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Abstract The optimal design and operation of dy-
namic bioprocesses gives in practice often rise to opti-

misation problems with multiple and conflicting objec-

tives. As a result typically not a single optimal solution

but a set of Pareto optimal solutions exist. From this set

of Pareto optimal solutions, one has to be chosen by the
decision maker. Hence, efficient approaches are required

for a fast and accurate generation of the Pareto set such

that the decision maker can easily and systematically

evaluate optimal alternatives. In the current paper the
multi-objective optimisation of several dynamic biopro-

cess examples is performed using the freely available

ACADOMulti-Objective Toolkit (www.acadotoolkit.org).

This toolkit integrates efficient multiple objective scalar-

isation strategies (e.g., Normal Boundary Intersection
and (Enhanced) Normalised Normal Constraint) with

fast deterministic approaches for dynamic optimisation

(e.g., Single and Multiple Shooting). It has been found

that the toolkit is able to efficiently and accurately pro-
duce the Pareto sets for all bioprocess examples. The

resulting Pareto sets are added as supplementary ma-

terial to this paper.
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1 Introduction

Multiple and conflicting objectives appear often in the

design and optimisation of dynamic bioprocesses (e.g.,

[12,23,24,33,39]). The resulting multi-objective optimi-
sation problems yield a set of so-called Pareto optimal

solutions instead of one single optimal solution in single-

objective optimisation problems [29]. Once this Pareto

set is generated, the decision maker (e.g., the process
or design engineer) can select one of the solutions ac-

cording to his/her own preferences. Hence, the fast and

accurate determination of these Pareto sets is of high

importance for enhancing real-time decision making in

practice.

Broadly speaking two classes of methods for gen-

erating the Pareto set exist: vectorisation and scalar-

isation methods. Vectorisation methods often involve

stochastic evolutionary algorithms [7] and tackle the

multi-objective optimisation problem directly. Most of-
ten a population of candidate solutions is updated based

on repeated cost evaluations in order to evolve gradu-

ally to the Pareto frontier. These methods are often suc-

cessfully used (see, e.g., [33] for bioreactor case studies).
However, these approaches (i) may become time con-

suming due to the repeated model simulations required,

(ii) are less suited to incorporate constraints exactly,

and (iii) are limited to rather low dimensional search

spaces. In contrast, scalarisation methods convert the
multi-objective optimisation problem into a paramet-

ric single-objective optimisation problem [9]. The most

popular scalarisation approach is the Weighted Sum

(WS) of the individual objectives. Minimising this WS
for different weight values with fast deterministic de-

rivative-based optimisation routines yields an approxi-

mation of the Pareto set. However, well-known draw-
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backs for the WS are that an equal distribution of

weights does not necessarily lead to an even spread

along the Pareto front, and that points in a non-convex

part of the Pareto front cannot be obtained [5]. Re-

cent scalarisation based multiple objective optimisation
techniques as Normal Boundary Intersection (NBI)[6]

and (Enhanced) Normalised Normal Constraint ((E)NNC)

[27,30] are able to mitigate these disadvantages of the

WS and still allow the use of fast gradient-based solvers.

Therefore, the rationale is to use NBI and (E)NNC

in deterministic direct dynamic optimisation approaches

in order to efficiently solve dynamic bioprocess optimi-

sation problems with multiple objectives. All approaches
are implemented in the ACADO Multi-Objective Tool-

kit [19], which is an extension of the Automatic Control

and Dynamic Optimisation Toolkit ACADO [14]. Both

are freely available at www.acadotoolkit.org.

The paper is structured as follows. Section 2 intro-

duces the general mathematical formulation and con-

cepts. Section 3 describes the ACADO Multi-Objective

Toolkit and its features. Results for four bioprocess test
examples are presented in Section 5. Section 6 sum-

marises the conclusions.

2 Mathematical formulation

In general, dynamic optimisation problems with multi-

ple objectives can be formulated as follows.

min
x(t),u(t),p,tf

{J1, . . . , Jm} (1)

subject to :
dx

dt
= f(x(t),u(t),p, t) t ∈ [0, tf ] (2)

0 = bc(x(0),x(tf ),p) (3)

0 ≥ cp(x(t),u(t),p, t) (4)

0 ≥ ct(x(tf),u(tf),p, tf) (5)

Here, x are the state variables, while u and p denote

the time varying and time constant control variables,
respectively. The vector f represents the dynamic sys-

tem equations (on the interval t ∈ [0, tf ]) with boundary

conditions given by the vector bc. The vectors cp and

ct indicate respectively path and terminal inequality
constraints on the states and controls. Each individual

objective function can consist of both Mayer and La-

grange terms.

Ji = hi(x(tf),p, tf) +

∫ tf

0

gi(x(t),u(t),p, t)dt (6)

Whenever needed, the maximisation of a specified ob-

jective J ′

i is achieved by using instead Ji = −J ′

i as

objective function in the minimisation frame. The ad-

missible set S is defined as the set of feasible points

y = (x(·),u(·),p, tf ) that satisfy the dynamic equation

as well as the boundary, path and terminal constraints.

