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ABSTRACT

A mechanism for self-heating of the solar corona is discussed. It is shown that the free energy available in the
form of sheared flows gives rise to unstable electrostatic perturbations which accelerate and heat particles. The
electrostatic perturbations can occur through two processes, viz., by a purely growing sheared flow-driven instability
and/or by a sheared flow-driven drift wave. These processes can occur throughout the corona and, hence, this
self-heating mechanism could be very important for coronal heating. These instabilities can give rise to local
perturbed electrostatic potentials ϕ1 of up to 100 volts within 3 × 10−2 to a few seconds time, if the (dimensionless)
initial perturbation is assumed to be about 1%, that is, eϕ1/Te � 10−2. The wavelengths in the direction perpendicular
to the external magnetic field B0 vary from about 10 m to 1 m in our model. The purely growing instability creates
electrostatic fields by sheared flows even if there is no density gradient, whereas a density gradient is crucial for the
occurrence of the drift wave instability. The purely growing instability develops a small real frequency as well in
the two-ion coronal plasma. In the solar corona, very low frequency (of the order of 1 Hz) drift dissipative waves
can also occur due to electron–ion collisions.
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1. INTRODUCTION

Many theoretical models have been presented to explain
the cause of solar coronal heating (see, e.g., the reviews by
Aschwanden 2001; Mandrini et al. 2000). It is a well-known,
though counterintuitive, fact that the corona of the Sun is
about 200 times hotter than the lower lying chromosphere,
while it contains a rarefied collisionless plasma with electron
temperature Te � 106 K. There are many unanswered questions
in the problem of coronal heating. The temperature rises by
two orders of magnitude from the upper chromosphere to lower
corona through a narrow transition layer of only about 500 km
(Priest 1982; Narain & Ulmschneider 1990; Klimtchuk 2006).
The proposed wave heating mechanisms assume that the waves
originate in the lower regions, viz., the photosphere or even the
convection layer of the Sun, and propagate through the transition
region to deposit their energy in the corona. Observational data
of Skylab, Yohkoh, the Solar and Heliospheric Observatory
(SOHO), and the Transition Region and Coronal Explorer
(TRACE) have indicated that the entire corona is filled with
open and closed magnetic field and only a subset of it is loaded
with extremely hot plasma at a given time (Litwin & Rosner
1993; Hara et al. 1992; Moses et al. 1997; Schrijver et al. 1999).

The coronal loops, omnipresent in active regions, have been
considered to be responsible for localized heating. The bright
coronal loops have higher densities compared to the ambient
faint coronal plasma, which indicates that the heated plasma
originates from the dense chromosphere. The coronal heating
by acoustic waves originating from global oscillations has
been ruled out (Aschwanden 2001). Alfvén waves have been
considered to be the best candidate for carrying adequate energy
fluxes from the chromosphere to the corona (Hollweg & Sterling
1994). A great deal of work on Alfvén wave heating of the
corona has appeared in the literature (Ionson 1983; Mok 1987;
Steinolfson & Davila 1993; Ofman et al. 1995; Poedts et al.

1989, 1990, 1994; Poedts & Goedbloed 1997; Halberstadt &
Goedbloed 1995; Ruderman et al. 1997).

In fact, any unstable wave in the coronal plasma can cause
heating through damping either by wave–particle interaction or
by dissipation. However, most of the wave heating scenarios
for the corona are based on the single-fluid theory of magne-
tohydrodynamics (MHD) and, hence, electrostatic drift waves
have not been investigated in great detail, while the system itself
is highly inhomogeneous. In almost all of the suggested wave
mechanisms for coronal heating, the main energy source is lo-
cated in other regions and is provided to the corona by means
of waves carrying the energy through the lower atmospheric
layers. Here, we point out an important energy source available
within the corona itself to excite short-scale electrostatic pertur-
bations, namely the many sheared plasma flows present in the
corona. The mentioned electrostatic perturbations can be associ-
ated with either the “purely unstable mode” (D’Angelo 1965) or
the drift waves (from kinetic theory or two-fluid plasma model)
depending upon the scales of the density inhomogeneity and
the wavelengths. Vranjes & Poedts (2009a) have proposed a
new paradigm of solar coronal heating by the latter drift waves.
These authors have used results from kinetic theory which pre-
dicts that the drift wave is a universally unstable mode and the
density gradient in the direction normal to the magnetic flux sur-
faces is the source of its instability, which is also the cause of its
existence. It has been proposed that the drift waves can heat the
corona through two possible ways, viz., due to Landau damping
effects in the direction parallel to the magnetic field, and due
to stochastic heating in the perpendicular direction. It has been
confirmed (De Pontieu et al. 2007) that the solar atmosphere is
highly structured and has inhomogeneous density filaments of
various sizes. Therefore, the drift waves in the solar corona may
have many different scales of wavelengths.

