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Abstract

The Hierarchical Dirichlet Process Hidden Markov model (HDP-HMM) is a
Bayesian non parametric extension of the classical Hidden Markov Model (HMM)
that allows to infer posterior probability over the cardinality of the hidden space,
thus avoiding the necessity of cross-validation arising in standard EM training.
This paper presents the application of Hierarchical Dirichlet Process Hidden
Markov Models (HDP-HMM) to error detection during a robotic assembly task.
Force sensor data is recorded for successful and failed task executions and man-
ually labeled. An HDP-HMM is then fit to a set of training trials for each task
execution outcome. We show how posteriors on the learned models could be used
to recognize on-line deviation from expected behavior, thus allowing the robotic
system to promptly react to task execution errors.

1 Introduction

Hidden Markov Models (HMMs) [1] have been applied for learning and recognition of time-series
in fields that vary from speech recognition and genomics to robotics, computer vision, and finance.
Over the decades, most of the theoretical advances have been focused on extending the original
HMM expressive power by reformulating the HMM as a more general Dynamic Bayesian Network
(DBN) leading to the development of layered, factorial, and hierarchical extensions (for a review, see
[2]). While Expectation Maximization-based techniques provide valuable solutions to the problem
of learning the parameters of an HMM, the one of selecting the cardinality of the hidden space
(i.e. the model complexity) has been tackled either via cross-validation, model selection techniques
developed in the parametric setting, or with ad hoc solutions.

Recently, a Bayesian non parametric extension of the classical HMM has been presented [3], named
Hierarchical Dirichlet Process Hidden Markov model (HDP-HMM). It introduces the hierarchical
Dirichlet process as a prior distribution on infinite dimensional transition matrices. In this way, the
number of hidden states of the HMM becomes a variable of the model of which posterior densities
can be computed via Gibbs sampling. The work of Fox [4] further extends the one of Teh by
introducing an extra variable in the model that encourages transitions models with slower changes in
the dynamics, therefore solving the problem the original HDP-HMM shows in favoring the learning
of models with unrealistically fast-changing dynamics.

In this paper, we adopt this latter version, named by the author sticky HDP-HMM, to learn a set of
force sensor signature models for a robotic assembly task using data recorded during a number of
successful and faulty task executions. We then show how the learned models could be used to detect
deviation from the expected force/torque data for a successful execution, therefore preventing and/or
recognizing assembly errors.
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An example of previous application of HMMs for monitoring robotic task execution is given in
[5]. In their work, Howland et. al, focus on the detection of change in contact state between the
workpiece and the environment. In [6], the focus is on assembly error detection, but a Support
Vector Machine is used to classify force/torque measurement for successful and faulty executions.

To the best our knowledge, this paper represents the first attempt to apply the sticky HDP-HMM for
learning a force signature model for a robotic assembly task.

Recent applications of HDP-HMM include speaker diarization [7], in which segmentation of audio
recordings is required without knowing a-priori the number of speakers. In [8], HDP-HMM is used
in combination of a one-class SVM classifier in the context of abnormal activity recognition. In [9]
HDP-HMMs are used to synthesize audio clips of unlimited length after leaning the temporal and
frequency pattern of a training set of recordings.

In our experiments, we assume to have a set of labelled force/torque time series, identified by an
operator as arising from successful or faulty task executions. A subset of trials for a given execution
outcome is selected for training and these trials are then jointly segmented using the sticky HDP-
HMM to infer a model encoding the spatial and temporal correlations among the force/torque values
of the trials. We then extract mean values from the learned posteriors over the HMM parameters,
and use them to detect online deviations from the desired successful case (and possibly recognize
the error type) using the standard forward-backward algorithm [1] in combination with a simple
decision criterion.

The paper is organized as follows: Section 2 describes the robot set up and the assembly task, Sec-
tion 3 details the application of the sticky HDP-HMM to the joint learning of a time-series model for
a given execution outcome, Section 4 discusses the abnormality detection approach and its results,
concluding in Section 5 with discussion of the results and ideas for future work.