In multi-objective (MO) optimisation, typically a

set of Pareto optimal solutions must be found.

A point ya ∈ S is Pareto optimal if and only if there

is no other point yb ∈ S with Ji(yb) ≤ Ji(ya) for all

i ∈ {1, . . . ,m} and Jj(yb) < Jj(ya) for at least one

j ∈ {1, . . . ,m}.

In general terms, a solution is said to be Pareto

optimal if there exists no other feasible solution that

improves one objective function without worsening an-
other.

3 ACADO Multi-Objective Toolkit

The ACADO Toolkit is a freely available C++ tool for
automatic control and dynamic optimisation [14]. Due

to its self-contained nature it does not require third-

party software. However, it can also easily be extended

or coupled with external packages based on the flexi-
ble object-oriented implementation. The syntax which

is close to the mathematical problem formulation en-

hances the user-friendliness. ACADO Multi-Objective

Toolkit [19] extends the original ACADO Toolkit with

several multi-objective optimisation approaches.

The idea behind ACADO Multi-Objective Toolkit

is the efficient combination of scalarisation techniques

for multi-objective optimisation with fast determinis-
tic derivative-based direct optimal control methods. In

scalarisation methods the original multi-objective op-

timisation problem is converted into a series of single-

objective optimisation problems. Each solution yields

one point of the Pareto set. By consistently varying
the scalarisation parameter(s) (which are often referred

to as weight(s)) an approximation of the Pareto set

is obtained. In direct optimal control approaches the

original infinite dimensional optimal control problem is
transformed via discretisation into a finite dimensional

Nonlinear Program (NLP). Sequential strategies (e.g.,

Single Shooting [31]) discretise only the controls lead-

ing to small but dense NLPs, while simultaneous ap-

proaches (e.g., Multiple Shooting [3] and Orthogonal
Collocation [2]) discretise both the controls and states,

resulting in large but structured NLPs. Typically the

resulting NLPs are solved by fast deterministic optimi-

sation routines.

Several software packages for the solution of op-

timal control problems exist. Commercial software is,
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Fig. 1 Scheme of the ACADO Multi-Objective Toolkit.

e.g., gPROMS [25] and PROPT [26]. Non-commercial

codes involve, e.g., DynoPC [16], MUSCOD-II [17,18],
DyOS [34] and DOTcvpSB [13]). However, to the best

of the authors’ knowledge, none of them offers system-

atic multi-objective features.

Figure 1 displays the structure of ACADO Multi-

Objective Toolkit. The following features have been im-

plemented in the toolkit.

– Multi-objective optimisation methods.The im-
plementation exploits scalarisation approaches asWS,

NBI, NNC and ENNC. The ideas behind the meth-

ods are the following. NBI first builds a plane in

the objective space which contains all convex com-

binations of the individual minima, i.e., the convex
hull of individual minima (CHIM), and then con-

structs (quasi-)normal lines to this plane. The ra-

tionale is that the intersection between the (quasi-

)normal from any point on the CHIM, and the bound-
ary of the feasible objective space closest to the

utopia point (i.e., the point which contains the min-

ima of the individual objectives) is expected to be

Pareto optimal. Hereto, the multi-objective optimi-

sation problem is reformulated as to maximise the
distance from a point on the CHIM along the quasi-

normal through this point, without violating the

original constraints. As a result additional equal-

ity constraints are added. (E)NNC exploits similiar
ideas but adds inequality constraints representing

halfplanes while minimising a selected single objec-

tive. As a result m − 1 halfplanes are added which

are orthogonal to the plane containing all individual

minima, now called the utopia plane. The difference

between NNC and ENNC is due to a different scal-

ing in the normalisation step. The weights in these

methods are typically used to move the points on the
CHIM/utopia hyperplane which determines the po-

sition of the quasi-normal lines or halfplanes in the

criterion space. Hence, a uniform vector results in

an even spread of these points on the CHIM/utopia
hyperplane and as such it can be understood that a

more even spread on the Pareto set can be obtained.

The weights in the WS only influence the position in

the criterion space in a highly nonlinear way [5] and,

hence, it can be understood that a uniform spread
of weights often does not result in an even spread

along the Pareto set. For more info, the interested

reader is referred to, e.g., [19].

– Weight generation.When a step size for the scalar-
isation parameter or weight between two of the ob-

jectives is specified, a uniformly distributed grid for

all the scalarisation parameters or weights wi is com-

puted automatically. Here, convex weight combina-

tions are generated which satisfy
∑m

i=1 wi = 1 and
wi ≥ 0. However, alternative generation schemes

that do not require the positivity constraints [28],

can be implemented too.

