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1 Introduction

Quantile regression was introduced by Koenker and Bassett (1978) as an alternative to least

squares estimation and yields a far-reaching extension of regression analysis by estimating

families of conditional quantile curves. Since its introduction, quantile regression has found

great attraction in statistics because of its ease of interpretation, its robustness and its nu-

merous applications which include such important areas as medicine, economics, environment

modeling, toxicology or engineering [see Buchinsky (1994); Cade et al. (1999) or Wei et al.

(2006) among many others]. For a detailed description of quantile regression analysis we refer

to the monograph of Koenker (2005), which also provides a variety of additional examples.

In a concrete application the parametric specification of a quantile regression model might

be difficult and several authors have proposed nonparametric methods to investigate condi-

tional quantiles [see Yu and Jones (1998), Dette and Volgushev (2008) and Chernozhukov

et al. (2010) among many others]. However, nonparametric methods involve the choice of a

regularization parameter and for high dimensional predictors these methods are not feasible

because of the curse of dimensionality. Parametric models provide an attractive alternative

because they do not suffer from these drawbacks. On the other hand, in the application

of these models the problem of model selection and validation is a very important issue,

because a misspecification of the regression model may lead to an invalid statistical analysis.

Machado (1993) considered a modification of the Schwarz (1978) criterion for general M -

estimates, Ronchetti (1985) studied such a variant for the Akaike information criterion [see

Akaike (1973)]. Koenker (2005) proposed to use the Akaike criterion for quantile regression,

which usually overestimates the dimension but has advantages with respect to prediction.

More recently, several authors have worked on penalized quantile regression in the context

of variable selection in sparse quantile regression models [see Zou and Yuan (2008); Wu and

Liu (2009); Shows et al. (2010)].

The work of the present paper is motivated by some recent application of nonlinear median

regression with the EMAX model in pharmacokinetics [see Callies et al. (2004) or Chien et al.

(2005) among others]. In studies of this type model identification is not the primary goal

of the statistical analysis, but quantities such as area under the curve (AUC) or minimum

effective dose (MED) are of main interest and model selection should take this into account.

Example 2.1, see Section 2, is one such situation where a dose response relationship is

modeled by nonlinear quantile regression and a clear target is involved. Different dose

response models are considered with the specific purpose of using the selected model to

estimate the minimal effective dose, i.e. the target, the minimal dose for which a specified

minimum effect is achieved.

Model selection methods such as the Akaike information criterion or the Schwarz-Bayesian

information criterion operate in an ‘overall’ mode. Indeed, it is not required and even

not possible to specify beforehand which purpose the selected model should serve. On the

one hand, this is convenient since for prediction beyond the last observation as well as for

estimation of the variability and for estimation of a 10% quantile, one and the same selected

model could be used. On the other hand, this of course implies that in situations when one
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has a specific purpose in mind, there could be better search methods, leading toward models

that are more efficient for that specific purpose. One such clear example is in phase II dose

finding studies where the sole purpose of the modeling procedure is to find the minimal

effective dose. In such studies, there is usually no specific interest in other aspects of the

model such as predictions or variability estimation.

The focused information criterion (FIC, Claeskens and Hjort, 2003, 2008b) is designed for

such targeted model searches. It explicitly takes the purpose of the modeling procedure

into account. The underlying idea is to start by specifying the focus and then to select

from different models that model for which the focus estimator has the smallest estimated

mean squared error (MSE). Other loss functions than squared error could be used, e.g. linex

loss (Claeskens and Hjort, 2008a) or `p loss (Claeskens et al., 2006). The use of the FIC

has been extended from the parametric regression models with maximum likelihood esti-

mation for which it was first defined toward semiparametric models (Claeskens and Carroll,

2007), generalized additive partial linear models (Zhang and Liang, 2011), capture-recapture

models (Bartolucci and Lupparelli, 2008), time series models (Claeskens et al., 2007), Cox

proportional hazard regression models (Hjort and Claeskens, 2006) and volatility forecasting

(Brownlees and Gallo, 2008), to name a few.

The purpose of the present paper is to develop a methodology for focused model selection in

quantile regression analysis. The basic terminology is introduced in Section 2, where we also

present a motivating example from a phase II dose finding study. Section 3 provides some

asymptotic properties of the quantile regression estimate under local alternatives. A rigorous

statement of these properties is – to the best knowledge of the authors – not available in

the literature. In Section 4 we use these results to define a focused information criterion for

quantile regression models. The methodology is illustrated by a small simulation study and

by the analysis of a data example in Section 5. Finally, some concluding remarks are given

in Section 6 and the more technical arguments are deferred to an appendix in Section 7.

2 Preliminaries

Let F (y|x) denote the conditional distribution function of a random variable Y for a given

predictor x. For a given τ ∈ (0, 1) we consider the common nonlinear quantile regression

model

Qτ (x) = F−1(τ |x) = g(x; β),

where the regression function g(x; β) depends on a q-dimensional vector of parameters β :=

(β1, . . . , βp, βp+1, . . . , βq)
t ∈ Θ ⊂ Rq and an explanatory variable x ∈ X . In order to address

the problem of model selection we follow Claeskens and Hjort (2003) and assume that the

specification of the parameter β generates several sub-models, where each of the sub-models

contains the first part of the vector β, that is β0 := (β1, . . . , βp)
t (Claeskens and Hjort (2003)

call this the narrow model and call these parameters “protected” parameters). The following

example illustrates this assumption for a class of competing models.
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Example 2.1 Consider the Hill model

g(x; β) = β4 +
β1x

β3

ββ32 + xβ3
, (2.1)

which is widely used in pharmacokinetics and dose response studies [for some applications

see Chien et al. (2005); Park et al. (2005); Blake et al. (2008) among many others]. The

“simplest” model to describe the velocity of a chemical reaction or a dose response relation-

ship is a sub-model of (2.1) and is obtained by the choice β3 = 1 and β4 = 0, namely the

Michaelis Menten-model

g(x; β1, β2, 1, 0) =
β1x

β2 + x
. (2.2)

The model (2.2) corresponds to the narrow model (note that we have p = 2, q = 4 in the

general terminology). Moreover, there are several other interesting models which arise as

special cases of the Hill model. A famous competitor is the EMAX model which is obtained

for β3 = 1, that is

g(x; β1, β2, 1, β4) = β4 +
β1x

β2 + x
. (2.3)

Similarly, if no placebo effect is assumed, this can by addressed by the choice β4 = 0, i.e.

g(x; β1, β2, β3, 0) =
β1x

β3

ββ32 + xβ3
. (2.4)

The models (2.1) – (2.4) are frequently used for modeling dose response relationships.

