
when a statechart is advanced. Harel (Harel and Naamad 1996) describes two
basic approaches: the asynchronous and synchronous model (see Section 9, “Two
models of time”). The synchronous model assumes that one step is executed
every time step, thereby causing the state machine to react to events and
changes that occurred since completion of the previous step. In contrast, the
asynchronous model advances the state machine only upon receiving events
and is typically configured to execute as long as events are available. These
two models correspond to the paradigms of event-triggered (ET) and time-
triggered (TT) systems (Kopetz 1993; Kopetz and Bauer 2003) and have received
thorough treatment in literature. In summary, the TT architecture offers several
advantages over the ET architecture, including exact predictability of temporal
behavior and allowing for systematic formal verification of temporal properties.
In contrast, ET-systems generally require substantial testing to ensure that
deadlines are met. Unfortunately, open and uncertain environments common
in robotics require significant effort to determine the necessary granulation of
observation lattice and maximum execution times (Kopetz 1993).

While the rFSM model and reference implementation support both models,
each model has different use-cases for which it is appropriate. The asynchronous
model is best suited for coordination scenarios in which multiple components,



82 COORDINATING ROBOTIC TASKS AND SYSTEMS USING RFSM STATECHARTS

possibly running at different frequencies, are coordinated. To this end, a
dedicated Coordination component with its own activity is introduced. When
new events are received, the state machine component is woken up and run (via
the run function) and permitted to execute until it goes idle (which happens
if there are no events in the queue and there is no active do function). Input
events can originate from various sources: user commands, error events from
computational components or filtered and processed raw events. Outputs may
consist of performing actions such as starting or stopping components, creating
or destroying connections, invoking component services, or configuration of
parameters.

The synchronous execution model is suitable for coordination that takes place
at a fixed frequency. The typical use case is coordination of a single component.
For each cycle of the computation, the step function of the FSM is invoked to
advance the state machine. This results in at most one transition being executed,
taking into account all events that occurred since the last step. In contrast
to the asynchronous model, the coordination can be executed conveniently
within the activity of the coordinated host component. For instance, a PID
controller component can be decorated with a discrete task-aware coordinator
that monitors and adjusts control parameters according to the current task
state.

In practice, hybrid models combining both asynchronous and synchronous
advancing of state machines have often proven to be useful. This behaviour
can be achieved by connecting a periodic timer component in addition to
other asynchronous event sources to the incoming event port of a coordination
component. This way, the coordinator is guaranteed to wake up for processing
at a minimum rate defined by the timer component. However, if events arrive
in between timer events, the coordinator will react instantly.

Note that such timer events should be understood in the broadest possible sense
of time: the events do not have to be emitted at fixed intervals of real-time,
but may be raised according to a virtual task-specific clock. For instance, a
virtual time could be derived from physical system properties such as the current
velocity.

4.10.2 Defining Platform and Robot independent Coordina-
tion Models

For reusing coordination models on different robots and with different software
frameworks, it is necessary to avoid introducing dependencies on these aspects.
A simple way to achieve this is to encapsulate the platform specific functions



PATTERNS AND BEST PRACTICES 83

used by the FSM in modules. A supported platform must then provide
implementations satisfying the required FSM API.

The downside of this approach is that platform independence is only achieved
for the FSM, but not for the behavior hidden in the opaque functions. Platform
independence including this aspect becomes possible if the behavior of states
can be formally modelled in a platform independent way. To this end, the
statechart model is specified such that states reference platform independent
task models. By means of a plugin realized using a rFSM pre-processing hook,
the platform independent task models are dynamically transformed to platform
specific rFSM hook functions at initalization time. The following example
illustrates this transformation for a statechart coordinating end-effector motions.
The motion specifications are expressed in the task frame formalism, a hybrid
force-velocity control robot programming formalism (Mason 1981; Bruyninckx
and De Schutter 1996).

Listing 4.4 shows a rFSM statechart modeling a robot arm moving down using
velocity control and aligning upon entering in contact. Motion models are
specified in an external module tff_motions and not further described here.
Examples of the TFF motion DSL can be found in (Klotzbuecher and Bruyninckx
2012). States reference task models using a keyword task. Introducing this is
legal since rFSM is implemented as an open model, signifying that keywords
not part of the rFSM model are ignored instead of treated as errors.

require " rfsm_tff "
require " tff_motions "

return state {
move_down = state {

task = tff_motions [" move_down "],
},
push_down = state {

task = tff_motions [" push_down "],
},
transition { src =" initial ", tgt =" move_down " },
transition { src =" move_down ", tgt =" push_down ",

events ={" e_contact "} }
}

Listing 4.4: rFSM model referencing TFF motions models.

Prior to executing the statechart model, the referenced task models need to
be transformed to standard rFSM hook functions. This is achieved using the
rfsm_tff plugin, shown in Listing 4.5. This plugin installs transform_tff as
a rfsm pre-processing hook for carrying out the transformation at initalization
time (line 13). This function in turn uses the rFSM mapfsm higher-order function
to invoke tff2hooks on all states of the FSM (line 10). For each state defining a
task, tff2hooks generates a function (using tff_rtt.gen_apply in line 5), that



84 COORDINATING ROBOTIC TASKS AND SYSTEMS USING RFSM STATECHARTS

when called commands the TFF controller to apply the given TFF motion using
the respective platform specific mechanism. This function is set as an entry
function such that this motion will be executed upon entering the state. In this
way, the abstract task model rFSM statechart is transformed to an executable,
platform specific rFSM instance. Though functional, the example is intended
to be illustrative; for instance the Orocos RTT specific tff_rtt.gen_apply
function should not be hardcoded but become a parameter of the rfsm_tff
module.

1 module (" rfsm_tff ")
2
3 function tff2hooks (s)
4 if tff. is_TFFMotion (s.task) then
5 s. entry = tff_rtt . gen_apply (s.task)
6 end
7 end
8
9 function transform_tff (fsm)

10 rfsm. mapfsm (tff2hooks , fsm , rfsm. is_state )
11 end
12
13 rfsm. preproc [# rfsm. preproc +1] = transform_tff

Listing 4.5: Dynamical transformation of TFF models to rFSM hook
functions using plugin.

The plugin approach permits easily adding further preprocessing or validation
steps. For instance, an additional robot specific plugin could be used to ensure
that the used forces and velocities are within the limits of the actual capabilities
of the robot.

4.10.3 Best practice Pure Coordination

Most coordination models do not restrict the primitives that can be used
in actions, as for instance rFSM does not constrain the entry, do, exit,
and effect functions in any way. In contrast, a pure coordinator limits
its side-effects to exclusively raising events and has the following advantages.
Firstly, the reusability of coordination models is increased by drastically limiting
dependencies on platform specific actions. Secondly, the blocking invocation
of operations on functional computations is avoided, thereby improving the
determinism of the Coordinator. Lastly, Coordinator robustness is increased by
avoiding operations that might block indefinitely or crash, either of which may
effectively render the coordinator inoperative.

To that end we propose splitting the rich coordinator component that executes
actions itself into a Pure Coordinator and a Configurator. Although the



PATTERNS AND BEST PRACTICES 85

coordinator remains in charge of commanding and reacting, the execution
of actions is deferred to the Configurator. The Configurator is configured with
a set of configurations that it will apply upon receiving the corresponding
event. This pattern, called Coordinator–Configurator, has been implemented
as a Configurator domain specific language for the Orocos RTT framework.
More detail on pattern and DSL can be found here (Klotzbuecher, Biggs, and
Bruyninckx 2012).

A pure coordinator requires to be informed via events about relevant changes in
system state. This can be achieved in two ways: on the one hand by introducing
an explicit monitor component that is configured with constraint-event pairs.
When a constraint is violated, the corresponding event is raised to inform
the coordinator. The other approach is to extend computational components
themselves to raise events when (configurable) constraints on their internal
state are violated. In general, the latter approach should be preferred if the
constraint is specific to the computation, as it avoids the need to communicate
state to a monitor. However, if the constraint is application specific, the monitor
component is preferrable, since it preserves reusability of the computational
component. This trade-off is further elaborated in the step by step example
given in Section 4.11.

4.10.4 Event Memory

The default behaviour of statecharts is to avoid any state apart from the
currently active configuration; all events are discarded after the execution of a
step. One the one hand, this improves the deterministic nature of statechart
execution by avoiding hidden state (e.g. in the form of deferred events). Yet,
on the other hand, event-only coordination is complicated, in particular for
distributed statecharts. Consider the example shown in Figure 4.12. This
coordinator must wait in state init_subfsms until it receives an event from
each sub-FSM, signalling that initialisation has completed. The problem with
this implementation is that the transition will not be enabled, unless both
events are received at exactly the same step.

The proposed solution to this problem is to extend each state with memory
of the events that were received while this state was active. This permits to
check if (and how often) an event has occurred while the transition source
state is active. The rFSM reference implementation provides an event memory
extension in form of a plugin, that when loaded keeps track of this information.
That way, the problem can be solved by reformulating the transition using
a guard as show in Listing 4.6. Using the recorded event history, the guard



86 COORDINATING ROBOTIC TASKS AND SYSTEMS USING RFSM STATECHARTS

init_subfsms

running

e_subfsm1_init_done &
e_subfsm2_init_done

Figure 4.12: Dealing with inter-step history.

condition will inhibit the transition until both required sub-FSM events have
been observed while residing in the source state of the transition.

guard = function (tr)
return tr.src.emem. e_subfsm1_init_done > 1 and

tr.src.emem. e_subfsm2_init_done > 1
end

Listing 4.6: Event memory based guard condition.

Moreover, event memory can support detection of erroneous FSM behaviour,
such as reception of too many of a particular event within a time step. A trigger
to detect such conditions can check whether the number of a certain error event
divided by the number of virtual time-events (Sec. 4.10.1) does not exceed a
threshold.

4.10.5 Distributed Substates

The following paragraphs describe a generic pattern for implementing distributed
statecharts. The approach is generic since it permits expressing concurrency at
different levels of distribution, ranging from states distributed over a network
to the traditional, closely coupled, thread-level parallelism.

The pattern is illustrated by the state machines in Figures 4.13 and 4.14, which
are subsequently called the top and bottom half of the generic distribution
mechanism.13

The first Figure shows a container, the top half of a distributed state. Its
purpose is to activate and deactivate the (semantically) contained, concurrent
substates on entry and exit respectively. Depending on the type of parallel
state the entry function will carry out different actions: for a local thread-level
distributed state it might spawn a new thread for each substate. For a parallel

13Apart from the name, the concept of top and bottom half has no relationship to the
(obsolete) interrupt handling mechanism of the Linux Kernel.



PATTERNS AND BEST PRACTICES 87

entry: 
    activate_substates()
exit:
    deactivate_substates()

distributed_state

Figure 4.13: Distributed state.

distributed_substate

e_sub_activate e_sub_inactivate

inactive

active

rfsm.load(file)

Figure 4.14: Distributed substate.

substate distributed over the network it might connect to a running and waiting
instance. Substate activation and deactivation is achieved simply by sending
the corresponding events to the bottom half.

Each distributed substate, the bottom half, is formed by a generic substate as
shown in Figure 4.14. This state contains two states active and inactive that
are connected by transitions. The active state includes the application specific
state machine, that is entered per default via its initial connector once the
active state is entered. This way, the top half can control the execution of the
bottom half by sending it the events e_sub_activate and e_sub_inactivate.
Likewise, by observing the active state of the bottom half the top half can
determine when all substates have successfully been entered or exited.

Using this pattern formed by two FSM, any hierarchical state machine can
be distributed independently of the form of distribution and obeying the
rules of hierarchical statecharts. The only requirement is that events can
be communicated between distributed instances.

Communication and Deployment By distributing state machines as described
above, the communication between these instances is made explicit. To
implement this, an asynchronous message passing mechanism (to communicate
events) is most suitable. Communication is required for notifying a distributed
state to activate or deactivate its sub-state machines, for propagating events
between the two halves and for notifying the top half about state changes in



88 COORDINATING ROBOTIC TASKS AND SYSTEMS USING RFSM STATECHARTS

the bottom half. The latter is necessary, for example, in the exit function of
the top half, which must wait for all substates to enter the inactive state
after sending e_sub_inactivate event. This mechanism is similar to the
in(<state>) conditions available in STATEMATE.

An important question is which events are communicated between event
sources and sinks (statecharts, but also computational components). Generally,
statecharts deal robustly with unused events by simply dropping these.
Nevertheless, it is a good practice to limit the communicated events to the set of
events that can trigger a peer statechart. Besides reducing the communication
load, this avoids accidentally triggering unlabelled transitions and reduces the
likeliness of event buffer overflows. In practice, this can be straightforwardly
achieved by introducing two (or more) functions raise_local(eventB) and
raise(eventA) that raise events locally or globally to a statechart, respectively.

Moreover, depending on the system it might be necessary to introduce buffers
for storing events until they are retrieved by the statechart engine. Whether
this is necessary or not depends on the worst-case number of events that can
be raised simultaneously by all peer event sources, and the model of state
machine progression (see Section 4.10.1). Complementary to this, Complex
Event Processing techniques can help to reduce the number of events prior to
being fed to a statechart.

A further, important issue concerns the reliability of the communication channel.
In case of unreliable communication (such as UDP), event messages might get
lost or be duplicated. Robust statecharts can deal with these issues by different
means: for instance time triggered timeout transitions can re-raise events if
the expected conditions are not met; likewise the for the receiving statechart
non-nominal behaviour should be dealt with by explicitly defining transitions
that trigger when expectations are violated.

4.10.6 Serialised Locally Distributed States

The most common motivation to use parallel (and hence also distributed) sub-
states is to improve performance by parallelization. A less common use-case,
nevertheless more relevant to the domain of coordination, is for combining
behaviours that must be executed concurrently but that shall be kept separated
for reasons of reusability (of each of the behaviours individually).

An example of this can be found in the coordination FSM of the iTaSC
framework (De Schutter, De Laet, Rutgeerts, Decré, Smits, Aertbeliën, Claes,
and Bruyninckx 2007), that requires composition of a generic (to the iTaSC
framework) state machine with another state machine defined by the application



PATTERNS AND BEST PRACTICES 89

developer. The generic state machine first triggers all task-level FSMs to run
at the right time. The second, user-defined FSM implements the overall task
execution. Although both parts must always be executed after each other
(first the generic, then the user defined) it is desirable to keep them specified
separately to be able to reuse the generic part. To achieve this composition, a
state named serialised-locally-distributed state (SLDS) was introduced. This
name originates from the fact that the sub-states are advanced one by one in a
serialised way in the same activity (thread) as the parent state machine. More
concretely, a SLDS state can conveniently be realised as a leaf state that triggers
all substates in its do function. This way, both FSMs can be composed from
separate models at a late stage, during the loading of the SLDS state.

To concisely specify the behaviour of this type of state, additional properties
must be defined: in which (partial) order shall the substates be advanced, shall
this take place by invoking step (and how often?) or run? Shall non-idle
sub-states result in the do of the SLDS to become non-idle too? As a side
note, the considerable number of parameters required by the implementation of
this most simple form of parallel state illustrates the complexity introduced by
this family of model elements and confirms our approach to exclude these as
primitives.

4.10.7 Discrete Preview Coordination

Discrete Preview Coordination is inspired by the concept of preview control
(Sheridan 1992), but also by compiler branch-prediction techniques such as gcc’s
(GNU Compiler Collection) __builtin_expect. The basic idea is to exploit
knowledge about the future behaviour of a system to optimise the current actions.
In order to apply preview techniques to discrete coordination, we extend the
core rFSM model as follows: transitions are extended with an optional Boolean
likely attribute and states with an additional prepare action. While checking
for enabled transitions from the currently active states, the preview mechanism
will additionally check for transitions that are likely. If such a transition is
found, the transition target state’s prepare action is executed. This way, the
prepare action can be used to prepare the activity of the respective state in
expectation that it might be entered next.

The use of preview coordination is illustrated by the example statechart shown
in Figure 4.15. This statechart models a mobile robot skill for retrieving an
object. Object retrieval consists of three nominal substates of first approaching
the target location, then moving the arm close to the object to be grasped
and lastly grasping the object. Additionally, the situation of unexpected



90 COORDINATING ROBOTIC TASKS AND SYSTEMS USING RFSM STATECHARTS

approach

retrieve_object

handle_collision

grasp

e_collision

e_grasp

arm_to_grasp_pos
entry:
  move_arm_towards_grasp_pos()

[pos_reached=true]

Figure 4.15: Object retrieval without Preview Coordination.

approach

retrieve_object

handle_collision

grasp

e_collision

e_grasp
likely=true

arm_to_grasp_pos
prepare:
  move_arm_towards_grasp_pos()
entry:
  move_arm_towards_grasp_pos()

[pos_reached=true]

Figure 4.16: Object retrieval with Preview Coordination.

collisions is dealt with. For simplicity, details on the realization of approach
and handle_collision are omitted.

The key observations are that firstly, the nominal sequence from approach
to arm_to_grasp_pos will take place most of the time, and secondly, that
the behaviors of approach and arm_to_grasp_pos are neither logically nor
kinematically in conflict and can hence be executed in parallel. To exploit
this knowledge using preview coordination, the statechart from Figure 4.15 is
extended as shown in Figure 4.16.

Firstly, the transition from approach to arm_to_grasp_pos is marked as likely
(likely=true). Secondly, a prepare function is added to arm_to_grasp_pos
for preparing the states behavior. In this case, the prepare function is the same
as the entry function move_arm_towards_grasp_pos(). This assumes that this
function can be invoked more than once and will immediately return if the arm
is already at the desired position.

As a consequence of these extensions, the prepare function of the arm_to_grasp_pos
state is invoked even though the robot is still approaching the grasp position.
This in turn causes the robot arm to be moved to a suitable grasp position,
thereby reducing or even eliminating the time spent in arm_to_grasp_pos after



EXAMPLE: CONSTRUCTING COORDINATION FOR A DUAL-ROBOT HAPTIC COUPLING 91

the approaching phase has completed.

It should be noted that the described Discrete Preview Coordination mechanism
does not improve the expressiveness of the rFSM model; the same result could be
obtained by calling move_arm_towards_grasp_pos() from within the approach
state. The main advantage is, however, that the prepare action can be placed
in the context of the semantically related state, namely arm_to_grasp_pos.
Only this way, both approach and arm_to_grasp_pos states can be reused
independently of each other.

The described preview coordination mechanism has been implemented as a rFSM
plugin that extends the core execution semantics. This preview implementation
permits the likely attribute to be defined as a function that returns true or
false. This way, the likelihood of transitions can change over time and is not
limited to static load time specification.

The described approach currently only considers a preview horizon of one state;
however the rFSM preview plugin could be easily extended to two or more. The
major challenge for applying such multi-state horizons in practice will be to
detect potentially conflicting prepare actions. Such reasoning will require more
formal representation of actions (and thus robot tasks) and is outside the scope
of this chapter.

4.11 Step by step example: constructing coordina-
tion for a dual-robot haptic coupling

The following describes approach and methodology to construct the coordination
of a dual robot haptic coupling.14 Two KUKA youbots are to be coupled in a
bidirectional manner in cartesian space using an impedance controller. That
way, either youbot can be used to move the other and forces applied on one side
can be felt on the other (see figure 4.17).

Furthermore, the coupling shall satisfy the following requirements. Initially,
both arms are decoupled and compensate for gravity, thus they can be moved
freely around by operators. The force coupling between the two robots is only
established once two constraints are satisfied. Firstly, the communication quality
between the two robots must be sufficiently good (here defined in terms of
round-trip latency). Secondly, the end-effector forces that would result from the
coupling must not exceed a certain threshold. In other words, if the end-effectors
of the robots are too far apart (relative to their bases), then the resulting force

14This demo was shown at the Automatica 2012 tradefair in Munich.