Vranjes & Poedts (2009a) assumed that the external magnetic
field is directed along the z-axis while the plasma density has
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a gradient along the x-axis and the wave propagates, under
the local approximation, in the yz-plane with a perpendicular
wavelength λy = 2π/ky and a parallel wavelength λz =
2π/kz, while kz � ky (where ky and kz are the respective wave
numbers). As an example, drift waves have been considered
with λy � 0.5 m while λz = 20 km and Ln = 100 m
(where Ln = |(1/n0)dn0/dx|−1 m) is the inhomogeneity scale
length, i.e., the density gradient scale length. Vranjes & Poedts
(2009a) demonstrated that heating can take place at various
inhomogeneity scale lengths Ln by scanning this parameter
while keeping the ratio λz/Ln fixed, e.g., setting Ln = s×100 m
and λz = s × 40000 m and varying the parameter s. These
authors then showed that the ratio of the frequency and the
growth rate, for the fixed value λy = 0.5 m, is ωr/ωi � 1
for 1 � s � 1000. Note that the considered variation of the
parameter s demonstrates that heating occurs also everywhere
along a given flux tube, i.e., when the radial density gradient
varies with increased altitude.

We here focus our attention on the fact that also sheared
flows, i.e., flows with an inhomogeneous velocity profile, are
omnipresent in the corona. Thus, a large source of free energy
for the excitation of short-scale electrostatic perturbations exists
within the corona. Two types of electrostatic instabilities are
expected to occur throughout the corona continuously.

1. The purely growing sheared flow-driven instability in the
Doppler-shifted frame (D’Angelo 1965), which exists even
if the plasma density is uniform.

2. The drift wave instability that needs a plasma density
gradient for its existence (Kadomtsev & Timofeev 1963)
and sheared flows for instability (Saleem et al. 2007).

We here only investigate drift waves with relatively longer
wavelengths compared to the ion Larmor radius, so that the
use of the fluid model is justified. Moreover, the electrons
are assumed to follow the Boltzmann distribution. Therefore,
the frequency ωr of the drift waves must fulfill the condition
ωr � νtekz, where νte = (Te/me)1/2 is the electron thermal
velocity and kz is the wave number parallel to the external
magnetic field. In general, the drift waves and the purely growing
D’Angelo mode have shorter wavelengths compared to the well-
known Alfvén waves of the MHD model. The electrostatic
perturbations driven by sheared flows can transfer their energy
to plasma particles. For the case of drift waves, a detailed picture
has been presented by Vranjes & Poedts (2009b, 2009c).

The remainder of this paper is organized as follows. The
theoretical three-fluid model is described in the following
section where the equations are given first and then a fourth-
order dispersion relation is derived. In Section 3, this model
is applied to the solar corona, while in Section 4 the role of
dissipation is discussed. Finally, in Section 5 we discuss the
obtained results and their consequences for the problem of solar
coronal heating.

2. THEORETICAL MODEL

Let us consider the collisionless coronal plasma consisting
of electrons and two types of ions which are denoted with
the subscript j = a, b, where “a” represents hydrogen ions and
“b” corresponds to helium ions. We choose the z-axis in the
direction of the uniform ambient magnetic field, such that
B0 = B0ẑ ≡ constant. The inhomogeneity of the plasma
density and the shear background flow (along the magnetic
field) is chosen in the x-direction, i.e., ∇nj0 = −|dnj0/dx| x̂,
and the shear flow then is given by νj0(x)ẑ = ν0(x)ẑ, where