In dose finding studies, a typical problem is to estimate the minimal effective dose (MED),

that is the smallest dose level such that a minimum effect, say ∆ is achieved. For the purpose

of model selection, the aim is to find the model which best estimates the MED. ‘Best’ is

here understood in mean squared error sense. In more detail, the focus of the model search

procedure is the quantity µ(β) = g−1(∆, β). For different models, this focus takes different

parametric forms. For the four given models in the current example, the focus is given by(ββ32 (∆− β4)

β1 + β4 −∆

)1/β3
,

β2∆

β1 −∆
,
β2(∆− β4)

β1 + β4 −∆
,
( ββ32 ∆

β1 −∆

)1/β3
, (2.5)

for the models (2.1), (2.2), (2.3) and (2.4), respectively. It is typically the case in phase II

clinical trials or in toxicological studies that the estimation of the minimum effective dose is

the main goal of the experiment. The focused information criterion is constructed to select

the model which estimates the MED in the best way, by taking explicitly this target into

account from the start.

The aim of this paper is to derive a focused model choice criterion for quantile regression

analysis, which addresses problems of this type in more generality. For this purpose we

propose to choose a subset from (βp+1, . . . , βq) such that the MSE for estimating a certain

focus parameter

µ := µ(β1, . . . , βp, βp+1, . . . , βq) (2.6)
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by the chosen quantile regression model is minimal. In order to find this “best” model, we

will determine the MSE of the estimator µ̂S for each possible sub-model, where S denotes

any subset from (βp+1, . . . , βq)
t. Throughout the text, βS will denote a parameter vector

for the model which includes all parameters from the narrow model plus the parameters

contained in a set S ⊂ {p+ 1, . . . , q}, that is βS = (β1, . . . , βp, (βj)j∈S)t. Note that βS ∈ ΘS,

where ΘS ⊂ Rp+|S| denotes the canonical projection of Θ corresponding to the parameters

from the sub-model S. We will use the notation g(x; βS) for the model g(x; β), which is

obtained for the vector β = (β1, . . . , βp, γ0,Sc , (βj)j∈S)t, where for a given set S the vector

γ0,S consists of the parameters of a q − p-dimensional vector γ0 corresponding to the sub-

model S and Sc denotes the complement of S. Here, the values of γ0 are always chosen such

that g(x; β1, . . . , βp, γ0) gives the narrow model. For example, in a linear regression model

where γ corresponds to the regression coefficients, we choose γ0 = (0, . . . , 0)t, whereas in

Example 2.1 where the narrow and full model are given by (2.2) and (2.1), respectively, we

have (γ0,1, γ0,2) = (1, 0). Other functions of the parameter β are interpreted in the same way

if their argument is βS. In order to emphasize the case where all parameters are included in

the quantile regression model we use the notation g(x; βfull) and we define the vectors

β0,full = (β1, . . . , βp, γ0)t and β0,S = (β1, . . . , βp, γ0,S)t.

Throughout this paper let n denote the sample size and δ be a vector of dimension q − p.
Following Claeskens and Hjort (2003) we assume that the unknown “true” parameter, say

βtrue, is of the form

βtrue = (β1, . . . , βp, γ0 +
δ√
n

)t. (2.7)

If a particular quantile regression model has been specified (by the choice of an appropriate

set S), the quantile regression estimate β̂n,S on the basis of n observations Y1, . . . , Yn at

experimental conditions x1, . . . , xn is defined as the minimizer of the function

n∑
i=1

ρτ (Yi − g(xi; βS)) (2.8)

where ρτ (z) := τI(z ≥ 0)z + (τ − 1)I(z < 0)z denotes the check function [Koenker (2005)].

3 Asymptotic properties

In this section we study the asymptotic properties of quantile regression estimates under local

alternatives of the form (2.7), which are required for the derivation of a focused information

criterion for quantile regression. For this purpose we assume that the following assumptions

are satisfied.

(A0) The parameter space Θ is compact.
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(A1) (i) Y1, . . . , Yn are independent random variables with densities f1n(·|x1), . . . , fnn(·|xn)

such that for each x ∈ X , fin(·|x) is continuous. Fin denotes the corresponding distri-

bution function, while f̃in(u) = fin(u + g(xi; β0,S)|xi) is the density of the regression

error ui,S := Yi − g(xi; β0,S) with corresponding distribution function F̃in.

(ii) There exists a constant w > 0 such that for i = 1, 2, . . . , n ; n ∈ N the densi-

ties fin(·|xi) are uniformly bounded away from 0 by a constant 0 < K0 < ∞ in a

neighbourhood W := [g(xi, βtrue)− w, g(xi, βtrue) + w] of g(xi, βtrue).

(iii) The densities f̃in are uniformly bounded from above by a constant 0 < K1 <∞.

(iv) The densities f̃in(u) are differentiable with respect to u and |f̃ ′in(u)| ≤ K2 in a

neighborhood of zero, where the constant K2 does not depend on n.

(A2) g(x; βfull) is twice continuously differentiable with respect to the parameter vector βfull
for all x ∈ X . For a given sub-model S and β′S ∈ ΘS we denote the corresponding

derivatives by

m(xi, β
′
S) =

∂g(xi; βS)

∂βtS

∣∣∣
βS=β′S

, M(xi, β
′
S) =

(∂2g(xi; βS)

∂βS∂βtS

)∣∣∣
βS=β′S

.

(A3) (i) There exists a positive definite matrix V such that

lim
n→∞

1

n

n∑
i=1

m(xi, β0,full)m(xi, β0,full)
t = V.

(ii) There exists a positive definite matrix Q such that

lim
n→∞

1

n

n∑
i=1

fin(g(xi; βtrue))m(xi, β0,full)m(xi, β0,full)
t = Q :=

(
Q00 Q10

Q01 Q11

)
,

where Q00 is a p× p-matrix which corresponds to the narrow model and Q11 denotes a

(q − p)× (q − p)-matrix corresponding to the additional parameters of the full model.

(iii) There exist constants 0 < C1, C2 <∞ and u > 0 such that

max
i=1,...,n

‖m(xi, β̃)‖ < C1 , max
i=1,...,n

‖M(xi, β̃)‖ < C2

for all β̃ in the neighbourhood U := {β ∈ Θ | ‖β − β0,full‖ ≤ u} of β0,full.

(A4) Fin(g(xi; βtrue)) = τ for all i = 1, . . . , n.

(A5) (i) There exists a constant 0 < k1 <∞ such that for all β ∈ Θ and for n > n0

k1‖β − β0,full‖2 ≤ 1

n

n∑
i=1

[g(xi; β)− g(xi; β0,full)]
2.