– Scalability. In principle any number of objectives
can be treated. However, the number of single-ob-

jective optimisation problems increases rapidly for

increasing number of objectives. When using equally

spaced, convex weights (i.e., wi ≥ 0,
∑m

i=1 wi = 1

and n the number of equally spaced points between
two individual minima), (n+m− 2)!/((m− 1)!(n−

1)!) single-objective optimisation problems have to

be solved. For instance, with three objectives and a

stepsize of 0.1,m equals 3 and n equals 11 (i.e. going
from 0 to 1 on steps 0.1 yields 11 points). As a re-

sult 66 single-objective optimisation problems have

to be solved. Hence, for high numbers of objectives,

interactive multi-objective methods [29], which in-

teract with the decision maker to explore a preferred
region of the objective space, become appealing.

– Single-objective optimisation problem initial-

isation. Different initialisation strategies for the se-

ries of single-objective optimisation problems can be
selected. All single-objective optimisation problems

can be initialised using the same fixed values pro-

vided by the user. Alternatively, a hot-start strat-

egy, which exploits the result of the previous single-

objective optimisation problem to initialise the next
one, allows a significant decrease in computation

time. In Single Shooting only the optimal values for

the discretised controls are re-used, while in Multi-
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ple Shooting also the discretised state variabels are

re-used. Hence only information about the primal

variables is exploited and no information about the

dual variables (Lagrange multipliers) is employed.

– Direct optimal control methods.ACADOMulti-
Objective Toolkit uses the Single andMultiple Shoot-

ing methods from the original ACADO Toolkit.

– Integration routines.Various integrators are avail-

able for ordinary differential equation (ODE) sys-
tems. Explicit Runge-Kutta type integrators are RK-

12 (adaptive Euler), RK23 (second order), RK45

(Dormand-Prince) or RK78 (Dormand-Prince). The

BDF integrator is an implicit integrator, which can

also tackle systems of (index 1) differential and alge-
braic equations (DAEs). Integrator settings involve,

e.g., the absolute and relative integration tolerances.

– Sensitivity computation. The optimal control

problem formulation in ACADO Toolkit uses a sym-
bolic syntax which allows storing the functions in

the form of evaluation trees [14]. This enables the

use of state of the art automatic differentiation al-

gorithms [10,11]. In addition as all integrators are

equipped with these automatic differentiation fea-
tures exact first and second order forward or back-

ward sensitivities of the objective, constraints, and

differential equations can be computed with respect

to control inputs, parameters and initial values.
– Optimisation routines. Deterministic gradient

based Sequential Quadratic Programming methods

(SQP) enable a fast solution of the possibly large-

scale NLPs. Although the SQP optimiser can only

guarantee local optimality, it has been observed by
the authors that chances to get stuck in a local min-

imum are significantly decreased by exploiting an

appropriate initial guess for states and controls in

simultaneous approaches such as Multiple Shooting.
Settings to be specified relate to, e.g., the Karush-

Kuhn-Tucker optimisation tolerance and the choice

between exact and approximate Hessians.

– Pareto filter. As NBI and (E)NNC may produce

non-Pareto optimal points, the solution set can be
filtered using a Pareto filter algorithm [27]. An a

posteriori filter simply compares a generated point

with every other generated point, and if a point is

not Pareto optimal (also called dominated), it is
eliminated. In addition, the a priori filter described

in [21] is able to partially remove non-Pareto op-

timal points without the need for generating a set

first. Consequently, a time saving approach can be

to use the a priori filter first and the a posteriori
filter afterwards. The first step reduces the number

of possible points and, hence, also the number of

pairwise comparisons in the second step.

– Visualisation and output. The resulting Pareto

sets can be directly plotted for cases with up to three

objectives. The Pareto optimal cost values and the

corresponding optimal profiles for states and con-

trols can be exported in various formats. For higher
numbers of objectives the resulting Pareto sets can

still be exported but the visualisation becomes more

difficult. Bar plots allow a representation but are

less clear to interpret. These kinds of plots are not
implemented in the toolkit. As mentioned above, the

computational complexity becomes large for cases

with many objectives, such that interactive meth-

ods become interesting.

Remark. It has to be noted that NBI and (E)NNC
are able to approximate disconneted Pareto sets, as long

as the individual minima are accurately found. (See ex-

ample 1 in [21].) However, these methods may return

non-Pareto optimal points. As mentioned above, these
points can be removed by a Pareto filter algorithm.

4 Case studies

The approaches are illustrated on four bioprocess case

studies, which are detailed in the current section.

4.1 Case 1

Case 1 involves the fermentation of glucose to gluconic

acid by Pseudomonas ovalis in a batch stirred tank re-

actor as described in [1,37,38].

dX

dt
= µm

SC

ksC + k0S + SC
X (7)

dp

dt
= kpl (8)

dl

dt
= vl

S

kl + S
X − 0.91kpl (9)

dS

dt
= −

1

Ys

µm

SC

ksC + k0S + SC
X

−1.011vl
S

kl + S
X (10)

dC

dt
= KLa(C

∗ − C)−
1

Y0
µm

SC

ksC + k0S + SC
X

−0.09vl
S

kl + S
X (11)

The model consists of the following state variables: X

denotes the concentration of cells (UOD/mL), p, the

concentration of gluconic acid (g/L), l, the concentra-
tion of gluconolactone (g/L), S, the concentration of

glucose substrate (g/L) and C, the dissolved oxygen

(g/L). The decision variables are the duration of the
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batch fermentation, TB ∈ [5, 15 h], the initial substrate

concentration, S0 ∈ [20, 50 g/L], the overall oxygen mass

transfer coefficient, KLa ∈ [50, 300 1/h] and the initial

biomass concentration, X0 ∈ [0.05, 1.0 UOD/mL]. The

system’s initial conditions are given by [X0 0 0 S0 C
∗]T .

