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Abstract

We construct and analyze generalized Gaussian quadrature rules for

integrands with endpoint singularities or near endpoint singularities. The

rules have quadrature points inside the interval of integration and the

weights are all strictly positive. Such rules date back to the study of

Chebyshev sets, but their use in applications has only recently been ap-

preciated. We provide error estimates and we show that the convergence

rate is unaffected by the singularity of the integrand. We characterize the

quadrature rules in terms of two families of functions that share many

properties with orthogonal polynomials, but that are orthogonal with re-

spect to a discrete scalar product that in most cases is not known a priori.

1 Introduction

Gaussian quadrature has many advantages in the numerical integration of

∫ b

a

w(x)f(x) dx ≈
n

∑

j=1

wjf(xj),

with a positive weight function w(x) > 0, ∀x ∈ [a, b]. First, all quadrature
points wj lie inside the interval [a, b] of integration and the weights are all pos-
itive [8, 27]. As a result, applying such quadrature rules is numerically stable.
Second, it is well known that among all interpolatory quadrature rules Gauss-
type rules achieve the highest polynomial order. In particular, a Gaussian rule
with n points is exact for polynomials at least up to degree 2n−1. Convergence
is therefore quite fast if the integrand is sufficiently smooth. It follows from the
Weierstrass theorem and from the positivity of the weights that convergence is
guaranteed for all continuous functions f on [a, b]. Finally, Gaussian quadra-
ture rules can be computed efficiently owing to their connection to orthogonal
polynomials [9, 19], with a computational cost that scales as O(n2) [10]. A dis-
advantage of Gaussian rules is their inherent lack of adaptivity: different values
of n lead to entirely different sets of quadrature points and weights. This is not
the case, for example, for Clenshaw-Curtis rules, that otherwise share many of
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the advantages of Gaussian rules [29]. Several ways have been suggested to rem-
edy the situation, most notably Gauss-Kronrod and Gauss-Kronrod-Patterson
extensions [18, 22]. For modest values of n, the issue of adaptivity is less severe.
In this paper, we consider the generalization of Gaussian quadrature rules in a
different direction, focusing on achieving high accuracy for small n.

The main subject of this paper concerns quadrature rules of Gaussian type
for non-smooth functions f . Though convergence of classical Gauss-type quadra-
ture for such functions is possible, the convergence rate is low and the use of large
n in quadrature is not recommended. Instead, research has focused on compos-
ite quadrature, singularity-removing transformations [28], graded meshes [25]
and, in general, adaptive methods [4]. An efficient alternative was suggested
however in [20]. Assume the integrand has the general form

f(x) = u(x) + v(x)ψ(x),

where both u and v are smooth functions, and ψ(x) has an integrable singularity
of some kind, such as ψ(x) = log(x − a) or ψ(x) = (x − a)α with α > −1. It
was proved in [20] that for many singular choices of ψ a generalized Gaussian
quadrature formula exists, of the form

∑n
j=1 wjf(xj) and with the following

properties:

1. xj ∈ (a, b) and wj > 0, j = 1, . . . , n,

2.
∑n
j=1 wj [x

k
j + xljψ(xj)] =

∫ b

a
w(x)[xk + xlψ(x)] dx, k, l = 0, . . . , n− 1.

The first property indicates that, like classical Gauss-type rules, the quadrature
points lie inside the interval [a, b] and the weights are all positive. The second
property states that the singularity is integrated exactly if u and v are polyno-
mials up to degree n− 1. This rule is said to be Gaussian because 2n functions
are integrated exactly using only n function evaluations. Note the important
property that the rule only evaluates f , and not u or v. It is sufficient that u
and v exist – they need not be known explicitly. Thus, the quadrature rule is
a numerically stable approach for integrating non-smooth functions, as long as
the lack of smoothness is confined to a known function ψ(x). For this reason,
we call f a function with a confined singularity.

The existence of generalized Gaussian quadrature rules dates back to Markov
in the study of Chebyshev sets [21]. A more recent treatise is given in [15].
It follows from this theory that a quadrature rule with n points exists that
integrates 2n basis functions φk exactly,

n
∑

j=1

wjφk(xj) =

∫ b

a

w(x)φk(x) dx, k = 1, . . . , 2n, (1)

if {φk}2n
k=1 is a Chebyshev set. Functions of the form xk + xlψ(x) are only a

special case of this more general setting (albeit possibly a limiting special case
if ψ(x) is unbounded [20]).

One of the advantages listed above of classical Gauss-type properties has
long been missing: an efficient construction algorithm. Generalized Gaussian
quadrature rules were described for special cases only in literature, for example
in [11, 24, 7]. Two generally applicable numerical methods for computing these
rules were first described in [20, 30]. These authors also introduced the name
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generalized Gaussian quadrature. The proposed methods essentially consist of
a continuation approach combined with Newton’s method to solve the set of
2n nonlinear equations (1) for the 2n unknowns wj and xj . Although not as
efficient as orthogonal polynomial-based methods for classical rules, generalized
Gaussian quadrature rules can be computed with reasonable efficiency for almost
any basis set {φk}. The results are particularly useful in integral equation
methods, that require the evaluation of a large number of integrals with well-
understood singular behaviour [26, 17, 16, 2].

The purpose of this paper is to analyze generalized Gaussian quadrature rules
in the setting of functions with a confined singularity. Though more limited than
the general theory, this setting is already most useful in applications. We provide
error estimates for generalized Gaussian quadrature rules in §3. Next, in §4 we
characterize generalized Gaussian quadrature rules in terms of two sequences of
functions Rn(x) and Sn(x), that obey certain orthogonality properties and that
vanish at the quadrature points. This theory is comparable to the theory in
multivariate cubature formulae more than to the theory of univariate Gaussian
quadrature [3, 6, 5]. We discuss scaling invariance of the quadrature rules in §5
and we briefly outline three approaches for the numerical construction of the
rules in §6. We end with some numerical examples in §7.

