
ARENBERG DOCTORAL SCHOOL
Faculty of Engineering

Lifted Inference and Learning in
Statistical Relational Models

Guy Van den Broeck

Dissertation presented in partial
fulfillment of the requirements for the

degree of Doctor in Engineering

January 2013





Lifted Inference and Learning in
Statistical Relational Models

Guy VAN DEN BROECK

Supervisory Committee:
Prof. dr. ir. Joos Vandewalle, chair
Prof. dr. Luc De Raedt, supervisor
Prof. dr. ir. Hendrik Blockeel
Prof. dr. Jesse Davis
Prof. dr. ir. Herman Bruyninckx
Prof. dr. Adnan Darwiche
(University of California, Los Angeles, USA)

Prof. dr. Stuart Russell
(University of California, Berkeley, USA)

Dissertation presented in partial
fulfillment of the requirements for
the degree of Doctor
in Engineering

January 2013



© KU Leuven – Faculty of Engineering
Celestijnenlaan 200A box 2402, B-3001 Heverlee (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenig-
vuldigd en/of openbaar gemaakt worden door middel van druk, fotocopie,
microfilm, elektronisch of op welke andere wijze ook zonder voorafgaande
schriftelijke toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form
by print, photoprint, microfilm or any other means without written permission
from the publisher.

D/2013/10.705/5
ISBN 978-90-8649-590-0



Abstract

Statistical relationalmodels combine aspects of first-order logic andprobabilistic
graphical models, enabling them to model complex logical and probabilistic
interactions between large numbers of objects. This level of expressivity comes at
the cost of increased complexity of inference, motivating a new line of research
in lifted probabilistic inference. By exploiting symmetries of the relational structure
in themodel, and reasoning about groups of objects as awhole, lifted algorithms
dramatically improve the run time of inference and learning.

The thesis has five main contributions. First, we propose a new method
for logical inference, called first-order knowledge compilation. We show that
by compiling relational models into a new circuit language, hard inference
problems become tractable to solve. Furthermore, we present an algorithm that
compiles relational models into our circuit language. Second, we show how to
use first-order knowledge compilation for statistical relational models, leading
to a new state-of-the-art lifted probabilistic inference algorithm. Third, we develop
a formal framework for exact lifted inference, including a definition in terms of
its complexity w.r.t. the number of objects in the world. From this follows a first
completeness result, showing that the two-variable class of statistical relational
models always supports lifted inference. Fourth, we present an algorithm for

i



ii ABSTRACT

approximate lifted inference by performing exact lifted inference in a relaxed,
approximate model. Statistical relational models are receiving a lot of attention
today because of their expressive power for learning. Fifth, we propose to
harness the full power of relational representations for that task, by using lifted
parameter learning.

The techniques presented in this thesis are evaluated empirically on statistical
relational models of thousands of interacting objects and millions of random
variables.



Beknopte Samenvatting

Statistische relationele modellen combineren aspecten van eerste-order logica
met probabilistische grafische modellen. Dat laat hen toe om complexe
logische en probabilistische interacties voor te stellen tussen een groot aantal
objecten. Een nadeel van zulke hoge expressiviteit is de aanzienlijke toename
van de complexiteit van inferentie. Dit was de motivatie voor een nieuw
onderzoeksonderwerp rond eerste-orde inferentie. Door symmetrieën van de
relationele structuur van de modellen uit te buiten, en door te redeneren
over groepen van objecten in zijn geheel, hebben eerste-orde inferentie- en
leeralgoritmes een sterk versnelde rekentijd.

Dit proefschrift heeft vijf belangrijke bijdragen. Ten eerste stellen we een
nieuwe methode voor om aan logische inferentie te doen, met de naam eerste-
order kenniscompilatie. We tonen aan dat bepaalde moeilijke inferentietaken
oplosbaar worden door relationele modellen te compileren naar een nieuwe
circuittaal. Bovendien beschrijven we een algoritme dat relationele modellen
kan compileren in de circuittaal die we voorstellen. Ten tweede tonen we
aan hoe eerste-order kenniscompilatie gebruikt kan worden voor statistische
relationele modellen, met een nieuw geavanceerd eerste-order probabilistisch
inferentiealgoritme tot gevolg. Ten derde ontwikkelt dit proefschrift een formeel

iii



iv BEKNOPTE SAMENVATTING

raamwerk voor exacte eerste-order inferentie, met onder andere een definitie
van eerste-order inferentie in termen van de complexiteit van inferentiem.b.t. tot
het aantal objecten in de wereld. Hieruit volgt een eerste volledigheidsresultaat,
dat aantoont dat statistische relationele modellen met twee logische variabelen
altijd eerste-order inferentie toelaten. Ten vierde presenteren we een nieuw
algoritme voor benaderende eerste-order inferentie, door exacte inferentie in een
vereenvoudigd, benaderend model. Er is tegenwoordig veel belangstelling
voor het leren van statistische relationele modellen, dankzij hun expressiviteit.
Ten vijfde stellen we voor om hiervoor de volledige kracht van de relationele
voorstelling te benutten, door gebruik te maken van een eerste-order leeralgoritme
voor de parameters van het model.

De technieken beschreven in dit proefschrift worden empirisch geëvalueerd
op statistische relationele modellen met duizenden interagerende objecten en
miljoenen toevalsvariabelen.



Acknowledgements

This PhD has been a fun, exciting and gratifying experience, and at the same
time challenging and humbling. It gave me the chance to work with some
amazing people, whom I would like to thank.

I am very grateful to my supervisor Luc De Raedt. Luc always encouraged me
to “go for gold” and continuously raised the bar. In many ways, he was exactly
the kind of advisor I needed. He does not micromanage, but gives people the
freedom to explore and develop their own ideas. Yet, at the right times, he
knows exactly which direction to guide you in. In August 2010, I was explaining
him Prof. Darwiche’s work on knowledge compilation. He asked me, “Can you
lift this?”, and that was the end of our meeting. In my second year, he selflessly
challenged me to write a paper all by myself. I was not happy being given that
task and it was scary, but in retrospect, I am very grateful he did. I was certainly
not the easiest and most obedient person to work for him. Fortunately, Luc has
an astounding patience with students who think they know it all.

I would like to thank Prof. Vandewalle for chairing the jury and Profs. Blockeel,
Davis, Bruyninckx, Darwiche and Russell for their insightful questions and
comments when discussing earlier versions of this text. I am honored to have
Profs. Darwiche and Russell as my external jury members. Their work was

v



vi ACKNOWLEDGEMENTS

an important inspiration for this thesis. It is comforting to know that they are
tackling some very fundamental problems in their research; that they maintain
a standard of rigor and quality that will make their work stand the test of time.
Jesse is much more than a member of my jury. I want thank him for all the
collaboration, his advice and friendship. Go Packers!

I could not have done this work without the help of my coauthors. I hope I do
justice to their work as I present it here. I want to thankWannes M. in particular,
for being a LATEX guru, for helping me develop and maintain the software
implementation of the algorithms in this thesis, and simply for being a good
friend. I also want to thank my ’real boss’, the Research Foundation-Flanders
(FWO-Vlaanderen), for their financial support.

Research is a team sport. Therefore, I am happy that so many people took
the time to share their ideas with me. I very much enjoyed discussions at the
whiteboard (or at the bar) with Ingo, Kurt D., Daan, Joris, Mathias N., Arthur,
Kristian, Udi and many others. Jan V. H., Maurice, Joris and Jonas were kind
enough to give feedback on this text. Especially Jan has a great future as a
journal editor.

I had the pleasure of sharing an office with Laura, Kurt D., Ingo, Martijn, Robby,
Sam, Elena, Khaled, Davide, Daniele and Francesco. I enjoyed many lunches
with current and past Alma-goers, including Angelika, Anton, Ben, Behrouz,
Bogdan, Daan, Davide, Eduardo, Jan V. H., Jonas, Joris, Kurt D. G., Leander,
Martin, Mathias, Matthijs, McElory, Siegfried, Thanh, Tias and Vladimir. I
greatly value the people that helped me at the beginning of my PhD. This
is when you are most insecure, trying to navigate a new environment and
wondering whether you will ever be able to write a good paper. Therefore, I
want to especially thank Laura and Kurt D. for their support then.

I am grateful to be given the chance to move to Los Angeles for five months. The
UCLA-crew made it that much more enjoyable. Many thanks to Arthur, Elias,
Khaled, Shahin, Suming and Tiansheng. In particular Arthur was an excellent
host, a true genius and a good friend. I look forward to seeing them again.

Finally, I could not have made it here without my friends and family. Let me
just mention Seppe, Wannes, Leentje, Lynn, Lore, Sophie, Stijn, Aline, Ruth,
Klaartje, Leen, Michiel, Kenzo and Cedric for being there in the most difficult
times. Some of them even had to live with me. I want to express my gratitude
to Dirk for cultivating my interest in science from a very early age, explaining
me at around age 11 how our microwave worked, and where those bubbles



ACKNOWLEDGEMENTS vii

came from when my mom was boiling water. It is all just molecules bouncing
around!

Finally there are the people I want to make most proud. My loving mother is
incredibly strong and truly exceptional. She created the perfect environment
for me to succeed. I am lucky to have Irma in my life. Thank you for all your
jokes, your support and your love.

Bedankt!

Guy Van den Broeck
Leuven, January 2013





Contents

Abstract i

Contents ix

List of Symbols xv

List of Algorithms xix

1 Introduction 1

1.1 Artificial Intelligence . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Machine Learning and Automated Reasoning . . . . . . . . . . . 2

1.3 Logic and Probability . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Motivation and Problem Statement . . . . . . . . . . . . . . . . . 5

1.5 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 7

ix



x CONTENTS

1.6 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Propositional Foundations 15

2.1 Propositional Logic . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Logical Inference by Knowledge Compilation . . . . . . . . . . . 17

1Model Counting 19 , 2 Conditioning 20

2.3 Probabilistic Graphical Models . . . . . . . . . . . . . . . . . . . 21

1 Bayesian Networks 21 , 2 Markov Random Fields and Factor Graphs 23

2.4 Exact Probabilistic Inference . . . . . . . . . . . . . . . . . . . . . 25

1 Probabilistic Inference by Weighted Model Counting 25 , 2 Probabilistic
Inference by Knowledge Compilation 28

2.5 Approximate Probabilistic Inference . . . . . . . . . . . . . . . . 30

Intermezzo 1: Algebraic Model Counting 31 , 1 Iterative Belief Propagation 32 ,
2 Relax, Compensate & Recover 33

2.6 Learning Probabilistic Graphical Models . . . . . . . . . . . . . . 35

2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 First-Order Circuits 39

3.1 First-Order Logic with Domain Constraints . . . . . . . . . . . . 40

1Motivation 41 , 2 Syntax 42 , 3 Semantics 46

3.2 First-Order Negation Normal Form Circuits . . . . . . . . . . . . 49

1 Syntax and Semantics 49 , 2 Properties 51

3.3 Subsets of the FO-NNF Language . . . . . . . . . . . . . . . . . . . 56

1 Constraints on FO-NNF Nodes 57 , 2 Languages 59

3.4 Properties of Tractable FO-NNF Subsets . . . . . . . . . . . . . . . 63

1 Completeness 63 , 2 Succinctness 64 , 3Model Counting on FO-sda-DNNF

Circuits 65 , 4 Conditioning a FO-sda-DNNF Circuit 67 , 5 Support for
Queries 72



CONTENTS xi

3.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

1 Relation to the Resolution Principle 73 , 2 Compiling First-Order Logic 75

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4 Compilation Algorithm 81

4.1 Outline of FO-da-DNNF Compilation . . . . . . . . . . . . . . . . . 82

1 Input and Output 82 , 2 Compilation Rules 83 , 3 Terminology and
Notation 85

4.2 Compilation to Extensional Nodes . . . . . . . . . . . . . . . . . 85

1 Unit Propagation 86 , 2 Independence 91 , 3 Shannon Decomposition 91

4.3 Shattering: Exposing Symmetries of the Model . . . . . . . . . . 92

1 Preemptive Shattering 94 , 2 Automorphisms Introduced by Shattering 98 ,
3 Shattering by Splitting 101 , 4 Shattered Compilation 103

4.4 Compilation to Intensional Nodes . . . . . . . . . . . . . . . . . 104

1 Vacuous Conjunction 105 , 2 Logical Variable Properties 105 , 3 Independent
Single Groundings 106 , 4 Independent Paired Groundings 110 ,
5 Generalization to Any Root Unifying Class 114 , 6 Atom Counting 115

4.5 Grounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.6 First-Order Smoothing . . . . . . . . . . . . . . . . . . . . . . . . 119

4.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

1 Relation to Propositional Knowledge Compilation 121 , 2 Relation to Lifted
Search Algorithms 122

4.8 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . 124

5 Exact Lifted Probabilistic Inference 127

5.1 Statistical Relational Learning . . . . . . . . . . . . . . . . . . . . 129

1 Markov Logic Networks 129 , 2 Parfactor Graphs 131 , 3 Probabilistic
Logic Progamming 133 , 4 Other Approaches 135 , Intermezzo 2: Statistical
Relational Decision Making 136



xii CONTENTS

5.2 Ground Inference for SRL Models . . . . . . . . . . . . . . . . . 137

1 Propositionalization to Probabilistic Graphical Models 137 ,
2 Propositionalization to Weighted Logic Theories 139

5.3 Different Notions of Lifted Inference . . . . . . . . . . . . . . . . 140

1 Lifting in Statistics 140 , 2 Lifting in First-Order Logic 142 , 3 Lifting in
Constraint Satisfaction 143 , 4 Domain-Lifted Probabilistic Inference 144

5.4 Lifted Inference by Weighted Model Counting . . . . . . . . . . 146

1 Weighted First-Order Model Counting 147 , 2 Reductions to Weighted
First-Order Model Counting 147 , 3 Computing Marginal and Conditional
Probabilities 150 , Intermezzo 3: Inference in Probabilistic Logic Programs by
Weighted Model Counting and Max-SAT 151

5.5 Lifted Inference by Knowledge Compilation . . . . . . . . . . . . 153

1Weighted Model Count of a FO-sda-DNNF Circuit 153 , 2 A Domain-Lifted
Inference Algorithm 154 , 3 Conditional Probabilities 155

5.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

1 First-Order Variable Elimination 159 , 2 Lifted Inference by Search 159

5.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

1Marginal Probabilities 161 , 2 Influence of Grounding 163 , 3 Conditional
Probabilities 165

5.8 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . 167

6 Completeness and Liftability 169

6.1 Liftability Framework . . . . . . . . . . . . . . . . . . . . . . . . . 170

1 Classes of Inference Tasks 171 , 2 Definitions of Lifted Probabilistic
Inference 172

6.2 Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

1 Completeness for Monadic Logic 173 , 2 Completeness for the Two-Variable
Fragment 175 , 3 Completeness for Markov Logic Networks, Parfactor Graphs
and ProbLog Programs 177



CONTENTS xiii

6.3 Liftability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

1 Positive Liftability Results 179 , 2 Negative Domain-Liftability Results 180 ,
3 Negative DQE-Liftability Result 182

6.4 Related and Future Work . . . . . . . . . . . . . . . . . . . . . . . 183

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

7 From Approximate to Exact Lifted Inference 187

7.1 RCR for Ground MLNs . . . . . . . . . . . . . . . . . . . . . . . . 188

1 Ground Relaxation 189 , 2 Ground Compensation 190 , 3 Ground
Recovery 191

7.2 Lifted RCR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

1 First-Order Relaxation 192 , 2 First-Order Compensation 195 , 3 Count-
Normalization 198 , 4 The Compensation Scheme 199 , 5 First-Order
Recovery 201

7.3 Partitioning Equivalences . . . . . . . . . . . . . . . . . . . . . . 201

1 Partitioning Atoms by Preemptive Shattering 202 , 2 Partitioning
Equivalences by Preemptive Shattering 203 , 3 Dynamic Equivalence
Partitioning 204

7.4 Related and Future Work . . . . . . . . . . . . . . . . . . . . . . . 205

1 Relation to Propositional Algorithms 205 , 2 Relation to Lifted
Algorithms 206 , 3 Opportunities for Equivalence Partitioning 207

7.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

1 Implementation 209 , 2 Results 209

7.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

8 Lifted Learning 215

8.1 Weight Learning for Markov Logic . . . . . . . . . . . . . . . . . 216

8.2 Lifted Generative Weight Learning . . . . . . . . . . . . . . . . . 218

1 Equiprobable Random Variables 219 , 2 Evaluating Expected Counts 220



xiv CONTENTS

8.3 Lifted Learning by Knowledge Compilation . . . . . . . . . . . . 222

8.4 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 225

1 Synethetic Data: Scaling Behavior 225 , 2 Real-World Data: Test-Set
Likelihood 225

8.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

Conclusions 229

Thesis Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

Discussion, Perspectives and Future Work . . . . . . . . . . . . . . . . 232

Bibliography 237

List of Publications 257

Curriculum Vitae 263



List of Symbols

T True

F False

∧ Conjunction, AND

∨ Disjunction, OR

¬ Negation, NOT

⇒ Material implication

≡ Logical equivalence

x Random variable

q Query

e Evidence

ω, db Possible world, interpretation, database

Ω, DB Data set, set of interpretations, set of databases

f (X) Potential

xv



xvi LIST OF SYMBOLS

ψ(ω) Feature

Ψ Set of features

[V/v] Substitution, constraint set solution

θ Parameter-variable, substitution, constraint set solution

Θ Set of substitutions

φ, ψ, χ Logical formula

γ Clause

a Atom

ag Ground atom

l Literal

L Set of literals

MODφ Set of models of φ

p Predicate

X, Y, Z Logical variable

X,Y,Z Set of logical variables

a, b, c Constant symbol

d Set of constant symbols

t Term

D, F Domain variable

D, F Set of domain variables

V Logical or domain variable

V Set of logical or domain variables

cs Constraint set

∆ Logical theory

gr(φ) Grounding of φ



LIST OF SYMBOLS xvii

Σ, C Circuit

L1 ≤ L2 L1 is at least as succinct as L2

L1 6≤ L2 L1 is less succinct than L2

L1 < L2 L1 is strictly more succinct than L2

φ ⊥⊥ ψ φ is independent of ψ

π Permutation

bvars(φ) Set of bound logical variables in φ

atomc(φ) Set of constrained atoms in φ

P Partition

E Partition element

w MLN weight

weight Literal weight

wT Positive predicate weight function

wF Negative predicate weight function

PI Class of probabilistic inference problems

S Class of sentences

Q Class of queries

E Class of evidence

A Single ground atoms

T Terms of ground literals

T0,1 Terms of ground literals with arity 0 or 1

KLD Kullback–Leibler divergence

Bn nth Bell number





List of Algorithms

1 Compile(∆) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
2 Split(γ, a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3 Condition(γ, l) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4 UnitPropagate(∆) . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5 Independence(∆) . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6 ShannonDecomposition(∆) . . . . . . . . . . . . . . . . . . . . . 92
7 ShatterVar(X, T,D) . . . . . . . . . . . . . . . . . . . . . . . . . 95
8 ShatterClause(γ, T,D) . . . . . . . . . . . . . . . . . . . . . . . 96
9 Shatter(∆) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
10 ShatterBySplit(∆) . . . . . . . . . . . . . . . . . . . . . . . . . . 102
11 ShatteredCompilation(∆) . . . . . . . . . . . . . . . . . . . . . . 103
12 VacuousConjunction(∆) . . . . . . . . . . . . . . . . . . . . . . . 105
13 IndependentSingleGroundings(∆) . . . . . . . . . . . . . . . . . 107
14 IndependentPairedGroundings(∆) . . . . . . . . . . . . . . . . . 112
15 AtomCounting(∆) . . . . . . . . . . . . . . . . . . . . . . . . . . 116
16 Ground(∆) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
17 LiftedWeightLearning(∆, DB) . . . . . . . . . . . . . . . . . . . 224

xix





Introduction

1

1.1 Artificial Intelligence

Driven by a growing number of digital devices with a growing amount
of computing power, Artificial Intelligence (AI) is becoming increasingly
important. It already plays a major role in the technology we use every day.
There are many definitions of what exactly AI is. Its most ambitious definition
is that AI tries to build machines that think like humans. This definition raises
many philosophical questions and is an inspiration to many artists and aspiring
researchers. However, it defines AI as a challenge so big it seems impossible to
realize it. A more practical definition says that AI builds machines that perform
tasks that seemingly require intelligence. This definition of AI lowers the bar,
requiring machines to behave intelligently.

What constitutes intelligent behavior is again debatable, and a moving target.
When the goal is to imitate human behavior (Turing, 1950), intelligent machines
should have limited capabilities. Alternatively, the goal is to achieve rational
behavior. After all, very few people are grandmasters in chess. In practice, AI is
often about building machines that perform a specific task that people thought
could never be performed by a machine. Once this is achieved, expectations

1



2 INTRODUCTION

shift and the field moves on to solve the next challenge. This continuous drive to
increase the range ofAI applications has resulted inmanyAI systems being used
today. AI system are sometimes called rational or intelligent agents (Russell and
Norvig, 2010), to emphasize their embodiment in the real world and distinguish
them fromother software systems. Intelligent agents perceive their environment,
adapt themselves based on sensory input, act in the environment and thereby
modify it.

Examples of tasks dealt with by AI systems include planning, scheduling,
theorem proving, understanding natural language, game playing, medical
diagnosis, drug discovery, fraud detection and robotics. Solving these tasks
often involves solving problems such as knowledge representation, automated
reasoning, speech recognition and computer vision. Some recent successes
of AI include Watson (Ferrucci et al., 2010), who beat the best humans at the
question-answering game of Jeopardy!, self-driving cars, that share the road
with human drivers, and the Deep Blue system (Campbell, Hoane, and Hsu,
2002), which beat the human world champion at chess.

1.2 Machine Learning and Automated Reasoning

This dissertation is situated in the subfields of AI called machine learning (ML)
and automated reasoning.

The goal of machine learning is to build AI systems that improve their performance
on a taskwith experience. This allows us to extendAI beyond human knowledge
andwhat human experts can program in a computer. Machine learning systems
typically learn concepts from examples or learn skills, either by observing an
expert, or by interacting with the environment. For example, a machine learning
system can predict which web page you want to visit based on your search
query, filter your spam emails, or assist doctors with diagnosing patients based
on their medical records.

Many machine learning algorithms learn models of the world. These are
representations of how the concept being learned is a function of the system’s
inputs. Once a model has been learned, it is primarily used for one of two
purposes. First, a rational agent can predict its environment with the model
and use this information to decide which actions to take. Second, the model can
assist humans in understanding the environment. In some cases, humans can



LOGIC AND PROBABILITY 3

interpret and understand the learned model. Alternatively, the learned model
can be used to provide predictions to a user. In medical diagnosis, for instance,
a machine learning algorithm can learn a model to predict how successful each
treatment will be.

In either case, using a learned model requires making predictions, that is,
analyzing how modifying the system’s inputs will change its outputs, and
deducingwhat exactly are the consequences implied by themodel. This problem
is investigated in another subfield of AI, called automated reasoning. For learning
a model in the first place, algorithms often depend on predictions provided by
an automated reasoning algorithm. The key contributions of this thesis are in
this field.

1.3 Logic and Probability

Logic and probability are two cornerstones of AI. Logic as a field predates AI by
thousands of years and is the standard formalism for knowledge representation.
It is particularly suitable for automated reasoning and has therefore been an
essential tool since the early days of AI. Probability gained importance in AI
later on, when it was realized that the environment that rational agents are
embedded in is inherently uncertain and that machine learning models should
take this uncertainty into account.

Within logic, one can distinguish further between propositional and first-order
logic. Propositional logic expresses knowledge about a single set of properties
of the world, not associated with objects in the world. These properties are
represented by propositional variables. For example, propositional logic can
express that when it is raining (variable rain) and the sun is shining (variable
sun), then you can see a rainbow (variable rainbow). In contrast, first-order
logic expresses knowledge about objects in the world, of which there can be
many. This knowledge is expressed in terms of a set of properties of each object
and the relations that hold between objects. For example, first-order logic can
express that if an object X is a human (represented by human(X)), then X is
mortal (represented by mortal(X)). This is a statement about a large, possibly
infinite number of objects X in the world. Hence, first-order logic is a more
expressive formalism, more suitable for expressing structured knowledge.

Many subfields of AI have moved from logical to probabilistic and from



4 INTRODUCTION

propositional to first-order or relational approaches. As an example, consider
the field of planning. Classical planning problems are expressed in a first-order
plan language such as STRIPS (Fikes and Nilsson, 1972). Extending these with
probabilistic concepts lead to the field of probabilistic planning (Kushmerick,
Hanks, and Weld, 1995), with its probabilistic first-order planning language
PPDDL (Younes et al., 2005). From another starting point, factored Markov
decision processes (Bellman, 1957; Puterman, 1994), which correspond to propo-
sitional probabilistic planning problems, were extended with the expressivity
of first-order logic (Poole, 1997; Boutilier et al., 2000) to arrive at the same
destination.

Logical Probabilistic

Propositional Symbolic ML, Decision tree
induction, Rule learning Statistical ML

First-Order Inductive logic programming,
Relational learning

Statistical relational learning,
Probabilistic logic learning

(a) Machine learning

Propositional Propositional logic, Rules,
Decision trees

Probabilistic graphical models,
Bayesian and Markov networks

First-order logic, Probabilistic logics,
First-Order Logic programs Statistical relational models

Relational databases Probabilistic logic programs
(b) Knowledge representation and machine learning models

Propositional Resolution, SAT solving,
Knowledge compilation

Graphical model inference,
Knowledge compilation

First-Order Resolution, Theorem proving,
First-order knowledge compilation

Lifted probabilistic inference,
First-order knowledge compilation

(c) Automated reasoning

Table 1.1: A comparison of fields and techniques along the axis logical vs.
probabilistic and propositional vs. first-order approaches.

Machine learning has followed a similar course, as shown in Table 1.1a. At
different points in time, the field focused on learning either propositional logical
models (e.g., rules and decision trees) or propositional probabilistic models (e.g.,
probabilistic graphical models). Inductive logic programming (Muggleton and
DeRaedt, 1994) and relational learning (DeRaedt, 2008) are subfields ofmachine
learning that introduced the problem of learning first-order logical models. This
dissertation is situated in the subfields of statistical relational learning (Getoor
and Taskar, 2007) and probabilistic logic learning (De Raedt et al., 2008).



MOTIVATION AND PROBLEM STATEMENT 5

These fields are both concerned with learning first-order probabilistic models,
but reached this objective separately. Statistical relational learning extends
statistical machine learning methods with concepts from relational databases,
making them first-order, whereas probabilistic logic learning adds probabilistic
primitives to first-order methods from inductive logic programming.

Machine learning and knowledge representation models can be classified into
logical and probabilistic models as well. Each subfield of machine learning
in Table 1.1a learns models from a corresponding knowledge representation
formalism in Table 1.1b. We can again observe the shift from propositional to
first-order and from logical to probabilistic models. Statistical relational models
extend probabilistic graphical models with first-order logical relations and
probabilistic logic programs extend logic programs with probabilities. Both are
high-level representation languages for probabilistic models of structured data.

In turn, each knowledge representation formalism has an associated subfield of
automated reasoning, as shown in Table 1.1c. The combination of first-order and
statistical models for machine learning recently gave rise to a new automated
reasoning problem: first-order probabilistic inference. This area of automated
reasoning is called lifted probabilistic inference (Poole, 2003). It is different from
propositional reasoning because its algorithms reason about groups of objects
and exploit the symmetries in first-order models. It is different from logical
reasoning because its algorithmsdealwith the uncertainty found in probabilistic
models.

Most of the areasmentioned in Table 1.1 are discussed inmore detail throughout
this dissertation. The key contribution of this dissertation is a new approach
to lifted probabilistic inference, called first-order knowledge compilation. This
approach, and other areas we make contributions to, are shown in italics.

1.4 Motivation and Problem Statement

This thesis considers the problem of automated reasoning about first-order
probabilistic information. Here, first order refers to the fact that the uncertainty
information is associated with properties of objects in the world, or with
the relations between objects. This type of information is different from
propositional probabilistic information, where uncertainty is associated with
variables not pertaining to any specific object.



6 INTRODUCTION

We will now give examples of the types of problems, models and inference
tasks that are being investigated in this thesis.

Example 1.1. Assume we are investigating a rare genetic defect, which presents
itself in one in every billion people. Here we have probabilistic information
(“one in every billion”) which is a single statement that applies to multiple
entities in the world (all people). It can be captured in a statistical relational
model that intuitively states the following.

For all people X, the probability that X has the defect is 10−9.

The probability that somebody in the world has this defect is high. It presents
in at least one in seven billion people with a probability higher than 99.9%.
Answering the question what is the probability that more than five people have
the disease is more difficult. Yet, using basic statistics and combinatorics, one
can find that it is around 70%. These are examples of inference tasks in the
statistical relational model.

Another example task which we would want an intelligent agent to solve is the
following instance of the prosecutor’s fallacy (Thompson and Schumann, 1987).

Example 1.2. The DNA found at a crime scene is compared to a database of
20000 people’s DNA samples and matches one. The accused argues that one
in 10000 tests is a false positive. This problem can intuitively be modeled in a
statistical relational model as follows.

For all people X, if X is guilty, his DNA matches.
For all people X, if X is not guilty, his DNA matches with probabil-
ity 0.0001.

It has been shown that many people would convict someone based on this
statistical evidence, even though the probability of getting at least one false
positive match among 20000 people is 1− (1− 1/10000)20000 ≈ 86%. This is
an example of a concrete inference task.

The above examples illustrate that compact statistical relational models can
make general statements about a large number of entities. However, they do
not yet show the full potential of relational representations. Statistical relational
models can be much more sophisticated, also taking into account relations



THESIS CONTRIBUTIONS 7

between objects. They have, for example, been used to predict the topics of web
pages based on the hyperlinks between them (the linked relation), to model
the success of sending advertisements to people based on their social network
(the friends relation) and to model the regulatory system of cells, detailing how
proteins interact (e.g., the inhibits relation).

The fields of statistical relational learning and probabilistic logic learning have
given us the necessary tools to express these problems, andmuchmore complex
ones, in a formal language. However, while supporting model specifications at
an abstract, first-order logic level, inference is typically performed at the level of
concrete ground instances of the models, i.e., at the propositional level. We lack
the basic tools that allow amachine to automatically and efficiently reason about
this type of information and come to intelligent conclusions. Lifted inference
algorithms attempt to alleviate this situation. Several of these algorithms have
been proposed recently, but still have limited capabilities.

Lifted inference algorithms can scalemuch better than propositional algorithms.
In this thesis, we will see certain models for which lifted algorithms can deal
with worlds containing thousands of objects, modeling millions of random variables.
For the samemodels, propositional inference algorithms can often reason about
no more than a few objects in the world.

Our long-term objective is to build the tools that allow a rational agent to
learn statistical relational models of the world, dealing with a large number
of objects, and that let it efficiently reason with these models, predict future
observations and estimate the consequences of its actions. To achieve this long-
term objective, this dissertation has three goals. The first goal is to develop lifted
inference algorithms, both exact and approximate, that can deal with a breadth
of statistical relational models. The second goal is to theoretically analyze which
broad classes of statistical relational models and inference tasks permit lifted
inference. The third goal is to look at the implication of these new automated
reasoning algorithms on the problem of learning statistical relational models.

1.5 Thesis Contributions

We identify five main contributions of our work, one in the area of knowledge
compilation, and four in the area of statistical relational learning. We will now
briefly list these contributions.



8 INTRODUCTION

1. First-order knowledge compilation into negation normal form

Our first main contribution is a new automated reasoning problem, namely first-
order knowledge compilation into first-order negation normal form (FO-NNF) circuits.
This contribution comprises

• a definition of the syntax and semantics of the FO-NNF circuit language,

• a definition of the syntax of tractable subsets of the FO-NNF language,

• an analysis of the properties of these circuits, in terms of their completeness,
succinctness and support for queries and transformations, and

• an algorithm to compile logical theories into tractable subsets of FO-NNF.

This work upgrades propositional knowledge compilation and NNF circuits to
the first-order setting. FO-NNF circuits represent theories in first-order logic.
They are used to efficiently answer queries about a knowledge base, such as
consistency checking and model counting. These contributions are in the area
of automated logical reasoning and knowledge representation.

2. Lifted probabilistic inference by weighted first-order model
counting and first-order knowledge compilation

Our second main contribution is a new exact lifted probabilistic inference
algorithm that reduces probabilistic inference to a weighted first-order model
counting problem which can be solved by first-order knowledge compilation.

This technique is able to perform lifted inference for a large class of statistical
relational models and is arguably the state of the art in exact lifted inference. It
is a first-order generalization of the weighted model counting and knowledge
compilation approach to propositional probabilistic inference.Many advantages
of propositional knowledge compilation carry over to this approach. Because
it lifts a logical inference algorithm, as opposed to a probabilistic one, it
naturally exploits local structure such as context-specific independencies and
determinism in lifted inference.