(ii) There exists a constant 0 < k2 <∞ such that for all β, β′ ∈ Θ and for n > n0

1

n

n∑
i=1

[g(xi; β
′)− g(xi; β)]2 ≤ k2‖β′ − β‖2.
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Note that the second subscript n is used here for the distribution functions Fin (and cor-

responding densities fin) in order to emphasize that we are working under the assumption

(2.7) of local alternatives. Moreover, it should be pointed out here that a similar assumption

as (A5) was also used by Jureckova and Prochazka (1994) in order to ensure identifiability

of the parameter β0, that is

k1‖β′ − β‖2 ≤ 1

n

n∑
i=1

[g(xi; β
′)− g(xi; β)]2 ≤ k2‖β′ − β‖2. (3.1)

for all β, β′ ∈ Θ. However, for some important nonlinear models, the left inequality may

not be fulfilled. A typical example is model (2.1), where we have g(x; 0, β2, β3, β4) = β4

independent of the values of β2 and β3. However, for the derivation of the asymptotic results

in this chapter it is actually enough to assume that (3.1) holds only for the “pseudo-true”

parameter β0,full, which corresponds to assumption (A5)(i).

3.1 Consistency of the quantile regression estimator

In this section, we will prove that under the local alternatives of the form (2.7) the estimated

regression quantile β̂n,S in a given submodel S converges in probability to β0,S. The precise

statement is the following result.

Theorem 3.1 Assume that (A0) – (A5) and (2.7) are satisfied. For any submodel S, the

statistic β̂n,S is a consistent estimator for β0,S, i.e. β̂n,S − β0,S = oP (1) as n→∞.

Proof. Define

∆i(βS) = g(xi; βS)− g(xi; β0,S), (3.2)

and note that under the local alternatives (2.7) ∆i(βtrue) tends to zero for n → ∞. Using

assumptions (A1), (A3)(iii) and (2.7), we obtain for some α satisfying |α| ≤ |∆i(βtrue)| and

β̃i between βtrue and β0,full

rn,τ (xi) := F̃in(∆i(βtrue))− F̃in(0) = f̃in(α)∆i(βtrue)

≤ K1 max
i=1,...,n

‖m(xi, β0,full)‖√
n

‖δ̃‖+ o(1/
√
n) = o(1) (3.3)

where δ̃ := (0, ..., 0, δ)t denotes a vector of length q which is zero in the first p components

and takes the value δ from (2.7) in the last q − p components. Now recall the definition

of ui,S in (A1) and note that the estimated regression quantile β̂n,S minimizes the objective

function

Zn(βS) :=
1

n

n∑
i=1

[ρτ (Yi − g(xi; βS))− ρτ (ui,S)]

=
1

n

n∑
i=1

[ρτ (ui,S −∆i(βS))− ρτ (ui,S)] . (3.4)
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We first calculate the expectation of Zn(βS) as

E[Zn(βS)] =
1

n

n∑
i=1

∫
R

[
(τ − 1{s≤∆i(βS)})(s−∆i(βS)) + (1{s≤0} − τ)s

]
dF̃in(s)

=
1

n

n∑
i=1

{
−
∫ ∆i(βS)

−∞
s dF̃in(s) +

∫ 0

−∞
s dF̃in(s) + ∆i(βS)F̃in(∆i(βS))− τ∆i(βS)

}
=

1

n

n∑
i=1

{∫ 0

∆i(βS)

s dF̃in(s) + ∆i(βS)(F̃in(∆i(βS))− F̃in(0))

+ ∆i(βS)(F̃in(0)− F̃in(∆i(βtrue)))
}

=
1

n

n∑
i=1

∫ 0

∆i(βS)

(s−∆i(βS)) dF̃in(s) + o(1), (3.5)

where the last identity follows from (3.3) and the fact that 1
n

∑n
i=1 ∆i(βS) is bounded due

to assumptions (A5) and (A0). Note that the integral in the last line is always positive,

except in the case ∆i(βS) = 0 which corresponds to the choice βS = β0,S. Furthermore, the

identifiability assumption (A5)(i) guarantees that for sufficiently large n and any parameter

βS ∈ ΘS different from β0,S we have

1

n

n∑
i=1

(∫ 0

∆i(βS)

(s−∆i(βS)) dF̃in(s)

)
> 0. (3.6)

This implies that for sufficiently large n the sum in (3.5) will only be zero for βS = β0,S and

is strictly positive otherwise. The key step for completing the proof is a uniform convergence

property of the criterion function. More precisely, we will show in the Appendix that

sup
βS∈ΘS

|Zn(βS)− E[Zn(βS)]| P→ 0. (3.7)

Because Zn is minimized at β̂n,S, we have

Zn(β̂n,S) ≤ Zn(β0,S) = 0. (3.8)

Then from (3.6), (3.7) and (3.8) follows the statement of the Theorem, i.e. ‖β̂n,S − β0,S‖ =

oP (1). 2

3.2 Weak convergence under local alternatives

In this section we derive the asymptotic distribution of the quantile regression estimator β̂n,S
for each sub-model S under local alternatives of the form (2.7), which is the key step for

defining the FIC in every sub-model.
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Theorem 3.2 Under assumptions (A0) - (A5) and (2.7) we have

√
n(β̂n,S − β0,S)

D→ NS ∼ N
(
Q−1
S

(
Q01

πSQ11

)
δ, τ(1− τ)Q−1

S VSQ
−1
S

)
,

where N (µ,Σ) denotes a normal distribution with mean µ and covariance matrix Σ,

QS = lim
n→∞

1

n

n∑
i=1

fin(g(xi; θ0,S))m(xi, β0,S)m(xi, β0,S)t,

VS = lim
n→∞

1

n

n∑
i=1

m(xi, β0,S)m(xi, β0,S)t,

and πS is a |S|×p-projection matrix consisting of ones and zeros which simply extracts from

Q11 the rows corresponding to the sub-model S.

Proof. β̂n,S minimizes the objective function Gn(βS) :=
∑n

i=1 [ρτ (Yi − g(xi; βS))− ρτ (ui,S)] .

We use a Taylor expansion at the point β0,S to write Gn in the slightly modified form

Gn(βS) =
n∑
i=1

[
1{ui,S<0}(1− τ)∆i(βS)− 1{ui,S≥0}τ∆i(βS)

+1{0<ui,S≤∆i(βS)}(∆i(βS)− ui,S) + 1{∆i(βS)≤ui,S≤0}(ui,S −∆i(βS))

]
= −

√
n(βS − β0,S)t(Γn,S +Rn,S(βS)) +

n∑
i=1

bi(βS), (3.9)

where the random variables Γn,S, Rn,S(βS) and bi(βS) are defined by

Γn,S :=
n∑
i=1

ψτ (ui,S)
1√
n
m(xi, β0,S), (3.10)

Rn,S(βS) :=
n∑
i=1

ψτ (ui,S)
1√
n

[
m(xi, β̃i,S)−m(xi, β0,S)

]
,

bi(βS) := 1{0<ui,S≤∆i(βS)}(∆i(βS)− ui,S) + 1{∆i(βS)≤ui,S≤0}(ui,S −∆i(βS))

and β̃i,S in the definition of Rn,S denotes a suitable value between βS and β0,S. Furthermore,