Hence, note that only scalar variables have to be opti-

mised. However, two of them are initial conditions. The

two objectives are the maximisation of the productiv-

ity J1 = p(TB)
TB

and the final gluconic acid concentration,
J2 = p(TB). The parameter values are given in Table 1.

Table 1 Case 1: Values of the parameters.

Parameter Value Unit

µm 0.39 1/h
ks 2.50 g/L
k0 0.00055 g/L
kp 0.645 1/h
vl 8.30 mg/UOD h
kl 12.80 g/L
Ys 0.375 UOD/mg
Y0 0.890 UOD/mg
C∗ 0.00685 g/L

4.2 Case 2

The second problem considers the optimal control of a

fed-batch reactor for induced foreign protein production

by recombinant bacteria as studied by [1,38,32]. The

objective is to maximise the profitability of the process

using the nutrient and the inducer feeding rates as the
control variables. Although this problem was originally

solved as a Weighted Sum between the protein and the

inducer cost, Sarkar and Modak [33] have tackled this

problem within a systematic multi-objective frame. The
dynamic model is the following:

dx1

dt
= u1 + u2 (12)

dx2

dt
= µx2 − (u1 + u2)

x2

x1
(13)

dx3

dt
= Cs,in

u1

x1
− (u1 + u2)

x3

x1
− µ

x2

0.51
(14)

dx4

dt
= πx2 − (u1 + u2)

x4

x1
(15)

dx5

dt
=

Ci,inu2

x1
− (u1 + u2)

x5

x1
(16)

dx6

dt
= −k1x6 (17)

dx7

dt
= k2(1− x7) (18)

µ =
x3

14.35 + x3 +
x2

3

111.5

(x6 + x7
0.22

0.22 + x5
) (19)

π =
0.233x3

14.35 + x3 +
x2

3

111.5

0.0005 + x5

0.022 + x5
(20)

k1 =
0.09x5

0.034 + x5
(21)

k2 =
0.09x5

0.034 + x5
(22)

The states are x1, the reactor volume (L), x2, the cell

density (g/L), x3, the nutrient concentration (g/L), x4,
the foreign protein concentration (g/L), x5, the inducer

concentration (g/L), x6 the inducer shock factor on cell

growth rate (-) and x7, the inducer recovery factor on

cell growth rate (-). The algebraic states are µ, the spe-
cific growth rate, π, the specific foreign protein pro-

duction rate, k1, the inducer shock factor and k2, the

inducer recovery factor. The decision variables are the

volumetric rates of the glucose u1 (L/h) and of the in-

ducer u2 (L/h). These are bounded between 0 and 1
L/h. The concentrations of inducer and glucose in the

feed streams are Ci,in = 4.0 g/L and Cs,in = 100.0 g/L,

respectively. The initial conditions are [1 0.1 40 0 0 1 0]T

and the final time is fixed at Tf = 10 h. As stated above,
the objectives are maximising the final amount of for-

eign protein, J1 = x1(Tf )x4(Tf ) and minimising the

amount of inducer added, J2(Tf ) = Ci,in

∫ Tf

0
u2(t)dt.

4.3 Case 3

The third case considers a free terminal time fed-batch

fermentation process in which ethanol is produced by
Saccharomyces cerevisiae [4,22].

dx

dt
= µx− u

x

V
(23)

ds

dt
= −x

µ

0.1
+ u

150− s

V
(24)

dp

dt
= ηx− u

p

V
(25)

dV

dt
= u (26)

µ =
µ0

1 + p
Kp

s

Ks + s
(27)

η =
η0

1 + p
K′

p

s

K ′

s + s
(28)

The model consists of the following states: x denotes

the biomass concentration (g/L), s, the substrate con-
centration (g/L), p, the product concentration (g/L)

and V , the broth volume (L). µ is the specific growth

rate (1/h) and η the specific production rate (1/h). The

decision variables are the duration of the batch fermen-
tation, Tf ∈ [20,100 h] and the time varying feed rate,

u(t) ∈ [0, 12 L/h]. An additional constraint implies that

the maximal volume is limited to 200 L (10 ≤ V (t) ≤



Postprint version of paper published in Bioprocess and Biosystems Engineering 2013, vol. 36, pages 151–164. 
The content is identical to the published paper, but without the final typesetting by the publisher. 

