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Abstract

This thesis deals with the analysis and design of cryptographic hash functions
that are fundamental components of many cryptographic applications such as
digital signatures, authentication, key derivation, random number generation
and many others. Due to this versality they are considered as the “Swiss army
knives” of modern cryptology.

A hash function is a one-way mathematical function that takes a message of
arbitrary length as input and produces an output of fixed (smaller) length. In
recent years, several of the approved cryptographic hash functions which are
generally inspired by MD4 have been successfully attacked, and serious attacks
have been published against the world-wide standard SHA-1. In response, the
National Institute of Standards and Technology (NIST) has opened a public
competition to develop a new cryptographic hash algorithm, SHA-3, to replace
the older SHA-1 and SHA-2 hash functions.

The first part of this thesis is focused on the analysis of the hash function
JH, one of the finalists of this competition. We demonstrate attacks on JH
showing that the algorithm is not as secure as claimed by its designer. We
find a semi-free-start collision for the hash function and semi-free-start near-
collisions for the compression function of reduced-round JH. Moreover, we
present distinguishers for the full internal permutation.

The second part of this thesis is focused on the design of hash functions.
We propose a new family of sponge-based lightweight hash function called
spongent. We first explain the design strategy of spongent and then we
present its security analysis by applying the most important state-of-the-art
methods of cryptanalysis and by investigating their complexity.
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Beknopte samenvatting

Het onderwerp van deze thesis is de analyse en het ontwerp van cryptografische
klutsfuncties (hash functions) die essentiële componenten vormen in een groot
aantal cryptografische toepassingen zoals onder andere digitale handtekeningen,
authenticatie, sleutelafleiding en het genereren van willekeurige getallen.
Omwille van deze veelzijdigheid, worden de klutsfuncties beschouwd als “het
Zwitser zakmes” van de cryptografie.

Een klutsfunctie is een functie die een bericht van willekeurige lengte
transformeert in een reeks met een vaste (kleinere) lengte. In de afgelopen jaren
zijn verschillende algemeen aanvaarde cryptografische klutsfuncties, gebaseerd
op MD4, met succes aangevallen en werden ernstige aanvallen gepubliceerd op
de werelwijde standaard SHA-1. Als reactie hierop, organiseerde het National
Institute of Standards and Technology (NIST) een publieke wedstrijd om een
nieuwe cryptografische klutsfunctie, SHA-3, te ontwikkelen om de oudere SHA-1
en SHA-2 klutsfuncties te vervangen.

Het eerste deel van dit proefschrift richt zich op de analyse van de klutsfunctie
JH, één van de finalisten van deze wedstrijd. We demonstreren aanvallen op
JH waaruit blijkt dat het algoritme niet zo veilig is als de ontwerper beweert.
We vinden botsingen met semivrije start (semi-free-start collision) voor de
klutsfunctie en en bijna-botsingen met semivrije start voor de compressiefunctie
van JH met een verminderd aantal ronden. Bovendien presenteren we
algoritmes om de volledige interne permutatie te onderscheiden van een ideale
permutatie.

Het tweede deel van dit proefschrift richt zich op het ontwerp van klutsfuncties.
We stellen spongent voor: een nieuwe familie van lichtgewichtklutsfuncties,
gebaseerd op het sponsmodel. In de eerste plaats leggen we de ontwerpstra-
tegie van spongent uit. Daarna geven we de veiligheidsanalyse door de
belangrijkste state-of-the-artmethoden van cryptanalyse toe te passen en hun
complexiteit te onderzoeken.
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Chapter 1

Introduction

This thesis deals with the analysis and design of cryptographic hash functions
which are considered as the “Swiss army knives” of modern cryptology. In this
chapter, we cast a light on how cryptology evolved from an “ancient art” into a
science. We begin with the very early methods and present an overview of the
major developments in the field of cryptology. In the meantime we describe
the basic notions and explain why we need cryptology and what the role of
cryptographic hash functions in this field is.

1.1 Cryptology

Being the science of secret communication, cryptology is derived from the
Greek words kryptos meaning hidden and logos meaning speech. It is divided
into two major branches: Cryptography, which is the science of modifying and
sending the message in such a way that only the intended people are able to
read it; and cryptanalysis, which evaluates the security of the methods that
are used to conceal the message and tries to break them. For thousands of
years, the history has witnessed the ongoing battle between these two branches,
deciding the outcomes of wars, shaping the fate of people and inspiring scientific
developments.

The process of transforming the message, known as plaintext, by using a tool
is called encryption. The tool, more specifically the algorithm, designed and

1



2 INTRODUCTION

used for this purpose is referred to as cipher. The resulting message is called
ciphertext and is unreadable to anyone without the knowledge of a secret
information. Therefore, most ciphers require a key and the original message
can be revealed by an inverse process called decryption.

Cryptography is like literacy in the Dark Ages.
Infinitely potent, for good and ill...
yet basically an intellectual construct, an idea, which by its nature
will resist efforts to restrict it to bureaucrats and others who deem
only themselves worthy of such Privilege.

A Thinking Man’s Creed for Crypto

Vin McLellan

1.1.1 The Evolution of Cryptology

Over 4000 years, cryptography has been used to conceal sensitive information.
According to the historical sources, the first form of secret communication dates
back to the ancient Greeks [93]. The message was written on wooden tablets
which were then covered with wax. In this way, the tablets seemed as if they
were blank or sometimes an innocent text was also written on them. In another
incident, the head of the messenger was shaved and the message was tattooed
on his scalp. When the hair grew back, the message was invisible to the eyes.
This technique in which the message is only hidden without any modification
is called as steganography, meaning “concealed writing”.

Ancient Greeks were also the first civilization that used a tool for to perform
encryption. The message was written on a strip of parchment which was
wound around a cylinder called scytale. When the parchment was taken off, the
resulting text was meaningless since the letters of the message were jumbled.
Reading the original message was only possible by using a cylinder having
the right diameter. This technique constitutes the first known example of a
transposition cipher.

Romans, in particular Julius Caesar used a simple substitution in which each
letter of the message to be encrypted was replaced by the letter three positions
after it in the alphabet (more specifically ‘a’ is replaced by ‘d’, ‘b’ with ‘e’, etc.).
To decrypt the message it was sufficient to know the substitution rule (cipher
alphabet). The Caesar cipher represents the first use of a substitution cipher
for military purposes.

Substitution ciphers that replace only one letter, cipher or symbol at a time
by another letter are called monoalphabetic. It had been possible to break this
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type of ciphers with the discovery of frequency analysis in the ninth century [1].
The analysis is based on the fact that certain letters and their combinations
occur with varying frequencies. By calculating the frequency distribution of
the ciphertext letters and comparing it with the one of the language under
consideration, the attacker is able to guess the plaintext.

Several improvements have been proposed to avoid this attack by cryptogra-
phers. Using multiple substitutes for a letter (homophones), using ciphers
that have two or more cipher alphabets (polyalphabetic cipher), or substituting
letter-pairs (digraph) and rarely larger group of letters (polygraph) instead of
one letter, are some of these schemes.

The best known polyalphabetic cipher is the Vigenère Cipher. It uses 26
different cipher alphabets1 written in rows, forming a square called tabula recta.
To perform both the encryption and the decryption, a different cipher alphabet
is used for each letter depending on the repeating key word. The cipher was
considered to be unbreakable at that time and called as le chiffre indéchiffrable.

Apart from ciphers mentioned above, codes that are composed of thousands of
codewords or codenumbers used to replace syllables, words or phrases of the
messages have been used to conceal messages. In these schemes, encryption and
decryption is possible with the use of a codebook. According to Kahn [107],
“for 450 years, from about 1400 to about 1850, a system that was half a code
and half a cipher dominated cryptography”.

Without doubt, the Enigma machine used by Germans during the World War II
is the most famous cipher system of its era. The basic idea of Enigma was no
different than that of a code except for its complicated structure. It consisted
of three coding wheels, each having 26 contacts on either side, that could be
inserted in any possible order. Whenever a key was pressed, some of the wheels
rotated by one step resulting in a different wiring and allowing each letter to
be encoded differently.

Note that in all these examples given above, the security of the system depends
on the knowledge of the same secret information shared among the parties. The
field of cryptography that studies this type of cryptographic systems is called
symmetric-key cryptography.

126 corresponds to the number of letters in the alphabet



4 INTRODUCTION

1.1.2 Modern Cryptology

For most cryptographers the era of modern cryptography begins with Shannon
who is the father of information theory and mathematical cryptography. He not
only worked on the problem of most efficiently transmitting information but
also stated the basic principles for the design of cryptographic algorithms [185,
184]. In 1950’s, he proposed information-theoretic definitions of security such
as “theoretical secrecy”, “perfect secrecy” and “practical secrecy” which are
still very significant today.

Moreover he introduced the concept of product cipher. The main idea was
to combine two or more simple operations such as modular arithmetic,
substitution and permutation to obtain a more secure cipher (than either of
its components). Almost all of the algorithms used today are based on this
concept.

In the meanwhile, with the birth of modern computers cryptanalysts were able
to search through all possible keys and break all sorts of ciphers. In response,
cryptographers started to design more complex ciphers having larger key sizes
to overcome the power of computers. As a result, both fields have evolved by
a considerable amount in parallel.

Block Ciphers Go Civilian

Even though computers were initially only for governmental and military use,
in the 1960’s they became affordable and powerful enough also for the private
sector. Consequently, the need of a common system for communicating with
the other companies in addition to internal communication arose. Lucifer [78]
was developed by IBM to fulfill this need.

Lucifer is considered as the first non-military block cipher where the plaintext
is partitioned into blocks of fixed length and each block is encrypted using the
same secret key. The ciphertext is then obtained by combining the outputs of
all encryptions. Most block ciphers use an iterative round function (based on
the product cipher) as the building block.

Apart from block ciphers, there are also stream ciphers in which the plaintext
bits (words) are encrypted one at a time by using the corresponding bit (word)
of the keystream which is generated by a shift register. However, we will not
go into details of stream ciphers in this thesis.

With the beginning of the information age in the 1970’s, the exchange of
digital information became an essential part of our society. In 1973, the
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National Bureau of Standards (NBS) made a call for a candidate symmetric-key
encryption algorithm for the protection of sensitive but unclassified information.
Unfortunately none of the proposals were found viable and a second call was
issued in 1974. After the evaluation phase, the submission of IBM which
was heavily influenced by Lucifer, was chosen to become the Data Encryption
Standard (DES) after some modifications.

Birth of Public-key Cryptography

The adaptation of DES encouraged businesses to use cryptography for security.
Although DES was strong enough for communication, it had one major
drawback: the key distribution. In order to establish a secure connection via
symmetric-key cryptography, both parties required the knowledge of the secret
key before the communication starts. If the same key were shared by many
users the whole system would be broken once the key was revealed. On the
other hand, there was no trivial way to produce and distribute several keys.
Using a telephone line was insecure, handing it over in person was impractical,
finally sending the key via a courier was time consuming and it became too
costly as the number of users increased.

In 1976, Diffie and Hellman [69] introduced their key exchange protocol to
address these issues. The basic idea was using a one-way function which is
easy to compute but hard to invert (in this case taking powers in modular
arithmetic). Each user had a pair of keys, one private and one public, that
allowed them to compute the shared key that will be used for the symmetric-
key algorithm.

This work was followed in 1978 by the RSA encryption algorithm. In this
scheme, the users no longer had to exchange keys before the communication
starts. The sender simply used the public-key of the recipient, which is
known by everybody, to encrypt a message, and only the intended recipient
was able to read the message by using his private key. This relatively new
field of cryptography is called public-key cryptography which is also known as
asymmetric cryptography.

Advances in Symmetric-key Cryptography

At the end of 1980’s and the beginning of 1990’s new block ciphers were designed
as an alternative to DES. Some examples include RC5, IDEA, FEAL, Blowfish
and CAST. Meanwhile the cryptographers made a great effort in analyzing the
security of DES. Differential cryptanalysis [28] and linear cryptanalysis [136]
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which are the core of many other cryptanalysis techniques that are used today,
were introduced in this period. The DESCHALL Project, which consisted of
thousands of volunteers connected over the Internet, was the first to break DES
in public in 1997. Only two years later, it was possible to perform an exhaustive
key search for DES in less than a day.

Obviously the short key-length of DES was no longer sufficient for sensitive
applications. Moreover, being initially designed for hardware performance,
DES was not as efficient in software as the new block ciphers. In 1997, NIST
(National Institute of Standards and Technology) made a public call for a new
algorithm “capable of protecting sensitive government information well into the
next century” [155] to replace the DES.

As a result, fifteen submissions were submitted to the competition and after
two years evaluation five of them were chosen as finalists. Finally in 2001
Rijndael [57], designed by Rijmen and Daemen, was chosen as the Advanced
Encryption Standard (AES). Unsurprisingly, in the past 10 years many attacks
have been published against AES, yet none of them is considered a practical
threat to its security. All the attacks were either against reduced round AES or
they worked under some special conditions until the recent work of [34] which
reduces the complexity of exhaustive search by a factor of four.

Cryptography Today

Without doubt cryptography became a must-have part of our daily lives. The
Internet provided the infrastructure for electronic mails, online banking, and
e-commerce, all of which requires reliability and security. Our identity cards,
passports, ATM and SIM cards all have chips with embedded cryptographic
modules to ease our needs. Many governmental applications can already be
made online and there are ongoing studies for bringing e-voting to life in the
near future. Our cellphones and smartphones are much more capable than
being just a phone and they contain sensitive data which needs to be protected,
not to mention our computers, laptops and the data in cloud storage services.

The success of all the systems given above depends on their ability to protect
the information and they all have different constraints to be satisfied. Simply
put, the need for cryptography has increased with the information age and the
researchers are trying to develop efficient algorithms that best fits our needs
for different platforms.
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1.1.3 Goals of Cryptography

Cryptography aims to provide security by attaining (at least) the following four
main goals:

• Confidentiality: Being the original purpose of cryptography, confiden-
tiality ensures that the data is accessible and can be understood only by
authorized people. It is usually achieved by encrypting the data using
symmetric-key cryptography.

• Entity Authentication: This concept uniquely defines individuals /
identities allowing the users to prove who they are. Login IDs and
passwords, tokens, identity cards and biometrics data are typical methods
used for this purpose.

• Data Authentication: This notion guarantees that the data is not
damaged or manipulated during the transmission by unauthorised third
parties. The integrity of data is usually checked by using hash functions.

• Non-Repudiation: It means that the users will not be able to deny that
they have sent or received the data. It is mostly used in the verification
of digital signatures.

Although all these notions are required in today’s cryptography as described
above, their importance can vary depending on their application and usage.
For example, while confidentiality is more important in communication,
authenticity can be more crucial in financial transactions.

Upto now we tried to cast a light on the history of cryptography by providing
the milestones throughout the history. For a more comprehensive study we
refer to The Codebreakers by Kahn [107] and The Code Book by Singh [187].
For a more technical study we refer to The Handbook of Applied Cryptography
by Menezes et al. [144].

1.2 Hash Functions

A hash function is a mathematical function that takes a message of arbitrary
length as input and produces an output of fixed (smaller) length, which is
commonly called a fingerprint or message digest. They are fundamental
components of many cryptographic applications such as digital signatures,
password protection, message authentication, random number generation, etc.
(see Chapter 2 for more detail).
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1.2.1 State of the Art

The concept of cryptographic hash functions was first introduced by Diffie
and Hellman [69] to make the digital signatures more efficient. Most of the
early designs are based on block ciphers. Merkle [147] was to give a method
for constructing one-way hash functions from random block ciphers. Later,
Preneel et al. [163] studied how to construct a hash function whose the output
size equals to the block length of the cipher.

In 1990 Rivest introduced MD4 [171], the first dedicated hash function, which
contains a block cipher designed for hashing. In 1991, after a number of attacks,
Rivest proposed a strengthened version called MD5 [170]. A similar design was
used in the first version of Secure Hash Standard (SHS) by NIST in 1993. The
algorithm, known as SHA-0, was replaced by its successor SHA-1 [154] after
some minor modifications in 1995.

SHA-2, the last member of this family, is composed of four algorithms named
after their hash sizes in bits: SHA-224, SHA-256, SHA-384, SHA-512. It has
been used in many security applications and protocols along with SHA-1 as a
standard in the past decade.

Other hash functions of the MD family are HAVAL [208], RIPEMD [38], and its
successors RIPEMD-128 and RIPEMD-160 [73]. Whirlpool [15] is another well-
known hash function in the IS0/IEC standard on dedicated hash functions [100].
It has a different design strategy than the MD family: it contains a block cipher
called W which is very similar to AES (with a larger block size) as the building
block.

1.2.2 SHA-3 Competition

Recent years witnessed the continuous works on analysis of hash functions
which reveal that most of them are not as secure as claimed. Wang et
al. presented collisions on the MD family [199, 201, 200] using an attack
technique on hash functions which is based on differential cryptanalysis. This
idea was further developed and used in the analysis of the widely used hash
functions SHA-1 and SHA-2 [64, 62, 190]. In response, the National Institute
of Standards and Technology (NIST) announced a public competition for
designing a new hash function which will be chosen as the hash function
standard: Secure Hash Algorithm 3 (SHA-3) [153].

Submissions of the NIST Hash Competition were due October 2008 and 64
algorithms have been submitted. A list of candidates accepted for the first
round was published on December 2008 and 51 of the submissions had passed
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the preliminary elimination. In less than a year many of these algorithms
have been officially conceded to be broken by their submitters and withdrawn.
In July 2009, NIST announced that 14 submissions had made it into the the
second round.

In December 2010, five algorithms —BLAKE [13], Grøstl [82], JH [205],
Keccak [21] and Skein [79]— had been selected for the final round. In October
2012, Keccak was announced as the winner “based on the public analysis and
internal review of the candidates” [156].

1.2.3 Lightweight Hashing

As technology is embedded in everyday objects (tools, devices, clothing, homes,
etc.), the need for security in RFID and sensor networks is dramatically
increasing, which requires secure yet efficiently implementable cryptographic
primitives including hash functions.

Until recently the existing work on lightweight functions was mainly focused
on minimizing the area requirements. However in reality, there are also other
design parameters such as latency, throughput or power consumption that
should be taken into consideration while designing a lightweight algorithm and
different parameters needs to be optimized depending on the purpose of the
application.

Once this research problem was identified, the cryptographic community de-
signed a number of tailored lightweight cryptographic algorithms to specifically
address this challenge: stream ciphers like Trivium [63, 60], Grain [89, 90],
and Mickey [14] as well as block ciphers like SEA [189], DESL, DESXL [127],
HIGHT [95], mCrypton [130], KATAN/KTANTAN [61], and present [36] —
to mention only a small selection of the lightweight designs.