ψτ (ui,S) := τ1{ui,S≥0} + (τ − 1)1{ui,S<0}

denotes the “derivative” of the check function ρτ . In the Appendix we will derive the

following asymptotic properties of Gn:

• For Γn,S defined in (3.10) we have

Γn,S
D→ WS, (3.11)

where

WS ∼ N
(( Q01

πSQ11

)
δ, τ(1− τ)VS

)
.
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• For every βS ∈ U it holds that

Gn(βS) = −vtΓn,S+
1

2
vtQn,Sv+OP (n−1/2‖v‖2)+O(n−1/2‖v‖3)+O(n−1‖v‖4)+OP (n−1/6‖v‖3/2)

(3.12)

where U denotes the neighbourhood of β0,full defined in assumption A3(iii) and

v :=
√
n(βS − β0,S), Qn,S :=

1

n

n∑
i=1

f̃in(0)m(xi, β0,S)m(xi, β0,S)t.

The approximation (3.12) will be used to establish a Bahadur-type representation for the

statistic T̂n :=
√
n(β̂n,S − β0,S). More precisely, we will show in the appendix that T̂n is

stochastically bounded, that is

‖T̂n‖ = OP (1). (3.13)

Note that Theorem 3.1 implies that P (β̂n,S ∈ U)→ 1 for n→∞. Therefore, by (3.12) and

(3.13) Gn(β̂n,S) has the following stochastic expansion:

Gn(β̂n,S) = −T̂ tnΓn,S +
1

2
T̂ tnQn,ST̂n + oP (1). (3.14)

Next, define β∗n,S := β0,S +Un/
√
n with Un := Q−1

n,SΓn,S. By (3.11), the term Un is asymptot-

ically normal distributed and in particular ‖Un‖ is also stochastically bounded. Therefore it

follows that P (β∗n,S ∈ U) → 1 for n → ∞. Moreover, Un satisfies U t
nΓn,S = U t

nQn,SUn and

consequently (3.12) yields

Gn(β∗n,S) = −1

2
U t
nQn,SUn + oP (1). (3.15)

From (3.14) and (3.15) it therefore follows that

Gn(β̂n,S)−Gn(β∗n,S) = −T̂ tnΓn,S +
1

2
T̂ tnQn,ST̂n +

1

2
U t
nQn,SUn + oP (1)

=
1

2
(T̂n − Un)tQn,S(T̂n − Un) + oP (1). (3.16)

Note that by the definition of β̂n,S the left-hand-side of the above equation is always non-

positive, while the first term in the second row on the right-hand-side is always positive due

to the positive definiteness of Qn,S. Consequently, we obtain ‖T̂n − Un‖ = oP (1), i.e.

T̂n =
√
n(β̂n,S − β0,S) = Un + oP (1) = Q−1

n,SΓn,S + oP (1).

Therefore the asymptotic normality of T̂n follows directly from (3.11).
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4 The FIC for quantile regression

From Theorem 3.2, an expression for the FIC can be derived by similar arguments as in

Claeskens and Hjort (2003). By applying the Delta method we get the asymptotic distribu-

tion of the estimator µ̂S in the submodel S

√
n(µ̂S − µtrue) =

√
n(µ(β̂n,S)− µ(β0,S)) +

√
n(µ(β0,S)− µ(βtrue))

D→ NS −
∂µ

∂βfull

t

δ̃ (4.1)

with

NS ∼ N
( ∂µ
∂βS

t

Q−1
S

(
Q01

πSQ11

)
δ,
∂µ

∂βS

t

τ(1− τ)Q−1
S VSQ

−1
S

∂µ

∂βS

)
(4.2)

and δ̃ = (0, ..., 0, δ)t. Here as well as in the following steps, all partial derivatives ∂µ
∂βfull

and
∂µ
∂βS

are evaluated at β = β0,full and β = β0,S, respectively. This yields for the MSE of (4.1)

MSES =
∂µ

∂βS

t

Q−1
S

(
Q01

πSQ11

)
δδt
(
Q01

πSQ11

)t
(Q−1

S )t
∂µ

∂βS
− 2

∂µ

∂βS

t

Q−1
S

(
Q01

πSQ11

)
δ
∂µ

∂βfull

t

δ̃

+

(
∂µ

∂βfull

t

δ̃

)2

+
∂µ

∂βS

t

τ(1− τ)Q−1
S VSQ

−1
S

∂µ

∂βS
.

Because the third term in this expression does not depend on the particular sub-model we

finally define the FIC for the quantile regression estimator as

FICS =
∂µ

∂βS

t[
Q−1
S

(
Q01

πSQ11

)
δδt
(
Q01

πSQ11

)t
(Q−1

S )t + τ(1− τ)Q−1
S VSQ

−1
S

] ∂µ
∂βS

−2
∂µ

∂βS

t

Q−1
S

(
Q01

πSQ11

)
δ
∂µ

∂βfull

t

δ̃. (4.3)

It remains to estimate the unknown quantities in this expression such that the FIC can be

calculated from the data. The key step here is to find an estimator of the matrices QS which

is consistent under local alternatives. Using the regression “errors” ε̂i = Yi−g(xi; β̂1, . . . , β̂p),

(β̂1, . . . , β̂p are estimated in the full model) Kim and White (2003) suggested to estimate the

matrix QS by

Q̂S =
1

2ĉnn

n∑
i=1

1{−ĉn≤ε̂i≤ĉn}m(xi, β̂0,S)m(xi, β̂0,S)t.

where β̂0,S is calculated by taking estimates β̂1, . . . , β̂p from the full model and ĉn denotes

the bandwidth of the estimator which is in some way (e.g. by cross-validation) determined

from the data. The other terms in (4.3) can be estimated similarly as in Claeskens and Hjort

(2003), e.g.