2 Preliminaries

We consider in this paper the numerical approximation of the integral

I[f ] :=

∫ b

a

w(x)f(x) dx, (2)

where w(x) > 0, x ∈ [a, b], by a quadrature rule Q[·] with n points and weights
of the form

Q[f ] :=

n
∑

j=1

wjf(xj). (3)

This approximation carries an error

ǫ[f ] := | I[f ] −Q[f ] |.

2.1 Functions with a confined singularity

We assume that the function f has the form

f(x) = u(x) + v(x)ψ(x), (4)

where u and v lie in Ck[a, b] for some sufficiently large k. We make no assump-
tions on the smoothness of the function ψ, except that it is possibly unbounded
only in one of the endpoints a or b.1 This most basic case is, arguably, also
the most useful case in applications, as it covers integrands with a singularity
or near singularity at one of the endpoints. We note for example that all rules
constructed in [20] fit this pattern.

1This condition appears in the proof of Theorem 3.4. It may conceivably be lifted to allow
singularities at both endpoints at the cost of having less nice error estimates.
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We introduce some more notation. We denote by Pm the set of polynomials
up to degree m and we define P−1 to be the empty set. The sets of functions
Tm, m = 0, 1, . . ., are defined by

Tm :=

{

{ 1, ψ, x, xψ, . . . , xl−1 ψ, xl }, m = 2l is even,
{ 1, ψ, x, xψ, . . . , xl−1 ψ, xl, xlψ }, m = 2l + 1 is odd.

(5)

They form the sequence {1}, {1, ψ}, {1, ψ, x}, {1, ψ, x, xψ}, . . . The correspond-
ing function spaces are defined as

Vm := span{Tm}, m = 0, 1, . . .

Note that the functions in Vm are not in general square integrable, because
ψ(x)2 may not be integrable on [a, b].

2.2 Existence of the quadrature rule

We assume in this paper that the function ψ is such that a generalized Gaussian
quadrature rule exists for all n. That is, we assume that

Q[φ] = I[φ], ∀φ ∈ T2n−1. (6)

Expression (6) leads to a set of 2n nonlinear equations in wj and xj – it corre-
sponds exactly to expression (1) in our new notation.

Existence and uniqueness of the quadrature rule is guaranteed if T2n−1 is a
Chebyshev set on [a, b]. This is a side-result of a more general theory on the
geometric properties of the moment spaces that are induced by a Chebyshev set
(see [21, 15]). More recently, it was proved in [20] that existence and uniqueness
is guaranteed if T2n−1 is a Chebyshev set on any closed subinterval of (a, b). The
latter generalization allows unbounded singularities at the endpoints. It should
be mentioned that these results yield sufficient, but not necessary conditions.

In both cases, we can define an interpolation operator Px for a set of points
x = {xj}nj=1 such that Px[f ] ∈ Vn−1 and

(Px[f ])(xj) = f(xj), j = 1, . . . , n. (7)

Assuming that Tn−1 is a Chebyshev set on all closed subsets of (a, b), this
operator is the identity on Vn−1 for all sets x with xj ∈ (a, b), j = 1, . . . , n.

Note that the choice of ψ(x) is not as free as the choice of the weight function
w(x). Any weight function that satisfies w(x) > 0 on [a, b] will do. On the
other hand, it is known that the function ψ(x) should be either monotonuously
increasing or decreasing, in order to obtain a Chebyshev set. The main choices
the authors have in mind are ψ(x) = log(x + δ) and ψ(x) = (x + δ)α, with
α > −1 and where δ determines the location of the singularity.

3 Error estimates

The central result in this section is the error estimate, proved in Theorem 3.4,

ǫ[f ] ≤ 1

(n− 1)!
(b− a)n

(

W‖u(n)‖∞ + (2WCψ +Wψ)‖v(n)‖∞
)

,
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with the constants defined as in the theorem and depending only on the weight
function w(x) and the singularity function ψ(x). The estimate shows that the
convergence of the quadrature rule is unaffected by the unboundedness or the
lack of smoothness of the singularity function ψ, even though ψ is evaluated
implicitly in f and the smooth functions u and v are unknown.

3.1 The Peano kernel

Error estimates for interpolatory quadrature rules are most often given in terms
of a derivative of f , with the order of the derivative depending on the polyno-
mial degree of the rule. These estimates can be obtained from error estimates
for polynomial interpolation or from the Peano kernel theorem. General error
estimates for interpolation by Chebyshev sets are not available. The specific
form of the function spaces V2n−1 however enables the use of the Peano kernel
theorem [23]. For a functional L[f ] and an integer k ≥ 0, the Peano kernel is
defined by

K(θ) =
1

k!
Lx[ (x− θ)k+ ], (8)

with

(x− θ)k+ =

{

(x− θ)k, x ≥ θ,
0, x < θ.

(9)

The notation Lx[·] indicates that the functional L operates on a function of x.
In the following Theorem, V[a, b] is the space of real-valued function on [a, b]
that are of bounded variation.

Theorem 3.1 (Peano kernel [23]). Let k be any non-negative integer, and let
L be a bounded linear functional from V[a, b] to R, such that L[f ] is zero when
f is in Pk, and such that the function K(θ), a ≤ θ ≤ b, defined by equation (8),
is of bounded variation. Then, if f is in Ck+1[a, b], the functional L[f ] has the
value

L[f ] =

∫ b

a

K(θ)f (k+1)(θ) dθ. (10)

The proof is based on an expression for the remainder in a Taylor series of
f . An estimate follows of the form

|L[f ]| ≤ ‖K‖1‖f (k+1)‖∞. (11)

In the following section, from Theorem 3.1 we will obtain bounds for the error
L[f ] := I[f ] −Q[f ] in terms of a derivative of f .