THESIS CONTRIBUTIONS 9

3. A formal framework for lifted probabilistic inference as a
well-defined problem

Our third contribution is a formal framework for lifted probabilistic inference,
which includes

• a first formal definition of lifted inference, called domain-lifted inference,

• the notion of completeness of a lifted inference algorithm,

• the notion of liftability of a class of inference tasks, and

• several theoretical results.

Domain-lifted inference defines lifted inference in terms of its complexity w.r.t.
the number of objects in the world. The notions of completeness and liftability
allow us to identify classes of problems that lifted inference is guaranteed to
work on, and classes for which no efficient lifted inference algorithm can exist.

This formal framework is one of the main contributions of this thesis. We use
it to prove the following two claims for several popular statistical relational
languages.

Claim. The problem of computing single marginal probabilities in quantifier-
free models with up to two logical variables per formula is amenable to lifted
inference.

Claim. The problem of computing conditional probabilities is not liftable by any
inference algorithm, unless the evidence consists solely of unary atoms and
propositions.

The former claim is a first completeness and liftability result for a non-trivial
class of lifted inference tasks. The latter is a precise characterization of which
conditional probability queries can efficiently be answered by lifted inference
algorithms.



10 INTRODUCTION

4. A lifted relax, compensate & recover framework for
approximate lifted inference

Our fourth main contribution is a new approximate lifted probabilistic inference
algorithm, which generalizes the relax, compensate & recover (RCR) framework
to the first-order setting.

This algorithm performs approximate lifted inference by performing exact
lifted inference in a simplified first-order model. The RCR framework provides
a unifying semantics for existing approximate lifted inference algorithms, such
as lifted belief propagation and lifted mini-buckets, in terms of relaxing
equivalences in the model and compensating for the relaxations. In addition,
it introduces a new set of lifted algorithms in its spectrum of approximations,
including a family of lifted joingraph propagation and generalized belief
propagation approximations.

5. The application of exact lifted inference to lifted learning

Our fifth contribution is the application of exact lifted inference techniques to
the problem of lifted learning of the parameters of a statistical relational model.

There are two benefits to this approach

• Lifted learning learns models that optimize the exact likelihood of the
parameters where this was previously intractable.

• Lifted learning has a complexity that is polynomial in the size of each
training database, whereas existing algorithms that optimize the exact
likelihood of the parameters have an exponential complexity.

We show for the first time that exact lifted inference techniques can be applied
to learning models of real-world data sets.

1.6 Structure of the Thesis

The line of work presented in this thesis is a first-order generalization of the
propositional work on logical reasoning, probabilistic inference and learning.
We review these propositional foundations in Chapter 2.



STRUCTURE OF THE THESIS 11

The next three chapters are concerned with exact lifted inference. Chapter 3
introduces the fundamental data structure used in this dissertation, namely
FO-NNF circuits, and describes their properties in terms of which queries and
transformations can efficiently be performed on them. Chapter 4 presents an
algorithm for compiling a first-order knowledge base into FO-NNF circuits that
permit tractable inference.Chapter 5 starts with a review of statistical relational
models and inference algorithms. It then wraps up the work on exact inference
by giving a formal definition of lifted probabilistic inference and showing
how to use compilation into FO-NNF for lifted inference in probabilistic models.
Chapters 3, 4 and 5 mainly draw upon the following publications, but are
extended with more recent results.

G. Van den Broeck, N. Taghipour,W.Meert, J. Davis, and L. De Raedt
(2011a). “Lifted probabilistic inference by first-order knowledge
compilation”. In: Proceedings of the Twenty-Second International Joint
Conference on Artificial Intelligence (IJCAI). Menlo Park, California,
pp. 2178–2185
G. Van den Broeck and J. Davis (2012). “Conditioning in first-
order knowledge compilation and lifted probabilistic inference”.
In: Proceedings of the Twenty-Sixth AAAI Conference on Artificial
Intelligence, Palo Alto, California, USA

Chapter 6 puts the problem of exact lifted inference on more formal grounds.
Using the definition of domain-lifted inference, it defines the notions of
completeness and liftability and proves several theoretical results. This chapter
is based on the following publications:

G. Van den Broeck (2011b). “On the completeness of first-order
knowledge compilation for lifted probabilistic inference”. In: Ad-
vances in Neural Information Processing Systems 24 (NIPS), pp. 1386–
1394
M. Jaeger and G. Van den Broeck (2012). “Liftability of probabilistic
inference: Upper and lower bounds”. In: Proceedings of the 2nd
International Workshop on Statistical Relational AI,

Chapter 7 is concerned with Lifted Relax, Compensate & Recover (RCR), which
is a new approximate lifted inference algorithm. The chapter first explains the
propositional RCR algorithm by applying it to grounded statistical relational



12 INTRODUCTION

models. It then lifts each step of this algorithm to the first-order case. The work
in this chapter was previously published as

G. Van den Broeck, A. Choi, and A. Darwiche (2012). “Lifted relax,
compensate and then recover: From approximate to exact lifted
probabilistic inference”. In: Proceedings of the 28th Conference on
Uncertainty in Artificial Intelligence (UAI)

Chapter 8 presents a lifted generative parameter learning algorithm. First, it
describes a general algorithm that employs a black-box lifted probabilistic
inference algorithm for learning. Second, it proposes a specific lifted learning
algorithm that uses first-order knowledge compilation to efficiently optimize
the likelihood of the model. The work in this chapter is under review as

G. Van den Broeck, W. Meert, and J. Davis (2012). Lifted parameter
learning for Markov logic. (submitted)

Scattered throughout the chapters are short intermezzos that describe some
of the work done in the context of this thesis that was not on the topic of
lifted inference. These intermezzos talk about decision-theoretic probabilistic logic
programs, algebraic model counting and inference in probabilistic logic programs by
weighted model counting and max-SAT, which were published as

G. Van den Broeck, I. Thon, M. van Otterlo, and L. De Raedt
(2010). “DTProbLog: A decision-theoretic probabilistic Prolog”.
In: Proceedings of the Twenty-fourth AAAI Conference on Artificial
Intelligence,Menlo Park, California, pp. 1217–1222
A.Kimmig, G. VandenBroeck, andL.DeRaedt (2011). “An algebraic
Prolog for reasoning about possible worlds”. In: Proceedings of the
Twenty-Fifth AAAI Conference on Artificial Intelligence, pp. 209–214
A. Kimmig, G. Van den Broeck, and L. De Raedt (Nov. 2012a).
“Algebraic Model Counting”. In: arXiv:1211.4475.
D. Fierens, G. Van den Broeck, I. Thon, B. Gutmann, and L. De
Raedt (2011a). “Inference in probabilistic logic programs using
weighted CNF’s”. In: Proceedings of the 27th Conference on Uncertainty
in Artificial Intelligence (UAI), pp. 211–220
D. Fierens, G. Van den Broeck, J. Renkens, D. Shterionov, B.
Gutmann, I. Thon, G. Janssens, and L. De Raedt (2012b). “Inference

http://arxiv.org/abs/1211.4475


STRUCTURE OF THE THESIS 13

and learning in probabilistic logic programs usingweighted Boolean
formulas”. In: (submitted)

Other work that is not covered in these chapters and intermezzos is listed at
the end of the thesis, in the list of publications.

A concluding chapter summarizes the thesis, discusses its implications and
provides an outlook on future research.

The algorithms presented in this thesis are available as open source software at
http://dtai.cs.kuleuven.be/wfomc/.

http://dtai.cs.kuleuven.be/wfomc/




Propositional Foundations

2

This chapter lays out the foundations of the work presented in this dissertation.
Its common theme can be described as “probabilistic inference by logical reasoning”.
This chapter reviews the literature on that topic. We describe most concepts
informally, with examples, and refer to the literature for formal definitions.

We start by reviewing standard notions of propositional logic in Section 2.1.
Section 2.2 presents a general framework for logical inference, called knowledge
compilation. We then switch our attention to the representation of probabilistic
models in Section 2.3, which deals with probabilistic graphical models such as
Bayesian networks and factor graphs. The logical approach to probabilistic
inference has been applied to graphical models. We review this work in
Section 2.4. In essence, it reduces probabilistic inference to a (weighted)
model counting problem. In particular, we will discuss the use of knowledge
compilation for solving this type of inference tasks. Whereas the previous
techniques perform exact inference, Section 2.5 discusses techniques for
approximate probabilistic inference in graphical models. Finally, Section 2.6 deals
with the problem of learning the parameters of a probabilistic graphical model
from data.

Each of the following chapters in this dissertation lifts one or more sections
from this chapter to the first-order case. The mapping is as follows.

15



16 PROPOSITIONAL FOUNDATIONS

• Propositional logic and logical inference by knowledge compilation in
Sections 2.1 and 2.2 are lifted to first-order logic and first-order knowledge
compilation in Chapters 3 and 4.

• Probabilistic graphical models in Section 2.3 and exact probabilistic
inference (by knowledge compilation) in Section 2.4 are lifted to statis-
tical relational models and lifted probabilistic inference (by first-order
knowledge compilation) in Chapters 5 and 6.

• Approximate probabilistic inference, specifically the relax, compensate
and recover algorithm in Section 2.5 is generalized to perform lifted
inference in statistical relational models in Chapter 7.

• The generative parameter learning task for probabilistic graphical models
in Section 2.6 is lifted to the same task for statistical relational models in
Chapter 8, which also presents a lifted weight learning algorithm to solve
that task.

2.1 Propositional Logic

Propositional or Boolean logic is a formal language for modeling and reasoning
about the truth of propositions, or sentences. Propositions are statements about
the world, which can be true (T) or false (F). These sentences are constructed
from propositional variables and logical connectives such as negation (NOT, ¬),
conjunction (AND, ∧), disjunction (OR, ∨) and implication (⇒). A literal is a
propositional variable or its negation. A theory or knowledge base is a conjunction
of sentences. An interpretation is a truth assignment to all propositional variables.
An interpretation satisfies a sentence Σ when it evaluates to true for that truth
assignment to the variables. The interpretations that satisfy a sentence are the
models of the sentence.

Example 2.1. The sentence sun∧ rain ⇒ rainbow encodes that when there
is sun (variable sun is true) and it is raining (variable rain is true), there is a
rainbow (variable rainbow is true). Every interpretation that assigns true to
rainbow is a model of this sentence. The interpretation sun = T, rain = T and
rainbow = F is not a model.

There are many logical inference tasks one considers in a knowledge base.
The best-known problem is consistency, or satisfiability (SAT) checking, which



LOGICAL INFERENCE BY KNOWLEDGE COMPILATION 17

checks whether the knowledge base has a model. Its dual problem is validity
checking, which checks whether every interpretation is a model. Both of
these are special cases of the model counting task, which counts the number
of models of the knowledge base. The maximum satisfiability problem (MAX-
SAT) is an optimization problem concerned with finding the largest number of
clauses (disjunctions of literals) in a knowledge base that can be satisfied by an
interpretation.

Applications of propositional logic appear in many fields of computer science.
In artificial intelligence, planning problems can be solved by answering a
Boolean satisfiability problem (Kautz, Selman, et al., 1992; Rintanen, 2009).
Inference engines for a variety of different knowledge representation formalisms
reduce inference tasks to the satisfiability problem. Examples are inference
in logic and answer set programs (Lin and Zhao, 2004) and modal and
description logics (Sebastiani and Tacchella, 2009). The application we will
focus on in Section 2.4.1 is the use of model counting for probabilistic
inference. Propositional logic is furthermore used in such fields as hardware
design (Meinel and Theobald, 1998) and verification (Biere, 2009), software
verification (Kroening, 2009), fault diagnosis (De Kleer, Mackworth, and
Reiter, 1992; Darwiche, 2000), product configuration (Felfernig et al., 2004)
and scheduling (Crawford and Baker, 1994).

2.2 Logical Inference by Knowledge Compilation

Knowledge compilation is a powerful technique for reasoning about proposi-
tional knowledge bases (Selman, Kautz, et al., 1991; Marquis, 1995; Cadoli and
Donini, 1997; Darwiche andMarquis, 2002). Knowledge compilation transforms
or compiles a logical theory into a circuit representation so that specific inference
tasks can be performed in time polynomial in the size of the circuit. Once a
circuit is compiled, it can be reused to efficiently answer a large number of
queries. While the compilation step may be computationally expensive, it is a
one-time cost that can be amortized over all subsequent queries.

Circuit reuse is one of the main computational advantages of compilation.
Transformations modify the compiled circuit, enabling it to answer additional
queries. Applying an efficient transformation is much cheaper than modifying
the original theory and recompiling. Conditioning, which is such a transforma-



18 PROPOSITIONAL FOUNDATIONS

∧

∨

∨

rainbow

¬ rainbow

rain ¬ sun

∧¬ rain

(i)

(ii)

Figure 2.1: Propositional d-DNNF circuit for the sentence sun∧ rain⇒ rainbow

tion, is the topic of Section 2.2.2. It updates a knowledge base to incorporate
information about the truth values of a set of literals in the theory.

A circuit language is a set of circuits that have a shared set of properties.
Darwiche and Marquis (2002) give an overview of propositional circuit
languages and their properties in a knowledge compilation map. All circuit
languages in the knowledge compilation map are subsets of the negation normal
form (NNF) language. A NNF circuit is a directed, acyclic graph where the leaves
are labeled with either a literal (e.g., x or ¬ x) or a truth value. The inner nodes
represent formulae in propositional logic, either conjunctions or disjunctions.

A language of particular interest is deterministic decomposable negation normal
form (d-DNNF) circuits (Darwiche, 2001b). A d-DNNF circuit restricts a NNF circuit
such that all the conjunctions are decomposable and all the disjunctions are
deterministic. In a decomposable conjunction, each pair of conjuncts (child nodes)
must be independent (i.e., they cannot share any variables). In a deterministic
disjunction, only one disjunct (child node) can be true at the same time (i.e.,
their conjunction is unsatisfiable). Other notable circuit languages in knowledge
compilation are ordered binary decision diagrams (OBDD) (Bryant, 1986) and
sentential decision diagrams (SDD) (Darwiche, 2011). These are special cases of
d-DNNF circuits that support more tractable queries and transformations at the
cost of a potentially larger circuit size.

Example 2.2. Figure 2.1 shows a d-DNNF circuit. The node labeled (i) represents
the theory sun∧ rain ⇒ rainbow. It can be read in two ways. Top-down, it
represents a sentence in propositional logic. Bottom-up it represents a circuit
where the literal leafs are the input wires and the root node is an output wire.



LOGICAL INFERENCE BY KNOWLEDGE COMPILATION 19

Knowledge compilation has been used to solve inference tasks in many
different fields, such as hardware design (Meinel and Theobald, 1998), fault
diagnosis (Elliott and Williams, 2006), conformant planning (Palacios et al.,
2005) and databases (Dalvi, Schnaitter, and Suciu, 2010). One application of
knowledge compilation we will explore further in Section 2.4.2 is probabilistic
inference (e.g., Chavira, Darwiche, and Jaeger (2006); Chavira and Darwiche
(2008); Fierens et al. (2011a)).

2.2.1 Model Counting

Different circuit languages support different polytime queries. As an example
of such a query, we will now describe how the model counting task can
efficiently be solved in a smooth d-DNNF (sd-DNNF) circuit. Smooth circuits have
the property that any pair of disjuncts mentions the same set of propositional
variables.

∧

∨

∧

∨∨
∧

∧∨

sun ¬ sun rain

¬ rain

rainbow ¬ rainbow(ii)

(a) sd-DNNF circuit

3

×

7

+
4

×
2

+
3

+2

×
1

×
2

+

1 1 1

1

1 1(ii)

(b) Model counting arithmetic circuit

Figure 2.2: Circuits for the sentence sun∧ rain⇒ rainbow

Example 2.3. The d-DNNF circuit of Figure 2.1 is not smooth. The left child of
the node labeled (i) mentions the set of variables {rainbow} whereas the right
child mentions {rainbow, rain, sun}. Figure 2.2a depicts an sd-DNNF circuit for
the same sentence.

An sd-DNNF circuit can be transformed into an arithmetic circuit that computes
the model count of the sentence (Darwiche, 2001b). This is done by replacing



20 PROPOSITIONAL FOUNDATIONS

literals by the constant 1, conjunctions by multiplications and disjunctions by
additions. Evaluating the arithmetic circuit outputs the model count.

Example 2.4. Figure 2.2b depicts the arithmetic circuit for the sd-DNNF of
Figure 2.2a. The model count of each subcircuit is shown above its root node.
The model count of the entire circuit, and therefore of sentence sun∧ rain⇒
rainbow, is 7. We can verify this by checking that there are three variables and
therefore 23 = 8 interpretations, all of which are models, except for the one that
assigns true to rain and sun but false to rainbow.

2.2.2 Conditioning

Conditioning is one of the most basic transformations that can be applied to a
circuit. All circuits in the propositional knowledge compilation map (Darwiche
andMarquis, 2002), including OBDDs, d-DNNFs and sd-DNNFs, support polynomial
time conditioning (in the size of the circuit). Intuitively, conditioning updates
a knowledge base to reflect information about the truth values of specific
propositions. More formally, conditioning a logical theory Σ on a term γ is
denoted as Σ|γ, where γ = l1 ∧ l2 ∧ · · · ∧ ln and each li is a literal. For each
positive (negative) li, conditioning replaces all positive (negative) occurrences
of li in Σ with true and all negative (positive) occurrences by false.

Example 2.5. Conditioning sun∧ rain⇒ rainbow on ¬ rainbow results in the
theory sun∧ rain⇒ F, or equivalently ¬ sun∨¬ rain.

There are two ways of obtaining a circuit for the sentence Σ|γ. The first way is to
condition the sentence Σ on term γ and then compile the result. The secondway
is to compile a circuit for Σ and condition it on γ. When we want to pose queries
about many different Σ|γi sentences, conditioned on different terms, the latter
approach can be much more efficient. Since compilation is computationally
demanding, conditioning the circuit, as opposed to the sentence Σ, permits
reuse of the previously compiled circuit for inference over all Σ|γi. This circuit
reuse is the motivation for the knowledge compilation approach.

Conditioning a NNF circuit on γ is achieved by replacing all terminal nodes
that occur as variables in γ by T or F terminals. Darwiche and Marquis (2002)
show that every language in the knowledge compilation map can efficiently be
conditioned and that conditioning any circuit preserves its properties. That is,
the conditioned circuit is in exactly the same circuit family as the original (i.e.,
unconditioned) circuit.



PROBABILISTIC GRAPHICAL MODELS 21

Example 2.6. Conditioning the circuits of Figures 2.1 and 2.2a on ¬ rainbow
replaces the terminal rainbow with F and the terminal ¬ rainbow with T.
After some simplifications, this is equivalent to the circuit rooted at the nodes
labeled (ii). The arithmetic circuit rooted in node (ii) of Figure 2.2b computes
the model count of ((sun∧ rain⇒ rainbow)|¬ rainbow), which is 3. These are
all four interpretations of variables sun and rain, except for the one where both
are true.

2.3 Probabilistic Graphical Models

Classical logic can only express concepts that are certainly true or certainly
false. For many AI tasks, this is a severe limitation. This observation has led to
the rise of many alternative knowledge representation formalisms. Logicians
extended classical logic to formalize more commonsense knowledge. Examples
are non-monotonic logics such as default logic (Reiter, 1980), autoepistemic
logic (Moore, 1985) and logic programming (Clark, 1978; Gelfond and Lifschitz,
1988). Another approach has incorporated probability theory into knowledge
representation and reasoning. Examples are probabilistic logics (Nilsson, 1986)
and probabilistic graphical models (Pearl, 1988). The latter have become
increasingly important in AI, in fields such as machine learning, computer
vision and robotics.

A probabilistic graphical model is a concise representation of a probability
distribution. It consists of a graph which represents the dependency structure
of the distribution and an associated set of functions that quantitatively specify
it. The next two sections briefly review two popular types of graphical models:
Bayesian networks and factor graphs. For a more detailed treatment, see Koller
and Friedman (2009) and Darwiche (2009).

2.3.1 Bayesian Networks

A Bayesian network is a directed acyclic graph that models a probability
distribution as a product of conditional probabilities. The nodes in the graph
represent propositional random variables. The Bayesian network defines a
conditional probability distribution for every node in the graph, given its



22 PROPOSITIONAL FOUNDATIONS

sun rain

rainbow

rain Pr(sun | rain)

T 0.1
F 0.6

Pr(rain)

0.2

rain sun Pr(rainbow | rain, sun)

T T 0.9
T F 0.05
F T 0.05
F F 0

Figure 2.3: Bayesian Network

parents:

Pr(x1, . . . , xn) = ∏
i

Pr(xi|parents(xi)). (2.1)

These conditional probabilities are usually represented in a table.

Example 2.7. Figure 2.3 shows a Bayesian network of three variables: sun, rain
and rainbow. The modeled probability distribution is factorized as

Pr(sun, rain, rainbow) = Pr(rainbow | rain, sun)Pr(sun | rain)Pr(rain),

where each factor on the right-hand side is given by a conditional probability
table of the Bayesian network. Note that when the probability of a variable being
true is p in the tables, the probability of the variable being false is implicitly
1− p. Table 2.1 shows the joint probability distribution encoded by this network.

An advantage of using a Bayesian network representation is that it concisely
models a distribution over a large number of variables. The joint probability
distribution of n variables is represented by a single table with 2n rows (and
2n− 1 parameters). A row in such a table is called a possible world, representing a
unique assignment of truth values to the variables. When the same distribution
is modeled with a Bayesian network where each node has up to p parents, the
number of rows in all conditional probability tables is less than n2p, which can
be a substantial reduction in size.



PROBABILISTIC GRAPHICAL MODELS 23

rain sun rainbow Pr(rain, sun, rainbow)

T T T 0.2 · 0.1 · 0.9 0.018
T T F 0.2 · 0.1 · (1− 0.9) 0.002
T F T 0.2 · (1− 0.1) · 0.05 0.009
T F F 0.2 · (1− 0.1) · (1− 0.05) 0.171
F T T (1− 0.2) · 0.6 · 0.05 0.024
F T F (1− 0.2) · 0.6 · (1− 0.05) 0.456
F F T (1− 0.2) · (1− 0.6) · 0 0
F F F (1− 0.2) · (1− 0.6) · (1− 0) 0.32

Table 2.1: Joint Probability Distribution Encoded by Figure 2.3

There are several inference tasks one can consider in a Bayesian network.
It is a natural question to ask for marginal posterior probabilities. These are
the probabilities of single variables given observations or evidence (a truth
value assignment to some variables). Another task is finding the most probable
explanation (MPE) of some evidence. It involves finding the most likely possible
world where the evidence is true. A related task is finding the (partial)maximum
a posteriori (MAP) hypothesis, which is the most likely assignment to a subset
of the variables, given some evidence. We will discuss inference algorithms for
answering these queries in Section 2.4.

2.3.2 Markov Random Fields and Factor Graphs

Bayesian networks are directed models that describe a generative process. This
facilitates their use in modeling and knowledge representation. Given the right
graph structure, each parameter in a Bayesian network has a clear semantics.
However, when learning a graphical model from data, or when designing
inference algorithms, it is often convenient to work with undirectedmodels, such
as Markov random fields or factor graphs.

AMarkov random field orMarkov network is an undirected probabilistic graphical
model that represents a joint probability distribution over a set of random
variables x1, . . . xn. Each clique of variables Xi in the graph has a potential
function, fk(Xi), associated with it. The distribution over possible worlds ω

represented by a Markov network is:

Pr(ω) =
1
Z ∏

i
fi(ωi) with Z = ∑

ω
∏

i
fi(ωi) (2.2)



24 PROPOSITIONAL FOUNDATIONS

f1rainf2sun

f3

rainbow

rain sun f2

T T 0.1
T F 0.9
F T 0.6
F F 0.4

rain f1

T 0.2
F 0.8

rain sun rainbow f3

T T T 0.9
T T F 0.1
T F T 0.05
T F F 0.95
F T T 0.05
F T F 0.95
F F T 0
F F F 1

Figure 2.4: Factor Graph

where ωi is the state of the ith clique (i.e., the state of the variables that appear
in that clique), and Z is a normalization constant.

A factor graph (Kschischang, Frey, and Loeliger, 2001) explicitly represents
these potentials as factor nodes in the graph structure. It is a bipartite graph
of variable and factor nodes with edges connecting a variable and a factor. An
edge indicates that the variable is in the set Xi of the connected potential fi.
Any Bayesian network can be converted into a factor graph by replacing every
conditional probability Pr(xi|parents(xi)) by a factor f ({xi} ∪ parents(xi)).

Example 2.8. Figure 2.4 depicts a factor graph that represents the exact same
distribution as the Bayesian network of Figure 2.3. Each conditional probability
table is represented by one of the factors. The joint probability distribution
encoded by this network is identical to the one in Table 2.1. For this undirected
model, the partition function Z is 1. Note that this is not the case in general, but
a remnant from translating conditional probabilities into factors. For example,
multiplying one of the factor tables by a constant still constitutes a valid factor
graph, but causes Z to not equal 1.

Factor graphs are often represented as log-linear models, where potentials are
replaced by an exponentiated weighted sum of features ψi(Xi) of the state:

Pr(ω) =
1
Z

exp

(
∑

i
wiψi(ωi)

)
. (2.3)



EXACT PROBABILISTIC INFERENCE 25

A feature may be any real-valued function of the state.

The same inference tasks that exist for Bayesian networks also exist for
undirected models. Inference algorithms are often conveniently formulated on
factor graphs, as we will see in the next section.

2.4 Exact Probabilistic Inference

From an automated reasoning perspective, probabilistic graphical models are
interesting because they support efficient inference algorithms. For exact infer-
ence, notable examples are variable elimination (Zhang and Poole, 1994; Dechter,
1996), the junction tree algorithm (Pearl, 1988), recursive conditioning (Darwiche,
2001c) and weighted model counting (Sang, Beame, and Kautz, 2005; Chavira and
Darwiche, 2008), which is the subject of this section.

2.4.1 Probabilistic Inference by Weighted Model Counting

Weighted model counting (WMC) is a logical inference task with close
connections to probabilistic inference. It takes as input a sentence φ in
propositional logic and a function weight : L → R≥0 that associates a non-
negative weight with every literal (set L) in the sentence. The weight of an
interpretation ω (set of literals assigning a truth value to each variable) is
∏l∈ω weight(l). These interpretation weights are aggregated into the weighted
model count of a sentence as follows.

Definition 2.1 (WMC). LetMODφ be the set of models of φ. The weighted
model count is then defined as

WMC(φ, weight) = ∑
ω∈MODφ

∏
l∈ω

weight(l). (2.4)

Example 2.9. For the sentence sun∧ rain ⇒ rainbow and weight function
weight(rain) = 2, weight(¬ rain) = 7, weight(sun) = 1, weight(¬ sun) = 5,
weight(rainbow) = 0.1 and weight(¬ rainbow) = 10, Table 2.2 lists the weight
of each interpretation. Note that the second interpretation does not satisfy the
sentence and is therefore not included in the weighted model count, which
totals 525.4.



26 PROPOSITIONAL FOUNDATIONS

rain sun rainbow Weight
T T T 2 · 1 · 0.1 0.2
T T F 2 · 1 · 10 20
T F T 2 · 5 · 0.1 1
T F F 2 · 5 · 10 100
F T T 7 · 1 · 0.1 0.7
F T F 7 · 1 · 10 70
F F T 7 · 5 · 0.1 3.5
F F F 7 · 5 · 10 350

+ 525.4

Table 2.2: Weighted Interpretations and Model Count

Computing the Partition Function by Weighted Model Counting

We will now show that we can reduce the problem of computing the partition
function Z of a factor graph (Equation 2.2) to a weighted model counting
problem (Sang, Beame, and Kautz, 2005; Chavira and Darwiche, 2008). The
reduction creates a propositional theory with two sets of logical variables. The
first set is simply the set of random variables x1, . . . , xn in the factor graph.
The second set consists of variables θ1, . . . , θk, denoting the parameters in the
potential tables. Each formula in the generated theory corresponds to one or
more rows from a potential table. For example, the row x1 = T, . . . , xm = Fwith
parameter wi is represented by the formula θi ⇔ x1 ∧ · · · ∧ ¬xm. It encodes that
this configuration of the random variables increases or decreases the probability
of possible worlds by a factor wi. The associated weight function assigns these
wi parameters to the positive θi literals and a weight of 1 to all other literals.

The weight of a possible world of the factor graph is the product of certain
parameters. These parameters have a one-to-one correspondence to the positive
θ literals in some model of the logical theory. This means that the weight of a
possible world equals the weight of a model of the logical theory. Furthermore,
there is a one-to-one mapping between models and possible worlds of the
factor graph. Therefore, the weighted model count of this theory is equal to the
partition function of the factor graph.

We can further optimize the reduction to a weighted model counting problem
by exploiting various types of local structure, such as determinism, parameter
equality and context-specific independencies (Boutilier et al., 1996; Chavira and
Darwiche, 2005).



EXACT PROBABILISTIC INFERENCE 27

• Determinism means that some potentials are 0, so that certain possible
worlds have zero probability. We can exclude those interpretations from
the model count using hard logical constraints.

• Parameter equality means that multiple rows in a table have the same
potential value. We only need a single θ variable to represent all those
rows, by adding a formula θ ⇔ φ such that the models of φ correspond
to the rows.

• Context-specific independencies arisewhen the truth values of the θ-variables
belonging to a factor become independent of certain variables in the factor,
given an assignment to other variables. This can occur when the formula
φ above represents a large number of rows in the potential table but has a
concise logical representation.

Example 2.10. Consider the factor graph of Figure 2.4. Its weighted model
counting formulation is obtained by converting each factor table individually.
The table for factor f3 is represented by the theory

θ1 ⇔ rain∧ sun∧ rainbow

θ2 ⇔ rain∧ sun∧¬ rainbow

θ3 ⇔ (rain∧¬ sun∧ rainbow) ∨ (¬ rain∧ sun∧ rainbow)

θ4 ⇔ (rain∧¬ sun∧¬ rainbow) ∨ (¬ rain∧ sun∧¬ rainbow)

¬(¬ rain∧¬ sun∧ rainbow)

and a weight function with weight(θ1) = 0.9, weight(θ2) = 0.1, weight(θ3) =

0.05, weight(θ4) = 0.95, and all other literal weights equal to 1. The formulas
for θ3 and θ4 are examples of local structure being exploited. The last formula
encodes a deterministic dependency. The last row of the potential table is not
represented in the theory because it has potential value 1 and therefore does
not change the probability of a possible world.

Computing Queries by Weighted Model Counting

Given a probabilistic model M, the main inference task is now to compute
the marginal probability of some variable xj by summing out the remaining x



28 PROPOSITIONAL FOUNDATIONS

variables from the probability distribution. From Equation 2.2, this is

Pr(xj) = ∑
ω|=xj

Pr(ω) =
1
Z ∑

ω|=xj

∏
i

fi(ωi).

We already know how to compute the partition function denominator of
this equation using weighted model counting. The numerator corresponds
precisely to the partition function of a modified factor graph, where possible
worlds that satisfy ¬xj get zero probability. Assume that the weighted
model counting reduction of M consists of the sentence φ with its weight
function. We can then compute marginal probabilities as Pr(xj) = WMC(φ ∧
xj, weight)/ WMC(φ, weight).

This can be generalized to the computation of the conditional probability of some
query q given the evidence e. Intuitively, calculating Pr(q|e) requires computing
the weight of the possible worlds where e and q are both true and dividing it by
the weight of the possible worlds where e is true. Formally, this can be written
as follows:

Pr(q|e) = Pr(q ∧ e)
Pr(e)

=
WMC(φ ∧ q ∧ e, weight)

WMC(φ ∧ e, weight)
. (2.5)

There exist many algorithms to solve the weighted model counting task,
based on DPLL search (Sang, Beame, and Kautz, 2005), local search (Wei
and Selman, 2005), sampling (Gogate and Dechter, 2011) and knowledge
compilation (Chavira and Darwiche, 2008). The next section describes this
knowledge compilation approach in more detail.

2.4.2 Probabilistic Inference by Knowledge Compilation

We will first show how to perform weighted model counting by knowledge
compilation and then discuss its application to probabilistic inference.

Computing the weighted model count of an sd-DNNF circuit is similar to
the computation of the model count outlined in Section 2.2.1. It involves
transforming the sd-DNNF circuit into an arithmetic circuit by replacing
conjunctions by multiplications and disjunctions by additions. The difference
is in the transformation of literals, which for the weighted model counting task
are replaced by their weights according to the weight function.