Rather recently, some significant work on lightweight hash functions has been
also performed: [37] describes ways of using the present block cipher in
hashing modes of operation and [12] and [86] take the approach of designing
a dedicated lightweight hash function based on a sponge construction [55, 22]
resulting in two hash functions quark and photon.
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1.3 About this Dissertation

This dissertation consists of two parts. The first part gives a brief introduction
to cryptography, cryptographic hash functions and cryptanalysis methods. The
second part is composed of selected publications on cryptanalysis and design
of hash functions.

The outline of the thesis is given below:

Chapter 2. We give a brief introduction to hash functions. We first describe
their security requirements and design strategy. We then review the generic
and dedicated attacks on hash functions.

Chapter 3. We define the cryptanalysis methods used for the analysis
of symmetric-key primitives. We mainly focus on differential cryptanalysis
techniques which will be used for the rest of the chapters.

Chapter 4. We apply the rebound attack to the JH Hash Function (one of
the five finalists of the SHA-3 competition). We first give a brief description
of the JH hash function and its properties. We first describe the main idea
of our attack on small scale version of JH and then give the results on the
submitted version of JH. We follow the same outline for the improved version
of the rebound attack. Finally, we extend our attack and present results on the
tweaked version JH42. Based on these results, we describe a distinguisher for
the full internal permutation, that also applies to the full compression function.

Chapter 5. We introduce a new lightweight hash function spongent. We first
describe the design of spongent and give its design rationale. We then presents
some results of the the security analysis including proven lower bounds on
the number of differentially active S-boxes, the best differential characteristics
found, rebound attacks, and linear attacks.



Chapter 2

Hash Functions

A hash function is a mathematical function that takes a message of arbitrary
length as input and produces an output of fixed (smaller) length, which is
commonly called as fingerprint or message digest, see Figure 2.1. More formally,
it can be defined as:

Definition 1. A hash function H : D → R is a function that maps
variable-length input bit strings M ∈ {0, 1}∗ to fixed-length output bit strings
H(M) ∈ {0, 1}n for a positive integer n.

Since |D| > |R|, this function is always many-to-one. For that reason, there
are always at least two messages that have the same fingerprint, which is called
a collision.

Les grandes personnes

ne comprennent jamais

rien toutes seules, et

c’est fatigant, pour les

enfants, de toujours et

toujours leur donner

des explications.

Antoine de Saint Exupéry

0100101011

Figure 2.1: Hash function

11



12 HASH FUNCTIONS

Although it is not possible to avoid collisions, finding them easily can be avoided
if each output value is seen approximately equally likely. For a cryptographic
hash function H, it is expected that it should not be computationally feasible
to find collisions.

Hash functions are fundamental components of many cryptographic applica-
tions. In digital signatures, the signing algorithm is applied to the hash value
instead of the message increasing the performance (by processing less data) and
security (by detecting forgery/tampering). Without doubt the security of the
scheme depends on the security of the hash function: if the attacker is able to
produce two messages with the same hash, and convince a party to sign one of
them, then he will have a valid signature for the other message.

Another widespread application of cryptographic hash functions is password
protection. For security purposes, instead of the users’ passwords their hash
values are stored in the database. When a user wants to logon to the system,
the hash of his password is computed and it is compared with the correct
digest in the database. The security of the system of this scheme – in case of
exposure of the database – also depends on the security of the hash function. If
the attacker is able to find the password from its hash value, then the scheme
fails.

In message authentication, before sending the data its digest is computed and
sent over a secure channel to the recipient, which enables the verification of the
integrity of data sent over an insecure communication channel. HMAC [16] uses
a hash function and a secret key for this purpose however if the adversary can
modify the message in a way that the hash value does not change then he can
perform an attack. Hash functions are also used in key derivation (deriving keys
from a secret information) or random number generation as building blocks.
Moreover, hash functions can be used for non-cryptographic purposes. For
instance, in hash tables to locate the data quickly or in check-sums to detect
accidental changes in data and identical records in a database.

In this thesis we focus only on cryptographic hash functions. As explained
above, in order to achieve the desired security [123] there are certain properties
that a hash function should satisfy. Any weakness in the hash function that
causes the security goal to fail, results in an attack.

2.1 Security Requirements

In the design of hash functions, security and performance have a great
importance. Some desired properties of cryptographic hash functions that



SECURITY REQUIREMENTS 13

should be satisfied and the trade-off between them are given below:

1. Preimage Resistance: A hash function H is preimage resistant if it
is computationally infeasible to find a message that produces a given
hash value. In other words, given any y ∈ R, it should be ‘hard’ to find a
message x ∈ D such that H(x) = y. A function that is preimage resistant
is known as a one-way function.

2. Second Preimage Resistance A hash function H is second preimage
resistant if for as any given message, it is computationally infeasible to
find another message with the same message digest. Equivalently, given
x ∈ D and its hash value H(x), it should be ‘hard’ to find x′ ∈ D such
that x 6= x and H(x) = H(x′).

3. Collision Resistance A hash function H is collision resistant if it is
computationally infeasible to find two distinct messages which have the
same hash value. That is, it should be ‘hard’ to find x 6= x′ ∈ D such
that H(x) = H(x′).

H(x′)? H(x)

x H(x)

?

?

? H(x′)

H(x)

(b) Second Preimage(a) Preimage (c) Collision

=6=6=
=

Figure 2.2: Security requirements of hash functions

In terms of the desired security, these properties are often related to the
length of the message digest. The standard security requirements for a hash
function with an n-bit output size are collision resistance of 2n/2 as well as
preimage and second-preimage resistance of 2n hash function computations
(see Section 2.4.1).

These security requirements are also related with each other. It has been shown
that collision resistance implies second preimage resistance, and under certain
conditions collision resistance also implies preimage resistance [191]. These
standard security notions have been later formalized into seven: Pre, ePre,
aPre, Sec, eSec, aSec, Coll and the relations among them are given within the
provable-security frame-work [175, 4].
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There are also weaker versions of collision: near-collision in which two messages
collide only in some parts of their hash values, semi-free-start collision where
the attacker uses another initial value (IV ) instead of the one specified or free-
start-collision (also called as pseudo-collision) when there is a difference in the
initial value. A schematic description of collision attacks for hash functions is
given in Figure 2.3.
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Figure 2.3: Collision attacks for hash functions

Another key concept in security definitions is the notion of indistinguishabil-
ity [140]. Informally, it can be described as a game where the adversary’s goal
is to distinguish a cryptographic primitive (i.e. a compression function or a
blockcipher) from an ideal one (i.e. a random function or a permutation). Here
the adversary is formalised as an efficient algorithm either in the information- or
complexity-theoretic setting where the former cares only the number of queries
made by the adversary whereas for the latter the actual time it takes to achieve
her goal is the crucial parameter. The adversary wins the game as long as she
achieves her goal. How well the adversary performs is usually measured by its
advantage which is defined as a positive real number between zero and one; the
closer the advantage is to one, the better the adversary performs.

A related notion, which is more common in the cryptographic hash function
context, is the so called indifferentiability [133]. While indistinguishability
interacts with monolithic primitives (i.e. a random oracle), indifferentiability
makes a step forward and concerns more the interaction of atomic primitives
(i.e. a compression function) which makes it more suitable for the security
analysis of hash functions. Indeed, most of the recent hash functions use
either compression functions or internal permutations as building blocks in
their design. The absence of a security analysis even when these building
blocks are idealised not only impacts the security claims of the corresponding
hash function but it also helps to point out the potential flaws in the design.
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2.2 Iterated Hash Functions

It is not easy to design a function that can process arbitrary and huge amounts
of data. The natural approach is to use some kind of iterative method that
processes data in chunks. The main idea, which dates back to Rabin [167], is
using a compression function with fixed size input that maps long fixed sized
inputs to shorter outputs.

In this type of hash functions, every message block is processed in a similar
way. The input is first padded such that the length of the input is a multiple
of the block length. Then it is divided into t blocks such that M ||pad =
m1||m2|| . . . ||mt. Finally, the hash result is computed as follows:

H0 = IV

Hi = f(mi, Hi−1)

H(x) = g(Ht)

Here, the function f : {0, 1}v → {0, 1}w is called the compression function, and
the function g : {0, 1}w → {0, 1}n is called the output transformation where
v ≥ w. For most of the constructions, g is the identity function. IV denotes
the Initial Value, and Hi is the chaining value. This process is illustrated in
Figure 2.4.

. . .IV

m1 m2 m3 mt

H(x)
f f f f g

Figure 2.4: An iterated hash function

2.2.1 Merkle-Damgård Construction

It was proven by Merkle [148] and Damgård [58] independently that, if the
padding contains the length of the message, known as MD strengthening, the
resulting hash function is collision resistant if the compression function is
collision resistant. However, this construction has still a number of weaknesses
against length-extension attack, multicollision attack [101], second preimage
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attacks [110], herding attacks [108] and it is possible to distinguish them from
random oracle (see Section 2.4.2).

In order to eliminate the flaws described above, there have been many proposals
for alternative hash function constructions using smaller building blocks as
well as extensions to the Merkle-Damgård design. These approaches can be
summarized as follows:

Wide Pipe

This approach is proposed by Lucks [133] is very similar to the Merkle-Damgård
design except that the the compression function has a wider state size than the
hash size and the final transformation reduces the state size to the hash size. If
the composition g◦f is collision resistant, this modification to MD construction
prevents some of the attacks such as multicollision, length-extension or second-
preimage. Most of the new designs [18, 82, 205, 84] use this approach.

Randomized Hashing

In this approach proposed by Halevi and Krawczyk [88], the classical MD
construction is used without any structural changes. They introduce two
ways of randomizing the message: xoring each message block mi with a
random block r, called as salt, before entering to the compression function
(i.e., Hi+1 = f(Hi||mi ⊕ r)) or prepending a random block r to the message
while still xoring the same random block r with each message block. In [81],
Knudsen and Gauravaram [81] showed that a second preimage can be found for
this construction by using Dean’s method [66, 110] if there exists fixed points
for the compression function.

HAIFA

This approach by Biham and Dunkelman [26] suggests that two more
parameters should be appended to the input of the compression function f : the
number of bits hashed so far and salt (i.e., Hi+1 = f(Hi||Mi||#bits||salt). This
modification increases the security against (second) preimage attacks, prevents
the use of fixed points (i.e., h = f(h, m)) and multicollision attacks.
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2.2.2 Tree Construction

This construction was proposed by Merkle [147] for the authentication of digital
signatures. In this type of construction the data blocks are called leaves and
are processed recursively to form the binary tree as follows:

H(i, i, Y ) = F (Yi)

H(i, j, Y ) = F (H(i, (i + j − 1)/2, Y )||H(i, (i + j + 1)/2, Y ))

where F is a one-way function, 0 ≤ i, j ≤ n and Y is a vector of data blocks
Y = Y1, Y2, . . . , Yn. If the input to F is less than 100 bits, then one can pad it
by adding zeros until it is exactly 100 bits. A binary tree (each node has two
child nodes) for n = 4 is given in Figure 2.5.

Y1 Y2 Y3 Y4

H(1,1,Y) H(2,2,Y) H(3,3,Y) H(4,4,Y)

H(3,4,Y)H(1,2,Y)

H(1,4,Y)

Figure 2.5: Binary tree construction for n = 4

In order to authenticate a leaf Yi, one requires only the values of H from that
leaf towards the root H(1, n, Y ). This can be seen as an advantage especially
in peer-to-peer networks since it is efficient and only the damaged or altered
blocks need to be redownloaded.

Although most tree constructions are binary, it is possible to have other
configurations. For example the SHA-3 candidate MD6 [172] uses a 4-ary tree
for hashing. Other examples of tree construction and can be found in [20, 74].

2.2.3 Sponge Construction

A sponge [55] is a cryptographic model defined by Bertoni et al. for iterated
hash functions and stream ciphers. The sponge construction is a simple iterated
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design that takes a variable-length input and can produce an output of an
arbitrary length based on a permutation πb operating on a state of a fixed
number b of bits. The size of the internal state b = r + c ≥ n is called width,
where r is the rate and c the capacity.

π b

h 3

π b

h 2

π b

h 1

π b

m4

π b

m3

π b

m1 m2

c

r

absorbing squeezing

IV

Figure 2.6: Sponge construction based on a b-bit permutation πb with capacity
c bits and rate r bits. mi are r-bit message blocks. hi are parts of the hash
value

The sponge construction proceeds in three phases (see also Figure 2.6):

• Initialization phase: The message is padded to a multiple of r bits.
Then it is divided into t blocks of r bits.

M ||pad = m1||m2|| . . . ||mt

• Absorbing phase: the r-bit input message blocks are xored into the first
r bits of the state, interleaved with applications of the permutation πb.

H0 = IV

Hi = πb(Hi−1 ⊕ (0c||mi))

• Squeezing phase: the first r bits of the state are returned as output,
interleaved with applications of the permutation πb, until n bits are
returned.

Hi = πb(Hi−1)

hi = truncr(Hi+t)

H(x) = h1||h2|| . . . ||hn/r .
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A sponge function is called a hermetic sponge if the underlying permutation has
no properties that are exploitable in attacks (called structural distinguishers).

It was shown in [12, 22, 23, 55] that for n ≥ c and reasonably small r,
the preimage and second-preimage resistances are reduced to 2n−r and 2c/2,
correspondingly, while the collision resistance remains at the level of 2c/2 hash
function computations.

2.3 Construction Methods

Up to now many different construction methods have been proposed to obtain
a collision resistant hash function and new construction methods are also being
developed.

2.3.1 Hash Functions Based on Mathematical Problems

In this method, the security of hash function is based on a known, well-studied
mathematical problem which is considered to be difficult (i.e., unsolvable in
polynomial time). Therefore, it is expected that breaking the hash function
(for example finding collisions) is at least as hard as breaking the underlying
problem. In comparison to classical hash functions, this type of construction
tends to be relatively slow and inefficient to use in practice.

Classical examples of these problems and some hash functions that use them
are integer factorization, discrete logarithm problem (muHASH [17]), finding
modular square roots (VSH [48]), etc.. There exist also hash functions
based on algebraic structures such as Modular Arithmetic (MASH [164]),
Fourier Transform (SWIFFT [134]), Knapsack [58], Lattice and Coding Theory
problems.

2.3.2 Hash Functions Based on Block Ciphers

The traditional approach in the design of hash functions is to use a known
trusted block cipher in a special mode to construct the compression function,
and hence turning it into a hash function. The security of a hash function
constructed with this method is closely related to the security of the
underlying block cipher. Not only since the security of block ciphers is well
studied and their weaknesses are exploited, but also because they have good
implementations both in hardware and software, such hash functions have been
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popular. All well-known hash functions, including MD4 [171], MD5 [170], SHA-
1 and SHA-2 are of this type.

Although there are many possibilities, most designers concentrate on the
following constructions: single-block length compression functions where the
hash size equals to the block length of the ciphers and double-block length
compression functions where the hash size is twice the block length of the
cipher.

Preneel et al. [165] considered all possible configurations of a single block length
compression function and Black et al. [32] proved that 12 of these configurations
are secure. For single-block length hashing, the three most known modes are
Davies-Meyer [59], Matyas-Meyer-Oseas [139] and Miyaguchi-Preneel [151, 165]
(see Figure 2.7). For double-block length hashing, MDC-2 (Manipulation
Detection Code), MDC-4 [40] and Hirose [94] can be given as popular modes.
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Figure 2.7: Some block cipher based compression function constructions
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2.3.3 Hash Functions Based on Permutations

One drawback of the hash functions based on block ciphers is that they
require a strong key schedule and it needs to be executed for every encryption,
which increases the computational cost. Recently, hash functions based on
permutations (which can be considered as fixed-key block ciphers) have been
introduced to avoid this problem. In this approach, the security of the hash
function no longer depends on a secure compression function but on a trusted
fixed-length permutation on a large state.

One of the first examples of this construction is Snefru [149] proposed by Merkle.
Sponge functions are the most prominent construction in this category. The
SHA-3 finalist Keccak [21] and light-weight hash functions such as quark [12],
photon [86] and spongent [35] use the sponge construction in their design.
There are also sponge-like constructions such as Grindahl [119], SHA-3 second
round candidate Luffa [65] and the finalist JH [205].

There are also other constructions based on ideal permutations that are proven
to be secure. In [177, 176] permutation-based hashing and the construction of
2n-to-n-bit compression functions using three distinct permutations with finite
field scalar multiplications and Davies-Meyer-like compression functions using
permutations is studied. Recently, this work has been generalized for the entire
family of 2n-to-n-bit compression functions using only three permutations and
of XOR-operators in [146].

2.3.4 Hash Functions Based On Stream Ciphers

There are also hash functions based on stream ciphers. Since stream ciphers
are usually faster than block ciphers and efficient in hardware, they are suitable
for applications where high speed is required. Yet there are only a few hash
functions based on stream ciphers and it is hard to analyze them and give any
mathematical or information-theoretical proof for their security.

The first such design Panama [54] was broken by Rijmen et al. [169] and
then by one of its designers [53]. Later, it has been strengthened and a
variant Radiogatun [19] that does not have the known weaknesses of Panama
is proposed. There is also RC4-hash [45] based on the well know stream cipher
RC4 which was also broken [99]. Finally, some of the SHA-3 candidates such
as LUX [159], SHAMATA [9] and Shabal [42] also use this approach but none
of them has been selected for the final round.
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2.4 Attacks on Hash Functions

An attack on a cryptographic hash function is an algorithm that targets the
hash function to find a weakness in one of the security requirements. Attacks on
hash functions can be divided into two groups: A first group consists of generic
attacks that are independent of the hash algorithm, whereas the second type
of attacks focus on structural weaknesses and exploit the weaknesses of the
algorithm.

2.4.1 Generic Attacks

A generic attack considers the hash function as a “black box” and hence is
independent of the details of the algorithm. The complexity of the attack (i.e.,
the amount of calculations that needs to be done to mount an attack) depends
only on the parameters of the hash function. Since it is not possible to prevent
this type of attacks, the designers choose the parameters of a hash function
in a way that the attack will be infeasible. In this section, we describe some
generic attack methods in detail.

Exhaustive Search

Exhaustive search is the simplest and the most straightforward way of finding
(second) preimages. For preimages, the attacker randomly chooses an input in
hope of finding the given hash result. The probability of finding a match is
equal to 1/|R| where |R| is the size of the output space. This means that for
an n-bit hash the success probability is 2−n assuming that each output value
occurs approximately equally likely.

The same attack also applies for finding second preimages. The only difference
is that the adversary knows in advance another input whose hash is the given
value. For long messages, it has been shown that obtaining a second preimage
is easier unless the length of the message is included in the padding [163]. When
the padding includes the length of the message, second primages can be still
found with a complexity of k · 2n/2+1 + 2n−k+1 for a 2k-message-block message.

The complexity of the attack is decreased if multiple targets are aimed for.
Consider that one aims to find (second) preimages for 2t simultaneous targets,
then the probability to find a match becomes 2−n+t and after 2n−t trials one
expects to find a (second) preimage.
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Time-Memory Trade-Off

Instead of making an exhaustive search over all possible messages, it is possible
to reduce the time complexity of an attack by precomputing and storing
messages and the corresponding hash values in a table. On the other hand,
the precomputation phase comes with an extra cost in terms of storage space
that increases memory complexity.