3.2 Functions with a confined singularity

Let us first apply the Peano kernel theorem to smooth functions f(x) = u(x).
The operator

L1[u] := I[u] −Q[u] (12)

defines the error in the numerical approximation of the integral I[u] by a gen-
eralized Gaussian quadrature rule with n points.
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Lemma 3.2. For u ∈ Cn[a, b], we have

|I[u] −Q[u]| ≤ 1

(n− 1)!
W (b− a)n‖u(n)‖∞,

where W :=
∫ b

a
w(x) dx.

Proof. The quadrature rule is exact for polynomials up to degree n− 1. Thus,
the Peano kernel (8) is given by

K(θ) =
1

(n− 1)!

(

I[ (x− θ)n−1
+ ] −Q[ (x− θ)n−1

+ ]
)

. (13)

We have, for θ ∈ [a, b],

I[(x− θ)n−1
+ ] =

∫ b

a

w(x)(x− θ)n−1
+ dx =

∫ b

θ

w(x)(x− θ)n−1 dx

≤W (b− θ)n−1 ≤W (b− a)n−1.

We also have

Q[(x− θ)n−1
+ ] =

n
∑

j=1

wj(xj − θ)n−1
+

≤
n

∑

j=1

wj(b− θ)n−1 ≤W (b− θ)n−1 ≤W (b− a)n−1.

Note that in the latter derivation we have used the fact that the weights are
all positive and that they sum up to W . Given that both I[ (x − θ)n−1

+ ] and

Q[ (x− θ)n−1
+ ] in (13) are positive, we have

|K(θ)| ≤ 1

(n− 1)!
W (b− a)n−1.

It follows that

‖K‖1 =

∫ b

a

|K(θ)|dθ ≤ 1

(n− 1)!

∫ b

a

W (b− a)n−1 dθ =
1

(n− 1)!
W (b− a)n.

The result now follows from the general error estimate (11).

Next, we establish an error estimate for functions of the form f(x) = ψ(x)v(x),
where v(x) is a smooth function. Define the linear functional

L2[v] := I[ψv] −Q[ψv].

This functional is exact for polynomials up to degree n− 1 and, hence, we can
again invoke the Peano kernel theorem.

Lemma 3.3. If v ∈ Cn[a, b] and if ψ(x) > 0,∀x ∈ (a, b), we have

|L2[v]| ≤
1

(n− 1)!
Wψ (b− a)n‖v(n)‖∞,

where Wψ :=
∫ b

a
w(x)ψ(x) dx.
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Proof. The result follows from Lemma 3.2 by defining a weight function of the
form w(x)ψ(x). Note that, since ψ(x) is in this lemma assumed to be positive,
we indeed have

n
∑

j=1

wjψ(xj) =

∫ b

a

w(x)ψ(x) dx = Wψ,

with all terms in the summation positive, as required in the proof of Lemma 3.2.

We can now state the central result of this section.

Theorem 3.4. Assume f(x) = u(x) + v(x)ψ(x) with u, v ∈ Cn[a, b]. Then we
have

ǫ[f ] ≤ 1

(n− 1)!
(b− a)n

(

W‖u(n)‖∞ + (2WCψ +Wψ)‖v(n)‖∞
)

, (14)

with constants W and Wψ as defined in Lemma 3.2 and Lemma 3.3, and with

Cψ ≥ min( | sup
x∈[a,b]

ψ(x)| , | inf
x∈[a,b]

ψ(x)| ) ≥ 0 (15)

a positive and bounded constant.

Proof. We can not immediately invoke Lemma 3.3 because the function ψ(x)
is not necessarily positive on the open interval (a, b). We will construct a func-
tion ψ̃(x) = Aψ(x) + B that is positive on (a, b). Define the values M+ =
supx∈[a,b] ψ(x) and M− = infx∈[a,b] ψ(x). Next, define

ψ̃(x) :=

{

ψ(x) −M−, if |M−| ≤ |M+|,
−ψ(x) +M+, otherwise.

By our assumption that ψ(x) can be unbounded in at most one endpoint, at
least one of M+ or M− is finite. We have thus written ψ̃(x) = Aψ(x)+B, with
A = ±1 and |B| ≤ Cψ where Cψ is finite. By construction, we have ψ̃(x) ≥ 0,
for x ∈ (a, b).

We rewrite the function f(x) in terms of ψ̃(x), using that 1/A = A,

f(x) = u(x) − B

A
v(x) +

1

A
v(x)(Aψ(x) +B) = u(x) −ABv(x) +Av(x)ψ̃(x).

Note that if u and v are polynomials of degree k, than u(x)−ABv(x) and Av(x)
are also polynomials of degree k. This means that the generalized Gaussian
quadrature rules constructed using either ψ(x) or ψ̃(x) are the same.

We now apply Lemma 3.2, noting that Cψ > |AB| = |B|,

|I[u−ABv] −Q[u−ABv]| ≤ 1

(n− 1)!
W (b− a)n(‖u(n)‖∞ + Cψ‖v(n)‖∞).

Lemma 3.3 leads to

|I[ψ̃Av] −Q[ψ̃Av]| ≤ 1

(n− 1)!
Wψ̃ (b− a)n‖v(n)‖∞.

We also have

Wψ̃ =

∫ b

a

w(x)(Aψ(x) +B) dx ≤Wψ + CψW.

The combination of the above inequalities proves the result.
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The importance of Theorem 3.4 is that it shows that the convergence of Q[f ]
to I[f ] depends only on the smoothness of u(x) and v(x), irrespective of the lack
of smoothness in ψ(x). An advantage of the current method of proof is that the
constants in the error estimate (14) are entirely explicit in their dependence on
the functions w(x) and ψ(x).

