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Abstract We describe the first implementation

of the Barvinok–Woods (2003) algorithm, which

computes a short rational generating function for

an integer projection of the set of integer points

in a polytope in polynomial time, when the dimen-

sion is fixed. The algorithm is based on Kannan’s

partitioning lemma and the application of set op-

erations to generating functions that correspond to

these sets. We use a variant of the recent strength-

ening of the partitioning lemma due to Eisenbrand

and Shmonin (2007) and provide several algorith-

mic refinements to avoid performing redundant set

operations. The implementation has been done in

the second author’s library barvinok.
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tions

1 Introduction

Barvinok [1] introduced an algorithm for determin-
ing the exact number of lattice points in a rational
polytope P ⊆ Rn that runs in polynomial time for
every fixed dimension n. The algorithm computes a
representation of the generating function

g(P ; ξ) =
∑

x∈P∩Zn

ξx =
∑

x∈P∩Zn

ξx1

1 · · · ξxn

n (1.1)

∗Part of this work was completed at the Dept. of Computer

Science, Katholieke Universiteit Leuven

as a rational function of polynomial encoding size
(in fixed dimension). Such short rational generating
functions of lattice point sets can be manipulated
efficiently. For example, residue techniques can be
used to evaluate g(P ;1), which provides the number
of lattice points of P . Also, Barvinok and Woods [2]
proved that arbitrary constant-length Boolean com-
binations of finite lattice point sets given by rational
generating functions can be constructed in polyno-
mial time (when the dimension is fixed).

The topic of this paper is a more general construc-
tion also due to Barvinok and Woods [2]. Let P ⊆
Rn be a polytope. Let π : Zn → Zk be a Z-linear
map and denote by S = π(P ∩ Zn) the image (pro-
jection) of P∩Zn. Barvinok and Woods [2, Theorem
1.7] proved that a short rational generating function
for this projection can be constructed in polynomial
time, when the dimension is fixed:

Theorem 1.2 (Projection Theorem) Let the
dimension n be fixed. Then there exist a con-
stant s(n) and a polynomial-time algorithm for
the following problem. Given as input, in binary
encoding,

(I1) inequalities describing a rational poly-
tope P ⊂ Rn,

(I2) a linear map π : Zn → Zk,

output, in binary encoding,

(O1) rational numbers γi, integer vectors ci, dij

for i ∈ I, j = 1, . . . , si, where si ≤ s(n),



such that a rational generating function of the set
S = π(P ∩ Zn) is given by

g(S; ξ) =
∑

i∈I

γi

ξci

(1 − ξdi1) . . . (1 − ξdisi )
. (1.3)

This projection theorem has many important
consequences in integer programming [3], multi-
objective integer linear programming [4], bilevel in-
teger programming and algorithmic game theory [5].
To the best of our knowledge, no implementation of
the Barvinok–Woods projection algorithm has ap-
peared in the literature. Because the algorithm con-
tains complicated constructions such as algorithmic
flatness theory and iterated Boolean combinations
of rational generating functions, the algorithm has
frequently been referred to as “unimplementable”.

This paper attempts to change that. We report
on the first-ever implementation of the algorithm,
within the second author’s library barvinok [6]. The
implementation makes use of several refinements of
the algorithm, which we also discuss in the paper.

2 The Barvinok–Woods Inte-

ger Projection Algorithm

We discuss the algorithm in a more general, para-
metric setting introduced by [7] that deals with
counting functions

c(s) = #
{

t ∈ Zd | ∃u ∈ Zm : (s, t,u) ∈ P
}

,

where P ⊂ Qn+d+m is a rational pointed polyhe-
dron such that Ps =

{

(t,u) ∈ Qd+m | (s, t,u) ∈ P
}

is bounded for any s. (Note that, in contrast to [2],
we may allow P itself to be unbounded here.) For de-
tails we refer to [7] and simply mention that we need
to compute a rational generating function f(x,y) for
the projection

T = {(s, t) ∈ Zn+d | ∃u ∈ Zm : (s, t,u) ∈ P},

and then
∑

s
c(s)xs = f(x,1). If there is only one

existentially quantified variable (m = 1), then com-
puting T is easy: We shift P by 1 in the u direction
and subtract this shifted copy from the original,

D = (P ∩ Zn+d+m) \
(

en+d+1 + (P ∩ Zn+d+m)
)

.