92 COORDINATING ROBOTIC TASKS AND SYSTEMS USING RFSM STATECHARTS

Figure 4.17: The youbot coupling demo at the Automatica trade fair. The
forces of pulling on one robot arm are felt on the other side. Once the forces
rise above a threshold, the coupling is disabled and both robot arms are put
into floating mode.

that would pull them together would be too high too, thus preventing the
coupling. Moreover, it shall be possible to manually switch between a five
and eight degrees of freedom mode in which either only the arm or arm and
omnidirectional base are used. This switching shall only be possible when the
coupling is established.

The first step to model coordination is generally to examine the architecture
of computational components. In most cases this architecture is more or less
fixed as a consequence of reusing existing components. Figure 4.18 depicts
the component architecture to control each robot. The coupling is achieved
by connecting each impedance controllers desired position to the peer robots
measured position. The resulting cartesian space force is locally communicated
to the dynamics component that computes the inverse dynamics; the resulting
desired joint-space forces are then sent to the driver for execution.

How many statecharts shall be introduced to coordinate this system? A best
practice facilitating this decision is the following: any subsystem connected
via unreliable or temporally non-deterministic communication should be
coordinated by a separate, loosely connected coordinator. This rules out the
approach of making one robot the master that supervises the slave robot. A
further motivation for introducing two coordinatiors is reuse. Since the same
computational architecture is used on each robot, it should be feasible to achieve
the same symmetry and hence reuse for coordination.



EXAMPLE: CONSTRUCTING COORDINATION FOR A DUAL-ROBOT HAPTIC COUPLING 93

youbot_driver

Cart_Impedance

Dynamics

youbot_coupling

CartForceDes CartPosMsr

JntForceDsr JntForceMsr

from CartPosMsr 
of peer Youbot

to CartPosDsr
of peer Youbot

CartPosDsr

Figure 4.18: Computational component architecture of the dual youbot haptic
coupling.

Next it must be considered how an individual coordination statechart can
obtain the necessary state information from the system. For reactive models
like statecharts, this information is usually best represented by events. For this
application we are interested in the communication quality and the impedance
controller force output CartForceDes. Yet, which component shall raise these
events? Generally, there are two fundamental strategies for this: embedding the
logic of event raising within a computational component or by introducing
a separate monitor component for that purpose. By avoiding additional
communication, the embedding strategy allows for lower latencies than with the
external monitor. On the other hand, the external monitor component avoids
polluting the computational component with application specific details.

For the coupling application one could consider extending the impedance
controller component to raise communication quality events, since it is
receiving the cartesian position from the peer (for instance by determining the
communication latency using the creation timestamp of the received measured
position). This is obviously a bad choice, as it would clutter the controller
component with application specific information. Thus, we introduce a separate,
external communication monitor that determines the communication latency
based on timestamped heartbeat messages exchanged with the remote side.
Based on a configurable quality level, the events e_QoS_OK and e_QoS_NOTOK
are emitted.

In contrast, for raising the force threshold events, the embedding approach
was chosen and the impedance controller extended to raise two events
e_force_thres_exceeded e_force_thres_below upon exceeding respectively
falling below a configurable threshold. Unlike with the communication quality,



94 COORDINATING ROBOTIC TASKS AND SYSTEMS USING RFSM STATECHARTS

comm_mon

coordination_fsm 

computation

Cart_Impedance

Dynamics

youbot_coupling

e_force_thres_exceeded/below

e_QoS_OK
e_QoS_NOTOK

CartForceDes CartPosMsr

CartPosDsr

youbot_driver

JntForceDsr JntForceMsr

events

from CartPosMsr 
of peer Youbot

to CartPosDsr
of peer Youbot

heartbeat_in

heartbeat_out

Figure 4.19: Component architecture with extensions to support coordination.

the desired output is an essential quantity of a controller and hence this event is
likely to be useful in other circumstances. Secondly, to permit simple switching
between gravity compensation and coupling mode, the impedance controller
was extended with a Boolean mode external reference mode (ext_ref_mode).
When true (the nominal case), the external desired position (CartPosDsr) is
taken into account to compute the output force. If false, the external input is
ignore and instead zero forces are output. A functionally equivalent and less
intrusive solution to achieve emitting a zero force would have been to (on-the-fly)
remove the external CartPosDsr connection and instead connect the measured
positions CartPosMsr. However, since rewiring connections is not a real-time
safe operation in Orocos, we opted for the former.

Figure 4.19 shows the extended architecture including a coordination component
containing a (yet to be defined) rFSM statechart, the external monitor
component raising the QoS events and the extended impedance controller
component.

Defining coordination statecharts is best carried out by top-down refinement.
Since statechart priorities are decreasing with depth, this corresponds to starting
with the highest priority states and transitions. For this application this is
the requirement that the communication is established and sufficiently good.
Without communication coupling the robots is impossible. Thus, we introduce



EXAMPLE: CONSTRUCTING COORDINATION FOR A DUAL-ROBOT HAPTIC COUPLING 95

two states synchronized and unsynchronized that model this requirement
(Figure 4.20).

coupling coordination

unsynchronized

synchronized

e_QoS_OK e_QoS_NOTOK

Figure 4.20: Constructing the coordinator, step 1: modeling the communication
quality constraint.

Next we refine the systems behavior by extending the synchronized state
(entered when the communication is good enough) by adding two substates
gravity_comp and copying (Figure 4.21). gravity_comp represents the state in
which the impedance controller output force CartForceDes is too high and hence
gravity compensation is enabled. In copying the actual coupling is established
by enabling external reference mode. Conversely, external reference mode is
disabled upon exiting the copying state, since only that way it is guaranteed that
this mode is disabled no matter how copying is exited. For instance, if external
reference mode were only disabled in the entry function of gravity_comp, the
transition to unsynchronized triggered by an e_QoS_NOTOK when in copying
would result in entering unsynchronized with external reference mode still
enabled.

Note that in contrast to the toplevel transitions between unsynchronized and
synchronized, the transitions between gravity_comp and copying make use
of a guard condition above_force_thres() instead of being triggered by events.
The reason for this is that upon entering the synchronized state the impedance
controller forces will already be either too high or not and the corresponding
events already raised. Thus, if these transitions were triggered only by events,
the gravity_comp state might erronously remain active, unless by chance this
condition just changes after entering gravity_comp.

function above_force_thres ()
local flow_status , value = force_thres_ex :read ()
if flow_status == 'NoData ' then return false end
else return value end

end

Listing 4.7: Implementation of above_force_thres guard condition.



96 COORDINATING ROBOTIC TASKS AND SYSTEMS USING RFSM STATECHARTS

coupling coordination

unsynchronized

synchronized

e_QoS_OK e_QoS_NOTOK

gravity_comp

copying

[ ! above_force_thres() ]

[ above_force_thres() ]

entry: ext_ref_mode(true)
exit:   ext_ref_mode(false)

Figure 4.21: Constructing the coordinator, step 2: modeling the force threshold
constraint.

To realize this guard, the edge triggered events emitted by the impedance
controller can easily be transformed into the level triggered events required
by the guard condition. Listing 4.7 shows how this can be achieved using the
Orocos RTT framework. The latest received event is cached in the coordination
component using a regular data-port (force_thres_ex), that then can be read
and evaluated by the guard condition.

What remains now is only the functionality to switch between five and eight
DOF mode. Once again this is achieved by top-down state refinement, in this
case by extending copying with the two modes, as shown in figure 4.22. The
operator can switch between both modes by sending the e_8DOF and e_5DOF
events respectively. As an optimization, a history connector could be used
instead of a plain initial connector. That way the previously selected mode
would be resumed after an interruption of the coupling.

Using states to model modes works nicely when modes are mutually exclusive.
However consider the requirement to additionally support two switchable modes
low- and high force threshold in which the force threshold is reconfigured
accordingly. Extending copying to support these modes would result in a
combinatorial explosion of states. A good way to solve this is to use an SLDS
state (discussed in Section 4.10.6) to compose the orthogonal modes as separate,
concurrent substates.



DISCUSSION 97

coupling coordination

unsynchronized

synchronized

e_QoS_OK e_QoS_NOTOK

gravity_comp

copying

[ ! above_force_thres() ]

[ above_force_thres() ]

entry: ext_ref_mode(true)
exit:   ext_ref_mode(false)

8DOF_mode5DOF_mode

e_8DOF

e_5DOF

Figure 4.22: Constructing the coordinator, step 3: adding modes

4.12 Discussion

This chapter describes a statechart model consisting of a minimal number of
semantic primitives necessary for constructing practical robotic coordination.
This minimality approach has the advantage of reducing implementation
complexity, avoiding introducing unnecessary assumptions (as for instance
the aforementioned communication properties) and being simple to understand
and use.

Nonetheless, a minimality approach also has some disadvantages. For one it
places a higher burden on developers to construct the required composites.
We intend to address this by introducing a standard library of coordination
extensions. First mechanisms included are event memory, the serialised locally-
distributed state and the preview coordination extension.

Additional effort is also required for deploying a distributed statechart, as
connections and communication must be configured between the different
FSM. This involves considering communication reliability, defining buffer sizes,
triggering and buffering policies. Little if any tooling exists to support this
process; tools for deploying computations might be of some help, yet the different
characteristics of coordination will most likely require dedicated tools. As an



98 COORDINATING ROBOTIC TASKS AND SYSTEMS USING RFSM STATECHARTS

example, having multiple simultaneously active writers communicating data
to a single reader is often an erroneous situation for Computations (e.g. only
one controller may command a robot at a time). Conversely, it is common to
connect multiple, active event sources to one Coordination statechart.

For using the rFSM model in the context of complex distributed robotic systems,
we propose to make exclusive use of pure coordination. Pure coordination
can be achieved by rigorously separating the concerns of Computations from
Coordination; more concretely by limiting Coordination actions to exclusively
raising events. The benefits of adhering to this best-practice are increased
robustness and reusability of Coordination. The drawback, however is that as
of today few components provide sufficiently expressive constraint configuration
interfaces; one reason for this being presumably the lack of a generic mechanism
to specify condition-event pairs on internal state of computations.

One motivation for choosing graphical models (as statecharts) to model complex
systems is their apparent ease to be understood by humans. Yet surprisingly
few tools exist to visualise graphical models (online or offline) by performing
automatic layout and rendering of the textual representation. The tool most
widely used for this purpose is probably graphviz (Gansner and North 2000),
that is also used by the rFSM reference implementation for visualising statechart
models. Unfortunately, the generated representation, especially when involving
hierarchical states, is often suboptimal15; significant fine tuning of layout
parameters only resulted in a marginal improvement. Nevertheless, this simple
tool has proven invaluable to validate that a model specified in textual form
does indeed correspond to the graphical model the developer has in mind. We
intend to address this topic in future work.

4.13 Conclusion and Future Work

We have presented a lightweight Coordination statechart model that is derived
by analysing and extracting a minimal subset of model elements from existing
formalism. The proposed rFSM model is graphically a subset of UML with
simplified execution semantics derived from the well known STATEMATE
statecharts. By selective inclusion of model elements, many of the corner
cases and additional rules required by existing formalism can be avoided, thus
simplifying both implementation and coordination models themselves.

Instead of providing a rich set of built-in features for all possible use-
cases, the rFSM model advocates dealing with complexity by composition.

15Optimality defined by how a human would draw a statechart, as is the case with all
figures (apart from Figure 4.10) in this chapter.



CONCLUSION AND FUTURE WORK 99

Composition means both local hierarchical composition of Statecharts or
distributed composition as described in Section 4.10.5 as well as composition of
core execution semantics with run-time extensions such as event memory.

To back up these claims we implemented an extensible, framework independent,
real-time safe reference implementation based on the Lua scripting language.
The featurewise almost complete rFSM core engine currently amounts to less
than 830 lines of code16. This reference implementation has successfully been
integrated into the OROCOS RTT software framework and applied to a wide
range of use-cases.

Moreover, we describe several best-practice patterns of robotic task and system
coordination that were discovered during our work. These patterns serve
to highlight frequent coordination design issues together with best practice
solutions, with the goal of fostering adoption of the rFSM model.

Up to now, the described rFSM model has been sufficient to describe all robotic
task and system coordination we encountered, hence there currently seems no
need for extensions to the core model. On the other hand we observe a severe
lack of tools to support creating, deploying and visualising rFSM statecharts
and Coordination models in general. We intend to address this in future work.

16Calculated using the cloc(1) tool.





Chapter 5

Reusable hybrid force-velocity
controlled motion
specifications with executable
domain specific languages∗

5.1 Abstract

Most of today’s robotic task descriptions are designed for a single software and
hardware platform and thus can not be reused without modifications. This
work follows the meta-model approach of Model Driven Engineering (MDE)
to introduce the concepts of Domain Specific Languages (DSL) and of Model
Transformations to the domain of hybrid force-velocity controlled robot tasks,
as expressed in (i) the Task Frame formalism (TFF), and (ii) a Statechart
model representing the discrete coordination between TFF tasks. The result
is a representation in MDE’s M0, M1, M2 and M3 form, with increasingly
robot and software independent representations, that do remain instantaneously
executable, except obviously for the M3 metametamodel. The Platform Specific
Model information can be added in three steps: (i) the type of the hybrid
force-velocity controlled task, (ii) the hardware properties of the robot, tool and

∗This chapter is based on: Klotzbücher, M., Smits, R., Bruyninckx, H., and De Schutter,
J. Reusable hybrid force-velocity controlled motion specifications with executable domain
specific languages. In Proc. IEEE/RSJ Int. Conf. Int. Robots and Systems (San Francisco,
California, 2011), pp. 4684–4689.

101



102 REUSABLE MOTION SPECIFICATIONS WITH EXECUTABLE DSL

sensor, and (iii) the software properties of the applied execution framework. We
demonstrate the presented approach by means of an alignment task executed
on a Willow Garage PR2 and a KUKA Light Weight Robot (LWR) arm.

5.2 Introduction

The Task Frame formalism (TFF) was introduced by Mason (Bruyninckx and
De Schutter 1996; De Schutter and Van Brussel 1988; Mason 1981), to specify
hybrid force position/velocity control operations. This formalism identifies six
force- and velocity-controlled directions, coinciding with the axes of a single
frame, the Task Frame or Compliance Frame. The TFF abstracts from the exact
robotics hardware (manipulator, sensor, tool) and software (hybrid force/velocity
controller) that are used to execute the task, but these “platform-dependencies”
are introduced implicitly via the force and/or velocity setpoints that are required
in each degree of freedom. Although being used in practice by many labs and
in many applications, the TFF representation has never been standardized,
which would be the first step towards reuse of the same task specification over
multiple applications and robot platforms. This chapter makes a first attempt
towards such “standardization”, in the established context of the Model Driven
Engineering (MDE) framework1, more in particular, by using the concepts
of (i) a Domain Specific Language (DSL), and (ii) metamodeling, (Atkinson
and Kühne 2003; Flatscher 2002). The added value of this work lies in the
structured way to deal with various platform-dependencies: (i) the type of
the hybrid force-velocity controlled task, (ii) the hardware properties of the
robot, tool and sensor, and (iii) the software properties of the applied execution
framework.

Domain Specific Languages are lightweight programming languages designed to
concisely express the concepts of a particular domain. Commonly two types
are distinguished: internal and external DSL. The first are built on top of an
existing language while the second are developed from scratch. By reusing
existing infrastructure, internal DSL are much easier to create and maintain
than external ones. The only disadvantage of an internal DSL is that its
syntax is constrained by the host language. In practice this limitation is often
acceptable given the reduction in development time and the ease of combining
DSLs together. In this work we define multiple internal DSL to facilitate
programming with the TFF. The goal of this is threefold: firstly to support
the programmer in constructing complex behaviors in an intuitive way (via

1The Object Management Group (Object Management Group b) is the main driver of
standardization in the context of Model Driven Engineering, for which it uses the trademarked
name Model Driven Architecture.



INTRODUCTION 103

the familiar concept of a finite state machine, secondly by facilitating reuse of
these behaviors or parts thereof in new applications (via the introduction of a
TFF-centric DSL), and thirdly to cleanly separate the generic behavior from
robot hardware and software framework dependent aspects (via MDE’s four
levels of modeling, as depicted in Figure 5.1).

Figure 5.1) sketches a systematic approach to model a certain domain in four
levels of abstraction; in this chapter’s context of TFF robot tasks, these four
levels have the following meaning:

M0: the level of the concrete implementations, for example, using particular
C++ libraries for execution of TFF specifications, using the Orocos and/or
ROS framework.

M1: the level of a platform-specific TFF specification DSL, using the force and
velocity setpoints that are appropriate for, for example, the KUKA LWR,
or the PR2.

M2: the level of the platform-independent TFF specification DSL, which
provides a parameterized template for each sub-task, in which the platform-
specific setpoints have to be filled in later.

M3: the highest level of abstraction, that is, the model that represents all the
constraints that a DSL has to satisfy in order to be a valid TFF DSL.

This chapter gives DSL implementations on the M1 and M2 levels, and assumes
that an implementation for the M0 level is available. For the M3 level the Ecore
language is used.2

To illustrate our approach, we modeled and implemented an object alignment
task, and executed it on different robot platforms (see Figures 5.2–5.3). This
task is one of the simplest ones that still shows all relevant concepts introduced
in this chapter. (The focus of this chapter is on the concepts, and not
on the complexity or innovation of this particular task.) Figure 5.2
shows the steps of the alignment task executed by a KUKA LWR. The top-left
image shows the unaligned initial position of the manipulator, from which the
arm holding the object moves down with a constant velocity until contact with
a surface is detected (top right). This triggers a transition to a force-controlled,
pushing-down motion which causes the end effector to align perpendicular to
the surface. After the alignment has completed, a sliding motion (velocity
control in the direction towards the right-hand side fixture, and force control
perpendicular to the surface) is executed (bottom-left image). When contact is

2Ecore is the M3-level metametamodel language standardized by the Eclipse EMF
consortium, www.eclipse.org/emf.



104 REUSABLE MOTION SPECIFICATIONS WITH EXECUTABLE DSL

metametamodel

meta
model
(DSL)

meta
model
(DSL)

domain
model

domain
model

domain
model

conforms-to

conforms-to

M3

M2

M1

M0

instance of

Real-world systems

DSL
Designer

DSL
User

Figure 5.1: The four levels in OMG’s standard for the role of Domain Specific
Languages in Model Driven Engineering.

established with the fixture, a sideways pushing motion is activated, resulting
in alignment against the fixture (bottom right image). Figure 5.3 shows the
same alignment task being executed by one arm of a PR2 robot.

5.2.1 Related work

The first integrated programming and simulation environment for the Task
Frame Formalism was COMRADE (Bruyninckx and De Schutter 1996; Van de
Poel, Witvrouw, Bruyninckx, and De Schutter 1993). COMRADE reduced the
task specification into three steps: (i) initialize the model by specifying the Task
Frame and selecting the force- and velocity-controlled directions, (ii) choose
the desired values for each force and velocity and (iii) specify the termination
conditions for the motion. Coordination of such TFF tasks into possibly
complex sets of tasks and subtasks, was introduced by (Finkemeyer, Kröger,
and Wahl 2005), using finite state automata. This chapter’s DSLs encompass
both aspects (task execution as well as the coordination of the execution of
various tasks), but decouples them by providing two different DSLs for each of
the two responsibilities. This approach is less coupled to a specific behavioral
model, and permits easier integration with any formalism suitable for modeling
coordination. In addition, we describe a concrete approach for integrating these
behavioral models with different robots and software frameworks.



DOMAIN SPECIFIC LANGUAGES FOR M1, M2, M3 105

Figure 5.2: The alignment task executed by the KUKA LWR, with an
implementation based on Orocos/RTT.

5.3 Domain Specific Languages for M1, M2, M3

For the M1 and M2 level, this chapter presents DSLs specified using the Lua
extension language (Ierusalimschy, de Figueiredo, and Filho 1996). In principle,
any scripting language could serve the same purpose, but Lua is one of the
few that can be used with real-time performance (Klotzbuecher, Soetens, and
Bruyninckx 2010). Moreover, Lua has already been integrated into several
robotic software frameworks, including Orocos/RTT and ROS. Sections 5.3.1
and 5.3.4 introduce the DSLs (at the M1 and M2 levels), to represent one single
TFF task and the discrete coordination of multiple TFF tasks, respectively.
The M3 level is briefly touched upon in Section 5.3.2, and Section 5.3.3 explains
the M0-level implementation.