V̂S =
1

n

n∑
i=1

m(xi, β̂0,S)m(xi, β̂0,S)t.
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Finally, we have to estimate the term δδt. By Theorem 3.2 we have shown that

Dn :=
√
n((β̂p+1 − γ0,1), . . . , (β̂q − γ0,q−p))

t D→ D ∼ N (δ,K),

where K denotes the (q − p) × (q − p)-matrix obtained by taking the last q − p rows and

columns from the matrix τ(1−τ)Q−1V Q−1. Therefore, DDt has mean δδt+K, and, following

Claeskens and Hjort (2003), we propose to use the estimator ˆδδt = DnD
t
n− K̂, which should

be truncated to zero when the result is negative definite. An estimator K̂ can be obtained

directly by taking the corresponding rows and columns of τ(1−τ)Q̂−1V̂ Q̂−1 of the estimated

covariance matrix of the full model. Finally, the derivatives of µ can be estimated by plug-in-

estimators, using estimates for β0,full from the full model. Summarizing these calculations,

we obtain for every submodel S the following expression for the estimated FIC which can

be calculated from the data:

F̂ ICS =
∂µ(β)

∂βS

t∣∣∣
β=β̂0,full

Q̂−1
S

(
Q̂01

πSQ̂11

)
ˆδδt
(
Q̂01

πSQ̂11

)t
(Q̂−1

S )t
∂µ(β)

∂βS

∣∣∣
β=β̂0,full

+
∂µ(β)

∂βS

t∣∣∣
β=β̂0,full

τ(1− τ)Q̂−1
S V̂SQ̂

−1
S

∂µ(β)

∂βS

∣∣∣
β=β̂0,full

−2
∂µ(β)

∂βS

t∣∣∣
β=β̂0,full

Q̂−1
S

(
Q̂01

πSQ̂11

)
ˆδδt
∂µ(β)

∂γ

∣∣∣
β=β̂0,full

(4.4)

where γ := (βp+1, ..., βq)
t denotes the last (q − p) components of the parameter vector β.

The largest difficulty in specifying a focused information criterion is the derivation of the

mean squared error expressions under local misspecification. Once these expressions are

obtained, the MSE values of several models may be compared in order to decide on a best

model. Such comparisons give rise to inequalities in terms of the local misspecification

neighborhood defined by δ, the chosen focus µ and K, related to the lower-right part of

the inverse Fisher information matrix. The result of Theorem 5.3 of Claeskens and Hjort

(2008b) where the MSE values of two models are compared, is applicable to this setting.

It previously has been obtained that some averaged versions of the FIC behave asymptotically

similar to the AIC, see Claeskens and Hjort (2008a). We shall not repeat these calculations,

but rather refer to that paper.

5 Finite sample properties

Different model selection methods each have their own underlying strategy. For example,

the AIC aims at minimising the estimated expected Kullback-Leibler distance between the

true density of the data and the density corresponding to the specified models. The BIC

originates from an approximation to the Bayesian posterior probability of the model given

the data, which should be large for the selected model. With these different underlying

constructions, it should be no surprise that different models get selected if different types of

information criteria are applied. Theoretical properties, such as efficiency, might be other
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reasons for practitioners to prefer one criterion above another. It can be shown that no

model selection method can be universally best, a criterion that is efficient cannot at the

same time be strongly consistent (Yang, 2005).

With the construction of the FIC, we start explicitly from a focus that is to be estimated

and we try to find the best model for precisely this purpose. It is in such situations that

the FIC can be recommended, when models are constructed for a particular purpose. Dose

finding studies are ideally suited for the use of the FIC since the focus, the MED, plays the

prominent role in all of the modeling process. We wish to stress, however, that the given

theory and derivations extend much beyond the dose finding studies. Any focus µ that is

expressible in terms of the model parameters β and that is differentiable with respect to

these parameters could be taken as the starting point for the FIC. This quantity is to be

used in the FIC expression (4.4) and the model with the smallest such value gets selected.

5.1 Linear quantile regression

In this section we present a simulation study for model selection by the FIC criterion in a

linear quantile regression model. Moreover, we also illustrate the practical application of the

FIC for quantile regression in a detailed way and compare the performance of the FIC for

estimation of the focus parameter to more conventional model selection criteria such as AIC

and BIC. We consider the following model:

g(x; β0, β1, γ1, γ2, γ3, γ4) = β0 + β1x1 + γ1z1 + γ2z2 + γ3z3 + γ4z4. (5.1)

Here, β0 and β1 denote the “protected” parameters which are included in every candidate

model while γ1 to γ4 may be included or not. Consequently, there will be 16 candidate

models to choose from which all contain β0 and β1, but differ with respect to the parameters

γ1 – γ4. For example, the narrow model only contains β0 and β1 while γ1 – γ4 are set to zero.

The procedure starts by specifying the focus parameter, for which we chose the prediction

of Y at covariate value (x1, z1, z2, z3, z4) = (10, 10, 10, 10, 10). Next, the focus is written in

terms of the model notation as

µ1(β0, β1, γ1, γ2, γ3, γ4) = β0 + 10β1 + 10γ1 + 10γ2 + 10γ3 + 10γ4.

To continue, each candidate model is fitted to the data and the resulting parameter estimates

are used to estimate the MSE of the focus estimator in the considered models. This yields

an FIC value defined by (4.4) for every candidate model. Finally, the model with the lowest

FIC value gets selected and an estimator of the focus parameter is obtained by taking the

estimated focus from the chosen model.

For our simulation study, data are generated from model (5.1) with parameter values β0 = 1,

β1 = 1 and γ1 = γ2 = γ3 = γ4 = 1/
√
n. First, a set of covariate values of size n is generated

by drawing from normal distributions, that is

X1 ∼ N(20, 25), Z1 ∼ N(20, 6.25), Z2 ∼ N(−10, 6.25), Z3 ∼ N(10, 1), Z4 ∼ N(5, 2.25).
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Those values are now considered as fixed and are used in all simulation runs. For the

distribution of the “error” ε = Y − g(x, βtrue) we assume two different scenarios: A normal

distribution with mean 0 and variance σ2 = 4 and a Cauchy distribution with location

parameter a = 0 and scale parameter b = 2. Furthermore, we consider two different sample

sizes, n = 50 and n = 100. The parameters are estimated using median regression (i.e.

τ = 0.5). We conduct 2000 simulation runs where in each run model selection is performed

using the FIC. From the chosen model, we obtain a post-selection-estimator µ̂1,F IC for the

focus parameter µ1.

In order to compare the FIC to more conventional information measures such as AIC and

BIC, in each replication step we also estimate µ1 using the model selected by AIC and BIC.

In the median regression case, the AIC and BIC for the candidate model S are obtained as

AICS = n log(σ̂) + p, BICS = n log(σ̂) +
1

2
p log(n),

where σ̂ = 1
n

∑n
i=1 |yi− g(xi; β̂n,S)|, p denotes the number of parameters in the model S and

n the number of observations [for details see Hurvich and Tsai (1990)]. For a comparison of

the different model selection procedures we compute the absolute errors of the post-selection-

estimators for µ1

|µ̂1,F IC − µtrue| , |µ̂1,AIC − µtrue| , |µ̂1,BIC − µtrue| , (5.2)

where µ̂1,F IC , µ̂1,AIC and µ̂1,BIC denote the estimators of the focus µ1, where the model has

been chosen by FIC, AIC and BIC, respectively.

We calculate the median absolute error and the median absolute deviation (MAD) from the

2000 replications separately for FIC, AIC and BIC. The results are displayed in Table 1.