ν0 is the same for all species, i.e., for electrons and both
types of ions. Each species has a zero-order diamagnetic drift
vDj = −(Tj/qjB0)∇ ln nj0 × ẑ, where Tj is the temperature and
qj denotes the charge of the jth species of ions. For electrostatic
perturbations, the momentum equation yields the perpendicular
component of the velocity of jth species of ions as

v⊥j = 1

B0
(E⊥ × ẑ)︸ ︷︷ ︸

=vE

− Tj

qjB0
(∇ ln nj × ẑ)︸ ︷︷ ︸
=vDj

− 1

qjB0

(∇ · �j

nj

)
︸ ︷︷ ︸

=vΠj

− 1

Ωj

(∂t + vj · ∇)vj × ẑ︸ ︷︷ ︸
=vpj

, (1)

where vE , vDj , vΠj , and vpj are the electric, the diamagnetic,
the stress tensor, and the polarization drifts, respectively. The
parallel component of the linearized ion momentum equation(s)
then gives

(∂t + νj0z∂z)vjz1 + vjz1dxνj0z(x) = qj

mj

Ez1 − Tj0

mjnj0
∂znj1. (2)

Here, we used the notation dx = d/dx and the subscripts
zero (0) and one (1) denote zero-order and linear quantities,
respectively. The continuity equation for the jth ions is given by

(∂tnj1 + ν0jz)∂tnj1 + ∇nj0 · vE +
nj0

B0Ωj

(∂t + νj0z∂z)∇⊥ · E⊥

− Tj

qjB0Ωj

(∂t + νj0z∂z)∇2
⊥nj1 + nj0∂zvjz1 = 0, (3)

where Ωj = qjB0/mj and ∇ν0z(x) = + |dν0(x)/dx| x̂. For
deriving Equation (3), we have used the following relation:

∇ · [nj · (vjp + vjπ )] = nj0

B0Ωj

∂t (∇⊥ · E⊥1) − Tj

qjB0Ωj

∂t∇2nj1

+
nj0

Ωj

ν0(x)∂z

{
1

B0
∇⊥ · E⊥ − Tj

qjB0

∇2
⊥nj1

nj0

}
. (4)

The detailed derivation of Equation (4) is given in the second
chapter of Weiland (2000) for ν0 = 0 and has been modified
here due to the effects of the sheared flows.

The continuity equations for j = a, b can also be expressed
as

R2
ana1 = −na0S

2
aΦ1 (5)

and
R2

bnb1 = −nb0S
2
bΦ1, (6)

where
R2

a = (
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aT k2
y

)
Ω2

ω − ν2
tek

2
y,

R2
b = (

1 + ρ2
bT k2

y

)
Ω2
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2
y,

S2
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{
−ω∗

aΩω + ρ2
ask

2
yΩ2

ω + c2
askykz

1

Ωa

dν0

dx
− c2

ask
2
z

}
,

S2
b =

{
−ω∗

bΩω + ρ2
bsk

2
yΩ2
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bskykz

1

Ωb

dν0
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− c2

bsk
2
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}
.

Here, we have defined the following quantities: ν2
tj = Tj/mj ,

c2
js = Te/mj , Ωω = (ω − ω0), ω0 = ν0kz, ω∗

j = Deκnjκy ,
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De = Te/eB0, κjn = |(1/nj0)dnj0/dx|, Φ1 = eϕ1/Te,
ρjs = (Te/mj Ω2

j )1/2, and ρjT = (Tj/mj Ω2
j )1/2.

The Poisson equation in this case can be written as

∇ · E1 = e

ε0
(na1 + nb1 − ne1). (7)

The electrons are assumed to follow the Boltzmann relation

ne1 � ne0e
Φ1 . (8)

In a steady state, the relation ne0 = na0 + nb0 holds.
Equations (5)–(8) yield a fourth-order dispersion relation as
follows:

L4Ω4
ω + L3Ω3

ω + L2Ω2
ω + L1Ωω + L0 = 0, (9)

where
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,

L3 = −
{

na0

ne0
α2

bω
∗
a +

nb0

ne0
α2

aω
∗
b

}
,

L2 = − Λ2
(
α2

aν
2
bT k2

z + α2
bν

2
aT k2

z

)
+

na0

ne0

(
α2

bgac
2
ask

2
z − ρ2

ask
2
yν

2
bT k2

z

)
+

nb0

ne0

(
α2

agbc
2
bsk

2
z − ρ2

bsk
2
yν

2
aT k2

z

)
,

L1 = na0

ne0

(
ν2

bT k2
zω

∗
a

)
+

nb0

ne0

(
ν2

aT k2
zω

∗
b

)
,

and
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Here, gj = ( ky

kz
Aj − 1), Aj = 1

Ωj

dv0
dx

, α2
j = (1 + ρ2

jT k2
y),

Λ2 = (1 + λ2
Dek

2), and λDe = (ε0Te/ne0e
2)1/2.