EXACT PROBABILISTIC INFERENCE 29

∧

∨

∧

∨∨
∧

∧∨

sun ¬ sun rain

¬ rain

rainbow ¬ rainbow

(a) sd-DNNF circuit

520

×

525.4

+
5.4

×
9

+
52

+42

×
10

×
6

+

1 5 2

7

0.1 10

(iii)

(b) Weighted model counting circuit

Figure 2.5: Circuits for the sentence sun∧ rain⇒ rainbow

Example 2.11. Figure 2.5a again shows an sd-DNNF circuit for the sentence
sun∧ rain ⇒ rainbow. The weighted model count of this sentence for the
weight function of Example 2.9 is computed by the arithmetic circuit in
Figure 2.5b. It confirms the result of Table 2.2, that the weighted model count
is 525.4.

Now that we can efficiently performweighted model counting, we can compute
the partition function Z using the reduction of Section 2.4.1 and compute
marginal and conditional probabilities using Equation 2.5.

Example 2.12. Consider the probability distribution represented by the
weighted model counting problem with sentence φ = (sun∧ rain⇒ rainbow)

and the weight function of Example 2.9. The query Pr(rainbow) can be
computed by the ratio WMC(φ ∧ rainbow, weight)/ WMC(φ, weight). The
denominator is computed by the circuit in Figure 2.5b to be 525.4. The numerator
is computed to be 5.4 by the node labeled (iii) of the same circuit. Therefore, we
have that Pr(rainbow) = 5.4/525.4 ≈ 0.0103.

The motivation for using a knowledge compilation approach is circuit reuse: by
compiling a circuit once, we can answer a large number of queries efficiently.
This also applies to probabilistic inference, as we can see from rewriting



30 PROPOSITIONAL FOUNDATIONS

Equation 2.5 as follows.

Pr(q|e) = WMC(φ ∧ q ∧ e, weight)
WMC(φ ∧ e, weight)

=
WMC((φ|(q ∧ e)), weight) ·∏l∈q weight(l) ·∏l∈e weight(l)

WMC((φ|e), weight) ·∏l∈e weight(l)

=
WMC((φ|(q ∧ e)), weight) ·∏l∈q weight(l)

WMC((φ|e), weight)

Note that now the ‘|’ symbol denotes logical conditioning, as explained in
Section 2.2.2. The equation shows that to perform probabilistic inference, it
suffices to compile a single circuit, for φ (the partition function computation),
and reuse it to compute the conditional probability of any query term (i.e.,
conjunction of literals) given any evidence term. With additional optimizations,
this single circuit allows computing the probability of evidence Pr(e) and all
posterior marginals Pr(xi|e) in only two passes over the circuit, and time and
memory linear in its size (Darwiche, 2003).

2.5 Approximate Probabilistic Inference

Exact inference algorithms for general probabilistic graphical models have a
upper complexity bound that is exponential in the treewidth (Robertson and
Seymour, 1983; Robertson and Seymour, 1986) of the underlying graph structure.
Treewidth is a measure of the connectivity of the network, indicating how tree-
like the network is. Unfortunately, this often makes exact inference intractable.
The knowledge compilation approach outlined in the previous section has the
same complexity: compiling a logic theory into sd-DNNF is exponential in the
treewidth of the logical theory (Darwiche, 2001b).

To overcome this problem, approximate inference algorithms are used in
practice. Notable examples are loopy or iterative belief propagation (Pearl, 1988),
variational (Jordan et al., 1999), and sampling methods. We will briefly present
the intuition behind two related approximate inference algorithms. The first
is belief propagation – a seminal algorithm. The second is a state-of-the-art
generalization of belief propagation, called relax, compensate and recover. What
makes this algorithm so appealing is that it allows us to use the algorithms for



APPROXIMATE PROBABILISTIC INFERENCE 31

Intermezzo 1: Algebraic Model Counting
Knowledge compilation is used to solvemanymore tasks, other than computing
probabilities andweightedmodel counts. For example, replacing summation by
maximization in a model counting circuit computes the probability of the MPE
state. Kimmig, Van den Broeck, and De Raedt (2012a) explore this observation
and introduce a new inference task called algebraic model counting (AMC), which
generalizes model counting to a semiring structure.

Definition 2.2. A commutative semiring is a structure (A,⊕,⊗, e⊕, e⊗), where
addition ⊕ and multiplication ⊗ are associative and commutative binary
operations over the set A, ⊗ distributes over ⊕, e⊕ ∈ A is the neutral element
of ⊕, e⊗ ∈ A that of ⊗, and for all a ∈ A, e⊕ ⊗ a = a⊗ e⊕ = e⊕.

Definition 2.3. Given (i) a propositional logic theory φ over a set of variables V, (ii)
a commutative semiring (A,⊕,⊗, e⊕, e⊗), and (iii) a labeling function α : L→ A,
mapping literals L of the variables in V to elements of the semiring set A,
algebraic model counting computes AMC(φ) =

⊕
ω∈MODφ

⊗
l∈ω α(l).

AMC supports various types of labels, including numbers, sets, tuples,
polynomials and formulae. It generalizes many different tasks from a variety
of different fields. For example, deciding consistency of φ is captured by the
semiring ({T,F},∨,∧,F,T) with α(v) = α(¬v) = T. Counting its models
corresponds to the semiring (N,+,×, 0, 1) with α(x) = α(¬x) = 1 and
the WMC task (Equation 2.4) to the semiring (R≥0,+,×, 0, 1) with α(v) =
weight(v). The MPE probability task is obtained by setting ⊕ to max in
the WMC semiring. Other AMC tasks compute the MPE state, gradients
and expected costs. AMC generalizes inference in probabilistic graphical
models (Bacchus, Dalmao, and Pitassi, 2009) and algebraic Prolog (Eisner,
Goldlust, and Smith, 2005; Kimmig, Van den Broeck, and De Raedt, 2011),
sensitivity analysis, soft constraint satisfaction (Meseguer, Rossi, and Schiex,
2006), and network and database analysis (Baras and Theodorakopoulos, 2010).
As AMC is defined in terms of the models of a sentence φ, it can be performed
by knowledge compilation. Any AMC task can be evaluated on a sd-DNNF
representation of φ, which is more succinct than a direct representation of the
set of models. Furthermore, certain properties of AMC tasks allow for using
more succinct circuit types. For example, when⊕ is idempotent (i.e., a⊕ a = a), it
can be evaluated on a (non-deterministic) s-DNNF representation.When addition
is neutral (i.e., α(v) ⊕ α(¬v) = e⊗), non-smooth circuits can be used. Other
properties even allow for evaluation on non-decomposable circuits.



32 PROPOSITIONAL FOUNDATIONS

f1rainf2sun

f3

rainbow

Figure 2.6: Iterative belief propagation on a factor graph. Dotted arrows
represent messages with belief updates.

exact inference presented earlier to also perform approximate inference, even
in graphical models with high treewidth.

2.5.1 Iterative Belief Propagation

Loopy or iterative belief propagation (IBP) (Pearl, 1988) is a message passing
algorithm where nodes in the factor graph exchange messages along the
edges of the graph. Intuitively, these messages quantify the influence that
each node has on its neighbors’ probability. Each node keeps an estimate of
its marginal probability, called a belief . These beliefs are updated based on
incoming messages. Messages are sent out iteratively from each node, based on
its belief, until the beliefs and messages have converged.

We refer to Koller and Friedman (2009) and Darwiche (2009) for a more formal
description. The details of how belief propagation messages are computed
for a specific type of log-linear models are also explained in Chapter 7. Belief
propagation is a special case of the algorithm presented in that chapter.

When the factor graph is a tree, belief propagation is an exact inference
algorithm. Otherwise, it often finds good approximations, if the iterative
algorithm converges (Murphy, Weiss, and Jordan, 1999).

Example 2.13. Figure 2.6 visualizes the messages sent by IBP on the factor
graph of Figure 2.4. Because this network has a loop, the marginals estimated
by the beliefs of IBP will only be approximate.



APPROXIMATE PROBABILISTIC INFERENCE 33

2.5.2 Relax, Compensate & Recover

Relax, Compensate & Recover (RCR) (Choi and Darwiche, 2011) is an algorithm
that performs approximate probabilistic inference by doing exact inference
in a simplified, approximate model. This simplified model is changed while
running the algorithm, in order to improve its approximation. RCR performs
the following three steps.

1. Every edge in the factor graph connects a random variable x with a factor
f . Cloning removes an edge from the network and adds a clone x′ of x. It
then connects x′ to f and adds a factor f≡ between x and x′, encoding an
equivalence constraint. Cloning does not change themodeled distribution,
it only adds random variables to it. Relaxation removes an equivalence
constraint f≡ from the network, making the graph structure more sparse
and reducing its treewidth. A common setup is to clone variables and
relax equivalences until the relaxed model is a tree, which is amenable to
exact inference.

2. To correct for the removed equivalences, compensation connects one new
unary factorwith x and onewith x′. The variables x and x′were equivalent
in the exact probability distribution. Intuitively speaking, compensation
tries to make these variables equivalent again, for some weaker notion
of equivalence. It does this by setting the added unary potentials in an
appropriate way, to compensate for the ignored dependencies. Intuitively,
one approach is to enforce that Pr(x) = Pr(x′). When Pr(x = T) <

Pr(x′ = T), this is compensated for in the unary potentials fx and fx′

by increasing the potential fx(T) and decreasing fx′(T). Setting these
potentials is done by a message passing algorithm similar to belief
propagation. It performs exact inference in the relaxed model to compute
the right messages.

3. Recovery adds back relaxed equivalences f≡ to the model in order to
incrementally improve approximation quality. Each recovery step makes
inference in the relaxed model harder, also making the compensation
step more difficult. If exact inference in the original model is tractable, all
equivalences will eventually be recovered, and RCR returns exact results.

Example 2.14. Figure 2.7 shows two steps of the RCR algorithm applied
to the factor graph of Figure 2.4. Figure 2.7a depicts the cloning of two
variables sun and rain into sun′ and rain′. The added factors f≡ encode



34 PROPOSITIONAL FOUNDATIONS

rain′sun′ f1rain

f≡

f2sun

f≡

f3

rainbow

(a) Cloning

rain′

f6

sun′

f5

f1rain

f7

f2sun

f4

f3

rainbow

(b) Relaxation and Compensation

Figure 2.7: Relax and Compensate on a Factor Graph

that clones are equivalent to the original variables in every possible world.
Hence, Figure 2.7a models the same distribution over the original variables
as Figures 2.4 and 2.3. Figure 2.7b shows the relaxation step ( f≡ factors are
removed) and compensation step (factors f4 to f7 are added). The relaxation step
turns the loopy graph into two trees, in which exact inference is more efficient.
The dotted lines represent messages being sent by the iterative compensation
algorithm, to synchronize the beliefs of the original variables and their clones.

Knowledge compilation inference provides additional advantages in the context
of RCR. The messages sent by the compensation algorithm are a function of all
marginal probabilities in the relaxed network. As discussed in Section 2.4.2, we
can use a single compiled sd-DNNF circuit for this task. Furthermore, in different
iterations of the compensation algorithm, the structure of the factor graph
does not change, only the parameters of the compensating factors. In weighted
model counting terms, this means that only the weight function changes, not
the sentence for which we compute the weighted model count. Hence, we can
reuse a single compiled sd-DNNF circuit in each iteration of the compensation
algorithm, until an equivalence is recovered and the structure of the relaxed
model changes.

The RCR framework leads to a spectrum of approximations. When all
equivalences are relaxed, the compensation phase sends and receives the
same messages as IBP and obtains the same approximate marginals (Choi and
Darwiche, 2006). When recovering more edges, the approximations obtained
will correspond to generalized belief propagation approximations (Yedidia,
Freeman, and Weiss, 2003), in particular iterative joingraph propagation (Dechter,



LEARNING PROBABILISTIC GRAPHICAL MODELS 35

Kask, and Mateescu, 2002). We will discuss more connections to related work
in Chapter 7.

2.6 Learning Probabilistic Graphical Models

There are many different settings for learning a probabilistic graphical model.
These are distinguished by the following properties. When the graph structure
is given and we want to learn the parameters in the potential or conditional
probability tables, the task is called parameter learning. If the graph structure is
also unknown, it is called structure learning. One distinguishes between learning
from complete data, when the training examples assign a value to every variable,
and learning from incomplete data, when certain values are missing. Finally,
there can be different criteria for evaluating learned models. In a generative
learning setting, the performance of a learned model is evaluated based on
how it explains the data as a whole. In discriminative learning, the goal is to
best explain certain variables in the data, given an assignment to the other
variables. The maximum likelihood setting prefers the model that maximizes the
probability of the data, whereas Bayesian learning incorporates prior knowledge
about preferred parameters and structures into the evaluation.

There are too many combinations of settings to cover here. We will focus on
one task: generative maximum-likelihood parameter learning from complete data
and refer to Koller and Friedman (2009) and Darwiche (2009) for the other
tasks. This setting is arguably the most fundamental one, as it is a building
block in many algorithms for the other tasks. For example, structure learning
algorithms typically search for appropriate graph structures by evaluating their
quality with a parameter learning algorithm (Cooper and Herskovits, 1992;
Della Pietra, Della Pietra, and Lafferty, 1997). The expectation maximization
algorithm (Dempster, Laird, andRubin, 1977) allows us to learn from incomplete
data by iteratively learning from complete data.

Generative Maximum-Likelihood Parameter Learning

A natural objective function for our learning task is to learn maximum-
likelihood weights, that is, to maximize the (log-)probability of the training



36 PROPOSITIONAL FOUNDATIONS

data (Equation 2.2).

log Pr(Ω) =
N

∑
i=1

log Pr(Ωi), (2.6)

where N is the number of examples, Ωi is the state of the ith example and Pr(Ωi)

is given by Equation 2.1 for Bayesian networks or Equation 2.2 for undirected
models.

For Bayesian networks, optimizing Equation 2.6 can be done in closed form. The
most likely parameter representing Pr(xi = v|parents(xi) = w) is simply the
ratio of how many times xi = v and parents(xi) = w appear in the data.

For undirected networks, in general, optimizing Equation 2.6 cannot be done in
closed form. Instead, weight learning is addressed via convex optimization. Each
iteration of the optimization involves running inference over the current model
to compute the likelihood and its gradient. However, even just evaluating the
probability of the data is (often) intractable, since it involves computing the
partition function Z.

Consequently, people often optimize an approximate objective function such
as pseudolikelihood (Besag, 1975; Koller and Friedman, 2009), which is currently
the default generative weight learning approach for undirected models. The
pseudo-log-likelihood for the data Ω is more efficient to compute than the
likelihood. It is defined as

log Pr•(Ω) =
V

∑
j=1

N

∑
i=1

log Pr(xj =Ωi,j|MBΩi (xj)), (2.7)

where V is the number of variables, Ωi,j is the value of the jth variable of the
ith example, MBΩi (xj) is the state of xj’s Markov blanket (i.e., the neighbors of
node xj in the undirected graph) in the ith example. This objective can also be
optimized via convex optimization.

2.7 Conclusions

We have reviewed the literature on propositional logical and probabilistic
graphical models. These form the representational foundations of the work
presented in the following chapters, on first-order logic and statistical relational



CONCLUSIONS 37

models. For both logical and probabilistic models, we have discussed inference
tasks and inference algorithms, focusing on knowledge compilation for exact
inference and relax, compensate and recover for approximate inference. Finally,
we looked at the task of learning probabilistic graphical models and presented
a generative weight learning algorithm. These will form the basis of the lifted
inference and learning algorithms presented in this dissertation.





First-Order Circuits

3

First-order logic (FOL), also called predicate logic, is a language used for
knowledge representation and automated reasoning. It is different from
propositional logic in its use of logical variables and quantifiers. With these, it
is possible to make general statements about multiple objects in the world. It
causes first-order logic to be more expressive than propositional logic.

This chapter introduces a new problem in the area of knowledge compilation:
first-order knowledge compilation to negation normal form (NNF). Knowledge
compilation is a technique that compiles theories in propositional logic into
circuits. These circuits can then be used to efficiently answer certain types of
queries, such as deciding satisfiability of the theory. For example, compilation
to a d-DNNF circuit allows us to count the number of models of a theory
efficiently. What we present here is a first-order generalization of knowledge
compilation.We lift the NNF circuit language to the first-order setting by defining
the declarative syntax and semantics of these circuits. The contributions of this
chapter are in the field of automated logical reasoning. These circuits will form
a basic building block for the algorithms for automated probabilistic reasoning
developed in later chapters.

First-order logic is a very general formalism, not perfectly suitable for our
purposes. Therefore, in Section 3.1, we define the variation on first-order logic

39



40 FIRST-ORDER CIRCUITS

that we will use, called first-order logic with domain constraints. For this logic
we then define a first-order NNF circuit language in Section 3.2. In Section 3.3,
we define subsets of first-order NNF circuits that permit tractable inference for
certain types of hard queries. The properties of these subsets are described in
Section 3.4. Finally, Section 3.5 discusses relatedwork, after whichwe conclude.

An early version of first-order negation normal form was presented as

G. Van den Broeck, N. Taghipour,W.Meert, J. Davis, and L. De Raedt
(2011a). “Lifted probabilistic inference by first-order knowledge
compilation”. In: Proceedings of the Twenty-Second International Joint
Conference on Artificial Intelligence (IJCAI). Menlo Park, California,
pp. 2178–2185

The explanation in this chapter is very different. It is a more general, declarative
treatment of the subject, with many additional unpublished contributions.1 Our
discussion of the conditioning transformation on NNF circuits was published as

G. Van den Broeck and J. Davis (2012). “Conditioning in first-
order knowledge compilation and lifted probabilistic inference”.
In: Proceedings of the Twenty-Sixth AAAI Conference on Artificial
Intelligence, Palo Alto, California, USA

3.1 First-Order Logic with Domain Constraints

In order to define our first-order NNF language, we want more explicit control
over the set of constants that quantifiers range over in FOL. To this end,
we introduce a variant of first-order logic called first-order logic with domain
constraints (FOL-DC). We first motivate the need for FOL-DC, after which we
define its syntax and semantics. We review standard syntax and semantics
of (function-free) FOL where needed. For a more thorough treatment of FOL, see
Brachman and Levesque (2004).

1These are in part the product of discussions with Adnan Darwiche and Luc De Raedt.



FIRST-ORDER LOGIC WITH DOMAIN CONSTRAINTS 41

3.1.1 Motivation

Classical FOL has a domain of discourse that can be infinite, meaning that the
quantifiers ∀ and ∃ range over an infinite set of objects. FOL-DC allows us to
elegantly restrict quantifiers to a finite domain. The motivation for using finite
domains and introducing FOL-DC is as follows.

First, having a finite domain of discourse opens up interesting new inference
tasks, such as (weighted) model counting, which is used extensively in this
thesis (see Chapter 5). Some of the popular probabilistic logical languages
have the same restriction (e.g., Friedman et al., 1999; Richardson and Domingos,
2006) to obtain awell-defined probability distribution over ground atoms. Other
inference tasks are already well defined for FOL, but are easier in FOL-DC. For
example, checking validity or satisfiability of a sentence is undecidable in full
FOL but becomes decidable in FOL-DC.2

Second, it can be desirable to interpret first-order logic theories in terms of the
propositional theories they represent, when all formulas are grounded. Such a
corresponding propositional theory always exists, but is only finite when the
quantifiers range over finite domains. It is sometimes convenient to think of
FOL-DC as a rich and concise template language for finite propositional theories.

Third, by keeping a close connection to propositional logic, it is possible to
capitalize on the algorithmic advances that happened in the last decades in
the automated propositional reasoning world. For example, SAT solving is a great
success story of computer science (Järvisalo et al., 2012). Similar progress has
been made for the model counting problem (Gomes, Sabharwal, and Selman,
2009). Also in the probabilistic reasoning world, many systems reduce first-
order problems to propositional problems for answering queries (e.g., Friedman
et al., 1999; Kersting and De Raedt, 2001b; Richardson and Domingos, 2006;
Fierens et al., 2012b). This is known as propositionalization or knowledge-based
model construction (Wellman, Breese, and Goldman, 1992) and is discussed in
more detail in Section 5.2.

These are motivations for using finite domains. However, as will become clear
in what follows, FOL-DC is more expressive. It can represent domains with logical
variables that refer to sets and (in)equality constraints between constants. The
motivation for having this level of expressivity is the need to reason about

2This is a consequence of using finite Herbrand logic (see Section 3.1.3). It is not a unique
property of FOL-DC or finite Herbrand logic. Many subclasses of FOLwere shown to be decidable.
See Börger, Grädel, and Gurevich (2001) for an overview.



42 FIRST-ORDER CIRCUITS

abstract, unknown domains, which can have arbitrary size, and compile logical
circuits that apply to any finite domain of discourse. This way, we will be able
to efficiently reason about different domains of discourse, involving multiple
distinct subdomains, and reuse compiled NNF circuits for answering multiple
queries.

3.1.2 Syntax

The syntax of FOL-DC states which expressions are well-formed and correctly
structured. This section describes the syntax, consisting of an alphabet and a
grammar.

Alphabet

The alphabet of FOL-DC contains the alphabet of (function-free) FOL:

• Logical symbols

– Logical connectives ∧, ∨, ¬, etc.
– Quantifiers ∀ and ∃
– Equality symbol =
– True T and false F
– A set of logical variables X = {X, Y, . . . }
– (Parentheses and punctuation)

• Non-logical symbols (or signature)

– A set of predicate symbols p/n of arity n, including propositional
variables, which have arity 0.

– A set of constant symbols {a, b, c, . . . }

We will assume that there is a natural order on the set of constants in the
alphabet. The FOL-DC alphabet further extends this with:

• Logical symbols

– Less-than symbol <



FIRST-ORDER LOGIC WITH DOMAIN CONSTRAINTS 43

– Set membership symbol ∈ and set inclusion symbol ⊆
– A set of domain variables D = {D, F, . . . }.
– Union symbol ∪, intersection symbol ∩ and set difference symbol \

• Non-logical symbols (or signature)

– A set of “set of constants” symbols {{a, b, c}, {a, d}, ∅, . . . }

Grammar

A logical term is either a logical variable or a constant. A domain term is either
a domain variable, a set of constants or a combination of two other domain
terms td and t′d in the form td ∪ t′d, td ∩ t′d or td \ t′d. Similar to how logical terms
refer to objects in the domain of discourse, domain terms refer to sets of these
objects.

We similarly distinguish between two types of atomic formulas in FOL-DC: logical
and domain atoms.

Definition 3.1 (Logical Atom). A logical atom p(t1, . . . , tn) is constructed by
applying a predicate p /n (which excludes =, <, ∈ and ⊆) to a n-tuple of
logical term arguments ti (i.e, logical constants or logical variables from X).

Definition 3.2 (Domain Atom). Domain atoms are of the form

• tl = t′l or tl < t′l between logical terms tl and t′l , or

• td = t′d, td ⊆ t′d between domain terms td and t′d, or

• tl ∈ td between a logical term tl and a domain term td.

Example 3.1. Examples of domain atoms are X = Y, X = a, a = b, X < Y, X <

a, a < b, D = F, D = {a, b, . . . }, {a, b, . . . } = {a, d, . . . }, D ⊆ F, D ⊆ {a, b, . . . },
{a, b, . . . } ⊆ D and {a, b, . . . } ⊆ {c, d, . . . }.

Definition 3.3 (Domain Constraint). A domain constraint is a domain atom or
its negation.3

3The negation of =,∈,⊆ is denoted by the symbols 6=, /∈, *.



44 FIRST-ORDER CIRCUITS

Definition 3.4 (Constraint Set). A constraint set is a conjunction of domain
constraints.4

Example 3.2. The constraint set X ∈ Bird ∧ X 6= kiwi constrains the logical
variable X to be some bird (member of the domain variable Bird), but not a kiwi
(the constant kiwi).

Definition 3.5 (Well-Formed Formula). Well-formed formulas are inductively
defined as follows:

• A logical atom is a formula.

• If φ, ψ are formulas, then the negation ¬φ, extensional conjunction φ ∧ ψ

and extensional disjunction φ ∨ ψ are formulas.

• If φ is a formula,V a (potentially empty) set of (logical or domain) variables
and cs a constraint set that contains at least one domain atom of the form
V = t, V ∈ t or V ⊆ t for for every V ∈ V, then the following are
formulas:

– intensional conjunction ∀V, cs : φ, and
– intensional disjunction ∃V, cs : φ

An intensional operator ((∀, ∃)V, cs : φ) quantifies the variables in V. Note that
in the definition of a formula, domain terms and the symbols =, <, ∈ and ⊂
may only occur in the constraint set of an intensional operator. Logical atoms
cannot appear in the constraint set of an intensional operator. Having this clear
separation in the syntax between atoms that define a finite domain and classical
logical atoms is one of the motivations for using FOL-DC.

The syntax of classical (function-free) FOL is similar to the syntax of FOL-DC, but
disallows domain constraints to be associated with its quantifiers. Although
we extended some notions from FOL for our purposes, any legal expression in
classical FOL can easily be transformed into an equivalent legal expression in
FOL-DC. For a given domain of discourse D, the FOL formula ∀Xφ maps to the
FOL-DC formula ∀X, X ∈ D : φ. Similarly, existential quantification is mapped
to intensional disjunction. Other formulas in FOL are already legal expressions
in FOL-DC.

4For the sake of simplicity, we limit the constraint language to conjunctions of domain constraints.
Most of the notions about FOL-DC can also be defined in terms of more expressive constraint
languages. The purpose of a more expressive constraint language could be that certain constraint
sets could be expressed much more concisely.



FIRST-ORDER LOGIC WITH DOMAIN CONSTRAINTS 45

Syntactic Terminology

A literal l is a logical atom a or its negation ¬a. A clause is a disjunction of literals
and a theory in conjunctive normal form (CNF) is a conjunction of clauses. A term is
a conjunction of literals and a DNF is a disjunction of terms. A theory or knowledge
base is a conjunction of formulas. A variable is bound if it is quantified by an
enclosing intensional disjunction or conjunction. A free variable is a variable that
is not bound. A formula without free variables is called a sentence. A formula is
ground if it does not contain any variables.

Definition 3.6 (Substitution). A substitution [X/tl , . . . , D/td] is a mapping from
logical variables to logical terms and from domain variables to domain terms.

Applying a substitution is a syntactic transformation that replaces logical
variables by logical terms and domain variables by domain terms. The result of
applying a substitution θ to a formula φ is denoted by φθ.

Definition 3.7 (Closing Substitution). A substitution θ is a closing substitution
for formula φ iff φθ is a sentence.

Example 3.3. The FOL-DC formula

∀X, X ∈ People : belgian(X)⇒ likes(X, chocolate) (3.1)

contains one logical variable (X), one domain variable (People), one constant
(chocolate), two atoms (belgian(X) and likes(X, chocolate)) and two predicates
(belgian /1 and likes /2). The variable X is bound by the quantifier ∀X, X ∈
People of the intensional conjunction. Both atoms are non-ground. Applying
the substitution [X/tintin] to belgian(X) results in belgian(tintin), which is a
ground atom.

Example 3.4. Consider the following formula φ in FOL-DC:

∀X, X ∈ Bird∧ X 6= kiwi : flies(X). (3.2)

The domain variable Bird in φ is a free variable. Therefore, the formula is not
a sentence. Applying the closing substitution θ = [Bird/{pigeon, kiwi, eagle}]
creates the sentence φθ, where all variables are bound.



46 FIRST-ORDER CIRCUITS

3.1.3 Semantics

The semantics of classical FOL assigns a truth value to each sentence, given a
domain of discourse and an interpretation of the constants and predicates in the
alphabet (Brachman and Levesque, 2004). It gives meaning to each sentence in
FOL. The domain of discourse is the set of objects that quantifiers range over.
Constants and logical variables refer to these objects. In this dissertation, we
always assume that the domain of discourse is itself a set of constants and that
each constant refers to itself. This logic is called Finite Herbrand Logic (Hinrichs
andGenesereth, 2006). AHerbrand interpretation is a set of ground atomswhere
all atoms in the interpretation are assumed to be true, while all other atoms
belonging to the Herbrand base (the set of all possible ground atoms) are
assumed to be false. An interpretation I satisfies a theory ∆, written as I |= ∆,
if it satisfies all the formulas in ∆. Satisfaction of a formula is defined in the
usual way (Brachman and Levesque, 2004). An interpretation that satisfies the
theory is a model for the theory.

Example 3.5. Consider the FOL sentence ∀X belgian(X)⇒ likes(X, chocolate).
Informally speaking, its intended meaning is that all Belgians like chocolate.
Assuming a domain of discourse consisting of the 3 constants chocolate,
tintin and rubens, the sentence has a Herbrand base of size 12 (3 atoms
for belgian /1 and 9 for likes /2). Therefore, there are 212 interpretations of
this sentence, only some of which are models. An example of a model is
{belgian(tintin), likes(tintin, chocolate), likes(rubens, tintin)}, but also the empty
set ∅ or the Herbrand base. An example of an interpretation that is not a model
is {belgian(tintin), likes(rubens, tintin)}.

This section presents two alternative semantics for FOL-DC, one by reduction to
first-order logic and one by reduction to propositional logic, and a semantics
for constraint sets.

First-Order Reduction Semantics

The semantics of FOL-DC are formally defined by first reducing sentences in
FOL-DC to sentences in classical FOLwith equality and set theory axioms. The
set theory axioms give an interpretation to the set-theoretic symbols ∪, ∩, \, ∈
and ⊆.5 Furthermore, the natural order on the set of constants in the alphabet

5The best-known set-theory axioms are the ZFC axioms (Kunen, 1980), for Zermelo-Fraenkel
set theory with the axiom of Choice. There is a problem with using ZFC axioms here: they



FIRST-ORDER LOGIC WITH DOMAIN CONSTRAINTS 47

gives an interpretation to the less-than symbol <. After this reduction we can
reuse the semantics of FOL, which are well known.

The reduction is performed by a syntactic rewrite to remove those logical
symbols that are not in the alphabet of FOL, such that the result is a legal
expression in FOL. Intensional conjunctions and disjunctions in FOL-DC are
rewritten as follows:

∀V, cs : φ → ∀V : cs⇒ φ (3.3)

∃V, cs : φ → ∃V : cs∧ φ (3.4)

Other types of formulas are already syntactically well-formed formulas in FOL.

Example 3.6. Formula 3.2 from Example 3.4 reduces to the following FOL theory:

∀X : X ∈ Bird∧ X 6= kiwi⇒ flies(X). (3.5)

Interpretations of the FOL theory are mapped back to interpretations of the
FOL-DC theory by removing domain atoms (retaining only logical atoms).

This defines the semantics of sentences, and allows us to talk about their
equivalence.

Definition 3.8 (Sentence Equivalence). Sentences α and β are equivalent (≡)
when they have the same truth value in every interpretation.

The semantics of formulas are definedw.r.t. a variable-assignment,mapping free
variables to objects from the domain of discourse. We will adopt the following
notion of equivalence for formulas.

Definition 3.9 (Formula Equivalence). Formulas α and β are equivalent (≡)
when αθ ≡ βθ for any closing substitution θ.

Constraint Set Semantics

Intuitively, a constraint set has a semantics of its own: it represents a constraint
satisfaction problem. A substitution θ = [V1/k1, . . . , Vn/kn] is a solution to a

assume that all objects in the domain of discourse are sets. This is clearly not the case for logical
constants. We require an axiomatization that supports so-called urelements (elements of sets which
are not themselves sets). The New Foundations (NF) axioms with urelements (NFU) (Jensen, 1968;
Mendelson, 1997) provides such an axiomatization. It is too extensive to show here.



48 FIRST-ORDER CIRCUITS

constraint set cs if and only if all domain constraints in csθ are ground and
satisfied. When a solution to a constraint set exists, we say that the constraint
set is satisfiable.

Definition 3.10 (solutions). The set of assignments (substitutions) to variables
V for which the constraint set cs is satisfiable is denoted by solutions(cs,V).

Note that the constraint set can contain variables other than V.

Example 3.7. The constraint set cs = (X ∈ {pigeon, kiwi, eagle} ∧ X 6= kiwi)
from Example 3.4 represents a constraint satisfaction problem that has two
solutions. The first is θ = [X/pigeon], because all the constraints in

cs θ = (pigeon ∈ {pigeon, kiwi, eagle} ∧ pigeon 6= kiwi) (3.6)

are ground and satisfied. The second solution is [X/eagle].

Grounding Semantics

Sentences in FOL-DC have an alternative, more intuitive meaning in terms of
their groundings.

Definition 3.11 (Grounding). The grounding gr of T is T, of F is F, and of a
ground logical atom is the atom itself. The grounding of a complex sentence
is recursively defined as follows: gr(¬φ) ≡ ¬ gr(φ), gr(φ ∧ ψ) ≡ gr(φ) ∧ gr(ψ)
and gr(φ ∨ ψ) ≡ gr(φ) ∨ gr(ψ). For intensional disjunction and conjunction,

gr (∀V, cs : φ) ≡ gr(φθ1) ∧ · · · ∧ gr(φθn) (3.7)

gr (∃V, cs : φ) ≡ gr(φθ1) ∨ · · · ∨ gr(φθn), (3.8)

with {θ1, . . . , θn} = solutions(cs, V).