Median MAD

FIC AIC BIC FIC AIC BIC

n = 50, ε ∼ N(0, 4) 1.90 2.11 2.09 0.94 1.12 1.17

n = 50, ε ∼ C(0, 2) 2.36 2.64 2.62 1.37 1.53 1.53

n = 100, ε ∼ N(0, 4) 1.45 1.74 1.79 0.70 0.94 1.02

n = 100, ε ∼ C(0, 2) 1.65 2.01 2.05 0.87 1.18 1.20

Table 1: Median and median absolute deviation (MAD) of the absolute errors of the estimates

of the focus µ1 obtained from the FIC, AIC and BIC.

In a second setting, data are again generated from model (5.1) with β0 = β1 = 1 and

γ1 = γ2 = γ3 = γ4 = 0.3. The corresponding results are shown in Table 2. From Table 1

and Table 2 it can be seen that in nearly all considered scenarios FIC either performs clearly

better in terms of median absolute error and MAD or at least equally well as AIC and BIC.

For both sample sizes FIC is a clear winner over both AIC and BIC if the errors are Cauchy

distributed. For normal errors, FIC shows substantial advantages over AIC and BIC with

parameter values γ1 = γ2 = γ3 = γ4 = 1/
√
n whereas for the case γ1 = γ2 = γ3 = γ4 = 0.3

FIC yields similar results as AIC, but is still considerably better than BIC.
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Median MAD

FIC AIC BIC FIC AIC BIC

n = 50, ε ∼ N(0, 4) 2.60 2.72 3.34 1.24 1.47 1.47

n = 50, ε ∼ C(0, 2) 3.42 3.96 3.83 1.59 1.98 2.12

n = 100, ε ∼ N(0, 4) 2.10 1.87 2.75 1.14 1.15 1.53

n = 100, ε ∼ C(0, 2) 2.90 4.05 4.01 1.38 2.04 2.38

Table 2: Median and median absolute deviation of the absolute errors of the estimates of the

focus µ1 obtained from the FIC, AIC and BIC.

5.2 Nonlinear quantile regression: Application of the FIC for

dose-response-modeling

As a second example, we consider the class of quantile regression models introduced in

Example 2.1. All results are again based on 2000 simulation runs and we consider three

scenarios for the error distribution: Errors are assumed to be normal with mean 0 and

variance σ2 = 0.01, Cauchy distributed with location parameter a = 0 and scale parameter

b = 0.07 or normal with a heteroscedastic variance structure. In the heteroscedastic case we

assume that the errors are normal with mean 0 and standard deviation (depending on the

explanatory variable x)

σ(x) = τ0 +
τ1

1 + e−τ2x
, (5.3)

where τ0 = −0.1, τ1 = 0.24 and τ2 = 0.15. This variance function was proposed by Lim

et al. (2010) for dose-response-modeling. We consider the case of two competing models,

the Michaelis-Menten-model defined in (2.2) and the Hill model without intercept given by

(2.4). We generate data from the model (2.4) with parameter values β1 = 0.417, β2 = 25

and β3 = 1.75. As experimental design we choose six different dose levels equidistantly over

the dose range [0mg, 150mg] and assign 32 observations to each dose level. The parameters

are estimated using median regression (i.e. τ = 0.5). From these results we obtain a robust

estimate for the focus parameter µ2, the minimal effective dose (MED) defined in (2.5) with

∆ = 0.1. We investigate the performance of the FIC for choosing between the Michaelis-

Menten-model (2.2) and the Hill model (2.4). As in the previous chapter, we compare FIC

to AIC and BIC. In Table 3 we display the median and median absolute deviation of the

absolute errors (5.2) of estimators obtained from the different model selection procedures.

Median MAD

FIC AIC BIC FIC AIC BIC

N (0, 0.01) 1.76 1.96 3.12 1.04 1.22 1.53

N (0, σ2(xi)) 3.62 4.29 5.24 1.96 1.92 1.38

C(0, 0.07) 4.25 5.70 5.73 2.43 0.98 0.96

Table 3: Median and median absolute deviation of the absolute errors of the estimates of the

focus µ2 obtained from the FIC, AIC and BIC.
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We observe that the median absolute error of FIC is the smallest in all cases, while the BIC

yields the largest median of the absolute errors. However, for the MAD the situation is not

so clear. While the FIC also yields the smallest MAD for homoscedastic normal distributed

errors, the BIC is superior in the case of the Cauchy distribution.

For this nonlinear example, we also compare FIC to AIC and BIC by counting how many

times in 2000 simulation runs the FIC obtains a better estimator (in terms of absolute

deviation) than AIC (FIC<AIC) and BIC (FIC<BIC) and vice-versa. The first row of Table

4 shows the results for homoscedastic normal distributed errors, the second row displays the

results for heteroscedastic errors with variance function (5.3) and the third row shows the

results for Cauchy distributed errors.

εi FIC<AIC FIC=AIC AIC<FIC FIC<BIC FIC=BIC AIC<BIC

N (0, 0.01) 657 1085 258 1149 475 376

N (0, σ2(xi)) 579 1222 199 1176 469 355

C(0, 0.07) 1062 571 367 1200 304 496

Table 4: Comparison of the absolute error of the estimate of the MED, where the model is

chosen by FIC and AIC (left part) and FIC and BIC (right part).

In this example it is clearly seen that in the majority of cases the FIC selects a model which is

better than the model chosen by AIC and BIC. Roughly speaking, FIC finds a better model

than BIC in more than half of the simulation runs for all considered error distributions.

5.3 Application of the FIC in a clinical dose response study

For an empirical illustration we consider a data example from a dose response study, which

has recently been investigated by Callies et al. (2004). Zosuquidar is an inhibitor of P-

glycoprotein which is administered in combination with chemotherapeutic agents in order

to increase tumor cell exposure to chemotherapy. In this study median regression is used to

estimate the relationship between the plasma concentration of Zosuquidar and the percentage

of P-glycoprotein inhibition [for details see Callies et al. (2004)]. The intercept β4 in model

(2.1) is assumed to be zero, so that either the Michaelis Menten model (2.2) or the Hill model

with no intercept (2.4) are candidates to describe the dose response relationship. The focus

parameter in question is the IC90, the dose where 90% of maximum P-glycoprotein inhibition

are realized, that is ∆ = 90. Figure 1 shows the data, the fitted median regression curves

and the location of the IC90 for both models. We observe substantial differences between

the estimates of the IC90 obtained from the two models and therefore model selection for

estimating the IC90 is of importance in this study. We use the FIC to decide whether the

Hill slope β3 is included in the model or not. The resulting FIC values are 1.21 · 107 for the

Michaelis Menten model (2.2) and 4.38 · 106 for model (2.4). Thus, the IC90 is estimated

using the Hill model with no intercept, which gives a value of ˆIC90 = 183.19. Finally we

note that the AIC also selects the Hill model with no intercept in this example, while BIC

favors the Michaelis Menten model with only two parameters.
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Figure 1: Zosuquidar data with estimated median regression curves from the Hill and

Michaelis Menten model.