Journal homepage: http://www.springer.com/chemistry/biotechnology/journal/449  
Original file available at: http://link.springer.com/article/10.1007/s00449-012-0770-9 

 

6 Filip Logist et al.

200). The initial conditions of the system are speci-

fied as [1 150 0 10]T . Here, three different objectives

are used. The first objective is maximising productivity

J1 =
p(Tf )V (Tf )

Tf
, the second objective is maximising the

production, J2 = p(Tf )V (Tf ) and the third is minimis-

ing the substrate cost J3(Tf ) =
∫ Tf

0 u(t)dt. However, it

has to be ensured that at least 30 L of feed are added,

i.e.,
∫ Tf

0 u(t)dt ≥ 30. This constraint can be reformu-
lated as a terminal constraint xa(Tf ) ≥ 30 on an addi-

tional state variable: dxa

dt
= u with xa(0) = 0, which

measures the amount added. The parameter values are

given in Table 2.

Table 2 Case 3: Values of the parameters.

Parameter Value Unit

µ0 0.408 1/h
Kp 16 g/L
Ks 0.22 g/L
η0 1.0 1/h
K ′

p 71.5 g/L
K ′

s 0.44 g/L

4.4 Case 4

The fourth and final case involves a fed-batch biore-

actor for the production of penicillin G. The model is

described in [35,36]. The difference in model structure

with respect to Case 3 is the presence of a biomass con-

straint and a different inhibition term.

dx

dt
= µx− x

u

V
(29)

ds

dt
= −x

µ

Yx

−
ν

Yp

x+ u
sin − s

V
(30)

dp

dt
= νx − p

u

V
(31)

dV

dt
= u (32)

µ =
µms

Km + s+ ( s2

Ki
)

(33)

As in the previous example the model has four states:

x denotes the biomass concentration (g/L), s, the sub-

strate concentration (g/L), p, the product concentra-

tion (g/L), and V the broth volume (L). µ is again the
specific growth rate (1/h). The batch time Tf is fixed to

150 h. The biomass concentration is limited to 3.7 g/L

(x(t) ≤ 3.7). The decision variable is the time varying

feed rate, u(t) ∈ [0, 1 L/h]. The initial conditions are
given as [1 0.5 0 150]T . The objectives are to maximise

the production, J1 = p(Tf)V (Tf ) and to maximise the

concentration of the product or the purity, J2 = p(Tf )

in order to reduce post-processing costs. However, to

ensure a minimum production, a lower bound of 265 g

has been imposed: J1 ≥ 265 g. The parameter values

are described in Table 3.

Table 3 Case 4: Values of the parameters.

Parameter Value Unit

µm 0.02 1/h
Km 0.05 g/L
Kl 5 g/L
Yx 0.5 (-)
Yp 1.2 (-)
ν 0.004 1/h

Sin 200 g/L

5 Results

This section applies the techniques implemented in the
ACADO Multi-Objective Toolkit, i.e., WS, (E)NNC

and NBI, to the four dynamic bioprocess optimisation

case studies. Each time the Pareto set is displayed as

well as several optimal control and state profiles along
the Pareto set. The corresponding weight vectors w =

[w1, . . . , wm]T where the index i runs from 1 to m, are

each time indicated. Here wi relates to the optimisation

of objective Ji. Algorithmic settings and the resulting

computational expenses in terms of SQP iterations and
CPU times are summarised in Table 4. It has to be

noted that the model descriptions of cases 2, 3 and 4

include algebraic equations for the sake of clarity. How-

ever, the algebraic equations can easily be eliminated
by directly substituting them into the differential equa-

tions, yielding a system of ordinary differential equa-

tions. The objective values in the resulting Pareto sets

are added as supplementary material to this paper.

5.1 Case 1

As case 1 only involves scalar parameters to be opti-

mised, it is regarded as the simplest of the four cases.

The resulting trade-off between maximising productiv-

ity and production is depicted in Figure 2. Clearly, there

is trade-off between maximising production and pro-
ductivity. It is also seen that the Weighted Sum does

not give an even spread of the Pareto points. In con-

trast, NBI and (E)NNC return identical results but the

distribution of points along the Pareto set is more uni-
form. The resulting optimal state trajectories obtained

with NBI are depicted in Figure 3. Comparison with

results obtained using a global optimisation heuristic
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Fig. 2 Case 1: Pareto front with 21 points obtained with WS
(top) and NBI/(E)NNC (bottom).

in [37] hardly reveals any differences.

With respect to the scalar optimisation variables,

the optimal values for S∗

0 and X∗

0 are identical to their

upper limits. This observation is easily explained as
the more biomass and substrate (glucose) is initially

present, the faster and higher the production will be.

When productivity is focussed on, the highest KLa val-

ues and the shortest batch times are encountered. The
explanation is that high oxygen transfer rates stimu-

late biomass growth and early stops avoid a decrease

in production rate. However, when the total amount of

product made in one batch becomes more and more im-

portant, longer batch durations and lower KLa values
appear to be optimal. In this case, substrate and oxygen

are utilised more for the production of gluconic acid, re-

sulting in a slower biomass growth and lower final cell

concentrations. Hence, the trade-off depends on how the
glucose is used. When focussing on productivity, short

batches are preferred and consequently, a fast biomass

increase is required. On the other hand, when aiming

for production, less substrate is attributed to biomass

growth. This results in a slower growth and lower cell
numbers, but the glucose is now more directed towards

production of gluconic acid.