The time-memory trade-off attack was first introduced by Hellman [92] in 1980.
Using this method, it is possible to find (second) preimages. The main idea
is to precompute long hash chains: The attacker chooses m different starting
points and iterates it for t steps, and stores the starting and ending points
of each chain in memory. To find a preimage in the online phase, the same
iteration is performed until a known ending point is found. Unfortunately,
it is possible that the chains with different starting points collide and merge
reducing the coverage. The success probability can be increased by generating
multiple tables using different reduction functions.

This technique was later improved by Rivest [68] by using distinguished points
(points for which some property holds) as endpoints for the chains. This
significantly reduces the number of table look-ups during the analysis, but
the analysis becomes more complex due to the variable chain length.

Birthday Attack

The birthday attack is based on the birthday paradox that states in a group
of randomly chosen people, the probability that at least one pair of them will
have the same birthday is high. The generalized birthday problem aims to find
the minimum size of the group N such that there is at least M people that
have the same birthday with probability 50%.

From a cryptographic point of view, this is equivalent to finding collisions for
a hash function. The attacker selects a set of r random messages, stores their
hash values in a table and hopes that at least two of them will have the same
hash value. The probability of a collision for an n-bit hash can be approximated
as follows:

p ≈ 1− exp(−
r2

2|R|
) = 1− exp(−

r2

2n+1
) .

The expected number of trials until a collision is found is given by
√

π/2 ·
2n/2 [194, Appendix A]. Therefore, the time complexity of the birthday attack,
omitting the constant, is 2n/2 evaluations of the hash function. The memory
complexity is determined by the size of the table, which is also 2n/2.
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A variant of birthday attack [207] uses two sets of distinct messages to obtain
meaningful collisions. The attacker selects r1 messages, and modifies them to
obtain the resulting r2 messages. If r = r1 = r2 = 2n/2 the computational
complexity of this attack becomes optimal.

Memoryless Birthday Attack

The traditional birthday attack requires storing 2n/2 messages and their hashes,
however it is possible to reduce the large memory requirements significantly by
using a cycle finding algorithm.

The main idea of the attack is based on the following fact: When a function f
is applied iteratively (i.e., xi+1 = f(xi)) starting from a random value x0,
the resulting sequence has to repeat since the output set is finite (in this
case {0, 1}n). The graph of this sequence looks like the Greek letter ρ for
a noninvertible f and is composed of a tail and a cycle. Hence, a collision for
f is found at the entrance of the cycle.

The most known cycle finding algorithm is due to Floyd [120]: it uses two
sequences, applying f once and twice per step respectively starting from x0,
and compares the outputs of each step. When the two outputs match, say
xi = x2i, a collision is found but neither the input values resulting the collision
nor the entrance point of the cycle is known. This problem can be solved by
iterating once more starting from x0 and xi but applying f just once for both
sequences.

The expected length of the tail and the largest cycle are both given as
√

π/8 ·
2n/2 [80] and the time complexity of this attack roughly three times more
than the standard birthday attack with negligible memory requirements. This
collision search was later parallelized by van in Oorschot and Wiener [194] using
distinguished points.

Meet-in-the-Middle Attacks

This attack applies to hash functions for which the compression function f
is easy to invert. It is a variant of the birthday attack that allows finding a
preimage, second preimage or collision for intermediate chaining values instead
of the hash results. The attacker chooses r1 initial values, computes the
corresponding values at some intermediate step in the forward direction and
stores them in a list L. Similarly, he chooses r2 hash values, computes them
backwards and compares them with the values in L.
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The probability of matching the intermediate value from two different sets is
given by:

p ≈ 1− exp (−
r1 · r2

2n
) .

where n is the length of the hash and chaining values. The time complexity of
the attack is r1 calls to the function f1 and r2 calls to the function f2 hence
it attains the minimum value when r1 = r2 = 2n/2 assuming that computing
in both directions takes the same amount of time. The memory complexity is
dominated by the size of the list L which is also 2n/2.

The memory complexity of the meet-in-the-middle attack can also be decreased
by using cycles and storing only the distinguished points as in the birthday
attack [166].

2.4.2 Dedicated Attacks

This class of attacks depends on some high level properties of the compression
function f or the construction method. They are also known as chaining
attacks.

Fixed Point Attack

A fixed point is a pair (mi, hi) such that hi+1 = f(mi, hi) = hi. This means
that the message value mi does not affect the chaining value hi+1 and hence the
hash value. Therefore, it is possible to construct second preimages by removing
mi. To be more precise, given the message m = m1m2 . . . mt, if the attacker
finds a fixed point for the i-th iteration then m′ = m1m2 . . . mi−1mi+1 . . . mt

has the same hash value.

This attack is applicable to hash functions that have a compression function.
Fixed points can be easily found for most of the compression functions. For
example, for Davies-Meyer construction even if the underlying block cipher is
totally secure, the fixed points can be computed as follows: the attacker sets
hi = E−1

mi
(0) then hi+1 = Emi

(hi)⊕hi = hi and hence (mi, hi) is a fixed point.

Length-Extension Attack

The aim in length-extension attack is to compute H(m||m′) given the hash
value H(m) but not the message m itself. A trivial attack for Merkle-Damgård
construction if there is no output transformation can be given as follows: The
last chaining value equals to the hash value H(m), hence the attacker is able to
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directly append message blocks and resume the computation without knowing
the message m.

When MD-strengthening is used, the attacker is no longer able to directly
apply the attack described above, but it is still possible to perform a length-
extension attack. Provided that the attacker knows the length of message m,
he can choose m′ such that the padding for m||m′ is encoded in the last l bits
of m′.

Multicollision Attack

A multicollision is a set of messages that all hash to the same value. Joux [101]
showed that finding multicollisions for an iterated hash function is not much
harder than finding a single collision. The main idea is concatenating a chain
of internal collisions. The attacker computes the colliding pairs {mi, m′

i} such
that f(hi−1, mi) = f(hi−1, m′

i) for t steps. Then it is possible to construct
2t messages x1|| . . . ||xt where xi ∈ {mi, m′

i} that hash to the same value. A
schematic representation is given in Figure 2.8.

Using Joux’s method, it is possible to obtain 2t different multicollisions for an
iterated hash function with a computational complexity of t × 2n/2. On the
other hand, for an ideal hash function with an n-bit digest, it was believed that
2n(t−1)/t calls to f are required to find a t-fold multicollison. However, Suzuki
et al. [192] showed that by that many calls, the probability of finding a t-fold
multicollision is only 1/t! which is very small for large t, and the complexity
should be increased by a factor of (t!)1/t to achieve a success probability of at
least 50%.

. . .
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Figure 2.8: Schematic representation of multicollision attack

Herding Attack

The herding attack [108], also known as the Chosen Target Forced Prefix
(CFTP) attack, allows the attacker to find a preimage for a yet unknown hash
value for MD construction with a lower complexity than the preimage attack.
It is composed of two phases:
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In the offline phase, the attacker chooses 2k chaining values and randomly
generates message blocks to compute the new chaining values among which he
searches for collisions between the pairs. The procedure is repeated iteratively
with the new chaining values and the message blocks until one chaining variable,
which can be used as a hash value, is left.

P Try 2n−k

strings S
′

S
h

2k structures

Figure 2.9: Finding a linking message and producing the suffix

As a result, the attacker finds many collisions by using brute force and forms
a diamond structure, which is a data structure that resembles a tree. In the
online phase, a prefix P is given to the attacker and he exhaustively searches
for a string S′ such that P ||S′ matches with one of the intermediate states of
this structure. Finally, the suffix S such that H(P ||S′||S) = h can be computed
from the diamond structure.

The multicollisions obtained by this method are the same length but more
expensive than that of Joux’s. The complexity of creating a diamond structure
with 2k hash values at its widest point is at most 2k/2+n/2+2 calls to the
compression function f . The complexity of this attack is improved in [33]
and several extensions to this idea are presented in [2, 3].





Chapter 3

Cryptanalysis Methods

Cryptanalysis evaluates the security of the cryptographic algorithms that are
used to protect the information and tries to “break” them. Depending on the
purpose of the algorithm, breaking can have different meanings in symmetric-
key cryptography. For example for block ciphers and stream ciphers, which are
used primarily for encryption, the goals include recovering the secret key or
obtaining plaintext information. Whereas for hash functions finding a colliding
pair or recovering (a part of) the message from its digest is the aim.

An efficient algorithm that exploits the weakness of a cryptographic scheme or
one of its underlying primitives such that the required security goals are not
met is called an attack. The most strong scenario is the ciphertext only attack in
which the attacker uses only the ciphertexts to perform cryptanalysis. There
are also weaker scenarios such as the chosen ciphertext (plaintext) attack in
which the attacker chooses the ciphertexts (plaintexts), alternatively relations
between them, or the known plaintext attack in which the attacker knows a few
ciphertexts and the corresponding plaintexts.

While some cryptographic schemes have formal security proofs i.e., their
security can be reduced to a hard mathematical problem, for most of the
time it is not the case. Therefore during the design process, the parameters
of the algorithm are chosen such that the complexity of the generic attacks
(see Section 2.4.1) is beyond the available computing power. Moreover the
designers evaluate the resistance of their algorithms against the existing attack
methodologies and try to develop new design strategies such that the attacks
do not apply.

29
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For cryptanalysts, it is common to consider the underlying primitives as well as
reduced round or weakened variants of cryptographic algorithms. This usually
gives an idea on the security margin of the full algorithm when it cannot be
broken. Nevertheless the absence of an attack on the full scheme does not
guarantee that it is secure.

In this chapter we provide a brief introduction to the cryptanalytic methods
used for hash functions. We focus on differential cryptanalysis since most of
the attacks presented in the following chapters are based on it.

3.1 Differential Cryptanalysis

Differential cryptanalysis was introduced by Biham and Shamir [28] and is
one of the most powerful techniques used in the analysis of block ciphers,
hash functions, stream ciphers, etc. It is based on examining input/output
differences and the relation (probability) between them. For most of the cases
this difference is an XOR difference, although it is possible to use modulo 2n

addition, arbitrary group operations [122] or UNAF (unsigned non-adjacent
form) differences [196].

In the course of time, differential cryptanalysis has pioneered many other
cryptanalysis methods: higher-order differential cryptanalysis [121], truncated
differential cryptanalysis [117], impossible differential cryptanalysis [116, 25]
and boomerang attacks [198] can be given among the examples of these
methods.

3.1.1 Definitions

A differential [122] over a map f is denoted by (∆a, ∆b) where ∆a is the input
difference and ∆b is the output difference.

Definition 2. The differential probability DP(∆a, ∆b) of a differential over
a map f is the fraction of pairs with input difference ∆a that have output
difference ∆b. For an n-bit map, this can be shown as:

DP(∆a, ∆b) =
1

2n
#{x ∈ F

n
2 |f(x⊕∆a) = f(x)⊕∆b .}

For a keyed map, the differential probability DP[k](∆a, ∆b) can be defined for
each value k of the key. Then, the expected differential probability (EDP) is the
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average of the differential probability over all keys.

EDP(∆a, ∆b) =
1

|κ|

∑

k∈κ

DP[k](∆a, ∆b) .

Here, k is assumed to be uniformly distributed and taking values in κ.

In practice, it is difficult to compute the differential probabilities for functions
f : {0, 1}n → {0, 1}n when n is large. To our advantage, these functions are
usually designed in a way that they can be decomposed into sub-functions. Let
f consist of a sequence of sub-maps, then f = fm ◦ fm−1 ◦ . . . ◦ f0 and f is
called a composed map.

Definition 3. A differential characteristic Q over a composed map is a
sequence of differences through various stages of the encryption. The sequence
consists of an input difference ∆0, followed by the output differences of all the
steps (∆1, ∆2, · · · , ∆m).

∆0 ∆1
. . . ∆m−1 ∆mf0 f1 fm

Figure 3.1: A characteristic over a composed map

A (differential) characteristic is often called a differential path or a differential
trail.

A pair is called a right pair if it satisfies the given differential characteristic.
This is equivalent to satisfying the following set of equations:

f0(x⊕∆0) = f0(x)⊕∆1

(f1 ◦ f0)(x⊕∆0) = (f1 ◦ f0)(x)⊕∆2 (3.1)

. . .

(fm ◦ fm−1 ◦ . . . ◦ f0)(x⊕∆0) = (fm ◦ fm−1 ◦ . . . ◦ f0)(x)⊕∆m

Consequently, the differential probability DP(Q) of a characteristic over a
composed map f is the fraction of its right pairs. Similarly, for an n-bit map,
this is formulated as:

DP(Q) =
1

2n
·#{x ∈ F

n
2 |x satisfies (3.1) .}
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A characteristic (∆1, ∆2, · · · , ∆m) is said to be in differential (∆a, ∆b) if
∆a = ∆1 and ∆b = ∆m. Then, it is possible to define a relation between
the differential probabilities DP(∆a, ∆b) and DP(Q):

DP(∆a, ∆b) =
∑

Q∈(∆a,∆b)

DP(Q) .

It is known that, the same relation holds between DP[k](∆a, ∆b) and
DP [k](Q) for Markov ciphers (i.e., iterated ciphers whose round functions are
independent) [122].

3.1.2 Towards Attacks

In differential cryptanalysis the attacker tries to find the best differential
characteristic to mount an attack. Since the attack complexity is determined
by the inverse of the probability of a differential trail, in this context ‘best’
means having the maximum differential probability,

The maximum differential probability (MDP) is the maximum value of the
differential probabilities over all pairs of non-zero input and output differences:

MDP(f) = max
∆a6=0,∆b

DP(f)(∆a, ∆b)

For composed maps the maximum differential characteristic probability (MDCP)
is defined as the product of the maximum differential probabilities of sub-maps
fi for all i.

MDCP(f) =
m

∏

i=1

MDP(fi)

Since this equation is based on the assumption of independent sub-functions, it
gives an approximation of the maximum differential characteristic probability.

For SPN (Substitution Permutation Network) based constructions, substitution
layer consists of several parallel S-box instances and hence S-boxes are the
smallest building blocks. An S-box is called active if it has a non-zero input
difference, otherwise it is called passive. For certain designs (for instance,
the wide trail design strategy [56]), the concept of counting active S-boxes is
central to the differential cryptanalysis and one can use the minimum number of
active S-boxes to estimate the maximum differential characteristic probability
as follows:

MDCP(f) = MDP(S)#active S-boxes .

Note that this relation does not take the actual values of the input and output
of the active S-boxes into consideration, hence it is not exact for hash functions
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and most block ciphers. Yet, counting differentially active S-boxes is still the
major technique used to evaluate the security of cryptographic functions.

For ARX (Addition Rotation Xor) based constructions the analysis should
be performed at bit-level and finding paths is difficult, consequently more
complicated techniques are required. The first analysis of the probability
distribution of the carry bits in integer addition was done by Meier and
Staffelbach [188]. Later, Lipmaa et al. proposed algorithms for computing
differential properties (including probability) of addition modulo 2n [131]. Its
dual, the differential probability of xor when differences are expressed using
addition modulo 2n is studied in [132] and new algorithms based on matrix
multiplications are proposed.

Once a differential characteristic is constructed, the attacker chooses random
input pairs and checks if the characteristic is satisfied. For hash functions, the
lack of a secret key addition gives the attacker more power; there is no need
for searching the correct key, the results can be checked at intermediate steps
and message modification can be used. Moreover, the attack complexity can be
decreased by using truncated differentials where only a part of the difference is
known instead of the whole path.

3.1.3 Application to Hash Functions

The aim of the differential attack on hash functions is mostly finding collisions.
For example, for hash functions based on block ciphers where there is a feed-
forward of the plaintext, the output difference should be equal to the input
difference in order to have a collision.

The important collision attacks on well-known hash functions are all applica-
tions of the differential attack described above. The first attack is on MD5 [67]
by den Boer and Bosselaers, followed by the work of Dobbertin on MD4 [72]
while the first results on SHA-0 [44] are presented by Chabaud and Joux. In
2005, Wang published results first on MD4 and RIPEMD [199], and then
on MD5 [201], SHA-0 [202] and SHA-1 [200] by using message modification
techniques.

Another important application of a differential attack is finding distinguishers
for hash functions, their compression functions or even for the construction. By
injecting a difference at the input and observing its propagation at the output
(or after some number of rounds), the attacker might be able to distinguish the
function from a random mapping; this paradigm works subject to the condition
that the probability of having the expected output difference is higher than the
probability of having the same output difference in the random function. In
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other words, if the output difference follows a desired pattern with sufficiently
high probability, then the attacker is able to say that the hash values are
generated by the given function.

3.1.4 The Rebound Attack

The rebound attack [142], introduced by Mendel et al., is a relatively new tool
for cryptanalysis of hash functions based on differential cryptanalysis. It can be
considered as a combination of the meet-in-the-middle attack and the inside-out
approach [198] using truncated differentials.

Let E be the the underlying block cipher or the permutation of the hash
function under consideration, then in the rebound attack E is considered as a
combination of three sub-ciphers E = Ebck ◦ Einb ◦ Efwd (Figure 3.2).

EinbE
bck

Efwd

Inbound
OutboundOutbound

Figure 3.2: The Rebound Attack

The rebound attack is performed in two phases:

• Inbound Phase: The aim of the this phase is to find solutions for the
middle rounds (Einb) that have a low probability. The differential path
is divided into two or more subcharacteristics and solutions for each of
them is calculated separately. Finally, these solutions are combined by
using the match-in-the-middle technique.

• Outbound Phase: The aim of this phase is to find solutions for the
entire differential. Each solution of the inbound phase is computed in
both forward (Efwd) and backward (Ebck) directions. Then it is checked
whether they satify the desired pattern.

The Inbound phase can be repeated to obtain more starting points for the
outbound phase which is probabilistic. As a result, many solutions for the
truncated differential can be obtained with a lower complexity.

This attack has been used first for the cryptanalysis of reduced versions of
Whirlpool and Grøstl, and then extended to obtain distinguishers for the
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full Whirlpool compression function [124]. Later, linearized match-in-the-
middle and start-from-the-middle techniques have been introduced by Mendel
et al. [141] to improve the rebound attack. Moreover, a sparse truncated
differential path is recently used in the attack on LANE by Matusiewicz et
al. [98] rather than an all active state in the matching part of the attack.

Then, these techniques were used to improve the results on AES-based
algorithms (ECHO, Grøstl,) in the following papers: [83, 97, 143, 161, 182, 183].
The rebound attack has also been successfully applied to hash functions based
on permutations (Luffa [26], Keccak [18]) and on Feistel structures.

3.1.5 Splice-and-Cut Technique and Bicliques

The Splice-and-cut technique, introduced by Aoki and Sasaki [5], is an
improvement to the meet-in-the-middle attack. In this technique, the first and
last steps of the target algorithm are considered as consecutive steps. Then
the algorithm is divided into two parts called chunks in a way that each chunk
includes at least one independent message word from the other chunk referred
to as neutral word. Finally, pseudo-preimages can be found by using the meet-
in-the-middle attack.