In the difference D there will be exactly one value
of u for each value of the remaining variables for
which there was at least one value of u in P . Thus
the projection from D onto T is one-to-one. All of
this can then be implemented on the level of rational
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Figure 2.1: A polytope and its integer projections;
the same after unimodular transformation

generating functions, using Boolean operations and
monomial substitution.

If there is more than one existentially quantified
variable (m > 1), then we can in principle apply
this technique recursively. A complication is that,
after applying the technique in one direction, the
resulting set S can contain “gaps”. In Figure 2.1,
imagine m = 2 and we want to project down to
a single point. After projecting onto the horizontal
direction, the biggest gap is 3, so we need to compute

S \ (en+d+1 + S) \ (2en+d+1 + S) \ (3en+d+1 + S).

In general, there is no bound on the widths of the
gaps we may encounter. However, as a consequence
of flatness theory for lattice-point-free convex bod-
ies, it is possible to construct directions of small gaps
for the parametric polytopes Ps,t. We first need to
introduce the notion of lattice width.

Definition 2.2 We define the width of the polytope
Ps,t in an integer direction c ∈ Zm \ {0} as

widthc Ps,t = max
x∈Ps,t

〈c,x〉 − min
x∈Ps,t

〈c,x〉. (2.3)

The lattice width is the minimum width:

width Ps,t = min
c∈Zm\{0}

widthc Ps,t. (2.4)

The following “small-gaps theorem” is a version
of Theorem 4.3 in [2].

Theorem 2.5 Let κ ≥ 1 and let c ∈ Zm be a κ-
approximative lattice width direction, i.e.,

widthc Ps,t ≤ κ · width Ps,t.

Then the image Y = { 〈c,x〉 | x ∈ Ps,t ∩ Zd } does
not have gaps larger than κ · ω(m).

Here ω(m) is the flatness constant ; it only depends
on the dimension m [8, 9, 10]. Kannan [11] proved
the following theorem:



Theorem 2.6 (Kannan) Let the total dimension
n + d + m be fixed. Then there exists a polynomial-
time algorithm for the following problem. Given as
input, in binary encoding,

(I1) integers n, d, m,

(I2) inequalities describing a rational poly-
tope P ⊂ Rn+d+m,

output, in binary encoding,

(O1) inequality systems describing partially open
polyhedra Q̃1, . . . , Q̃M ⊂ Rn+d that form a
partition of the projection, Q, of P onto the
first n + d coordinates,

(O2) integer vectors c1, . . . , cM ∈ Rm,

such that ci is a 2-approximative lattice width direc-
tion for every polytope Ps,t when (s, t) ∈ Q̃i.

(We will discuss a stronger version of Theorem 2.6,
due to [12], in section 3.)

Now let Pi = P ∩ (Q̃i × Qm) and let fi(x,y) be
the generating function of the set

Ti = {(s, t) | ∃u ∈ Zm : (s, t,u) ∈ Pi}.

Then clearly, f(x,y) =
∑

i fi(x,y). From now on,
we will consider a particular Pi with corresponding
κ-approximative lattice width direction ci and drop
the i subscript. We are thus given a polyhedron P

such that a κ-approximative lattice width direction
of Ps,t is c. Without loss of generality, c is primitive,
so we can extend the row vector cT to a unimodular
matrix, which we use to transform the u variables
in the polyhedron P ; see Figure 2.1. Using the no-
tations u′ and P ′, we have

T = {(s, t) | ∃u′ ∈ Zm : (s, t,u′) ∈ P ′},

i.e., we have changed the values of the existentially
quantified variables, but we have not changed the
set T . Now consider the set

T ′ = {(s, t, u′
1) | ∃u′

2, . . . , u
′
m ∈ Z : (s, t,u′) ∈ P ′}.