3.3 Functions with multiple singularities

We digress briefly from the case of functions with a single confined singularity
to note that the error estimates readily extend to the case of functions with
multiple singularities. Consider m functions ψm(x) and a function f(x) with
multiple singularities of the form

f(x) =

M
∑

m=1

um(x)ψm(x), (16)

where um(x) are smooth functions, m = 1, . . . ,M . The function f may for
example have singularities in both endpoints of the integration interval [a, b].
One is led to consider a quadrature rule Q[f ] =

∑n
j=1 wjf(xj) that satisfies

Q[xkψm] = I[xkψm], k = 0, . . . , nm − 1, m = 1, . . . .M. (17)

In the following, we forego the existence question in favour of deriving error
estimates. We assume for simplicity that all ψm(x) ≥ 0 and moreover that the
quadrature rule has positive weights.

Lemma 3.5. Assume that all ψm(x) ≥ 0, ∀x ∈ [a, b], and define Lm[u] :=
Q[uψm] − I[uψm]. Then for u ∈ Cnm [a, b] we have

|Lm[u]| ≤ 1

(nm − 1)!
Wψm

(b− a)nm‖u(nm)‖∞,

where Wψm
=

∫ b

a
w(x)ψm(x) dx.

The proof of this Lemma is exactly like that of Lemma 3.3.

Theorem 3.6. Let Q[f ] =
∑n
j=1 wjf(xj) satisfy conditions (17) for certain

nm > 0, m = 1, . . . ,M , and let wj > 0, j = 1, . . . , n and ψm(x) ≥ 0, m =
1, . . . ,M . Then for functions f of the form (16) we have

|I[f ] −Q[f ]| ≤
m

∑

m=1

1

(nm − 1)!
Wψm

(b− a)nm‖u(nm)‖∞, (18)

with Wψm
defined as in Lemma 3.5.

Proof. We can write

L[f ] −Q[f ] =

m
∑

m=1

Lm[um],

where the linear operators Lm are as in Lemma 3.5. The result follows imme-
diately from Lemma 3.5 and from

m
∑

m=1

Lm[um] ≤
m

∑

m=1

|Lm[um]|.
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Note that the assumption ψm(x) ≥ 0 simplifies the error estimate (18) com-
pared to the previous estimate (14). This comes at a cost of having slightly less
general results.

4 A theory of generalized Gaussian quadrature

4.1 Orthogonal polynomials

It is well known that the points of a classical Gaussian rule are the roots of
a polynomial pn(x) of degree n that is uniquely determined, up to a constant
factor, by the orthogonality conditions

∫ b

a

w(x)xk pn(x) dx = 0, k = 0, . . . , n− 1. (19)

Let us denote the classical Gaussian quadrature rule relative to the weight func-
tion w(x) by QG[·]. The concept of orthogonality derives from an inner product,
which is not available in the generalized setting. This, however, is not an es-
sential argument in the characterization of QG by pn. An alternative and more
general point of view is that the quadrature rule QG is characterized by a set of
functions that vanish at the quadrature points. This set in turn is characterized
by pn. The meaning of these statements is clarified in the following Lemma.

Lemma 4.1. Let I[f ] be a linear, continuous functional defined on a vector
space F of functions on [a, b] and consider a quadrature rule Q[f ] =

∑n
j=1 wjf(xj).

For a subspace F1 ⊂ F , define

F0 = {f0 ∈ F1 : f0(xj) = 0, j = 1, . . . , n}.

A necessary and sufficient condition for the existence of a quadrature rule that
is exact for all f ∈ F1 is

f0 ∈ F0 ⇒ I[f0] = 0. (20)

Proof. This is only a special case of Theorem 3.1 in [3] (with short proof).

An interpolatory quadrature rule with n points xj is based on interpolating
n given function values by a polynomial of degree n− 1. It is obvious that such
rules can be exact for polynomials of degree up to n − 1, as the function to
integrate is recovered exactly by the interpolation. Lemma 4.1 gives conditions
for exactness in a larger space F1: the functional I[f ] has to vanish for all
functions in F1 that vanish at the quadrature points.

Consider for example the space F1 = P2n−1 of polynomials up to degree
2n−1. Each polynomial that vanishes at all quadrature points can be factorized
into a polynomial multiple of pn. The space F0 can therefore be characterized
in terms of pn by

F0 ≡ span{pn(x)xk}n−1
k=0 . (21)

Condition (20) now corresponds exactly to the orthogonality conditions (19).
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4.2 Characterizing generalized Gaussian quadrature rules

We return to the setting of a function f with a confined singularity of the
form (4). Define the space of all functions in V2n−1 vanishing at a set x =
{xj}nj=1 of n distinct points in (a, b) as

F0(x) := {f ∈ V2n−1|f(xj) = 0, j = 1, . . . , n}. (22)

The space F0(x) can not be characterized in terms of a single polynomial that
vanishes at the points xj as in (21). It can, however, be characterized in terms
of two different functions Rn(x) and Sn(x) that vanish at the set of points. The
space F0(x) then consists of a linear combination of polynomial multiples of
Rn(x) and Sn(x). We show this first for the case where n = 2l is even.

Lemma 4.2. If n = 2l is even, then each f0 ∈ F0(x) can be written as

f0(x) = p(x)Rn(x) + q(x)Sn(x), (23)

with p, q ∈ Pl−1 and where

Rn(x) = xl − Px[xl], Sn(x) = xlψ(x) − Px[xlψ]. (24)

Conversely, each function of the form (23) with p, q ∈ Pl−1 lies in F0(x).