2 Assembly Scenario

In this section we will shortly describe the robot setup used for recording the force/torque data and
the assembly task. For a detailed description, we refer the reader to [10] and [11]. As we describe
our particular robot setup and assembly task, we would like to stress the fact that the proposed ap-
proach is neither task nor robot specific. What our approach assumes is to have access to a number of
force/torque measurement sequences recorded during successful and faulty task executions, labeled
by a human expert. We also assume that the force/torque signatures recorded for different execution
outcomes contain enough information to distinguish among them, while being to some extent con-
sistent among executions with the same outcome. Given the fact that a typical robotic assembly task
is usually performed following a well-defined sequence of sub-tasks (normally encoded in a Finite
State Machine), and given the repeatability and accuracy performances guaranteed by and industrial
manipulator, we believe this latter assumption is realistic.

2.1 Robot Setup and Assembly Task Description

The robot used for performing the assembly is FRIDA, the new concept robot from ABB [12], shown
in figure 2.1. The assembly task performed is a subassembly of a mobile phone. A shield can, iden-
tified by the frame f2 in figure 2.1 should be assembled onto a printed circuit board (PCB) mounted
on a fixture, by applying pressure on a socket identified in 2.1 by f1. There are no mechanical
tolerances between the parts, so the shield can will have to be deformed to fit.

The assembly strategy is designed such that the some of the uncertainty can be resolved in a robust
way, and is divided in 9 sub-steps, encoded in a Finite State Machine (FSM).

Referring to figure 2.1, the assembly sequence can be described as follows:

step1 Pick up shield can from tray
step2 Go to start position
step3 Search for contact in negative f1 z−direction
step4 Search for contact in positive f1 y−direction
step5 Search for contact in negative f1 x−direction
step6 Find corner of socket by yet another search in positive f1 y−direction
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step7 Make a rotational search around the f2 x−axis and the f2 y−axis
step8 Press shield can into position
step9 Release shield can and move robot away

Figure 1: The ABB Frida robot [left] and assembly description: the shield can f2 must be mounted
on the PCB socket f1 [right]

2.2 Dataset description

Data was recorded for a set of task executions for which possible 3 execution outcomes ci were
identified, namely:

success : assembly task successfully completed (25 executions);
errorA : shield not completely pressed onto the socket. This is caused by a not optimal grip of the

shield can (2 executions).
errorB : socket missed. This is caused by an error in the socket corner search (2 executions).

For each execution trial, the force/torque data is recorded from a sensor mounted beneath the PCB
with a sampling time of 4ms. While the assembly strategy briefly described in section 2.1 and im-
plemented in [10] can to some extent deal with uncertainty and react to it, error in the assembly are
still present. One of the reasons is that the FSM machine encoding the task is reacting to events
based on force/torque instantaneous thresholds. Whenever a FSM state exit condition is verified
(e.g. when a contact is detected in f1 z−direction), the robot will blindly switch to the next step
of the assembly, with no chance of discovering that an error might have occurred. Given that the
thresholds triggering the robot FSM are fixed, we expect the force/torque signatures recorded dur-
ing task execution to be different between the 3 execution outcomes, while being similar among
trials with the same outcome. These expectations can be confirmed looking at figure 2, where the
recorded force/torque data during one specific step of the assembly is shown for 2 of the possible
outcomes. Each recorded trial can be automatically segmented looking at the task FSM evolution,
thus obtaining the force/torque samples for each assembly sub-steps of Section 2.1. The end result
of the data extraction process is a set of k (with k dependent on ci) time-series of wrenches w =
[ fx, fy, fx,τx,τyτz]

T
k for each sub-step s j| j = 1 : 9 and execution outcome ci|i = 1 : 3.