This set has only m−1 existentially quantified vari-
ables, so we apply the projection algorithm recur-
sively and obtain the generating function f ′(x,y, z)
for T ′. By construction, the gaps in the final coordi-
nate of T ′ are small (≤ κ · ω(m)). We now compute
the generating function f(x,y) for T . By computing

f ′′(x,y, z) = f ′(x,y, z)

⌊κω(m)⌋
⊙

k=1

(

zkf ′(x,y, z)
)

,

(2.7)

where ⊙ is the set-difference operation on generating
functions, we obtain a generating function for a set
T ′′ where only the smallest value of u′

1 is retained.
Thus the projection from T ′′ onto T is actually one-
to-one, and we have f(x,y) = f ′′(x,y, 1).

3 The Eisenbrand–Shmonin

Variant of Kannan’s Parti-

tioning

In computational experiments we observed that
the number of set-difference operations in (2.7),
⌊κ · ω(m)⌋, has a great influence on the complex-
ity of the resulting formulas and the running time.
Since the number ω(m) is a fixed constant from flat-
ness theory, the question arises whether there is a
way to improve the approximation guarantee κ. In
fact, there is — in a recent work, Eisenbrand and
Shmonin [12] showed that it is actually possible, in
polynomial time in fixed dimension, to compute a
partition of the parameter space that gives the ex-
act lattice widths (κ = 1).

3.1 Description of the Method

In the following, we give an informal description of
the method of Eisenbrand and Shmonin. In the
defining equation (2.3) for the width of the poly-
tope along any given direction c, it is clear that the
minimum and maximum are attained at (different)
vertices of Ps,t. The idea of the algorithm is then to
consider all pairs of basic solutions that correspond
to vertices v(s, t) of Ps,t, to compute all candidate
integer directions for a given pair of such vertices
and then to compute the minimum width over all
candidate integer directions found. For any given
basic solution v(s, t), the (rational) directions for
which this vertex is minimal form the inner normal
cone C∗ of the vertex. Suppose we have a pair of
basic solutions, v1(s, t) attaining the minimum and
v2(s, t) attaining the maximum; thus the set of (ra-
tional) directions for this pair of vertices is the “trun-
cated cone” C1,2 = (C∗

1 ∩ −C∗
2 ) \ {0}. A sufficient

set of candidate integer directions are the vertices of
the integer hull of C1,2; all other integer directions
in C1,2 are dominated. As Eisenbrand–Shmonin ob-
served, it now follows from [13] that this set of can-
didates is of polynomial size (in fixed dimension).
After computing all candidates ci, we construct the
chambers where each of the widths is minimal, i.e.,

Qi = { (s, t) ∈ Q | ∀j : widthci
Ps,t ≤ widthcj

Ps,t }.
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Figure 3.1: A polytope and its candidate width di-
rections

Many of the Qi will be empty or of lower dimension.
Note that some of the Qi will have nonempty inter-
section (along common facets). To obtain a partition
of Q, Eisenbrand–Shmonin now use a lexicographic
technique to replace the Qi by partially open cham-
bers Q̃i.

3.2 Algorithmic Refinements

Depending on the parameter space Q, there can be
basic solutions that are never primal feasible. More-
over, in the case of non-simple polytopes, several
basic solutions correspond to the same parametric
vertex. Instead of using all pairs of simplex bases, as
proposed by Eisenbrand and Shmonin, we therefore
consider all pairs of parametric vertices that become
active on the parameter space Q.

Instead of Eisenbrand–Shmonin’s lexicographic
technique, we use the technique of [14], which yields
a partition into partially open full-dimensional
chambers Q̃i.