This method allows the attacker to start the meet-in-the-middle attack from any
step. It was first used to attack MD4 and MD5 [5], followed by the preimage
attacks [180] on HAVAL. It was later applied to SHA-0 and SHA-1 in [6].
This technique was further improved with the introduction of initial structure
in [181] and used to attack full MD5.

The initial structure is composed of a few consecutive steps that has at least
two neutral words m1, m2 such that the second chunk can be computed
independently from m1 and the first chunk can be computed independently
from m2. A sketch of the splice-and-cut technique is given in Figure 3.3.

CV H

Initial

Structure

First

chunk

Second

chunk

match

m
1

m
2

Figure 3.3: Splice-and-cut technique with initial structure

Bicliques [113] can be seen as a special case of initial structure composed of
two sets, namely {Qi} and {Pj}, where each state in a set is related with all
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states in the other set after some consecutive steps. A biclique is parametrized
with the dimension d where 2d is the size of the sets.

Bicliques are used to search preimages as follows: let M = {M [i; j]} be a group
of messages and let v be chosen outside of f so that the two chunks g1 and g2

are independent of i and j, respectively. Then the attacker checks if

Pj
M [∗;j]
−−−−→

g1

v
?
= v

M [i;∗]
←−−−−

g2

Qi

is satisfied for some i, j. The adversary computes v from Qi by first computing
CV and then deriving the output of E as CV ⊕H. 2n−2d bicliques of dimension
d are required to test 2n preimage candidates. Upto now, this technique has
been applied to Skein, the SHA-2 family and the output transformation of
Grøstl [113, 111] as well as key recovery attack for block ciphers AES and
IDEA [34, 112].
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Figure 3.4: Biclique with dimension d = 2 in the meet-in-the-middle attack

3.1.6 Boomerang Attack

The boomerang attack [198], introduced by Wagner, aims to reduce the
complexity of the differential cryptanalysis. The main idea is to use two
short differential characteristics with high probabilities instead of one long
characteristic with a lower probability. The attack attempts to generate a
structure called quartet halfway through the cipher.

For this purpose, the block cipher E is treated as a cascade of two sub-ciphers
E0 and E1 (i.e, E = E1◦E0). Assume that a differential characteristics ∆→ ∆∗

with probability p for E0, and ∇∗ → ∇ with probability q for E1 are known.
The boomerang attack is based on generating right quartets (P1, P2, P3, P4)
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which satisfy a set of relations:

P1 ⊕ P2 = ∆ = P3 ⊕ P4

E0(P1)⊕ E0(P2) = ∆∗ = E0(P3)⊕ E0(P4)

E0(P1)⊕ E0(P3) = ∇∗ = E0(P2)⊕ E0(P4)

C1 ⊕ C3 = ∇ = C2 ⊕ C4

where Ci = E1(E0(Pi)). Hence the boomerang attack requires both chosen
plaintext and chosen ciphertext and is depicted in Figure 3.5.

E0

E1

E0

E1

E0

P1 P2

P3 P4

E1 E1

∆

∆

∇ ∇
C3 C4

C1 C2

E0

∇
∗

∆
∗

∆
∗

∇
∗

Figure 3.5: The Boomerang attack and a right quartet

The amplified boomerang attack [109] is a chosen plaintext attack in which
the same differential conditions have to be satisfied. But instead of generating
quartets, a set of random plaintext pairs with input difference ∆ is generated.
Then the aim is to find quartets satisfying the relations by using random trials.
From the birthday paradox we know that quartets exist and we can determine
their number.

In [27, 198], it is shown that it is possible to use all possible ∆∗’s and
∇∗’s simultaneously. However, recently in [152], it has been proved that
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the probability of the attack given in [198] is inaccurate and the complexity
estimates does not hold when the two differential characteristics are dependent.

The boomerang attack has been applied to internal functions and reduced round
versions of many hash functions such as MD4, MD5 and HAVAL [114, 179],
SHA-1 [104], BLAKE [31], and Skein [206, 10].

3.1.7 Higher-Order Collisions

Whereas the classic differential cryptanalysis studies the propagation of
difference between plaintexts, higher-order differential cryptanalysis exploits
the propagation of difference between differences. The concept of higher-order
derivatives has been first introduced by Lai [121] and applied to differential
cryptanalysis by Knudsen [117].

Definition 4 ([121]). Let (S, +) and (T, +) be Abelian groups. For a function
f : S → T , the derivative at a point a1 ∈ S is defined as

∆af(x) = f(x + a)− f(x) .

The i-th derivative of f at the point (a1, a2, . . . , ai) is then defined as

∆a1,...,ai
f(x) = ∆ai

(∆a1,...,ai−1
f(x)) .

In the light of this definition, the differential characteristics and differentials
introduced in the previous sections actually correspond to first order derivatives.
This notion is extended to higher-order differentials as follows:

Definition 5 ([117]). A one-round differential of order i for a function f :
S → T is an (i + 1)-tuple (a1, a2, . . . , ai, b) such that

∆(a1,...,ai)f(x) = b .

Similar to the regular collisions, a higher-order collision is obtained when b = 0.
A second-order differential collision is a special case of higher-order collisions
when i = 2.

f(x)− f(x + a2) + f(x + a1 + a2)− f(x + a1) = 0 .

Recently, higher-order differential attacks have been applied to SHA-3 candi-
dates Keccak [39] and Luffa [39, 203] and second-order collisions have been
found for SHA-256 [30].
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3.2 Linear Cryptanalysis

Linear cryptanalysis introduced by Matsui [136] is another powerful technique
used in the analysis of cryptographic systems. It is based on examining the
relation between linear combinations of plaintext and ciphertext bits.

Definition 6. Let C be the encryption of P under the key K. A linear
approximation over a map is defined as:

ΓP · P ⊕ ΓC · C = ΓK ·K . (3.2)

where · denotes the standard inner product. The vectors ΓP , ΓC and ΓK

represent a fixed linear combination of bits and are called linear masks.

In order to mount an attack, the adversary should find an efficient linear
approximation, which means that Equation (3.2) should hold with probability
p 6= 1/2 (i.e., not random). However, finding the best linear approximation for
an arbitrary cipher is generally not an easy task.

As in differential cryptanalysis, the linear approximation of a composed map
f can be constructed by combining the linear approximations of the sub-maps.
Let (ΓX0

, ΓX1
, . . . , ΓXr

) be a linear characteristic and X0, X1, ..., Xr denote the
intermediate values where P = X0 and C = Xr. We use the following lemma
to compute its probability.

Lemma 1 (Piling-up Lemma [136]). Let Γi ·Xi = Γi−1 ·Xi−1 be independent
linear approximations which are satisfied with a probability pi = 1/2 + ǫi, then
the combined probability of the approximation Γn ·Xn = Γ0 ·X0 is:

1/2 + 2n−1
n

∏

i=1

(pi − 1/2) = 1/2 + 2n−1
∏

i=1

ǫi .

The ǫi values are called the biases of the linear approximations. This lemma can
be simplied by defining the correlation ci as ci = 2ǫi. Then, we have c =

∏n
i=1 ci.

The square of the correlation is called the linear probability. Matsui showed
that the number of plaintexts required for an attack is inversely proportional
to the linear probability; consequently the best linear approximation is the one
with the highest bias.

In linear cryptanalysis, given the encryptions of plaintext-ciphertext pairs, the
adversary counts how many times Equation (3.2) is satisfied for each value
of the key bits involved in the approximation (refereed as partial key) and
computes the biases. Then the partial key value that has the closest bias to
the expected will be the most probable key.
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Kaliski and Robshaw proposed using multiple linear approximations at the
same time [105]. Unfortunately, this method required all linear approximations
to use the same subkey bits and provided only a small advantage. In [160],
Nyberg showed that it is possible to multiple linear characteristics that have
the same input and out masks but different (sub)key masks. This concept
which can be seen as the analogue of differentials in differential cryptanalysis
is called as linear hull.

Since its introduction linear cryptanalysis has been successfully applied to many
block ciphers and stream ciphers; on the other hand it hasn’t received much
attention in terms of cryptanalysis of hash functions. As there is no key to
recover in hash functions, linear cryptanalysis can only be used to evaluate the
security of the function. A few examples include the attacks on Hamsi [129]
and Cube Hash [8].

3.3 Algebraic Cryptanalysis

In algebraic cryptanalysis, a cipher is expressed as a system of non-linear
equations over GF (2) or GF (2n) with a large number of unknown variables
and a solution for the system is searched. Although it is possible to describe
every cipher in terms of multivariate equations, solving them is an NP-hard
problem even for quadratic equations (known as the MQ problem [204]).

Using algebraic methods in cryptanalysis has been first formulated by Shannon
in 1949: breaking a good cipher should require “as much work as solving a
system of simultaneous equations in a large number of unknowns of a complex
type” [184]. In 1965, the theory of Gröbner basis, a set of multivariate
nonlinear polynomials with certain properties for solving algebraic systems,
was developed by Buchberger [43]. He also proposed an algorithm, which
is a generalization of the Euclidean algorithm and the Gaussian elimination
to multivariate polynomial rings, to transform every polynomial system into
Gröbner basis form. More efficient algorithms to compute Gröbner bases,
namely the algorithms F4 [76] and F5 [77], have been later introduced by
Faugère.

In [115], Kipnis and Shamir showed that the complexity of the MQ problem is
decreased when it becomes overdefined (i.e., there exists more equations than
unknown variables). The main idea is linearizing the system by replacing any
product of variables by a new variable and solving the resulting linear system.
Their technique called relinearization aims to solve systems of quadratic
equations in polynomial time. In [50] Courtois et al. showed that many of
the equations generated by relinearization are linearly dependent hence this
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technique is not as efficient as expected, and they introduced the Extended
Linearization (XL) algorithm.

The basic idea of XL algorithm is multiplying each polynomial equation with all
possible monomials (of some bounded degree) to generate higher degree variants
and then linearizing the new system. The algorithm was later improved in [49].
The actual complexity of the XL algorithm is not known (especially for very
big systems of equations) and it offers a small advantage compared to Gröbner
basis techniques [7].

In [51], it was claimed that if MQ is sparse and has a regular structure,1

then there is a more efficient method to find a solution, called eXtended
Sparse Linearization (XSL) algorithm. In this algorithm each equation
is multiplied by “carefully selected monomials2” instead of all possible
polynomials. Additionally, there exists a final step (called T’ method), in which
new linearly independent equations are tried to be obtained without creating
any new monomials.

Another approach used in algebraic cryptanalysis is the use of SAT-solvers
which are based on heuristic search algorithms. The main idea is guessing
some variables and examining the consequences. Whenever a contradiction is
found, a new restriction of equation can be added saying that in this set of
constraints one is false. For most of the cases, SAT-solvers are much faster and
can break more instances than the current Gröbner bases techniques.

3.4 Cube Attack

While solving large systems of multivariate polynomial equations for crypto-
graphic schemes has been studied extensively in algebraic cryptanalysis, it was
stated in [70] that these equations are not arbitrary and unrelated. Instead
they are derived from a master polynomial by fixing the values of some public
variables such as message bits and IV bits. The basic cube attack is an
algorithm for solving such equations.

In the cube attack the desired algorithm is considered as a black box that
evaluates a polynomial p over GF (2) of n+m inputs bits (x1, . . . , xn; v1, . . . , vm)
where xi are the secret variables (key bits) and vj are the public variables
(plaintext bits or IV bits). For simplicity, the distinction between public and
private variables is ignored for the rest of the section.

1The algorithm is intended for only on special types of ciphers in which layers of S-Boxes
are interconnected by linear layer and key addition

2only by products of monomials that occur in the original system
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Let p(x1, . . . , xn) be a multivariate master polynomial over GF (2) given in
algebraic normal form (ANF) and tI be the multiplication of variables xi where
i is in an index set I ⊆ {1, . . . , n}. Then the polynomial p can be written as :

p(x1, . . . , xn) ≡ tI · pS(I) + q(x1, . . . , xn)

The idea behind the cube attack is that the symbolic sum of all polynomials
derived from the master polynomial by assigning all possible 0/1 values to the
variables xi gives the coefficient of the monomial tI .

pS(I) ≡
⊕

I

p(x1, . . . , xn) .

Following the terminology of [70], pS(I) is called the superpoly of I in p, and
the term tI is called a maxterm of p if and only of pS(I) is of degree one (a
linear polynomial which is not a constant). Any subset I of size k defines a
k-dimensional Boolean cube of 2k vectors.

The cube attack is composed of two phases:

• Preprocessing Phase: The attacker sets the values of all variables
and uses the black box to find sufficiently many maxterms with linearly
independent superpolys. In other terms, he reconstructs the ANF of the
superpoly for each tI . This phase is not key dependent and performed
only once for each cryptographic scheme.

• Online Phase: The n secret variables are set to unknown values, and
the attacker evaluates the superpoly’s by setting the values of m public
variables and finds a linear combination of the key bits. Finally the
key is recovered from linear algebra. This phase requires at most 2d−1

evaluations of the derived polynomials assuming p is of degree d.

The cube attack can be seen as an extension to Algebraic IV Differential
Attack (AIDA) [197] and higher order differentials [121]. The main idea in all
these attacks is to generate a sufficient number of plaintexts and sum up the
corresponding ciphertexts to obtain some properties that will ease the attack.

In addition to key recovery, by evaluating superpolys and performing algebraic
tests on them, it is possible to to distinguish a cryptographic scheme from
a random function or to detect non-randomness. This algorithm is called a
cube tester [11]. Properties such as balance, low degree, the presence of linear
variables and presence of neutral variables can be tested by cube testers.

The dynamic cube attack [71] is an extension of the basic attack which recovers
the key by using distinguishers obtained from cube testers instead of solving
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a system of linear equations. Whereas in static cube testers the values of all
public variables that are not in a cube is set to a constant (usually zero), in
the dynamic cube attack the values of some such variables are not fixed and
vary depending on some public variables in the cube and private variables.





Chapter 4

Cryptanalysis of JH

JH [205] is the submission of Hongjun Wu to the NIST Hash Competition and
it is one of the five finalist algorithms. It is a sponge-like iterative hash function
that supports four different hash sizes (224, 256, 384 and 512-bit). The hash
algorithm is very simple and efficient in both software and hardware, and is
among the fastest contestants.

The compressions function of JH is a simple substitution permutation network
that processes 1024-bit blocks. The round function uses 4·4 S-boxes followed by
a linear transformation and a permutation. Although the permutation seems
complex, its bit-slice implementation is highly structured and symmetric which
allows us to analyze the algorithm easily. JH has been tweaked for the final
round by increasing its number of rounds. This chapter is composed of a brief
description of the JH hash function and its properties followed by our results
on JH.

Our first attack [168] is based on the rebound attack [142] and it applies to
both the hash function and the compression function of JH. Using the rebound
technique we first find semi-free-start collision for the hash function. Then we
improve the complexity of our attack by using three inbound phases instead
of one and obtain semi-free-start near-collisions for the compression function
of JH. We implement the rebound attack to the small scale variant of JH to
describe the attack better.

Our second attack [158] applies to the tweaked version of JH and uses six
inbound phases. However, due to increased number of rounds compared with

45
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the previous attacks, finding the whole solution for the path can no longer be
done easily. We first find partial solutions for the active part of the differential
path by using the ideas from [157]. We then propose a novel algorithm that
allows us to find solutions for the passive part without contradicting any of the
already fixed values from the inbounds. As a result we obtain semi-free-start
near-collisions for the compression function of JH. Using the same differential
characteristic, we finally present distinguishers for 42 rounds of the internal
permutation.

4.1 Preliminaries

Throughout this chapter, we will use the following notation:

word 4 bits
d dimension of a block of bits

i.e. a d-dimensional block of bits consists of 2d words
Hi the i-th chaining value

JH-X the member of the family whose message digest is X bits
Mi Message block i

mi,j the jth word of the ith round value
|| concatenation operation
· cross-product: an operation on two arrays that result in another

array whose elements are obtained by combining each element in
one array with every element in the second one

4.2 The JH Hash Function

The hash function JH is an iterative hash function that accepts message blocks
of 512 bits and produces a hash value of 224, 256, 384 and 512 bits. The
message is padded to be a multiple of 512 bits. The bit ‘1’ is appended to the
end of the message, followed by 384−1+(−l mod 512) zero bits. Finally, a 128-
bit block is appended which is the length of the message, l, represented in big
endian form. Note that this scheme guarantees that at least 512 additional bits
are padded. In each iteration, the compression function Fd, given in Figure4.1,
is used to update the 2d+2 bits as follows:

Hi = Fd(Hi−1, Mi) .

where Hi−1 is the previous chaining value and Mi is the current message block.
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Figure 4.1: The compression function Fd

The compression function Fd is defined as follows:

Fd(Hi−1, Mi) = Ed(Hi−1 ⊕ (Mi||0
2d+1

))⊕ (02d+1

||Mi) .

In the submitted version of JH to the SHA-3 competition, Ed is a permutation
and is composed of an initial grouping of bits followed by 5(d− 1) rounds, plus
an additional S-box layer and a final degrouping of bits. In the tweaked version
(2011) the number of rounds is increased to 6(d− 1). The grouping operation
arranges bits such that the input to each S-box has two bits from the message
and two bits from the chaining value.

In each round, the input is divided into 2d words and then each word passes
through an S-Box. JH uses two 4-bit-to-4-bit S-Boxes (S0 and S1) and every
round constant bit selects which S-Boxes are used. Then two consecutive words
pass through the linear transformation L, which is based on a [4, 2, 3] Maximum
Distance Separable (MDS) code over GF (24). Finally all words are permuted
by the permutation Pd. After the degrouping operation each bit returns to its
original position. The round function for d = 4 is shown in Figure 4.2 and d = 8
is the version for the SHA-3 competition. For a more detailed information we
refer to the specification of JH [205].

The initial hash value H0 is set depending on the message digest size. The first
two bytes of H1 are set to the message digest size, and the remaining bytes
of H1 are set to 0. Finally, the message digest is generated by truncating Ht

where t is the number of blocks in the padded message., i.e, the last X bits of
Ht are given as the message digest of JH-X for X = 224, 256, 384, 512.
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Figure 4.2: Round Function of Ed for d = 4

4.2.1 Properties of the Linear Transformation L

Since the linear transformation L implements a (4, 2, 3) MDS matrix, any
difference in one of the words of the input (output) will result in a difference
in two words of the output (input). If one tries all possible 216 pairs, the
number of pairs satisfying each condition (2 → 1 or 1 → 2) is 3840, which
gives a probability of 3840/65536 ≈ 2−4.09. Note that, if the words are
arranged in a way that they will be both active this probability increases to
3840/57600 ≈ 2−3.91. For the latter case, if both words remain active (2→ 2),
the probability is 49920/57600 ≈ 2−0.21. (see also Table 4.1)

Table 4.1: The difference distribution of the linear layer

Patterna 00 01 10 11

01 256 0 0 0
01 0 0 0 3840
10 0 0 0 3840
11 0 3840 3840 49920

a(0:passive word, 1:active word)
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4.2.2 Observations on the Compression Function

The grouping of bits at the beginning of the compression function ensures that
the input of every first layer S-Box is xor-ed with two message bits. Similarly,
the output of each S-Box is xor-ed with two message bits. Therefore, for a
random non-zero 4-bit difference, the probability that this difference is related
to a message is 3/15 ≈ 2−2.32.