3 HDP-HMM learning

This section provides a short overview of Dirichlet Process mixture model and its hierarchical exten-
sion. We will describe then how the latter can be used for learning the prior of the sticky HDP-HMM,
and how we applied it to the learning of force/torque signature models for all the steps s j of the as-
sembly task described in 2.1 and for each possible execution outcome ck. These models will be
used in section 4 to develop a system for detecting on-line deviations from the nominal force/torque
signature that leads to a successful execution, and possibly identify the error type.

3.1 DP,HDP and sticky HDP-HMM

The Dirichlet process (DP) is a distribution over probability measures on a parameter space Θ,
uniquely defined by a base measure H on Θ and a concentration parameter γ , denoted by DP(γ,H).
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Figure 2: Force/Torque data of all the recorded executions for step 5 of the assembly task with
outcome success (left) and outcome errorA (right). First row: [ fx, fy, fz] Second row: [τx,τy,τy].
Differences can be noted between fz and τx values for the different outcomes.

For space constraints, we will limit ourselves to a description of DP from the generative perspective,
for more details, please refer to [3].

A random draw Go ∼ DP(γ,H) can be expressed as

G0 =
+∞

∑
k=1

πkδθk(θ) θk|H,λ ∼ H(λ ), k = 1,2, ... (1)

where the δθk(θ) indicates a Dirac delta at θ = θk and the weight βk k = 1,2, ; ... are obtained
via a constructive procedure named stick breaking construction [13] denoted by β ∼ GEM(γ) and
defined as following:

βk ∼ Beta(1,γ) k = 1,2, ... (2)

πk = βk

k−1

∏
l=1

(1−βl) k = 1,2, ... (3)

This constructive generative process can be interpreted as dividing a unit-length stick by the mixture
weights πk defined over an infinite set of random parameters θk drawn from the base measure H(λ ).
The parameter γ controls the model complexity in terms of the expected numbers of components. If
γ is unknown, a vague hyperprior can be placed on its value so that a posterior can be learned from
data. Combining the DP prior with a likelihood distribution for the observations leads to mixture
models with a potentially infinite number of components, graphically depicted in 3(a), where the θ ′i
denote the parameter associated with the N observations yi.

An interesting property of DP mixture models is that, since random probability measures drawn
from a DP are discrete, there is a strictly positive probability that multiple observations will share
a common parameter, leading to a natural clustering phenomenon. Furthermore, there is a rein-
forcement property that makes it more likely to associate observations to a parameter to which other
observations have been already associated [7], therefore implicitly penalizing model complexity.

The hierarchical Bayesian extension of DP mixture is naturally derived if we assume that observa-
tions are produced by a related, yet distinct generative process. The hierarchical Dirichlet Process
(HDP) [3] defines first a global base measure G0, drawn by a DP(γ,H) prior on the parameter space
Θ, acting as an average distributions tying together the group specific distributions G j, sampled from
a DP(α,G0). Since G0 is discrete, the group specific distributions G j will have overlapping support.
This ensures that the mixture models in the different groups share mixture components. Figure 3(b)
depicts the graphical model of the corresponding generative process, where now the θ ′ji denote the
parameter associated with the N j observations y ji associated to group j (where the number of groups
J is not known a-priori).

The HDP can be used to develop an HMM with an infinite state space, the HDP-HMM [3]. An
HMM is a doubly stochastic process based on an underlying, discrete-valued state sequence modeled
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(a) DP (b) HDP (c) HDP-HMM

Figure 3: Dirchlet process (left),hierarchical Dirichlet process (center) mixture models and HDP-
HMM dynamic Bayesian network(right))

as markovian [1]. It is defined by an initial transition distribution π0, a set of state specific transition
distributions πk, stacked into a transition matrix A, and a set of emission parameters θk, one for each
state. In the HDP-HMM the group-specific distributions G j of the HDP correspond to the state-
specific transition distributions πk, and due to the infinite state space, there potentially infinitely
many of them, together with the corresponding emission parameters θk.