Each intensional conjunction (disjunction) represents an extensional conjunc-
tion (disjunction) over the solutions to its constraint set. The grounding of
a formula with free variables is undefined (because the grounding of a non-
ground atom is undefined). In a sentence, however, every logical variable is
quantified by some enclosing intensional operator, all logical variables are
substituted by some constant in Equations 3.7 or 3.8 and gr is well defined. The
output of gr does not contain any logical variables or domain atoms and can be



FIRST-ORDER NEGATION NORMAL FORM CIRCUITS 49

regarded as a theory in propositional logic.Having this propositional grounding
semantics was one of the motivations for using FOL-DC (see Section 3.1.1).

Example 3.8. The theory ∀X, X ∈ {pigeon, kiwi, eagle} ∧ X 6= kiwi : flies(X)

represents the ground theory flies(pigeon) ∧ flies(eagle).

Other Alternatives

FOL-DC can still be regarded in several other ways. One alternative treats
domain variables D as unary predicates D(X) in second-order logic. Intensional
disjunctionwith a domain variable then corresponds to existential second-order
quantification. Constraint sets can be defined as a logical sentence, without
the need for set theory axioms. For example, the intersection D ∩ F can be
represented by D(X)∧ F(X). Another first-order alternative is to view top-level
domain variables (People, Bird) as types in a typed first-order logic.

Our grounding semantics reduces a sentence in FOL-DC to a propositional theory
without any domain atoms. There is an alternative grounding semantics, which
is obtained by first applying the reduction to first-order logic, and grounding
w.r.t. the Herbrand universe afterwards. Now, our propositional theory does
contain domain atoms. When they are removed from each model, we obtain
again the same set of models that define the semantics of FOL-DC.

3.2 First-Order Negation Normal Form Circuits

Traditionally, knowledge compilation focused on propositional logic. Section 2.2
explained one popular approach, namely knowledge compilation to negation
normal form circuits (Darwiche, 1999; Darwiche, 2001a), which represent
theories in propositional logic. In this section, we introduce a first-order
negation normal form circuit language that represents theories in FOL-DC.

3.2.1 Syntax and Semantics

Definition 3.12 (FO-NNF6). A formula in first-order negation normal form
(FO-NNF) is a rooted directed acyclic graph, where

6The first-order negation normal form circuits of Van den Broeck et al. (2011a) are not identical
to the ones defined here. There are the following differences: (i) we do not allow for inclusion-



50 FIRST-ORDER CIRCUITS

• leafs are labeled with a (potentially non-ground) literal, T or F,

• inner nodes with one child are labeled with ∀V, cs or ∃V, cs, where cs is a
constraint set in FOL-DC and V is a set of logical or domain variables, and

• inner nodeswith arbitrarily many children are labeled with ∧ or ∨.

First-order NNF circuits represent formulas7 in FOL-DC. Each inner node
represents a FOL-DC operator. Edges going out of a node point to the circuits
that represent the operands of that node.

Example 3.9. Figure 3.1 depicts three FO-NNF circuits, one for Formula 3.2 from
Example 3.4 and two for Formula 3.1 fromExample 3.3. Note that FO-NNF circuits
are not unique. Grey rectangular leaf nodes represent literals and domain
constraints. White round inner nodes represent intensional and extensional
operators. These diagrams can be read either top-down or bottom-up. Top-
down, they read as formulas in FOL-DC, with quantifiers and operators that
apply to their operands. Bottom-up, they can be regarded as circuits, where
the leaf nodes are inputs, the inner nodes are logical gates and the root node is
the output. In the constraint sets, the domain variables Bird and People are free
variables. Hence, these circuits represent formulas that are not sentences.

The fact that Figure 3.1c represents Formula 3.1 is not obvious. It should be
read as follows. There exists a set of people D with the property that all people
in this set are Belgian (∀X, X ∈ D : belgian(X)), and everyone else is not
(∀X, X /∈ D ∧ X ∈ People : ¬ belgian(X)). Hence, this part of the circuit
encodes that D represents all Belgians. For precisely this set of people, the
circuit requires that they like chocolate (∀X, X ∈ D : likes(X, chocolate)).

Similar to the grounding semantics of sentences in FOL-DC, each FO-NNF circuit
that represents a sentence can easily be transformed into a propositional NNF
circuit.

Proposition 3.1. Each FO-NNF circuit that is a sentence can be grounded into a
corresponding NNF circuit.
exclusion labels on inner nodes, (ii) we use a different name and syntax for intensional conjunctions
and disjunctions, which are called set conjunction

∧
and set disjunction

∨
in Van den Broeck et al.

(2011a), (iii) we allow for intensional operators to quantify a set of variables instead of one, (iv)
we extend the expressivity of constraint sets with the symbols <, ∪, ∩ and \, and (v) we allow for
free variables. Compared to the circuits of Van den Broeck (2011b), we do not allow for domain
recursion nodes.

7The original knowledge compilation map (Darwiche and Marquis, 2002), which deals with
propositional NNF circuits, talks about sentences, not formulas. However, FO-NNF circuits can also
represent formulas that have free variables, hence not sentences.



FIRST-ORDER NEGATION NORMAL FORM CIRCUITS 51

∀X
X∈Bird∧X 6=kiwi

flies(X)

(a) Circuit for Formula 3.2

∀X
X∈People

∨

¬ belgian(X) likes(X, chocolate)

(b) Circuit for Formula 3.1

∀X
X∈D

belgian(X)

∀X
X∈People∧X/∈D

¬ belgian(X)

∀X
X∈D

likes(X, chocolate)

∧

∃D
D⊆People

(c) Alternative circuit for Formula 3.1

Figure 3.1: Examples of FO-NNF circuits.

Grounding involves replacing intensional conjunctions and disjunctions by
extensional ones, as in Equations 3.7 and 3.8. This transformation makes every
inner node extensional, as in propositional circuits, and substitutes logical
variables by constants, in the end grounding all leaf nodes. These leafs can then
be regarded as variables in propositional logic.

3.2.2 Properties

Darwiche and Marquis (2002) analyse the properties of propositional NNF
circuits according to several criteria: completeness, inclusion, succinctness, and
tractability of queries and transformations. This section gives a first fragmentary
characterization of FO-NNF circuits along these dimensions. For ease of notation,



52 FIRST-ORDER CIRCUITS

the abbreviations for circuit languages, such as NNF and FO-NNF, will be used to
represent the sets of circuits that are a member of this language.

Completeness

Definition 3.13 (Completeness of a Language). A language L1 is complete for
a language L2 iff for every formula α ∈ L2 there exists an equivalent formula
β ∈ L1.

In propositional knowledge compilation, a language is complete iff it is complete
for propositional sentences. For our analysis, it is important to distinguish
between two additional languages:

• Formula, for formulas in FOL-DC, and

• Sentence ⊂ Formula, for sentences in FOL-DC.

Both can be first-order, but propositional formulas can only be sentences. We
now have the following language completeness results.

Proposition 3.2. NNF is a complete language for Sentence but not for Formula.

Proof. NNF is a complete language for ground sentences (Darwiche andMarquis,
2002). Because any Sentence has an equivalent ground sentence through the
grounding function gr (see Definition 3.11), NNF is also a complete language
for Sentence. NNF is not a complete language for Formula, because it lacks the
syntax to represent free variables.

Proposition 3.3. FO-NNF is a complete language for Formula (and Sentence).

Proof. FO-NNF is complete for Formula, because any formula can be turned into
a FO-NNF by pushing negations inside of quantifiers and connectives.

Inclusion and Succinctness

Definition 3.14 (Inclusion). Language L1 is included in language L2 iff L1 ⊆ L2.



FIRST-ORDER NEGATION NORMAL FORM CIRCUITS 53

The FO-NNF language is a strict superset of the NNF language, so FO-NNF includes
NNF. A NNF is a FO-NNFwhere the leaf literals have no logical variable arguments
and the inner nodes are restricted to extensional conjunctions and disjunctions.

Darwiche and Marquis (2002) investigate the relative succinctness of NNF

sentences, where the size of a circuit Σ is measured by its number of edges and
is denoted by |Σ|.

Definition 3.15 (Succinctness). Let L1 and L2 be two subsets of FO-NNF. L1 is
at least as succinct as L2, denoted L1 ≤ L2, iff there exists a polynomial p such
that for every formula α ∈ L2 that has an equivalent representation in L1, there
exists an equivalent formula β ∈ L1 with |β| ≤ p(|α|).

Compared to the definition of succinctness by Darwiche and Marquis (2002),
we only consider formulas α and β in the comparison for which the languages
L1 and L2 are both complete.

Through inclusion (NNF ⊂ FO-NNF), we have the following:

Proposition 3.4. FO-NNF ≤ NNF

The negative results from Darwiche and Marquis (2002) carry over, stating that
certain subsets of NNF are less succinct.

Proposition 3.5. d-NNF 6≤ FO-NNF, s-NNF 6≤ FO-NNF and DNNF 6≤ FO-NNF.

Proof. There is some α ∈ NNF and therefore α ∈ FO-NNF for which no equivalent
polysize β in d-NNF, s-NNF or DNNF exists.

The positive results from Darwiche and Marquis (2002), proving that L ≤ NNF

for certain languages L, do not imply that L≤ FO-NNF, because there might exist
a formula α ∈ FO-NNF \ NNF without a corresponding β ∈ L, as we show next.

Proposition 3.6. NNF 6≤ FO-NNF

Proof. Consider the sentence

φn ≡ ∀X1, . . . Xn, X1 ∈ {a, b} ∧ · · · ∧ Xn ∈ {a, b} : p(X1, . . . , Xn). (3.9)

The size of the FO-NNF circuit for φn is linear in n. Any representation of φn as a
NNF circuit needs to represent each ground p /n atom as a leaf, of which there
are 2n, and has therefore a size exponential in n.



54 FIRST-ORDER CIRCUITS

Propositions 3.4 and 3.6 together imply that FO-NNF is strictly more succinct
than NNF, denoted by FO-NNF < NNF.

Queries and Transformations

Darwiche and Marquis (2002) investigate which queries and transformations on
NNF circuits can be answered in polynomial time. See Tables 3.1 and 3.2 for a list
of queries and transformations, and their abbreviations. We refer to Darwiche
andMarquis for a formal definition of these problems. This dissertation focuses
on the following queries:

• Consistency checking (CO,SAT): checking whether the sentence has at least
one model,

• Validity checking (VA): checking whether every interpretation is a model
of the theory,

• Clausal entailment checking (CE): checking whether the sentence entails a
given clause,

• Implicant checking (IM): checking whether a given term (conjunction)
entails the sentence,

• Equivalence checking (EQ): checking whether two sentences are equivalent,

• Sentential entailment checking (SE): checking whether one sentence entails
the other,

• Model counting (CT,#SAT): counting the number of models (satisfying
assignments) of the theory,

• Model enumeration (ME): enumerating all models of the theory,

and on a subset of transformations:

• conditioning (CD): setting ground atoms in the theory to true or false,

• forgetting (FO): removing a set of ground atoms A from a theory φ, creating
a formula ψ that does not mention the atoms in A, such that for any α not
mentioning atoms from A, ψ |= α precisely when φ |= α.



FIRST-ORDER NEGATION NORMAL FORM CIRCUITS 55

Notation Query
CO polytime consistency checking
VA polytime validity checking
CE polytime clausal entailment checking
IM polytime implicant checking
EQ polytime equivalence checking
SE polytime sentential entailment checking
CT polytime model counting
ME polytime model enumeration

Table 3.1: Notation for queries.

Notation Transformation
CD polytime conditioning
FO polytime forgetting

Table 3.2: Notation for transformations.

For a propositional circuit language to support these queries and transforma-
tions, their complexity needs to be polynomial time in the size of the circuits and
in the size of other inputs (clauses, terms, etc.). Complexity for the ME task
is also required to be polynomial in the number of models of the sentence.
For first-order circuits, we will call a procedure polytime if in addition, it is
polynomial in the size of the constraint sets that appear in intensional circuit
nodes. This includes the size of the sets of constants that appear in constraints.

Definition 3.16. Aprocedure operating on a FO-NNF is polytime if it is polynomial
in the number of edges in the circuit and the size of the node labels.

Because NNF ⊂ FO-NNF, all the negative results for queries on NNF from
Darwiche and Marquis (2002) carry over to FO-NNF circuits: if a polytime query
is impossible for some NNF, it cannot be possible for all FO-NNF.

Theorem 3.7 (Queries on FO-NNF). There is no polytime algorithm for CO, VA, CE,
IM, EQ, SE, CT or ME in FO-NNF, unless the polynomial hierarchy PH collapses.

Table 3.3 summarizes these results.

The same reasoning does not apply to transformations. Just because a polytime
transformation is not possible from NNF to NNF does not mean it is impossible



56 FIRST-ORDER CIRCUITS

Notation NNF FO-NNF

CO ◦ ◦
VA ◦ ◦
CE ◦ ◦
IM ◦ ◦
EQ ◦ ◦
SE ◦ ◦
CT ◦ ◦
ME ◦ ◦

Table 3.3: Queries supported by FO-NNF. The symbol ‘◦’ means the query is not
supported (contingent on complexity assumptions).

from NNF to FO-NNF, which is more expressive. However, we can prove that the
single negative result for transforming NNF also holds for FO-NNF.

Theorem 3.8 (Transformations on FO-NNF). There is no polytime algorithm for FO
in a FO-NNF.

Proof. The proof is analogous to the proof for FO in NNF of Darwiche and
Marquis (2002). If FO-NNF supports polytime FO, it can be used to decide
consistency of any CNF in polynomial time. A CNF is already in FO-NNF. Forgetting
all its ground atoms evaluates to true iff the CNF is consistent.

3.3 Subsets of the FO-NNF Language

Even though the FO-NNF language is a theoretically interesting extension of the
NNF language, Theorem 3.7 showed that neither language has properties that
make it a tractable language: no type of query can be answered efficiently in a
NNF or FO-NNF circuit. As with propositional NNF circuits, by putting additional
constraints on the nodes of the circuit, one can obtain new languages which do
support interesting queries and transformations. This section defines properties
of FO-NNF nodes and a new set of circuit languages with these properties.



SUBSETS OF THE FO-NNF LANGUAGE 57

3.3.1 Constraints on FO-NNF Nodes

This section defines four properties of FO-NNF nodes: decomposability, determinism,
smoothness and automorphism. The first three properties can also be found in
propositional NNF circuits. We generalize these concepts to FO-NNF circuits. The
automorphism constraint is new and specific to FO-NNF. The constraints will be
defined on sentences. The constraints on formulas are defined as follows.

Definition 3.17. A formula φ is decomposable, deterministic, smooth or
automorphic iff φθ is respectively decomposable, deterministic, smooth or
automorphic for all closing substitutions θ.

Decomposability

Definition 3.18 (Independence). Two sentences φ and ψ are independent,
denoted by φ ⊥⊥ ψ, when gr(φ) and gr(ψ) do not share any atoms.

Definition 3.19 (Extensional Decomposability). An extensional conjunction
φ1 ∧ · · · ∧ φn is decomposable iff for all i 6= j, φi ⊥⊥ φj.

Definition 3.20 (Intensional Decomposability). An intensional conjunction
∀V, cs : φ is decomposable iff φθ1 ∧ · · · ∧ φθn is decomposable, where
{θ1, . . . , θn} = solutions(cs,V).

Here, solutions(cs,V) is the set of all solutions of cs for variables V.

Example 3.10. The FO-NNF in Figure 3.1b has a root node that is decomposable,
because for any two choices of substitution of X, for example tintin and
rubens, the child theories are independent. In the one case, it mentions
atoms belgian(tintin) and likes(tintin, chocolate). In the other case, it mentions
belgian(rubens) and likes(rubens, chocolate).

Determinism

Definition 3.21 (Extensional Determinism). An extensional disjunction φ1 ∨
· · · ∨ φn is deterministic iff for all i 6= j, φi ∧ φj is unsatisfiable.

Definition 3.22 (Intensional Determinism). An intensional disjunction ∃V, cs :
φ is deterministic iff φθ1 ∨ · · · ∨ φθn is deterministic, where {θ1, . . . , θn} =

solutions(cs,V).



58 FIRST-ORDER CIRCUITS

Example 3.11. The FO-NNF in Figure 3.1b has an extensional disjunction node
that is not deterministic. Its operands, belgian(X) and likes(X, chocolate), can
both be satisfied in a model.

Example 3.12. The FO-NNF in Figure 3.1c has an intensional disjunction node
that is deterministic. Any pair of distinct solutions to D must have one constant
c that is contained in the one set but not in the other. The disjuncts for these
solutions cannot both be satisfied, because one requires that belgian(c) is true
and the other that belgian(c) is false.

Smoothness

Definition 3.23 (Extensional Smoothness). An extensional disjunction φ1 ∨
· · · ∨ φn is smooth iff for all i and j, groundings gr(φi) and gr(φj) contain the
same atoms.

Definition 3.24 (Intensional Smoothness). An intensional disjunction ∃V, cs : φ

is smooth iff φθ1 ∨ · · · ∨ φθn is smooth, where {θ1, . . . , θn} = solutions(cs,V).

Example 3.13. The FO-NNF in Figure 3.1b has an extensional disjunction node
that is not smooth. Its operands, belgian(X) and likes(X, chocolate), mention
different sets of atoms.

Automorphism

To define automorphism, we first need to definewhat it means for two sentences
to be equivalent up to a permutation of constants.

Definition 3.25. Let φ and ψ be sentences and letMODφ andMODψ be their
sets ofmodels. Let C be the set of constants in the signature of φ and ψ. Sentences
φ and ψ are equivalent up to a permutation of constants iff there exists a bijection
(one-to-one mapping) π : C → C which mapsMODφ toMODψ.

Definition 3.26 (Automorphism). An intensional conjunction or disjunction
(∀, ∃)V, cs : φ is automorphic if either

• V is a set of logical variables and for all solutions θ1, θ2 ∈ solutions(cs,V),
the sentences φθ1 and φθ2 are equivalent up to a permutation of
constants, or



SUBSETS OF THE FO-NNF LANGUAGE 59

• V = {D} is a domain variable D and for all solutions [D/d1], [D/d2] ∈
solutions(cs, D) for which |d1| = |d2|, the sentences φ[D/d1] and φ[D/d2]

are equivalent up to a permutation of constants.

Intuitively, automorphism formalizes the property that the names of individual
constants are unimportant, similar to Skolem constants. In the case of logical
variables, automorphism means that we can reason about all the operands
represented by the intensional conjunction or disjunction by looking at a single
operand and generalizing its properties (model set, model count, satisfiability,
etc.) to the other operands through a bijection of the constants. In the case of a
domain variable, it means we can reason about all solutions of the same size by
looking at one representative set of constants. There may be 2n solutions for a
domain variable that all have size n.

Example 3.14. The FO-NNF in Figure 3.1b has a root intensional conjunction
node that is automorphic, because for any two choices of substitution for X,
for example tintin and rubens, the models of the child theory can be mapped to
each other by the mapping {tintin 7→ rubens, rubens 7→ tintin}.

Example 3.15. The FO-NNF in Figure 3.1c has a root intensional disjunction
node that is automorphic. For any two substitutions of D by sets of equal size,
for example [D/{alice, bob}] and [D/{charlie, dave}], the models of the child
circuit are equivalent up to a permutation of constants, for example {alice 7→
charlie, charlie 7→ alice, bob 7→ dave, dave 7→ bob}.

3.3.2 Languages

By requiring the above constraints to hold for all nodes in a FO-NNF circuit, we
obtain new first-order languages.

Definition 3.27 (FO-DNNF). A FO-DNNF is an FO-NNF where all (intensional and
extensional) conjunctions are decomposable.

Definition 3.28 (FO-s-NNF). A FO-s-NNF is an FO-NNFwhere all (intensional and
extensional) disjunctions are smooth.

Definition 3.29 (FO-d-NNF). A FO-d-NNF is an FO-NNFwhere all (intensional and
extensional) disjunctions are deterministic.

Definition 3.30 (FO-a-NNF). A FO-a-NNF is an FO-NNF where all intensional
conjunctions and disjunctions are automorphic.



60 FIRST-ORDER CIRCUITS

The FO-da-DNNF Language

The FO-da-DNNF language, or first-order deterministic automorphic decomposable
negation normal form, is the first language of practical interest. Chapter 4 presents
an algorithm that compiles theories in CNF into FO-da-DNNF.

Definition 3.31 (FO-da-DNNF). FO-da-DNNF = FO-DNNF ∩ FO-d-NNF ∩ FO-a-NNF

∀X
X∈People

∨

∧

belgian(X) ¬ belgian(X)likes(X, chocolate)

(a) Circuit for Formula 3.1

∀X
X∈D

smokes(X)

∀X
X∈People∧X/∈D

¬ smokes(X)

∀X
X∈D

∀Y
Y∈People∧Y/∈D

¬ friends(X, Y)

∧

∃D
D⊆People

(b) Circuit for Formula 3.10

Figure 3.2: Examples of FO-da-DNNF circuits.

Example 3.16. The FO-NNF in Figure 3.1c is a FO-da-DNNF. The FO-NNF in
Figure 3.1b is decomposable (Example 3.10) and automorphic (Example 3.14),
but not deterministic (Example 3.11). Figure 3.2a depicts a FO-da-DNNF for
Formula 3.1 that is similar to Figure 3.1b, but that is deterministic.



SUBSETS OF THE FO-NNF LANGUAGE 61

Example 3.17. Figure 3.2b depicts a FO-da-DNNF equivalent to the theory

∀X, Y, X ∈ People∧Y ∈ People :

smokes(X) ∧ friends(X, Y)⇒ smokes(Y). (3.10)

The theory states that smokers are only friends with other smokers. The circuit
introduces a new domain variable D, which is a subset of People. It states that
there exists such a D for which (i) all people in D are smokers (ii) no other people
are smokers and (iii) smokers are not friends with non smokers. Grounding
this theory (with any closing substitution), results in a theory equivalent to
Formula 3.10.

The FO-sda-DNNF Language

Our second language of practical interest is FO-sda-DNNF. Section 3.4 will
present an algorithm to efficiently answer the model counting query (CT) on
a FO-sda-DNNF circuit. Chapter 4 will introduce an algorithm to transform any
FO-da-DNNF circuit into FO-sda-DNNF.

Definition 3.32 (FO-sda-DNNF). FO-sda-DNNF = FO-da-DNNF ∩ FO-s-NNF.

∀X
X∈People

∨

∧ ∧

belgian(X) ¬ belgian(X)∨

¬ likes(X, chocolate)likes(X, chocolate)

(a) Circuit for Formula 3.1

Figure 3.3: Examples of FO-sda-DNNF circuits.



62 FIRST-ORDER CIRCUITS

∃D
D
⊆

Pe
op

le

∀X X
∈D

sm
ok

es
(X

)

∀X
X
∈P

eo
pl

e∧
X

/∈D

¬
sm

ok
es
(X

)

∧ ∀X X
∈D ∀Y

Y
∈P

eo
pl

e∧
Y

/∈D

¬
fr

ie
nd

s(
X

,Y
)

∀X X
∈D ∀Y Y
∈D

∨

fr
ie

nd
s(

X
,Y

)

∀X
X
∈P

eo
pl

e∧
X

/∈D

∀Y
Y
∈P

eo
pl

e

(b) Circuit for Formula 3.10

Figure 3.3: Examples of FO-sda-DNNF circuits.



PROPERTIES OF TRACTABLE FO-NNF SUBSETS 63

Example 3.18. Figures 3.1b and 3.2a for Formula 3.1 are not smooth (Exam-
ple 3.13). Figure 3.3a depicts a FO-sda-DNNF circuit for this formula that is
smooth.

Example 3.19. The circuit in Figure 3.2b has an intensional disjunction that is
not smooth and is therefore not a FO-sda-DNNF. The reason is that the circuit
mentions only atoms friends(X, Y) for which X ∈ D∧Y ∈ People∧Y /∈ D. Let
for example People = {tintin, rubens} and consider two solutions for D, being
[D/{tintin}] and [D/{rubens}]. In the first case the circuit only mentions the
ground atom friends(tintin, rubens)whereas in the second case it only mentions
friends(rubens, tintin). When considering solutions [D/∅] and [D/People], the
circuit does not even mention any friends-atoms. The circuit is not smooth
for atoms friends(X, Y) for which X ∈ People ∧ X /∈ D or Y ∈ D. Figure 3.3b
depicts a FO-sda-DNNF for Formula 3.10 that is smooth.

3.4 Properties of Tractable FO-NNF Subsets

This section analyzes the properties of the FO-da-DNNF and FO-sda-DNNF

languages within the framework of Darwiche and Marquis (2002). The analysis
focuses on the model counting and conditioning tasks. We present an algorithm
that computes the model count of an FO-sda-DNNF circuit.

3.4.1 Completeness

It follows from Darwiche and Marquis (2002) and Proposition 3.2 that all
subsets of NNF considered here are complete for sentences but not for formulas.
This includes the d-DNNF and sd-DNNF languages, which are the propositional
counterparts of FO-da-DNNF and FO-sda-DNNF. The completeness of FO-da-DNNF
and FO-sda-DNNF for sentences again follows from their grounding semantics.

Proposition 3.9. FO-da-DNNF and FO-sda-DNNF are complete for Sentence.

Proof. sd-DNNF ⊂ FO-sda-DNNF ⊂ FO-da-DNNF and the sd-DNNF language is
complete for Sentence.

However, their completeness for formulas remains an open question.

Open Problem 1. FO-da-DNNF and FO-sda-DNNF are complete for Formula.



64 FIRST-ORDER CIRCUITS

3.4.2 Succinctness

Comparing FO-NNF to FO-da-DNNF, we show that the former is strictly more
succinct than the latter.

Theorem 3.10. FO-NNF < FO-da-DNNF (i.e., FO-NNF≤ FO-da-DNNF and FO-da-DNNF
6≤ FO-NNF)

Proof. In one direction, FO-da-DNNF ⊂ FO-NNF. For the other, it follows from
Darwiche andMarquis (2002) that there exists an α ∈ NNF for which no polysize
representation exists in d-DNNF. Now consider the same α as a member of
FO-NNF. To represent it as a FO-da-DNNF circuit, we cannot use any intensional
conjunctions or disjunctions, since α contains no logical variables. This means
that the subset of FO-da-DNNF we can use is exactly the language d-DNNF, which
has no polysize representation of α.

Comparing FO-da-DNNF to FO-sda-DNNF, we have the following result.

Theorem 3.11. FO-da-DNNF and FO-sda-DNNF are equally succinct (i.e., FO-da-DNNF
≤ FO-sda-DNNF and FO-sda-DNNF ≤ FO-da-DNNF).

Proof. In one direction, FO-sda-DNNF ⊂ FO-da-DNNF. In the other, the proof is
constructive: Chapter 4 presents an algorithm for smoothing a FO-da-DNNF.

Comparing to propositional circuits, we have the following results.

Theorem 3.12. FO-da-DNNF < d-DNNF (i.e., FO-da-DNNF ≤ d-DNNF and d-DNNF 6≤
FO-da-DNNF)

Proof. In the one direction, d-DNNF ⊂ FO-sda-DNNF. The other direction holds
because Formula 3.9 is in FO-da-DNNF and has no polysize d-DNNF.

Theorem 3.13. FO-da-DNNF and NNF are incomparable in size (i.e., NNF 6≤ FO-da-DNNF

and FO-da-DNNF 6≤ NNF).

Proof. The first direction holds because Formula 3.9 is in FO-da-DNNF and has
no polysize NNF. The proof for the second direction is analogous to the proof of
Theorem 3.10: there exists an α ∈ NNF which has no polysize representation in
FO-da-DNNF, because there is none in d-DNNF.



PROPERTIES OF TRACTABLE FO-NNF SUBSETS 65

Because FO-da-DNNF and FO-sda-DNNF are equally succinct, Theorem 3.13 also
applies to the comparison of NNF and FO-sda-DNNF.

3.4.3 Model Counting on FO-sda-DNNF Circuits

The motivation for introducing the FO-sda-DNNF language is its support for
tractable model counting (CT). The price we pay for this tractability is that
FO-sda-DNNF circuits are less succinct than FO-NNF circuits (Theorem 3.10). The
following function computes the model count of a FO-sda-DNNF sentence.

Definition 3.33 (count(.)). The base cases of the count function are count(F) =
0, count(T) = 1 and count(l) = 1 when l is a ground literal. The recursive
definition is as follows. For an extensional conjunction φ1 ∧ · · · ∧ φn,

count(φ1 ∧ · · · ∧ φn) = count(φ1)× · · · × count(φn).

For an extensional disjunction φ1 ∨ · · · ∨ φn,

count(φ1 ∨ · · · ∨ φn) = count(φ1) + · · ·+ count(φn).

For an intensional operator (∀, ∃)X, cs : φ over a set of logical variables X, with
θ ∈ solutions(cs,X),

count(∀X, cs : φ) = count(φθ)| solutions(cs,X)|

count(∃X, cs : φ) = | solutions(cs,X)| × count(φθ).

For an intensional operator (∀, ∃)D, cs : φ over a domain variable D, with Θn =

{[D/d] | [D/d] ∈ solutions(cs, D) ∧ (|d| = n)} and with θn ∈ Θn,

count(∀D, cs : φ) = ∏
n

count(φθn)
|Θn |

count(∃D, cs : φ) = ∑
n
|Θn| × count(φθn).

Proposition 3.14. The count function correctly computes the model count of a
FO-sda-DNNF circuit.

Proof outline. This follows from (i) the correspondence to the operations of
propositional model counting in the grounded circuit and (ii) the fact that a



66 FIRST-ORDER CIRCUITS

permutation of constants in the set of models keeps the model count unchanged.

Example 3.20. The model count of Formula 3.1 (for some concrete set People)
can be computed by applying the count function to the FO-sda-DNNF circuit in
Figure 3.3a. Its root node is an intensional conjunction, which means that the
model count is count(φθ)| solutions(cs,X)|. We know that the number of solutions
to the constraint set (X ∈ People) is |People|. If we arbitrarily choose the solution
θ to be [X/alice], for example, all that remains is to compute the model count
of the conjunct corresponding to θ. This circuit is depicted in Figure 3.4. It is

∨
3

∧
1

∧
2

belgian(alice)

1

¬ belgian(alice)

1

∨
2

¬ likes(alice, chocolate)

1

likes(alice, chocolate)

1

Figure 3.4: Model counting on a conjunct of Figure 3.3a

a ground sentence, and the count function simply performs model counting
as in propositional sd-DNNF circuits (see Section 2.2.1). Figure 3.4 labels each
subcircuit with its model count. Since the count of the entire conjunct is 3, the
model count of Formula 3.1 is 3|People|.

Example 3.21. The model count of Formula 3.10 can be computed on the
FO-sda-DNNF in Figure 3.3b. The root node is an intensional disjunction of
the form ∃D ⊆ People : φ. Its model count is ∑n |Θn| × count(φθn). The
values for n we have to sum over are the possible sizes |d| of solutions [D/d]
of the constraint set (D ⊆ People). These values range from 0 to |People|. The
factor |Θn| represents the number of solutions of size n, which is equal to
the binomial coefficient (|People|

n ). For each n, we can choose θn to be some
substitution [D/d] such that |d| = n. Then, computing count(φθn) is performed
by several computations analogous to the ones in Example 3.20, on circuits
rooted in intensional conjunctions. The model count of Formula 3.10 therefore
totals ∑

|People|
n=0 (|People|

n )× count(φθn).



PROPERTIES OF TRACTABLE FO-NNF SUBSETS 67

The count function as presented here is naive, in the sense that it does not
exploit the circuit structure of the FO-sda-DNNF in order to save computations.
It unrolls the circuit into a tree. When caching calls to count in each node, or by
employing dynamic programming, it suffices to compute the model count of each
sentence only once and reuse the result for each count call. We now have the
following main result.

Theorem 3.15. The FO-sda-DNNF language supports polytime CT, assuming a
bounded number of intensional nodes that quantify over a domain variable on all
directed paths.

Proof. The count function recurses on the FO-sda-DNNF structure. In extensional
nodes and intensional nodes quantifying over logical variables, it makes one
recursive call per child node. In intensional nodes quantifying over a domain
variable, however, it makes n recursive calls, for n distinct substitutions. The
number of calls made to copies of an individual circuit node this way is
exponential in the number of intensional ancestor nodes that quantify over a
domain variable. When we bound this number, the count becomes polynomial
in the size of the circuit and its labels.