In the following two sections, we discuss two im-
plementation strategies for computing the integer
hulls of the truncated cones C1,2.

3.3 Using Generalized Basis Reduc-

tion

One way of computing the integer hull of a truncated
cone C1,2 is based on generalized basis reduction.
We first describe how to compute the convex hull of
a set given as an oracle for optimizing a linear objec-
tive function over the set. Then we explain how to
optimize a linear objective function over the integer
points of a polyhedron, using an integer feasibility

test implemented with generalized basis reduction.
Applying the first with the second as optimization
oracle yields a method for computing the requested
integer hull.

3.3.1 Computing the convex hull based on
an optimization oracle

The algorithm described below is an application of
[15, Remark 2.5]; see also [16, 17, 18, 19]. Let {rj} be
the smallest integer representatives of the extremal
rays of the truncated cone C1,2 (Figure 3.2). The al-
gorithm starts out from the polyhedron conv {rj}+
pos {rj}, which is certainly contained in the convex
hull of S = C1,2∩Zm. We then take one of its facets
and use the optimization oracle to compute a point
in S that maximizes the outer normal of this facet.
If a new point is found, it is added to the set of
points and a new (larger) convex hull is computed.
If not, the facet is guaranteed to be a facet of the
convex hull of S.

3.3.2 Minimizing a linear function over the
integer points of a polyhedron

For this task, using a general-purpose IP solver such
as CPLEX [20] is a possibility, but it may easily
run into numerical difficulties for the problems at
hand. Instead we use binary search based on an
exact integer feasibility test (oracle). Such an in-
teger feasibility test is possible using the technique
of [21], based on generalized basis reduction. The
technique basically looks for a “short vector” c in
the lattice Zd, where shortness is measured in terms
of the width of the polytope P along that direction,
and then branches on hyperplanes orthogonal to this
direction. The computation of the reduced basis
requires the solution of many linear programs, for
which we use any of the solvers GLPK [22], cdd [23],
piplib [24]. We remark that these solvers have very
different characteristics.

3.4 Using Hilbert Bases

The Hilbert basis of a pointed cone C is the minimal
set of points bi ∈ C ∩ Zd such that every integer
point x ∈ C ∩ Zd can be written as a non-negative
integer combination of the bi. Thus it is a superset
of the set of vertices of the integer hull of C \ {0}
(Figure 3.2). Though no polynomiality results are
available for Hilbert bases (they are typically expo-
nentially large), efficient software implementations
are available, such as the zsolve library from 4ti2
[25], which implements the technique of [26]. Hence,
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Figure 3.2: The Hilbert basis and the integer hull of
a truncated cone.

an alternative practical way of computing the inte-
ger hull is to first compute the Hilbert basis of C

and to remove the points that are not vertices of the
integer hull of C \ {0}. The latter can be done by
linear programming.

4 Algorithmic Refinements

4.1 Stopping early

The only remaining problem is that the “⊙” opera-
tion in (2.7) is fairly expensive. The key step is the
computation of the Hadamard product (⋆) of the two
generating functions, defined by

∑

s

as xs ⋆
∑

s

bs xs =
∑

s

asbs xs.

Computing the Hadamard product has a time com-
plexity which, while polynomial if the dimension (in
this case the maximum of the si in (1.3)) is fixed,
is exponential in this dimension. Furthermore, this
dimension increases by maxi si − d > 0 on each suc-
cessive application of the Hadamard product. Now,
the total number of Hadamard products we must
compute is bounded by a constant ⌊ω(m)⌋ and so
the increase in dimension is also bounded by a con-
stant, so the whole operation is still polynomial for
fixed dimension. Nevertheless, we do not want to
perform more Hadamard products than we have to.
That is, we would like to be able to detect when we
can stop performing these operations before reaching
the upper bound ⌊ω(m)⌋.