The properties of the HDP prior encourages different states to have a similar transition distributions
πk and to limit the number of (potentially infinite) states. Despite them, a problem with this model
is that the HDP-HMM does not differentiate self-transitions from moves between different states,
which leads to learned models with unrealistically fast dynamics, which can reduce the model pre-
dictive performance. To solve this issue, and be able to incorporate the knowledge that smoothly
varying dynamics are more likely, Fox [4] introduced an extension of the standard HDP model,
named sticky HDP, where an extra parameter κ is introduced that increases the expected probability
of self-transition. The resulting generative model is given by:

β |γ ∼ GEM(γ) (4)

π j|α,κ,β ,∼ DP(α +κ,
αβ +κδ j

α +κ
) j = 1,2... (5)

θ j|H,λ ∼ H(λ ) j = 1,2... (6)

zt |{π j}+∞

j=1,zt−1 ∼ πzt−1 t = 1, ...,T (7)

yt |{θ j}+∞

j=1,zt ∼ F(θzt) t = 1, ...,T (8)

where β represent the vector of stick breaking weight for the first-level DP base measure, the π j
represent the second level DP measures corresponding to a state-specific transition distribution (i.e.
a row of the HMM transition matrix), and the quantity (αβ +κδ j) indicates an amount κ > 0 that
is added to the jth component of αβ , representing the desired self-transition bias. When κ = 0, the
original HDP-HMM of Teh [3] is recovered. Because positive values of κ increase the prior prob-
ability of self-transitions in the HMM, the model is referred as the sticky HDP-HMM. The variable
zt represents the HMM state index, therefore it is sampled from πzt−1 and indexes the parameter θzt
used to generate observation yt .

In figure 3(c) a Bayesian Network representation of the sticky HDP-HMM is given.

3.2 Learning a force/torque signature model using the sticky HDP-HMM

A MATLAB toolbox implementing several inference algorithms based on Gibbs sampling for the
sticky HDP-HMM has been made available by Fox [14]. Gibbs sampling allows to compute the
posterior distributions over all the parameters of the HDP-HMM in equations (4),(5),(6),(7),(8),
conditioned on one or more sequences of observations, allowing to choose from a wide range of
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prior distributions. As our goal is to develop a system for abnormality detection, we used the blocked
Gibbs sampler for the sticky HDP-HMM [4] to learn the posterior distributions over initial state
probability π0, the transition matrix A given by the collection of π1, ...π j and the corresponding
set of emission parameters {θ1, ...θ j} capturing the time and spatial correlations from a training
set composed of k wrench time-series w = [ fx, fy, fx,τx,τyτz]

T
k for each sub-step s j and execution

outcome ci.
Algorithm 3.2 contains the pseudo-code describing the adopted approach. For each task sub-step
and for each execution outcome, we select randomly the 40% of the trials for training the model. We
then iteratively apply the blocked Gibbs sampler for the HDP-HMM to the recorded wrench time-
series. After convergence of the Gibbs sampler, the obtained samples approximate the posterior
distributions for the HDP-HMM model variables (for a more detailed description of the adopted
sampler and a review of Markov Chain Monte Carlo methods, see [4]). In particular, a set of sampled
potential segmentations of the force/torque time-series corresponding to the state sequence samples
zt=1:T of the HMM is obtained.
The approach proposed by Fox [4] is adopted for tackling the label-switching problem and choosing
one representative segmentation out of the set of sampled ones, (for a detailed description of this
phenomenon and a list of possible solutions, see [15]). At each iteration k, the Gibbs sampler is
provided the observation sequence of the k time-series together with the selected state sequences for
time-series 1 : k−1, so that both a combined set of observation parameters θk and the state sequence
for time-series k are jointly inferred. This corresponds to informing the priors with the data from
the k−1 time-series, and using the updated posterior distributions as the prior distributions for the
time-series k [4].

for i = 1 : 3 do
Pick randomly K training trials for execution outcome ci
Train set = {T ci