3.4.4 Conditioning a FO-sda-DNNF Circuit

Next, we show that conditioning a FO-sda-DNNF circuit is #P-hard in general, by
showing that #2SAT is reducible to it.We then look atmore specific conditioning
tasks, when the term being conditioned on consists of propositions or unary
literals. Finally, we look at the implications for other languages.

Conditioning on Arbitrary Terms

A kCNF formula is a CNF with k literals per clause. kSAT is the problem of
deciding the satisfiability of a kCNF formula. The model counting problem for
kCNF formulas is called #kSAT.

Example 3.22. The following formula is in 2CNF:

(a ∨ b) ∧ (a ∨ ¬c) ∧ (¬c ∨ ¬d)



68 FIRST-ORDER CIRCUITS

Satisfiability of a 2CNF (2SAT) is decidable in polynomial time. However, #2SAT
is #P-complete (Valiant, 1979), which implies that it is not solvable in polynomial
time unless P = NP.

Lemma 3.16. Each propositional 2CNF can be represented by conditioning the theory8

∀X, Y ∈ Prop : p(X) ∨ p(Y) ∨ ¬ c1(X, Y)

∀X, Y ∈ Prop : p(X) ∨ ¬p(Y) ∨ ¬ c2(X, Y)

∀X, Y ∈ Prop : ¬p(X) ∨ ¬p(Y) ∨ ¬ c3(X, Y) (3.11)

Atoms p(X) represent propositions from the set Prop = {a, b, . . . } (e.g., p(a)
and p(b) represent propositions a and b). Atoms ci(X, Y) represent clauses, of
any of the three types (depending on the number of negated literals), consisting
of atoms X and Y (e.g., c2(a, b) represents the clause a ∨ ¬b). The ci-predicates
encode which clauses appear in the 2CNF. Conditioning on a positive ci literal
includes the clause of type i for the given propositions in the 2CNF. For example,
conditioning on c1(a, b2) adds p(a) ∨ p(b) to the theory. Conditioning on a
negative c-literal omits the clause for the given propositions from the theory.
For example, conditioning on ¬ c2(a, b) excludes p(a) ∨ ¬p(b) from the theory.

Example 3.23. Conditioning Theory 3.11 on the term

c1(a, b) ∧ ¬ c1(a, a) ∧ · · · ∧ ¬ c1(d, d)∧

c2(a, c) ∧ ¬ c2(a, a) ∧ · · · ∧ ¬ c2(d, d)∧

c3(c, d) ∧ ¬ c3(a, a) ∧ · · · ∧ ¬ c3(d, d)

results in the theory

(p(a) ∨ p(b)) ∧ (p(a) ∨ ¬p(c)) ∧ (¬p(c) ∨ ¬p(d)),

which is isomorphic to the 2CNF of Example 3.22.

Theorem 3.17. In any formal system expressive enough to represent Theory 3.11,
either conditioning on literals with arity ≥ 2 or model counting is #P-hard.

Proof. Theory 3.11 can be conditioned on binary (arity two) literals to represent
any 2CNF. A subsequent model counting step can solve any #2SAT problem.

8The notation ∀X, Y ∈ Prop is syntactic sugar for ∀X, Y, X ∈ Prop∧Y ∈ Prop.



PROPERTIES OF TRACTABLE FO-NNF SUBSETS 69

This shows that a #P-complete problem is reducible to conditioning and model
counting on Theory 3.11, whichmeans it must be at least as hard as any problem
in #P, or #P-hard.

∃D
D⊆Prop

∧

∀X
X∈Prop∧X/∈D

∀Y
Y∈Prop∧Y/∈D

¬ c1(X, Y)

∀X
X∈Prop∧X/∈D

∀Y
Y∈D

¬ c2(X, Y)

∀X
X∈D

∀Y
Y∈D

¬ c3(X, Y)

∀X
X∈D

p(X)

∀X
X∈Prop∧X/∈D

¬p(X)

Figure 3.5: FO-da-DNNF circuit for Theory 3.11

Since Theory 3.11 has a representation in FO-da-DNNF, as shown in Figure 3.5,
and FO-da-DNNF circuits support polytime model counting (Theorem 3.15), we
can specialize Theorem 3.17 as follows.

Corollary 3.18. There is no polytime algorithm for CD in FO-da-DNNF, unless P=NP.

Conditioning on Propositions

Theorem 3.17 talks about support for conditioning on binary literals. This leaves
the possibility that we can condition a FO-sda-DNNF on propositions (i.e., literals
with arity zero) or unary relations (i.e., literals with arity one).

Conditioning a FO-NNF on propositions works the same way as conditioning a
NNF circuit. All that it requires is replacing terminal nodes that represent that
literal by a T or F terminal.

Proposition 3.19. A FO-da-DNNF circuit can be conditioned on literals with arity zero
in polynomial time.



70 FIRST-ORDER CIRCUITS

Proof outline. Following the results in the propositional setting (Darwiche and
Marquis, 2002), conditioning on γ preserves the properties of extensional nodes.
For determinism, we have ¬(α ∧ β)⇒ ¬(α|γ ∧ β|γ) and for decomposability,
we have (α ⊥⊥ β)⇒ (α|γ ⊥⊥ β|γ). Deterministic and decomposable properties
of intensional nodes are preserved because, for each closing subsitution,
they correspond to an extensional node, which preserves the properties.
Automorphism is preserved because conditioning on a literal with arity zero
preserves equivalence up to permutation of constants. This is the case because
corresponding interpretations are removed from the set of models of both
equivalent formulas.

Conditioning on Unary Relations

Unlike the propositional setting, where each leaf node represents a single
proposition, a FO-d-DNNF circuit terminal node can be a non-ground literal,
which represents an entire set of ground literals. For example, the smokes(X)

terminal in Figure 3.2b can refer to any person X. The conditioning term does
not necessarily provide the truth value for each grounding of a non-ground
terminal. Even if the evidence provides the truth value for each grounding, they
could be different. Thus, conditioning a circuit on a subset of the groundings
requires partitioning this set of literals (i.e., into those that are true, false and
unknown). Each of these partitions needs to be treated separately. Therefore,
given an arbitrary FO-d-DNNF, it is unclear if it can be conditioned on any unary
literal.

Open Problem 2. Can a FO-da-DNNF circuit be conditioned on literals with arity one
in polynomial time?

However, in Section 5.5.3, we will describe a technique for compiling a type of
FO-da-DNNF circuits that do support conditioning on unary relations.

Conditioning and Consistency Checking

Corollary 3.18 raises the question as to whether the inability to efficiently
condition on binary relations is a property specific to the FO-da-DNNF language.
We can make an analogous argument based on 3CNFs, which can be represented



PROPERTIES OF TRACTABLE FO-NNF SUBSETS 71

by conditioning the theory

∀X, Y, Z ∈ Prop : p(X) ∨ p(Y) ∨ p(Z) ∨ ¬ c1(X, Y, Z)

∀X, Y, Z ∈ Prop : p(X) ∨ p(Y) ∨ ¬p(Z) ∨ ¬ c2(X, Y, Z)

∀X, Y, Z ∈ Prop : p(X) ∨ ¬p(Y) ∨ ¬p(Z) ∨ ¬ c3(X, Y, Z)

∀X, Y, Z ∈ Prop : ¬p(X) ∨ ¬p(Y) ∨ ¬p(Z) ∨ ¬ c4(X, Y, Z) (3.12)

Since 3SAT is NP-complete, we have the following.

Proposition 3.20. In any formal system expressive enough to represent Theory 3.12,
either conditioning on literals with arity ≥ 3 or consistency checking is NP-hard.

Proof. Theory 3.12 can be conditioned on ternary literals to represent any 3CNF.
A subsequent consistency checking step can solve any 3SAT problem.

∃D
D⊆Prop

∧

∧

∀X
X∈Prop∧X/∈D

∀Y
Y∈Prop∧Y/∈D

∀Z
Z∈Prop∧Z/∈D

¬ c1(X, Y, Z)

∀X
X∈Prop∧X/∈D

∀Y
Y∈Prop∧Y/∈D

∀Z
Z∈D

¬ c2(X, Y, Z)

∀X
X∈Prop∧X/∈D

∀Y
Y∈D

∀Z
Z∈D

¬ c3(X, Y, Z)

∀X
X∈D

∀Y
Y∈D

∀Z
Z∈D

¬ c4(X, Y, Z)

∀X
X∈D

p(X)

∀X
X∈Prop∧X/∈D

¬p(X)

Figure 3.6: FO-da-DNNF circuit for Theory 3.12



72 FIRST-ORDER CIRCUITS

Theory 3.12 has a representation in FO-da-DNNF, as shown in Figure 3.6. This
result does not provide further insight into FO-da-DNNF circuits, as conditioning
them is already #P-hard. However, this result does provide insight into which
transformations are efficient in other (yet to be defined) circuit languages that
can perform consistency checking, but not model counting, in polynomial time.
These correspond to the capabilities of propositional DNNF circuits (Darwiche
and Marquis, 2002).

3.4.5 Support for Queries

We will now give a rudimentary classification of queries supported by
FO-da-DNNF circuits, other than model counting. Because there exists a poly-
nomial algorithm to convert FO-da-DNNF circuits into FO-sda-DNNF circuits (see
Chapter 4), these results (and the ones in the previous sections) apply equally
to FO-sda-DNNF circuits.

Proposition 3.21. There is a polytime algorithm for CO and VA in FO-da-DNNF,
assuming a bounded number of intensional nodes that quantify over a domain variable
on all directed paths.

Proof. Support for CO and VA are implied by support for CT (Theorem 3.15).

Proposition 3.22. SE is not supported in FO-da-DNNF, unless PH collapses.

Proof. Follows from the same property for d-DNNF and d-DNNF ⊂ FO-da-DNNF.

Theorem 3.23. CE is not supported in FO-da-DNNF, unless P=NP.

Proof. Each 3CNF can be represented by a subset of the groundings of The-
ory 3.12. Recall that atoms p(X) represent propositions and atoms ci(X, Y, Z)
represent clauses, of any of the four types. Let γ1 to γn be ground atoms for
the ci predicates. Figure 3.6 depicts a FO-da-DNNF circuit for Theory 3.12. This
circuit entails the clause ¬γ1 ∨ · · · ∨ ¬γn iff the 3CNF containing the clauses
represented by γ1 to γn is unsatisfiable. This means we can decide 3SAT in
polynomial time if CE is polynomial in FO-da-DNNF.



RELATED WORK 73

Theorem 3.24. IM is not supported in FO-da-DNNF, unless FO-da-DNNF is not
complete for Formula or P=co-NP.

Proof. Consider the theory

∃X, Y, Z ∈ Prop : p(X) ∧ p(Y) ∧ p(Z) ∧ t1(X, Y, Z)

· · · ∨ ∃X, Y, Z ∈ Prop : p(X) ∧ p(Y) ∧ ¬p(Z) ∧ t2(X, Y, Z)

· · · ∨ ∃X, Y, Z ∈ Prop : p(X) ∧ ¬p(Y) ∧ ¬p(Z) ∧ t3(X, Y, Z)

· · · ∨ ∃X, Y, Z ∈ Prop : ¬p(X) ∧ ¬p(Y) ∧ ¬p(Z) ∧ t4(X, Y, Z) (3.13)

Similar to the proof of Theorem 3.23, validity of any 3DNF (UN3SAT) can
be decided by checking whether a term of ti atoms implies Theory 3.13
(after substituting the domain variable Prop for a set of propositions). Since
Formula 3.13 is a formula and not a sentence (Prop is free), we do not know
whether a FO-da-DNNF circuit for it exists (Open Problem 1). If FO-da-DNNF is
complete for Formula, a circuit exists and because Theory 3.13 leaves Prop
free, its size will be independent of the number of propositions in our 3DNF.
After substituting a set of constants for Prop, we could then check validity in
polynomial time using the IM query. This is not possible for a co-NP-complete
problem, unless P=co-NP.

Table 3.4 gives an overview of all results for supported queries.

Open Problem 3. Question marks in Table 3.4.

3.5 Related Work

This section describes the relations between the proposed FO-NNF language, res-
olution, DPLL search and other first-order knowledge compilation techniques,
including other first-order circuit languages.

3.5.1 Relation to the Resolution Principle

Resolution (Robinson, 1965) is an influential algorithm for automated theorem
proving in first-order and propositional logic. It will be the subject of



74 FIRST-ORDER CIRCUITS

Notation NNF d-DNNF FO-NNF FO-da-DNNF
FO-sda-DNNF

CO ◦ X ◦ X?

VA ◦ X ◦ X?

CE ◦ X ◦ ◦
IM ◦ X ◦ ◦†

EQ ◦ ? ◦ ?
SE ◦ ◦ ◦ ◦
CT ◦ X ◦ X?

ME ◦ X ◦ ?

Table 3.4: Queries supported by FO-NNF subsets. The symbol ‘◦’ means the query
is not supported (contingent on complexity assumptions), ‘X’ means the query
is supported, ‘?’ means unknown, ‘?’ means contingent on a bounded number
of intensional nodes on all paths and ‘†’ means contingent on a completeness
assumption.

Section 5.3.2, when we talk about lifted inference algorithms. Already here, we
want to point out the relationship between propositional d-DNNF circuits, DPLL
search (Davis and Putnam, 1960; Davis, Logemann, and Loveland, 1962) and
resolution, and the implications for their first-order generalizations.

• Huang and Darwiche (2005) show how d-DNNF circuits represent the trace
of an exhaustive DPLL search with decomposition, that is, detection of
disjoint components.

• It is well known that every tree resolution can be found inside of a DPLL
refutation and that every DPLL proof contains a tree resolution (Beame,
Kautz, and Sabharwal, 2004). Modern conflict-driven clause-learning SAT
solvers even simulate general resolution (Pipatsrisawat and Darwiche,
2011).

This connects those three algorithms at the propositional level and is depicted
in Figure 3.7.

In addition, we can individually connect these algorithms to their first-order
counterparts.

• A FO-da-DNNF circuit is a template for a large propositional d-DNNF circuit.



RELATED WORK 75

FO-da-DNNF

d-DNNF

First-Order
DPLL

Propositional
DPLL

First-Order
Resolution

Propositional
Resolution

template (Proposition 3.1) lifting
lemma

(Robinson,
1965)

trace
(Huang and
Darwiche,

2005)

tree
resolution
(Beame,

Kautz, and
Sabharwal, 2004)

? ?

Figure 3.7: Relationship between knowledge compilation, DPLL search and
resolution in the propositional and first-order case.

• First-order generalizations ofDPLL search have been proposed (Baumgart-
ner, 2000; Baumgartner and Tinelli, 2008; Gogate and Domingos, 2011).

• Robinson (1965) showed that every step of first-order resolution performs
a potentially infinite number of propositional resolution steps. This
is called the lifting lemma and will be discussed in more detail in
Section 5.3.2.

Intuitively, we can argue that the relations between the propositional algorithms
also hold between the first-order algorithms. Still, we have the following open
problem.

Open Problem 4. How can we formalize the relationship between first-order
knowledge compilation, first-order DPLL and first-order resolution, as represented
by the question marks in Figure 3.7?

3.5.2 Compiling First-Order Logic

The problem of first-order approximate knowledge compilation has previously
been considered in the context of Horn approximations (Selman, Kautz, et al.,
1996; Del Val, 1996; Del Val, 2005). This work compiles a theory into a set of
(first-order) Horn clauses whose models are either a superset or a subset of
the models of the original theory. These theories permit efficient inference for
certain queries. For example, when a Horn upper-bound approximation of a



76 FIRST-ORDER CIRCUITS

theory entails a sentence α, the original theory also entails α. Otherwise, no
conclusions can be drawn. Hence, these compiled Horn theories are called
approximations.

The following circuit languages were developed outside of the broader
knowledge compilation context. Therefore, there is no exhaustive analysis of
their supported queries, transformations, etc.

First-Order Logical Decision Trees

A first-order logical decision tree (Blockeel and De Raedt, 1998) is a binary tree
whose leafs are labeled T or F andwhose inner nodes are labeled with decisions,
that is, conjunctions of first-order literals. The semantics of these trees is in
terms of an equivalent logic program. The free variables in the decisions are
implicitly existentially quantified. Figure 3.8 shows a decision node and its
corresponding FO-NNF circuit (assuming a domain of discourse D).

test(X,Y)

φ(X,Y) ψ(X)

X

(a) Decision Node

∨

∃Y
Y∈D

∧

∀Y
Y∈D

ψ(X)

¬ test(X,Y)

∧

test(X,Y)

φ(X,Y)
(b) FO-NNF Circuit

Figure 3.8: A first-order decision tree node and its corresponding FO-NNF circuit.
The X-variables are assumed to appear in ancestor decision nodes.

Gillis and Van den Bussche (2012) showed that the expressivity of first-order
decision trees is restricted to Boolean combinations of safe existential sentences.
This class of theories is a subset of the theories that have a representation in



RELATED WORK 77

prenex normal form, both with quantifiers ∀∗∃∗ and ∃∗∀∗. Hence, first-order
decision trees are not a complete language for Formula or Sentence.

The advantage of first-order decision trees is that they can efficiently be learned
from data (logical interpretations). This raises the question whether FO-NNF
circuits can be learned as well. One approach would be to adapt a first-order
decision tree learner to produce a decision graph FO-NNF, also consisting of the
decision template in Figure 3.8, but where the φ(X,Y) and ψ(X) subcircuits can
share nodes.

First-Order Binary Decision Diagrams

First-order binary decision diagrams (BDD) (Schneider, Kumar, and Kropf,
1993) were proposed in the hardware verification literature as a tool to decide
satisfiability of first-order sentences. Because these circuits have no normal form
(contrary to the propositional case), these circuits cannot be used for the same
tasks that propositional BDDs are used for. It is not possible to check semantic
equivalence of two BDDs, only syntactic equivalence, which implies semantic
equivalence. In that regard, this approach is similar to approximate knowledge
compilation to Horn theories.

Another language for first-order BDDs was proposed by Posegga (1993) and
Goubault (1995). These circuits are also not canonical, even though they have
ordered decision nodes. The main difference between these BDDs and the ones
of Schneider, Kumar, and Kropf is that now, the decisions are themselves first-
order sentences represented by first-order BDDs, as depicted in Figure 3.9. In
that regard, these circuits are similar to sentential decision diagrams (Darwiche,
2011). The interaction between logical variables and quantifiers is different in a
first-order decision tree and in a first-order BDD, as can be seen from comparing
Figure 3.8b to Figure 3.9b.9 In both cases, the extensional disjunctions in the
circuit representation are deterministic. However, the extensional conjunctions
are not necessarily decomposable, which precludes model counting on these
circuits.

BDD-driven first-order satisfiability procedures (Déharbe and Ranise, 2002)
are used to check satisfiability of a ground theory with first-order background

9To represent first-order BDDs, we cannot use negation normal form circuits. Instead, we use a
negation node in the circuit language, as in Wachter and Haenni (2006).



78 FIRST-ORDER CIRCUITS

φ(X) ψ(X)

∃Y

χ(X, Y)

X

(a) Decision Node

∨

∧∧

∃Y
Y∈D

χ(X, Y)

¬

ψ(X)φ(X)

(b) First-Order Circuit

Figure 3.9: A decision node in the BDD language of Goubault and its
corresponding first-order circuit. The X-variables are assumed to appear in
ancestor quantifiers.

knowledge by compiling the ground theory into a binary decision diagram and
evaluating the circuit using a theorem prover for the background knowledge.

BDDs for first-order predicate logic (Groote and Tveretina, 2003) can represent
sentences in Skolem normal form. For any first-order sentence, one can obtain
an equisatisfiable theory in this form by Skolemization. However, the result will
not be an equivalent theory and can have a different model count. These BDDs
assume an order on the logical tests and therefore correspond to propositional
OBDDs. Again, these circuits are not unique. The BDD for a unsatisfiable theory
is not necessarily equal to the F terminal. Reducing an unsatisfiable BDD to the
F terminal still involves a search procedure that modifies the BDD.

First-order decision diagrams (Wang, Joshi, and Khardon, 2008) are used to
solve relational Markov decision processes. They are a first-order generalization
of algebraic decision diagrams (Bahar et al., 1997), based on the work of
Groote and Tveretina. When used with a Boolean range, these correspond
to first-order BDDs. In their original formulation, these circuits only express
existential sentences, similar to first-order logical decision trees (albeit with
a slightly modified semantics). Joshi and Khardon (2011) recently proposed
generalized first-order decision diagrams which can additionally express



CONCLUSIONS 79

universal quantification.

3.6 Conclusions

This chapter presented a new circuit language for first-order knowledge
compilation, called first-order negation normal form. These circuits represent
theories in a variant of first-order logic with domain constraints associated with
the logical variables. We defined the syntax and semantics of this logic and its
circuit language. We identified subsets of first-order negation normal form that
permit tractable model counting. For the proposed circuit languages, we gave
an initial classification of supported queries and transformations and analyzed
their relative succinctness. This included a procedure to efficiently compute the
model count of a FO-sda-DNNF circuit and decide its consistency and validity.





Compilation Algorithm

4

This chapter presents two algorithms that compile theories in FOL-DC into target
FO-NNF languages that support tractable inference. We first present an algorithm
to compile a FO-CNF into a FO-da-DNNF circuit. Second, we present an algorithm
to convert any FO-da-DNNF circuit into an equivalent FO-sda-DNNF circuit. For
these circuits, there is an efficient procedure to decide consistency, validity and
to compute the model count.

The first compilation algorithm needs to enforce the properties of FO-da-DNNF
circuits, that is, determinism, decomposability and automorphism. This is done
by transforming the input theory in several steps, introducing new domain
variables, reordering quantifiers and decomposing the problem in such a way
that these properties hold. An important step in the compilation process is to
detect and exploit symmetries in the input model. This step is called shattering.

The second compilation algorithm modifies a given FO-da-DNNF circuit to
enforce the smoothness property in the circuit. This is done by keeping track of
which atoms are represented by each subcircuit and inserting new child nodes
at every disjunctive node that is not smooth.

Section 4.1 gives an outline of the compilation algorithm to FO-da-DNNF. The
next sections present individual compilation rules used by the algorithm.

81



82 COMPILATION ALGORITHM

Section 4.2 deals with rules that do not require shattering and generate
extensional circuit nodes. Section 4.3 then explains a procedure, called
shattering, to make the symmetries in the input model explicit. It shows that
after applying this transformation, every intensional conjunction in a theory
becomes automorphic. Section 4.4 presents the next set of compilation rules,
that generate intensional, or first-order circuit nodes. Section 4.5 describes the
last compilation rule, which grounds the theory. Section 4.6 presents the second
algorithm, for first-order smoothing. Finally, Section 4.7 discusses related work.

An early version of this work was published in

G. Van den Broeck, N. Taghipour,W.Meert, J. Davis, and L. De Raedt
(2011a). “Lifted probabilistic inference by first-order knowledge
compilation”. In: Proceedings of the Twenty-Second International Joint
Conference on Artificial Intelligence (IJCAI). Menlo Park, California,
pp. 2178–2185
G. Van den Broeck (2011b). “On the completeness of first-order
knowledge compilation for lifted probabilistic inference”. In: Ad-
vances in Neural Information Processing Systems 24 (NIPS), pp. 1386–
1394

The explanation of preemptive shattering was published in Van den Broeck,
Choi, and Darwiche (2012). The discussion here goes beyond the published
work by adding support for free variables in the input theories, generalizing
certain compilation rules and proving more properties of the algorithms.

4.1 Outline of FO-da-DNNF Compilation

This section presents the outline of the algorithm for compilation to FO-da-DNNF.

4.1.1 Input and Output

The compilation algorithm takes as input a FO-CNF, that is, a conjunction of
Skolem normal form clauses.

Definition 4.1 (Skolem Normal Form). A FOL-DC formula in Skolem normal form
is a sequence of intensional conjunctions followed by a formula in FOL.



OUTLINE OF FO-DA-DNNF COMPILATION 83

Hence, a FO-CNF is a conjunction of constrained clauses, where each constrained
clause is of the form ∀X, cs : l1 ∨ · · · ∨ ln, and where l1, . . . , ln are literals. These
literals contain logical variables from X and free logical variables.

Note that the set X can be empty (∅), which means the clause is equivalent to
l1 ∨ · · · ∨ ln when the constraints cs are satisfied, and to true (the neutral element
for conjunction) otherwise. In the former case, cs has exactly one solution, which
is the empty substitution []. In the latter case it has no solutions.

We will not use the full expressivity of FO-CNF in this chapter, but require that

• the quantified variables X are all logical variables, and

• the constraint set cs consists of equality constraints=, element constraints
∈, or their negation, and can contain free domain variables, free logical
variables, or logical variables from X. We disallow ⊆ and < constraints.

The output of the compilation algorithm is a FO-da-DNNF circuit that is equivalent
to the original FO-CNF, or contains nil in case the algorithm cannot compile
its input. Whether or not this can happen is strongly related to the topics of
completeness and liftability, which are discussed in more detail in Chapter 6.
There, we will show that the algorithm presented in this chapter is guaranteed
to be able to compile any input theory with up to two bound logical variables
per formula.

4.1.2 Compilation Rules

Algorithm 1 shows the outline of the Compile procedure. It uses a set of
compilation rules, which in turn can recursively call the Compile function.
The purpose of the compilation rules is to transform a FO-CNF into a set
of simplified FO-CNFs that are combined using a FO-da-DNNF operator that
satisfies the determinism, decomposability and automorphism properties (cf.,
Section 3.3.1). The simplified FO-CNFs are then the inputs of recursive calls
to Compile. We continue compiling the simplified FO-CNFs until they become
literals, which are the leafs of the FO-da-DNNF circuit.

Sections 4.2 to 4.5 will present a collection of compilation rules. A compilation
rule applies when its preconditions are met. The FindRule function of Algo-
rithm 1 selects the first compilation rule that applies, in the following order:



84 COMPILATION ALGORITHM

Algorithm 1 Compile(∆)
Input.

∆: A set of universally quantified FOL-DC clauses
Supporting Functions.

CacheGet(.) Returns cache entry, nil if empty
CacheSet(., .) Sets cache entry
FindRule(.) Finds a compilation rule whose preconditions are

satisfied, nil if none
ApplyRule(., .) Applies a compilation rule to a set of clauses

Function.
1: if CacheGet(∆) 6= nil then
2: return CacheGet(∆) // retrieve precomputed circuit from cache
3: else
4: nnf ← nil // compile new NNF circuit and store it in cache
5: if ∆ = {γ} and (γ = T or γ = F or γ is a literal) then
6: nnf ← γ // return leaf node
7: else if FindRule(∆) 6= nil then
8: rule← FindRule(∆) // there exists an applicable compilation rule
9: nnf ← ApplyRule(∆, rule)
10: else
11: nnf ← nil // compilation fails
12: CacheSet(∆, nnf )
13: return nnf

1. UnitPropagate (Section 4.2.1)

2. VacuousConjunction (Section 4.4.1)

3. Independence (Section 4.2.2)

4. ShannonDecomposition (Section 4.2.3)

5. ShatteredCompilation (Section 4.3.4)

6. IndependentSingleGroundings (Section 4.4.3)

7. IndependentPairedGroundings (Section 4.4.4)

8. AtomCounting (Section 4.4.6)

9. (Ground (Section 4.5))



COMPILATION TO EXTENSIONAL NODES 85

Similarly, after performing ApplyRule, the postconditions of the given rule hold.
We describe the pre- and postconditions of every compilation rule in detail.

Before compiling a theory, we attempt to retrieve its circuit from a cache of
previously compiled theories. Reusing previously computed FO-da-DNNFs turns
the output circuit from a tree into a DAG. Caching is an essential feature of
propositional knowledge compilation algorithms. Currently, we employ a naive
caching scheme that only recognizes the reuse of ground theories. A more
sophisticated caching scheme could attempt to reuse a cached circuit that θ-
subsumes (Robinson, 1965) the theory to be compiled, as in for instance Tamaki
and Sato (1986).

4.1.3 Terminology and Notation

As some additional terminology, we will call an atom, literal or clause a
constrained atom, literal or clause, if it is prefixed by an intensional conjunction in
FOL-DC. The function atomc(.)maps a constrained clause ∀X, cs : l1 ∨ · · · ∨ ln to
a set of constrained atoms {(∀X, cs : a1), . . . , (∀X, cs : an)}, where ai is the atom
of literal li. For ease of notation, we will interchangeably represent theories as
sets of constrained clauses, clauses as sets of literals, conjunctions of constraints
as sets of constraints and substitutions as sets of equality constraints. The
function bvars(.)maps a formula in FOL-DC to its bound variables (set of variables
quantified by the intensional operators in the formula).

We will furthermore assume that certain types of constraint propagation take
place in the input FO-CNF. This includes the removal of equality constraints.
For example, a clause γ whose constraint set includes the constraint Xi = Xj
between quantified variables is replaced by γ[Xi/Xj], which no longer contains
the variable Xj. A similar propagation applies when the constraint set includes
constraints of the form X = t, where X is a quantified variable and t some
logical term. Another example of constraint propagation is the constraint set
X ∈ D∧D ⊆ F, which simplifies to X ∈ F.

4.2 Compilation to Extensional Nodes

This section describes three compilation rules that create extensional circuit
nodes: UnitPropagate, Independence and ShannonDecomposition.



86 COMPILATION ALGORITHM

4.2.1 Unit Propagation

The unit propagation rule applies when the CNF contains a unit clause, that is,
a clause with a single literal. For example, the unit clause

∀X ∈ People : friends(X, X)

expresses that people are friends with themselves. If in addition, the theory
contains formulas that mention the same atoms, such as

∀X, Y, X ∈ People∧Y ∈ People : friends(X, Y) ∨ dislikes(X, Y)

the information in the unit clauses can be propagated to the rest of the theory. In
this case, we can conclude that the latter formula is always satisfiedwhen X = Y.

First, we describe auxiliary operators to split a clause w.r.t. a constrained atom
and to condition a constrained clause on a constrained literal. Then we define
the unit propagation compilation rule, which uses splitting and conditioning
to remove literals from the theory.

Splitting

Unit propagation requires that all constrained clauses γ in the theory be split
w.r.t. a given constrained atom a (Algorithm 2). The purpose of splitting w.r.t. a
is to divide a clause into an equivalent set of clauses (Postcondition 4.2) such that
for each atom aγ in each clause, either aγ is independent from a or is subsumed
by it, because it covers a subset of the ground atoms of a (Postcondition 4.1).

The first step of the algorithm involves computing the most general unifier (mgu)
of two constrained atoms. In FOL, this is the most general substitution that,
when applied to two atoms, makes them identical. For two constrained atoms,
the mgu corresponds to the mgu of the two unconstrained atoms, provided
that the conjunction of the two constraint sets and the unifier is satisfiable.
Otherwise, we say that the two constrained atoms do not unify. This means
they are independent.

Proof outlines. Postcondition 4.1 is achieved at fixpoint, when the “if” statement
fails. For Postcondition 4.2, case analysis tells us that θ ∧ csa is either satisfied for
an instantiation of its variables or one of its domain constraints is not satisfied.



COMPILATION TO EXTENSIONAL NODES 87

Algorithm 2 Split(γ, a)

Function.
1: if ∃aγ ∈ atomc(γ) such that (a 6⊥⊥ aγ) ∧ ¬(a⇒ aγ) then
2: θ ← mgu(a, aγ)
3: let a = ∀Xa, csa : α
4: let γ = ∀Xγ, csγ : φ
5: X← Xa ∪ Xγ

6: γmgu ← (∀X, csγ ∧ θ ∧ csa : φ)
7: Γrest ← {(∀X, csγ ∧ ¬e : φ) | e ∈ (θ ∧ csa)} \ {γ}
8: return {Split(γmgu, a)} ∪⋃γrest∈Γrest Split(γr, a)
9: else
10: return {γ} // clause is invariant to splitting

Postcondition 4.1. ∀γ, a, ∀aγ ∈ atomc(Split(γ, a)) : (a ⊥⊥ aγ) ∨ (a⇒ aγ)

Postcondition 4.2. ∀γ, a : γ ≡ ∧γs∈Split(γ,a) γs

The constrained clauses that Split generates each correspond to one of these
cases. Therefore, any interpretation that does not satisfy the original clause
must also not satisfy one of the split clauses and every model of the split clauses
is also a model of the original clause. Conversely, every model of the original
clause is a model of the split clauses, because constraints are only added to the
constraint set.

Example 4.1. Splitting Split(γ, a) with

γ = (∀X, X 6= kiwi∧ X ∈ Animal : flies(X) ∨ ¬ haswings(X)) and

a = (∀X, X 6= penguin∧ X ∈ Bird : flies(X))

results in

γmgu =(∀X, X 6= kiwi∧ X 6= penguin∧ X ∈ Animal∧ X ∈ Bird : . . . ),

γ1
rest =(flies(penguin) ∨ ¬ haswings(penguin)) and

γ2
rest =(∀X, X 6= kiwi∧ X ∈ Animal∧ X /∈ Bird : flies(X) ∨ . . . ).