106 REUSABLE MOTION SPECIFICATIONS WITH EXECUTABLE DSL

Figure 5.3: The alignment task executed by the PR2, with an implementation
based on Orocos/RTT and ROS.

5.3.1 M1- and M2-level TFF-DSLs

At the M2 level, the TFF-DSL defines a template for each type of hybrid
force/velocity controlled TFF specification. For example, move_down moves
the end effector downwards with a constant velocity, or push_down applies
a force downwards with the other directions force-controlled and set to zero.
compliant_slide_x controls the arm to move in the x-direction while applying
a force downwards. The DSL follows very straightforwardly from the descriptions
in (Bruyninckx and De Schutter 1996); the following listing shows three sample
TFF-DSL specifications:

push_down = motion_spec :new {
xt= ax_spec :new{ type='force ', value =0, unit='N' },
yt= ax_spec :new{ type='force ', value =0, unit='N' },
zt= ax_spec :new{ type='force ', value =10 , unit='N' },
axt= ax_spec :new{ type='force ', value =0, unit='Nm ' },
ayt= ax_spec :new{ type='force ', value =0, unit='Nm ' },
azt= ax_spec :new{ type='force ', value =0, unit='Nm ' }

}



DOMAIN SPECIFIC LANGUAGES FOR M1, M2, M3 107

move_down = motion_spec :new {
xt= ax_spec :new{ type='vel ', value =0, unit='m/s' },
yt= ax_spec :new{ type='vel ', value =0, unit='m/s' },
zt= ax_spec :new{ type='vel ', value =0.1 , unit='m/s' },
axt= ax_spec :new{ type='vel ', value =0, unit='rad/s' },
ayt= ax_spec :new{ type='vel ', value =0, unit='rad/s' },
azt= ax_spec :new{ type='vel ', value =0, unit='rad/s' }

}

compliant_slide_x = motion_spec :new {
xt= ax_spec :new{ type='vel ', value =0.03 , unit='m/s' },
yt= ax_spec :new{ type='force ', value =0, unit='N' },
zt= ax_spec :new{ type='force ', value =1, unit='N' },
axt= ax_spec :new{ type='force ', value =0, unit='Nm ' },
ayt= ax_spec :new{ type='force ', value =0, unit='Nm ' },
azt= ax_spec :new{ type='force ', value =0, unit='Nm ' }

}

Listing 5.1: TFF-DSL specification.

Each motion specification consists of six specifications for the three translational
and rotational degrees of freedom of the Task Frame. Each axis specification
consists of a type which is either ’velocity’ (abbr. ’vel’) or ’force’, a value and
a unit. It is important to note that the value is only a placeholder default,
to be redefined when the platform-specific information is introduced (which
gives the M1 level TFF-DSL). Indeed, the presented templates hold for any
robot-tool-sensor combination3, but the specific magnitudes of the force and/or
velocity setpoints depend on the selected platform.

The M1 and M2 levels of the presented TFF-DSLs are extremely similar, which
is considered an advantage, since this similarity implies a smoother learning
curve, and simpler software support. But despite the large similarity, the
transformation between both levels, however, can be very involved: although
the transformation is “only” about filling in the right setpoint magnitudes, it
is in this transformation that one has to introduce all the platform-specific
knowledge, about the particular robot, sensor and tool. Our experiences with
the two examples presented later in this chapter (KUKA LWR and PR2) showed
that the “optimal” parameter settings for both platforms are very different,
because of the difference in performance between both platforms, which is about
one order of magnitude.

5.3.2 M3 model: Ecore

At the M3 level of Figure 5.1 the Ecore metametamodel is used. Figure 5.4 shows
the M2 TFF-DSLs of the previous section specified using Ecore. Currently,

3At least, in so far as it provides a hybrid force/velocity control implementation!



108 REUSABLE MOTION SPECIFICATIONS WITH EXECUTABLE DSL

MotionSpec

AxisSpec

type : AxisSpecType

<<enumeration>>
AxisSpecType

velocity
force

AxisSpecValue

value : EDouble
unit : EString

xt

1

yt

1

zt

1

axt

1

ayt

1

azt

1

value

1

Figure 5.4: The Ecore metamodel (M2 level in Figure. 5.1) that represents the
formal model that all DSLs for hybrid force/velocity control should conform-to.

the Ecore model serve visualization and documentation purposes only, and the
transformation into the executable DSL has still to be performed manually.
Future work will address the automatic generation of DSL from Ecore models.

5.3.3 Software Framework integration: from M1 to M0

The TFF-DSL permits specifying motions; for executing these a specification
must be transformed into an appropriate hybrid controller implementation. For
performance reasons, these controllers are commonly implemented in C/C++;
for this chapter we have chosen the Orocos and ROS frameworks. (No further
details are given, since the implementations are not the focus of this chapter’s
contributions.) The loose coupling between the TFF-DSL specifications and the
Orocos/ROS controller implementations is realized via a transformation function
apply, which accepts as arguments a motion specification and optionally a list
of redefined values, as shown in Listing 5.2.

apply ( compliant_slide_x , {xt =0.2 , zt =1})

Listing 5.2: Example usage of apply transformation function.

An implementation of this apply function was developed in Lua. This function
first transforms the compliant_slide_x motion with redefined values for the
xt and zt placeholders, then converts the motion specification to the Orocos
platform-specific representation, and lastly sends it to the platform’s TFF
controller. Since these steps are always the same for any TFF-DSL, the apply
function can be automatically generated. For example for the Orocos/RTT
(Soetens and Bruyninckx 2005), (Soetens 2006) platform, apply is generated by



DOMAIN SPECIFIC LANGUAGES FOR M1, M2, M3 109

the following code:

function gen_apply (port)
local rttms = rtt. Variable (" MotionSpec ")
return function (ms , overrides )

set_rtt_ms (rttms , ms , overrides )
port: write (ms)

end
end

Listing 5.3: Generation of apply transformation function.

The gen_apply function generates a function which accepts a motion
specification and a list of default template values to override. This motion
specification is then written to the communication port which was passed as an
argument to gen_apply.

5.3.4 Composing individual TFF-DSL motions into skills using
the rFSM statechart DSL

After defining elementary motions, a rFSM Statechart (Chapter 4) is used to
compose these basic blocks into a robust skill (Smits 2010). The rFSM model
used is a lightweight Statechart variant designed for real-time coordination of
robotic systems, and is as such suitable for this task. However, if required in
different scenarios, any other behavioral model could be used instead. The
robustness is achieved by explicitly validating the outcome of motion executions
in the respective states and raising error events in case invalid conditions are
detected.4 The graphical model of this Statechart is shown in Figure 5.5.

The nominal behavior begins at the initial connector at the top left of the
figure and runs through the move_down, pre_align_z, align_z, pre_slide,
compliant_slide_x and align_x states to the final connector at the bottom-
left. Validation is performed in each state, and in case anomalies are detected,
respective events are emitted. These events then trigger the transition to
the error connector, to which further error handling is connected. The
pre_align_z and pre_slide states serve to mitigate unstable behavior of
the system during transitions. For instance, instead of immediately pushing
down with 20 N when entering in contact, pre_align_z prepares this transition
for half a second by pushing down with 5 N.

In addition, the align skill in Figure 5.5 illustrates an advantage of using
hierarchical Statecharts instead of flat state automata: conflicts between

4The rFSM design, and the robustness aspects of its implementation, are beyond the scope
of this chapter.



110 REUSABLE MOTION SPECIFICATIONS WITH EXECUTABLE DSL

align_z

move_down

compliant_slide_x

align
e_contact

e_done

align_x
e_done

error

pre_align_z

pre_slide

e_contact

after(0.5s)

after(2s)done

e_align_error
e_timeout

Figure 5.5: rFSM Statechart for the alignment skill.

transitions are resolved by the Statechart structural priority rules (Harel and
Naamad 1996). As the error transition originates from the top-level align state,
it has higher priority than the deeper nested motion states. Consequently, in
case of simultaneous error and non-error events, the error transition will be
executed.

An excerpt of the textual rFSM DSL corresponding to Figure 5.5 is shown
below.

align = state {
move_down = state {

entry = function () apply (move_down , {zt =0.01}) end
},
pre_align_z = state {

entry = function () apply (push_down , {zt =5}) end
},
align_z = state {

entry = function () apply (push_down , {zt =20}) end
},
transition { src='initial ', tgt='move_down ' },
transition {

src='move_down ', tgt='pre_align_z ',
guard = function ()

return get_force_TF (). force .z > 4
end },

transition {
src='pre_align_z ', tgt='align_z ',
guard = function ()

return get_move_duration () > 0.5
end

},
}

Listing 5.4: Textual model of align rFSM statechart.

The first line defines the top level state which encapsulates the align skill. Next
the states move_down, pre_align_z and align_z are defined. In the entry



DOMAIN SPECIFIC LANGUAGES FOR M1, M2, M3 111

program of these states the use of the apply function for executing the next
motion can be seen. After the state definition, transitions are defined to link
states together. The guard function is used to inhibit the transition until the
respective condition holds true. For instance in the second transition between
move_down and pre_align_z the condition of entering in contact is defined by
a force larger than 4N in z-direction.

5.3.5 Dealing with robot dependencies

As with the TFF-DSLs of Section 5.3.1, the rFSM DSL as presented above
covers both the M2 and M1 levels. In the rFSM case, the platform dependencies
are slightly more complex than in the TFF case: not only the concrete parameter
values have to be filled in, but, in general, every robot platform could require
extra platform-specific states.

An example of the latter are the Fast Research Interface (FRI) command- and
monitor mode states of the KUKA Light Weight Robot (Schreiber, Stemmer,
and Bischoff 2010). Depending on which of these states is active, the robot can
either be actively commanded or only monitored; switches to monitor mode can
occur at any time as a result of bad communication quality.

Another example is the introduction of “transition dynamics” sub-states, which
are especially relevant for low-performance dynamic control systems such as the
PR2’s standard joint space controller: whenever a TFF motion is started, or a
transition to the next TFF motion is triggered by a contact formation change,
the robot arm tends to vibrate for some time. Hence, it may be necessary to
introduce a state for the sole purpose of letting these vibrations damp out.

To achieve the harmonization necessary to execute the align skill (an M2-level
requirement), a robot specific configuration file was introduced (in the M2-to-
M1 transformation) that encapsulates the required parameters and performs
initialization. For example, to deal with the KUKA FRI states, an additional,
robot-specific rFSM Statechart was defined, which is shown in Figure 5.6.

command

monitor

include(align)

KUKA FRI

e_monitor

e_command

Figure 5.6: Harmonizing the KUKA FRI operational modes.



112 REUSABLE MOTION SPECIFICATIONS WITH EXECUTABLE DSL

The Statechart models both FRI states and the connecting transitions which
are triggered by events raised by the low-level FRI controller. The robot-
independent align Statechart is included into the FRI command state. This
way it is guaranteed that the align statechart is only executed when the FRI is
in command mode. If an unexpected switch to monitor mode occurs the align
skill will be exited cleanly. More importantly, the robot-independent behavior
remains agnostic of the FRI statechart and is not polluted with robot specific
information.

As similar configuration file is used for the Willow Garage PR2. Since the PR2
does not require specific operational states, the align statechart is executed
directly.

5.4 Experiments on PR2 and KUKA LWR

The PR2’s two 7 DOF arms are passively backdrivable, making them very
suitable for manipulations tasks in contact with an environment. Due to the
lack of a built-in force sensor, a JR3 force/torque sensor was added in the gripper
of the PR2. The LWR is not passively backdrivable, but provides a controlled
compliance mode and force sensing via its internal joint torque sensors5.

Figure 5.7 shows measured forces, desired Cartesian velocities and gripper tool
frame position and orientation of the alignment task over time for the PR2.
The vertical black lines mark when a new statechart state was entered.

The plot of the measured forces clearly shows the benefit of the pre_align and
pre_slide states in reducing unstable, oscillating behavior during switches of
motion specifications. Although simple and effective, it is intended to replace
these (manually introduced) intermediate states by (automatically generated)
transformation states, that blend two motion specifications within a given time
frame.

A plot of the task execution over time on the KUKA LWR is very similar
to that on the PR2 and is hence omitted. A notable difference is that the
measured forces are much smoother on the LWR. On the one hand, this is
explained by the task being executed slower than on the PR2 (just to show
the influence of different platform-specific parameters). On the other hand, the
LWR’s controller is much more performant that the PR2’s.

5The source code of these experiments is available here:
https://github.com/kmarkus/tff_dsl_tests

https://github.com/kmarkus/tff_dsl_tests


EXPERIMENTS ON PR2 AND KUKA LWR 113

0 2 4 6 8 10 12 14 16 18
t ime [s]

− 10

− 5

0

5

10

15

20

25

m
e
a
su

re
d
fo
rc
e
s
[N

]

m
o
v
e
_d

o
w
n

p
re

_a
li
g
n

a
li
g
n

p
re

_s
li
d
e
_x

sl
id
e
_x

a
li
g
n
_x

x
y
z

0 2 4 6 8 10 12 14 16 18
t ime [s]

− 1.5

− 1.0

− 0.5

0.0

0.5

1.0

d
e
si
re

d
c
a
rt
e
si
a
n

v
e
lo
c
it
ie
s
[m

/s
] x

y
z

0 2 4 6 8 10 12 14 16 18
t ime [s]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

g
ri
p
p
e
r
to

o
l
fr
a
m
e

tr
a
n
sl
a
ti
o
n
[m

]

x
y
z

0 2 4 6 8 10 12 14 16 18
t ime [s]

− 0.5

0.0

0.5

1.0

1.5
2.0

2.5

3.0

3.5

g
ri
p
p
e
r
to

o
l
fr
a
m
e

o
ri
e
n
ta

ti
o
n
[r
a
d
]

roll
pit ch
yaw

Figure 5.7: Forces, velocities and positions of the PR2 robot.

Source code Lines of code
Elementary TFF motions 60
Alignment Skill rFSM Statechart 33
Total 93

Table 5.1: Platform-independent code

Tables 5.1 and 5.2 summarize the lines of code for the various models. The
platform-independent models required for the alignment skill consist roughly
of 100 lines of code. In order to execute these on one of either robots requires
approximately an additional 200 lines, of which one half consists of software
framework integration and the other of robot specific parameter or operational
mode related code. Although it would be desirable, it is unlikely that the
software framework code can be much reduced. In contrast it should be possible
to significantly reduce the manually developed robot specific code by generating



114 REUSABLE MOTION SPECIFICATIONS WITH EXECUTABLE DSL

Source code Lines of code
KUKA LWR config and initialization 96
KUKA Fast Research Interface rFSM Statechart 13
PR2 config and initialization 102
TFF Orocos/RTT framework integration 86
Total only LWR 195
Total only PR2 188
Total for LWR and PR2 291

Table 5.2: Robot and Framework specific code.

it from a model representing these characteristics. This is the subject of future
work.

5.5 Conclusions

We have illustrated the Model Driven Engineering concepts of Domain Specific
Languages and model transformation to the case of hybrid force/velocity control.
The major contribution of this chapter is proving that DSLs have the potential
to bring more user-friendly programming and more standardization in the
field of sensor-based robotics. However, the presented approach and the given
examples are just scratching the surface. Much more work has to be done, not
only in software support (which is probably the easiest task), but certainly also
in the domain of standardizing the robotics controller terminology. Without
the latter, every particular DSL will not lead to real reusability beyond the
confines of the research group that developed it, and will not lead to portability
beyond the set of robots and controllers applied in that group.

The presented DSLs facilitate the specification of robot tasks, by composing
elementary motion specifications in a behavioral statechart model. They were
implemented with an emphasis on loose coupling with the software frameworks
underneath, so that complete separation of generic task specification, software
framework dependencies and robot hardware requirements is facilitated.

The analysis of lines of program code of the DSL reveals that approximately
twice the amount of platform-specific code is necessary to support a generic
and reusable task description.

Future work needs to address, at least, the automatic generation of (i) transition
dynamics damping states, and (ii) basic executable domain specific languages
such as the TFF-DSL from formal descriptions, e.g., Ecore models.



Chapter 6

A Lightweight, Composable
Metamodeling Language for
Specification and Validation
of Structural Constraints on
Internal Domain Specific
Languages∗

6.1 Abstract

This chapter describes a declarative and lightweight metamodeling framework
called uMF for modeling and validating structural constraints on programming
language data-structures. By depending solely on the Lua language, uMF is
embeddable even in very constrained embedded systems. That way, models
can be instantiated and checked close to or even within the final run-time
environment, thus permitting validation to take the current state of the system
into account. In contrast to classical metamodeling languages such as Ecore,

∗This chapter is based on Klotzbücher, M., and Bruyninckx, H. A lightweight, composable
metamodeling language for specification and validation of internal domain specific languages.
In Proceedings of the 8th International Workshop on Model-based Methodologies for Pervasive
and Embedded Software (MOMPES’12), Germany, LNCS, 2012.

115



116 SPECIFYING AND VALIDATING INTERNAL DSL

uMF supports open world models that are only partially constrained. We
illustrate the use of uMF with a real-world example of a robot control formalism
and compare it with a previously hand-written implementation. The results
indicate that strict formalization was facilitated while flexibility and readability
of the constraints were improved.

6.2 Introduction

A domain specific language (DSL) is built specifically to express the concepts of
a particular domain. Generally, two types of DSL can be distinguished according
to the underlying implementation strategy. An external DSL is constructed
from scratch, starting from definition of the desired syntax to implementation
of the associated parser for reading it. In contrast, internal or embedded DSL
are constructed on top of an existing host language (Fowler 2005) (Spinellis
2001). While this technique has been used for decades, in particular by the Lisp
and Scheme communities, it has recently gained popularity through dynamic
languages such as Ruby. Internal DSL offer some advantages over external ones.
Firstly, existing infrastructure provided by the host language can be reused.
Secondly, embedded DSL models can be typically loaded/instantiated within
the host language without any parsing effort on the side of the DSL developer.
Thirdly, when internal DSL are specified in a data-oriented manner (as proposed
in this chapter) models can easily be introspected and interpreted at runtime.
On the downside, as models are specified using the host language (or a subset
thereof), the syntax of an internal DSL is always constrained by the syntax of
the host language.

As an internal DSL reuses the parsing infrastructure of its host language, basic
syntax checking and error reporting is taken care of automatically. Using OMG
MDA terminology, the host language can thus be seen as the M2 (meta-) model
to which the M1 model must conform-to (Bézivin 2005).

Obviously, this conformance relationship constrains any real-world DSL too
little, hence additional checking is necessary to validate conformity with the
concepts of the domain. For internal DSL, this is mostly achieved by manual
programming the validation, which is a tedious and error prone task.

Consider a DSL for modeling 3D vectors. If object oriented concepts are
supported by the host language, the obvious choice would be to define a class
and use its constructor to set and validate the attributes. We would like to avoid
this approach for two reasons. Firstly, it still requires implementing manual
validation in the constructor. Secondly, most object oriented programming
(OOP) models typically close the world for the model, meaning that additional



INTRODUCTION 117

attributes are prohibited. Our goal is to avoid this implicit closing for two
reasons: firstly, explicitly permitting additional attributes in addition to the
known enables implementing plugins that extend the behavior of the default
model. As an example, the vector could be extended with physical units to
be used for validation in arithmetic operations. Secondly, open models permit
validating a single model against multiple specifications, of which each validates
one aspect of the model. An example for this is given in Section 6.4.1.

Lastly, open models enable development of DSL in a more natural order: instead
of starting by specifying the metamodel and only then defining and testing
models, this approach permits to start by defining concrete models, and only
later to add structural constraints when the underlying metamodel is becoming
apparent.