3. APPLICATION TO THE SOLAR CORONA

In this section, we will show that the theoretical model
presented above is perfectly applicable to solar coronal plasma.
Let us choose the parameters of the corona (Priest 1982) as
ne0 = 1015 m−3, na0 = 0.9ne0, ne0 = 0.1ne0, and Te = 106 K.
Since the condition Te < TH < THe holds in this plasma
(Hansteen et al. 1997), we assume Ta = 2.5Te and Tb = 3Te.

First we shall show that the sheared flows of electron–proton
plasma of corona give rise to both purely growing and oscillatory
drift wave instabilities. Then it will be shown that the presence
of the second ion (helium, with an abundance of 10%) in this
plasma modifies the growth rates and the real frequencies of
the drift waves in different parameter regimes. If this 10%
concentration of the ions in the plasma is neglected, then we
may use nb0 = 0 and Tb = 0 in Equation (9). In the limit
λ2

Dek
2 � 1, we have Λ2 = 1, α2

b = 1, na0/ne0 = 1, ν2
bT = 0

and it gives L4 = ρ2
ask

2
y + α2

a , L3 = −ω∗
a , L2 = −v2

aT k2
z + ga

c2
ask

2
z , and L1 = 0 = L0. Hence, Equation (9) reduces to
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aΩω +kzkyc
2
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Figure 1. (a) Directions of shear flow v0(x) and the wave propagation with
respect to density gradient and the external magnetic field are shown. (b) The
growth rate (ωi ) of the sheared flow-driven instability is plotted against the
perpendicular component of the wave number (ky) for different inverse velocity
scale lengths, viz., κv = ky/60 (solid curve), κv = ky/100 (dashed curve),
and κv = ky/200 (dotted curve), for ne0 ∼ na0 ∼ 1015 m−3, Te = 106 K,
Ta = 2.5 Te , B0 ∼ 10−2 T, and v0 = 10 km s−1, using κn = 0, nb0 = 0, and
kz = 10−4ky .

(A color version of this figure is available in the online journal.)

This quadratic equation has two roots, viz.,

(Ωω)1,2 = 1

2Λ0

{
ω∗

a ±
[

(−ω∗
a)2 + 4Λ0kzkyc

2
as

×
(

(1 + σa)
kz

ky

− Aa

)]1/2
}

, (11)

where Λ0 = (1 + ρ2
aT k2

y + ρ2
ask

2
y) and σa(= Ta/Te). Thus, the

following conditions should be satisfied simultaneously for the
instability to occur:

(1 + σa)
kz

ky

< Aa (12)

and

(ω∗
a)2 < 4Λ0c

2
askzky

∣∣∣∣
(

(1 + σa)
kz

ky

− Aa

)∣∣∣∣ . (13)

We shall assume that Ljn = 1/
∣∣d ln nj0/dx

∣∣, i.e., the inhomo-
geneity scale length has the same value for all species so that it
can be denoted by Ln.

First, we discuss the electrostatic instabilities mentioned
above under coronal circumstances but ignore the presence
of the 10% helium abundance. Figure 1(a) shows just the
wave propagation with respect to the external magnetic field
and density gradient. In Figure 1(b), the growth rates of the
shear flow-driven electrostatic instability are plotted (using
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Figure 2. Real and imaginary parts of the frequencies of the perturbations (ωr (dashed curves) and ωi (solid curves)) are plotted against the perpendicular component
of the wave number (ky) for varying inverse velocity scale lengths (a) κv = ky/60 and (b) κv = ky/100, taking v0 = 10 km s−1, κn = 1.9 × 10−3 m−1, nb0 = 0, and
kz = 10−4ky . All other parameter values are the same as in Figure 1.

(A color version of this figure is available in the online journal.)

Figure 3. Real and imaginary parts of the frequencies of the electrostatic perturbations (ωr (dashed curves), ωi (solid curves)) are plotted against the perpendicular
component of the wave number (ky) for changing inverse velocity scale lengths (a) κv = ky/60 and (b) κv = ky/100, for v0 = 70 km s−1, κn = 1.9 × 10−3 m−1,
nb0 = 0, and kz = 10−4ky . All other parameters have the same values as in Figure 1. Since ky is 10 times smaller than the values of Figure 2, therefore both real and
imaginary frequencies turn out to be smaller in this case although v0 is seven times larger.

(A color version of this figure is available in the online journal.)