5.2 Case 2

Figure 4 presents the Pareto frontier. As can be seen,

the Pareto front exhibits very steep rises towards the in-
dividual minima. Hence, most of the trade-off is located

in the so-called knee of the Pareto curve. Consequently,

the Pareto points generated by the WS cluster in this

0 5 10 15
1

2

3

4

5

C
el

l c
on

ce
nt

ra
tio

n 
(U

O
D

/m
l)

 

 

w = [0 1]T

w = [0.25 0.75]T

w = [0.5 0.5]T

w = [0.75 0.25]T

w = [1 0]T

0 5 10 15
0

20

40

60

G
lu

co
ni

c 
ac

id
 (

p,
 g

/L
)

0 5 10 15
0

5

10

15

20
G

lu
co

no
la

ct
on

e 
l (

g/
L)

0 5 10 15
0

20

40

60

G
lu

co
se

 s
ub

st
ra

te
 S

 (
g/

L)

0 5 10 15
0

2

4

6

8
x 10

−3

Time (h)

D
is

so
lv

ed
 o

xy
ge

n 
(g

/L
)

Fig. 3 Case 1: Optimal states along the Pareto set obtained
with NNC.

region. On the other hand, NBI and (E)NNC are able

to reproduce the Pareto set with a much more uniform

spread.

Case 2 is the first case in which optimal time vary-
ing controls have to be found. For the current case, a

control discretisation of 10 piecewise constant pieces is

used for both controls. The optimal profiles for the sub-

strate u1 and inducer u2 feed rate obtained with NBI
are given in Figure 5. As can be seen, in both optimal

controls large singular arcs are present. Arcs are typ-

ically called singular or sensitivity seeking when they
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Fig. 5 Case 2: Optimal controls along the Pareto set obtained
with NBI.

appear in an interval where no constraint on the control

and/or states is active. Hence, the sensitivity of the ob-
jective with respect to the controls can be expected to

be rather limited. Nevertheless, despite this limited sen-

sitivity and a coarse control discretisation the same op-

timal cost values as mentioned in [33] can be obtained.
However, the price to be paid is an increased number of

SQP iterations. In general, the values for both controls

remain quite low, especially when the minimisation of

the inducer is concentrated on. When the maximisation

of the foreign protein production gets more and more
priority, the inducer feed rates increase, in particular

towards the end of the batch.

In view of brevity, only a selection of state profiles
is depicted in Figure 6, i.e., the amount of biomass

x1(t)·x2(t) (g), the amount of foreign protein x1(t)·x4(t)

(g) and the amount of inducer added J2. Clearly, the
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Fig. 6 Case 2: Optimal states along the Pareto set obtained
with NBI.

biomass evolution does not differ much along the Pareto
set. Typically an exponential evolution from the ini-

tially present 0.1 g to values between 26 and 31 g at

the end is observed. Implications are that towards the

end of the batch significantly more substrate has to

be added to feed the micro-organisms and to counter-
act the dilution effect. Hence, in the beginning mainly

biomass growth is important. However, when protein

production is focussed on, inducer addition starts slowly

around half of the batch time and increases significantly
towards the end. This increase stimulates the avail-

able micro-organisms to produce the foreign protein

and causes a boost in the total amount produced. The

maximum amount of product is slightly higher than 6 g

and requires about 5.1 g of inducer. Alternatively, in-
ducer addition can be completely avoided (i.e., 0 g of

inducer) but then the protein production is limited to

only 0.2 g.

5.3 Case 3

Case 3 is the first one to tackle more than two objec-

tives. In Figure 7 the Pareto front is displayed for three
objectives obtained with ENNC. The three individual

minima as well as three intermediate Pareto optimal

solutions are marked. Similar results can be obtained
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Fig. 7 Case 3: Pareto fronts for the 3 objectives together with
66 points and the three pairwise objectives with 21 points
obtained with ENNC.

with NBI, but the results obtained with NNC slightly

differ due to the different normalisation scheme (see [21]

for more details). Results for the WS have been omit-

ted as a highly non-uniform spread on the Pareto set

was observed. To obtain a better understanding of the
trade-off between the different objectives, three pair-

wise Pareto fronts depict each of the three possible

pairwise objective combinations. Based on these plots,

it is seen that trade-offs between the substrate added
(i.e., J3) on the one hand and productivity (i.e., J1)

and production (i.e., J2) on the other hand, are rather

linear. However, the trade-off between these last two

appears to be more curved. Case 3 was posed as to

maximise production in [4,22] without looking at other
objectives. However, identical values as in [22] for op-

timal production have been obtained (i.e., 20841.2 g),

which outperform the values mentioned in [4].