As an alternative to the class based specification of 3D vectors, Listing 6.1 shows
the use of a simple associative array. This alternative seems likewise complex
to validate, as it requires asserting that the fields x, y and z are defined and of
correct type. If the type is defined to be closed, the absence of any other fields
must be checked. Moreover, if optionality of entries is supported, it must be
asserted that all non-optional fields are defined.

v1 = { x=1, y=0, z=0 }

Listing 6.1: 3D vector model specified using a Lua table

To overcome these limitations we propose a declarative, constraint specification
DSL, that is part of a minimalistic Lua (Ierusalimschy, de Figueiredo, and
Filho 1996) framework called uMF (micro modeling framework). uMF permits
specifying and validating the structure of Lua data types and is complemented
by a mechanism for declaring typed arrays. While in principle most dynamic
programming languages could have been used, Lua has some benefits for building
embedded DSL that are described below.

6.2.1 Internal DSL in Lua

The Lua language is an extremly lightweight1, yet multi-paradigm scripting
language whose semantics are strongly influenced by the Scheme dialect of Lisp.
Amongst others, this is revealed in the composite table data structure (the analog
to Lisp’s list), that apart from behaving as a list ({1,2,3}) can also function as
an associative array ({x=1, y=2}) or even as both simultaneously ({x=1, y=2,
1, 2, 3}. Tables are the key mechanism for constructing embedded Lua DSL
that yield an intuitive syntax as shown in the examples.

1approximately 250K for the complete library.



118 SPECIFYING AND VALIDATING INTERNAL DSL

In Lua, OOP is typically implemented using metatables. In a nutshell,
metatables permit refining the behavior of regular tables by redefining its
standard operations such as indexing of fields, assigning new values to fields or
invocation of a table. Using this mechanism, sophisticated OOP models have
been realized. As uMF is primarily used to model constraints on data-structures,
it does not strictly require OOP concepts. Nevertheless we use a minimalistic
class model for introducing the notion of typed Lua tables, but which are by
default agnostic about the data they contain. Further information on Lua can
be found in the language reference manual (Ierusalimschy, de Figueiredo, and
Celes 2012).

6.2.2 Related work

Most metamodeling today is focused on so called language workbenches that
provide tooling for development of external DSL. An overview of these can be
found here (Merkle 2010).

MOF (Object Management Group 2006) is the OMG modeling language for
specifying metamodels, which can further be annotated with OCL constraints
(Object Management Group a). The most widely used implementation of MOF
is Ecore of the Eclipse EMF project (Eclipse Foundation b). Xtext is a language
framework integrated with Ecore that supports generating external DSL and
associative editors for their specification. Although these tools are only loosely
coupled with Eclipse, they still inherently depend on the Java language, which
constrains their application for small embedded systems.

The idea of describing entities of a programming language is not new. Bezivin
(Bézivin 2005) points out the importance of distinguishing between the two
relationships instance-of of OOP and conforms-to of MDE. Magritte (Renggli,
Ducasse, and Kuhn 2007) is a meta-description framework that is tightly
integrated into the Smalltalk object model. Magritte permits annotating
Smalltalk object with metadata than can then be used for various purposes such
as for creating views or editors, validation, and persistence. Like uMF the host
language itself is used to specify additional constraints. The main difference is
that uMF constraints are defined on data (opposed to objects) and that uMF
is stronger focused on embeddability in contrast to dynamic web development.

XSD (XML Schema Definition) (W3C 2001) is a language for defining the
structure of XML documents to permit their validation. Unlike uMF’s Lua
syntax, XSD is XML based and thus not particularly well suited for textual
modeling by humans. Moreover, our approach is easily embedded by only
depending on the minimal Lua language opposed to the rather heavyweight
XML host language. An alternative approach is suggested by Renggli et al.



THE UMF MICRO-MODELING FRAMEWORK 119

(Renggli, Ducasse, Gîrba, and Nierstrasz 2010) who observe the insufficiency of
traditional static code analysis tools when applied to internal DSL. To take into
account the specifics of the latter, the authors describe an approach of adding
additional rules to check for common errors.

6.3 The uMF micro-modeling framework

This section gives an overview of uMF, which can be divided into two parts:
types and structural specifications. The uMF source code is available here
(Klotzbuecher 2012).

6.3.1 uMF Types

To attach type to Lua tables, uMF provides a minimalistic OOP model. Using
typed tables facilitates both modeling and validation; The first because it
permits a more explicit syntax to be used (e.g. Vector{x=...} instead of only
{x=...}) and the latter because a type mismatch error is typically much clearer
than an error reporting structural discrepancies. As a side effect of introducing
an OOP model, single inheritance and virtual methods can be used to define
pretty printing methods or constructors. The whole OO system consists only of
approximately 60 lines of Lua2.

6.3.2 uMF Specs

The core of uMF consists of the specification infrastructure which amounts
to approximately 230 LOC. Using this, the (desired) structure of data can
be defined by using so called specs. Specs describe primitive data (strings,
numbers, booleans, enums, etc) or composite data (tables or extended types).
Specs reflect the compositionality of the data they describe, hence a TableSpec
may, analog to tables, contain primitive or composite data while primitive specs
may not contain any sub-specs. Definition of new specs is straightforward and
encouraged.

As Lua tables can function as both list and associative array (consequently
referred to as array and dictionary), both parts are defined independently.

The spec for modeling a 3D vector using x, y, z fields is show in Listing 6.2.
2Code lines only. Calculated using the cloc(1) tool.



120 SPECIFYING AND VALIDATING INTERNAL DSL

Vector3DSpec = umf. TableSpec {
name = " Vector3D ",
sealed = 'both ',
dict = {

x = umf. NumberSpec {},
y = umf. NumberSpec {},
z = umf. NumberSpec {},

},
optional ={} ,

}

Listing 6.2: uMF Spec defining a 3D vector

The Vector3DSpec is defined as a specification of a table data-structure, hence a
TableSpec. The name field is not strictly necessary, yet is essential for providing
meaningful, localised error reporting. This becomes especially important when
specs are nested or defined recursively. The sealed3 field defines whether and
where unspecified fields or values are permitted in the table. Legal values are
’array’, ’dict’ or ’both’ meaning that the array, dictionary or both parts
may not contain fields or values that have not been specified by the related
dict or array spec fields.

The dict table specifies three fields x, y and z that must conform to the
NumberSpec. The Vector3DSpec does not define an array field, hence this
defaults to an empty table implying that no data is permitted in the array part.

Optionality of entries in the dictionary part can be specified by adding these
to the optional list. For the vector all fields are mandatory, hence this list is
empty (and the entry could be omitted altogether).

Specs can be composed into each other. Listing 6.3 shows how Vector3DSpec is
used within a Spec describing a path. A 3D path can be defined as an ordered
list of 3D points. Hence, for this spec no dictionary entries are required and
only the array part is used. The array keyword contains of a list of entries that
are legal, in our example only types conforming to Vector3DSpec.

Path3DSpec = umf. TableSpec {
name = " Path3D ",
sealed = 'both ',
array = { Vector3DSpec },

}

Listing 6.3: uMF Spec defining a 3D Path

Using a spec, input data can be now be validated using the umf.check function.
The following Listing 6.4 illustrates the checking of an invalid vector (y is a string,
a is undefined in a sealed spec and z is missing) against the Vector3DSpec.
The last argument true requests the validation results to be printed.

3The term sealed is inspired by srfi-76: http://srfi.schemers.org/srfi-76/

http://srfi.schemers.org/srfi-76/


REAL WORLD DSL 121

> v1 = { x=1, y=" three ", a=2 }
> umf. check (v1 , Vector3DSpec , true)

checking spec Vector3D
err @ Vector3D .y: not a number but a string
err @ Vector3D .a: key 'a' has illegal value '2'
err @ Vector3D : non - optional field 'z' missing
3 errors , 0 warnings , 0 informational messages .

Listing 6.4: Validating models against uMF Specs

6.4 Real World DSL

6.4.1 The Task Frame Formalism DSL

The Task Frame Formalism (Mason 1979) (Bruyninckx and De Schutter 1996)
is a hybrid force position/velocity control formalism that permits specifying
robot tasks in a programmer intuitive way. Typical use cases are assembly
tasks involving force-controlled operations in contact situations. The first TFF
DSL developed at our lab was an external DSL called COMRADE (Witvrouw,
Van de Poel, and De Schutter 1995) that was built using Lex and Yacc.

More recently, a new version was implemented as an internal Lua DSL, which
simplified the implementation by removing the need for parsing and enabled
new applications by permitting the TFF DSL to be composed within behavioral
models such as Statecharts (Klotzbuecher, Smits, Bruyninckx, and De Schutter
2011). Yet, input models were still validated by manual programming, and that
in an insufficient way: certain invalid models4 would not be rejected and passed
to the underlying control components, leading to run-time faults.

A sample TFF motion model is given in Listing 6.5.

compliant_slide_x = TFFMotion {
xt = TFFAxis { value =0.1 , type='velocity ', unit='m/s' },
yt = TFFAxis { value =0, type='force ', unit='N' },
zt = TFFAxis { value =1, type='force ', unit='N' },
axt = TFFAxis { value =0, type='force ', unit='Nm ' },
ayt = TFFAxis { value =0, type='force ', unit='Nm ' },
azt = TFFAxis { value =0, type='force ', unit='Nm ' }

}

Listing 6.5: TFF motion model

A TFFMotion defines how the robot end-effector is controlled while the motion
is executed. A motion specification consists of a desired axis specification for

4e.g. declaring the unit ’Nm’ for a translational force.



122 SPECIFYING AND VALIDATING INTERNAL DSL

each of the three translational and three rotational degrees of freedom. An axis
specification consists of a type field that defines if the degree is controlled in
force or velocity control mode and a value field defining the quantitative desired
force or velocity. Moreover a unit field is included to facilitate developers to
use quantities appropriate for the task. The given example 6.5 defines a motion
that will cause the robot end-effector to push in z-direction (down) with a force
of 1N while moving (sideways) in x-direction with 0.1 m/sec.

In the following the third generation TFF DSL that uses uMF is described. To
facilitate the specification of motions, two types TFFAxis and TFFMotion are
introduced in the listing below.

TFFAxis = umf. class (" Axis ")
TFFMotion = umf. class (" TFFMotion ")

Listing 6.6: Type definitions

Next, the two specs for translational and rotational axis are defined in Listing 6.7.
In contrast to previous examples an ObjectSpec is used, which is essentially
a TableSpec that additionally requires the table to be an instance of the class
specified in the type field, in our case of Axis.

rot_axis_spec = umf. ObjectSpec {
name =" rotational_axis ",
postcheck = axis_check_type_unit ,
type=TFFAxis ,
sealed ='both ',
dict ={

value =umf. NumberSpec {},
type=umf. EnumSpec { 'velocity ', 'force ' },
unit=umf. EnumSpec { 'Nm ', 'rad/s' }

},
}

trans_axis_spec = umf. ObjectSpec {
name =" translational_axis ",
postcheck = axis_check_type_unit ,
type=TFFAxis ,
sealed ='both ',
dict ={

value =umf. NumberSpec {},
type=umf. EnumSpec { 'velocity ', 'force ' },
unit=umf. EnumSpec { 'N', 'm/s' }

},
}

Listing 6.7: Translational and Rotational axis specs

In principle one spec could be used to model both types, however by separating
them the constraint between the axis type and units (e.g. a rotational axis must
have the unit Nm or rad/s and a translational axis N or m/s) are expressed. This



REAL WORLD DSL 123

does not however express the constraint between the control type (velocity or
force) and the respective unit. This could be solved by separating the two types
into four. Instead, we use a postcheck function, which is shown in Listing 6.8.
Pre- and postcheck functions can be used to extend a TableSpec by adding
further checks before or after the validation of the regular spec. These functions
seamlessly integrate into the existing framework by being able to reuse the
contextual error reporting infrastructure.

It should be noted that these functions can not only be used to define static
checks, but also facilitate checking run-time constraints of systems. For instance,
a postcheck hook could be used to ensure that the current robot is powerful
enough to generate the requested force, or a too fast movement could be rejected
based on the current battery level.

function axis_check_type_unit (class , obj , vres)
local ret= true
if obj.type == 'velocity ' and

not (obj.unit == 'rad/s' or obj.unit == 'm/s') then
ret= false
add_msg (vres , "err", "type velocity implies unit rad/s or m/s")

elseif obj.type == 'force ' and not (obj.unit == 'N' or obj.unit == 'Nm ') then
ret= false
add_msg (vres , "err", "type force implies unit N or Nm ")

end
return ret

end

Listing 6.8: Type definitions

Lastly, Listing 6.9 illustrates the composition of translational and rotational
specs into the TFFMotion spec. Note that the sealed field is set to ’array’,
thereby permitting additional entries in the dictionary part. As an example, a
TFFMotion might also carry information about specific controller settings such
as stiffness or damping.

motion_spec = umf. ObjectSpec {
name =" TFFMotion ",
type=TFFMotion ,
sealed ='array ',
dict = {

xt= trans_axis_spec , yt= trans_axis_spec , zt= trans_axis_spec ,
axt= rot_axis_spec , ayt= rot_axis_spec , azt= rot_axis_spec

},
}

Listing 6.9: Motion spec definition

A related use for open specs is to validate a single data-structure using multiple
specs. For example, consider a spec to validate the previously mentioned
stiffness and damping parameters for a KUKA Lightweight Robot, as shown
in Listing 6.10.



124 SPECIFYING AND VALIDATING INTERNAL DSL

kuka_lwr_motion_spec = umf. ObjectSpec {
name =" KUKA_LWR_TFFMotion ",
type=TFFMotion ,
sealed ='array ',
dict = {

stiffness = NumberSpec { min =0.01 , max =5000 },
damping = NumberSpec { min =0.1 , max =1.0 },

},
optional ={ 'stiffness ', 'damping ' },

}

Listing 6.10: Adding secondary constraints

By checking a TFFMotion model against both specifications, its conformance
with both the generic and robot-specific constraints can be asserted. Never-
theless, both metamodels are kept separate and can be reused and recombined
individually.

6.5 Evaluation and Results

Comparing both the previous hand-written and uMF based TFF DSL (excluding
the KUKA LWR specific spec) reveals insignificantly less lines of code for the
uMF version (46 vs. 53 LOC), obviously not counting the size of uMF itself.
More importantly though, the uMF based version faithfully models all required
constraints on the data, thus providing higher robustness against invalid input
from users. In case of validation errors these are reported in a consistent and
well-localized form. Lastly, the mostly declarative uMF based version is arguably
much more readable and hence maintainable than the purely procedural original
version.

Comparing the number of LOC of the uMF version with the initial Lex
and Yacc based TFF DSL implementation does not make much sense, since
then the internal Lua parsing code would have to be taken into account
too. However one can make the following qualitative observations: firstly,
development and maintenance of the complex grammer specifications for Lex
and Yacc are avoided. Secondly, composition with other Lua based models
(Klotzbuecher, Smits, Bruyninckx, and De Schutter 2011) becomes possible
in a straightforward manner. Thirdly, the availability of a scripting language
permits loose integration with further, platforms specific processing. For the
TFF DSL example this is the transformation to a platform specific C++ object
ready for execution by the TFF controller. Previously, this coupling took place
statically at compile time.



CONCLUSION AND OUTLOOK 125

6.5.1 The limits of untyped conforms-to

The following limitation was observed regarding the use of purely structural
constraints, e.g. untyped tables in uMF. Consider the example in Listing 6.11
that extends the previously shown 3DPathSpec to permit a path to be formed
by both 3D and 6D vectors, that are described using untyped TableSpecs.

PathSpec = TableSpec {
name = "Path",
sealed = 'both ',
array = { Vector3DSpec , Vector6DSpec },

}

Listing 6.11: Example of difficult to validate purely structural model

To validate a vector entry of a concrete path, this entry needs to be checked
against each array spec (Vector3DSpec and Vector6DSpec) until a spec that
successfully validates the entry is found. The problem is that if all checks fail,
it becomes impossible to provide a concise error message, since uMF can not
know the TableSpec against which validation should have succeeded. Since
this is an inherent problem of the pure, untyped conforms-to relationship, the
only solution is to print the errors of all checks, which is not user friendly and
verbose. The problem is worsened if the PathSpec array is unsealed, as in that
case it is impossible to know if this is an error at all. On the other hand these
problems can be avoided altogether by using typed tables when disjunctive
matching of multiple specs takes place.

6.6 Conclusion and Outlook

We have presented a lightweight, declarative DSL for specifying structural and
composable constraints on data-structure of the Lua language. This meta-DSL
can be easily extended and integrated into a runtime environment by using
additional hooks. Using the Lua language yields a syntax that is reasonably
understandable to humans and moreover permits the DSL to be deployed into
very constrained embedded systems, such as robot or machine tool control panels.
Since open uMF specs can be used to specify partial conformance constraints
on data, it becomes possible to use multiple specs to validate different aspects
of a single model, thereby essentially permitting virtual constraint composition.

Currently, the main use of uMF specs is to validate user models and provide
indicative error messages, however further uses such as view generation or model
persistence are conceivable. This could be achieved by extending specs to carry
additional meta-data, such as which fields shall be displayed or persisted.



126 SPECIFYING AND VALIDATING INTERNAL DSL

Furthermore, we plan to loosen the currently tight coupling to the Lua language
by providing a horizontal, heterogeneous transformation (Mens and Van Gorp
2006) of spec and model files to the JSON (Crockford 2006) format. An example
of this using the Vector3DSpec showed earlier is given in Listing 6.12.

{
"name": " Vector3D "
" sealed ": "both",
"dict": {

"y": " NumberSpec ",
"x": " NumberSpec ",
"z": " NumberSpec ",

},
" optional ": {},

}

Listing 6.12: Vector3DSpec represented in JSON

Assuming the absence of functions in the model (such as pre- and postcheck
hooks) the transformation to JSON can be trivially implemented in a bi-
directional manner. When permitting functions, the transformation from JSON
to Lua is still feasible by representing functions as strings that are evaluated after
the transformation. Providing an alternative, Lua independent input syntax
would permit uMF to be used as a lightweight, standalone model checker.



Chapter 7

Pure Coordination using the
Coordinator–Configurator
Pattern∗

7.1 Abstract

We report on our efforts to improve different aspects of coordination in
complex, component-based robotic systems. Coordination is a system level
aspect concerned with commanding, configuring and monitoring functional
computations such that the system as a whole behaves as desired. To that end
a variety of models such as Petri-nets or Finite State Machines may be utilized.
These models specify actions to be executed, such as invoking operations or
configuring components to achieve a certain goal.

This traditional approach has several disadvantages related to loss of reusability
of coordination models due to coupling with platform-specific functionality, non-
deterministic temporal behavior and limited robustness as a result of executing
platform operations within the context of the coordinator.

To avoid these shortcomings, we propose to split this “rich” coordinator into
a Pure Coordinator and a Configurator. Although the coordinator remains in

∗This chapter is based on Klotzbücher, M., Biggs, G., and Bruyninckx, H. Pure
Coordination using the Coordinator–Configurator Pattern. In Proceedings of the 3rd
International Workshop on Domain-Specific Languages and models for ROBotic systems
(DSLRob-12). SIMPAR 2012. Tsukuba, Japan (November 2012).

127



128 PURE COORDINATION USING THE COORDINATOR–CONFIGURATOR PATTERN

charge of commanding and reacting, the execution of actions is deferred to the
Configurator. This pattern, called Coordinator–Configurator, is implemented
as a novel Configurator domain specific language that can be used together
with any model of coordination. We illustrate the approach by refactoring an
existing application that realizes a safe haptic coupling of two youBot mobile
manipulators.

7.2 Introduction

The context of this work (and hence also for the described pattern) is complex,
component-based robotics and machine tool systems operating under real-
time constraints. For building such systems, an increasingly acknowledged best
practice is to separate the concerns of Coordination, Computation, Configuration
and Communication (Radestock and Eisenbach 1996; Prassler, Bruyninckx,
Nilsson, and Shakhimardanov 2009).

Computation defines the basic, functional building blocks from which a system
is constructed. Communication defines how and with whom the individual
elements of a system communicate. Configuration defines the properties of a
system . Lastly, Coordination is concerned with supervising and monitoring
the computations in way that the system as a whole behaves as intended.