Equation (10)) against the perpendicular component of the wave
number (ky) for different gradient scale lengths of the plasma
flow parallel to the external magnetic field, in the case of a
homogeneous plasma density, i.e., κn = 0. The solid curve
corresponds to an inverse velocity scale length κv = ky/60,
while the dashed curve corresponds to κv = ky/100, and the
dotted curve to κv = ky/200. The other parameter values are
given in the figure caption. The real frequency in the laboratory
frame is ω0 = ν0kz. Since Ωω = ω − ω0, and we assume
ω = ωr ± iωi, therefore, in the case of homogeneous (κn = 0)
plasma, Ωω = ±iωi , where ωi is real. The Doppler-shifted
frequency of the purely growing mode is ωi and is plotted
versus the perpendicular wave number ky. We note that the
frequency ωi decreases corresponding to the same ky when the
shear flow gradient scale length Lv = 1/κv increases. Thus,
steeper gradients in the velocity shear profile give rise to larger
growth rates of the instability.

In the presence of a plasma density gradient, i.e., κn 
= 0,
the electrostatic drift wave can also be excited. For v0 = 0
and c2

askzky � (ω∗
a)2, Equation (11) yields a stable drift wave

with oscillation frequency ω∗
r = ω∗

a/Λ0. If conditions (12) and
(13) are satisfied, then (Ωω)1,2 = (1/2Λ0)(ω∗

a ± iγ ), where γ
is real with 0 < γ. If ω is the frequency of the perturbation
then ω = ωr ± iωi and we have ωr = (ω∗

a/2Λ0 + ω0), while
ωi = γ /2Λ0. In Figure 2, the real and imaginary parts of the
electrostatic perturbations (ωr (dashed curves) and ωi (solid
curves)) are plotted against the perpendicular component of the

wave number (ky) for varying inverse velocity scale lengths, viz.,
(a) κv = ky/60 and (b) κv = ky/100, taking v0 = 10 km s−1,
κn = 1.9×10−3 m−1, nb0 = 0, and kz = 10−4ky ; while all other
parameter values are the same as in Figure 1. Figure 2 shows
that the drift wave becomes unstable for a very short range of
wavelengths 2 < ky < 2.5. Somewhere in between ky = 2 and
ky = 2.5, the real frequency of the drift wave ω∗

r is larger than
the growth rate ωi , that is, ωi < ω∗

r and, hence, linear analysis
is valid. Note that the drift wave is driven by the sheared flow in
this case. In Figure 2(a), assuming κv = ky/60, the purely grow-
ing instability dominates for 2.5 � ky because here ωr � ωi

and hence it shows the shear flow-driven instability with local
real frequency ωr = ω∗

r −ω0. For steeper sheared flow gradient,
the drift wave instability occurs at relatively larger values of ky
as shown in Figure 2(b). The drift wave and D’Angelo’s mode
are mixed due to κn 
= 0 for 2 < ky < 2.5. But the instability for
2.5 < ky is basically the sheared flow-driven instability because
linear theory for drift waves does not remain valid in the regime
where ωr � ωi. In Figure 3, the real and imaginary parts of the
frequencies of the mixed modes (ωr (dashed curves), ωi (solid
curves)) are plotted against the perpendicular component of the
wave number (ky) for changing inverse velocity scale lengths
(a) κv = ky/60 and (b) κv = ky/100, for v0 = 70 km s−1,
κn = 1.9 × 10−3 m−1, nb0 = 0, and kz = 10−4ky . All other pa-
rameters are the same as in Figure 1. Note that the growth rates
and the real parts of the frequencies of the mixed modes both
decrease corresponding also to smaller ky and kz compared to
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Figure 4. Growth rates (ωi ) of the perturbations are plotted against the perpendicular component of the wave number (ky) and the inverse density scale length
(κn), respectively, for a varying parallel component of the wave number, viz., (a) kz = 10−5ky (solid curve) and kz = 10−4ky (dashed curve) with fixed values of
v0 = 10 km s−1, κn = 1.9 × 10−3 m−1, and κv = ky/60, and corresponding to higher streaming velocities (b) v0 = 50 km s−1 (solid curve) and v0 = 70 km s−1

(dashed curve), for κv = ky/60, ky = 0.5 m−1, and kz = 10−4ky . All other parameters are the same as in Figure 1. The variations of the real frequency (ωr ) of the
perturbations are also plotted against ky and κn, respectively, as shown in panels (c) and (d).