6 Discussion

The work in this paper was motivated by the problem of selecting a model to determine the

minimal effective dose in a dose response study on the basis of median regression analysis.

For this purpose we have extended the available theory for estimation under local misspecifi-

cation from a likelihood setting towards quantile regression models and developed a focused

information criterion (FIC) which takes the specific target of the statistical analysis into

account for the process of model selection. Simulation studies demonstrate that this way of

selection indeed often results in estimators of the effective dose with smaller error than those

obtained by standard selection methods such as AIC and BIC.

The answer to the question which criterion to use depends on the research problem, often

also on the preference of the researcher for one of the criteria and is not straightforward

to answer in general. When a model is to be sought that gives a best performance for the

estimation of a particular quantity, the focus, the FIC is a good choice since it is designed

for this purpose, and the results of Section 5 indicate some improvement with respect to the

precision of the focus estimate. The log(n) penalty that is used in the BIC may for large

sample sizes have the effect of selecting rather small models with only few parameters. The

AIC on the other hand has a possibility of overfitting, which might in some situations be

advantageous in order not to fail to identify possibly important variables. A good advice

would be to always consider the choice of the model search criterion in concert with the

further use of the model and to take the ideas underlying the construction of the criteria

into consideration.

The presented FIC is applicable in nonlinear quantile regression models in general, hence

not only for minimal effective dose determination. The procedure is always the same. First,

specify the focus and write it in terms of the model parameters. Estimate the MSE of the
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focus estimator in each considered model under a local misspecification assumption. This

yields a value of the FIC for every model, and the model with the smallest FIC gets selected.

In general the focus might depend also on the particular covariate information x, hence

µ = µ(β;x). In such cases, the derived FIC expression is specific to the given value of x,

and ‘subject-specific’ model searches could be performed. When this level of detail is not

wanted, we can average the risk function over a wanted domain of values for the covariate x

(e.g. when x represents the age, one could consider a range of values (20, 60), or one could

perform the selection for all women in the dataset, or for all treated patients in a clinical

trial, etc.). Claeskens and Hjort (2008a) work this out for the class of generalized linear

models. One could consider the loss function for model S in the following way Ln(S) =

n
∫
{µ̂S(β;x) − µtrue(β;x)}2 dWn(x), where a weight function Wn determines a distribution

of relevant x values, which might for example be an empirical distribution over the observed

sample. A similar idea could be applied in this setting of nonlinear quantile estimation.

Another interesting topic for future research could be a study of asymptotic properties of the

estimators under a different local misspecification setting than (2.7) by no longer assuming

misspecification at the coefficient level, but rather at the level of the density functions. This

line of thought is explained for likelihood regression models in Claeskens and Hjort (2003,

Section 8) where it is assumed that ftrue(y) = f(y; θ0, γ0){1 + r(y)/
√
n} + o(1/

√
n), for

some function r(·) that satisfies
∫
f(y; θ0, γ0)|r(y)|dy <∞ and

∫
f(y; θ0, γ0)r(y)dy = 0. It is

expected that theoretical properties similar to those in the present paper can be developed

for such a situation.

7 Appendix: Proof of technical results

Proof of (3.7). The proof of the uniform convergence property can be established using

results of Liese and Vajda (1994), who presented general conditions for consistency of M-

estimators and the uniform convergence of the corresponding objective functions. However,

we still have to keep in mind that we work under local alternatives of the form (2.7). For

notational convenience, define δn(βS) := Zn(βS) − E[Zn(βS)] where Zn is defined by (3.4).

We begin with a proof of the following properties, which will be used later to establish

uniform convergence of the objective function:

(B1) The class of functions {δn(βS)|n ∈ N, n > n0} is equicontinuous on ΘS.

(B2) |Zn(βS)− E[Zn(βS)]| P→ 0 for any βS ∈ ΘS.

First, observe that for βS,1, βS,2 ∈ ΘS

|δn(βS,1)− δn(βS,2)| ≤ 2c

n

n∑
i=1

|g(xi; βS,1)− g(xi; βS,2)| ,
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which follows from the Lipschitz continuity of the check function. The equicontinuity (B1)

is then implied by assumption (A5) and (A0). For a proof of (B2) we introduce the notation

zi(βS) = ρτ (Yi − g(xi; βS))− ρτ (ui,S)

= 1{ui,S≤0}(1− τ)∆i(βS)− 1{ui,S>0}τ∆i(βS)

+1{0<ui,S≤∆i(βS)}(∆i(βS)− ui,S) + 1{∆i(βS)≤ui,S≤0}(ui,S −∆i(βS)) (7.1)

which gives

1

n

n∑
i=1

zi(βS)2 =
1

n

n∑
i=1

[
1{ui,S≤0}(1− τ)2∆2

i (βS) + 1{ui,S>0}τ
2∆2

i (βS)

+1{0<ui,S≤∆i(βS)}(∆i(βS)− ui,S)2 + 1{∆i(βS)≤ui,S≤0}(ui,S −∆i(βS))2

−21{0<ui,S≤∆i(βS)}τ∆i(βS)(∆i(βS)− ui,S)

+21{∆i(βS)≤ui,S≤0}(1− τ)∆i(βS)(ui,S −∆i(βS))

]
. (7.2)

Taking e.g. the expectation of 1
n

∑n
i=1 1{0<ui,S≤∆i(βS)}(∆i(βS)− ui,S)2, the third term in the

above sum, yields

E

[
1

n

n∑
i=1

1{0<ui,S≤∆i(βS)}(∆i(βS)− ui,S)2

]
=

1

n

n∑
i=1

∫ ∆i(βS)

0

(∆i(βS)−s)2f̃in(s)ds ≤ 1

n

n∑
i=1

∆2
i (βS)

which is bounded by assumptions (A0) and (A5). Since the expectations of all other terms

in the sum (7.2) can be similarly bounded, we obtain that 1
n

∑n
i=1E[zi(βS)2] is bounded.

Therefore it follows from Chebychev’s inequality that

P (|Zn(βS)− E[Zn(βS)]| > ε) ≤
1
n

∑n
i=1 E[zi(βS)2]

nε2
= o(1)

which establishes (B2). The uniform convergence in (3.7) can now be derived from (B1) and

(B2) using similar arguments as presented in Liese and Vajda (1994). (B1) yields for any

ε > 0 the existence of a δ > 0 such that for every β∗ ∈ ΘS,

sup
{βS :|βS−β∗|<δ}

|δn(βS)| ≤ |δn(β∗)|+ ε/2, n ∈ N.