The optimal controls and a selection of the optimal

states corresponding to the marked points are displayed
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Fig. 8 Case 3: Optimal controls along the Pareto set obtained
with ENNC.

in Figures 8 and 9. To maximise productivity, again

short batches are preferred with high feeding rates in
the beginning followed by a short batch phase at the

end. This strategy typically boosts the biomass growth

and the production rate but results in rather low pro-

duction amounts and does not care about the amount

of substrate required. To maximise the production the
available amount of substrate is added more carefully

and the batch time increases. In particular a large sin-

gular feeding phase which increases towards the end is

present. The increase is due to the biomass increase
and the dilution effect. When concentrating on the eco-

nomic use of substrate, only the minimum amount of

30 L is fed in an intermediate batch time. This yields a

rather small amount of product and a low productivity.

It is seen that the intermediate Pareto optimal points
exhibit an intermediate behaviour for the control and

states.

5.4 Case 4

The Pareto front for maximising both the production
and the purity is shown in Figure 10. The WS does

not succeed in presenting a nice approximation of the

Pareto set as points tend to cluster around the maxi-

mum production point. Hence, these results have been

omitted. It can also be seen that the trade-offs are not
large. The production ranges between 267 and 287 g,

while the purity varies only between 1.44 and 1.48 g/L.

Whether or not these differences are significant in prac-

tice has to be decided by the decision maker. When the
minimum production constraint is removed, a compar-

ison with the maximum purity results from [35] can be

made. In that case, the reported value of 1.68 g/L is
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Fig. 9 Case 3: Optimal states along the Pareto set obtained
with ENNC.

found. However, the production is then 260.71 g.

The resulting controls are displayed in Figure 11.

They exhibit most often a singular -maximum-minimum

structure. When focussing on purity, the singular arc

and the maximum arc are the shortest, while the mini-

mum arc is the largest. When shifting towards produc-

tion, mainly the minimum arc decreases, while the sin-

gular and the maximum arc gradually increase. When
the entire emphasis is put on production, the last min-

imum part vanishes and a constrained control appears,

which keeps the biomass constant at its upper limit.

A selection of the states is displayed in Figure 12.
When production is focussed on, the biomass constraint

is active from 90 h and remains active until the end

of the batch, while for the other cases this constraint

is only active at the batch end. The differences along
the batch duration are small for both the amount of

product made and the product concentration. A zoom

near the batch end elucidates these small differences.
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Fig. 10 Case 4: Pareto front with 21 points obtained with
NBI.
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Fig. 11 Case 4: Optimal controls along the Pareto set ob-
tained with NBI.
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with NBI.

5.5 Discussion and computational expense

Table 4 gives an overview of (i) the features of the dif-
ferent multiple objective optimal control problems, (ii)

the algorithmic settings used as well as (iii) the com-

putational expense (number of SQP iterations, CPU
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Table 4 Overview of algorithmic settings for ACADO Multi-Objective Toolkit and computational expense.

Case 1 Case 2
WS NBI NNC ENNC WS NBI NNC ENNC

# states 5 5 5 4 7 7 7 7
# controls 0 0 0 0 2 2 2 2

# dicretisation intervals 25 25 25 25 10 10 10 10
# Pareto points 21 21 21 21 21 21 21 21

Integrator RK78 RK78 RK78 RK78 BDF BDF BDF BDF
Integrator Tolerance 1E-6 1E-6 1E-6 1E-6 1E-6 1E-6 1E-6 1E-6

Hessian Exact Exact Exact Exact Exact Exact Exact Exact
Optimality Tolerance 1E-6 1E-6 1E-6 1E-6 2E-3 2E-3 2E-3 2E-3

Re-initialisation Hot-Start Hot-Start Hot-Start Hot-Start Hot-Start Hot-Start Hot-Start Hot-Start
SQP iterations 193 290 202 260 139 80 54 76

Total CPU [s] (entire front) 132.4 161.7 118.0 123.0 29.7 19.2 14.1 14.8
Average CPU [s] (1 point) 6.30 7.70 5.62 5.85 1.40 0.92 0.67 0.70

Case 3 Case 4
WS NBI NNC ENNC WS NBI NNC ENNC

# states 4 4 4 4 4 4 4 4
# controls 1 1 1 1 1 1 1 1

# dicretisation intervals 25 25 25 25 20 20 20 20
# Pareto points 66 66 66 66 21 21 21 21

Integrator BDF BDF BDF BDF RK78 RK78 RK78 RK78
Integrator Tolerance 1E-6 1E-6 1E-6 1E-6 1E-6 1E-6 1E-6 1E-6

Hessian Exact Exact Exact Exact Exact Exact Exact Exact
Optimality Tolerance 1E-3 1E-3 1E-3 1E-3 1E-4 1E-4 1E-4 1E-4

Re-initialisation Hot-Start Hot-Start Hot-Start Hot-Start Hot-Start Hot-Start Hot-Start Hot-Start
SQP iterations 569 577 421 436 24 56 89 103

Total CPU [s] (entire front) 202.8 140.7 139.1 110.7 1.1 3.0 4.5 5.9
Average CPU [s] (1 point) 3.07 2.13 2.11 1.97 0.052 0.14 0.21 0.28

times and average CPU time per Pareto point). All

computations have been performed on a PC with a 1.86

GHz processor and 2 GB RAM memory. Tight integra-

tion tolerances have been selected to ensure an accurate

computation of the profiles and their sensitivities with
respect to the degrees of freedom to be determined.