(A color version of this figure is available in the online journal.)

Figure 2, which is quite natural. In this case, the instabilities
require larger values of flow v0(x) in order to satisfy
condition (12).

The effect of the ratio of kz/ky and the different streaming
velocities ν0 on instabilities is shown in Figure 4. Here, the
growth rate (ωi) of the electrostatic perturbations are plotted
against the perpendicular component of the wave number (ky)
and the inverse density scale length (κn), respectively, for
a varying parallel component of the wave number, viz., (a)
kz = 10−5ky (solid curve) and kz = 10−4ky (dashed curve)
with fixed values of v0 = 10 km s−1, κn = 1.9 × 10−3 m−1, and
κv = ky/60, and corresponding to different streaming velocities
(b) v0 = 50 km s−1 (solid curve) and v0 = 70 km s−1 (dashed
curve) for κv = ky/60, ky = 0.5 m−1, and kz = 10−4ky .
The real frequencies are also plotted corresponding to the
above-mentioned values of κv , ky, and κn, respectively, for (c)
kz = 10−5ky (solid curve) and kz = 10−4ky (dashed curve) with
fixed v0 = 10 km s−1 and (d) v0 = 50 km s−1 (solid curve)
and v0 = 70 km s−1 (dashed curve) for ky = 0.5 m−1. All other
parameters have the same values as in Figure 1. Since the chosen
value of ky is smaller, the instability occurs at larger values
of the streaming velocity. Both ω∗

a and c2
askzky then become

smaller and, therefore, we note that ωi in Figure 4(b) and ωr in
Figure 4(d) turn out to be smaller than that shown in Figure 2
where ky is larger.

It is pointed out that the presence of 10% helium ions in
the corona has a significant effect on the imaginary and real
parts of the frequency of the electrostatic perturbations driven
by the sheared flow. In Figure 5, the real and imaginary parts of
the frequencies ωr and ωi are plotted against the perpendicular
component of the wave number (ky), respectively, for nb0 = 0
(dashed curve) and nb0 = 0.1ne0 (solid curve) corresponding
to κn = 0 (Figures 5(a) and (b)), and κn = 1.9 × 10−3 m−1

(Figures 5(c) and (d)). Figure 5 thus displays the effect of the
presence of helium ions on the real and imaginary parts of the
frequencies due to the shear flow-driven instability (for κn = 0)
and the drift wave instability (for κn 
= 0). It is interesting to note
that the purely growing D’Angelo’s mode develops a real part of
the frequency in a two-ion component hot plasma. The reason
is that for ∇na0 = 0 and ∇nb0 = 0, we have L1 = L2 = 0 and
Equation (9) becomes

L4Ω4
ω + L2Ω2

ω + L0 = 0. (14)

This equation has complex roots corresponding to our range
of parameters. The D’Angelo’s modes for ions a and b couple
together and develop a real part of the frequency. Substituting
nb0 = 0 and Tb0 = 0, we have L0 = 0 and Equation (14) will
give a Doppler-shifted purely growing instability as discussed in
Figure 1. On the other hand, in the case of a non-uniform density,
Figures 5(c) and (d) for 2 < ky < 2.5 show that ωi < ω∗

r and
hence the linear theory for drift waves remains valid while the
condition ω∗

r � νtekz holds as well. Thus, we conclude that in
the presence of helium ions and shear flows the drift waves are
almost omnipresent in the corona to accelerate plasma particles.
The large-amplitude drift waves will become nonlinear and this
study is out of the scope of the present work.

4. THE ROLE OF DISSIPATION

The solar corona is commonly assumed to be a collisionless
plasma because most of the wave studies deal with the relatively
high-frequency Alfvén waves using the MHD equations or ion
acoustic waves with wave numbers larger than our regime of
parameters and, hence, the frequency becomes larger than the
electron–ion collision frequency νei . The drift waves in the
solar corona have been investigated for the first time (to the
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Figure 5. Real and imaginary parts of the frequencies of the perturbations (ωi and ωr ) in the presence of sheared flow are plotted against the perpendicular component
of the wave number (ky ), respectively, for nb0 = 0 (dashed curve) and nb0 = 0.1ne0 (solid curve) for κn = 0 ((a) and (b)) and for κn = 1.9 × 10−3 m−1 ((c) and (d)).
All other parameters have the same values as in Figure 1.