The bit-slice implementation of Fd uses d − 1 different round function
descriptions. The main difference between these round functions is the
permutation function. In each round permutation, the odd bits are swapped
by 2r mod (d− 1) where r is the round number. Therefore, for the same input
passing through multiple rounds, the output is identical to the output of the
original round function for the α · (d − 1)-th round where α is any integer.
Three rounds of the bit-sliced representation can be seen in Figure 4.3 between
rounds 1 and 4.

4.3 The Start-From-The-Middle Attack on JH

In our work, we first apply the start-from-the-middle technique [18] with an
all active state. We begin by guessing the middle values and then proceed
forwards and backwards using the filtering conditions to reduce the number of
active S-Boxes in each round.

In this section, we describe the steps of our attack on JH. We will first describe
the attack on a smaller version of JH, i.e., d = 4 in detail, and then give the
algorithm and analysis for d = 8.

4.3.1 Attack on 8 Rounds of JH for d = 4

Attack Procedure

The inbound phase of the attack described in this section is composed of 8
rounds, and the number of active S-Boxes in each round is:

1← 2← 4← 8← 16→ 8→ 4→ 2→ 1 .

Here, the arrows represent the direction of the computations for the inbound
phase. The bit-slice implementation allows us to analyze the algorithm easily.
The truncated differential path is given in Figure 4.3. The attack can be
summarized as follows:
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2 3 54 6 7 8 9 10

Figure 4.3: Inbound phase of JH for d = 4 (bit-slice implementation)

• Step 1: Try all possible 216 values for the middle values m4,j ||m4,j+1

and m′
4,j ||m

′
4,j+1 in Round 4 for each of the four sets (shown with colors

and different shapes in Figure 4.3), and keep only the ones that satisfy
the desired pattern (2 → 4 → 2). Therefore, the expected number of
remaining pairs is 216 · 216/[(24.09)2 · (23.91)2] = 216 for each set.

• Step 2: Compute the cross-product of the sets: · and · , check if
the differences satisfy 2→ 1 when they pass the inverse L transform, L−1.
For the pairs that satisfy the filtering condition, store only the values in
the active words and the middle values for each of the 2 sets. After this
step, the number of pairs in each set is approximately 216 · 216/(23.91)2 =
224.18.

• Step 3: Compute the cross-product of the sets: · , check whether the
remaining 10 filtering conditions (marked with ) are satisfied or not.
This control can be done by calculating L ◦S or S−1 ◦L−1 for the active
words only and does not require the use of the round function entirely,
hence it is very efficient. The total number of remaining pairs that pass
the inbound phase is 224.18 · 224.18/(23.91)10 = 29.26.

Note that, due to the symmetry, the actual number of remaining pairs is 28.26

and the duplication can be avoided in the earlier steps of the algorithm, but
for simplicity our description ignores this. The attack algorithm only stores
the middle values for the pairs that follows the desired differential path and
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the values in the n-th round can be computed by calling the round (or inverse
round) function.

The active S-Boxes in the input and output to the compression function must
satisfy the desired property, so out of 28.26 pairs only 28.26 · (2−2.32)2 = 24.32

remain. In order to obtain a collision, the differences in both S-Boxes also need
to match, which happens with a probability of 1/3. Therefore for 24.32 · 1/3 ≃
22.74 pairs we obtain a semi-free-start collision for the hash function.

Complexity of the Attack

The inbound phase is the part of the attack where most of the calculations is
done. Let U = L ◦ S and U−1 = S−1 ◦ L−1. Then, a round function consists
of 8 U -functions, similarly an inverse round functions has 8 U−1-functions.

For each of the four sets in Step 1 of the algorithm, we try all possible 216

pairs and apply the filtering condition, Although we have 2 U -functions in the
forward direction and 2 U−1-functions in the backward direction, we only check
one condition if the previous one is satisfied, so the total number of calls, n1 is:

n1 = 232 + 232/24.09 + 232/(24.09)2 + 232/[(24.09)2 · 23.91] = 232.09 .

which is approximately 2291 round functions. However this step can be done
by 232 table look-ups if precomputation is used.

For each of the two sets in Step 2 of the algorithm, since L and L−1 are a
linear transformations, it is sufficient to check whether the differences satisfy
the desired property, i.e.L−1(∆c, ∆d) = (∆a, 0) or (0, ∆b). The total number
of calls in this step is:

n2 = (216)2 · (1 + 2−3.91) = 232.09 .

In the final step of the inbound phase, 3 of the 10 conditions to be checked
are again linear transformations and the remaining 7 require the use of the
U -function. The complexity of the attack is dominated by this step and the
total number of operations performed is:

n3,bck = (224.18)2 · [(1 + 2−3.91 + (2−3.91)2] ≃ 248.46

n3,fwd = (224.18)2/(2−3.91)3 ·
6

∑

i=0

(2−3.91)i ≃ 236.72 .

1232.09
· 1/8 = 229.09
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where fwd and bck denote the forward and backward direction respectively. In
the outbound phase, for each of the 28.26 remaining pairs, starting from the
middle values, we call the round and inverse round functions the obtain the
input and output values.

Results

The above algorithm has been implemented for d = 4 and we observed that
we can obtain semi-free-start collision for 8-rounds JH-16 with the calculated
complexity. An example is given in Table A.1.

4.3.2 The Attack on 16 Rounds of JH with d = 8

In this section, we first present an outline for the start-from-the middle attack
on a reduced round version of JH for all hash sizes, and then give the
calculations for the complexity analysis of the attack.

Attack Procedure:

For the compression function E8, the attack is composed of 16 rounds and the
number of active S-Boxes is:

1← 2← 4← 8← 16← 32← 64← 128← 256→ 128→ 64→ 32→ 16→ 8→ 4→ 2→ 1

The algorithm is similar to the one of E4. We again start from the middle and
then propagate outwards by computing the cross-product of the sets and using
the filtering conditions. However, instead of trying all 216 possible pairs, we
start with 27.92 values for each middle value. The number of sets, the bit length
of the middle values (size) of each set, and the number of filtering conditions
followed by the number of pairs in each set are given in Table 4.2. Similarly,
we only store the values in the active bytes for the outermost rounds and the
middle round for each set, i.e., no other intermediate value is stored.

Complexity of the Attack

The time complexity of the attack for d = 8 is calculated in a manner similar
to that of d = 4. Instead of giving all equations explicitly, we summarize the
results in terms of function calls and their direction for each step in Table 4.2.
The time complexity of the given attacks is 2190.24 U -function calls.
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Table 4.2: Overview of inbound phase

Step Size Sets Filtering Pairs Time Direction
(bits) Conditions Remain Complexity

0 8 128 1 211.75 215.84 fwd

1 16 64 1 219.59 223.50 bck

2 32 32 4 223.54 239.18 fwd

3 64 16 4 231.44 247.08 fwd

4 128 8 4 247.24 262.88 fwd

5 256 4 8 263.20 294.48 fwd

6 512 2 8 295.12 2124.40 fwd

7 1024 1 46 210.38 2190.24 fwd + bck

Results

We may lose up to half of the remaining pairs due to symmetry. In addition,
similar to the case for d=4, the active S-Boxes in the input and output to
the compression function should correspond only to the message bits and then
match each other in order to obtain a collision. Therefore, out of 210.38 pairs
only 210.38 · 1/2 · (2−2.32)2 · 1/3 ≃ 23.15 remain.

Suppose that we intend to attack a block Mi where (i < N). Since we obtain
a zero difference in the chaining value that guarantees that the outputs of the
compression function will be the same provided that both messages have the
same length. As mentioned earlier the same compression function is used for all
hash sizes, and the message digest is generated by truncating Ht where t is the
number of blocks in the padded message. Therefore, we have a semi-free-start
collision for all hash sizes of JH reduced to 16 rounds from 35.5.

4.4 The Rebound Attack on the Compression

Function of JH

The attack on the hash function given in Section 4.3.2 can be easily converted
to an attack on 19 rounds of the compression function for the pairs that satisfy
the inbound phase by using the following differential trails in the outbound
phases:

2← 1← Inbound Phase → 1→ 2→ 4
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The complexity of the attack remains same (i.e., 2190.24 U -function calls) and
we obtain a semi-free-start near-collision for 1008 bits. In this section, we
improve these results by using three inbound phases. Once again, we first
describe the steps of our attack for d = 4 in detail, and then give the algorithm
and complexity analysis for d = 8.

4.4.1 The Improved Rebound Attack on JH with d= 4

We can improve our results by using three inbound phases with partially active
states rather than one all active one. This allows us to decrease the complexity
of the attack. The inbound phase of the attack described in this section is
composed of 8 rounds, using the following trail:

2← 4→ 2← 4← 8→ 4← 8→ 4→ 2 . (4.1)

It is perhaps interesting to make here some observations on the number of
active S-boxes in the trail. Similar to the AES, the linear diffusion layer of JH
imposes a lower bound on the number of active S-boxes: if d ≥ 2, then there are
at least 32 = 9 active S-boxes in every sequence of 4 rounds. The conjectured
bound on the number of active S-boxes over 2d + 1 rounds [205], as well as
the trail (4.1), demonstrate that the higher dimension of the JH diffusion layer
allows for relatively long and narrow trails.

We decompose the inbound phase into a sequence of three smaller inbound
phases, each of which are 3, 2 and 3 rounds respectively. The number of active
SBoxes for each of the steps in each round is:

2← 4→ 2

2← 4← 8→ 4

4← 8→ 4→ 2 .

We use the bit-sliced representation to analyze the algorithm. We first calculate
the results of the first and the third inbound phases, and then match them with
the second inbound phase. The truncated differential path is given in Figure 4.5.
The attack can be summarized as follows:

First Inbound Phase

• Try all possible 28 values for each of the middle values m1,j ||m1,j+1 and
m′

1,j ||m
′
1,j+1 in Round 1 for each of the two sets, and keep only the

ones that satisfy the desired pattern. Therefore, the expected number of
remaining pairs is 28 · 28/24.09 = 211.91 for each set.
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1 32 4 5 6 7 80

Inbound 1 Inbound 3Inbound 2

Figure 4.5: Inbound phase of JH (d = 4)

• Compute the cross-product of the two sets and check if the differences
satisfy 2 → 1 when they pass L−1. For the pairs that satisfy the
filtering condition, store only the values in the active words and the
middle values. After this step, the number of pairs is approximately
211.91 · 211.91/(23.91)2 = 216.

• Check whether the remaining pairs satisfy the desired input difference,
and store these values in list L1. Therefore, the size of L1 is 216 ·
(2−2.32)2 = 211.36

Second Inbound Phase

• Try all possible 28 values for each of the middle values m4,j ||m4,j+1 and
m′

4,j ||m
′
4,j+1 in Round 4 for each of the four sets, and keep only the ones

that satisfy the desired pattern. The expected number of remaining pairs
is again 28 · 28/24.09 = 211.91 for each set.

• Compute the cross-product of the sets having the same pattern and check
if the differences satisfy 2 → 1 when they pass L−1. For the pairs that
satisfy the filtering condition, store the values for each of the 2 sets. The
expected number of pairs in each set is approximately (211.91)2/(23.91)2 =
216.
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• Compute the cross-product of the sets, · , and check if the
differences satisfy the filtering condition when they pass L−1. The
expected number of remaining pairs that pass the second inbound phase
is (216)2/(2−3.91)2 = 224.18.

Third Inbound Phase

• Try all possible 28 values for each of the middle values m6,j ||m6,j+1 and
m′

6,j ||m
′
6,j+1 in Round 6 for each of the four sets, and keep only the ones

that satisfy the desired pattern. The expected number of remaining pairs
is again 211.91 for each set.

• Compute the cross-product of the sets having the same pattern and check
if the differences satisfy 2 → 1 when they pass the inverse L transform.
For the pairs that satisfy the filtering condition, store the values for each
of the 2 sets. The expected number of pairs in each set is approximately
(211.91)2/(23.91)2 = 216.

• Compute the cross-product of the two sets, · , to check the final
filtering conditions in round 7. The expected number of pairs that pass
the third phase is (216)2/(2−3.91)2 = 224.18. Store these values in list L3.

Merging Inbound Phases

The three previous inbound phases overlap in the 2 and 4 active words (denoted
with black in Figure 4.5) in rounds 2 and 5 respectively. Since we have to match
these active words in both values, we get a condition on 16 + 32 = 48 bits in
total. These conditions are checked as soon as we have a remaining pair for the
second inbound phase, by using the lists L1 and L3. As a result, we expect to
find (211.36 · 224.18 · 2−16) · 224.18 · 2−32 · (2−2) ≃ 29.72 solutions for the inbound
phase. The last 1/4 factor in the calculation follows from symmetry.

Outbound Phase

For the pairs that satisfy the inbound phase, we expect to see the following
differential trail in the outbound phase:

2← Inbound Phase → 2→ 4→ 2 .
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Therefore, for the compression function E4, we have the 10-round differential
path shown in Figure 4.6. Note that, there are two filtering conditions in the
last round of the outbound phase. Thus, out of 29.72 solutions, only 29.72 ·
(2−3.91)2 ≈ 21.9 pass to the last round. After the degrouping operation, the
message is xor-ed to the rightmost 32-bits of the output and for the compression
function of JH for d = 4 we have a near-collision for 52 bits.

I
N
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P
H
A
S
E

210 121110

Figure 4.6: Outbound phase of JH (d = 4)

Data Complexity

The time complexity of the attack is determined by the first and third inbound
phases which is about 232.09 each, hence the total time complexity is 232.09 +
232.09 = 233.09 U -function calls. The memory complexity is also determined by
the third inbound phase which is 224.18.

Results

We obtain a 52-bit free-start near-collision for 10 rounds of the JH compression
function. The results are unfortunately not better than theoretic bounds for
JH with d = 4, but it helps us to implement and verify the attack and expand
it for the submitted version of JH.
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4.4.2 The Improved Rebound Attack on JH with d = 8

In this section, the attack in Section 4.4.1 on JH with d = 4 is extended to
JH with d = 8 using more rounds (hence the larger number of steps and the
increased complexity) for each of the inbound and outbound phases. The attack
is applicable to 19 rounds (out of 35.5) of the compression function. We first
explain the attack in detail and then give the calculations for the complexity
analysis.

Inbound Phase

For the compression function E8, the inbound phase of the attack is 16 rounds
and is composed of two parts. In the first part, we apply the start-from-the-
middle-technique three times for rounds 0 − 3, 3 − 10 and 10 − 16. In the
second part, we connect the resulting active bytes (hence the corresponding
state values) by a match-in-the-middle step. The number of active S-Boxes in
each of the sets is:

2← 4← 8→ 4

4← 8← 16← 32← 64← 128→ 64→ 32

32← 64→ 32→ 16→ 8→ 4→ 2 .

For a detailed sketch of the inbound phase one can refer to Figure 4.7. The
algorithm for each set is similar to the one of E4. We again start from the
middle and then propagate outwards by computing the cross-product of the
sets and by using the filtering conditions. For each list, we try all possible 216

pairs in Step 0. The number of sets, the bit length of the middle values (size)
of each list, and the number of filtering conditions followed by the number of
pairs in each set are given in Table 4.3.

Merging Inbound Phases

Connecting these three lists is again performed as follows. Whenever a pair
is obtained from set 2, we check whether it exists in L1 or not. If it does,
another check is done for L3. We have 219.54 and 2138.7 elements in lists 1
and 3 respectively, 2152.28 pairs passing the second inbound phase, and 32-bit
and 256-bit conditions for the matches. Then, the total expected number of
remaining pairs is (219.54 · 2152.28 · 2−32) · 2138.70 · 2−256 · (2−2) = 220.52.
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Table 4.3: Overview of inbound phases for the attack on JH-512

Step Size Sets Filtering Pairs Complexity
Conditions Remain Backwards Forwards

0 8 4 1 211.91
− 216.00

1 16 2 2 216.00 223.91
−

2 32 1 2 224.18 232.09
−

3 32 1 2a 219.54

0 8 64 1 211.91
− 216.00

1 16 32 2 216.00 223.91
−

2 32 16 2 224.18
− 232.09

3 64 8 4 232.72 248.46
−

4 128 4 4 249.80 265.54
−

5 256 2 4 283.96 299.70
−

6 512 1 4 2152.28 2168.02
−

0 8 32 1 211.91
− 216.00

1 16 16 2 216.00 223.91
−

2 32 8 2 224.18
− 232.09

3 64 4 2 240.54
− 248.45

4 128 2 2 273.26
− 281.17

5 256 2 2 2138.70
− 2146.61

aCheck whether the pairs satisfy the desired input difference

We obtained more pairs than usual due to the additional filtering conditions in
the outbound phase, in order to obtain a near-collision (which will be explained
in the following part) for 19 rounds of the compression function.

Outbound Phase

The outbound of the attack is composed of 3 rounds in the forward direction.
For the pairs that satisfy the inbound phase, we expect to see the following
differential trail in the outbound phase:

Inbound Phase → 2→ 4→ 8→ 4 .

Note that in the last step of the outbound phase we have four filtering
conditions. We had 220.52 remaining pairs from the inbound phase, thus, we
expect 220.52 ·(23.91)4 = 24.88 pairs to satisfy the above path. A detailed schema
of this trail is shown in Figure 4.7.



62 CRYPTANALYSIS OF JH

The final step of the compression function is xor-ing the message bits after the
degrouping operation to the output of the compression function. We have 4
active words in the output and a 4-bit difference in the message, two of which
collide in bit positions 512 and 768. Thus, it is possible to cancel them with
a probability of 2−2 and the number of pairs reduces to 22.88. To sum up, we
have a difference in (4 · 4− 2) + 2 = 16 bits in total.

Complexity of the Attack

For the inbound phase, the complexity of the attack for d = 8 is calculated
in a similar manner to that of d = 4. The results for preparing the lists are
summarized for each step in Table 4.3. The time complexity of the attack is
dominated by the second set, L2, which is about 2168.02 U -function calls The
memory requirements are determined by the largest list, which is L3 with a
size of 2138.70 256-bit data.

Results

Note that, in this attack, the complexity requirements are reduced significantly
compared to the initial idea that uses only one inbound phase. For 19 rounds of
the JH compression function, we obtain a semi-free-start near-collision for 1008
bits. We can simply increase the number of rounds by proceeding forwards
in the outbound phase. Our attack still works in this case with the same
complexity (U -function calls). The number of bits for the near-collision and
the generic attack complexities are given in Table 4.4. As a result, our attack
is better than generic attacks up to 22 rounds.