Classical coordination models that have been used in robotics are Petri-Nets
(Rosell 2004), Finite State Machines (FSM) (Finkemeyer, Kröger, and Wahl
2005) and Statecharts (Marty, Sahraoui, and Sartor 1998; Klotzbuecher, Smits,
Bruyninckx, and De Schutter 2011). These models are used to define when
certain behaviors shall be executed. For instance, UML state machines (Object
Management Group 2011) allow execution of a behavior upon entering or exiting
a state. The exact actions available depend on the primitives of the underlying
framework, and may include invoking operations or modifying the configuration
of a component.

This traditional approach has three major disadvantages. Firstly, reusability
of coordination models is reduced because the model is polluted with platform
specific information. In other words, reusing the same model on a different robot
or software framework requires intrusive refactoring to replace the platform
specific operations used in the coordinator. Secondly, the blocking invocation of
operations on functional computations can severely degrade the determinism of
the Coordinator. Lastly, Coordinator robustness is reduced since an invocation
might block indefinitely or crash, either of which may effectively render the
coordinator inoperative.



INTRODUCTION 129

Figure 7.1: Bidirectional youBot coupling demonstration: each robot copies the
cartesian position of its peer robot.

This chapter proposes the Coordinator–Configurator pattern to overcome these
challenges. The Configurator has been implemented as a Lua (Ierusalimschy,
Celes, and de Figueiredo 2012) based internal domain specific language (DSL)
for the Orocos Real Time Toolkit (RTT) framework (Soetens 2006), and is to
be complemented by a Coordination model such as rFSM (Klotzbuecher 2011).
We have applied a preliminary version to a moderately complex application1

consisting of a haptic, force-controlled coupling of two KUKA youBots in which
multiple constraints are monitored and their violation is reacted to by the
coordinator.

7.2.1 Prior usage

From an object oriented software engineering perspective, the classical command
design pattern (Gamma, Helm, Johnson, and Vlissides 1995) comes close to
our suggestion by permitting a client to request an invoker to execute a given
command on a recipient.

The ROS (Quigley, Conley, Gerkey, Faust, Foote, Leibs, Wheeler, and Ng 2009)
framework provides the actionlib library as a standardized protocol to define
commands that can be executed, monitored, aborted, etc. Hence, it is not a

1This demo was shown at the Automatica trade fair 2012 in Munich.



130 PURE COORDINATION USING THE COORDINATOR–CONFIGURATOR PATTERN

form of Configurator, but rather a mechanism that could be used to implement
one.

At higher and non-realtime abstraction levels, the described pattern has
been used before in the domain of task or plan management systems
(Botelho and Alami 1999; Lesser, Decker, Wagner, Carver, Garvey, Horling,
Neiman, Podorozhny, Prasad, Raja, Vincent, Xuan, and Zhang 2004; Gancet,
Hattenberger, Alami, and Lacroix 2005; Joyeux, Philippsen, Alami, and Lacroix
2009), though generally little detail is provided on this aspect. Joyeux et al.
(Joyeux, Philippsen, Alami, and Lacroix 2009) have implemented a Configurator
as a plugin for the Ruby based Roby DSL in the context of the ROCK project
(DFKI 2011).

Since this work is concerned with constructing modular subsystems, the work of
the Ptolemy project (Eker, Janneck, Lee, Liu, Liu, Ludvig, Neuendorffer, Sachs,
and Xiong 2003) is relevant, although that is more focused on composition of
heterogeneous systems.

7.2.2 Outline

The remainder of this chapter is structured as follows. The following section
describes the Coordinator–Configurator pattern in detail and introduces the
configuration DSL that underlies the Configurator. Section 7.6 critically
examines the solution and discusses further potential uses of the DSL. Section 7.7
concludes and describes future work.

7.3 Approach

To overcome the described shortcomings, we propose to split the “rich”
coordinator into a Pure Coordinator and a Configurator, named the Coordinator–
Configurator pattern. Although the coordinator remains in charge of
commanding and monitoring, the execution of actions is deferred to the
Configurator. The Configurator is realized as a software entity (typically a
component), that is configured with a set of configurations. Each configuration
describes one possible state of the system and is identified by a unique name.
Furthermore, a Configurator has a mechanism to receive events. When an
event that matches the ID of a configuration is received, the Configurator
applies the respective configuration (details on this application follow below).
Success or failure is reported back via a status event (e_<id>_OK or e_<id>_ERR



EXAMPLE 131

computation

computation

computation

Configurator

Coordinator

command events status events

start/stop

configure

call

Figure 7.2: The relationship between the Coordinator, the Configurator and
Computational components.

respectively), permitting the Coordinator to react appropriately. Figure 7.2
illustrates this mechanism.

Note that Figure 7.2 omits the important and complementary concept of a
monitor, which is responsible for observing the system and generating events
when certain conditions are met or violated.

7.4 Example

Figure 7.3 shows the coordination statechart that is executed on each of the
two youBots of the coupling application. Figure 7.4 shows a (slightly simplified)
component architecture; straight lines represent data-flow communication and
zigzag lines represent status events emitted by computational components and
received by the coordinator. This application is used as a running example
throughout this article. It has been converted to the Coordinator–Configurator
pattern.

The basic behavior of the demo is immediately visible from the statechart.
It should be noted that the handling of error events has been omitted for
simplicity; in the simplest case safe behavior can be realized by adding all possible
Configurator error events to the transition from copying to harmonizing, that
way ensuring that the coupling will be undone in the event of Configurator
errors. At the toplevel, the unsync (unsynchronized) state is entered by default
and signifies that communication with the peer robot is not functional. After
communication is established and its QoS is sufficient, a transition to the sync
(synchronized) state takes place, and from there to the harmonizing state. The



132 PURE COORDINATION USING THE COORDINATOR–CONFIGURATOR PATTERN

sync

copying

unsync

harmonizing

e_force_thres_exceeded

eight_DOF_mode

five_DOF_mode

e_five_DOF e_eight _DOF 

e_force_thres_below

e_QoS_NOTOK e_QoS_OK 

entry: ext_ref_mode(true)

exit:   ext_ref_mode(false)

entry: 8DOF_mode()

entry: 5DOF_mode()

Figure 7.3: rFSM Coordination Statechart for the youBot coupling demo.



EXAMPLE 133

comm_mon

coordination_fsm 

computation

Cart_Impedance

Dynamics

youbot_coupling

e_force_thres_exceeded/below

e_QoS_OK
e_QoS_NOTOK

CartForceDes CartPosMsr

CartPosDsr

youbot_driver

JntForceDsr JntForceMsr

events

from CartPosMsr 
of peer Youbot

to CartPosDsr
of peer Youbot

heartbeat_in

heartbeat_out

Figure 7.4: Component diagram illustrating the components and connections
running on each of the youBots in the example.

latter means that the control loop responsible for moving the end-effector of the
robot towards the position of the peer robot is operational and the impedance
controller Cart_Impedance (see Figure 7.4) is computing a desired-force control
signal. However, since this force is too high, this controller is configured to not
output the signal but instead output a desired force of zero in all directions
(ext_ref_mode(false)). As a result, the robot arm remains controlled in a
compliant way, merely compensating for gravity. Only when both arms are
(more or less) manually aligned by the operator does the desired force fall
beneath the threshold, and thus trigger the transition to the copying state
and from there (depending on the configuration) to the eight_DOF_mode or
five_DOF_mode. In either case, the coupling is put into effect by requesting
the controller to output the control signal ext_ref_mode(true). Switching
between the eight_DOF_mode and five_DOF_mode states is controlled by the
human operator, and reconfigures the Dynamics component to use the holonomic
base as additional degrees of freedom or not. It should be noted that support
for history connectors has not yet been implemented in rFSM; the identical
behavior is realized by using additional transitions and guard conditions.



134 PURE COORDINATION USING THE COORDINATOR–CONFIGURATOR PATTERN

7.5 Modeling configuration and its application

An important question is how to model a configuration and what the semantics
of applying it are. Obviously, a configuration has to be able to express the
necessary platform-specific changes required for runtime coordination. For the
youBot coupling example, the following Orocos RTT-specific primitives are
sufficient:

• Changing the state of a component (e.g. from running to stopped)

• Modifying a property of a component

• Writing a value on a port.

One of the most fundamental design choices is whether to choose a declarative
or procedural model to express the behavior of applying these constraints.
In a classical coordination model like FSM, the configuration applied when
entering one Coordinator state is typically defined in a procedural fashion by
using a function that executes several statements. However, in most cases this
approach constrains the execution more than is necessary, as there often only
exists a partial ordering requirement of the execution of these statements. This
accidental introduction of constraints is undesirable, since it obscures the true
requirements of the system and hinders maintenance. Thus, in our approach
we opted for a purely declarative model of a configuration (apart from a minor
deviation described below). This purely declarative approach becomes possible
because, outside of the scope of the Configurator, the Coordinator can express
ordering requirements by coordinating the Configurator to apply a series of
configurations.

Listing 7.1 shows a single sample configuration written in the Lua based
Configurator DSL. A configuration consists of a pre_conf_state and a
post_conf_state specification and a list of configuration changes. The first
two define to which (runtime) state components shall be brought before and
after the actual configuration takes place, while the latter list defines the exact
(platform specific) changes to be applied. Note that with respect to ordering of
configuration application, the only guarantee made is the following: the run-time
states of the components mentioned in pre_conf_state and post_conf_state are
set accordingly and in the defined order before resp. after the list of changes is
applied. However, no assumptions can be made about the order of applying
the individual changes themselves. The _default keyword permits changing
the state of all components that have not been mentioned otherwise. If no
_default statement is provided, the state of the unmentioned components is
not changed.



DISCUSSION 135

Configuration {
pre_conf_state = { 'compA : running ', 'compB : configure ',

'_default : stopped ' },

post_conf_state = { _default ='running ' },

property_set (" compA . prop1 ", { 2.3 , 3.4 , 5.34 } ),
port_write (" compB . portX ", 33.4) ,
operation_call (" compG .op1", arg1 , arg2 ,...) ,

}

Listing 7.1: A sample configuration.

ConfiguratorConf {
disable_copying = Configuration {

port_write (" Cart_Impedance . ext_ref_mode ", false )
},

enable_copying = Configuration {
port_write (" Cart_Impedance . ext_ref_mode ", true )

},

eight_DOF = Configuration {
property_set (" Dynamics . force_gain ", {0.1 , 0.1 , 0.1})

},

five_DOF = Configuration {
property_set (" Dynamics . force_gain ", {0, 0, 0})

},
}

Listing 7.2: Named configurations for the youBot sample.

Using this DSL, the system configurations required by the coordinator of
Figure 7.3 can be modeled as shown in Listing 7.2.

Since state changes from unsync to harmonizing do not involve any actions,
but merely model the constraints that must be satisfied before the coupling
can be activated, these are not visible in the Configurator configuration. The
only configurations necessary are for enabling and disabling the coupling (hence
to be applied in entry and exit of copying respectively) and for switching
between eight and five degrees of freedom.

7.6 Discussion

We have implemented the described DSL and the associated configurator for the
Orocos RTT framework. The existing youBot coupling coordination has been



136 PURE COORDINATION USING THE COORDINATOR–CONFIGURATOR PATTERN

refactored to make use of the new Configurator. This approach has solved the
shortcomings of the traditional approach: firstly, the coordination model remains
free of any software platform-specific actions and can be reused with any other
framework, assuming a Configurator and corresponding configuration. Secondly,
the actual changes are applied by the Configurator while the Coordinator
remains reactive and free to deal with any other situation that may arise. Lastly,
failures within the Configurator are isolated from the Coordinator, permitting it
to react to the absence of a status event and ultimately improving its robustness.
Naturally, this robustness depends on the run-time context of both entities and
the worst-case failures possible.

Since the Configurator constitutes an additional level of indirection, the question
of the overhead introduced is justified. Obviously, this cannot be answered in
general but will mostly depend on the level of distribution between Coordinator,
Configurator and configured components. Nevertheless, the Coordinator–
Configurator pattern offers an advantage with respect to benchmarking and
profiling the Coordination behavior: since the execution of configuration
application is localized within a single component, the respective measurements
need likewise only to be added once. This avoids the scattering of profiling code
across the Coordination model.

Lastly, having a flat map of configurations might be suboptimal in some cases, as
for instance when it is necessary to undo a configuration to return to a previous
one. With the current model it is necessary to manually specify the inverse
configuration, as for instance is the case for enabling and disabling the coupling
in Listing 7.2. One solution to this could be to use a stack of configurations
onto which changes can be pushed (applied) and popped (undone) again.

7.6.1 Deployment

Interestingly, the Coordinator–Configurator pattern allows dealing with
deployment as a special case of Coordination and Configuration. To that
end, the only requirement is to extend the set of configuration actions with the
following primitives:

• Creating components

• Destructing components

• Creating connections between components

• Removing connections between components.



CONCLUSIONS 137

That way, deployment can be viewed as coordinating the system through a
series of configurations that culminates with the system having reached an
initial operational state. Likewise, shutting down the system can be defined as
applying a configuration that stops all components followed by one resulting
in their destruction. A system, including its rules for deployment, starting
up, runtime changes, and shutdown can thus be specified in terms of a single
coordination model (which can, itself, be composed from multiple coordination
models) and a platform specific Configurator configuration.

7.6.2 Composition

The approach promises to greatly facilitate composition of systems from systems.
Any valid pair of Coordinator and platform-specific Configurator configuration
can be treated as a subsystem (sometimes called a composite component) that
can be used as a building block in a larger system. Nevertheless, for this to
work, several questions need to be answered, including: what is the interface a
subsystem offers, how can the contained coordination model be controlled from
the “outside”, and how can the controllable transitions be specified. Answering
these questions is outside the scope of this chapter.

7.7 Conclusions

We have described the Coordinator–Configurator pattern that is applicable to
complex component-based robot systems. The pattern’s goal is to balance the
forces between increased reusability, temporal determinism and robustness on
the one hand and simplicity of the Coordinator on the other. The key idea is
to separate the responsibility for commanding actions from the responsibility
for executing them. While the first remains with the Coordinator, the latter is
assigned to a new entity called the Configurator. The idea has been implemented
as a Configurator DSL for the Orocos RTT framework.

In future work we intend to focus on adding a complementary DSL to describe
the monitor, whose description was omitted in this work, to further explore
the outlined relationship between Coordination/Configuration and deployment,
and to validate the hypothesis that this pattern greatly facilitates specifying
platform-independent composite components.





Chapter 8

Conclusions

This chapter concludes the thesis by summarizing and discussing the main
contributions from Chapters 3-7 and making suggestions for future work.

8.1 Contributions

The goal of this thesis is to show how robustness, reliability and reusability
of robotic systems can be improved through application of domain specific
languages. To that end an approach of constructing executable,
internal domain specific languages is presented, which offers the
advantages of rapid DSL construction and evolution, facilitating
run-time composition and transformation of DSL while improving
robustness through execution in a virtualized environment.

Hard real-time safe scripting and DSL execution

Chapter 3 describes how the Lua programming language was extended in order
to satisfy real-time constraints. The principal challenges are dealing with safe
allocation and recuperation of memory. The allocation problem was resolved
by employing a dedicated, constant time allocation algorithm (Ogasawara 1995;
Masmano, Ripoll, Balbastre, and Crespo 2008). Coping with the challenge
of real-time garbage collection has proven more difficult, and despite of being
researched for years (Pizlo and Vitek 2008; Kalibera, Pizlo, Hosking, and Vitek
2011), no generic solution has been found. Instead, the presented approach

139



140 CONCLUSIONS

exploits domain knowledge to schedule garbage collections such as
to avoid interfering with critical paths.

Models of coordination, methodology and patterns

Chapter 4 introduces the rFSM statechart model, which was developed tomodel
robust and reusable coordination of complex robotic systems with a
minimal and extensible formalism and which is suitable for integration
with legacy systems. The rFSM semantics are derived by analyzing state-of-
the-art discrete coordination models and extracting a subset with well-defined
semantics for the purpose of Coordination. A real-time safe reference
implementation as an internal Lua DSL is provided, and its integration
into the Orocos RTT framework described. Furthermore, a methodology to
derive coordination for a given architecture of functional components
is presented. Several usage patterns and extensions are described
that illustrate how to integrate rFSM with existing platforms and
how the execution semantics can be extended. An example for the latter
is the preview coordination mechanism.

First experiments with rFSM based coordination confirm the
expected reusability (Chapter 5) and the feasibility of modeling multi-
robot coordination using distributed rFSM instances (see 4.11).

Reusable Task Specifications

Chapter 5 investigates how industrial robot tasks can be specified robot and
software framework independently. For that purpose a simple alignment skill
is realized on two different robots, a Willow Garage PR2 and a KUKA
LWR. The required reusability is achieved by separating the following aspects:
the platform independent rFSM coordination and motion control models, the
robot specific parameters and the software framework specific aspects. Upon
loading, these aspects are dynamically recomposed into a single, executable
rFSM instance (see also Section 4.10.2 for an extended version). Thus, the goal
of platform independent task specification was achieved. The analysis
of the resulting lines of code shows that approximately twice the amount of
platform specific code is necessary to support a reusable, platform independent
model.

Moreover, this chapter has demonstrated the suitability of the approach to
integrate legacy systems. This was achieved by showing how a robot agnostic



CONTRIBUTIONS 141

task FSM was composed at run-time within the FSM for coordinating the KUKA
LWR FRI platform in a way to enforce the constraints of the latter.

Constraining internal DSL

A further outcome of the work on the Task Frame DSL (Chapter 5) was
the insight that internal DSL models are often insufficiently validated, which
may result in invalid behavior or run-time failures. Chapter 6 introduces
the uMF constraint language which addresses the lack of rigorous
formalization of internal DSL. uMF is itself a DSL for modeling constraints
on internal Lua DSL. Although similar to existing constraint languages such as
XML Schema (W3C 2001), uMF differs in several ways. Firstly, the language is
lightweight and as such suitable to be embedded within a single software
component or a small embedded system such as a robot control panel. Secondly,
the language can be extended using hooks, which permits taking the
actual system state into account during the validation. For example,
this could be used to reject the execution of a motion due to a low battery
level or the current joint configuration. Lastly, uMF introduces the notion
of open models, which are realized by defining constraints that only
enforce partial conformance. This way a model can be checked using
multiple constraints, of which each validates a certain property of the model.
For example, a task model could be first checked for conformance with the
generic task meta-model, and then secondly if it can be executed by a particular
robot.

Coordinator-Configurator pattern

In contrast to the patterns introduced in Chapter 4, which illustrate solutions to
problems of specifying and integrating coordination, Chapter 7 presents the
Coordinator-Configurator architectural pattern. This pattern suggests
decoupling the coordination specification from the concrete execution of actions.
A reference implementation realizes the pattern as follows: the Coordinator
emits events to command a Configurator to bring the system to a specific
state, and receives status events from the Configurator and the rest of the
system. The Configurator is configured with event-configuration pairs; upon
receiving an event the corresponding configuration is applied to the system.
This separation offers the following advantages. The robustness
of the coordinator is increased, since the execution of actions and
associated failures are separated from the coordination logic. The
temporal determinism of the coordinator is improved, since the



142 CONCLUSIONS

actions executed are restricted to sending event messages. Moreover,
the approach also facilitates specification of reusable coordination,
since software framework specific operations are contained within
the coordinator.

8.2 Discussion

The following critically discusses the extent, to which the initially formulated
requirements of improving reusability, reliability and robustness of complex and
real-time robotics systems is achieved.

Reusability

Task reusability is achieved by run-time composition of multiple concerns (task
model, coordination model and software framework and robot dependencies)
into a single model, that way demonstrating the possibility to reuse each concern
separately. In the first experiments related to reusability (see Chapter 5), only
the coordination statechart was formally modeled, while the activity of each
state was added as an opaque function. The limitation of this approach is that
validating the composition is virtually impossible, since the model underlying
the opaque is not available. Section 4.10.2 shows how this shortcoming can be
overcome by validating and transforming a model-only composition to executable
code. Nevertheless, while this approach technically permits composing arbitrary
DSL models, ensuring logical correctness still depends on the developer to
select models that can be composed. Overcoming this limitation will not
only require richer models, but more importantly standardization to ground
different DSLs in a way that a common interpretation of primitives is achieved.
For example, the work on geometric relations by De Laet et al. (De Laet,
Bellens, Smits, Aertbeliën, Bruyninckx, and De Schutter 2012; De Laet, Bellens,
Bruyninckx, and De Schutter 2012; De Laet, Bellens, and Bruyninckx 2012) is
an important step in that direction. With a broader scope, the European FP7
projects Rosetta (ROSETTA ) and RoboHow (RoboHow ) are addressing these
knowledge engineering challenges by developing robotics ontologies.