(A color version of this figure is available in the online journal.)

best of the authors’ knowledge) by Vranjes & Poedts (2009a,
2009b, 2009c). The drift waves investigated by Vranjes & Poedts
(2009a) have frequencies ωr ∼ ωi ∼ 102 rad s−1 while νei � 30
rad s−1 (Vranjes & Poedts 2009b). Therefore, the ideal plasma
approximation is justified. In the higher frequency (ω∗

a) regime,
however, it does not seem preferable to assume the electrons to
be inertialess because the condition ω∗

a � vtekz may not remain
satisfied.

We here chose the wave parameters such that the condition
ω∗

a, ω
∗
b � vtekz remains satisfied and the electrons follow the

Boltzmann distribution. But in this regime, we see another small
effect, namely the dissipation. Let us look back at Figure 2(a)
to analyze the role of drift waves in corona. This wave is stable
for ky < 2 and then for 2 < ky < 2.5, the wave develops
ωi and, for 2.5 < ky we can see that ωr < ωi and the shear
flow-driven purely growing instability dominates. To understand
the wave behavior, we choose a value of ky in between 2 and
2.5. Let ky = 2.2 m−1. Then for κn = 1.9 × 10−3 m−1, we
find ω∗

a = Deκnky � 36 rad s−1, which is nearly equal to
νei . Therefore, dissipation can play some role in this frequency
regime.

It is important, however, to note that the well-known drift
dissipative instability (DDI; Weiland 2000) does not become
important even in this range of frequencies because ω∗

a is not
much smaller than νei . To obtain DDI, we use the parallel
momentum equation for electrons (Weiland 2000),

ne1

ne0
� eϕ

Te

{
1 − i

νei

ν2
tek

2
z

(ω∗
a − ω)

}
, (15)

in the limit ω∗
a � νei . Then the ion continuity equation, in the

limit c2
s k

2
z � (ω∗

a)2 along with quasi-neutrality (ne � ni), yields
the linear dispersion relation for the DDI with the real frequency

ωrd and imaginary frequency ωid as (Weiland 2000)

ωrd � ω∗
a(

1 + ρ2
ask

2
y

) (16)

and

ωid �
(

ω2
r

ν2
tek

2
z

)
νeiρ

2
ask

2
y , (17)

respectively. In our case, the drift wave frequency can be of
the order of νei . We have shown that the drift wave becomes
unstable due to the sheared flow in the absence of electron–ion
collisions. Therefore, in our parameter regime, the dissipation
can just add its small effect to the already unstable perturbation.
However, the DDI is not applicable since the real frequency ω∗

a

is not much smaller than νei . Now let us investigate the DDI in
the solar corona as a matter of general interest.

Figure 2(a) indicates that for small ky values, the drift wave
is stable and shear flow does not have an effect on it. Therefore,
we expect that for longer wavelengths ky � 2 the DDI may take
place in the corona. As an example, let us choose ky = 0.1 m−1

and take the rest of the parameter values to be the same, i.e.,
κn = 1.9 × 10−3, kz = 10−4ky , B0 = 10−2 T, etc. Then,
we find ω∗

a � 1.63, νtekz � 36 while νei � 36. Thus,
ω∗

a � νei � Ωi holds along with ω∗
a � ν2

tek
2
z /νei . Therefore,

in the corona the DDI gives rise to drift waves having very
low frequency ω∗

a � 1 Hz and relatively longer wavelength
λy � 2π/ky � 60 m.

5. DISCUSSION

It has been proposed that perturbed electrostatic fields are
generated throughout the solar corona, due to localized sheared
plasma flows, which accelerate the particles and heat them.
The corona is not a static spherical shell of plasma; rather, it

6
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has flows and is very inhomogeneous. Therefore, it has already
been proposed that the free energy available in the form of
density gradients can produce electrostatic drift waves (Vranjes
& Poedts 2009a, 2009b, 2009c). Using the results of kinetic
theory, these authors have shown that the universally unstable
drift waves can heat the coronal ions very efficiently. The density
gradient in the direction perpendicular to the external magnetic
field is the cause of the existence of these waves and is the source
for their instability as well. The waves transfer their energy to
plasma particles through Landau damping (the wave–particle
interaction). This process cannot be studied using fluid models.