After splitting, clauses γ1
rest and γ2

rest are independent from a, while the
constrained atom (∀X, X 6= kiwi ∧ X 6= penguin ∧ X ∈ Animal ∧ X ∈



88 COMPILATION ALGORITHM

Bird : flies(X)) in γmgu is implied by a.

Example 4.2. Splitting Split(γ, a) with

γ = (∀X, X ∈ D : p(X) ∨ q(X)) and

a = (∀X, X ∈ D∧Y 6= Z : p(X))

results in

γmgu =(∀X, X ∈ D∧Y 6= Z : p(X) ∨ q(X)) and

γrest =(∀X, X ∈ D∧Y = Z : p(X) ∨ q(X)).

Here, the domain for X does not change. The split is a case analysis of the
constraints between Y and Z, which are free variables.

Poole (2003) introduced splitting for parfactors. We apply it to constrained
clauses and extend it with set membership constraints and free variables.

Conditioning

Conditioning a constrained clause γ on a constrained literal l removes the clause
when it is satisfied (or subsumed) by the literal. Otherwise, it removes those
literals from γ that are not satisfied by l. The conditioning procedure is shown
in Algorithm 3.

Proof outlines. Postcondition 4.4 follows from the fact that (for “if”) the empty
set is independent of l and (for “else”), the remaining literals are all independent
of l. Postcondition 4.5 holds because (for “if”), both sides of the equivalence
evaluate to l, and (for “else”), in any model of γ ∧ l, the literals removed from
γ are unsatisfied.

Unit Propagation Rule

The unit propagation compilation rule (Algorithm 4) first splits all clauses w.r.t.
the unit clause and then uses conditioning to propagate the information in the
unit clause. It returns a circuit whose root node is a decomposable extensional
conjunction.



COMPILATION TO EXTENSIONAL NODES 89

Algorithm 3 Condition(γ, l)

Precondition 4.3. Clause γ has been split w.r.t. the atom contained in literal l: {γ} =
Split(γ, atomc(l)).

Function.
1: if (l ⇒ γ) then
2: return ∅ // γ is satisfied by propagating l
3: else
4: let γ = ∀X, cs : λ1 ∨ · · · ∨ λn
5: Λ← {λi | ¬(l ⇒ (∀X, cs : ¬λi))} // remove unsatisfied literals
6: return ∀X, cs : Λ

Postcondition 4.4. Condition(γ, l) ⊥⊥ l

Postcondition 4.5. (Condition(γ, l) ∧ l) ≡ (γ ∧ l)

Algorithm 4 UnitPropagate(∆)

Precondition 4.6. The theory has a unit clause u: ∃u ∈ ∆ s.t. | atomc(γ)| = 1.

Function.
1: ∆up ←

⋃
γ∈∆

⋃
γs∈Split(γ,atomc(u)) Condition(γs, u)

2: return Compile(∆up) ∧Compile(u)

Postcondition 4.7. ∆up ∧ u is decomposable.

Postcondition 4.8. ∆ ≡ ∆up ∧ u

Proof outlines. Postcondition 4.7 is a direct consequence of Postcondition 4.4.
Postcondition 4.8 follows from Postconditions 4.2 and 4.5.

Example 4.3. Figure 4.1 shows propagation of the unit clause ∀X, X ∈
People : friends(X, X). Shaded rectangles and circles are again FO-NNF nodes.
White rectangles show the theories before and after applying the rule. The first
two clauses require splitting w.r.t. the unit clause. This creates two copies of



90 COMPILATION ALGORITHM

∀X, Y, X ∈ People∧Y ∈ People : friends(X, Y) ∨ dislikes(X, Y)
∀X, Y, X ∈ People∧Y ∈ People : ¬ friends(X, Y) ∨ likes(X, Y)

∀X, X ∈ People : friends(X, X)

∧

∀X, Y, X ∈ People∧Y ∈ People∧ X 6= Y : friends(X, Y) ∨ dislikes(X, Y)
∀X, Y, X ∈ People∧Y ∈ People∧ X 6= Y : ¬ friends(X, Y) ∨ likes(X, Y)

∀X, X ∈ People : likes(X, X)

∀X
X∈People

friends(X, X)

Figure 4.1: Unit propagation of ∀X, X ∈ People : friends(X, X)

each clause: one where X = Y and one where X 6= Y:

∀X ∈ People : friends(X, X) ∨ dislikes(X, X)

∀X, Y ∈ People∧ X 6= Y : friends(X, Y) ∨ dislikes(X, Y)

∀X ∈ People : ¬ friends(X, X) ∨ likes(X, X)

∀X, Y ∈ People∧ X 6= Y : ¬ friends(X, Y) ∨ likes(X, Y)

Next, the first copy of the first clause is removed, because the unit clause entails
(or subsumes) it. In the first copy of the second clause, the atom that unifies with
the unit clause atom is removed, because it must be false in any model. This
yields the new clause ∀X, X ∈ People : likes(X, X). The original unit clause
becomes independent of the other clauses and can be split off in a decomposable
conjunction. The unit clause is then compiled by other rules into an intensional
conjunction and a leaf literal, while the remainder of the theory requires further
compilation.

One way to view unit propagation is as follows. It first removes subsumed
clauses. Then, for the remaining clauses, it computes their resolvent with the
unit clause, as is done by the well-known resolution algorithm (Robinson, 1965).
Afterwards it decomposes the unit clause and the rest of the theory because
they are independent.



COMPILATION TO EXTENSIONAL NODES 91

4.2.2 Independence

The independence rule (Algorithm 5) applies when the theory consists of two
independent sets of clauses.

Algorithm 5 Independence(∆)

Precondition 4.9. ∆ = ∆1 ∪ ∆2 and ∆1 ⊥⊥ ∆2

Function.
1: return Compile(∆1) ∧Compile(∆2)

Postcondition 4.10. ∆1 ∧ ∆2 is decomposable

Two FOL-DC sentences are independent (⊥⊥, Definition 3.18) when their ground-
ings consist of disjoint sets of ground atoms. Two formulas are independent
when they are independent for any closing substitution. Independence of
formulas can be determined by checking whether the one formula contains a
constrained atom that unifies with a constrained atom in the other formula.

For example, the two clauses in

∀X, Y ∈ People∧ X 6= Y : friends(X, Y) ∨ dislikes(X, Y)

∀Z ∈ People : ¬ friends(Z, Z) ∨ likes(Z, Z)

are independent. The atom ∀X, Y ∈ People∧ X 6= Y : friends(X, Y) in the first
clause does not unify with the atom ∀Z ∈ People : friends(Z, Z) in the second
clause. The most general unifier of the unconstrained atoms is [X/Z, Y/Z]
and the corresponding unified constraint set (X, Y ∈ People ∧ X 6= Y ∧ Z ∈
People∧X = Z∧Y = Z) is unsatisfiable, because the constraints (X 6= Y∧X =

Z ∧Y = Z) have no solution.

4.2.3 Shannon Decomposition

The Shannon decomposition (Shannon, 1949) is an essential tool for propositional
automated reasoning. It states that a Boolean function f (x1, x2, . . . , xn) over
propositions x1, x2, . . . , xn is equivalent to (x1 ∧ f (T, x2, . . . , xn)) ∨ (¬x1 ∧
f (F, x2, . . . , xn)). Shannon decomposition is used in the influential DPLL



92 COMPILATION ALGORITHM

algorithm (Davis, Logemann, and Loveland, 1962) for satisfiability checking
and in the construction of Binary Decision Diagrams (Bryant, 1986).

The first-order Shannon decomposition1 (Algorithm 6) applies to a theory that
contains a literal whose arguments are constants or free variables (not bound by
the enclosing intensional conjunction). The compilation rule returns a circuit
whose root node is a deterministic disjunction.

Algorithm 6 ShannonDecomposition(∆)

Precondition 4.11. The theory contains an atom without bound logical variable
arguments: There is a (∀X, cs : a(Y)) ∈ atomc(∆) such that X∩ Y = ∅.

Function.
1: return Compile(a(Y) ∧ ∆) ∨Compile(¬a(Y) ∧ ∆)

Postcondition 4.12. (a(Y) ∧ ∆) ∨ (¬a(Y) ∧ ∆) is deterministic.

Postcondition 4.13. ((a(Y) ∧ ∆) ∨ (¬a(Y) ∧ ∆)) ≡ ∆

Proof outlines. Postcondition 4.12 holds because the disjuncts contain opposing
literals for a. Postcondition 4.13 follows from the application of classical Shannon
decomposition for any closing substitution.

Example 4.4. Figure 4.2 depicts a Shannon decomposition of fun(bob) for
a single constrained clause. The intermediate theories are shown in white
rectangles. These are the inputs of a subsequent application of UnitPropagate,
which results in the circuit shown.

4.3 Shattering: Exposing Symmetries of the Model

The notion of automorphism is central to the definition of FO-da-DNNF circuits.
Algorithms that operate on these circuits exploit the symmetries that are
guaranteed to exist (e.g., the count function of Section 3.4.3). This guarantee

1In Van den Broeck et al. (2011a), Shannon decomposition is a special case of a compilation
rule called Inclusion-Exclusion. It applies when the theory contains a clause whose literals can be
divided into two sets that do not share any bound logical variables or constraints. We do not allow
for this rule because it requires a more expressive circuit language (with inclusion-exclusion nodes)
and because the operator is not strictly required for the results presented here.



SHATTERING: EXPOSING SYMMETRIES OF THE MODEL 93

∀X, X ∈ People : fun(bob) ∨ ¬ friends(bob, X)

∨

∀X, X ∈ People : fun(bob) ∨ ¬ friends(bob, X)
fun(bob)

fun(bob)
∀X, X ∈ People : fun(bob) ∨ ¬ friends(bob, X)

¬ fun(bob)

∧

¬ fun(bob) ∀X
X∈People

¬ friends(bob, X)

Figure 4.2: Shannon decomposition of fun(bob)

comes from the automorphism property that must hold for each intensional
node in the circuit. Even though these symmetries also exist implicitly in the
input FO-CNF, they cannot be read off directly from the model.

Example 4.5. Consider the following formula.

∀X, X ∈ People : fun(bob) ∨ ¬ friends(bob, X)

The two solutions [X/alice] and [X/bob] of the constraint set yield the
sentences fun(bob) ∨ ¬ friends(bob, alice) and fun(bob) ∨ ¬ friends(bob, bob).
These sentences are not equivalent up to a permutation of constants, because
there is no bijection that maps the models of one into the models of
the other. Therefore, this intensional conjunction is not automorphic. Yet,
implicitly, there are many symmetries in this model. Two other solutions of
the constraint set, [X/alice] and [X/charlie], yield the sentences fun(bob) ∨
¬ friends(bob, alice) and fun(bob) ∨ ¬ friends(bob, charlie) which are equivalent
up to the permutation π = {alice 7→ charlie, charlie 7→ alice}. We can now write



94 COMPILATION ALGORITHM

a theory that makes these symmetries explicit, as follows.

∀X, X ∈ People∧ X 6= bob : fun(bob) ∨ ¬ friends(bob, X)

∀∅, bob ∈ People : fun(bob) ∨ ¬ friends(bob, bob)

In this theory, both intensional conjunctions are automorphic.

This section describes an algorithm for transforming FOL-DC theories into
equivalent theories where the symmetries are explicit in the syntax. This type of
transformation is called shattering and will be frequently used in the following
sections and chapters.

We present two shattering procedures. The first, called preemptive shattering, is
based on the procedure of the same name given by Poole, Bacchus, and Kisyński
(2011). It is meant to be a conceptually simpler version of the influential original
shattering algorithm proposed by Poole (2003) and de Salvo Braz, Amir, and
Roth (2005). For the preemptive shattering algorithm, we go into more detail
about the type of symmetries exposed by the algorithm. The second procedure
we present is based on the original shattering algorithm and is called shattering
by splitting. Finally, we define a compilation rule, called ShatteredCompilation,
that shatters its input.

Both shattering algorithmswere proposed in the exact lifted inference literature,
where they were applied to parfactors and where domain constraints are
restricted to (in)equalities. Since we work with constrained clauses in FOL-DC,
which have set membership constraints, we extend the existing shattering
procedures with support for this type of constraints.

4.3.1 Preemptive Shattering

We start by presenting preemptive shattering. Even though it is not the most
advanced shattering algorithm, it is powerful enough to prove all theoretical
properties in the following chapters, and it is relatively simple. The algorithm
operates at three levels: partitioning constants, shattering clauses and shattering
theories.



SHATTERING: EXPOSING SYMMETRIES OF THE MODEL 95

Partition Constants

Preemptive constant shattering is an algorithm that partitions the set of
constants in the signature of a sentence. Each element of this partition is defined
by a constraint set.

We start with an intuitive description of the algorithm. Preemptive constant
shattering of logical variable X returns a set of constraint sets such that all
constraint sets have either disjoint or identical solutions. Its inputs are a set of
constants and variables (terms) T and a set of domainsD.Wewant to distinguish
between all constants and variables in T. Each returned constraint set forces the
variable X to be equal to one of these terms or different from all of them.
Similarly, preemptive constant shattering looks at the partition of constraints
induced by the domains inD. By adding setmembership constraints, all solutions
of a returned constraint set are member of the same set of domains. In other
words, for each domain, X is forced to be part of it, or to be outside of it.

Algorithm 7 ShatterVar(X, T,D)
Input.

X: A logical variable
T: A set of terms (constants and logical variables)
D: A set of domains

Function.
1: CSeq ← {(X = t) | t ∈ T} ∪ {

∧
t∈T(X 6= t)}

2: CSin ←
{(∧

D∈E (X ∈ D) ∧∧D∈(D\E)(X /∈ D)
) ∣∣∣ E ⊆ D s.t. |E | > 0

}
3: return

{
cseq ∧ csin

∣∣ cseq ∈ CSeq, csin ∈ CSin
}

Postcondition 4.14. ∀X, T,D : (∃D ∈ D : X ∈ D) ≡ ∨cs∈ShatterVar(X,T,D) cs

Algorithm 7 describes the shattering procedure more formally. By enforcing
|E | > 0 on Line 2, we guarantee that each logical variable is member of at least
one domain, which is a requirement for syntactically valid constraint sets. Many
of the generated constraints cseq ∧ csin on Line 3 will have no solutions and can
be dropped. Postcondition 4.14 states that shattering partitions the solutions
to the variable X. For any solution to X (in the domains D), at least one of the
returned constraint sets is satisfied.



96 COMPILATION ALGORITHM

Shattering Clauses

Preemptive shattering of a clause applies preemptive constant shattering to
each bound variable in the clause. In addition, it enforces inequality constraints
between each pair of bound variables that appear in the same literal. When
two arguments Xi and Xj of some input literal can take on the same value,
preemptive shattering splits the constrained clause into two: one with the
constraint Xi = Xj and another with Xi 6= Xj.

Algorithm 8 ShatterClause(γ, T,D)
Input.

γ: A constrained clause ∀Y, csγ : l1(Z1) ∨ · · · ∨ lm(Zm)
T: A set of terms (constants and logical variables)
D: A set of domains

Supporting Functions.
Partition(.) Generates a set of all possible partitions of the given set into

non-empty subsets
Function.
1: Z← Z1 ∪ · · · ∪ Zm // Shatter individual variables
2: CSA = {(c1 ∧ · · · ∧ cn) | (c1, . . . , cn) ∈ "Z∈Z ShatterVar(Z, T,D)}

// Generate constraints between bound logical variables
3: for i = 1 to m do
4: Bi ← Y∩ Zi // Bound variable arguments of the ith literal
5: CSi

B ← ∅
6: for each Pi ∈ Partition(Bi) do

// Variables in the same subset are equal
7: cs= ←

∧
E∈Pi

∧
X1,X2∈E (X1 = X2)

// Variables in different subsets are not equal
8: cs 6= ←

∧
E∈Pi

∧
X1∈E

∧
X2∈Bi\E (X1 6= X2)

9: CSi
B ← CSi

B ∪ {cs= ∧ cs 6=}
10: CSB ← {(c1 ∧ · · · ∧ cm) | (c1, . . . , cm) ∈ "m

i=1 CSi
B}

11: CS← {(csγ ∧ csa ∧ csb) | csa ∈ CSA, csb ∈ CSB}
12: return {(∀Y, cs : l1(Z1) ∨ · · · ∨ lm(Zm)) | cs ∈ CS}

Postcondition 4.15. ∀γ, T,D : γ ≡ ShatterClause(γ, T,D)

The preemptive clause shattering procedure is given more formally by
Algorithm8. In Lines 2 and 10, the " operator represents theCartesian product of
its arguments. The (in)equality constraints between bound logical variables are



SHATTERING: EXPOSING SYMMETRIES OF THE MODEL 97

generated by enumerating all partitions of the logical variables into non-empty
subsets. This corresponds to enumerating all possible equivalence relations on
these variables. Postcondition 4.15 states that the output theory is equivalent to
the input clause.

Shattering Theories

Finally, we extend the definition of preemptive clause shattering to a general
shattering procedure that operates on a FO-CNF in Algorithm 9.

In this algorithm, the set of terms T to distinguish between is not input to the
procedure. It is defined to be the union of two other sets. The first set consists of
the constants that appear as logical terms in the theory. The second set consists
of the free logical variables in the theory. In both cases, these terms can appear
as arguments of atoms or in a constraint set. The procedure also initializes the
set of domain termsD to the set of domain terms in the theory. These can either
be free domain variables or sets of constants. Given these two sets as input,
the procedure then shatters each clause in the FO-CNF separately. We implicitly
perform the necessary renamings to avoid clashes between the same logical
variable symbols appearing in multiple formulas.

Algorithm 9 Shatter(∆)
Function.
1: let K be the set of constants appearing as logical terms in ∆
2: let V be the set of free logical variables in ∆
3: let D be the set of domain terms in ∆
4: return {ShatterClause(γ, K ∪V,D) | γ ∈ ∆}

Postcondition 4.16. Bound logical variables in Shatter(∆) have identical or disjoint
sets of solutions.

Postcondition 4.17. ∀∆, ∀a1, a2 ∈ atomc(Shatter(∆)) : (a1 ⊥⊥ a2) ∨ (a1 ≡ a2)

Postcondition 4.18. Intensional conjunctions in Shatter(∆) are automorphic.

Proof of Postcondition 4.16. This property follows from the fact that the solutions
for any variable X are either singletons, or a set of constants that do not appear
as logical terms in the theory (Line 1 of Algorithm 7). In the latter case, the sets



98 COMPILATION ALGORITHM

of solutions correspond to an element of the partition induced by the domain
terms in the theory (Line 2 of Algorithm 7).

The following section presents a proof of Postcondition 4.18, where it is restated
as Theorem 4.4.

Example 4.6. Consider the FO-CNF with two clauses

∀X, Y ∈ People : ¬ smokes(X) ∨ ¬ friends(X, Y) ∨ smokes(Y)

smokes(alice)

which has K = {alice}, V = ∅ and D = {People}. Preemptive shattering of the
variable X returns {(X ∈ People∧ X = a), (X ∈ People∧ X 6= a)}. Preemptive
shattering of the first clause returns

∀X, Y ∈ People∧ X = a ∧Y = a : ¬ smokes(X) ∨ . . .

∀X, Y ∈ People∧ X = a ∧Y 6= a : ¬ smokes(X) ∨ . . .

∀X, Y ∈ People∧ X 6= a ∧Y = a : ¬ smokes(X) ∨ . . .

∀X, Y ∈ People∧ X 6= a ∧Y 6= a ∧ X = Y : ¬ smokes(X) ∨ . . .

∀X, Y ∈ People∧ X 6= a ∧Y 6= a ∧ X 6= Y : ¬ smokes(X) ∨ . . .

The second clause does not change with preemptive shattering.

Preemptive constant shattering can be implemented in time that is exponential
in the number of domain variables and logical variables per clause, and
polynomial in the number of constants and free variables in ∆.

4.3.2 Automorphisms Introduced by Shattering

The purpose of shattering is to make the symmetries of the given theory explicit
in its syntax. We will now precisely show how preemptive constant shattering
creates automorphisms.



SHATTERING: EXPOSING SYMMETRIES OF THE MODEL 99

Automorphism for One Variable

The input theory consists of intensional conjunctions that quantify over logical
variables. Let us first assume that the number of logical variables quantified over
is exactly one. For this type of intensional node, automorphism was defined
as follows: (∀X, cs : φ) is automorphic iff for all solutions [X/c], [X/c′] ∈
solutions(cs, X), we have that φ[X/c] and φ[X/c′] are equivalent up to a
permutation of constants (Definition 3.26).

Two sentences φ and ψ were in turn defined to be equivalent up to a permutation
of constants C when there exists a permutation π : C 7→ C which turns the
set of models of φ into the one of ψ (Definition 3.25). Hence in order to prove
automorphism, we first need to prove the following.

Lemma 4.1. In a shattered theory, two conjuncts φ[X/c] and φ[X/c′] of an
intensional conjunction φ, are equivalent up to the permutation of constants π =

{c 7→ c′, c′ 7→ c}.

We prove Lemma 4.1 by proving a stronger type of equivalence: there exists
a permutation of constants π that syntactically maps φ into ψ. Syntactic
equivalence up to a permutation of constants is a sufficient but not necessary
condition for equivalence up to a permutation of constants (for example, two
syntactically different unsatisfiable theories are also equivalent).

We will now prove that φ[X/c] and φ[X/c′] are syntactically equivalent up
to the permutation π = {c 7→ c′, c′ 7→ c}. To syntactically map φ[X/c] into
φ[X/c′] with π, we need to show that the following objectives are achieved:

1. π indeed maps all positions of c where X occurred in φ into c′, and

2. π does not modify the syntax of φ elsewhere.

If we apply π to the sentence φ[X/c], the modifications to the theory occur in
three positions in the sentence:

1. where the constant c appears as a logical term (e.g., in Y 6= c or p(c, Y)),

2. where the constant c′ appears as a logical term, and

3. where c and c′ occur in a domain term (e.g., in Y ∈ {c, c′}).



100 COMPILATION ALGORITHM

The first position accounts for the first objective: to substitute c by c′ where X
occurred. We will now prove the second objective, that everything else remains
unchanged.

First, assume that the constraint set has at least two solutions for X. Otherwise,
the intensional conjunction is trivially automorphic. This means that cs contains
the inequality constraints

∧
t∈T(X 6= t) from Line 1 of Algorithm 7. Otherwise,

the constraint set would contain a constraint of the form X = t and the solution
set would have size zero or one. These inequality constraints enforce that
solutions(cs, X) contains only constants from the domain that do not occur
in the theory as logical terms. These constants only occur in the domains (sets
of constants). Hence, the first position coincides with those positions where
X occurred in φ and replacing c by c′ here is intended by the first objective.
Furthermore, the second position does not exist: c′ does not occur as a logical
term in the theory.

Finally, we need to prove that applying the permutation π in the third position,
inside domain terms, does not modify the theory. This follows from the domain
constraints constructed in Line 2 of Algorithm 7. They express that for any
domain term D in the theory, all solutions(cs, X) are member of the domain, or
none are. Applying the permutation π to a set of constants that contains both c
and c′ does not alter the set. Therefore, modifications in the third position do
not change the theory. This proves Lemma 4.1 and leads us to the following
result.

Theorem 4.2. After preemptive constant shattering, every intensional conjunction
over a single logical variable is automorphic.

Automorphism for Multiple Variables

We now consider the case where the intensional conjunction (∀X, cs : φ) is
over a set of variables X = {X1, . . . , Xn}. In this case, to prove automorphism,
we need to show that for all solutions [X1/c1, . . . , Xn/cn], [X1/c′1, . . . , Xn/c′n] ∈
solutions(cs,X), the following holds.

Lemma 4.3. In a shattered theory, the two conjuncts φ[X1/c1, . . . , Xn/cn] and
φ[X1/c′1, . . . , Xn/c′n] of an intensional conjunction φ, are equivalent up to a
permutation of constants. This permutation is π = {c1 7→ c′1, c′1 7→ c1, . . . , cn 7→
c′n, c′n 7→ cn}.



SHATTERING: EXPOSING SYMMETRIES OF THE MODEL 101

The argumentation is largely similar to the proof of Lemma 4.1:

• The constants ci and c′i do not appear as logical terms in φ.

• Where ci and c′i appear inside domain terms, they occur together, so that
π does not change domain terms.

The main difference is in the requirement that π is a bijection. This requirement
is only true when all constants ci and c′i are distinct. Otherwise, π might map a
single constant in the first solution onto two constants in the second solution
and π is not a bijection. If π is a bijection, it also achieves the first objective: it
maps every ci in a position where an Xi occurred in φ into a c′i.

The property that all ci and c′i are distinct is enforced by having an inequality
constraint between all Xi. These constraints are added on Line 8 of Algorithm 8.
Hence, we have the following result.

Theorem 4.4. After preemptive constant shattering, every intensional conjunction
(∀X, cs : φ) is automorphic.

From another point of view, the set of constrained atoms in a shattered
theory represents a partition of atoms. That is, the groundings of constrained
atoms are guaranteed to be disjoint and cover the set of all ground atoms
(Postcondition 4.17). The atoms that are grouped together are those that can be
mapped onto each other by a permutation of constants, as shown by Lemma 4.3.

4.3.3 Shattering by Splitting

The second shattering algorithm is called shattering by splitting and is based
on the Split function presented in Section 4.2.1. It recursively applies splitting
to all clauses in the theory w.r.t. some constrained atom in the same theory,
until convergence. We present it here because of its significance in the lifted
probabilistic inference literature (Poole, 2003; de Salvo Braz, Amir, and Roth,
2005).



102 COMPILATION ALGORITHM

Algorithm 10 ShatterBySplit(∆)
Function.
1: if ∃γ ∈ ∆, a ∈ atomc(∆) such that Split(γ, a) 6= {γ} then
2: return ShatterBySplit

(⋃
γ∈∆ Split(γ, a)

)
// Split recursively

3: else
4: return ∆ // Reached fixpoint of splitting

Postcondition 4.19. ∀∆, ∀a1, a2 ∈ atomc(ShatterBySplit(∆)) : (a1 ⊥⊥ a2) ∨
(a1 ≡ a2)

Postcondition 4.20. ∀∆ : ShatterBySplit(∆) ≡ ∆

Proof outlines. Postcondition 4.19 follows from applying Postcondition 4.1 in
two directions. Postcondition 4.20 follows from Postcondition 4.2 and the
observation that shattering merely applies the splitting operator multiple
times.

Postcondition 4.19 states that after shattering, all constrained atom groundings
are either disjoint or identical. The specific assignments to the logical variables
cannot be distinguished any further. This property also holds for the preemptive
shattering procedure (Postcondition 4.17). In a sense, shattering by splitting is
a weaker form of shattering, as is shown in the following proposition.

Proposition 4.5. A theory that is preemptively shattered is also shattered by splitting
(∀∆ : Shatter(∆) = ShatterBySplit(Shatter(∆))), but a theory that is shattered
by splitting is not necessarily preemptively shattered (∃∆ : ShatterBySplit(∆) 6=
Shatter(ShatterBySplit(∆))).

Example 4.7. The formula ∀X, X ∈ People : ¬ smokes(X) ∨ friends(X, alice) is
shattered by splitting (no two atoms unify). However, preemptive shattering
results in two clauses: ∀X, X ∈ People ∧ X 6= alice : ¬ smokes(X) ∨
friends(X, alice) and ∀∅, alice ∈ People : ¬ smokes(alice) ∨ friends(alice, alice).

Despite this difference in the size of the output of the two shattering algorithms,
their worst-case complexity is the same: exponential in the number of domain
variables and logical variables per clause, and polynomial in the number of
constants and free variables in ∆.

Both the compilation algorithm presented in this chapter and the definition of
the FO-da-DNNF circuit language can be extended to work with shattering by



SHATTERING: EXPOSING SYMMETRIES OF THE MODEL 103

splitting instead of preemptive shattering. The disadvantage of the ‘shattering
by splitting’ algorithm, however, is that it is then still not clear which
symmetries it exposes exactly. They certainly do not correspond to the notion
of automorphism used here, or to equivalence up to a permutation of constants.
The symmetries introduced instead correspond to a permutation of ground
atoms, which complicates the analysis of the compilation algorithm and
algorithms that operate on FO-da-DNNF circuits.

Example 4.8. The formula ∀X, X ∈ D : ¬p(X) ∨ q(a) is shattered by splitting,
but the intensional conjunction is not automorphic. Consider two conjuncts
¬p(a)∨ q(a) and ¬p(b)∨ q(a). There is no permutation of constants that maps
the first into the second. There does exist a permutation of atoms that achieves
this, namely π = {p(a) 7→ p(b)}. The notion of automorphism can be extended
to work with such permutations instead of permutations of constants.

For these reasons we choose to work with preemptive shattering in this
dissertation. Yet, we believe shattering by splitting is an interesting topic of
research and better understanding it is essential to building efficient lifted
inference algorithms.

4.3.4 Shattered Compilation

The shattered compilation rule (Algorithm 11) does not itself introduce new circuit
nodes. It merely modifies the theory to enable other rules. The theory being
shattered is a precondition of the compilation rules in Section 4.4. Furthermore,
shattering might introduce new opportunities for applying the independence
and Shannon decomposition rules. Because we only shatter in this stage of the
compilation process, the operators presented above use what is called splitting
as needed (Kisyński and Poole, 2009a).

Algorithm 11 ShatteredCompilation(∆)

Precondition 4.21. Shatter(∆) 6= ∆

Function.
1: return Compile(Shatter(∆))



104 COMPILATION ALGORITHM

∀X, Y, X ∈ People∧Y ∈ People : ¬ friends(X, Y) ∨ ¬ enemies(X, Y)
∀X, Y, X ∈ People∧Y ∈ People : ¬ friends(Y, X) ∨ ¬ enemies(X, Y)

∧

∀X ∈ People : ¬ friends(X, X) ∨ ¬ enemies(X, X)
∀X ∈ People : ¬ friends(X, X) ∨ ¬ enemies(X, X)

∀X, Y ∈ People∧ X 6= Y : ¬ friends(X, Y) ∨ ¬ enemies(X, Y)
∀X, Y ∈ People∧ X 6= Y : ¬ friends(Y, X) ∨ ¬ enemies(X, Y)

Figure 4.3: Shattered compilation

Example 4.9. The formula

∀X, Y ∈ People : enemies(X, Y)⇒ ¬ friends(X, Y) ∧ ¬ friends(Y, X),
(4.1)

has the following representation in FO-CNF:

∀X, Y, X ∈ People∧Y ∈ People :¬ friends(X, Y) ∨ ¬ enemies(X, Y)

∀X, Y, X ∈ People∧Y ∈ People :¬ friends(Y, X) ∨ ¬ enemies(X, Y)

Shattering this theory splits each formula into two cases, one where X = Y
and one where X 6= Y. After shattering, these split clauses contain no unifying
atoms anymore and have become independent. Figure 4.3 depicts this example
of shattered compilation, followed by the independence compilation rule
(Algorithm 5, p. 91).

4.4 Compilation to Intensional Nodes

This section describes the following compilation rules that introduce intensional,
or first-order, circuit nodes: VacuousConjunction, IndependentSingleGround-
ings, IndependentPairedGroundings, and AtomCounting.



COMPILATION TO INTENSIONAL NODES 105

4.4.1 Vacuous Conjunction

The first intensional compilation rule, called vacuous conjunction (Algorithm 12),
applies when the input theory ∆ consists of a single constrained clause
(intensional conjunction) ∀∅, cs : φ without any bound variables. This theory
is equivalent to φ when the constraints cs are satisfied, and to true otherwise.
Hence, this type of intensional conjunction cannot be ignored without changing
the semantics of the formula. The rule compiles the constrained clause by
removing the intensional conjunction and its constraint set from the theory and
adding them as circuit nodes.

Algorithm 12 VacuousConjunction(∆)

Precondition 4.22. ∆ = {(∀∅, cs : φ)}

Function.
1: return ∀∅, cs : Compile(φ)

Postcondition 4.23. The returned intensional conjunction is decomposable.

Postcondition 4.24. The returned intensional conjunction is automorphic.

Proof outlines. Postcondition 4.23 and Postcondition 4.24 are trivially satisfied
because the intensional conjunction has zero or one solutions.

4.4.2 Logical Variable Properties

To formally define the operators we propose next, and prove their correctness,
we first introduce some mathematical concepts related to the bound logical
variables in a theory (partly after Jha et al. (2010)).

Definition 4.2 (Unifying Variables). Two bound logical variables X and Y are
directly unifying2 if they are equated by unifying a pair of atoms in the theory. The
unifying relationship is the transitive closure of the directly unifying relation.

2Unifying is called binding in Van den Broeck (2011b). We change terminology here to avoid
confusion with the concept of free and bound logical variables.