Reliability and Robustness

The presented approach improves reliability and robustness of complex robot
systems in several ways. By formulating problems and solutions using the
terminology of the domain, DSL offer more concise semantics than general



DISCUSSION 143

purpose languages. This supports domain experts to maintain an understanding
of the specified behavior while avoiding distraction by programming language
syntax and semantics. Through its reduced and more concise language, rFSM
avoids several pitfalls and variation points found in UML state machines (see
4.5 and 4.6), such as Choice elements without else clauses (4.5.3). Moreover,
making the concern of coordination explicit often reveals hidden assumptions
in system architectures (see Section 4.2.1).

The Coordinator–Configurator pattern is an architectural pattern which enforces
explicit coordination (see Chapter 7) and improves reliability by deferring the
potentially unsafe and non-deterministic execution of actions to a dedicated
Configurator. This pattern is complemented by the approach of introducing
constraint monitoring as dedicated monitors or as extensions to computational
components (see Section 4.11).

For many internal DSL, input validation is implemented manually and
insufficiently. Consequently, invalid models may pass validation and cause run-
time failures. The uMF DSL permits to avoid this through rigorous checking of
structural models (see Chapter 6), that way increasing the reliability of internal
DSL.

rFSM adopts the concept of structural priority (Section 4.3.2) and illustrates how
this concept can be employed to improve reliability and robustness for different
robotic use-cases (see Section 3.5.4 for an example of memory monitoring in
real-time scripting, Section 4.6.4 for an example of a prioritized safety transition
and Section 5.3.4 for an example of enforcing robotic platform constraints).
The limitation of structural priority for the rFSM implementation is that
the transition latency depends on the execution time of entry, do and exit
functions. In other words, an erroneous sub-statechart may still impair reliability
of coordination. However, if deterministic behavior of these functions can not
be ensured, the alternative is to split both safety and task FSM according to the
distributed sub-state pattern (see Section 4.10.5). That way, negative effects
on transition latency caused by a nested statechart are reduced, though at the
price of additional communication overhead.

In addition, this approach of hierarchically decomposing distributed, loosely
interacting, single threaded rFSM statecharts contributes to reliability, since
failures are contained to individual instances. This way, a system can continue to
function gracefully in spite of local failures. Moreover, the suggested event-only
communication between coordinators behaves robustly in case of communication
failures, since i) no blocking operations are involved that might deadlock and
ii) this condition can be easily detected by communication monitoring (see
Section 4.11).



144 CONCLUSIONS

A current limitation is the lack of tools to specify, validate, launch and monitor
compositions of distributed rFSM. Tools for deploying component based systems
may be of some use, however the subtle differences of coordination (see the
multi-writer example in Section 4.12) will required coordination specific or at
least coordination aware tools.

Currently no formal methods are employed to verify rFSM based coordination.
One reason for this is that formal methods tend to require rigorous application,
which may not be feasible or costly, if existing subsystems must be reused.
For this reason, rFSM based coordination is designed to be easily integrated
with legacy systems and subsystems. On the other hand, statecharts have
been verified using formal methods (Borland 2003; Mikk, Lakhnech, Siegel, and
Holzmann 1998; Zhao and Krogh 2006), thus it can be assumed that much of
this work is applicable to the rFSM model.

Interpreted Real-Time DSL

A limitation of the presented approach is that the responsibility of scheduling
the garbage collection is placed on the developer. To that end it is not only
necessary to have an understanding of the required time constraints, but also
to develop an understanding of the actual timing by means of appropriate
profiling and to ensure that the chosen schedule is sufficient to keep up with
memory allocations. On the one hand, this requires additional effort. On
the other hand, one could argue that such insights are essential for building
a hard real-time system anyway, and that the use of a scripting language
merely facilitates this process by supporting on-the-fly instrumentation and
self-monitoring of memory use. Thus, choosing between real-time scripting and
traditional compiled languages involves a trade-off between improved reliability
and flexibility at the price of requiring some manual profiling and tuning, versus
less flexibility and reliability but with higher performance.

For future work it may be considered to automate the scheduling of the garbage
collection entirely. This would become possible with a sufficiently rich task
model, from which the task’s real-time constraints can be derived. As an
example, coordinating a free space motion will impose weaker timing constraints
than when coordinating a switch of controllers upon making contact with the
environment.



DISCUSSION 145

Implementation Strategy

An important consideration during early stages of this work was whether to
follow the approach of external DSL and to generate code from models or
to employ internal DSL whose models can be executed instantaneously (the
terminology is introduced in Section 2.2). This choice involved the following
trade-off. The former approach is supported by a wide range of existing modeling
tools (mostly developed in the context of the Eclipse project (Eclipse Foundation
a)), permits full control over DSL syntax and is applicable to hard real-time
systems. On the other hand, the approach of modeling using internal DSL
facilitates composing, transforming, extending and executing models, though at
the price of less freedom to define the DSL syntax and of requiring additional
effort to achieve real-time safety. In retrospect, opting for internal DSL has been
the right choice, since it has greatly facilitated illustrating concepts and their
practical implementations without spending much time to develop dedicated
tooling. Realizing non-intrusive, optional extensions such as rFSM preview
coordination (see section 4.10.7) would have required significantly more effort
with the external DSL approach.

Furthermore, the internal DSL approach has opened the possibility for run-time
adaptation of models, such as replacing a state of a running rFSM instance. So
far this has only been little exploited, however for systems with high availability
requirements this may be an important prerequisite.

Language-wise, the author personally would have preferred the Scheme language
as a DSL host language. However, for the purpose at hand Lua was selected since
it combines several of the characteristics of Scheme relevant to building DSL
with a more friendly syntax suitable for non-expert programmers, which are not
uncommon among roboticists. Further reasons included the high maturity of
the language and the large and supportive community surrounding the project.

Minimality

A further point worth discussing is related to the minimality procured in the
rFSM semantics. While the problem of adding too many primitives or features
is a well known and notorious stumbling block (“feature creep”, (Sullivan 2005)),
there is also the more subtle danger to over-reduce complexity. In “Epigrams
on Programming” (Perlis 1982) Alan Perlis warns of minimality: “Beware of
the Turing tar-pit in which everything is possible but nothing of interest is
easy”. For example, it is worth noting that the rFSM model and reference
implementation contain no robotic specific features. This may seem surprising
for a DSL targeting robotic systems, as the inclusion of robotics specific features



146 CONCLUSIONS

might appear to encourage adoption by robotics system engineers. Here the
opposite position is taken: including such features in rFSM would hinder the
adoption, since any selection of features would be inevitably biased towards
certain use-cases. The solution to this is to provide a simple and extensible
model that adopters can mold to their particular use-cases. Patterns and best-
practices are intended to support this process. For example, the notion of time
is intentionally not included into the rFSM core semantics, since its quality
(accuracy, resolution) is highly dependent on the underlying operating system
platform. Consequently when time is required (e.g. for TimeEvents), it must
be explicitly configured. This approach has permitted rFSM to be applied to a
broad range of use-cases, ranging from communication monitoring to assembly
task specification.

All in all, the experience gained so far within the Orocos community and at
several BRICS research camps (most importantly Camp III on Control and
Coordination in Bertinoro, Italy) indicates that even developers not familiar
with coordination can easily get started with rFSM, while at the same time
avoiding common UML pitfalls. Nevertheless, designing a modeling language
remains to some extent inevitably a matter of taste.

Relevance for Machine Tools Applications

This work refers infrequently to machine tools, given that this domain is
mentioned in the title. On the one hand, this is because in terms of software in
the context of this thesis, both machine tool software systems as well as advanced
industrial robot systems are very similar: both system often exhibit hard real-
time constraints and both have strong requirements with respect to reliability
and safety. Furthermore, the connection becomes visible in Section 4.3.5,
where IEC 61131-3 Sequential Function Charts, which are commonly used in
programmable logic controllers, are discussed. A first step in the direction of
demonstrating applicability of this approach to the domain of machine tools has
been converting a shock absorber testing simulation framework to rFSM based
coordination together with the Flanders’ Mechatronics Technology Center. One
interesting possibility for future work would be realizing one or more classical
PLC programming languages as real-time Lua DSL.

With respect to certification according to IEC61508 (International Elec-
trotechnical Commission 2010), it is important to distinguish this thesis’
contributions with respect to models and patterns on the one hand, and reference
implementation on the other. While the latter aims to cover the broadest range
of use-cases, the scripted implementation may prove difficult or impossible to



IMPACT 147

certify. In contrast, no such limitation applies to the models and patterns
presented in this work.

Reproducibility

Each main chapter of this work is backed up with a software implementation. To
encourage reproducibility of the presented results, these implementations were
released together with the respective papers (corresponding to the chapters),
apart from Chapter 7 for which the implementation was released shortly
after the publication. For convenience, the following summarizes the software
corresponding to each chapter:

• Chapter 3: Real-time scripting benchmarks
http://people.mech.kuleuven.be/~mklotzbucher/2011-09-19-rtlws2011/source.tar.bz2

• Chapter 4: rFSM Statecharts
https://github.com/kmarkus/rFSM

• Chapter 5: TFF DSL, Platform and Coordination Models
https://github.com/kmarkus/tff_dsl_tests

• Chapter 6: uMF Constraint DSL
https://github.com/kmarkus/uMF

• Chapter 7: Coordinator–Configurator DSL
https://bitbucket.org/kmarkus/dng

The RTT-Lua integration has been merged into the official Orocos toolchain
project (see http://www.orocos.org). Furthermore, a prototype of a
development tool has been released (see Appendix A).

8.3 Impact

rFSM and RTT-Lua were successfully used at several of the BRICS research
camps, most notably at the third research camp on Control and Coordination
2011, in Bertinoro, Italy.

The current, second generation iTaSC framework is based on rFSM/RTT-Lua
for modeling and executing coordination at system and task level (Vanthienen,
De Laet, Smits, and Bruyninckx 2011). To facilitate specifying iTaSC based
systems, a textual DSL based on the uMF language is currently being developed.

http://people.mech.kuleuven.be/~mklotzbucher/2011-09-19-rtlws2011/source.tar.bz2
https://github.com/kmarkus/rFSM
https://github.com/kmarkus/tff_dsl_tests
https://github.com/kmarkus/uMF
https://bitbucket.org/kmarkus/dng
http://www.orocos.org


148 CONCLUSIONS

As of today, the rFSM implementation and the Orocos RTT-Lua integration
are widely used throughout the Orocos community, judging by the number
of different users asking questions and providing feedback in the forum. In
response to a query on the Orocos mailing list on December 21 2012, members
of several research facilities reported using rFSM and/or RTT-Lua, including
the ARD Team1, the Engineering Department of the University of Ferrara, the
Systems Control and Flight Dynamics Department of the French Aerospace Lab
ONERA (more specifically in the research described in Chanel et al. (Chanel,
Teichteil-Königsbuch, and Lesire 2012) and Gateau et al. (Gateau, Lesire, and
Barbier 2012)) and the Robonaut 2 team from the NASA Johnson Space Center
in Houston.

The successful ContainerBot ECHORD2 project carried out by KU Leuven and
Intermodalics BVBA3 made use of rFSM to coordinate the bin picking system.
Besides this, Intermodalics has realized several industrial automation systems
using rFSM coordination and RTT-Lua real-time scripting (reported in private
communication).

8.4 Suggestions for Future Work

Standardization

To reuse robotic models and meta-models on a wider scale, significant
standardization efforts will be necessary to define common terminology and
to formalize the semantics of primitives in a way that permits different DSL
to unambiguously use these. As mentioned in Section 8.2, several efforts,
mainly driven by academia, are currently ongoing. Unfortunately, as of today
the robotics industry is still showing little interest in standardization of both
software and hardware interfaces. As a consequence, the exchange and reuse of
robotic models, software and hardware components on a broader scale remains
an unsolved challenge.

Formal Verification of Distributed Statecharts

A related topic for future work is to explore how formal approaches can be
applied to validate and verify compositions of rFSM statecharts. For example,
it may be useful to determine when the loss of an event message may lead to a

1http://team-ard.com
2http://www.echord.info
3http://www.intermodalics.eu/

http://team-ard.com
http://www.echord.info
http://www.intermodalics.eu/


SUGGESTIONS FOR FUTURE WORK 149

logical dead-lock. The main challenges to be solved are expected to be related
to the unreliability and non-determinism of the interconnecting communication
channels, as well as unmodeled behavior of computational components.

Tool Development

The efficient application of many techniques described in this thesis will
require further tool support. For example, efficiently realizing discrete preview
coordination with an horizon of multiple states (see Section 4.10.7) will require
tools to reason about whether two task models are kinematically in conflict
or not. Only that way the preview horizon can be automatically determined
and the developer freed from the error prone task of manually specifying this
information.

The deployment, monitoring and validation of distributed rFSM statecharts
could be greatly facilitated by tools for specifying and visualizing the composition.
Two basic prototypes (see Appendix A) have been developed, yet these only
deal with individual rFSM instances, not compositions.





Appendix A

Tools

This appendix describes two tool prototypes, which are being developed with
the goal of supporting development and debugging of rFSM based coordination.

A.1 rFSM online visualization

This tool connects to a running rFSM instance, which is specified by host
address and port. For this to work, the rFSM protocol plugin (rfsm_proto)
must be loaded in the respective rFSM instance. This plugin realizes a server
that offers a message oriented interface to the running FSM. Clients register
as subscribers that (when accepted) initially are sent a rFSM model message.
After that, a continuous stream of state update messages is sent.

Upon receiving the rFSM model, the visualization tool will compute a layout and
visualize the statechart. From then on the currently active state is highlighted,
based on the stream of messages reporting changes of the active configuration.
A screenshot is shown in Figure A.1.

Although functional, this tool has not been released because the current layout
algorithm is an ad-hoc implementation that does not scale to larger statechart
models. Unfortunately, most graph drawing libraries currently only support
cluster graphs, for which edges can only connect to leaf vertices but not to cluster
vertices. The latter is frequently the case in graphs representing hierarchical
statecharts.

151



152 TOOLS

Figure A.1: rFSM online visualization tool.

A.2 rFSM commander

rFSM commander is a ncurses1 based application that permits interacting with
a running rFSM instance. Like the previous visualization tool, rfsm-commander
connects to a running rFSM instance via the rFSM protocol and retrieves
the current rFSM model. It then display the current state while maintaining
a history of previously active states and how long each of these was active.
In addition, all known events are displayed; these events can conveniently be
injected into the running FSM by typing the corresponding number.

This tool has been publicly released and is available under the following link
(https://github.com/kmarkus/rfsm-commander).

Both tools have been implemented using CHICKEN Scheme2.

1http://www.gnu.org/software/ncurses
2http://www.call-cc.org/

https://github.com/kmarkus/rfsm-commander
http://www.gnu.org/software/ncurses
http://www.call-cc.org/


RFSM COMMANDER 153

Figure A.2: rFSM online interaction tool.





References

Abdellatif, T., S. Bensalem, J. Combaz, L. de Silva, and F. Ingrand (2012).
Rigorous design of robot software: A formal component-based approach.
Robotics and Autonomous Systems 60 (12), 1563 – 1578.

Agerholm, S. and P. G. Larsen (1999). A lightweight approach to formal
methods. In Proceedings of the International Workshop on Current Trends
in Applied Formal Method: Applied Formal Methods, FM-Trends 98,
London, UK, UK, pp. 168–183. Springer-Verlag.

Albu-Schäffer, A., S. Haddadin, C. Ott, A. Stemmer, T. Wimböck, and
G. Hirzinger (2007). The DLR lightweight robot: design and control
concepts for robots in human environments. Industrial Robot: An
International Journal 34 (5), 376–385.

Alur, R. and D. L. Dill (1994). A theory of timed automata. Theoretical
Computer Science 126 (2), 183–235.

Ando, N., T. Suehiro, and T. Kotoku (2008). A software platform for
component based RT-system development: OpenRTM-Aist. In Conf.
Simulation, Modeling, and Programming of Autonomous Robots, Venice,
Italia, pp. 87–98.

Andrade, L., J. L. Fiadeiro, J. Gouveia, and G. Koutsoukos (2002).
Separating computation, coordination and configuration. Journal of
software maintenance and evolution: research and practice 14, 353–369.

Arbab, F. (1998). What do you mean, coordination? In Bulletin of the Dutch
Association for Theoretical Computer Science (NVTI), pp. 11–22.

Arbab, F. (2004, June). Reo: a channel-based coordination model for
component composition. Mathematical. Structures in Comp. Sci. 14 (3),
329–366.

Arbab, F., I. Herman, and P. Spilling (1993, February). An overview of
manifold and its implementation. Concurrency: Pract. Exper. 5 (1), 23–
70.

155



156 REFERENCES

Atkinson, C. and T. Kühne (2003). Model-driven development: a
metamodeling foundation. IEEE software 20 (5), 36–41.

Autosar Consortium (2003). Autosar—AUTomotive Open System ARchitec-
ture. http://www.automationml.org.

Baillie, J.-C. (2004). Urbi: A universal language for robotic control.
International journal of Humanoid Robotics.

Bass, L., P. Clements, and R. Kazman (2003). Software Architecture in
Practice (2 ed.). Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc.

Basu, A., M. Bozga, and J. Sifakis (2006). Modeling heterogeneous real-
time components in bip. In Proceedings of the Fourth IEEE International
Conference on Software Engineering and Formal Methods, SEFM ’06,
Washington, DC, USA, pp. 3–12. IEEE Computer Society.

Bauer, N. and S. Engell (2002). A comparison of sequential function charts
and statecharts and an approach towards integration. In Proceedings of
the Workshop INT’02, Grenoble 2002, pp. 58–69.

Bensalem, S., L. de Silva, F. Ingrand, and R. Yan (2011). A verifiable and
correct-by-construction controller for robot functional levels. Journal of
Software Engineering in Robotics 2 (1), 1–19.

Bentley, J. (1986, August). Programming pearls: little languages. Commun.
ACM 29 (8), 711–721.

Bézivin, J. (2005). On the unification power of models. Software and Systems
Modeling 4 (2), 171–188.

Biggs, G. and B. MacDonald (2003). A survey of robot programming systems.
http://citeseer.ist.psu.edu/biggs03survey.html.

Billington, D., V. Estivill-Castro, R. Hexel, and A. Rock (2010). Modelling
behaviour requirements for automatic interpretation, simulation and
deployment. In N. Ando, S. Balakirsky, T. Hemker, M. Reggiani,
and O. von Stryk (Eds.), Simulation, Modeling, and Programming for
Autonomous Robots, Volume 6472 of Lecture Notes in Computer Science,
pp. 204–216. Springer Berlin / Heidelberg.

Bjarnason, E., G. Hedin, and K. Nilsson (1999, March). Interactive language
development for embedded systems. Nordic Journal of Computing 6 (1),
36–54.

Bohren, J. and S. Cousins (2010, dec.). The smach high-level executive [ros
news]. Robotics Automation Magazine, IEEE 17 (4), 18 –20.

Börger, E. and R. F. Stärk (2003). Abstract State Machines. A Method for
High-Level System Design and Analysis. Springer.

http://www.automationml.org
http://citeseer.ist.psu.edu/biggs03survey.html 


REFERENCES 157

Borland, S. (2003). Transforming statechart models to DEVS. Master’s thesis,
Montreal, Canada.

Botelho, S. and R. Alami (1999). M+: a scheme for multi-robot cooperation
through negotiated task allocation and achievement. In Proceedings.
1999 IEEE International Conference on Robotics and Automation, 1999.,
Volume 2, pp. 1234 –1239 vol.2.