Proof. Recall that Px is an interpolation operator, that is defined by (7). It
follows from the construction that Rn(xj) = Sn(xj) = 0. It follows in turn that
any function of the form p(x)Rn(x) + q(x)Sn(x) ∈ F0(x) for p, q ∈ Pl−1. It
remains to show that all functions f0 ∈ F0(x) can be written this way.

We prove the decomposition by construction with a procedure similar to
polynomial long division. Any function f0 ∈ F0(x) ⊂ V2n−1 can be written in
the basis T2n−1 as

f0(x) =

n−1
∑

k=0

akx
k +

n−1
∑

k=0

bkx
kψ(x),

with suitable coefficients ak and bk. We define the function f1(x) by

f1(x) = f0(x) − an−1x
l−1Rn(x) − bn−1x

l−1ψ(x)Sn(x).

Note that we now have f1 ∈ V2n−3, so we can write

f1(x) =

n−2
∑

k=0

ckx
k +

n−2
∑

k=0

dkx
kψ(x).

with suitable coefficients ck and dk. We define f2(x) by

f2(x) = f1(x) − cn−2x
l−2Rn(x) − bn−2x

l−2ψ(x)Sn(x),

and so on. The procedure can be performed l times until we arrive at

f0(x) = p(x)Rn(x) + q(x)Sn(x) + fl(x),

where p(x) and q(x) are polynomials of degree l− 1 and fl ∈ V2n−1−2l = Vn−1.
However, since f0(xj) = 0 we must have fl(xj) = 0. Therefore Px[fl] ≡ 0, which
is only possible if fl(x) ≡ 0.
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The case where n is odd is analogous, with small differences in the degree of
polynomials involved only.

Lemma 4.3. If n = 2l − 1 is odd, then each f0 ∈ F0(x) can be written as

f0(x) = p(x)Rn(x) + q(x)Sn(x), (25)

with p(x) ∈ Pl−2 and q(x) ∈ Pl−1, and where

Rn(x) = xl − Px[xl], Sn(x) = xl−1ψ(x) − Px[xl−1ψ]. (26)

Conversely, each function of the form (25) with p(x) ∈ Pl−2 and q(x) ∈ Pl−1

lies in F0(x).

From Lemmas 4.2 and 4.3 a set of quadrature points xj can be characterized
as the common roots of the functions Rn(x) and Sn(x). Given a set of points
x, the weights of an interpolatory quadrature rule are found easily. Denote the
n Lagrange functions by Lj(x) ∈ Pn−1, j = 1, . . . , n, i.e.

Lj(xj′) = δj−j′ , j, j′ = 1, . . . , n.

Then we have
wj = I[Lj ]. (27)

For any set of points x, expression (27) yields a quadrature rule that is exact on
Vn−1 by construction. For the set of generalized Gaussian quadrature points,
the rule is exact on V2n−1. Assembling our results, we can prove the following
theorem.

Theorem 4.4. Let x = {xj}nj=1 be a set of n distinct points in (a, b) and define

a quadrature rule Q[f ] =
∑n
j=1 wjf(xj) with weights given by (27). We have

Q[f ] = I[f ] for all f ∈ V2n−1 if and only if

I[xkRn] = 0, k = 0, . . . , l − 1, (28)

I[xkSn] = 0, k = 0, . . . , l − 1, (29)

if n = 2l is even, and

I[xkRn] = 0, k = 0, . . . , l − 2, (30)

I[xkSn] = 0, k = 0, . . . , l − 1, (31)

if n = 2l − 1 is odd. The functions Rn(x) and Sn(x) are defined by (24) for
even n and by (26) for odd n.

Proof. We consider only the case where n = 2l is even. The case of odd n is
proven in an analogous manner.

Assume for the first direction of the ‘if and only if’ statement that x is
such that Q[f ] is exact on V2n−1. It follows from the necessary condition in
Lemma 4.1 that we should have

I[f0] = 0, ∀f0 ∈ F0.

From Lemma 4.2, we may write f0(x) = p(x)Rn(x) + q(x)Sn(x). The functions
Rn(x) and Sn(x) are well defined. We should have I[f0] = 0 for all p ∈ Pl−1

and for all q ∈ Pl−1. This corresponds exactly to conditions (28)–(29).
Conversely, assume that for a given set x the conditions (28)–(29) hold. In

that case, we have from Lemma 4.2 that I[f0] = 0, for all f0 ∈ F0. This,
according to Lemma 4.1, is a sufficient condition for the result.

11
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Figure 1: Plots of the functions Rn(x) (left panel) and Sn(x) (right panel) for
n = 0, . . . , 4, corresponding to the singularity function ψ(x) = x1/3 on [0, 1].
The functions have been normalized such that Rn(0) = Qn(0) = 1. Moreover,
we have set R0(x) = x and S0(x) = x1/3.

Example 4.5. The functions Rn(x) and Qn(x) are illustrated in Figure 1 for
the case ψ(x) = x1/3 on the integration interval [0, 1].

The functions Rn(x) and Sn(x) retain some orthogonality properties: they
are orthogonal to polynomials up to a degree of approximately n/2. They are
not orthogonal to each other: recall that the product of two functions in Vm for
some m may not be integrable, depending on the type of singularity. Yet, the
functions Rn(x) and Sn(x) are not independent, as one completely characterizes
the other and vice-versa through their common roots at the quadrature points.
Denote by R(f) the set of roots of f(x) on (a, b), for any f with n distinct roots.
Then we have the nonlinear relations

Rn(x) = xl − PR(Sn)[x
l], with l =

⌈n

2

⌉

, (32)

and
Sn(x) = xl

′

ψ(x) − PR(Rn)[x
l′ψ], with l′ =

⌊n

2

⌋

. (33)

4.3 Discrete orthogonality

In this section we attempt to further clarify the difference between classical
Gaussian quadrature rules, connected to orthogonal polynomials, and general-
ized Gaussian quadrature rules, connected to the functions Rn(x) and Sn(x).
We will show that the functions Rn(x) and Sn(x) are orthogonal to all functions
in Vn−1 with respect to a discrete scalar product, defined in terms of the points
xj and weights wj of the generalized Gaussian quadrature rule as

un(f, g) :=

n
∑

j=1

wjf(xj)g(xj). (34)

Lemma 4.6. The bilinear form (34) is a real scalar product on Vn−1.