106 COMPILATION ALGORITHM

Example 4.10. In the theory

∀X, Y, X ∈ D∧W ∈ D : ¬p(W, X) ∨ ¬ q(X)

∀Y, Y ∈ D : r(Y) ∨ ¬ q(Y)

∀Z, Z ∈ D : ¬ r(Z) ∨ s(Z)

the variable pairs (X, Y) and (Y, Z) are directly unifying. The variables X, Y and
Z are unifying. Variable W does not unify with any other variable. Note that the
unifying relationship is an equivalence relation that defines two equivalence
classes: {X, Y, Z} and {W}.

Lemma 4.6 (Unifying Domains). After shattering, unifying logical variables have
identical solutions.

Proof. Shattering constrains the solutions of two logical variables to be identical
or disjoint (Postcondition 4.16). When two variables unify, their solutions cannot
be disjoint.

Definition 4.3 (Root Unifying Class). A root variable is a variable that appears in
all the atoms in its clause. A root unifying class is an equivalence class of unifying
variables where all variables are root.

Example 4.11. In the theory of Example 4.10, {X, Y, Z} is a root unifying class
and {W} is not.

We now present two compilation rules that generate automorphic and
decomposable intensional conjunctions. In the definition of these rules, U will
denote a root unifying class. Lemma 4.6 states that all variables in U have
identical solutions after shattering. We will represent these solutions for some
variable X by the constraint set csU(X).

4.4.3 Independent Single Groundings

Let us first consider the case where the root unifying class contains exactly one
logical variable per clause, as in the theory

∀X, Y, X ∈ People∧Y ∈ People∧ X 6= Y : dislikes(X, Y) ∨ friends(X, Y)

∀X, Y, X ∈ People∧Y ∈ People∧ X 6= Y : fun(X) ∨ ¬ friends(X, Y).



COMPILATION TO INTENSIONAL NODES 107

Here, the X variables from both clauses together form a root unifying class.
Independent single groundings replaces the quantifiers for these variables by a
single intensional conjunction:

∀X ∈ People :
[
∀Y ∈ People∧ X 6= Y : dislikes(X, Y) ∨ friends(X, Y)
∧∀Y ∈ People∧ X 6= Y : fun(X) ∨ ¬ friends(X, Y)

]
It then removes this conjunction from the theory to be compiled and adds it to
the output circuit. We will look at this example in more detail in Figure 4.4 and
show the entire compiled circuit in Figure 4.5.

If after shattering, the theory contains a root unifying class U with one variable
per formula, this technique can be applied. The solutions of each variable in
U are identical and each clause is grounded w.r.t. the same set of constants
solutions(csU(Y), Y). Substituting all these solutions in a naive way would
create an extensional decomposable conjunction over | solutions(csU(Y), Y)|
subcircuits, which is a potentially very large number. However, because the
subcircuits are equivalent up to a renaming of constants, the theory is more
succinctly represented by compiling only one child theory ∆′ and enclosing
it in a decomposable automorphic intensional conjunction. The independent
single groundings rule3 is more formally described in Algorithm 13.

Algorithm 13 IndependentSingleGroundings(∆)

Precondition 4.25. The theory is shattered: Shatter(∆) = ∆.

Precondition 4.26. There exists a root unifying class U with one variable per clause:
∀γ ∈ ∆ : | bvars(γ) ∩U| = 1.

Function.
1: let Y be a new logical variable
2: θ ← [U/Y] // A substitution from the variables in U to Y
3: ∆′ ← {(∀(X \U), cs : φ)θ | (∀X, cs : φ) ∈ ∆}
4: return (∀Y, csU(Y) : Compile(∆′))

Postcondition 4.27. The returned intensional conjunction is decomposable.

Postcondition 4.28. The returned intensional conjunction is automorphic.

Postcondition 4.29 (Equivalence). ∆ ≡ (∀Y, csU(Y) : ∆′)

3This operator is called independent partial grounding in Van den Broeck et al. (2011a).



108 COMPILATION ALGORITHM

Proof of Postcondition 4.27. Precondition 4.26 guarantees that every literal in
the theory contains exactly one variable from U. These variables must
appear in the same positions of the argument lists of two unifying atoms.
Consequently, any pair of atoms that previously unified, becomes independent
after substituting a different constant in this position. Hence, for all distinct
θ1, θ2 ∈ solutions(csU(Y), Y), we have that ∆′θ1 ⊥⊥ ∆′θ2.

Proof of Postcondition 4.28. It follows from Precondition 4.25 and Theorem 4.2
that (∀Y, csU(Y) : ∆′) is automorphic.

Proof outline of Postcondition 4.29. Independent single groundings replaces a
conjunction of universally quantified formulas by a universally quantified
conjunction, which is equivalent. Furthermore, it associates the constraint set
csU(Y) with this new quantifier. Looking at the reduction semantics of FOL-DC
(Equation 3.4), this corresponds to applying the “distributivity of disjunction
over conjunction” property to an equivalent FOL theory.

∆ ≡ ∀X, Y, X ∈ People∧Y ∈ People∧ X 6= Y : dislikes(X, Y) ∨ friends(X, Y)
∀X, Y, X ∈ People∧Y ∈ People∧ X 6= Y : fun(X) ∨ ¬ friends(X, Y)

∀X
X∈People

∆′ ≡ ∀Y, Y ∈ People∧ X 6= Y : dislikes(X, Y) ∨ friends(X, Y)
∀Y, Y ∈ People∧ X 6= Y : fun(X) ∨ ¬ friends(X, Y)

Figure 4.4: Independent Single Grounding

Example 4.12. Figure 4.4 shows a theory ∆ that is shattered and has a root
unifying class containing the X variable from both clauses. When these
variables are grounded to different constants (∆[X/alice] and ∆[X/bob]), the
different groundings are independent, which means they form a decomposable
conjunction. This naive approach would generate |People| subcircuits. We can
do better by observing that the grounded theories are identical up to a renaming
of the constants, and so are the circuits. Therefore, it suffices to compile a single
theory ∆′ where the X variables are free and represent a single constant from
the domain People.



COMPILATION TO INTENSIONAL NODES 109

The advantage of using an intensional node instead of grounding the variables
in U is that we can also use it to compile formulas with free variables in csU(Y),
for example when the domain of the logical variable is not specified. With
free variables in csU(Y), we cannot compute solutions(csU(Y), Y) and compile
an extensional conjunction as in the naive approach above. Compiling into
an intensional conjunction has the additional advantage that the compiled
FO-da-DNNF size is independent of | solutions(csU(Y), Y)|.

∀X
X∈People

∨

∧∧

∧

∀Y
Y∈People

¬ fun(X)fun(X)

∀Y
Y∈People

∀Y
Y∈People

∨

friends(X, Y)

∧

¬ friends(X, Y) dislikes(X, Y)

(a) (b)

(c) (d)

Figure 4.5: Circuit after continuing compilation of Figure 4.4

Example 4.13. Independent single grounding does not simplify the theory,
except for removing quantifiers. By doing that, however, it creates new
opportunities for other rules. For example, ∆′ of Figure 4.4 contains an atom
fun(X), which contains no bound logical variables and therefore allows for
Shannondecomposition. This is shown in Figure 4.5. In the branchwhere fun(X)

is false (labeled with (b)), subsequent steps of unit propagation simplify the
theory in a decomposable conjunction of constrained literals. The other branch
(labeled with (a)) requires one more step of independent single grounding
followed by Shannon decomposition.



110 COMPILATION ALGORITHM

An important use of independent single grounding is the compilation of
constrained literals. When the theory consists of a single clause with a single
literal, every variable is root, and each variable is in its own root unifying class.

Example 4.14. The circuits rooted in nodes (c) and (d) of Figure 4.5 are examples
of how independent single grounding compiles constrained literals. Node (c),
represents the formula ∀Y, Y ∈ People : ¬ friends(X, Y). The set {Y} is a root
unifying class here. Similarly for node (d), ∀Y, Y ∈ People : dislikes(X, Y) is a
constrained literal, which guarantees that all variables are root, and independent
single grounding applies.

4.4.4 Independent Paired Groundings

When a logical theory contains symmetric, anti-symmetric or total relations,
such as

∀X, Y ∈ People∧ X 6= Y : friends(X, Y)⇒ friends(Y, X), (4.2)

∀X, Y ∈ People∧ X 6= Y : parent(X, Y)⇒ ¬parent(Y, X), (4.3)

∀X, Y ∈ Zn : ≤ (X, Y)∨≤ (Y, X), (4.4)

ormore general formulas, such as Formula 4.1, none of the previously presented
rules apply. Intuitively, the underlying problem is the presence of either:

• Two unifying (not independent) atoms in the same clause which contain
the same logical variable in different positions of the argument list.
Examples are (the FO-CNF of) Formulas 4.2, 4.3 and 4.4 above, where
the X and Y variable are unified when unifying two atoms from the same
clause.

• Two logical variables that unify when unifying one pair of atoms but
appear in different positions of the argument list of two other unifying
atoms. An examples is Formula 4.1, which in FO-CNF is

∀X, Y, X ∈ People∧Y ∈ People : ¬ friends(X, Y) ∨ ¬ enemies(X, Y)

∀X, Y, X ∈ People∧Y ∈ People : ¬ friends(Y, X) ∨ ¬ enemies(X, Y)



COMPILATION TO INTENSIONAL NODES 111

Here, unifying the enemies(X, Y) atoms unifies the X variables from both
clauses, which appear in different positions of the argument lists of the
unifying atoms friends(X, Y) and friends(Y, X).

Both of these properties preclude the use of the independent single groundings
rule. What they have in common is the presence of a root unifying class with
more than one variable per clause. In Formulas 4.2, 4.3 and 4.4 the class is
U = {X, Y}. In the case of Formula 4.1, the class contains all four variables (two
times X and Y).

The independent paired groundings compilation rule4 (Algorithm 14) applies in
these cases, where the root unifying class contains exactly two logical variables
per clause. For example, Formula 4.2 can equivalently be written as

∀X, Y ∈ People∧ X < Y :
[

(¬ friends(X, Y) ∨ friends(Y, X))

∧(¬ friends(Y, X) ∨ friends(X, Y))

]
where the clause is split in two: (i) a copy where X < Y, and (ii) a copy where
initially X > Y, but where the X and Y variables were syntactically swapped,
so that also X < Y. Recall that < is interpreted according to the natural order
of the constants in the signature of FOL-DC. The disjunction of X < Y and
X > Y is equivalent to X 6= Y. These two copies are denoted by ∆YZ and ∆ZY
in Algorithm 14. Their conjunction is equivalent to the original clause. The
intensional conjunction over these variables can then be taken out of the theory
to be compiled and added to the output circuit.

Proof of Postcondition 4.32. We need to show that for all distinct [Z/cZ, Y/cY]

and [Z/c′Z, Y/c′Y] in solutions((csU(Y) ∧ csU(Z) ∧ (Y < Z)), {Z, Y}), it holds
that ∆′[Z/cZ, Y/cY] ⊥⊥ ∆′[Z/c′Z, Y/c′Y]. Because of Precondition 4.31, all atoms
have the arguments Y and Z. Assume now that there are two atoms in ∆′

that unify. Because of the definition of U, they must either (i) unify Z with Z
and Y with Y or (ii) Y with Z. In case (i), after applying the substitutions, this
leads to unifications cZ = c′Z and cY = c′Y, which is impossible because the
solutions are distinct. In case (ii), this leads to unifications cZ = c′Y and cY = c′Z,

4Independent paired grounding is based on the domain recursion rule of Van den Broeck (2011b)
and applies to the same theories. The advantage of independent paired grounding is that it does not
require domain recursion nodes in the FO-da-DNNF circuit language. It uses intensional conjunction
over pairs of variables instead. Furthermore, model counting of these intensional conjunctions is
more efficient than model counting of a domain recursion node.



112 COMPILATION ALGORITHM

Algorithm 14 IndependentPairedGroundings(∆)

Precondition 4.30. The theory is shattered: Shatter(∆) = ∆.

Precondition 4.31. There exists a root unifying class U with two variables per clause:
∀γ ∈ ∆ : | bvars(γ) ∩U| = 2.

Function.
1: let Y, Z be new logical variables
2: let Ua be a subset of U s.t. each clause has exactly one variable from Ua
3: Ub ← U \Ua
4: θYZ ← [Ua/Y, Ub/Z]
5: θZY ← [Ua/Z, Ub/Y]
6: ∆YZ ← {(∀(X \U), cs : φ)θYZ | (∀X, cs : φ) ∈ ∆}
7: ∆ZY ← {(∀(X \U), cs : φ)θZY | (∀X, cs : φ) ∈ ∆}
8: ∆′ ← ∆YZ ∧ ∆ZY
9: return (∀Y, Z, (csU(Y) ∧ csU(Z) ∧ (Y < Z)) : Compile(∆′))

Postcondition 4.32. The returned intensional conjunction is decomposable.

Postcondition 4.33. The returned intensional conjunction is automorphic.

Postcondition 4.34 (Equivalence). ∆ ≡ (∀Y, Z, (csU(Y) ∧ csU(Z) ∧ (Y <
Z)) : ∆′)

which is impossible, because it would imply that simultaneously cZ < cY and
cY < cZ.

Proof of Postcondition 4.33. The constraint Y < Z implies that Y 6= Z. Be-
cause of this inequality and Precondition 4.30, Theorem 4.4 applies and
(∀Y, Z, (csU(Y) ∧ csU(Z) ∧ (Y < Z)) : ∆′) is automorphic.

Proof outline of Postcondition 4.34. Analogous to the proof outline of Postcondi-
tion 4.29.

Example 4.15. Figure 4.6 depicts the compiled circuit for Formula 4.1. The
first compilation steps are shattered compilation and independence, as was
depicted in Figure 4.3. The root’s left branch represents the case where X = Y,
which can be compiled by the independent single groundings rule. The right
branch represents the case where X 6= Y. This theory (shown in Figure 4.3)
has a root unifying class with two variables per formula and is compiled



COMPILATION TO INTENSIONAL NODES 113

∧

∀X
X
∈P

eo
pl

e

∨

∧

fr
ie

nd
s(

X
,X

) ¬
en

em
ie

s(
X

,X
)

¬
fr

ie
nd

s(
X

,X
)

∀X
,Y

X
∈P

eo
pl

e∧
Y
∈P

eo
pl

e∧
X
<

Y

∨

∧

fr
ie

nd
s(

X
,Y

)

∧

¬
fr

ie
nd

s(
X

,Y
)

∨

∧ fr
ie

nd
s(

Y
,X

)

∧ ¬
fr

ie
nd

s(
Y

,X
)

∧

∀∅ X
6=

Y

¬
en

em
ie

s(
X

,Y
)

∀∅ X
6=

Y

¬
en

em
ie

s(
Y

,X
)

∀∅ X
6=

Y F

Figure 4.6: Compiled circuit for Formula 4.1



114 COMPILATION ALGORITHM

by the independent paired groundings rule, directly followed by Shannon
decomposition.

4.4.5 Generalization to Any Root Unifying Class

It is possible to generalize the independent paired groundings compilation rule
to apply to any root unifying class of a shattered theory with no independent
subtheories. We first prove an additional property of root unifying classes.

Lemma 4.7. In a shattered theory without any independent subtheories, all clauses
and atoms contain the same number of variables from a root unifying class U:

∃n s.t. ∀γ ∈ ∆, ∀a ∈ atomc(∆) : | bvars(γ) ∩U| = |Va ∩U| = n, (4.5)

where Va are the logical variable arguments of a.

Proof. Denote with ∆n the clauses in ∆ that contain n logical variables from
U and with ∆c

n its compliment in ∆. If ∆ is nonempty, there is an n for which
∆n is nonempty, and every atom in ∆n contains exactly n variables from U
(Definition 4.3). Since the theory contains no independent subtheories, there
must be an atom a in ∆n which unifies with an atom a′ in ∆c

n, or ∆c
n is empty.

After shattering, all unifications bind exactly one variable from a to exactly
one variable from a′. Because a contains exactly n variables from U, a′ must
also contain exactly n (Definition 4.2), and because U is a root unifying class,
the clause of aγ also contains exactly n, which contradicts the definition of ∆c

n.
Therefore, ∆c

n is empty. Because the variables in U are root, they also appear in
all atoms.

It follows from Lemma 4.7 that when a theory is first shattered and independent
subtheories are decomposed, any root unifying class has the same number of
variables in each atom. It then follows from Lemma 4.6 that all of these variables
share the same set of solutions and from Theorem 4.4 that the intensional
conjunction over these variables is automorphic. These properties open up the
possibility of generalizing the approach of Algorithm 14 to any root unifying
class. This involves conjoining the theories for any permutation of the variables
Y, Z, . . . and enforcing an ordering constraint < in the intensional conjunction
over these variables.



COMPILATION TO INTENSIONAL NODES 115

The formal specification of this generalized independent grounding rule is
straightforward given Algorithm 14 but lengthy and therefore omitted here.
We refer the reader to Taghipour et al. (2012b) for the details of a similar
inference rule in first-order variable elimination that is also based on domain
recursion (Van den Broeck, 2011b).

4.4.6 Atom Counting

We now present a compilation rule that applies to theories that contain an atom
with exactly one bound logical variable argument. It generates automorphic
and deterministic intensional disjunctions. An example is Formula 3.10, that is,

∀X, Y ∈ People : smokes(X) ∧ friends(X, Y)⇒ smokes(Y). (3.10′)

It contains no root unifying class, because none of the variables are root.
Other compilation rules also do not apply. Yet we can compile this formula by
quantifying over all possible interpretations of the smokes(X) atom.

Atom counting (Algorithm 15) partitions the set of models depending on the
arguments for which the atom is true. The disjunctions between these partitions
are deterministic (Postcondition 4.37), because their models disagree in at least
one atom. Because the theory has been shattered, the individual ground atoms
are indistinguishable. As a result, the returned deterministic disjunction is
automorphic (Postcondition 4.38).

Proof of Postcondition 4.37. We need to prove that for two distinct [D/d1],
[D/d2] ∈ solutions(csD, D), we have that ∆′[D/d1] ∧ ∆′[D/d2] is unsatisfiable.
There exists a constant c which is contained in d1 but not in d2 (or vice versa).
Thismeans that ∆′[D/d1] is only satisfied in interpretationswhere a[X/c] is true
and ∆′[D/d2] is only satisfied in interpretations where a[X/c] is false. Hence,
their conjunction is unsatisfiable.

Proof of Postcondition 4.38. We need to prove that for all [D/{c1, . . . , cn}] and
[D/{c′1, . . . , c′n}] in solutions(csD, D), the two theories ∆′[D/{c1, . . . , cn}] and
∆′[D/{c′1, . . . , c′n}] are equivalent up to a permutation of constants. Specifically,
we can show that this permutation is π = {c1 7→ c′1, c′1 7→ c1, . . . , cn 7→ c′n, c′n 7→
cn}. The proof is analogous to the proof of Lemma 4.3: (i) The constants c1, . . . , cn
and c′1, . . . , c′n do not appear as logical terms in ∆′. (ii) Where ci and c′i appear



116 COMPILATION ALGORITHM

Algorithm 15 AtomCounting(∆)

Precondition 4.35. The theory is shattered: Shatter(∆) = ∆.

Precondition 4.36. There exists an atom in ∆ with exactly one bound logical variable
argument: ∃ (∀{X}, cs : a) ∈ atomc(∆)

Function.
1: let K be the set of constants in ∆
2: let V be the set of free logical variables in ∆
3: let D be the set of domain terms in ∆
4: CS← ShatterVar(X, K ∪V,D)
5: for some csa ∈ CS such that ((∀X, csa : a)⇒ (∀X, cs : a))
6: let csD be such that solutions(csD, D) = 2solutions(csa ,X)

7: γT ← (∀X, (X ∈ D∧ csa) : a)
8: γF ← (∀X, (X /∈ D∧ csa) : ¬a)
9: ∆′ ← ∆ ∧ γT ∧ γF
10: return ∃D, csD : Compile(∆′)

Postcondition 4.37. The returned intensional disjunction is deterministic.

Postcondition 4.38. The returned intensional disjunction is automorphic.

Postcondition 4.39 (Equivalence). ∆ ≡ (∃D, csD : ∆′)

inside domain terms other thanD, they occur together, so that π does not change
these domain terms. (iii) π maps γT[D/{c1, . . . , cn}] into γT[D/{c′1, . . . , c′n}]
and γF[D/{c1, . . . , cn}] into γF[D/{c′1, . . . , c′n}].

Proof outline of Postcondition 4.39. The formula ∃D, csD : γT ∧ γF is a tautology,
because it is satisfied in any interpretation by choosing D to be those constants
for which a is satisfied by the interpretation. Then, because of distributivity,
∆ ≡ (∆ ∧ T) ≡ (∆ ∧ (∃D, csD : γT ∧ γF)) ≡ (∃D, csD : ∆ ∧ γT ∧ γF) ≡
(∃D, csD : ∆′).

Atom counting compiles a FO-da-DNNF that is parametrized in D but whose size
is independent of | solutions(csD, D)| and | solutions(csa, X)|. The rule by itself
does not simplify the theory, but by introducing two new unit clauses, unit
propagation will be able to eliminate the literal a from the theory entirely in
subsequent compilation steps.



COMPILATION TO INTENSIONAL NODES 117

Line 6 of Algorithm 15 generates a new constraint set csD such that each solution
to D is a subset of all solutions to X according to constraint set csa. This new
constraint set can be generated as follows:

csD = (D ⊆ S) ∧
∧

(X∈F)∈csa

(S ⊆ F) ∧
∧

(X/∈F)∈csa

(S ⊆ Fc)

∧
∧

(X=Y)∈csa

(S = {Y}) ∧
∧

(X 6=Y)∈csa

(Y /∈ S)

Note that the empty set ∅ is always a solution of csD.

∀X, Y, X ∈ People∧Y ∈ People : fun(X) ∨ ¬ friends(X, Y)
∀X, Y, X ∈ People∧Y ∈ People : fun(X) ∨ ¬ friends(Y, X)

∃D
D⊆People

∀X, X ∈ D : fun(X)
∀X, X ∈ People∧ X /∈ D : ¬ fun(X)

∀X, Y, X ∈ People∧Y ∈ People : fun(X) ∨ ¬ friends(X, Y)
∀X, Y, X ∈ People∧Y ∈ People : fun(X) ∨ ¬ friends(Y, X)

Figure 4.7: Atom Counting of ∀X, X ∈ People : fun(X)

Example 4.16. Figure 4.7 shows a theory ∆ that only allows for atom counting.
The fun(X) atom has 2|People| partial interpretations (e.g., {fun(alice), fun(bob)},
{fun(alice),¬ fun(bob)},. . . , {¬ fun(alice),¬ fun(bob)} when the number of
people is 2). We can create a theory equivalent to ∆ by conjoining each partial
interpretation with ∆, and taking the disjunction over all partial interpretations.
Because each partial interpretation differs in at least one truth assignment, this
disjunction is deterministic. Compiling the theory as such defies the point of
lifted inference, because it creates 2|People| subcircuits. However, we can observe
that all subcircuits are isomorphic. They are identical up to the constants for
which fun(X) is true. We need to compile only one subcircuit, parametrized in
the subset D of People. Evaluating the model count of this circuit is only linear
in |People|, which makes this operator lifted.

Example 4.17. Atom counting only adds unit clauses to the theory. Figure 4.8
depicts the entire compiled circuit following Figure 4.8. It shows three



118 COMPILATION ALGORITHM

∃D
D⊆People

∧

∀X
X∈D

fun(X)

∀X
X∈People∧X/∈D

¬ fun(X)

∀X
X∈People∧X/∈D

∀Y
Y∈People

¬ friends(X, Y)

∀X
X∈D

∀Y
Y∈People∧Y/∈D

Figure 4.8: Circuit after continuing compilation of Figure 4.7

subsequent steps of unit propagation, generating four constrained literals,
which are individually compiled into intensional conjunctions.

Example 4.18. The result of applying atom counting to Formula 3.10′ was
depicted in Figure 3.2b. After atom counting, which introduces the root node,
subsequent steps of independent single grounding compile the rest of the
circuit.

4.5 Grounding

If no other compilation rule applies, there is one exceptional compilation rule,
called Ground (Algorithm 16), that can be used to compile any sentence.

The Ground compilation rule grounds out a logical variable in the theory, after
which compilation is retried. Postcondition 4.41 follows from the grounding
semantics of sentences (Definition 3.11). A good heuristic for selection the
variable X to ground out is to select the variable with the smallest number of
solutions | solutions(X, cs)|.

The grounding rule always applies to theories that are sentences, until all
logical variables are removed. Then, propositional knowledge compilation
algorithms can compile it into a d-DNNF circuit, which is also a FO-da-DNNF



FIRST-ORDER SMOOTHING 119

Algorithm 16 Ground(∆)

Precondition 4.40. There exists a constraint set cs in ∆ without free variables.

Function.
1: let γ be the constrained clause containing cs
2: for some X ∈ bvars(γ)
3: Γ← {γθ | θ ∈ solutions(cs, X)}
4: return Compile (∆ \ γ) ∪ Γ

Postcondition 4.41. ((∆ \ γ) ∪ Γ) ≡ ∆

circuit. A disadvantage of using the grounding rule is the shift in complexity it
causes. Whereas the complexity of compiling a FO-da-DNNF circuit with other
rules is independent of the size of the domain terms in the theory, grounding the
theory will cause the complexity of compilation to be potentially exponential in
this number. After grounding every logical variable in the theory, the complexity
of compilation is exponential in the treewidth of the input CNF (Darwiche, 2001b).

4.6 First-Order Smoothing

Compilation steps such as unit propagation and atom counting may remove
literals frombranches of the FO-da-DNNF. The groundings of these literalsmay go
unaccounted for when doing model counting in the circuit. For propositional
NNF circuits, this problem is solved by smoothing the circuit (Darwiche and
Marquis, 2002). This section presents a lifted smoothing algorithm for first-
order circuits. It compiles FO-da-DNNF circuits into FO-sda-DNNF by enforcing the
smoothness property (Definitions 3.23 and 3.24).

Smoothing first propagates a set of constrained atoms upwards in the circuit,
representing the ground atoms that are accounted for in the circuit. In the
propositional case, these constrained atoms are just sets of propositions and
during propagation, the set of propositions represented by a parent node is the
union of the sets of the children.

For first-order circuits, this step is performed by the following function. It takes
as input a FO-NNF circuit and returns back a set of constrained atoms.



120 COMPILATION ALGORITHM

Definition 4.4 (atomc of a FO-NNF Circuit). The base cases of the atomc function
are count(F) = count(T) = ∅ and atomc(l) = {a} when l is a literal and a
its atom. The recursive definition is as follows. For an extensional conjunction
ψ = φ1 ∧ · · · ∧ φn or disjunction ψ = φ1 ∨ · · · ∨ φn,

atomc(ψ) = atomc(φ1) ∪ · · · ∪ atomc(φn).

For an intensional conjunction or disjunction ψ = ((∀, ∃)V, cs : φ), atomc:

atomc(ψ) = {(∀(Y∪V), (csa ∧ cs) : a) | (∀Y, csa : a) ∈ atomc(φ)}

For intensional nodes, atomc adds the constraints of the intensional node to
the constrained atoms of the child circuit. Each first-order atom represents a
set of ground atoms. A set of first-order atoms in turn represents the union
of these groundings. We will implicitly assume that the returned constrained
atoms are mutually independent. This can be enforced by a procedure similar
to the Split function (Algorithm 2). Note that the atomc function is related to
the grounding function gr (Definition 3.11) as follows: The atoms appearing in
the grounding gr of a sentence are the ground atoms represented by the atomc

of the same sentence. The difference is that atomc also takes formulas as input
that are not sentences.

Second, smoothing modifies the circuit to make every disjunctive node smooth.
In the propositional case, let Pp be the set of propositions represented by a
parent node and Pc be the ones represented by one of its child disjuncts φ.
Assume that there is a non-empty set of propositions {p1, . . . , pn} = Pp \ Pc
that are not represented by the child. Smoothing then replaces that child node
by the circuit φ ∧ (p1 ∨ ¬p1) ∧ · · · ∧ (pn ∨ ¬pn). Note that the conjunctions in
this formula are decomposable and the disjunctions are deterministic. When
doing this for every child node, the parent node becomes smooth.

The procedure for first-order circuits is similar. Let φp be a disjunctive parent
node (extensional or intensional) and φc its child. Smoothing then constructs
a set of independent constrained atoms Ac = {(∀V1, cs1 : a1), . . . , (∀Vm, csm :
am)} such that ∀i : φc ⊥⊥ (∀Vi, csi : ai) and atomc(φc) ∪ atomc(Ac) =

atomc(φp). These are then inserted into the circuit by replacing the child φc by

φc ∧ (∀V1, cs1 : a1 ∨ ¬a1) ∧ · · · ∧ (∀Vm, csm : am ∨ ¬am).

Doing this for every node makes the circuit smooth. Because the (∀Vi, csi : ai ∨



RELATED WORK 121

¬ai) are tautologies, adding them does not change the semantics of the circuit.
After shattering, these additional intensional conjunctions are decomposable
and automorphic.

Example 4.19. The circuit in Figure 4.5 is not smooth. The bottom extensional
disjunction’s operands cover a different set of atoms. The left branch covers only
friends(X, Y)while the right branch covers friends(X, Y) and dislikes(X, Y). In
this case, first-order smoothing is identical to propositional smoothing. It sub-
stitutes the left branch by friends(X, Y) ∧ (dislikes(X, Y) ∨ ¬dislikes(X, Y)).

Example 4.20. The circuit in Figure 4.8 is not smooth. The theory in the root
node (Figure 4.7) covers atoms fun(X) and friends(X, Y). The circuit below
the root node covers fun(X) entirely, but is not accounting for the atoms
friends(X, Y), X ∈ D, Y ∈ D. First-order smoothing compensates for this by
inserting a conjunction below the intensional disjunction. The operands of the
new conjunction are (i) the original child of the intensional disjunction and
(ii) the compiled circuit for the theory ∀X, Y, X ∈ D, Y ∈ D : friends(X, Y) ∨
¬ friends(X, Y).

Example 4.21. Figure 3.3b depicted the smoothed circuit of Figure 3.2b for
Formula 3.10.

4.7 Related Work

Our first-order knowledge compilation algorithm is related to and draws
inspiration from algorithms for related problems. We will briefly describe
the relation to propositional knowledge compilation and first-order search
algorithms.

4.7.1 Relation to Propositional Knowledge Compilation

On propositional input, our compilation algorithm uses the same top-down
approach as the c2d (Darwiche, 2004) and Dsharp (Muise et al., 2010; Muise
et al., 2012) compilers to propositional d-DNNF, although we do not use the same
advanced techniques for caching, clause learning, etc. For these inputs, our al-
gorithm uses the Shannon decomposition, unit propagation and decomposition
compilation rules only. These rules are first-order generalizations of the same
compilation rules in propositional compilers.



122 COMPILATION ALGORITHM

The main difference between the c2d and Dsharp compilers is in the decom-
position step. The c2d compiler first builds a decomposition tree over the set
of clauses, which is then used to guide a static decomposition during the top-
down search. In contrast, Dsharp attempts to find a dynamic decomposition
during compilation. Our independence compilation rule follows this dynamic
decomposition approach.

4.7.2 Relation to Lifted Search Algorithms

Huang and Darwiche (2005) observed that there is a deep connection between
propositional knowledge compilation and the trace of exhaustive DPLL
search (Davis and Putnam, 1960; Davis, Logemann, and Loveland, 1962), in
the sense that the trace of certain DPLL search algorithms corresponds to a
d-DNNF circuit. Similarly, the trace of a top-down d-DNNF compiler corresponds
to an exhaustive DPLL search. This deep connection also exists at the first-order
level, between first-order DPLL search (Baumgartner, 2000; Baumgartner and
Tinelli, 2008; Gogate and Domingos, 2011), lifted AND/OR search (Gogate and
Domingos, 2010) and FO-sda-DNNF circuits, as we show next.

Lifted AND/OR Search and Probabilistic Theorem Proving

Gogate and Domingos (2010) present a lifted AND/OR search algorithm for
counting the solutions to a (weighted) first-order constraint satisfaction problem.
The trace of this algorithm corresponds to a multi-valued equivalent of
FO-sda-DNNF. The AND and OR nodes in their search tree correspond to
decomposable conjunctions and deterministic disjunctions, as in the propositional
case.5 Gogate and Domingos extend the propositional AND/OR search tree
with POWER-AND and POWER-OR nodes. The former correspond to our
intensional conjunctions.

AND/OR searchwas reformulated asProbabilistic TheoremProving (PTP) (Gogate
and Domingos, 2011), also an algorithm for (weighted) model counting.
Although there are differences in theway liftedAND/OR search and PTP assign
weights tomodels, their search spaces do not fundamentally differ. PTP uses two
main operations of decomposition and splitting for lifted model counting, which

5Although Dechter and Mateescu (2007) note that deterministic disjunctions are theoretically
more expressive than OR nodes, this difference does not show in the nodes compiled by our
algorithm.