Breen, M. (2004). Statecharts: Some critical observations.
Bruyninckx, H. and J. De Schutter (1996). Specification of force-controlled

actions in the “Task Frame Formalism”: A survey. IEEE Transactions
on Robotics and Automation 12 (5), 581–589.

Bruyninckx, H., N. Hochgeschwender, L. Gherardi, M. Klotzbuecher,
G. Kraetzschmar, D. Brugali, A. Shakhimardanov, J. Paulus, M. Reckhaus,
H. Garcia, D. Faconti, and P. Soetens. The Brics Component Model: A
model-based development paradigm for complex robotics software systems.

Burmester, S., H. Giese, and M. Tichy (2004). Model-driven development of
reconfigurable mechatronic systems with mechatronic uml. In U. Aßmann,
M. Aksit, and A. Rensink (Eds.), MDAFA, Volume 3599 of Lecture Notes
in Computer Science, pp. 47–61. Springer.

Chanel, C. P. C., F. Teichteil-Königsbuch, and C. Lesire (2012). Pomdp-based
online target detection and recognition for autonomous uavs. In ECAI
2012 - 20th European Conference on Artificial Intelligence., Volume 242
of Frontiers in Artificial Intelligence and Applications, pp. 955–960.

Conway, M. E. (1963, July). Design of a separable transition-diagram compiler.
Commun. ACM 6, 396–408.

Coste-Maniere, E. and N. Turro (1997). The MAESTRO language and its
environment: specification, validation and control of robotic missions. See
IROS97 (1997), pp. 836–841.

Crockford, D. (2006). The application/json Media Type for JavaScript Object
Notation (JSON). http://tools.ietf.org/html/rfc4627.

David, R. and H. Alla (1992). Petri Nets and Grafcet: Tools for Modelling
Discrete Event Systems. Upper Saddle River, NJ, USA: Prentice-Hall, Inc.

De Laet, T., S. Bellens, and H. Bruyninckx (2012). Semantics underlying
geometric relations between rigid bodies in robotics. https://retf.info/
rrfcs/0005. Last visited September 2012.

De Laet, T., S. Bellens, H. Bruyninckx, and J. De Schutter (2012). Geometric
relations between rigid bodies: from semantics to software. IEEE Robotics
and Automation Magazine.

http://tools.ietf.org/html/rfc4627
https://retf.info/rrfcs/0005
https://retf.info/rrfcs/0005


158 REFERENCES

De Laet, T., S. Bellens, R. Smits, E. Aertbeliën, H. Bruyninckx, and
J. De Schutter (2012). Geometric relations between rigid bodies: Semantics
for standardization. IEEE Robotics and Automation Magazine.

De Schutter, J., T. De Laet, J. Rutgeerts, W. Decré, R. Smits, E. Aertbeliën,
K. Claes, and H. Bruyninckx (2007). Constraint-based task specification
and estimation for sensor-based robot systems in the presence of geometric
uncertainty. The International Journal of Robotics Research 26 (5), 433–
455.

De Schutter, J. and H. Van Brussel (1988). Compliant robot motion I.
A formalism for specifying compliant motion tasks. The International
Journal of Robotics Research 7 (4), 3–17.

Delanote, D., S. Van Baelen, W. Joosen, and Y. Berbers (2008, april). Using
AADL to model a protocol stack. In Engineering of Complex Computer
Systems, 2008. ICECCS 2008. 13th IEEE International Conference on,
pp. 277 –281.

DFKI (2011). Rock: the robot construction kit. http://www.rock-robotics.
org. Last visited November 2012.

Dijkstra, E. W. (1982). On the role of scientific thought. In Selected Writings
on Computing: A Personal Perspective, pp. 60–66. Springer-Verlag.

Dragert, C., J. Kienzle, and C. Verbrugge (2011). Toward high-level reuse
of statechart-based ai in computer games. In Proceedings of the 1st
International Workshop on Games and Software Engineering, GAS ’11,
New York, NY, USA, pp. 25–28. ACM.

Dromey, R. (2003, sept.). From requirements to design: formalizing the key
steps. In First International Conference on Software Engineering and
Formal Methods., pp. 2 –11.

Eclipse Foundation. The Eclipse Integrated Development Environment. http:
//www.eclipse.org.

Eclipse Foundation. Eclipse Modelling Framework Project. http://www.
eclipse.org/modeling/emf/.

Eker, J., J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer,
S. Sachs, and Y. Xiong (2003). Taming heterogeneity—The Ptolemy
approach. Proceedings of the IEEE 91 (1), 127–144.

Elmqvist, H., F. Gaucher, S. Mattsson, and F. Dupont (2012). State Machines
in Modelica. In M. Otter and D. Zimmer (Eds.), Proceedings of 9th
International Modelica Conference, Munich, Germany.

Elrad, T., O. Aldawud, and A. Bader (2002). Aspect-oriented modeling:
Bridging the gap between implementation and design. In D. Batory,
C. Consel, and W. Taha (Eds.), Generative Programming and Component

http://www.rock-robotics.org
http://www.rock-robotics.org
http://www.eclipse.org
http://www.eclipse.org
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/


REFERENCES 159

Engineering, Volume 2487 of Lecture Notes in Computer Science, pp.
189–201. Springer Berlin / Heidelberg.

Eshuis, R. (2009). Reconciling statechart semantics. Sci. Comput.
Program. 74 (3), 65–99.

Finkemeyer, B., T. Kröger, and F. M. Wahl (2005). Executing assembly
tasks specified by manipulation primitive nets. Advanced Robotics 19 (5),
591–611.

Flatscher, R. G. (2002). Metamodeling in EIA/CDIF–Meta-Metamodel and
Metamodels. ACM Trans. on Modeling and Computer Simulation 12 (4),
322–342.

Fleury, S., M. Herrb, and R. Chatila (1997). GenoM: a tool for the specification
and the implementation of operating modules in a distributed robot
architecture. See IROS97 (1997), pp. 842–848.

Fowler, M. (2005, Juni). Language workbenches: The killer-app for domain
specific languages?

Gamha, Y., N. Bennacer, L. Ben Romdhane, G. Vidal-Naquet, and B. Ayeb
(2007, july). A statechart-based model for the semantic composition of
web services. In 2007 IEEE Congress on Services, pp. 49–56.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides (1995). Design patterns:
elements of reusable object-oriented software. Reading, MA: Addison-
Wesley.

Gancet, J., G. Hattenberger, R. Alami, and S. Lacroix (2005, aug.). Task
planning and control for a multi-uav system: architecture and algorithms.
In IROS2005, pp. 1017–1022.

Gansner, E. R. and S. C. North (2000). An open graph visualization system
and its applications to software engineering. SOFTWARE - PRACTICE
AND EXPERIENCE 30 (11), 1203–1233.

Gat, E. (1991, apr). Alfa: a language for programming reactive robotic control
systems. In Proceedings of the 1991 IEEE International Conference on
Robotics and Automation, Volume 2, Sacramento, CA, pp. 1116–1121.
ICRA91.

Gateau, T., C. Lesire, and M. Barbier (2012). Robust strategies for multirobot
team collaboration under uncertain communications. In International
Symposium on Distributed Autonomous Robotic Systems (DARS), Poster
session, Baltimore, MD, USA.

Gelernter, D. (1985, January). Generative communication in linda. ACM
Trans. Program. Lang. Syst. 7 (1), 80–112.

Gelernter, D. and N. Carriero (1992). Coordination languages and their
significance. Communications of the ACM 35 (2), 97–107.



160 REFERENCES

Gerum, P. (2004). Xenomai – implementing a rtos emulation framework on
gnu/linux.

Ghosal, A. (2008, Jan). A Hierarchical Coordination Language for Reliable
Real-Time Tasks. Ph. D. thesis, EECS Department, University of
California, Berkeley.

Gleixner, T. (2011). cyclictest. https://rt.wiki.kernel.org/index.php/
Cyclictest. Last visited January 2013.

Harel, D. (1987). State charts: A visual formalism for complex systems.
Science of Computer Programming 8, 231–274.

Harel, D., H. Lanchover, A. Naamad, A. Pnueli, M. Politi, R. Sherman,
A. Shtull-Trauring, and M. Trakhtenbrot (1990). STATEMATE: A working
environment for the development of complex reactive system. IEEE
Transactions on Software Engineering 16, 403–414.

Harel, D. and A. Naamad (1996). The STATEMATE semantics of statecharts.
ACM Trans. on Software Engineering Methodolody 5 (4), 293–333.

Henzinger, T. (1996, jul). The theory of hybrid automata. In Logic in
Computer Science, 1996. LICS ’96. Proceedings., Eleventh Annual IEEE
Symposium on, pp. 278–292.

Hewitt, C., P. Bishop, and R. Steiger (1973). A universal modular ACTOR
formalism for artificial intelligence. In IJCAI1973, pp. 235–245.

Hoare, C. A. R. (1978). Communicating sequential processes. Communications
of the ACM 21 (8), 666–677.

Hoare, C. A. R. (1985). Communicating sequential processes. Upper Saddle
River, NJ, USA: Prentice-Hall, Inc.

Hrúz, B. and M. Zhou (2007). Modeling and Control of Discrete-Event
Dynamical Systems: With Petri Nets and Other Tools. Advanced
Textbooks in Control and Signal Processing. Springer.

Hudak, P., C. Antony, H. Nilsson, and J. Peterson (2003). Arrows, robots, and
functional reactive programming. In Lecture Notes in Computer Science,
Volume 2352. Springer-Verlag.

Ierusalimschy, R., W. Celes, and L. H. de Figueiredo (2012). Lua Programming
Language. http://www.lua.org. Last visited 2012.

Ierusalimschy, R., L. H. de Figueiredo, and W. Celes (2007). The evolution of
lua. In Proceedings of the third ACM SIGPLAN conference on History of
programming languages, HOPL III, New York, NY, USA, pp. 2–1–2–26.
ACM.

Ierusalimschy, R., L. H. de Figueiredo, and W. Celes (2012). Lua 5.1 Reference
Manual. http://www.lua.org/manual/5.1/manual.html. Last visited
2012.

https://rt.wiki.kernel.org/index.php/Cyclictest
https://rt.wiki.kernel.org/index.php/Cyclictest
http://www.lua.org
http://www.lua.org/manual/5.1/manual.html


REFERENCES 161

Ierusalimschy, R., L. H. de Figueiredo, and W. C. Filho (1996). Lua—an
extensible extension language. Softw. Pract. Exper. 26 (6), 635–652.

International Electrotechnical Commission (2010). IEC 61508 Ed. 2:
Functional Safety. IEC.

International Electrotechnical Commission, T. C. . (2003). IEC 61131-3 Ed.
2: Programmable controllers — Part 3: Programming Languages. IEC.

IROS97 (1997). Proceedings of the 1997 IEEE/RSJ International Conference
on Intelligent Robots and Systems, Grenoble, France. IROS97.

ISO/IEC/IEEE (2010, dec). Systems and software engineering – vocabulary.
Technical report.

Jackson, D. (2002, April). Alloy: a lightweight object modelling notation.
ACM Trans. Softw. Eng. Methodol. 11 (2), 256–290.

Jackson, D. and J. Wing (1996, April). Lightweight formal methods. IEEE
Computer , 21–22.

Jensen, K. (1987). Coloured petri nets. In W. Brauer, W. Reisig, and
G. Rozenberg (Eds.), Petri Nets: Central Models and Their Properties,
Volume 254 of Lecture Notes in Computer Science, pp. 248–299. Springer
Berlin / Heidelberg. 10.1007/BFb0046842.

Joyeux, S., R. Philippsen, R. Alami, and S. Lacroix (2009). A plan manager
for multi-robot systems. The International Journal of Robotics Research.

Kaelbling, L. P. (1987). Rex: A symbolic language for the design and
parallel implementation of embedded systems. In Proceedings of the AIAA
Conference on Computers in Aerospace, Wakefield, Massachusetts.

Kaelbling, L. P. (1988). Goals as parallel program specifications. In Proceedings
of the Seventh National Conference on Artificial Intelligence, Minneapolis-
St. Paul, Minnesota.

Kalibera, T., F. Pizlo, A. L. Hosking, and J. Vitek (2011). Scheduling real-time
garbage collection on uniprocessors. ACM Trans. Comput. Syst. 29 (3), 8.

Kiczales, G. (1996). Aspect-oriented programming. ACM Computing Surveys,
154.

Klotzbuecher, M. (2011). rFSM statecharts. http://www.orocos.org/rFSM.
Last visited January 2012.

Klotzbuecher, M. (2012). uMF micro-modelling framework. https://github.
com/kmarkus/umf. Last visited September 2012.

Klotzbuecher, M., G. Biggs, and H. Bruyninckx (2012, November). Pure
coordination using the coordinator–configurator pattern. In Proceedings
of the 3rd International Workshop on Domain-Specific Languages and
models for ROBotic systems.

http://www.orocos.org/rFSM
https://github.com/kmarkus/umf
https://github.com/kmarkus/umf


162 REFERENCES

Klotzbuecher, M. and H. Bruyninckx (2011, October). Hard real-time control
and coordination of robot tasks using Lua. In Proceedings of the Thirteenth
Real-Time Linux Workshop.

Klotzbuecher, M. and H. Bruyninckx (2012, September). A lightweight,
composable metamodelling language for specification and validation of
internal domain specific languages. In Proceedings of the 8th International
Workshop on Model-based Methodologies for Pervasive and Embedded
Software.

Klotzbuecher, M., R. Smits, H. Bruyninckx, and J. De Schutter (2011).
Reusable hybrid force-velocity controlled motion specifications with
executable domain specific languages. In Proceedings of the 2011
IEEE/RSJ International Conference on Intelligent Robots and Systems,
San Francisco, California, pp. 4684–4689. IROS2011.

Klotzbuecher, M., P. Soetens, and H. Bruyninckx (2010). OROCOS RTT-
Lua: an Execution Environment for building Real-time Robotic Domain
Specific Languages. In International Workshop on Dynamic languages for
RObotic and Sensors, pp. 284–289.

Kopetz, H. (1993). Should responsive systems be event-triggered or time-
triggered ? Institute of Electronics, Information, and Communications
Engineers Transactions on Information and Systems E76-D(11), 1325–
1332.

Kopetz, H. and G. Bauer (2003, jan). The time-triggered architecture.
Proceedings of the IEEE 91 (1), 112–126.

Korean Institute for Advanced Intelligent Systems. OPRoS. http://opros.
or.kr/. Last visited November 2010.

Kortenkamp, D. and R. G. Simmons (2008). Robotic systems architectures
and programming. In B. Siciliano and O. Khatib (Eds.), Springer Handbook
of Robotics, pp. 187–206. Springer.

Lesser, V., K. Decker, T. Wagner, N. Carver, A. Garvey, B. Horling,
D. Neiman, R. Podorozhny, M. N. Prasad, A. Raja, R. Vincent, P. Xuan,
and X. Q. Zhang (2004, July). Evolution of the gpgp/taems domain-
independent coordination framework. Autonomous Agents and Multi-
Agent Systems 9 (1-2), 87–143.

Mallet, F. and R. Simone (2009). MARTE vs. AADL for Discrete-Event and
Discrete-Time Domains. In M. Radetzki (Ed.), Languages for Embedded
Systems and their Applications, Volume 36 of Lecture Notes in Electrical
Engineering, pp. 27–41. Springer Netherlands.

Marty, J. C., A. E. K. Sahraoui, and M. Sartor (1998, November). Statecharts
to specify the control of automated manufacturing systems. International
Journal of Production Research 36 (11), 3183–3215.

http://opros.or.kr/
http://opros.or.kr/


REFERENCES 163

Masmano, M., I. Ripoll, P. Balbastre, and A. Crespo (2008). A constant-time
dynamic storage allocator for real-time systems. Real-Time Syst. 40 (2),
149–179.

Mason, M. T. (1979). Compliance and force control for computer controlled
manipulators. Master’s thesis, Department of Electrical Engineering and
Computer Science, Massachusetts Institute of Technology, Cambridge,
MA.

Mason, M. T. (1981). Compliance and force control for computer
controlled manipulators. IEEE Transactions on Systems, Man, and
Cybernetics SMC-11 (6), 418–432.

MathWorks. Design and simulate state charts by The Mathworks. www.
mathworks.de/products/stateflow/.

McCarragher, B. J. (1994). Petri net modeling for robotic assembly and
trajectory planning. IEEE Transactions on Industrial Electronics 41 (6),
631–640.

Medeiros, A. A. D. (1998, 04). A survey of control architectures for
autonomous mobile robots. Journal of the Brazilian Computer Society 4.

Mellor, S. J. and M. Balcer (2002). Executable UML: A Foundation for
Model-Driven Architectures. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc. Foreword By-Jacoboson, Ivar.

Mens, T. and P. Van Gorp (2006). A taxonomy of model transformation.
Electronic Notes in Theoretical Computer Science 152 (0), 125 – 142.

Merkle, B. (2010). Textual modeling tools: overview and comparison
of language workbenches. In Proceedings of the ACM international
conference companion on Object oriented programming systems languages
and applications companion, SPLASH ’10, New York, NY, USA, pp.
139–148. ACM.

Mernik, M., J. Heering, and A. M. Sloane (2005, December). When and
how to develop domain-specific languages. ACM Comput. Surv. 37 (4),
316–344.

Merz, T., P. Rudol, and M. Wzorek (2006, july). Control system framework
for autonomous robots based on extended state machines. In International
Conference on Autonomic and Autonomous Systems, 2006. ICAS ’06.
2006, pp. 14.

Mikk, E., Y. Lakhnech, M. Siegel, and G. J. Holzmann (1998). Implementing
statecharts in promela/spin. In Proceedings of the Second IEEE Workshop
on Industrial Strength Formal Specification Techniques, WIFT ’98,
Washington, DC, USA, pp. 90–. IEEE Computer Society.

www.mathworks.de/products/stateflow/
www.mathworks.de/products/stateflow/


164 REFERENCES

Miller, J. and J. Mukerji (2003). MDA Guide version 1.0.1. Technical report,
Object Management Group (OMG).

Modelica Association. Modelica: Language design for multi-domain modeling.
http://www.modelica.org/.

Object Management Group. Object Constraint Language. http://www.omg.
org/spec/OCL/.

Object Management Group. OMG. http://www.omg.org.
Object Management Group. Query View Transformation. http://www.omg.

org/spec/QVT/.
Object Management Group. Semantics of a Foundational Subset for

Executable UML Models (fUML), version 1.0. http://www.omg.org/
spec/FUML/1.0/.

Object Management Group (2006). Meta Object Facility (MOF) core spec-
ification. http://www.omg.org/technology/documents/formal/data_
distribution.htm.

Object Management Group (2009). UML specification. http://www.omg.
org/spec/UML.

Object Management Group (2011). Unified Modeling Language (UML)
superstructure specification, version 2.4.1. http://www.uml.org/.

Object Management Group (2012). Systems Modelling Language (SysML),
version 1.3. http://www.sysml.org/.

Ogasawara, T. (1995). An algorithm with constant execution time
for dynamic storage allocation. In RTCSA ’95: Proceedings of the
2nd International Workshop on Real-Time Computing Systems and
Applications, Washington, DC, USA, pp. 21. IEEE Computer Society.

Olofson, D. (2005). The Extensible Embeddable Language. http://eel.
olofson.net/. Last visited January 2013.

Otter, M., M. Malmheden, H. Elmqvist, S. E. Mattson, and C. Johnsson
(2009). A new formalism for modeling of reactive and hybrid systems. In
Modelica Conference, pp. 364–377.

Pall, M. (2011). Luajit: The lua just-in-timer compiler. http://luajit.org.
Last visited January 2013.

Papadopoulos, G. A. and F. Arbab (1998). Coordination models and
languages. Technical report, Amsterdam, The Netherlands, The
Netherlands.