Proof. The form is linear and symmetric. It is positive, un(f, f) ≥ 0, be-
cause the weights are all (strictly) positive. Finally, it is nondegenerate because

12



un(f, f) = 0 implies f(xj) = 0, j = 1, . . . , n and, since no nonzero function in
Vn−1 vanishes at n distinct points, this in turn implies f(x) ≡ 0.

Consider next the following sequence of orthogonal functions rn,k(x). Denote
by {φj}n−1

j=0 a basis for Vn−1, for example 1, ψ, x, xψ, . . .. Set

rn,0(x) := φ0(x), (35)

and define iteratively

rn,k(x) = φk(x) −
k−1
∑

j=0

un(φk, rn,j)

un(rn,j , rn,j)
rn,j(x), k = 1, . . . , n− 1. (36)

This Gram-Schmidt procedure leads to well-defined functions rn,k(x) that are
orthogonal with respect to un.

Next, define the functions

rn,n(x) = xl −
n−1
∑

j=0

un(x
l, rn,j)

un(rn,j , rn,j)
rn,j(x), (37)

with l = ⌈n2 ⌉ and

sn,n(x) = xl
′

ψ(x) −
n−1
∑

j=0

un(x
l′ψ, rn,j)

un(rn,j , rn,j)
rn,j(x), (38)

with l′ = ⌊n2 ⌋.

Theorem 4.7. We have Rn(x) = rn,n(x) and Sn(x) = sn,n(x).

Proof. We have by construction that

un(rn,n, g) = 0, ∀g ∈ Vn−1. (39)

Construct the functions gj ∈ Vn−1 such that gj(xi) = δi,j , i, j = 1, . . . , n.
This is always possible, because Tn−1 is a Chebyshev set. It follows from the
definition (34) and from the property (39) that

un(rn,n, gj) = wjrn,n(xj) = 0.

This implies that rn,n(xj) = 0, j = 1, . . . , n. We also have by construction that
rn,n(x) ∈ span(Tn−1 ∪ {xl}). Moreover, rn,n(x) is nonzero because the basis
function xl has coefficient 1.

The function Rn(x) = xl − Px(xl) is nonzero, has coefficient 1 with xl

and vanishes at the quadrature points. This function is unique, because Px is
invertible on Vn−1. It follows that rn,n(x) = Rn(x).

The proof for the statement Sn(x) = sn,n(x) is analogous.

Theorem 4.7 implies that both Rn(x) and Sn(x) can be found by a Gram-
Schmidt procedure applied to a basis of Vn−1 using the scalar product un. As
the scalar product itself is defined in terms of the quadrature rule however, this
only implicitly determines Rn and Sn. In contrast, consider a similar scalar
product for classical Gaussian quadrature rules. This scalar product uGn can be

13



defined as in (34), but using the points and weights of the classical Gaussian
quadrature rule. The bilinear form uGn coincides with the L2 inner product for
polynomial f and g up to certain degree,

uGn (f, g) =

∫ b

a

w(x)f(x)g(x) dx, ∀f ∈ Pn,∀g ∈ Pn−1.

All computations in the Gram-Schmidt procedure can be performed explicitly,
leading to pn(x). Alternatively, of course, one can employ the three-term recur-
rence formula of orthogonal polynomials. Both schemes are not available in the
setting of generalized Gaussian quadrature.

Example 4.8. An exception to the general case is given by the special case
ψ(x) =

√
x. In that case, it is easy to verify that the product of two functions

in Vn−1 lies in V2n−1. The scalar product un then coincides with the L2 in-
ner product because the quadrature rule is exact on V2n−1. The Gram-Schmidt
procedure can be performed and Rn(x) can be determined explicitly for all n.

In this case the generalized Gaussian quadrature rule is closely related to a
classical Gaussian quadrature rule with the weight function w(y) = 2y. Indeed,
consider the substitution x = y2,

∫ 1

0

f(x) dx =

∫ 1

0

2yf(y2) dy.

For any f(x) = u(x) + v(x)
√
x with polynomial u and v, the function f(y2) is

simply a polynomial in y. The generalized Gaussian quadrature rule with points
xj can also be obtained from the classical Gaussian rule with weight function 2y
and quadrature points yj by xj = y2

j .

5 Scaling of the quadrature rule

One additional useful property of generalized Gaussian quadrature is that they
are invariant to a scaling of the integration interval for a wide variety of functions
ψ with a singularity at one of the endpoints. Consider, without loss of generality,
a singularity function ψ(x) with a singularity at x = 0, and define the integral

Ib[f ] :=

∫ b

0

f(x) dx. (40)

We show that for many cases of practical interest, the generalized Gaussian
quadrature rule for Ib is invariant to a scaling of b, up to a simple scaling of the
weights and quadrature points expressed in (42) below.

5.1 Scaling invariant rules

Assume that f(x) = u(x)+v(x)ψ(x) on [0, b]. We are interested in the points xj,b
and weights wj,b of a generalized Gaussian quadrature rule on [0, b]. Rescaling
the interval to [0, 1] by letting x = bt, we note that (bt)α = bαtα and that
log(bt) = log b+ log t. This motivates the following lemma.
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Lemma 5.1. If
ψ(bt) = Abψ(t) +Bb. (41)

then
wj,b = bwj,1, and xj,b = bxj,1. (42)

Proof. We rescale the interval to [0, 1]. We have Ib[f ] = b I1[f̃ ] with

f̃(t) = f(bt) = u(bt) + v(bt)ψ(bt).