Table 4.4: Complexity of the generic attack for near-collisions

#Rounds # bits Generic Attack Our Results
Near Collision Complexity

19 1008 2454.21 2168.02

20 992 2411.18 2168.02

21 960 2341.45 2168.02

22 896 2236.06 2168.02

23 768 299.18 2168.02
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4.5 Rebound Attack on JH42

In this section we describe the multi-inbound rebound attack of [158] using 6
inbounds. We first present an outline for the rebound attack on reduced round
versions of JH for all hash sizes. We use a differential characteristic that covers
32 rounds, and apply the start-from-the-middle technique by using six inbound
phases with partially active states. We first describe how to solve the multi-
inbound phase for the active bytes. Contrary to previous attacks on JH, we
now have more fixed values from the inbound phases. Hence, in order to find
a complete solution, we need to merge these fixed values without contradicting
any of them. Therefore, we describe next how to match the passive bytes.
Finally, we analyze the outbound part.

4.5.1 Matching the Active Bytes

Multi-inbound Phase

The multi-inbound phase of the attack covers 32 rounds and is composed of
two parts. In the first part, we apply the start-from-the-middle-technique six
times for rounds 0 − 4, 4 − 10, 10 − 16, 16 − 20, 20 − 26 and 26 − 32. In the
second part, we connect the resulting active bytes (hence the corresponding
state values) by a match-in-the-middle step. The number of active S-Boxes in
each of the sets is:

4← 8← 16→ 8→ 4

4← 8← 16← 32← 64→ 32→ 16

16← 32← 64→ 32→ 16→ 8→ 4

4← 8← 16→ 8→ 4

4← 8← 16← 32← 64→ 32→ 16

16← 32← 64→ 32→ 16→ 8→ 4 .

For a detailed picture we refer to Figure 4.8. We start from the middle and
then propagate outwards by computing the cross-product of the sets and using
the filtering conditions. For each inbound we try all possible 216 pairs in Step 0.
The number of sets, the bit length of the middle values (size) of each list, and
the number of filtering conditions on words followed by the number of pairs in
each set are given in Table 4.5. The complexities given in the Table 4.5 are not
optimized yet; we will describe the improved complexities later in Section 4.5.1.
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Table 4.5: Overview of inbound phases of the attack on 32 rounds of JH

Step Size Sets Filtering Pairs Complexity
Conditions Remaining Backwards Forwards

In
b

o
u

n
d

1 0 8 8 1 211.91
− 216.00

1 16 4 2 216.00 223.91
−

2 32 2 2 224.18 232.09
−

3 64 1 4 232.72 248.46
−

4 64 1 4a 223.44

In
b

o
u

n
d

2

0 8 32 1 211.91
− 216.00

1 16 16 2 216.00 223.91
−

2 32 8 2 224.18
− 232.09

3 64 4 4 232.72 248.46
−

4 128 2 4 249.80 265.54
−

5 256 1 4 283.96 299.70
−

In
b

o
u

n
d

3

0 8 32 1 211.91
− 216.00

1 16 16 2 216.00 223.91
−

2 32 8 2 224.18 232.09
−

3 64 4 4 232.72
− 248.46

4 128 2 4 249.80
− 265.54

5 256 1 4 283.96
− 299.70

In
b

o
u

n
d

4 0 8 8 1 211.91
− 216.00

1 16 4 2 216.00 223.91
−

2 32 2 2 224.18 232.09
−

3 64 1 4 232.72 248.46
−

In
b

o
u

n
d

5

0 8 32 1 211.91
− 216.00

1 16 16 2 216.00 223.91
−

2 32 8 2 224.18
− 232.09

3 64 4 4 232.72 248.26
−

4 128 2 4 249.80 265.54
−

5 256 1 4 283.96 299.70
−

In
b

o
u

n
d

6

0 8 32 1 211.91
− 216.00

1 16 16 2 216.00 223.91
−

2 32 8 2 224.18 232.09
−

3 64 4 4 232.72
− 248.46

4 128 2 4 249.80
− 265.54

5 256 1 4 283.96
− 299.70

aCheck whether the pairs satisfy the desired input difference



66 CRYPTANALYSIS OF JH

Merging Inbound Phases

The remaining pairs at inbound i are stored on list Li. Connecting the six lists
is performed in three steps as follows:

1. Whenever a pair is obtained from set 2, we check whether it exists in L3

or not. If it does, another check is done for L1. Since we have 223.44 and
283.96 elements in lists 1 and 3 respectively, 283.96 pairs passing the second
inbound phase, and 32-bit and 128-bit conditions for the matches, the
expected number of remaining pairs is 223.44 ·2−32 ·(283.96 ·2−128 ·283.96) =
231.36. We store these these pairs in list A.

2. Similarly, whenever a pair is obtained from set 5, we check whether it
exists in L6 or not. If it does, another check is done for L4. Since we
have 232.72 and 283.96 elements in lists 4 and 6 respectively, 280 pairs
passing the fifth inbound phase, and 32-bit and 128-bit conditions for the
matches, the expected number of remaining pairs is 232.72 · 2−32 · (283.96 ·
2−128 · 283.96) = 240.64. We store these pairs in list B.

3. Last step is merging these sets A and B. We have 231.36 elements in A
and 240.64 elements in B and 32 bits of condition. Therefore the total
expected number of remaining pairs is 231.36 · 2−32 · 240.64 = 240.

Improving the Complexity of Finding a Solution for the Differential Parts

We have described how to obtain the existing 240 solutions for the differential
part. We will describe here a better way of doing the inbounds, as proposed
in [157, Sec.4.1]. This new technique allows us to reduce the previous
complexity from 299.70 time and 283.96 memory to 269.6 time and 267.6 memory.
As in our further analysis we will just use one solution (and not 240) for the
differential part: we will adapt the values being able to finally reduce the
complexity of this part of the attack to 259.6 time and 257.6 memory. This
memory is the memory bottleneck of all the analyses presented in this chapter.

1. We consider the six inbounds as described in Section 4.5.1, with the
difference that, for inbounds 2, 3, 5 and 6 we will not perform the last
step, but instead we obtain for each inbound i ∈ {2, 3, 5, 6} two lists
LA,i and LB,i as a result, each of size 249.80 associated to half of the
corresponding differential path. As mentioned before, we are only looking
for one solution for the whole differential path. Then, instead of the 249.80

existing solutions for each list, we can consider 244.8 elements in each list.
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2. First, we merge lists LA,2 and LA,3. We have 16-bit conditions on values
and 16-bit conditions on differences. We obtain a new list LA,23 of size
244.8+44.8−32 = 257.6. We do the same with LB,2 and LB,3 to obtain
LB,23. Note that this list does not need to be stored, as we can perform
the following step whenever an element is found.

3. In order to find a whole solution for the differential part of inbounds 2 and
3, one pair of elements from LA,23 and from LB,23 still needs to satisfy
the following conditions: 32 bits from the parts LA,2 and LB,3, 32 bits
from LB,2 and LA,3, 3.91 × 4 bits from the step 5 of inbound 2 that we
have not yet verified and 3.91 × 4 bits from step 5 of inbound 3 that is
not yet verified either. Therefore, we have 95.28 bit conditions in total
to merge LA,23 and LB,23. For each element in LB,23 we can check with
constant cost if the corresponding element appears in LA,23 (it can be
done by a lookup in a table, representing the differential transitions of L
and next by a lookup in the list LA,23 to see if the wanted elements appear;
see [157] and Figure 4.9 for more details). When we find a good pair, we
store it in the list L23 that contains about 219.92 elements satisfying the
differential part of rounds from 4 to 16. The cost of this step is then
257.6+1 in time and 259.6 in memory.

4. Do the same with inbounds 5 and 6, to obtain list L56 of size 219.92, with
a cost of 257.6+1 in time and 257.6 in memory.

5. Merge the solutions obtained in the first inbound with the ones in L23,
obtaining a new set L123 of size 219.92+23.44−32 = 211.36.

6. Merge the solutions obtained from Step 4 with list L56 obtaining a new
one, L456 of size 219.92+32.72−32 = 220.64.

7. Finally, merging L123 and L456 gives 211.36+20.64−32 = 1 partial solution
for the differential part of the path from round 0 to round 32.

The complexity of obtaining one partial solution for rounds from 0 to 32 is
dominated by Steps 2 − 4 of the algorithm. As a result, the complexity of
matching the active bytes becomes 259.6 time and 257.6 memory.
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4.5.2 Matching the Passive Bytes

In Figure 4.10, colored boxes denote the S-boxes whose values have already
been fixed from the inbound phases. Note that we have not treated the passive
bits yet (i.e., found the remaining values that would complete the path). We
will propose a way of finding 232 solutions that verify the path from rounds 4
to 26 with time complexity 296 and memory complexity 251.58. This can be
done in three steps as follows:

1. (Rounds 10 to 14): The sets of groups of 8 bits denoted by a, b, c, d, e, f
in round 14 are independent of each other in this part of the path. In
round 10, 32 bits are already fixed for each of these sets (groups of 4
bits denoted by A, B, C, D, E, F ). By using all possible values of the
remaining 96 passive bits (32 bits not fixed from A, B, C, D, E, F plus 64
from the remaining state at round 10), we can easily compute a list of
296 elements with cost 296 that satisfy the 32 bit conditions for each of
the groups.

2. (Rounds 14 to 20): In round 20, we have 256 bits (green S-boxes) whose
values are fixed from the solutions of the second inbound phase. We
can divide the state in round 19 (until the state in round 14) into 4
independent parts (m, n, o, p). In Figure 4.10, the fixed bits coming from
round 20 are denoted by green lines and the ones of the first inbound
phase are denoted in blue. Note that the three parts m, n, o are identical,
while p is different since there are some differences and some additional
fixed values in it.

We fix the parts m and n to some values that satisfy all the conditions of
the fixed bits in rounds 19 and 14. This can be done as follows: similar
to what we have done in Step 1, we can divide the state of rounds 16−19
(for each part separately) into four groups (x, y, z, u) such that they are
independent of each other when computing forwards.

In round 16, each group has 16 bits whose values have already been fixed
and 48 bits of freedom. We see that each group affects only one fourth
of the green lines (16 bits in total) in round 19. Therefore, there exist
248−16 = 232 possibilities for each group x, y, z, u but we just need one.
This one can then be found with a cost of about 216.

3. (Merging) Each of the sets La, . . . , Lf has 296 possible values from Step 1,
and fixing m and n fixes 64 bits for each of them in round 14. This gives
us in average 296−64 = 232 possible values for each set in the half of the
state associated to o and p in round 14.
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For part p we use the same idea explained in Step 2. Group x is completely
fixed due to the differential characteristic, and only the groups y, z, u have
freedom, so there exists (232)3 = 296 possibilities. For each possibility, we
compute the part of state in round 14 associated to p. We have 32 bits
of condition for each of lists, and in average 232 values are associated to
each list. Thus, for each of the computed values, we will have only one
remaining element that will determine the values at positions a − f in
part o.

Now, we have 296 possible o values. The probability that a fixed value
verifies the conditions of o in round 19 is (2−4)16 = 2−64. Therefore, we
obtain 296−64 = 232 solutions that verify the whole path from round 4 to
round 26 with a time complexity of 296.

Note that we do not need to store the lists La, . . . , Lf of elements from round
14 each of size 296; we can instead store for each of them two lists of size 248

corresponding to the upper and down halves of the corresponding groups in
state 13. Then, when fixing a value of m and n we can check with a cost of
232 which will be the list of 232 values for o and p that we obtained in Step 3.
Finally, we have obtained 232 complete solutions for the path from 4 to 26 with
a cost of 296 in time, and 6 · 2 · 248 ≈ 251.58 in memory.

Semi-free-start near-collisions up to 32 rounds

Up to now, we have found solutions for the passive bytes from rounds 4 − 26.
If we want a solution for the path from round 0 to round 26, we will have to
repeat the previous procedure of matching the passive bytes 216 times (as the
probability of passing from round 0 to 4 is 2−48 and we have 232 pairs). Then,
we can find a solution for rounds 0 − 26 with time complexity 2112. In order
to extend this result to 32 rounds, we have to repeat the previous procedure
2192 times (since we have 64 and 128 bits of condition from rounds 26 and 27
respectively). Therefore, the time complexity for finding a complete solution
for rounds from 0 to 32 is 2112 · 2192 = 2304.

Note that, we still have enough degrees of freedom. In Step 1, we started with
768 bits (128 ·6 from the groups a−f) in round 14 and matched 192 bits (32 ·6
for A−F ) in round 10. In Step 2, we have 48 bits in round 16 coming from the
fourth inbound phase and we matched another 240 bits from the fifth inbound
phase in round 19. So in total we have 768 − 192 − 48 − 240 = 288 bits of
degrees of freedom remaining.
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4.5.3 Outbound Phase

The outbound phase of the attack is composed of 5 rounds in the forward
direction. A detailed schema of this trail is shown in Figure 4.11, and for the
pairs that satisfy the inbound phase, we expect to see the following differential
trail in the outbound phase:

Inbound Phase → 4→ 8→ 16→ 8→ 4→ 8 .

Semi-free-start near-collisions up to 37 rounds

For 32 rounds of the JH compression function, we obtain a semi-free-start
near-collision for 1002 bits. We can simply increase the number of rounds by
proceeding forwards in the outbound phase. Note that, we have an additional
probability of 2−32 · 2−16 coming from the eight filtering conditions in round
34 and the four filtering conditions in round 35. Thus, the complexity of the
active part of the attack remains the same: 259.6 time and 257.6 memory. This
is the case as one solution for the differential part is enough for the attack, as
it will have different values at the bits with conditions in the outbound part
when the passive part is modified. The complexity of the passive part becomes
2304 · 248 = 2352 time and 251.58 memory.

The details can be seen in Table 4.6. We also take into account the colliding
bits that we obtain at the output of the compression function after the final
degrouping with the differences from the message.

Table 4.6: Comparison of complexity of the generic attack for near-collisions
and our results on JH42

#Rounds # Colliding Generic Attack Our Results
bits Complexity

23 892 2231 259.6

24− 26 762 299 259.6 a

26 960 2342 2112

27 896 2236 2112

32 1002 2437 2304

33 986 2397 2304

34 954 2330 2304

35 986 2397 2336

36 1002 2437 2352

37 986 2397 2352

38 928 2285 2352

aObtained directly from the solutions of the active part, without need of matching the
passive bits
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4.6 Distinguishers on JH42

Indifferentiability is considered to be a desirable property for any secure hash
function design. Moreover, for many of the designs, the indifferentiability proofs
for the mode of operation are based on the assumption that the underlying
permutation (function) is ideal (i.e., a random permutation). This is the case
for the indifferentiability proof of JH [24], that supposes that Ed is a random
permutation.

In this section, we present a distinguisher for E8 showing that it is
distinguishable from a random permutation. Using the differential path that
we presented in Section 4.5.1, we can build distinguishers for the full 42 rounds
of the internal permutation E8 with no additional complexity. As a result of
our distinguisher, the proof from [24] does not apply to JH as the assumption
that E8 behaves as a random permutation does not hold. Next, we explain
how these distinguishers for the internal permutation can be easily extended
to distinguishers for the compression function.

There exists also a known trivial distinguisher for the construction of the
compression function of JH: if the chaining value has a difference that can be
canceled by the message block, then the output will have a difference directly
related to the one coming from the message block. This implies that both the
message and the chaining values have differences. Contrary to the trivial one,
our compression function distinguisher exploits the properties of the internal
permutation and only needs differences in the message or in the chaining value.

4.6.1 Distinguishers for the Reduced Round Internal Permu-

tation

Let us remark here briefly that if we find solutions for rounds 4 to 20, and then
let them spread freely backwards (difference in 64 bits) and forwards (difference
in 256 bits), we can obtain a distinguisher for 26 rounds with a much lower
complexity: 259.6 time and 257.6 memory (the cost of the differential part). As
in this chapter the aim is reaching a higher number of rounds, we do not go
further into the details.

4.6.2 Distinguishers for the Full Internal Permutation

In the previous sections we showed that a solution for 37 rounds can be
obtained with a time complexity of 2352 and a memory complexity of 257.6. In
Figure 4.11, we see how these active words diffuse to the state after 42 rounds
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with probability one. Therefore, before the degrouping operation we have 64
active and 192 passive words in the state. The number of active and passive
bits still remains the same after the degrouping operation. It is important to
remark that the positions of the active bits are fixed, also after the degrouping
operation.

We can then build a distinguisher that will distinguish the 42-round permuta-
tion E8 from a random permutation using this path. This distinguisher aims
at finding a pair of input states (A, A′) such that E8(A)⊕E8(A′) collide in the
768 bits mentioned above. Let A⊕A′ = ∆1 correspond to the input difference
of the differential path, then |∆1| = 8 bits. Similarly, let B = E8(A) and
B′ = E8(A′), then the output difference is B ⊕B′ = ∆2 where |∆2| = 256.

For a random function, we calculate the complexity of such a distinguisher as
follows: We fix the values of the passive bits in the input; but not the ones of the
active bits. Then, we have 2|∆1| possibilities for the values from the active bits.
We compute the output of E8 for each one of these values and store them in a

list. From this list we can obtain
(

2|∆1|

2

)

pairs with the given input difference
pattern. The probability of satisfying the desired output difference pattern is
2|∆2|−1024 for each pair, so we repeat the procedure with a new value for the
input passive bits until we find a solution. The time complexity of finding such
an input pair will be:

2|∆1|

2(|∆1|−1) · (2|∆1| − 1) · 2|∆2|−1024
= 2761.

Instead, in our case the complexity of finding such an input pair is the
complexity of finding a solution for the path, that is 2352 time and 257.6 memory.

Another distinguisher of E8 can be built if we consider the scenario where the
differential path for rounds 0 − 4 does not need to be verified, i.e., |∆1| = 64.
In this case, we consider that from round 4 to 0 we obtain the differences
that propagate with probability one. Therefore, the matching of the passive
part does not need to be repeated 2208 times but only 2160 (as we do not
need 248 extra repetitions for verifying rounds 0 to 4). The complexity of this
distinguisher will then be 2304, and provides a pair of inputs A and A′ that
produce an output with 768 colliding bits as the ones represented in Figure 4.11.
The complexity of such a generic distinguisher would be 264

(264−1)·263−768 = 2705,

while in our case is 2304 in time and 257.6 in memory.
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4.6.3 Distinguishers for the Full Compression Function

We should emphasize that our distinguishers for E8 can be easily converted to
a distinguisher for the full compression function of JH42. We only need to xor
this message difference to the output of E8 as specified.

For our first distinguisher, the input difference is already arranged such that
we only have a difference in the message. These active bits coming from the
message coincide with the active bits in the output at the xor operation. As
a result, we have the same 768 passive bits. The same applies for our second
distinguisher when we have differences only in the chaining value.

