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Introduction
 - Earlier studies have established the hierarchical organization of multiple areas surrounding V1 
in rats and mice [1].
 - Recently, a functional connectivity between these regions has been described in mice in 
terms of vertral and dorsal streams [2].
 - Possibly, this hierarchical organization is capable of extracting increasingly complex visual 
information, reminiscent of the ventral visual stream in primates. 

Methods
 - We designed a study in rats that targets two hallmarks of the hierarchical object vision pathway 
in primates: higher tolerance for image transformations and selectivity for behaviorally relevant 
dimensions. 
 - We investigated a progression of �ve visual areas from primary visual cortex (V1) over areas LM, 
LI, LL, up to newly-found lateral occipito-temporal cortex (TO).
 - By advancing the electrode under an angle relative to cortex, we were able to successively 
record from �ve areas in single animals.
 - Based on traditional properties of these neurons, we de�ned area membership of each neuron.
 - We carried out further analysis on the populations responses to a series simple geometric 
shapes using pattern classi�ers.
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Orientation Selectivity (OSI)
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Shape Selectivity
Responses for 6 translating geometric shapes were recorded and used for population analysis. We 
trained pattern classi�ers (SVM) to distinguish between response vectors belonging to 1 of 2 
shapes. The average SVM performance over 15 shape pairs for 5 areas is show in the right panel. 

The correlation between performances on these 15 pairs is shown in the left panel and indicates 
that the representation of shapes changes gradually over areas. The middle panel below shows 
that areas that are spatially closer, correlate better. In the right panel, we show the �rst 2 principle 
components of the correlation matrix shown above. Both analyses are indicative of a gradual 
transformation of the information as it is passed on through the hierarchy.
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Selectivity correlates with behavior
We used a visual water maze [3] (see panel A). By trial-and-error the rat learned stimuli that 
predict platform location. Two batches of 6 rats performed 2 sessions of 12 trials each day. Each 
animal was trained to discriminate 1 of 6 shape pairs (out of possible 15). We hypothesized and 
con�rmed (see panel B) that these pairs di�ered enough in di�culty to pick up correlations. 
Higher areas correlated best with behavioral performance, while V1 correlated most with 
pixel-based similarity measures (euclidean distance and simulated V1 response; see panel C).
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Position Tolerance
We sequentially presented 6 shapes at two non-overlapping positions within the receptive �eld 
of single neurons.

The response to the same stimulus at two di�erent positions was compared, revealing higher 
tolerance (train Pos1, test generalization at Pos2) relative to selectivity (train/test at same 
position) (see panels A&B) in higher areas. For sub-populations with matching selectivity, 
tolerance was signi�cantly higher in area TO (panel C). 
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Example data for one representative TO neuron.Illustration of 2 stimuli at separate locations within to the Receptive Field (RF). 

We looked at the correlation in SVM performance between selectivity (panel A, blue bars) and 
tolerance (red bars) per shape pair (all pairs are shown in panel B). These correlations increase 
with area. In TO, neural responses at both positions are indistinguishable, re�ected by the 
maximal generalization performance. These properties might underly earlier behavioral work 
[4] showing position-tolerant object recognition capabilities in rats.
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Natural Movies
We sequentially presented 10 natural movies and 10 scrambled movies derived from the intact 
stimuli by randomizing the spatial phase spectrum and preserving contrast, luminance and 
spatiotemporal power spectrum.
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Responses of single units where recorded in areas V1, LI and TO and divided in 500 ms bins. 
Pair-wise population discriminability of response bins (excluding the �rst bin) was estimated by 
applying SVM. The resulting discriminability matrices for each area are depicted above. We 
assessed whether the di�erence in discriminability of natural versus that of scrambled stimuli 
changed over the areas under investigation. Speci�cally, we found that unlike with the shape 
stimuli or scrambled movies, selectivity for natural movies did not drop signi�cantly going from 
LI to TO (panel A, hatched bars indicate scrambled stimuli), resulting in a signi�cant increase in 
sensitivity to phase scrambling (panel B).

In addition, we trained 5 rats to discriminate 9 pairs of movies. Performance correlated 
signi�cantly with Euclidean distance between spike-rate population vectors in TO (calculated 
over the full 5 sconds of the stimulus; panel C). No signi�cant correlation was observed when a 
spike train metric incorporating information of spike timing (van Rossum distance) was used; 
red lines indicate 95% signi�cance thresholds based on 10K permutations.
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Conclusions
1) Functional characterization of a ‘what’ pathway in rat visual cortex
2) Gradual transformation of population shape selectivity over areas; 
related to behavioral discrimination performance
3) Increasing position tolerance of population response
4) Increased selectivity for a complex conjunction of natural features
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