Using (42) we write

f̃(t) = u(bt) +Abv(bt) +Bbv(bt)ψ(t) =: ũ(t) + ṽ(t)ψ(t).

Note that if u and v are polynomials of degree n−1, then ũ(t) = u(bt)+Abv(bt)
and ṽ(t) = Bbv(bt) are also polynomials of the same degree. Therefore, if the
points and weights xj,1 and wj,1 are a generalized Gaussian quadrature rule
on [0, 1], then the scaled points and weights given by (42) are a generalized
Gaussian quadrature rule on [0, b] for the integral (40).

Note that, contrary to alternative approaches where the singularity function
ψ(x) has been included into a weight function (see, for example, [14]), in gen-
eralized Gaussian quadrature it is not necessary to know the constants Ab and
Bb. One only evaluates the function f(x) on [0, b] in the points bxj,1.

5.2 Nearly scaling invariant quadrature rules

We say that singularity functions satisfying (41) give rise to scaling invariant
quadrature rules because exactness is retained for f(x) = u(x) + v(x)ψ(x),
x ∈ [0, b], when u(x) and v(x) are polynomials of sufficiently small degree. Less
restrictive conditions on ψ than those of Lemma 5.1 may still yield useful results
however, as the following lemma shows.

Lemma 5.2. Assume that

ψ(bt) = p(t, b)ψ(t) + q(t, b). (43)

Then for f(x) = u(x) + v(x)ψ(x), x ∈ [0, b], we have
∣

∣

∣

∣

∣

∣

Ib[f ] −
n

∑

j=1

wj,bf(xj,b)

∣

∣

∣

∣

∣

∣

≤ 1

(n− 1)!

(

W‖ũ(n)‖∞ + (2WCψ +Wψ)‖ṽ(n)‖∞
)

with ũ(t) = b[u(bt)+q(t, b)], ṽ(t) = bv(bt)p(t, b), t ∈ [0, 1] and with wj,b and xj,b
given by (42).

Proof. Letting x = bt, we obtain
∫ b

0

f(x) dx = b

∫ 1

0

[u(bt) + q(t, b) + v(bt)p(t, b)ψ(t)] dt.

We then apply Theorem 3.4 using the definitions of ũ and ṽ.

This Lemma shows that if p(t, b) and q(t, b) are smooth functions, in the
sense that they are sufficiently differentiable and have small derivatives, then
the scaled quadrature rule carries small error. The rule is in general no longer
exact however for polynomial u and v. As before, explicit knowledge of the
functions p(t, b) and q(t, b) is not required, one simply evaluates f(x).
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5.3 Nearly singular integrals

Generalized Gaussian quadrature rules loose some of their appeal in the setting
of nearly singular integrals. Consider for example the integral

∫ 1

0

u(x) + v(x)ψ(x+ δ) dx

with δ ≥ 0. Let us first note that convergence is not the issue. A generalized
Gaussian quadrature rule exists for each value of δ, with the quadrature points
xj(δ) and weights wj(δ) depending on δ. Following Theorem 3.4, the quadrature
error is small uniformly in δ if the quantities

Wψ =

∫ 1

0

w(x)ψ(x+ δ) dx,

and
min( | sup

x∈[0,1]

ψ(x+ δ)| , | inf
x∈[0,1]

ψ(x+ δ)| )

are bounded in δ, or grow only slowly with δ. This can be readily verified for
many singularity functions ψ(x) of interest.

Issues may arise in applications however if integrals appear with a range of
values of δ. The points xj(δ1) and xj(δ2) are not related by a simple scaling in
this setting. The quadrature rule has to be constructed for each separate value
of δ. One can conceivably approximate the functions xj(δ) and wj(δ) a priori
as a function of δ. This approximation is a current subject of further study.

6 Numerical construction methods

A numerical method for the construction of generalized Gaussian quadrature
rules was first described in [20]. Starting from a known classical Gaussian
quadrature rule, a continuation process is started where the polynomial ba-
sis functions are transformed smoothly into the desired Chebyshev set of func-
tions {φk}2n

k=1. At each intermediate stage in the process, generalized Gaussian
quadrature rules are computed via Newton’s method by solving a set of n non-
linear equations in the unknowns xnj (thereby assuming that this intermediate
rule exists, which in general need not be the case). The continuation is necessary
to provide starting points for the final computation that are sufficiently close
to the true solution, in order to ensure the convergence of Newton’s method for
the quadrature rule one is interested in.

A different approach was proposed in [30] by performing continuation on the
weight function. There, the authors solve a nonlinear system of 2n equations,

w1φk(x1) + w2φk(x2) + . . .+ wnφk(xn) = Iδ[φk], k = 1, . . . , 2n, (44)

where the weight function depends on the continuation parameter δ. The size of
the system is larger, with 2n equations rather than n, but the Jacobian assumes
a much simpler form and the method is reported to be more robust.

In this section, we briefly outline three separate approaches for the compu-
tation of generalized Gaussian quadrature rules in our framework of functions
with an isolated singularity in ψ(x).
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6.1 Exploiting orthogonality

The function Rn completely characterizes the generalized Gaussian quadrature
rule. In the case of even n, n = 2l, let

Rn(x) = xl +

l−1
∑

k=0

akx
k +

l−1
∑

k=0

bkx
kψ(x).