Perlis, A. J. (1982, September). Special feature: Epigrams on programming.
SIGPLAN Not. 17 (9), 7–13.

http://www.modelica.org/
http://www.omg.org/spec/OCL/
http://www.omg.org/spec/OCL/
http://www.omg.org
http://www.omg.org/spec/QVT/
http://www.omg.org/spec/QVT/
http://www.omg.org/spec/FUML/1.0/
http://www.omg.org/spec/FUML/1.0/
http://www.omg.org/technology/documents/formal/data_distribution.htm
http://www.omg.org/technology/documents/formal/data_distribution.htm
http://www.omg.org/spec/UML
http://www.omg.org/spec/UML
http://www.uml.org/
http://www.sysml.org/
http://eel.olofson.net/
http://eel.olofson.net/
http://luajit.org


REFERENCES 165

Petersson, J., P. Hudak, and C. Elliott (1999). Lambda in motion: Controlling
robots with haskell. In Lecture Notes in Computer Science, Volume 1551,
pp. 91–105. Springer-Verlag.

Petri, C. A. (1962). Kommunikation mit Automaten. Ph. D. thesis, Institut
für instrumentelle Mathematik, Bonn.

Pizlo, F. and J. Vitek (2008). Memory management for real-time java: State
of the art. 2008 11th IEEE International Symposium on Object and
Component-Oriented Real-Time Distributed Computing (ISORC) 0, 248–
254.

Pohlmann, U., S. Dziwok, J. Suck, B. Wolf, C. C. Loh, and M. Tichy (2012).
A modelica library for real-time coordination modeling. In M. Otter and
D. Zimmer (Eds.), Proceedings of 9th International Modelica Conference,
Munich, Germany.

Prassler, E., H. Bruyninckx, K. Nilsson, and A. Shakhimardanov (2009).
The use of reuse for designing and manufacturing robots. Technical
report, Robot Standards project. http://www.robot-standards.eu/
/Documents_RoSta_wiki/whitepaper_reuse.pdf.

Quigley, M., K. Conley, B. Gerkey, J. Faust, T. B. Foote, J. Leibs, R. Wheeler,
and A. Y. Ng (2009). ROS: an open-source Robot Operating System. In
ICRA Workshop on Open Source Software.

Radestock, M. and S. Eisenbach (1996). Coordination in evolving systems.
In Trends in Distributed Systems. CORBA and Beyond, pp. 162–176.
Springer-Verlag.

Ramadge, P. J. and W. M. Wonham (1987, January). Supervisory control of a
class of discrete event processes. SIAM J. Control Optim. 25 (1), 206–230.

Real-Time for Java Expert Group (RTJEG) (2005, June). Real-time
specification for java (rtsj). http://www.rtsj.org/specjavadoc/book_
index.html.

Renggli, L., S. Ducasse, T. Gîrba, and O. Nierstrasz (2010). Domain-specific
program checking. In J. Vitek (Ed.), Objects, Models, Components,
Patterns, Volume 6141 of Lecture Notes in Computer Science, pp. 213–232.
Springer Berlin / Heidelberg.

Renggli, L., S. Ducasse, and A. Kuhn (2007). Magritte - a meta-driven
approach to empower developers and end users. In G. Engels, B. Opdyke,
D. Schmidt, and F. Weil (Eds.), Model Driven Engineering Languages
and Systems, Volume 4735 of Lecture Notes in Computer Science, pp.
106–120. Springer Berlin / Heidelberg.

RoboHow. The robohow project. http://robohow.eu/.

http://www.robot-standards.eu//Documents_RoSta_wiki/whitepaper_reuse.pdf
http://www.robot-standards.eu//Documents_RoSta_wiki/whitepaper_reuse.pdf
http://www.rtsj.org/specjavadoc/book_index.html
http://www.rtsj.org/specjavadoc/book_index.html
http://robohow.eu/


166 REFERENCES

Rosell, J. (2004). Assembly and task planning using Petri nets: A survey.
Proceedings of the Institution of Mechanical Engineers, Part B: Journal
of Engineering Manufacture 218, 987–994.

ROSETTA. Robot control for skilled execution of tasks in natural interaction
with humans; based on autonomy, cumulative knowledge and learning.
http://www.fp7rosetta.eu/.

SAE International. AADL: The SAE Architecture Analysis and Design
Language. http://www.aadl.info.

Schreiber, G., A. Stemmer, and R. Bischoff (2010, May). The Fast
Research Interface for the KUKA Lightweight Robot. In IEEE Workshop
on Innovative Robot Control Architectures for Demanding (Research)
Applications – How to Modify and Enhance Commercial Controllers
(ICRA 2010).

Shakhimardanov, A., N. Hochgeschwender, M. Reckhaus, and G. K.
Kraetzschmar (2011). Analysis of software connectors in robotics. In
Proceedings of the IEEE International Conference on Robotics and
Automation, Shangai, China, pp. 1030–1035.

Sheridan, T. B. (1992). Telerobotics, Automation, and Human Supervisory
Control. Cambridge, MA, USA: MIT Press.

Shlaer, S. and S. J. Mellor (1988). Object-oriented systems analysis: modeling
the world in data. Upper Saddle River, NJ, USA: Yourdon Press.

Simmons, R. and D. Apfelbaum (1998, oct). A task description language for
robot control. In Intelligent Robots and Systems, 1998. Proceedings., 1998
IEEE/RSJ International Conference on, Volume 3, pp. 1931 –1937 vol.3.

Simons, A. J. H. (2000). On the compositional properties of UML statechart
diagrams. In Rigorous Object-Oriented Methods, Workshops in Computing.
BCS.

Smits, R. (2010, May). Robot skills: design of a constraint-based methodology
and software support. Ph. D. thesis, Department of Mechanical
Engineering, Katholieke Universiteit Leuven, Belgium.

Smits, R., H. Bruyninckx, and E. Aertbeliën (2001). KDL: Kinematics and
Dynamics Library. http://www.orocos.org/kdl. Last visited August
2012.

Smits, R., T. De Laet, K. Claes, H. Bruyninckx, and J. De Schutter (2008).
iTaSC: a tool for multi-sensor integration in robot manipulation. In
IEEE International Conference on Multisensor Fusion and Integration
for Intelligent Systems, Seoul, South-Korea, pp. 426–433. MFI2008.

Soetens, P. (2006, May). A Software Framework for Real-Time and Distributed
Robot and Machine Control. Ph. D. thesis, Department of Mechanical

http://www.fp7rosetta.eu/
http://www.aadl.info
http://www.orocos.org/kdl


REFERENCES 167

Engineering, Katholieke Universiteit Leuven, Belgium. http://www.mech.
kuleuven.be/dept/resources/docs/soetens.pdf.

Soetens, P. and H. Bruyninckx (2005). Realtime hybrid task-based control for
robots and machine tools. In Proceedings of the 2005 IEEE International
Conference on Robotics and Automation, Barcelona, Spain, pp. 260–265.
ICRA2005.

Spinellis, D. (2001, feb). Notable design patterns for domain specific languages.
Journal of Systems and Software 56 (1), 91–99.

Sullivan, J. (2005, june). Impediments to and incentives for automation in the
air force. In Proceedings. 2005 International Symposium on Technology
and Society, 2005. Weapons and Wires: Prevention and Safety in a Time
of Fear. ISTAS 2005., pp. 102–110.

Sun Microsystems (2006). Memory management in the java hotspottm vir-
tual machine. http://java.sun.com/j2se/reference/whitepapers/
memorymanagement_whitepaper.pdf.

Tarr, P., H. Ossher, W. Harrison, and S. M. Sutton, Jr. (1999). N degrees of
separation: multi-dimensional separation of concerns. In Proceedings of
the 21st international conference on Software engineering, ICSE ’99, New
York, NY, USA, pp. 107–119. ACM.

Van de Poel, P., W. Witvrouw, H. Bruyninckx, and J. De Schutter (1993).
An environment for developing and optimizing compliant robot motion
tasks. In Proceedings of the 1993 International Conference on Advanced
Robotics, Tokyo, Japan, pp. 713–718.

van Deursen, A., P. Klint, and J. Visser (2000, June). Domain-specific
languages: an annotated bibliography. SIGPLAN Not. 35 (6), 26–36.

Vanthienen, D., T. De Laet, R. Smits, and H. Bruyninckx (2011). itasc
software. http://www.orocos.org/itasc. Last visited March 2013.

von der Beeck, M. (1994). A comparison of statecharts variants. In
H. Langmaack, W.-P. de Roever, and J. Vytopil (Eds.), Formal Techniques
in Real-Time and Fault-Tolerant Systems, Volume 863 of Lecture Notes
in Computer Science, pp. 128–148. Springer Berlin / Heidelberg.

W3C (2001). XSD: XML Schema Definition. http://www.w3.org/XML/
Schema.

W3C (2010). State Chart XML (SCXML): State machine notation for control
abstraction. W3C Working Draft. http://www.w3.org/TR/scxml/.

Wainer, G. A. and P. Mosterman (2011). Discrete-Event Modeling and
Simulation: Theory and Applications. Taylor and Francis.

Willow Garage (2008). Robot Operating System (ROS). http://www.ros.
org. Last visited 2012.

http://www.mech.kuleuven.be/dept/resources/docs/soetens.pdf
http://www.mech.kuleuven.be/dept/resources/docs/soetens.pdf
http://java.sun.com/j2se/reference/whitepapers/memorymanagement_whitepaper.pdf
http://java.sun.com/j2se/reference/whitepapers/memorymanagement_whitepaper.pdf
http://www.orocos.org/itasc
http://www.w3.org/XML/Schema
http://www.w3.org/XML/Schema
http://www.w3.org/TR/scxml/
http://www.ros.org
http://www.ros.org


168 REFERENCES

Wittocx, J., M. Mariën, and M. Denecker (2008, Nov). The IDP system: A
model expansion system for an extension of classical logic. In M. Denecker
(Ed.), Proceedings of the 2nd Workshop on Logic and Search, pp. 153–165.
ACCO.

Witvrouw, W., P. Van de Poel, and J. De Schutter (1995). Comrade:
Compliant motion research and development environment. In 3rd
IFAC/IFIP workshop on Algorithms and Architectures for Real-Time
Control, Ostend, Belgium, pp. 81–87.

Zeigler, B. P. (1976). Theory of Modeling and Simulation. John Wiley.
Zhao, Q. and B. Krogh (2006, sept.). Formal verification of statecharts

using finite-state model checkers. Control Systems Technology, IEEE
Transactions on 14 (5), 943 –950.



Curriculum

Personal data

Markus Klotzbücher
born September 7, 1978 in Stanford, USA.
markus.klotzbuecher@mech.kuleuven.be or
mk@marumbi.de

Education

• 2009-2013: PhD student at the Department of Mechanical Engineering,
University of Leuven, Belgium.

– Supervised by Prof. Herman Bruyninckx.

• 2008-2009 Predoctoral phase, attending courses and project work at
University of Leuven.

• 1999-2004: Computer Engineering at the University of Applied Sciences
Konstanz, Germany.

– Semester abroad in 2002: Pontifical Catholic University of Paraná
(Pontifícia Universidade Católica do Paraná), Brazil.

– Thesis: Development of a Linux Overlay Filesystem for Software
Updates in Embedded Systems.

169



170 CURRICULUM

Experience

• 2004-2009: Freelance consultant

– Software development for embedded and real-time systems in the
automation and telecommunication industry.

– Teaching industrial seminars on Embedded Linux System Design
and Linux Device Driver Development (both in cooperation with
DENX Software Engineering).

• 2002: Internship at Siemens–CITS (Centro Internacional de Tecnologia
de Software) in Curitiba, Brazil.

– Participation in software development of a high end telecommunica-
tion product.

• 2000-2001: Internship at UPAQ Ltd., Zurich, Switzerland.

– Work in network security and system administration for one semester.

• 1998-1999: Civilian service as paramedic at the German Red Cross.

– Training as Rettungssanitäter (second highest paramedical qualifica-
tion).

– Afterwards further voluntary work and training.



Publications

Articles in Internationally Reviewed Journals

1. Klotzbücher, M., Bruyninckx, H. (2012). Coordinating Robotic Tasks and
Systems with rFSM Statecharts. JOSER: Journal of Software Engineering
for Robotics, 3 (1), 28-56.

Papers at international scientific conferences and
symposia, published in full in proceedings

1. Bruyninckx, H., Hochgeschwender, N., Gherardi, L., Klotzbücher, M.,
Kraetzschmar, G., Brugali, D., Shakhimardanov, A., Paulus, J., Reckhaus,
M., Garcia, H., Faconti, D. and Soetens, P. (2013). The BRICS Component
Model: A Model-Based Development Paradigm For Complex Robotics
Software Systems.

2. Klotzbücher, M., Bruyninckx, H. (2012). A Lightweight, Composable
Metamodelling Language for Specification and Validation of Internal
Domain Specific Languages. Proceedings of the 8th International
Workshop on Model-based Methodologies for Pervasive and Embedded
Software (MOMPES ’12), ASM, Essen, 3-7 September 2012, LNCS.

3. Brugali, D., Gherardi, L., Klotzbücher, M., Bruyninckx, H. (2012). Service
Component Architectures in Robotics: The SCA-Orocos Integration. In
Hähnle, R. (Ed.), Knoop, J. (Ed.), Margaria, T. (Ed.), Schreinerh, D.
(Ed.), Steffen, B. (Ed.), International Workshops, SARS 2011 and MLSC
2011, Held Under the Auspices of ISoLA 2011 in Vienna, Austria, October
17-18, 2011: Vol. 336. ISoLA. Vienna, October 17-18, 2011 (pp. 46-60).
Berlin Heidelberg: Springer.

171



172 PUBLICATIONS

4. Klotzbücher, M., Smits, R., Bruyninckx, H., De Schutter, J. (2011).
Reusable Hybrid Force-Velocity controlled Motion Specifications with
executable Domain Specific Languages. IEEE/RSJ International
Conference on Intelligent Robots and Systems. San Francisco, USA.,
25-30 September, 2011 IEEE.

5. Klotzbücher, M., Bruyninckx, H. (2011). Hard Real-Time Control and
Coordination of Robot Tasks using Lua. Proceedings of the Thirteenth
Real-Time Linux Workshop. Real Time Linux Workshop. Czech Technical
University, Prague, 20-22 October 2011 (pp. 37-43) Open Source
Automation Development Lab (OSADL) eG.

6. Klotzbücher, M., Soetens, P., Bruyninckx, H. (2010). OROCOS RTT-
Lua: an Execution Environment for building Real-time Robotic Domain
Specific Languages. Proceedings of SIMPAR 2010 Workshops. SIMPAR
Workshops, Darmstadt, Germany, 15-16 November 2010 (pp. 284-289).

Meeting abstracts, presented at international sci-
entific conferences and symposia, published or not
published in proceedings or journals

1. Buys, K., Bellens, S., Vanthienen, N., De Laet, T., Smits, R., Klotzbücher,
M., Decré, W., Bruyninckx, H., De Schutter, J. (2011). Haptic coupling
with augmented feedback between the KUKA youBot and the PR2 robot
arms. International Conference on Intelligent Robots and Systems. San
Francisco, Califormia, 25-30 September, 2011.

2. Vanthienen, N., De Laet, T., Smits, R., Buys, K., Bellens, S., Klotzbücher,
M., Bruyninckx, H., De Schutter, J. (2011). Demonstration of iTaSC as
a unified framework for task specification, control, and coordination for
mobile manipulation. IEEE/RSJ International Conference on Intelligent
Robots and Systems. San Francisco, 25-30 September 2011.

3. Buys, K., Bellens, S., Vanthienen, N., Decré, W., Klotzbücher, M., De
Laet, T., Smits, R., Bruyninckx, H., De Schutter, J. (2011). Haptic
coupling with the PR2 as a demo of the OROCOS - ROS - Blender
integration. IROS. San Francisco, California, 25-30 September 2011.

4. Vanthienen, N., De Laet, T., Decré, W., Smits, R., Klotzbücher, M.,
Buys, K., Bellens, S., Gherardi, L., Bruyninckx, H., De Schutter, J.
(2011). iTaSC as a unified framework for task specification, control,
and coordination, demonstrated on the PR2. IEEE/RSJ International



PUBLICATIONS 173

Conference on Intelligent Robots and Systems. San Francisco, 25-30
September 2011.

5. Soetens, P., Klotzbücher, M. (2009) Real Time Toolkit for Open Robot
Control Software. Xenomai User Meeting (XUM), September 28, 2009.
Eleventh Real Time Linux Workshop, TU Dresden, Germany.







FACULTY OF ENGINEERING
DEPARTMENT OF MECHANICAL ENGINEERING

PRODUCTION ENGINEERING, MACHINE DESIGN AND AUTOMATION DIVISION
Celestijnenlaan 300B box 2420

B-3001 Heverlee
info@mech.kuleuven.be

http://www.mech.kuleuven.be


	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Requirements
	Approach
	Research Objectives
	Outline

	Background and Positioning
	Model Based Engineering
	Domain Specific Languages
	Separation of Concerns
	Real-Time Systems
	Behavioral Modeling Languages and Formalisms
	Robot Software Architectures
	Coordination Languages
	Separating the four C's
	Conclusion of Literature Survey

	Hard real-time Control and Coordination using Lua
	Abstract
	Introduction
	Related work
	Approach
	Experiments
	Lua Cyclictest
	Event messages round trip
	Cartesian Position Tracker
	Coordination Statechart

	Conclusions

	Coordinating Robotic Tasks and Systems using rFSM Statecharts
	Abstract
	Introduction
	Motivating example
	Contributions
	Related Work 
	Outline

	Review of Coordination Models
	Classical Finite State Automatons
	Harel Statecharts
	OMG UML State Machines
	Statecharts in Robotics
	IEC 61131-3 Sequential Function Charts
	Behavior Trees
	The Task Description Language
	The Urbiscript Language
	Simulink Stateflow
	Statecharts in Modelica
	ROS SMACH
	Conclusion of Literature Review

	The rFSM Model
	Structural Semantics
	Fundamental State Machine Elements
	Hierarchical State Machines  
	UML Pseudo-States
	State Machine Extension

	Execution Semantics
	Fundamental Execution Semantics
	Event Selection
	Computing the Enabled Transition Set
	Discussion
	Evaluating Composite Transitions
	Transition Execution
	rFSM Transition Semantics

	Event Semantics
	UML ChangeEvent
	UML Time Event
	UML Call Event
	UML Completion Event and Final State
	UML AnyReceiveEvent and unlabeled Transitions
	Edge- and Level-triggered Events
	Deferred Events

	Concurrency Semantics
	Reference Implementation
	Software Framework Integration
	Considerations for Hard Real-Time Execution
	Representing Events

	Patterns and Best Practices
	Models of State Machine Progression
	Defining Platform and Robot independent Coordination Models
	Best practice Pure Coordination
	Event Memory
	Distributed Substates
	Serialised Locally Distributed States
	Discrete Preview Coordination

	Example: constructing coordination for a dual-robot haptic coupling
	Discussion
	Conclusion and Future Work

	Reusable motion specifications with executable DSL
	Abstract
	Introduction
	Related work

	Domain Specific Languages for M1, M2, M3
	M1- and M2-level TFF-DSLs  
	M3 model: Ecore  
	Software Framework integration: from M1 to M0  
	Composing individual TFF-DSL motions into skills using the rFSM statechart DSL 
	Dealing with robot dependencies  

	Experiments on PR2 and KUKA LWR  
	Conclusions

	Specifying and Validating Internal DSL
	Abstract
	Introduction
	Internal DSL in Lua
	Related work

	The uMF micro-modeling framework
	uMF Types
	uMF Specs

	Real World DSL
	The Task Frame Formalism DSL

	Evaluation and Results
	The limits of untyped conforms-to

	Conclusion and Outlook

	Pure Coordination using the Coordinator–Configurator Pattern
	Abstract
	Introduction
	Prior usage
	Outline

	Approach
	Example
	Modeling configuration and its application
	Discussion
	Deployment
	Composition

	Conclusions

	Conclusions
	Contributions
	Discussion
	Impact
	Suggestions for Future Work

	Tools
	rFSM online visualization
	rFSM commander

	Bibliography
	Curriculum
	Publications