These sensitivities can be low on, e.g., a singular arc.

Optimality tolerances were chosen such that tighten-

ing the tolerances did not improve the Pareto sets or
the optimal control profiles. NBI and (E)NNC induce a

similar computational burden, which is higher than the

one for WS, due to the additional equality and inequal-

ity constraints. However, the Pareto sets generated by

WS in general do not achieve the same accuracy. Pareto
points are missed due to bad objective scaling and low

sensitivity. The average computation times per Pareto

point vary between 0.2 and 7 s. Cases 2, 3 and 4 exhibit

singular arcs in the solutions, which maybe difficult to
optimise accurately due to the low sensitivity. The hot-

starting strategy has been found to speed up computa-

tions by a factor around 2. Possible extensions involve

the incorporation of methods for of integer controls [20].

In summary, the multiple objective optimal control

problems considered exhibit features as nonlinear dy-
namics, fixed/free initial conditions, path and terminal

constraints, singular/constrained control arcs, fixed/free

end times. Hence, it has been shown that the ACADO

Multi-Objective Toolkit is able to efficiently produce
accurate Pareto sets for general multi-objective dynamic

optimisation problems in bioprocess engineering.

As requested by one of the reviewers, an illustra-

tion of an algorithm from a different class is provided.

The cases 1 and 4 have also been solved with the multi-

objective evolutionary algorithm NSGA-II [8]. The C

source code has been obtained from the Kanpur Ge-
netic Algorithms Laboratory website [15]. The selected

implementation allows for both real and binary vari-

ables implementation and is able to include constraints.

This algorithm has been coupled to the ACADO inte-
grators, which are exploited to simulate the process be-

haviour each time. Recommended and default settings

have been adopted (e.g., the muation frequency equals 1

over the number of decision variables). The algorithmic

settings and the computational burden are summarised
in Table 5. The resulting Pareto sets are depicted to-

gether with the ACADO Multi-objective results in Fig-

ure 13. Computation times mentioned involve only the

time for integrating the model equations, as the time
for the NSGA-II algorithm itself is considered to be sig-

nificantly lower than the time for the integrations. For

case 1 an almost identical Pareto set has been obtained

with a nice spread. Because only 4 decision variables

have to be found and only simple bounds are speci-
fied for these decision variables, the optimisation runs

efficiently resulting in a lower computation time than

ACADO Multi-objective. It has to be mentioned that

although ACADO Multi-objective only uses local opti-
misation routines, no problems with local minima have

been experienced. ACADO Multi-objective is able to

get to the same extreme points as obtained with the ge-

netic algorithm, which is generally regarded as a global

optimisation routine. For case 4, the results are dif-
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ferent. Clearly 10000 instead of 1000 generations are

needed to converge to the Pareto front. As the con-

trol is discretised with 20 piecewise constant of equal

length, 20 degrees of freedom have to optimised. Also

a state constraint is present. In this case NSGA-II re-
quires significantly more computation time per Pareto

point. Also the areas near the individual minima are

not well covered. The singular arcs are as accurately

determined as before, due to the low sensitivity of the
cost with respect to changes in these arcs.
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Fig. 13 Pareto set for NBI and NSGA-II: case 1 (top) and
case 4 (bottom).

In summary, the NSGA-II is easily and flexibly cou-

pled to an existing process simulator, while in ACADO

Multi-objective a model has to be re-coded. NSGA-II

has more difficulties to deal with (i) larger numbers

of decision variables (e.g., due to fine uniform control
discretisations) and (ii) other constraints than simple

bounds on the decision variables (e.g., due to state con-

straints). Finally, it has to be emphasised that these

experiments with the NSGA-II algorithm have been
performed by the authors from a non-experienced user

perspective. Experienced NSGA-II users will be able to

tune the algorithm allowing for performance improve-

ments.

6 Conclusion

This paper deals with the fast and efficient solution

of biochemical optimal control problems with multi-
ple objectives. To this end, several scalarisation tech-

niques for multi-objective optimisation, e.g., WS, NBI

and (E)NNC have been integrated with fast determin-

Table 5 Overview of algorithmic settings for NSGA-II and
computational expense.

Case 1 Case 4
# Pareto points 40 400 400
# Generations 100 1000 10000
pcross−over 0.75 0.70 0.70
pmutation 0.25 0.05 0.05
ηcross−over 15 15 15
ηmutation 25 25 25

Total CPU [s] (entire front) 30.0 1421.6 15637.6
Average CPU [s] (1 point) 0.75 3.55 39.09

istic direct optimal control approaches (e.g., Multiple

Shooting). All techniques have been implemented in the

ACADO Multi-Objective Toolkit, which is available at
www.acadotoolkit.org. The toolkit has been succesfully

evaluated on four bioreactor cases from literature. The

objective values in the resulting Pareto sets are added

as supplementary material to this paper.
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