This form has n unknowns. However, the function Rn satisfies l = n/2 orthogo-
nality conditions (28) that result in linear relations in the unknown coefficients
ak and bk. We may therefore write l coefficients in terms of the l other coeffi-
cients. The remaining l degrees of freedom are used to satisfy the orthogonality
conditions (29) for Sn.

This approach reduces the size of the nonlinear system of equations from
2n to n/2 equations. In principle, this is a substantial reduction. However,
the Jacobian of this system of equations is rather involved. The method in
particular requires an implementation of the mapping from Rn to Sn as given
by (33). As a result, we found that in practice it is faster to solve the larger
set of equations in all cases we considered. An easier method to exploit the
existence of the functions Rn and Sn numerically does not seem apparent.

6.2 A bootstrapping algorithm

From the general theory of Chebyshev sets, one knows that the quadrature
points xnj of various n interlace, i.e.,

xnj ∈ (xn+1,j , xn+1,j+1).

From this, we construct starting points x∗n+1,j as follows. Having computed
xn,j , we set

x∗n+1,1 = (a+ xn,1)/2,

x∗n+1,j = (xn,j−1 + xn,j)/2, j = 2, . . . , n, (45)

x∗n+1,n+1 = (xn,n + b)/2.

Newton’s method is then used to solve the set of equations (44) with x∗ as
starting points and starting weights computed from (27).

A small, yet crucial difference with [30] is that we use Newton’s method
with damping [23]. Here, a damping parameter is used to restrict the size of the
step in each iteration. The occasional lack of convergence of Newton’s method
without damping appears to be remedied by a small number of initial iterations
with damping. This approach has the clear advantage that no continuation is
necessary. Even though the approach requires the computation of all lower order
quadrature rules Qm, for m = 1, . . . , n, we found it to be fastest in practice.
The initial rule Q1 is easily computed analytically.

In principle, convergence of this approach is not guaranteed, not even when
the damping parameter goes to zero. However, we found that the approach
converged for all examples that the authors have implemented so far. Note that
this is the method we have used in all numerical examples of this paper.
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Figure 2: Absolute error E in the approximation of I1 by a generalized Gaussian
quadrature rule with n points. The error is shown in base-10 logarithmic scale.

6.3 A continuation method

If the function ψ(x) is a smooth function away from x = 0, an alternative
continuation approach becomes viable. One can perform continuation on the
parameter δ, for functions of the form

f(x) = u(x) + v(x)ψ(x+ δ).

For large δ, the span of the basis Tn−1 is close to the span of a polynomial basis.
For increasing δ the generalized Gaussian quadrature rule therefore converges
to the classical Gaussian quadrature rule. Starting from the classical Gaussian
quadrature rule and sufficiently large δ, continuation on δ may be performed
until δ has the desired (small) value. Convergence is guaranteed in this approach
by taking sufficiently small steps.

7 Examples

We end this paper with three numerical examples. We used the bootstrapping
method described in §6.2 to compute all quadrature rules with the following
damping approach. If Newton’s method without damping failed to converge,
we started a new iteration from the starting values using a damping factor
1/2 in the first five iterations only. This process was repeated, halving the
damping factor of the first five iterations after each restart, until convergence
was achieved. No examples failed to converge with this approach. The majority
of computations did not require any damping. Computations were performed
in Maple in high precision arithmetic in order to illustrate the convergence to
high accuracy. The evaluation of the quadrature rules was also replicated for
all examples in IEEE double precision in Matlab to confirm stability of the
computations up to machine precision (this is not shown in the figures).

As our first example, consider the integral

I1 :=

∫ 1

0

H
(1)
0 (x) dx,
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Figure 3: Absolute error (in base-10 logarithmic scale) of generalized Gaussian
quadrature for a logarithmically singular integral with exponential decay (left
panel) and for a nearly singular integral involving a square root (right panel).

where H
(1)
0 (x) is the Hankel function of the first kind and order zero. The

integrand has the form u(x)+v(x) log(x), but it is not straightforward to obtain
expressions for u and v [1]. The convergence rate is shown in Figure 2. Machine
accuracy in double precision is obtained approximately at n = 9 points.

In the second example we consider the integral

I2 =

∫ ∞

0

xH
(1)
1 (x)e−(1+i)x dx,

where H
(1)
1 is the Hankel function of the first kind of order zero. Integrals of

this type appeared in computational models for scattering phenomena [13], for
the evaluation of oscillatory integrals using a steepest-descent approach [12].
The integrand is continuous at x = 0 but has a logarithmic singularity in its
derivatives. It decays like e−x for large x. We constructed generalized Gaussian
quadrature rules with the singularity function ψ(x) = log(x) and the weight
function w(x) = e−x. The results are shown in the left panel of Figure 3. The
starting values (45) were slightly modified in this case, because the right end-
point of the integration interval is infinite. As a starting value for the rightmost
quadrature point, we used

x∗2,2 = x1,1 + 2,

x∗n+1,n+1 = xn,n + (xn,n − xn−1,n−1), n = 2, . . . .

In the third example we consider the integral

I3 :=

∫ 1

0

√

0.01 + x+ x2(cos(x) + sin(x)) dx.

This example illustrates both the advantages and disadvantages of general-
ized Gaussian quadrature for nearly singular integrals. The integral behaves
as u(x)

√
x− ǫ+ v(x) for x→ ǫ where ǫ = −0.0101 . . . is the root of

0.01 + x+ x2 = 0

closest to the interval [0, 1]. Convergence is illustrated in the right panel of
Figure 3 using ψ(x) =

√
x+ ǫ. Similar, though slightly worse results were
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obtained by using ǫ = 0.01. The disadvantages for nearly singular integrals are
that best results are obtained with a sharp estimate of ǫ and that the quadrature
rule depends on ǫ. The advantage is that convergence is very rapid. Machine
accuracy in double precision is reached approximately at n = 9 points.
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