By the compactness of ΘS there exist finitely many points β1, . . . , βK ∈ ΘS such that

sup
βS∈ΘS

|δn(βS)| ≤ |δn(βi)|+ ε/2, n ∈ N,

for some i ∈ 1, . . . , k. As a consequence, we have

lim
n→∞

P ( sup
βS∈ΘS

|δn(βS)| > ε) ≤ lim
n→∞

P (max
1≤i≤k

|δn(βi)| > ε/2) = 0.

where the last equation follows from (B2), which implies (3.7).
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Proof of (3.11). Recall the definition of F̃ and f̃ in assumption (A1). A straightforward

calculation yields

E[ψτ (ui,S)] = τ(1− F̃in(0)) + (τ − 1)F̃in(0) = F̃in(∆i(βtrue))− F̃in(0).

This gives for the expectation of Γn,S,

E[Γn,S] =
n∑
i=1

[(
F̃in(∆i(βtrue))− F̃in(0)

) 1√
n
m(xi, β0,S)

]
. (7.3)

Note that for some αi satisfying |αi| ≤ |∆i(βtrue)| and β̃i between β0,full and βtrue, by using

assumptions (A1), (A2) and (2.7) we obtain the following representation:

F̃in(∆i(βtrue))− F̃in(0) = f̃in(αi)
(
m(xi, β̃i)

t δ̃√
n

)
= f̃in(0)

(
m(xi, β0,full)

t δ̃√
n

)
+ o(

1√
n

).

Together with (7.3) and assumptions (A1)(iv), (A3)(i) and (3.3) this yields

E[Γn,S] =
1

n

n∑
i=1

f̃in(0)m(xi, β0,S)m(xi, β0,full)
tδ̃ + o(1) (7.4)

and assumption (A3)(ii) implies

lim
n→∞

E[Γn,S] = vt
(
Q01

πSQ11

)
δ. (7.5)

For the calculation of the variance of Γn,S we recall the definition of rn,τ in (3.3) and use

(7.3) and assumption (A4) to get

Var[ψτ (ui,S)] = F̃in(0)− 2τ F̃in(0) + τ 2 − (τ − F̃in(0))2

= F̃in(∆i(βtrue))− rn,τ (xi)−
[
F̃in(∆i(βtrue))− rn,τ (xi)

]2

= τ(1− τ) + rn,τ (xi)(2τ − 1)− (rn,τ (xi))
2 = τ(1− τ) + o(1). (7.6)

Therefore, using (3.3) we obtain

Var[Γn,S] =
n∑
i=1

τ(1− τ)(
1

n
m(xi, β0,S)m(xi, β0,S)t) + o(1).

which yields (by Assumption (A3)(i))

lim
n→∞

Var[Γn,S] = τ(1− τ)vtVsv. (7.7)

Note that, due to assumptions (A0), (A2) and (A3), the process Γn,S satisfies a Lindeberg-

Condition. From this result and (7.5), statement (3.11) is then obvious.
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Proof of (3.12). In order to show (3.12), we are going to establish the asymptotic properties

of the terms in (3.9) for βS ∈ U . First, for the expectation of bi(βS), assuming that ∆i(βS) >

0 (the case where ∆i(βS) ≤ 0 can be treated analogously with the same result) we obtain

for some ξi with |ξi| ≤ |∆i(βS)|

E[bi(βS)] =

∫ ∆i(βS)

0

(−s+ ∆i(βS))f̃in(s) ds = f̃in(ξi)(∆i(βS)2)/2.

Note that for βS ∈ U by assumption (A3)(iii) we have

∆i(βS) = m(xi, β0,S)t
v√
n

+
1

2n
vtM(xi, β̃i)v = O(n−1/2‖v‖) +O(n−1‖v‖2) (7.8)

where β̃i ∈ U denotes a suitable value between βS and β0,S. Thus, using (7.8) together with

assumption (A1)(iv) we obtain

E[
n∑
i=1

bi(βS)] =
n∑
i=1

(
f̃in(0)(∆i(βS)2)/2

)
+

n∑
i=1

(
(f̃in(ξi)− f̃in(0))(∆i(βS)2)/2

)
=

1

2n

n∑
i=1

(
f̃in(0)vtm(xi, β0,S)m(xi, β0,S)tv

)
+O(n−1/2‖v‖3) +O(n−1‖v‖4)

=
1

2
vtQn,Sv +O(n−1/2‖v‖3) +O(n−1‖v‖4). (7.9)

Similarly, for the variance of bi(βS) (we again consider the case ∆i(βS) > 0 and remark that

the calculations for ∆i(βS) ≤ 0 yield the same result) it holds that

Var[bi(βS)] ≤
∫ ∆i(βS)

0

(∆i(βS)− s)2f̃in(s) ds ≤ K1
|∆i(βS)|3

3

and consequently, for βS ∈ U

Var[
n∑
i=1

bi(βS)] ≤ K1

n∑
i=1

|∆i(βS)|3

3
= O(n−1/2‖v‖3) (7.10)

where the last equality follows from (A3)(iii). An application of Chebychev’s inequality using

(7.10) yields
n∑
i=1

bi(βS) = E[
n∑
i=1

bi(βS)] +OP (n−1/6‖v‖3/2). (7.11)

Finally, we will determine the asymptotical behavior of the term Rn,S(βS) for βS ∈ U . Using

assumption (A3)(i) a similar argument as in the proof of (3.11) can be applied in order

to show that 1√
n

∑n
i=1 ψτ (ui,S) is asymptotically normal and stochastically bounded. Then,

under assumption (A3)(iii) one obtains vtRn,S(βS) = OP (n−1/2‖v‖2) and this completes the

proof of (3.12).
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Proof of (3.13). It remains to prove that T̂n is stochastically bounded, that is ‖T̂n‖ =

OP (1). Note that Theorem 3.1 implies ‖T̂n‖√
n

= oP (1). Therefore it follows from (3.12) and

the fact that P (β̂n,S ∈ U)→ 1 for n→∞ that Gn(β̂n,S) admits a representation

Gn(β̂n,S) = An +Bn (7.12)

with

An := −T̂ tnΓn,S + oP (‖T̂n‖2) +OP (n−1/6‖T̂n‖3/2) + oP (1), (7.13)

Bn :=
1

2
T̂ tnQn,ST̂n = O(‖T̂n‖2). (7.14)

Note that by (3.11) the term Γn,S which appears in (7.13) is asymptotically normal and

satisfies T̂ tnΓn,S = OP (‖T̂n‖). Moreover, under assumptions A1(ii) and (A3)(i) we have

|Bn| > c‖T̂n‖2 for some positive constant c and n sufficiently large and Bn is positive due to

the positive definiteness of the matrices Qn,S. Observing that Gn(β̂n,S) ≤ Gn(β0,S) = 0 by

the definiton of β̂n,S, we obtain the inequality

c‖T̂n‖2 < |Bn| ≤ |An|. (7.15)

Considering the stochastic order of the terms in (7.13), this implies ‖T̂n‖ = OP (1).
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