4.7 Contribution

The author has significant contributions to the security analysis of the attacks
mentioned above. A semi-automatic program has been developed to find the
characteristics used in the analysis. Furthermore, the author has implemented
the attacks for the reduced versions of JH in C. The author is the principal
author of the text (except Section 4.6). The names of the authors are given in
alphabetical order for the publications.

4.8 Conclusion

In this chapter, we presented the first cryptanalysis results of JH using rebound
attack techniques. We first explained our attack on 8 rounds of JH (d = 4) in
detail and then showed how this attack can be used in order to cryptanalyze
16 rounds of JH hash function. We then presented a 1008-bit semi-free-start
near-collision for 19 rounds of the JH compression function by using three
inbounds.

We then improved our findings by using six inbound phases, and obtained a 960-
bit semi-free-start near-collision for 26 rounds of the JH compression function
which can be extended to 37 rounds by repeating the algorithm. Moreover, we
have presented distinguishers on the full 42 rounds of the internal permutation
E8 of the tweaked SHA-3 finalist. To the best of our knowledge this is the first
distinguisher on the internal permutation of JH faster than a generic attack.
Our findings are summarized in Table 4.7.
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Table 4.7: Comparison of best attack results on JH (sfs: semi-free-start)

target rounds time
comp.

memory
comp.

attack type generic
comp.

section

hash function 16 2190.2 2101.1 sfs collision 2256 §4.3
hash function 16 296.1 296.1 sfs collision 2256 [157]

comp. function 19− 22 2168 2143.7 sfs near-collision 2236 §4.4
comp. function 19− 22 295.6 295.6 sfs near-collision 2236 [157]
comp. function 26 2112 257.6 sfs near-collision 2341 §4.5
comp. function 32 2304 257.6 sfs near-collision 2437 §4.5
comp. function 36 2352 257.6 sfs near-collision 2437 §4.5
comp. function 37 2352 257.6 sfs near-collision 2396 §4.5

internal perm. 42 2304 257.6 distinguisher 2705 §4.6
internal perm. 42 2352 257.6 distinguisher 2762 §4.6





Chapter 5

SPONGENT

As technology is embedded in everyday objects (tools, devices, clothing,
homes, healthcare, etc.), the need for security in RFID and sensor networks
is dramatically increasing. As a result, lately lightweight cryptography –
optimizing the algorithms to fit the most constrained environments – has
received a great deal of attention. Previous research was mainly focused on
building block ciphers; however, the design of lightweight hash functions is still
far from being well-investigated with only few proposals.

During the last two years, some significant work on lightweight hash functions
has also been performed: [37] describes ways of using the present block cipher
in hashing modes of operation and [12] and [86] take the approach of designing
a dedicated lightweight hash function based on a sponge construction [55, 22]
resulting in two hash functions quark and photon.

In this chapter, we propose a new family of sponge-based lightweight hash
functions spongent with a smaller footprint than most existing dedicated
lightweight hash functions: present in hashing modes and quark. Its area is
comparable to that of photon.

spongent [35] is a hermetic sponge with a present-type permutation. We
refer to its various parameterizations as spongent-n/c/r for different hash
sizes n, capacities c, and rates r. The group of all spongent variants with the
same output size of n bits is referred to as spongent-n.

79
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We propose five different hash sizes n ∈ {88, 128, 160, 224, 256}, covering most
security applications in the field. The spongent-88 functions are designed for
extremely restricted scenarios and low preimage security requirements. They
can be used e.g. in some RFID protocols and for PRNGs. spongent-128
and spongent-160 might be used in highly constrained applications with
low and middle requirements for collision security. The latter also provides
compatibility to the SHA-1 interfaces. The parameters of spongent-224 and
spongent-256 correspond to those of a subset of SHA-2 and SHA-3 to make
spongent compatible to the standard interfaces in usual lightweight embedded
scenarios.

5.1 Design Considerations for Lightweight Hashing

The footprint of a hash function is mainly determined by

1. the number of state bits (including the key schedule for block cipher based
designs); as well as

2. the size of functional and control logic used in a round function.

Among the recent hash functions, quark, while using novel ideas of reducing
the state size to minimize (1), does not appear to provide the smallest possible
logic size, which is mainly due to the Boolean functions with many inputs used
in its round transform. In contrast to that, spongent keeps the round function
very simple which reduces the logic size close to the smallest theoretically
possible, thus, minimizing (2) and resulting in a significantly more compact
design.

As shown in [37], using a lightweight block cipher in a hashing mode (single
block length such as Davies-Meyer or double block length such as Hirose) is not
necessarily an optimal choice for reducing the footprint, the major restriction
being the doubling of the datapath storage requirement due to the feed-forward
operation.

At the same time, no feed-forward is necessary for the sponge construction,
which is the design approach of choice in this work. In a permutation-based
sponge construction, let r be the rate (the number of bits input or output per
one permutation call), c be the capacity (internal state bits not used for input
or output), and n be the hash length in bits.
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5.2 The Design of spongent

spongent is a sponge construction based on a wide present-type permutation.
Given a finite number of input bits, it produces an n-bit hash value. A design
goal for spongent is to follow the hermetic sponge strategy (no structural
distinguishers for the underlying permutation are allowed).

5.2.1 Permutation-based Sponge Construction

spongent relies on a sponge construction – a simple iterated design that takes
a variable-length input and can produce an output of an arbitrary length based
on a permutation πb operating on a state of a fixed number b of bits. The size
of the internal state b = r + c ≥ n is called width, where r is the rate and c the
capacity.

The sponge construction proceeds in three phases (see also Figure 2.6):

• Initialization phase: the message is padded by a single bit 1 followed
by a necessary number of 0 bits up to a multiple of r bits (e.g., if r = 8,
then the 1-bit message ‘0’ is transformed to ‘01000000’). Then it is cut
into blocks of r bits.

• Absorbing phase: the r-bit input message blocks are xored into the
first r bits of the state, interleaved with applications of the permutation
πb.

• Squeezing phase: the first r bits of the state are returned as output,
interleaved with applications of the permutation πb, until n bits are
returned.

In spongent, the b-bit 0 is taken as the initial value before the absorbing
phase. The message chunks are xored into the r rightmost bit positions of the
state. The same r bit positions form parts of the hash output.

5.2.2 Parameters

We propose 13 variants of spongent with five different hash output lengths
at multiple security levels, see Table 5.1. We considered (up to) three types of
preimage and second-preimage security levels:
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Table 5.1: 13 spongent variants

n b c r R number security(bit)
(bit) (bit) (bit) (bit) of rounds pre. 2nd pre. col.

spongent-88/80/8 88 88 80 8 45 80 40 40
spongent-88/176/88 88 264 176 88 135 88 88 44

spongent-128/128/8 128 136 128 8 70 120 64 64
spongent-128/256/128 128 384 256 128 195 128 128 64

spongent-160/160/16 160 176 160 16 90 144 80 80
spongent-160/160/80 160 240 160 80 120 80 80 80
spongent-160/320/160 160 480 320 160 240 160 160 80

spongent-224/224/16 224 240 224 16 120 208 112 112
spongent-224/224/112 224 336 224 112 170 112 112 112
spongent-224/448/224 224 672 448 224 340 224 224 112

spongent-256/256/16 256 272 256 16 140 240 128 128
spongent-256/256/128 256 384 256 128 195 128 128 128
spongent-256/512/256 256 768 512 256 385 256 256 128

• Full preimage and second-preimage security. The standard
security requirements for a hash function with an n-bit output size are
collision resistance of 2n/2 as well as preimage and second-preimage
resistance of 2n. For this, in spongent, we set r = n and c = 2n
to obtain spongent-88/176/88, spongent-128/256/128, spongent-
160/320/160, spongent-224/448/224, and spongent-256/512/256.

• Reduced second-preimage security. In most embedded scenarios,
where a lightweight hash function is likely to be used, the full second-
preimage security is not a necessary requirement. By setting n ≈ c
and r small in a permutation-based sponge, the preimage and second-
preimage resistances are reduced to 2n−r and 2c/2 respectively, while
the collision resistance remains at 2c/2. We use this approach to ob-
tain spongent-88/80/8, spongent-128/128/8, spongent-160/160/16,
spongent-224/224/16, and spongent-256/256/16.

• Reduced preimage and second-preimage security. In some
applications, the collision security is of concern only and one can abandon
the requirement of preimage security to be close to 2n. In a permutation-
based sponge, going for c = n and r = n/2, results in the reduction of
both the preimage security and second-preimage security to 2n/2, while
maintaining the full collision security of 2n/2. We use this approach
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in the design of spongent-160/160/80, spongent-224/224/112, and
spongent-256/256/128.

5.2.3 present-type Permutation

The permutation πb : Fb
2 → F

b
2 is an R-round transform of the input STATE of b

bits that can be outlined at a top-level as:

for i = 1 to R do

state← lCounter b(i)⊕ state⊕ lCounterb(i)
state← sBoxLayerb(state)
state← pLayerb(state)

end for

where sBoxLayerb and pLayerb describe how the STATE evolves. For ease of
design, only widths b with 4|b are allowed. lCounterb(i) is the state of an LFSR
dependent on b at time i which yields the round constant in round i and is added
to the rightmost bits of STATE. lCounter b(i) is the value of lCounterb(i) with
its bits in reversed order and is added to the leftmost bits of STATE.

The following building blocks are generalizations of the present structure to
larger b-bit widths:

1. sBoxLayerb: This denotes the use of a 4-bit to 4-bit S-box S : F
4
2 →

F
4
2 which is applied b/4 times in parallel. The action of the S-box in

hexadecimal notation is given by the following table:

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] E D B 0 2 1 4 F 7 A 8 5 9 C 3 6

2. pLayerb: This is an extension of the (inverse) present bit-permutation
and moves bit j of STATE to bit position Pb(j), where

Pb(j) =

{

j · b/4 mod b− 1, if j ∈ {0, . . . , b− 2}
b− 1, if j = b− 1.

and can be seen in Figure 5.1.

Figure 5.1: The bit permutation layer of spongent-88
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3. lCounterb: This is one of the four ⌈log2 R⌉-bit LFSRs. The LFSR is
clocked once every time its state has been used and its final value is all
ones. If ζ is the root of unity in the corresponding binary finite field,
the n-bit LFRSs defined by the polynomials given below are used for the
spongent variants.

LFSR size (bit) Primitive Polynomial

6 ζ6 + ζ5 + 1
7 ζ7 + ζ + 1
8 ζ8 + ζ4 + ζ3 + ζ2 + 1
9 ζ9 + ζ4 + 1

Table 5.2 provides sizes and initial values of all the LFSRs.

Table 5.2: Initial values of lCounterb for all spongent variants

LFSR size (bit) Initial Value (hex)

spongent-88/80/8 6 05
spongent-88/176/88 8 D2

spongent-128/128/8 7 7A
spongent-128/256/128 8 FB

spongent-160/160/16 7 45
spongent-160/160/80 7 01
spongent-160/320/160 8 A7

spongent-224/224/16 7 01
spongent-224/224/112 8 52
spongent-224/448/224 9 105

spongent-256/256/16 8 9E
spongent-256/256/128 8 FB
spongent-256/512/256 9 015

5.2.4 Design Rationale

The overall design approach for spongent is to target low area while favoring
simplicity.

The 4-bit S-box fulfills the present design criteria in terms of differential
and linear properties [36]. Moreover, any linear approximation over the S-box
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involving only single bits both in the input and output masks is unbiased. This
aims to restrict the linear hull effect discovered in round-reduced present.

The function of the bit permutation pLayer is to provide good diffusion, by
acting together with the S-box, while having a limited impact on the area
requirements. The counters lCounter and lCounter are mainly aimed to
prevent sliding properties and make prospective cryptanalysis approaches using
properties like invariant subspaces [126] more involved.

The structures of the bit permutation and the S-box in spongent make it
possible to prove the following differential property (see Section 5.3.1 for the
proof):

Theorem 1. Any 5-round differential characteristic of the underlying per-
mutation of spongent with b ≥ 64 has a minimum of 10 active S-boxes.
Moreover, any 6-round differential characteristic of the underlying permutation
of spongent with b ≥ 256 has a minimum of 14 active S-boxes.

An important property of the spongent S-box is that its maximum differential
probability is 2−2. This fact and the assumption of the independence
of difference propagation in different rounds yield an upper bound on the
differential characteristic probability of 2−20 over 5 rounds and of 2−28 over
6 rounds for b ≥ 256 which follows from the claims of Theorem 1.

Theorem 1 is used to determine the number R of rounds in the permutation πb:
R is chosen in a way that πb provides at least b active S-boxes. Other types of
analysis are performed in the next section.

5.3 Security Analysis

In this section, we discuss the security of spongent against known crypt-
analytic attacks by applying the most important state-of-the-art methods of
cryptanalysis and investigating their complexity.

5.3.1 Resistance Against Differential Cryptanalysis

Here we analyze the resistance of spongent against differential attacks where
Theorem 1 plays a key role providing a lower bound on the number of active
S-boxes in a differential characteristic. The similarities of the spongent
permutations and the basic present cipher allow to reuse some of the results
obtained for present in [36]. More precisely, the results on the number of
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differentially active S-boxes over 5 and 6 rounds will hold for all respective
spongent variants which is reflected in Theorem 1. The proof of Theorem 1
is as follows:

Proof. [Theorem 1] The statements for spongent variants with 64 ≤ b ≤ 255
can directly be proven by applying the same technique used in [36, Appendix
III]. The proof of the 6-round bounds for spongent variants with b ≥ 256 in
Theorem 1 is based on some extended observations. Here, we will only give the
proof for when the width, b, is a multiple of 64 bits, i.e., b = 64n. The proof
for other b values can also be obtained by making use of the observations given
below. Since the proof is specific to each b and hence more tedious, we do not
present them here.

We obtain n groups and 4n subgroups by calling each four consecutive S-boxes
a subgroup and each sixteen consecutive S-boxes a group. To be more specific:
subgroup i is comprised of the S-boxes [4(i− 1) . . . 4i− 1] and similarly group
j has the subgroups [4(j − 1) . . . 4j − 1] (see Figure 5.2). By examining the
substitution and linear layers, one can make the following observations:

1. The S-box of spongent is such that a difference in a single input bit
causes a difference in at least two output bits or vice versa.

2. The input bits to an S-box come from four distinct S-boxes of the same
subgroup.

3. The input bits to a subgroup of four S-boxes come from 16 distinct S-
boxes of the same group.

4. The input bits to a group of 16 S-boxes come from 64 different S-boxes.

5. The four output bits from a particular S-box enter four distinct S-boxes,
each of which belongs to a distinct group of S-boxes in the subsequent
round.

6. The output bits of S-boxes in distinct groups go to distinct S-boxes in
distinct subgroups.

7. The output bits of S-boxes in distinct subgroups go to distinct S-boxes.

For the latter statement (spongent-256), one has to deal with more cases.
Consider six consecutive rounds of spongent ranging from i to i + 5 for i ∈
[1 . . . 155]. Let Dj be the number of active S-boxes in round j. If Dj ≥ 3, for
i ≤ j ≤ i + 5, then the theorem trivially holds. So let us suppose that one of
the Dj ’s is first equal to one and then to two. We have the following cases:
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Figure 5.2: The grouping and subgrouping of S-boxes for b = 256. The input
numbers indicate the S-box origin from the previous round and the output
numbers indicate the destination S-box in the following round.

Case Di+2 = 1. By using observation 1, we can deduce that Di+1 + Di+3 ≥
3 and all active S-boxes of round i + 1 belong to the same subgroup from
observation 2. Each of these active S-boxes has only a single bit difference
in their output. So, according to observation 3 we have that Di ≥ 2Di+1.
Conversely, according to observation 5, all active S-boxes in round i + 3 belong
to distinct groups and have only a single bit difference in their input. So,
according to observation 6, we have that Di+4 ≥ 2Di+3. Moreover, all active
S-boxes in round i + 4 belong to distinct subgroups and have only a single
bit difference in their input. Thus, by using observation 7, we obtain that
Di+5 ≥ 2Di+4 and can conclude that

∑i+5
j=i Dj ≥ 1 + 3 + 2 · 3 + 4Di+3 ≥ 14.

Case Di+3 = 1. If Di+2 = 1 we can refer to the first case. So, suppose that
Di+2 ≥ 2. According to observation 2, all active S-boxes of round i + 2 belong
to the same subgroup and each of these active S-boxes has only a single bit
difference in their output. Thus, according to observation 3, Di+1 ≥ 2Di+2 ≥
4. Since all active S-boxes in round i + 1 belong to distinct S-boxes of the
same group and have only a single bit difference in their input, according
to observation 4, we have that Di ≥ 2Di+1. Di+4 and Di+5 can get one
and two as a minimum value, respectively. Together this gives

∑i+5
j=i Dj ≥

8 + 4 + 2 + 1 + 1 + 2 ≥ 18.

Case Di+1 = 1. If Di+2 = 1, then we can refer to the first case. Thus,
suppose that Di+2 ≥ 2. According to observation 5, all active S-boxes in round
i+2 belong to distinct groups and have only a single bit difference in their input.
Thus, according to observation 6, we have that Di+3 ≥ 2Di+2. Note that all
active S-boxes in round i+3 belong to distinct subgroups and have only a single
bit difference in their input. Therefore, according to observation 7, we have that
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Di+4 ≥ 2Di+3. To sum up,
∑i+5

j=i Dj ≥ 1+1+2+4+8+Di+5 ≥ 16+Di+5 ≥ 17,
since Di+4 > 0 implies that Di+5 ≥ 1.

Case Di+4 = 1. If Di+3 = 1, then we can refer to the second case. So,
suppose that Di+3 ≥ 2. According to observation 2, all active S-boxes of round
i + 3 belong to the same subgroup and each of those active S-boxes has only
a single bit difference in their output. Therefore, according to observation 3,
we have that Di+2 ≥ Di+3. Since, all active S-boxes in round i + 2 belong to
distinct S-boxes of the same group and have only a single bit difference in their
input, according to observation 4, we have that Di+1 ≥ 2Di+2. Since Di+1 > 0,
Di ≥ 1. Thus, we can conclude that

∑i+5
j=i Dj ≥ Di+8+4+2+1+1 ≥ Di+16 ≥

17.

Cases Di = 1 and Di+5 = 1 are similar to those for the third and fourth cases.

So far we have considered all paths including one active S-box in one of the
rounds and obtained 14 as the minimum number of active S-boxes. But if there
exists a path that has two active S-boxes in each round, then the lower bound
would be 12. For this purpose, without loss of generality, assume:

Di+1 = Di+2 = Di+3 = 2 The two active S-boxes in i + 2 are either in the
same subgroup (i) or in different subgroups (ii).