Let f ′
0(x,y, z) = f ′(x,y, z) and let f ′

k(x,y, z) be
the result of applying the “set difference” in (2.7)
k times. Denote the corresponding sets by T ′

0 and
T ′

k. We want to find the smallest k such that
f ′′(x,y, z) = f ′

k(x,y, z). Any further application
of the set difference operation will not change this
rational function, but it will typically produce a

different (more complex) representation. To check
whether the current k is sufficient, we are going to
see whether any element of T ′

k still appears in a
shifted copy of T ′

0, with shift greater than or equal
to k + 1. That is, we want to decide if the following
set is empty:

∞
⋃

l=k+1

(

T ′
k ∩ (len+d+1 + T ′)

)

.

We compute the corresponding generating function

h(x,y, z) =
∞
∑

l=k+1

f ′
k(x,y, z) ⋆ zl f ′(x,y, z)

= f ′
k(x,y, z) ⋆

(

∞
∑

l=k+1

zl f ′(x,y, z)

)

= f ′
k(x,y, z) ⋆

zk+1 f ′(x,y, z)

1 − z
.

The current k is sufficient if and only if h(x,y, z)
is identically zero. It suffices to check whether
h(1,1, 1) = 0. We note that some care needs to
be taken here since we allow the polyhedron P to be
unbounded.

Lemma 4.1 Fix k and s. Given a rational gener-
ating function g(S; ξ) of the form (1.3) with si ≤ s

and such that S ⊂ Q, with Q ⊂ Qk a pointed (but
possibly unbounded) polyhedron. Then there exists a
polynomial time algorithm that determines whether
g(S;1) diverges and computes the value of g(S;1) if
it does not.

We omit the proof.
Note that testing whether we can stop is more

expensive than applying the next iteration (since we
have an extra (1 − z) factor in the denominator of
one of the operands). However, we may save many
iterations by stopping early and we will not need-
lessly replace a given representation of f ′′(x,y, z) by
a more complex representation (with more factors in
the denominator).

4.2 Small gaps in low dimensions

There is a possibility for improving the bound of
the small-gaps theorem (Theorem 2.5), at least for
special cases or low dimensions. We present a first
result for two-dimensional polytopes, where we can
prove that the gaps in the lattice width direction will
actually always be one. Note that the ω(2) bound is
too coarse to reach this conclusion as ω(2) > 2.



Table 1: Computational results

Problem

ex1 woods 2.1.7 pugh param. pugh scarf1

Parameter variables s n 0 1 0 1 2

Variables t d 0 0 0 0 0

Existentially quantified variables u m 2 2 2 2 2

Inequalities 4 4 4 4 5

Parametric Vertices 4 4 4 4 6

Width directions 7 3 8 8 6

Distinct width directions 4 2 7 7 4

Chambers 1 2 1 6 2

LPs solved in generalized basis reduction 8 49 43 4

Without exploiting small gaps in dimension 2

Computation time (CPU seconds) 0.11 29.2 0.09 797 126

Exploiting small gaps in dimension 2

Computation time (CPU seconds) 0.08 2.7 18.0 1.1

Lemma 4.2 For any rational polygon, there is a
lattice width direction whose gaps are always one.

We omit the proof.

5 Computational Experiments

We show the results of preliminary computational
experiments with the implementation in Table 1.
We have run the implementation on several test
problems, using the generalized basis reduction tech-
nique described in subsection 3.3. ex1 is the ex-
ample from Figure 2.1; woods 2.1.7 and scarf1 are
examples that come with the library barvinok [6];
pugh is the “Omega nightmare” from [27] and param.
pugh is a parametric version of this nightmare. We
also made initial experiments using the Hilbert basis
technique, but the results were disappointing; em-
ploying additional truncation techniques might help.

The table also shows the effect of using tighter
gap-length estimates. If we use the improved esti-
mate of Lemma 4.2, the running time and complex-
ity of the resulting formula is reduced dramatically.

In future experiments, we will try out larger prob-
lems and also new algorithmic refinements.
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