However, the two-fluid theory has predicted a Kelvin–
Helmholtz-type instability which takes place in plasmas be-
cause of sheared flows (D’Angelo 1965). It shows that, if both
electrons and ions flow with the same velocity along the external
magnetic field B0, and there exists a gradient in the flow velocity
in the direction perpendicular to B0, then the perturbed electro-
static field becomes unstable. These are purely growing fields
in the frame of reference of the flow with a wide spectrum of
wavelengths. But in the laboratory frame, these unstable pertur-
bations have associated local real frequencies as ω0 = ν0(x)kz.
The sheared flows can give rise to two types of electrostatic
instabilities continuously throughout the corona.

1. The sheared flow-driven instability (D’Angelo 1965), even
in regions where the plasma density is uniform (κn = 0).

2. The drift waves, which are excited by the sheared flows in
the coronal regions where density is non-uniform.

The basic electrostatic drift wave is a stable low-frequency
mode of an inhomogeneous plasma. In the presence of
electron–ion collisions the plasma density and the electrostatic
potential do not remain in phase as is clear from Equation (15),
which is the same as Equation (3.18) of Weiland (2000).
Similarly in the case of a sheared flow, a phase difference is
produced between the parallel ion velocity and the electrostatic
potential, which allows the wave to grow, which is clear from
our Equation (2). The geometry of the perturbation is illustrated
in Figure 1(a). The wave propagates obliquely, making a small
angle with the z-axis in the yz-plane, perpendicular to the di-
rection of density gradient. The plasma flows along the external
magnetic field without creating a shear in the external magnetic
field.

It is well known that D’Angelo’s mode is purely growing in
a single ion plasma. But we point out that in a two-ion plasma,
this mode develops a small component of real frequency as well.
Figure 5(b) clearly shows that ωr 
= 0 for the case κn = 0 when
nb0 
= 0. These instabilities have been investigated neglecting
the effects of electron–ion collisions. For ky � 10 m−1, we
find that the sheared flow-driven instability can create potential
ϕ1 � 68 volts in about a growth time τg � 0.03 s if at
t = 0 we assume eϕ1/Te � 10−2. Note that Vranjes & Poedts
(2009a) have estimated that the large frequency drift waves
(ωr � 2.5×102) can give rise to this value of potential in 0.02 s.
The components of the wavelength chosen in the perpendicular
and parallel directions are, respectively, λy = 0.5 m and
λz = 20 km. Then they have νtekz = 1.2 × 103 rad s−1.

Figure 2 shows that the drift waves having ωr < 50 rad s−1

satisfying ωr � νtekz can become unstable due to sheared flow.
The collisional effects have been neglected which can only
modify the growth rates by small amounts in this parameter
regime. It is well known that the electron–ion collisions can
drive the DDI and does not require plasma flow to occur.
The collisions produce electrostatic drift waves having very

small real frequency ωrd � 1.6 rad s−1, corresponding to
ky � 0.1 m−1 and longer wavelengths λy = 2π/ky � 60 m.
If the initial perturbation is assumed to be eϕ1/Te = 10−2,
then ϕ1 will take time τg � 15 minutes to increase up to
ϕ1 = 86 volts. But smaller values of ϕ1 will be produced on
much smaller timescales than 15 minutes.

Our estimates show that the electrostatic instabilities driven
by the sheared flows and dissipation continue growing linearly
during the time denoted by growth time τg. The electrostatic
potentials can attain about 100 volts in τg = 0.03 s in the case
of a sheared flow-driven instability, and in τg = 15 minutes, in
the case of a DDI, if the normalized initial potential perturbation
is assumed to be 1%. However, the nonlinearities may saturate
the growth of these instabilities before time τg.

Thus, we conclude that drift waves of different frequencies
and wavelengths are produced in the solar corona due to sheared
flows and electron–ion collisions. As a result, electrostatic fields
are almost omnipresent in the coronal plasma and continuous
self-heating is taking place due to the sheared plasma flows.
The present investigation thus shows that even if the plasma
density is uniform in a region, the electrostatic fields will still
be produced because the corona is not static and sheared flows
occur everywhere. The purely growing D’Angelo’s mode also
develops a small real part of the frequency because the solar
corona contains two types of ions. Therefore, we propose that
the sheared flow-driven instabilities play an important role in
the self-heating of the corona.

These results were obtained in the framework of
projects GOA/2009-009 (K. U. Leuven), G.0729.11 (FWO-
Vlaanderen), and C 90347 (ESA Prodex 9). Financial
support by the European Commission through SOTERIA
(Collaborative project 218816 of FP7-SPACE-2007-1) is
gratefully acknowledged.
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