For (i), from observations 3 and 7, we know that they have single bit of
differences coming from two different subgroups of the same group in round
i + 1. From observation 1, these two S-boxes have at least two bits of input
difference, hence we obtain Di = 4 by observation 2 and 3. Furthermore the
two S-boxes in round i + 2 have two bits of output difference by observation 1.
Hence, in round i + 3, the active S-boxes have two bits of input and they are in
distinct groups by observation 5. Therefore, it is possible to have Di+4 = 2 in
distinct subgroups. Hence by using observation 7, we obtain Di+5 = 4. Thus,
we can conclude that

∑i+5
j=i Dj ≥ 4 + 2 + 2 + 2 + 2 + 4 ≥ 16.

For (ii), the two active S-boxes in round i + 1 must have two bits of input
and by observation 2 their input bits should be coming from distinct S-boxes
in the same subgroup. So, the problem is reduced to the former case with
shifted over one round, and we can immediately say that Di = 2 and Di+4 = 4.
Hence by using observation 7, we obtain Di+5 = 4. Thus, we can conclude that
∑i+5

j=i Dj ≥ 2 + 2 + 2 + 2 + 4 + 4 ≥ 16.

Based on these results, we conclude that the longest run with two active S-
boxes in each round is four rounds, and the number of active S-boxes cannot
be less than 14.
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For all spongent variants, we found that those 5- and 6-round bounds are
actually tight. We present the characteristics attaining them in Table 5.3.
Additionally, we perform a branch-and-bound search for longest characteristics
with probabilities in the range of 2−b. The results are given in Table 5.4, most
of them based on iterative characteristics.

Table 5.4: The longest characteristics obtained for all spongent variants with
probability in the range of 2−b

# rounds ASN Prob

spongent-88/80/8 17 34 2−88

spongent-88/176/88 27 103 2−268

spongent-128/128/8 20 56 2−137

spongent-128/256/128 42 146 2−385

spongent-160/160/16 20 66 2−179

spongent-160/160/80 44 88 2−242

spongent-160/320/160 48 192 2−480

spongent-224/224/16 44 88 2−242

spongent-224/224/112 26 133 2−343

spongent-224/448/224 - - -

spongent-256/256/16 30 108 2−276

spongent-256/256/128 31 150 2−392

spongent-256/512/256 85 256 2−768

5.3.2 Collision Attacks

A natural approach to obtain a collision for a sponge construction is to inject
a difference in a message block and then cancel the propagated difference by
a difference in the next message block, i.e., (0 . . . 0||∆mi)

π
→ (0 . . . 0||∆mi+1).

For this purpose, we follow a narrow trail strategy using truncated differential
characteristics. We start from a given input difference (some difference
restricted to S-boxes that the message block is xored into) and look for all
paths that go to a fixed output difference (also located in the bitrate part of
the state). Based on our experiments, even by using truncated differential
characteristics, the probability of such a path is quite low and it is not possible
to attack the full number of rounds.
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Rebound Attack

Compared to the other algorithms the rebound attack has been successfully
applied to, the design of spongent imposes some limitations. First of all,
since the permutation is bit-oriented, and not byte-oriented, it might be non-
trivial to find the path followed by a given input difference and to determine
the number of active S-boxes after several rounds. This is mainly due to
the difference propagation that strongly depends on the values of the passive
part of the state. Moreover, the probability that two inbound phases match
requires more detailed analysis. Below we attempt to develop rebound attacks
on several spongent variants. Rebound analysis applies similarly to the
remaining variants.

For spongent-88/80/8, we looked for characteristics that match in the middle
with the available degrees of freedom coming from the message bits. For 5
and more rounds, when the whole state is active in the matching phase, we
would not be able to generate enough pairs by using only a difference in the
message bits. Since the expected probability of matching the inbound phases is
2−b/4 (where b/4 is the number of S-boxes) and the available degree of freedom
is only 22r, this argument is also valid for spongent-128/128/8, spongent-
160/160/16, spongent-224/224/16, and spongent-256/256/16. For other
spongent variants there exist enough degrees of freedom and we decided to
explore it with one of the spongent variants.

It is trivial to find one round inbound phase in spongent and then by applying
the outbound phase for several rounds, which technically yields a differential
characteristic. Since, one third of the state is xored with the message value
for the variants whose rate is different from 8 or 16, we have enough flexibility
to diffuse the difference through forward and backward direction. But then,
merging these differential characteristics seems difficult due to the limited
number of pairs generated in the inbound phase.

In our example which is given in Figure 5.3, we focused on spongent-
128/256/128 and found a five-round trail by following the strategy outlined
above. In our attack, we fix the input and output differences of sBoxLayer in
the fourth round. For half of the differences, we fix the difference to 1x → 3x

and for the other half it is possible to fix the difference to either 4x → 3x or
8x → 3x, but not both together. Then, we let the differences diffuse for three
rounds in the backward direction and for one round in the forward direction.
All possible positions of the active bits are shown in black in Figure 5.3. Note
that in round 5, we impose a restriction on the outputs of the SBoxLayer such
that the differences occur only in the bitrate part.

It is possible to generate 411 · 211 = 233 pairs in the inbound phase and a
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pair can satisfy the desired differential trail with a probability of Pr[Bx →
{1x, 2x}]6 ·Pr[Dx → {1x, 2x, 3x}]6 ·Pr[6x → {1x, 2x}]4 = 2−26.15. Therefore, in
total, we expect to have 26.85 valid pairs that satisfy the given path.
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P
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P
P

1
2
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4

5

Figure 5.3: Differential path for the rebound attack on spongent-128/256/128
(S: sBoxLayer384, P: pLayer384 )

Bound considerations for the rebound attack

The adversary might try to find an attack that uses multiple inbounds with a
sparse differential. Therefore, to explore the security against multiple inbound
phases, we put the adversary into a best-case scenario as follows.

We know that there exists no differential characteristic over five rounds with
the number of active S-boxes less than 10 for all spongent variants. We can
also deduce lower bounds on the number of active S-boxes for 1, 2, 3, and 4
rounds as 1, 2, 4 and 6, respectively. Then a bound on the minimum number
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of active S-boxes, hence the probability of a differential characteristic, for any
number of rounds can be approximated by combining these bounds.1

The desired bit security level for a sponge construction with respect to collision
attacks is c/2. From now on we assume that the complexity of each inbound
phase is equal to c/2 and at least one active S-box matches between two inbound
phases (with probability 2−8). Let nin be the number of inbound phases then
we have to generate nelm = 28·(nin−1)/nin elements for each inbound phase.
Let p denote the probability of each inbound phase, then p can be at least
2−(c/2−⌈log2(nelm)⌉) and we can compute the number of rounds in each inbound
phase by using the bounds given above.

Under these assumptions, the maximum number of rounds per inbound phase
and the percentage of the total number of rounds attacked is given in Table 5.5.

Table 5.5: Bounds for rebound attack

2 Inbounds 3 Inbounds
rounds attacked rounds attacked

/inbound rounds(%) /inbound rounds(%)

spongent-88/80/8 9 40.00 9 60.00
spongent-88/176/88 10 14.81 9 20.00

spongent-128/128/8 15 42.86 14 60.00
spongent-128/256/128 14 14.36 13 20.00

spongent-160/160/16 19 42.22 19 63.33
spongent-160/160/80 19 31.67 19 47.50
spongent-160/320/160 17 14.17 16 20.00

spongent-224/224/16 28 46.67 27 67.50
spongent-224/224/112 23 27.06 23 40.59
spongent-224/448/224 23 13.53 23 20.29

spongent-256/256/16 28 40.00 27 57.86
spongent-256/256/128 28 28.72 27 41.54
spongent-256/512/256 28 14.55 27 21.04

5.3.3 Preimage Resistance

Here we apply a meet-in-the-middle approach to obtain preimages on spon-
gent. The attack has two main steps: pre-computation and matching phase.
The complexity of the attack is dominated by the pre-computation phase.

1Note that, Table 5.3 shows that these bounds might be optimistic.
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Figure 5.4: Meet-in-the-middle attack against sponge construction

Since the hash size is n bits, and the data is extracted in r-bit chunks, there
exists n/r rounds in the squeezing phase. To be able to compute the data
backwards in the absorbing phase, we need to know not only the hi’s but also
di values to obtain the input value of the permutation π, where hi denotes the
part of the hash value and di is the concatenated part to hi. The algorithm is
as follows:

1. Pre-computation: We know that π−1(hi+1, di+1) = (hi, di) for each i
in the squeezing phase. Since hi (r-bits) is already fixed, the probability
of finding such di is 2−r. Therefore, we start with 2((n/r)−1)·r = 2n−r

different dn/r values to have a solution for d1.

2. Match-in-the-middle: Choose k such that k · r ≥ c/2. Then

• Generate 2c/2 elements in the backward direction by using (h1, d1)
and possible values for mk+2, . . . , m2k+1 and store them in a table.

• Generate 2c/2 elements in the forward direction by using possible
values for m1, . . . , mk and compare with list in the previous step to
find a match of c bits (corresponding to capacity) in the middle.

• Obtain mk+1 by xor-ing the r bits (corresponding to bitrate) for the
matching elements.

In the pre-computation part, we obtain the required value d1 to compute
the data backwards in the absorbing phase by 2n−r computations. We need
2c/2 memory to store the elements generated in the second step and 2c/2

computations are needed to find a full match. These complexities are exactly
given in [193] which extends the bounds given in [55] for c > n. We have derived
those once again here for completeness. The preimage attack complexities
together with the parameter k are given in Table 5.6.

Note that, if c ≤ n − r, it is sufficient to try all possible 2c values to
construct the whole state in order to obtain a preimage, hence it provides
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Table 5.6: Meet-in-the-middle attack results for spongent

Time Complexity Memory Complexity

k max(2n−r, 2c/2) (2c/2)

spongent-88/80/8 5 280 240

spongent-88/176/88 1 288 288

spongent-128/128/8 8 2120 264

spongent-128/256/128 1 2128 2128

spongent-160/160/16 5 2144 280

spongent-160/160/80 1 280 280

spongent-160/320/160 1 2160 2160

spongent-224/224/16 7 2208 2112

spongent-224/224/112 1 2112 2112

spongent-224/448/224 1 2224 2224

spongent-256/256/16 8 2240 2128

spongent-256/256/128 1 2128 2128

spongent-256/512/256 1 2256 2256

an upper bound for the preimage resistance. If we combine the results
we obtain max(2min(n−r,c), 2c/2) and it can be generalized into the form:
min(2min(n, c+r), max(2min(n−r, c), 2c/2)). Here, 2min(n, c+r) computations
will be necessary depending on the permutation size when the generic attack,
defined above, fails.

5.3.4 Linear Attacks

The most successful attacks, in terms of number of rounds cryptanalyzed,
for the block cipher present are those based on linear approximations. In
particular the multi-dimensional linear attack [46] and the statistical saturation
attack [47] claim to break up to 26 rounds. It was shown in [125] that both
attacks are closely related. Moreover, the main reason why these attacks are
the most successful attacks on present so far, is the existence of many linear
trails with only one active S-box in each round. It is not immediately clear how
linear distinguishers on the spongent permutation πb could be transferred into
collision or (second) pre-image attacks on the hash function. However, as we
claim that spongent is a hermetic sponge construction, the existence of such
distinguishers has to be excluded. So the spongent S-box was chosen in a way
that allows for at most one trail with this property given a linear approximation.
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Unlike for the block cipher present, where the key determines the actual linear
correlation between an input and an output mask, for the permutation πb we
can compute the actual linear trail contribution for all trails with only one
active S-box in every round. Each such trail over w rounds has a correlation
of ±2−2w and for each trail determining the sign is easy. More concretely, one
can easily compute a b · b matrix Mt over the rationals such that the entry at
position i, j is the correlation coefficient for round t for the linear trail with
input mask ei and output mask ej . Here ei (resp. ej) is the unit vector with
a single 1 at position i (resp. j). Note that the matrices Mt are sparse and all
very similar, the only difference is caused by the round constant, which induces
sign changes at a few positions only.

Given those matrices, it is now possible to compute the maximal linear
correlation contribution for those one bit intermediate masks for all one bit
input and output masks. For w rounds we simply compute M (w) =

∏w
i=1 Mi

and the maximal correlation is given by cw := maxi,j |M
(w)
ij |. We compute this

value for all spongent variants. Table 5.7 summarizes those results. Most
importantly, this table shows the maximal number of rounds w where the trail
contributions is still larger than or equal to 2−b/2. Beyond this number of
rounds, it seems unlikely that distinguishers based on linear approximations
exist. For most spongent variants, the best linear hull based on single-bit
masks has exactly one linear trail.

5.4 Contribution

The names of the authors are given in alphabetical order for the publications.
The author has major contributions to the security analysis of spongent
(except the linear attacks os Section 5.3.4). For this purpose two tools has
been developed. The first tool used in our analysis performs a tree search to
find not only the best characteristics/ differentials (in terms of probability) but
also the iterative characteristics. The second tool, aims to find the maximum
number of rounds that the security bound 2b are reached. These tools differ in
the way that they perform the search: The first tool is based on a breadth-first
search in which the tree is limited to characteristics with at most three active
Sboxes, whereas the second tool is based on depth-first search with upto six
active Sboxes in each round.
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Table 5.7: Results of linear trail correlation based on one bit masks for
spongent

b max w with R log
2

cR

cw ≥ 2−b/2

spongent-88/80/8 88 22 45 −90
spongent-88/176/88 264 66 135 −270

spongent-128/128/8 136 34 70 −140
spongent-128/256/128 384 96 195 −388.4

spongent-160/160/16 176 44 90 −180
spongent-160/160/80 240 60 120 −240
spongent-160/320/160 480 122 240 −473.7

spongent-224/224/16 240 60 120 −240
spongent-224/224/112 336 84 170 −340
spongent-224/448/224 673 169 340 −675.3

spongent-256/256/16 272 68 140 −280
spongent-256/256/128 384 96 195 −388.4
spongent-256/512/256 768 192 385 −770

5.5 Conclusion

In this work, we have explored the design space of lightweight cryptographic
hashing by proposing the family of new hash functions spongent for resource-
constrained applications. We consider 5 hash sizes for spongent – ranging
from the ones offering mainly preimage resistance only to those complying to
(a subset of) the SHA-2 and SHA-3 parameters. For each parameter set, we
instantiate spongent using up to three competing security paradigms (all of
them offering full collision security): reduced second-preimage security, reduced
preimage and second-preimage security, as well as full preimage and second-
preimage security. We also perform security analysis in terms of differential
properties, linear distinguishers, and rebound attacks.





Chapter 6

Conclusion

Cryptographic hash functions are fundamental components of many applica-
tions used in our daily lives and hence are of great importance to their security.
Consequently, the design and cryptanalysis of cyrptographic hash functions is
one of the most popular and active areas of cryptography.

Recent advances in cryptanalysis have shown that several popular hash
functions, including MD5 and SHA-1, are not as secure as claimed. Although
there was no serious threat against their successor SHA-2, the National
Institute of Standards and Technology (NIST) started a public competition
to choose the next cryptographic hash function standard SHA-3.

Furthermore, in parallel to the evolution of technology, RFID and sensor
networks are being embedded in everyday objects such as tools, devices,
clothing, homes, etc. which require secure yet efficiently implementable
cryptographic primitives including secret-key ciphers and hash functions. As
a result, lately lightweight cryptography – optimizing the algorithms to fit the
most constrained environments – has received a great deal of attention.

6.1 Contributions of This Thesis

In this thesis we focus both on the analysis and design of hash functions. The
cryptanalysis of JH is strongly related with the SHA-3 competition as JH is one
of the finalists. Our attacks are based on the rebound attack and they apply to
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both the hash function and the compression function of JH. We have shown that
a semi-free-start collision and semi-free-start near-collisions can be found for
the reduced round JH. Based on these results, we described a distinguisher for
the full internal permutation, that also applies to the full compression function.

Our design of spongent contributes to the area of lightweight cryptography.
spongent is a family of sponge-based lightweight hash functions that uses a
present-type permutation. We proposed thirteen spongent variants covering
most security applications in the field ranging from extremely restricted
scenarios to the standard interfaces at different security levels. In our work,
we evaluated the security of spongent against known cryptanalytic attacks
by applying the most important state-of-the-art methods of cryptanalysis and
investigating their complexity.

6.2 Directions for Future Work

The research on cryptographic hash functions is a perpetual interplay in which
each new design triggers new attack strategies and vica versa. No matter how
hard the researchers work, many questions will remain to be answered. We
conclude this thesis with some directions for future work.

• Since the winner of the SHA-3 competition is finally chosen, a natural
target for future research is Keccak. Although there were several attacks
published, there is a very limited improvement so far in breaking the hash
function. The maximum number of rounds for which a practical collision
can be found is 4 (out of 24) for keccak-224 and 5 for keccak-256,
whereas it is just 3 for keccak-384 and keccak-512. These results are
improved by one more round for the case of near-collisions. However
the distinguishers and second preimage attacks covering larger number of
rounds are far from being practical.

• In spongent, we mainly focused on giving bounds against differential
cryptanalysis and rebound type of attacks in our analysis. However, it
would be interesting to investigate the security of spongent against other
attacks such as biclique attacks or algebraic cryptanalysis. If applicable,
bicliques can be used to construct efficient meet-in-the-middle attacks.
Moreover algrebraic relations for a small number of rounds can be found
as spongent uses 4×4 S-boxes and a bit-oriented permutation. Perhaps
it is possible to find efficient attacks which was not considered during the
design process.
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• The importance of lightweight cryptography is increasing over the time,
so does the need for good lightweight cryptographic primitives. Although
there are many hash function designs introduced recently, how to optimize
the security, area and power consuption simultaneously is not yet well
understood and remains an open problem.

• Although the analysis given in the scope of this thesis does not cover
hash functions based on ARX, there are numerous designs (including the
standards SHA-1 and SHA-2) that use this approach. Unfortunately, we
believe that ARX based designs did not get as much attention as SPN
and Feistel networks from the cryptographic community. Due to their
complex structure there is no efficient method to perform the analysis or
to give bounds against differential and linear cryptanalysis.
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Appendix A

Appendix to Chapter 4

We performed several experiments to obtain semi-free-start collisions and near-
collisions for reduced round version of JH with d = 4 using different S-Box
setups. The implementation results shown below are obtained by using the
same S-Box (S0) in each round.
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Appendix B

Appendix to Chapter 5

In this section we give the best iterative characteristics we obtained for
spongent variants based on depth-first search. In the tables below, the non-
zero values are given in hexadecimal whereas the symbol ‘.’ denotes the zero
values and the probabilities are given in minus the binary logarithm.

Table B.1: Sample differential path for spongent-160/160/16

Round Difference Prob

0 ................................9..........9 0

1 ..............................8.1........... 6

2 .............................28.........28.. 5

3 ..................6..C..................6..C 12

4 .....................................24....9 10

5 ....................6..........61........... 9

6 ................8..8....................18.. 7

7 .....................C....9..........9.....C 11

8 .....42..41................................. 10

9 ............6..........66..........6........ 11

10 ............................8.1.....8.1..... 10

11 .............................A.A........A.A. 10

12 ........................................5..A 12

13 ................................9..........9 6

Total 119

123
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