1 ,T ci
2 , ...T ci

k } k = 1 : K
for s = 1 : 9 do

Segmented ts = { /0}
for k = 1→ K do

HDP HMM samples = HDP HMM Block Sampler (Train set(k),Segmented ts)
ts k segmentation = Find Best Segmentation(HDP HMM samples)
Segmented ts = Segmented ts∪ ts k segmentation

end for
stepsimodel =Extract Posterior Means(HDP HMM samples)

end for
end for

For our experiments, we used 6-dimensional Gaussian emission parameters, and placed a weakly
informative conjugate Normal Inverse Wishart (NIW) prior on the space of mean and variance
parameters. The number of degrees of freedom was chosen as the minimum value necessary to
obtain a proper prior, mean equal to the empirical mean of the observations, and scale matrix
equal to 0.75 of the empirical variance. After convergence, the posterior means for the parame-
ters Π = {π0,A = {π1, ...π j},Θ = {θ1, ...θ j}} are computed from the samples. Figure 3.2 shows
an example of the learned segmentation for a time-series of step6 of execution outcome c1. The
different colors correspond to different values of zt and the horizontal lines represent the 2σ interval
of the corresponding Gaussian emission parameter θzt = N (µ,σ2).

4 Abnormality detection and error recognition

The output of algorithm of section 3.2 consists of the estimated mean values for the parameters
Πk = {π0,A,Θ}, representing the initial state probability, the transition matrix and the set of learned
Gaussian emission parameters θ j = N (µ,σ2), of an HMM capturing the time and spatial correla-
tion among the training trials recorded for each task sub-step and each execution outcome.
The standard forward-backward algorithm [1] allows to compute the likelihood that a given number
of observations were generated by any of the learned HMMs. For each of the validation time-series,
we use the information stored in the FSM to identify the current steps, and compute iteratively
the likelihood p(wk:k+window size|Πci(s)) for all classes ci given the corresponding steps HMMs. We
select a window size of 10 samples, and set a threshold on the maximum time that any of HMM

6



Figure 4: Learned segmentation of a training ts for step6 of class success

corresponding to an error model is allowed to be the one best fitting the measurements. After this
time, we consider the wrench data to be abnormal and identify the error as the one associated with
the best fitting model. Figure 4 shows the evolution of the computed loglikelihoods during step6 of
a validation trial for errorB. The top plot represents the loglikelihood evolution, while the bottom
one contains the same information but the loglikelihoods have been transformed in probabilities for
better visualization. It can be seen how the probability of errorB, overcome the others between sam-
ples 150 and 250. Choosing a threshold of 75 samples or 300ms, we successfully identify abnormal
observations, and we correctly identify the validation trials for errorA and errorB, without causing
any false positives for the 15 validation trials of class success. The same results are obtained after
repeating 10 times the learning phase of Section 3.2 selecting randomly the training trials. The error
recognition routines are currently implemented in MATLAB, but the proposed approach is suitable
for an on-line implementation.

Figure 5: Likelihood and probabilities values for segment 6 of an execution of class errorB

5 Conclusion and Future Work

In this paper we have shown how HDP-HMMs can be used for learning force/torque signature mod-
els to recognize errors in robotic assembly tasks. Despite the limited data available for training and
validation, we believe that the proposed approach is neither task nor robot specific, and similar per-
formances can be obtained on richer datasets. We believe that two aspects in particular of the sticky
HDP-HMM approach make it particularly interesting for other applications, namely the automatic
model complexity selection, thanks to the sparsity induced by the HDP prior, and its fully Bayesian
nature. This latter in particular is very interesting for robotics application, were expert and model-
based knowledge about the expected signals could be modelled via informative priors. Future work
include the application the proposed approach to a bigger dataset of different assembly tasks, and
the investigation of the HDP-SLDS model [4], an extensions of the sticky HDP-HMM that allows
the use of Linear Dynamical Systems as emission models. Research is currently ongoing on the
application of this approach to human motion recognition.
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