RELATED WORK 123

are similar to our independent single groundings and atom counting compilation
rules. Similar to our approach, PTP also employs unit or constraint propagation
to simplify the theory.

The first-order language used for PTP and lifted AND/OR search cannot
express free variables, neither domain nor logical, and allows only for (in)equality
constraints to be associated with logical variables. A consequence of the lack
of free variables is that the theories whose solutions are being counted at each
step of the search algorithm have to be sentences. This leads to three important
differences.

1. PTP and lifted AND/OR search compute the model count of a specific
theory with specific domains. By compiling theories with free variables,
we can later on substitute constants and sets of constants in the compiled
circuits in order to reuse them to compute many different model counts
(e.g., for different domain sizes). This is an important motivation for using
the knowledge compilation approach.

2. POWER-OR and splitting nodes are at first sight similar to our intensional
disjunctions, but are essentially different. When reaching a POWER-
OR/splitting node in the search tree, PTP performs a case analysis of the
assignments to the groundings of some constrained atom a. It branches
the search into n + 1 subproblems, one for each number of true atoms in
a truth assignment to the n groundings of a. In each branch, it computes
the model count for one specific interpretation of a. In contrast to that,
an intensional FO-sda-DNNF disjunction has one single child node. Each
interpretation of a is represented by a single domain variable D, quantified
by the intensional node. When further compiling this child node, the
domain D is a free variable. Hence, the AND/OR and PTP search space
can be polynomially larger in terms of the domains of the logical variables,
and even exponentially larger in terms of the number of recursive POWER-
OR/splitting nodes.

3. For the specific goal of counting models, it is reasonable to consider only
n + 1 specific interpretations. But looking at the trace of these algorithms,
the logical equivalence between the theories at various levels of the search
tree is lost, because many interpretations are not represented in the
search trace. This makes it hard to extract a FO-da-DNNF circuit from a given



124 COMPILATION ALGORITHM

trace of these search algorithms.6 In contrast, our compilation algorithm
explicitly represents only a single subdomain, using a domain variable,
but implicitly represents all instantiations by existentially quantifying
that variable.

Despite these differences in the compilation phase, when using a FO-da-DNNF for
model counting, we will iterate over all n + 1 subcircuits (Definition 3.33) in an
intensional disjunction generated by the atom counting operator. Consequently,
the nodes in the trace of our counting algorithm correspond one-to-one to the
search space of PTP and lifted AND/OR search.

The techniques used in our compilation rules, in PTP and lifted AND/OR
search were inspired by the work on lifted probabilistic inference algorithms.
We will look at these algorithms in more detail in the following chapter, but
already note some relations. Independent single grounding is based on the same
underlying ideas as partial inversion in FOVE (de Salvo Braz, Amir, and Roth,
2006) and the power rule in CPs (Jha et al., 2010). Atom counting is inspired by
counting formulas and counting elimination in FOVE and the generalized binomial
rule in CPs.

Even with these shared sources of inspiration, there are notable differences
between our compilation rules and PTP or AND/OR search operators.
The search algorithms do not have a corresponding lifted operator for our
independent paired grounding compilation rule, and thus resort to grounding for
(sub-)problems that we can solvewith first-order knowledge compilation. Aswe
will see in Chapter 6, this missing operator is essential in obtaining theoretical
results of completeness. PTP and lifted AND/OR algorithms are described at a
high level of generality. For instance, in Gogate and Domingos (2011), no details
are given on how to find decomposers and atoms to split on. Therefore, it is
difficult to make further claims about the relation to our compilation rules at a
more technical level.

4.8 Conclusions and Future Work

This chapter presented an algorithm to compile a theory in FOL-DC into a
FO-da-DNNF circuit. This algorithm is composed of a set of compilation rules,

6In the worst case, all n + 1 chidren of an POWER-OR/splitting node have a different search
trace, and no single FO-da-DNNF subcircuit can represent them all.



CONCLUSIONS AND FUTURE WORK 125

which recursively simplify the theory and introduce nodes to the circuit.
Each compilation rule was described with preconditions and postconditions,
precisely stating which theories it applies to and what its effects are. We showed
that by applying the smoothing operation to a FO-da-DNNF circuit, it can be
transformed into a FO-sda-DNNF circuit.

There are several directions of future work. The input language supported by
our compilation algorithm is restrictive (see Section 4.1.1). It has to be a FO-CNF
without intensional disjunctions and a specific type of constraint sets. Relaxing
some of the assumptions can widen the applicability of first-order knowledge
compilation. In particular, adding support for intensional disjunctions would
enable the use of first-order knowledge compilation for inference in directed
probabilistic models (see Chapter 5).

As discussed in Section 4.3.3, shattering is still poorly understood, yet essential
to building efficient algorithms for first-order knowledge compilation and lifted
inference. It should be possible to avoid shattering in many more cases than we
do now.

Propositional SAT solvers and knowledge compilation algorithms use certain
techniques that are not always required for the algorithms to be correct,
but that lead to significant speedups, including caching, clause learning, non-
chronological backtracking and heuristics for finding variable orderings and tree
decompositions (Zhang et al., 2001; Darwiche, 2004; Muise et al., 2010). One of the
next steps for first-order knowledge compilation and lifted inference research is
to also lift these techniques to the first-order level. Our compilation algorithm
already uses a naive caching approach. Otherwise, the problem of lifting these
techniques is largely unexplored.

To better understand the complexity of compilation and in order to optimize
the order in which we apply the compilation rules, a more thorough analysis
is required. We believe that analogous to the propositional case, notions of
lifted tree decomposition and lifted treewidth can be defined to more precisely
determine the complexity of these algorithms.





Exact Lifted Probabilistic
Inference

5

Propositional logic and probabilistic graphical models suffer from the same
limitations: they make it difficult to express general, high-level knowledge and
to model complex interactions between objects in the world. For propositional
logic, this problem is solved by using first-order logic, which can express
knowledge at a higher level of generality, talking about properties of objects
and the relations that hold between them.

Nonetheless, first-order logic retains another limitation of propositional logic:
it is difficult to express commonsense knowledge and uncertain information.
Probabilistic graphical models provide a solution to this problem, with their
ability to concisely model probability distributions over a large number of
propositional random variables. For these reasons, there is a lot of interest in
combining probabilities and first-order logic for dealing with both uncertain
knowledge and complex relational domains. This interest has resulted in
the fields of Statistical Relational Learning (SRL) and Probabilistic Logic
Learning (PLL). This chapter is concerned with the type of models used in
these fields and the problem of performing efficient exact inference in these
models.

Due to the increased expressivity of SRL models, inference is often intractable
when using probabilistic graphical model inference algorithms. The alternative

127



128 EXACT LIFTED PROBABILISTIC INFERENCE

is to develop new approaches that exploit the first-order aspect of SRL models
to speed up probabilistic inference. These algorithms are called lifted inference
algorithms. They exploit the abundant symmetries in SRL models to avoid
repeated computations. We will show how to use weighted first-order model
counting as an approach to exact lifted probabilistic inference. In particular,
we show in this chapter that first-order knowledge compilation to FO-sda-DNNF

can be used to perform weighted first-order model counting and thereby lifted
inference.

Section 5.1 briefly reviews the literature on SRL and PLL. It introduces
the representation languages used in this and the following chapters. Then,
Sections 5.2 and 5.3 discuss inference algorithms for these languages. The first
class of algorithms reduce the problem to inference in propositional models.
The second class are lifted inference algorithms that reason at the first-order
level. Section 5.4 describes the first contribution of this chapter: lifted inference
by weighted first-order model counting. The second contribution is described in
Section 5.5. It is an algorithm to perform weighted first-order model counting
by first-order knowledge compilation. These two sections constitute a new exact
lifted inference algorithm. Section 5.6 describes the relationship between this
work and existing exact lifted inference algorithms. Finally, our approach is
evaluated empirically in Section 5.7.

The general first-order knowledge compilation approach to lifted inference was
previously published in

G. Van den Broeck, N. Taghipour,W.Meert, J. Davis, and L. De Raedt
(2011a). “Lifted probabilistic inference by first-order knowledge
compilation”. In: Proceedings of the Twenty-Second International Joint
Conference on Artificial Intelligence (IJCAI). Menlo Park, California,
pp. 2178–2185

Our lifted algorithm for efficiently computing conditional probabilities (Sec-
tion 5.5.3) was previously published in

G. Van den Broeck and J. Davis (2012). “Conditioning in first-
order knowledge compilation and lifted probabilistic inference”.
In: Proceedings of the Twenty-Sixth AAAI Conference on Artificial
Intelligence, Palo Alto, California, USA



STATISTICAL RELATIONAL LEARNING 129

Some additional experiments we report on were published in Van den Broeck
(2011b).

5.1 Statistical Relational Learning

Statistical relational learning (Getoor and Taskar, 2007) and Probabilistic logic
learning (De Raedt et al., 2008) are research areas at the intersection of three
fields. The first is probability theory or probabilistic graphical models, the
second is first-order logic or relational databases, and the third is machine
learning. While the two approaches essentially study the same problem, there
are differences in emphasis. Whereas SRL is rooted in relational databases,
relational learning and probabilistic graphical models, PLL emerged from the
inductive logic programming (Muggleton andDe Raedt, 1994) community, with
attempts of adding probabilistic constructs to logic programming languages.
In essence, both fields have converged to being concerned with modeling and
learning complex logical and probabilistic interactions between large numbers
of objects. We will here refer to all SRL and PLL formalisms as SRL, even when
they originated in the PLL community.

Similar to the difference between directed and undirected probabilistic
graphical models (e.g., Bayesian networks vs. Markov random fields, see
Section 2.3), we can distinguish between directed and undirected SRL languages.
First, we describe Markov logic networks and parfactor graphs, which are
undirected models. Second, we describe relational extensions of Bayesian
networks and probabilistic logic programming languages, which are directed
models.

5.1.1 Markov Logic Networks

Markov logic (Richardson and Domingos, 2006) combines Markov networks
with first-order logic. Formally, a Markov logic network (MLN) is a set of pairs,
(wi, ψi), where ψi is a first-order formula and wi ∈ R. MLNs soften logic by
associating a weight with each formula. Possible worlds that violate formulas
become less likely, but not impossible. Intuitively, as wi increases, so does the
strength the constraint ψi imposes on the world. Formulas with infinite weights,
called hard formulas, represent pure logic formulas. The probability of worlds
that do not satisfy a hard formula are set to zero.



130 EXACT LIFTED PROBABILISTIC INFERENCE

The features ψi are formulas in typed function-free first-order logic. These
formulas may contain free variables. They represent a set of sentences, one
for each way of instantiating the free variables. We will refer to this set as the
instances of a MLN formula. In the literature, these instances are sometimes
called the groundings of a formula. This terminology is not precise, because
these sentences might still contain quantifiers and bound logical variables.1

MLNs provide a template for constructing Markov networks. When given a
finite set of constants (the domain), theMLN formulas define aMarkov network.
Nodes in the network (random variables) are ground atoms. Edges connect
literals that appear in the same instance of a formula. An MLN induces the
following probability distribution:

Pr(ω) =
1
Z

exp

(|Ψ|
∑

i
wini(ω)

)
(5.1)

where Ψ is the set of formulas in the MLN, wi is the weight of the ith formula,
and ni(ω) is the number of true instances of formula ψi in possible world ω.

Note the correspondence to Equation 2.3 for log-linear Markov networks. The
fundamental difference in semantics between first-order and propositional
Markov networks is that a MLN formula has multiple instances with the same
weight. Whereas a feature in propositional logic is either true or false, a first-
order feature has an associated count ni of how many of its instances are true.

Example 5.1. Consider the following MLN (Singla and Domingos, 2008):

1.5 smokes(X) ∧ friends(X, Y)⇒ smokes(Y) (5.2)

1.3 smokes(X)⇒ cancer(X) (5.3)

The purely logical meaning of Formula 5.2 is that smokers are only friends
with other smokers. By associating a high weight 1.5 with this formula, its
meaning becomes that smokers are more likely to be friends with other smokers.
Formula (5.3) states that smokers are more likely to get cancer. This MLN
will be a running example throughout this thesis. Assuming a domain of two

1It is a commonmisconception that all free variables in aMLN formula are universally quantified.
This is not the case: there is a clear difference in semantics between a formula that has free variables
and a formula where variables are universally quantified. The formula (2, p(X)) encodes that the
probability of a possible world increases by a factor e2 with every true p-atom in the world. The
formula (2, ∀X : p(X)) encodes that the world in which all p-atoms are true has a probability that
is e2 times more likely than all other worlds.



STATISTICAL RELATIONAL LEARNING 131

constants, alice and bob, this MLN induces a distribution over eight random
variables, which correspond to all groundings of atoms smokes(X), cancer(X)

and friends(X, Y), such as smokes(alice), cancer(bob) and friends(alice, bob).
This leads to a distribution over 28 possible worlds. Formula 5.2 has four
instances and Formula 5.3 has two. The MLN above is equivalent to the
following MLN, where each formula is replaced by its instances.

1.5 smokes(alice) ∧ friends(alice, alice)⇒ smokes(alice)

1.5 smokes(alice) ∧ friends(alice, bob)⇒ smokes(bob)

1.5 smokes(bob) ∧ friends(bob, alice)⇒ smokes(alice)

1.5 smokes(bob) ∧ friends(bob, bob)⇒ smokes(bob)

1.3 smokes(alice)⇒ cancer(alice)

1.3 smokes(bob)⇒ cancer(bob)

When n instances of Formula 5.2 are true in a possible world, and m instances
of Formula 5.3 are true, the weight of that possible world is e1.5n+1.3m/Z.

See Domingos and Lowd (2009) for a detailed overview of the literature on
Markov logic, including inference and learning algorithms, and applications.

5.1.2 Parfactor Graphs

In the lifted probabilistic inference literature, parfactor graphs are a popular
representation language. A parfactor graph is a collection of parametric factors,
or parfactors (Poole, 2003).

Definition 5.1 (Parfactor). A parfactor has the form (X, cs, A, f ) where X is a
set of logical variables, cs is a constraint set on variables X, A is a list of atoms,
and f is a potential on A.

Parfactors are often represented with the syntax ∀X, cs : f (a1, . . . , am), where
the ai are atoms in A. Each parfactor compactly describes a set of factors.
The parfactor ∀X, cs : f (a1, . . . , am) represents a set of factors of the form
f (a1θ, . . . , amθ), one for each θ ∈ solutions(cs,X). Each substitution grounds
the atoms in A, turning them into propositional random variables. What is left



132 EXACT LIFTED PROBABILISTIC INFERENCE

is a propositional factor graph. The semantics of a parfactor graph consisting
of the parfactors (Xi, csi, Ai, fi) directly follow from the semantics of factor
graphs (Equation 2.2):

Pr(ω) =
1
Z ∏

i
∏

θ∈solutions(csi ,Xi)

fi(ω(Aiθ)),

Here, ω(Aiθ) denotes the assignments the possible world ω makes to the
variables Aiθ.

As for MLNs, it is assumed that predicates are typed and that there is a given
domain for each type, in the form of a finite set of constants. For the sake of
simplicity, the constraint sets used are often normal form constraints (Milch
et al., 2008), that is, conjunctions of inequality constraints only. However, more
expressive constraint languages can also be used, as in Kisyński and Poole
(2009a) and Taghipour et al. (2012).

Example 5.2. Consider the parfactor

∀X, Y : f (smokes(X), smokes(Y), friends(X, Y))

Assuming constants alice and bob, it represents the propositional factor graph

f (smokes(alice), friends(alice, alice))

f (smokes(alice), smokes(bob), friends(alice, bob))

f (smokes(bob), smokes(alice), friends(bob, alice))

f (smokes(bob), friends(bob, bob))

When we add the constraint that X 6= alice, we obtain parfactor ∀X, Y, X 6=
alice : f (smokes(X), smokes(Y), friends(X, Y)), which corresponds to a factor
graph with only the last two factors shown above. All the above is independent



STATISTICAL RELATIONAL LEARNING 133

of the precise potential chosen for f . If we choose it to be

f =

smokes(X) smokes(Y) friends(X, Y) f

F F F e1.5

F F T e1.5

F T F e1.5

F T T e1.5

T F F e1.5

T F T 1
T T F e1.5

T T T e1.5

this parfactor graph models the same distribution as MLN Formula 5.2.

Milch et al. (2008) extend the parfactor formalism with counting formulas. For
the case of binary random variables, these formulas represent a count of how
many groundings of an atom are true in the world. These counts are themselves
random variables, so the parfactor associates a different potential with each of
its values. The concept of counting formulas was further extended by Apsel
and Brafman (2011) and Taghipour and Davis (2012).

Example 5.3.

5.1.3 Probabilistic Logic Progamming

Most probabilistic logic programming (PLP) languages, including PHA (Poole,
1993), SLP (Muggleton, 1996), PRISM (Sato and Kameya, 1997), ICL (Poole,
1997), LPAD (Vennekens, Verbaeten, and Bruynooghe, 2004), ProbLog (De
Raedt, Kimmig, and Toivonen, 2007) and CP-logic (Vennekens, Denecker, and
Bruynooghe, 2009), are based on the distribution semantics of Sato (1995). As a
representative of probabilistic logic progamming, we will now discuss ProbLog
in more detail.

ProbLog

A ProbLog program consists of two parts: a set of probabilistic facts F and a
set of rulesR. The rules are written in standard Prolog syntax. The syntax for
the probabilistic facts is pi :: fi, meaning that fact fiθ is true with probability pi



134 EXACT LIFTED PROBABILISTIC INFERENCE

a

b c

d

e f

0.1

0.5

0.5

0.8

0.2

0.4
0.5

0.10.9

0.6

0.8

0.5

0.8 0.1 0.2 0.4

Figure 5.1: Probabilistic Network Example

for all substitutions θ that ground fi. Probabilistic facts represent independent
random variables. Let G be the set of all groundings of fi facts in F .2 The
ProbLog program represents a probability distribution over logic programs
F ⊆ G, which consist of ground facts.

Pr(F) = ∏
fi∈F

pi ∏
fi∈G\F

(1− pi) (5.4)

For a fixed set of rulesR, each set of facts F corresponds to a unique Herbrand
interpretation of the logic program R ∪ F. Therefore, Pr(F) also defines a
probability distribution over these Herbrand interpretations.

The success probability of a query q is the probability that it succeeds in a
randomly sampled logic program. This is defined as

Pr(q) = ∑
F⊆G

1q(F) · Pr(F), (5.5)

where 1q(F) = 1 ifR∪ F |= qθ for some substitution θ, and 0 otherwise.

Example 5.4. The following ProbLog program represents the small probabilistic
network of Figure 5.1. The network itself is defined by probabilistic facts F . The

2We assumed that G is finite. See Sato (1995) for an extension of these semantics to the infinite
case.



STATISTICAL RELATIONAL LEARNING 135

definition of a path in the network is encoded by the rulesR.

F =


0.1 :: edge(a, b). 0.5 :: edge(b, a).
0.9 :: edge(b, c). 0.6 :: edge(c, b).
0.5 :: edge(c, d). 0.1 :: edge(d, c).

...
...


R =

{
path(X, Y) :- edge(X, Y).
path(X, Y) :- edge(X, Z), path(Z, Y).

}

Because of the syntactic restrictions of logic programs, it is tempting to believe
that FOL is more ‘expressive’ than logic programming. This is wrong because
of the difference in semantics. In the knowledge representation literature, it
has been shown that certain concepts that can be expressed in (non-ground)
logic programs cannot be expressed in (non-ground) FOL, such as inductive
definitions (Denecker, Bruynooghe, and Marek, 2001) and transitive closure.
For example, the relation between two nodes in a graph that expresses whether
there exists a path between them cannot be expressed in first-order logic and
its probabilistic extensions (Fierens et al., 2012a). This additional expressivity
motivates the work on (probabilistic) logic programming.

5.1.4 Other Approaches

The early work of Nilsson (1986) on combining logic and probability was
instrumental to the rise of SRL and PLL. Several people followed up on it,
including Halpern (1990), who introduced the notions of type 1 and type 2
probabilities, corresponding to different types of statistical information, and
Bacchus (1991); Bacchus et al. (1996). The disadvantage of these early works
was that they could not yet provide a straightforward reduction from their
formalisms to probabilistic graphical models, which were being developed
around the same time. Consequently, there were no efficient systems or
algorithms for inference and learning. From a knowledge representation point
of view, MLNs can be regarded as a maximum-entropy probabilistic logic in the
tradition of Nilsson (Paskin, 2002).

In a later phase, a multitude of first-order generalization of Bayesian networks
were proposed, starting with plate models (Buntine, 1994), which can express
repeated substructures in graphical models, to what is sometimes referred



136 EXACT LIFTED PROBABILISTIC INFERENCE

Intermezzo 2: Statistical Relational Decision Making
In order to act rationally, intelligent agents need to solve decision-theoretic
problems. In these type of problems, one has to choose actions from a set
of alternatives, given a utility function. The goal is to select the strategy
(set or sequence of actions) that maximizes the agent’s expected utility.
While decision theory commonly deals with uncertainty (e.g., using influence
diagrams (Shachter, 1986)), there are only few approaches that cope with
both uncertainty and rich logical or relational representations. One approach
combines the ProbLog language with elements of decision theory. The resulting
probabilistic programming language Decision-Theoretic ProbLog (DTProblog,
Van den Broeck et al., 2010) is able to elegantly represent decision problems
in complex relational and uncertain environments. A DTProbLog program
consists of a ProbLog program, that is, a set of Prolog rules R and a set of
probabilistic facts F with, in addition, a set of decision facts D, specifying
which decisions are to be made, and a set of utility attributes U , specifying the
rewards that can be obtained.

Example 5.5. Consider the following viral marketing problem. The decisions
are whether to market to people in a social network consisting of trusts(X, Y)
relations. A reward of 5 is given for anyone buying the product and marketing
to one person costs 2. People that are marketed or that trust someone who
bought the product may buy the product. In DTProbLog, this is modeled as

F =

{
0.3 :: marketing_influence(X).
0.4 :: viral_influence(X, Y).

}

R =

 buys(X) :- market(X), marketing_influence(X).
buys(X) :- trusts(X, Y), buys(Y), viral_influence(X, Y).
trusts(a, b). trusts(b, c). · · ·


D =

{
? :: market(X).

}
U =

{
market(X)→ −2.
buys(X)→ 5.

}
Knowledge compilation algorithms can compute the optimal strategy for a
DTProbLog program exactly and approximately. These scalable approximation
algorithms can tackle large decision problems. For example, Van den Broeck
et al. report on a viral marketing experiment with half a million trust relations.
Examples of other relational decision-theoretic languages are the ICL (Poole,
1997), IBAL (Pfeffer, 2001), DTLPs (Chen and Muggleton, 2009) and
MLDNs (Nath and Domingos, 2009). For MLDNs, Apsel and Brafman (2012b)
show that WFOMC inference, which we present in Section 5.4.1, can compute
the expected utility of a given strategy in a lifted manner.



GROUND INFERENCE FOR SRL MODELS 137

to as the alphabet soup of SRL, including languages such as RBNs (Jaeger,
1997), PRMs (Friedman et al., 1999), BLPs (Kersting and De Raedt, 2001a),
CLP(BN ) (Santos Costa et al., 2003), and LBNs (Fierens et al., 2005).

More recently, probabilistic programming languages are gaining popularity.
These approaches extend a programming languagewith probabilistic constructs.
Examples include BLOG (Milch et al., 2007), Church (Goodman et al., 2008),
Figaro (Pfeffer, 2009), Factorie (McCallum, Schultz, and Singh, 2009), IBAL (Pf-
effer, 2001) and the probabilistic logic programming languages described in
Section 5.1.3. Some of these languages support the modeling of problems with
an unknown number of objects or with identity uncertainty.

5.2 Ground Inference for SRL Models

The expressivity of statistical relational models comes at a price: designing
efficient inference algorithms for these models is challenging. In this section,
we discuss three alternative approaches. The first two approaches reduce the
inference task to an inference task on a propositional model. We distinguish
between the case where this propositional model is a probabilistic graphical
model and the case where it is a logical theory. The third approach, called lifted
inference, attempts to generalize and extend propositional inference algorithm
to work with first-order models.

5.2.1 Propositionalization to Probabilistic Graphical Models

Many statistical relational formalisms and probabilistic programming lan-
guages have a semantics in terms of a probabilistic graphical model that
corresponds to the first-order model. It is a straightforward next step to also
use these graphical models for inference (see Section 2.4 for an overview of
applicable algorithms). This approach is sometimes called knowledge-based model
construction (KBMC) (Haddawy, 1994). It refers to a program (declarative or
imperative) that constructs a graphical model using the knowledge available to
the program, usually in the form of a relational database. Examples of languages
for which we can construct undirected graphical models are Markov logic,
parfactor graphs and Factorie. All forms of first-order Bayesian networks, such
as BLPs, can construct directed networks for inference.



138 EXACT LIFTED PROBABILISTIC INFERENCE

cancer(alice) cancer(bob)

smokes(alice) smokes(bob)

friends(alice, alice) friends(bob, bob)

friends(alice, bob) friends(bob, alice)

f a
1

f a
2 f a

3

f a
4

f b
1 f b

2

Figure 5.2: Factor graph constructed by KBMC for the MLN of Example 5.1

A common problem with this approach is that the constructed graphical
models quickly become too large to admit efficient inference. There are ways
of mitigating this problem. The size of the graphical model can be reduced by
making the constructed network specific to the query and evidence (Shavlik
and Natarajan, 2009; Meert, Taghipour, and Blockeel, 2010). Also with these
improvements, exact inference quickly breaks down when using KBMC.

Even executing standard approximate inference algorithms can become a
problem, because the networks being generated for first-order models that
deal with a large number of objects may not fit into memory. The size of the
constructed network is usually polynomial in the number of objects in the first-
order model, but the degree of this polynomial can be high, causing the above
problem.

Example 5.6. Applying KBMC to the MLN of Example 5.1 and the parfactor
graph of Example 5.2 leads to the same factor graph model. With a domain
of two people, alice and bob, these models correspond to the factor graph in
Figure 5.2. It consists of eight random variables and six factors. These factors
represent the ground formulas shown in Example 5.1. The potential of the f a

i
factors is given by the table in Example 5.2. For this network, it is possible to
perform exact inference by KBMC. Now consider the case where we apply the
same MLN to a domain with 100 people, leading to a propositional model
with 1002 + 100 = 10, 100 random variables and 1002 = 10, 000 factors. KBMC
methods can still construct this network, but exact inference becomes intractable.
If we apply the MLN to a domain with 7 billion people, there are over 1019

random variables. Representing the network would take millions of terabytes



GROUND INFERENCE FOR SRL MODELS 139

of memory. This shows how easy it is to have a concise first-order model (two
weighted formulas) that leads to the construction of an enormous graphical
model.

5.2.2 Propositionalization to Weighted Logic Theories

The recent success of applying logical inference algorithms such as weighted
model counting to the problem of probabilistic inference (see Section 2.4)
inspired a similar approach for inference in statistical relational models.
Different from classical KBMC, these approaches do not construct a probabilistic
graphical model but a weighted theory in propositional logic.

Chavira, Darwiche, and Jaeger (2006) reduce inference for relational Bayesian
networks to a weighted model counting problem. They employ knowledge
compilation to sd-DNNF for the construction of arithmetic circuits that can
efficiently solve the weighted model counting task and thereby compute
conditional probabilities in the original RBN (cf., Section 2.4.2).

In probabilistic logic programming, De Raedt, Kimmig, and Toivonen (2007)
present an algorithm that uses compilation to binary decision diagrams to
compute unconditional marginal probabilities (i.e., success probabilities of a
query). They implicitly perform a reduction to a weighted model counting
problem, even though they do not describe their approach as such. Fierens
et al. (2011a) explicitly reduce the conditional probability query in PLP to a
weighted model counting problem. Once a weighted logical theory is obtained,
Fierens et al. use standard knowledge compilation techniques for exact inference.
Intermezzo 3 discusses this work in more detail.

The advantage of these reductions to weighted logical inference, compared
to classical KBMC, is that these algorithms naturally exploit the determinism
and context-specific independencies in the first-order model (cf., Section 2.4.1).
This permits efficient inference, also in models with high treewidth. Still,
this approach can break down easily when the propositional theories being
generated become too large. Fierens et al. report that their experiments generate
weighted CNFs with close to a million clauses. Even performing approximate
weighted model counting for these theories is challenging.



140 EXACT LIFTED PROBABILISTIC INFERENCE

5.3 Different Notions of Lifted Inference

Performing inference in statistical relational models is extremely costly if it
is done at the propositional level. This observation motivated a new line of
research in lifted probabilistic inference algorithms (Poole, 2003). These algorithms
exploit first-order structure and symmetries in statistical relational models
during inference. They perform inference at a higher level of abstraction, by
treating indistinguishable groups of objects as one.

The idea of exploiting symmetries during inference is not uncommon. It
is applied in statistics, logical inference, mathematical programming and
constraint satisfaction in general. We will review lifted inference approaches in
those fields to motivate the general idea of lifted inference. Then we formally
define a notion of exact lifted probabilistic inference, called domain-lifted
inference. We defer the discussion on approximate lifted inference to Chapter 7.

5.3.1 Lifting in Statistics

We begin with a simple example from probabilistic reasoning.

Example 5.7. Assume we are investigating a rare disease, and the only
information we have is that the disease presents itself in one in every billion
people. The probability that somebody in the world has the disease is then
computed as

1− (1− 1/1000000000)7000000000 ≈ 0.999 (5.6)

Here, we have used the fact that, for the level of detail we have knowledge
about, all people are indistinguishable and independent. Therefore, we can
exponentiate the probability that a single person is healthy to obtain the
probability that all people are healthy. When encoding this distribution in
a probabilistic graphical model, in the best case, inference for this query ends
up multiplying 7 billion numbers. In the worst case, naively representing the
query variable’s dependency on each person’s health requires a conditional
probability table with 27000000000 rows. In either case, despite the simplicity of
the statistical problem, graphical model inference algorithms do not exploit the
symmetries we have exploited in writing Equation 5.6.



DIFFERENT NOTIONS OF LIFTED INFERENCE 141

The following example shows that not only people, but also possible worlds
are symmetric for this problem.

Example 5.8. The probability that exactly five people have the disease is(
7 · 109

5

)(
1− 10−9

)7·109−5 (
10−9

)5
≈ 0.13

The probability that more than five people have the disease is

1−
5

∑
n=0

(
7 · 109

n

)(
1− 10−9

)7·109−n (
10−9

)n
≈ 0.7

Here, we have not only used the indistinguishability of all people in the
exponentiation, but also in the binomial coefficients. The coefficient (7·109

n )

counts the number of possible worlds where exactly n people have the disease.
This generalization from one possible world to all of its symmetries is a form
of lifted inference. It is not clear how one would encode the above problem
in a probabilistic graphical model. Even if we use a concise representation of
conditional probabilities, inference algorithms will likely have to enumerate all
(7·109

5 ) possible worlds.

The following example illustrates how grouping indistinguishable objects into
equivalence classes and reasoning about these groups of objects as a whole can
speed up inference. This observation is essential to the development of lifted
inference algorithms.

Example 5.9. If we now additionally know that the disease is more rare in
women, presenting only in one in every two billion women and one in every
billion men. Then, assuming there are 3.4 billion men and 3.6 billion women in
the world, the probability that more than five people have the disease is

1−
5

∑
n=0

n

∑
f=0

(
3.6 · 109

f

)(
1− 0.5 · 10−9

)3.6·109− f (
0.5 · 10−9

) f

×
(

3.4 · 109

(n− f )

)(
1− 10−9

)3.4·109−(n− f ) (
10−9

)(n− f )

Here, we have split up the computation in two factors, for women on the first
line and men on the second. The variable n represents the number of people
with the disease and the variable f counts the number of women among them.



142 EXACT LIFTED PROBABILISTIC INFERENCE

In all these examples, our knowledge of the symmetries of the problem allow
us to compute probabilities more efficiently. We have seen statistical problems
whose textual description is very simple and that can be solved using elementary
statistical techniques. However, no classical automated reasoning algorithms
can apply the same techniques for general-purpose inference. They all fail to
solve these simple problems.

5.3.2 Lifting in First-Order Logic

A second example of lifted inference is the resolution algorithm (Robinson, 1965)
for automated theorem proving in first-order logic. This algorithm is the basis
for many automated reasoning algorithms.

Example 5.10. Consider the following clauses

∀X : ¬ human(X) ∨mortal(X)

∀X : ¬ greek(X) ∨ human(X),

which state that all humans are mortal and that Greeks are human. The clauses
contain opposing literals that unify. This means that the resolution principle
can be applied as follows.

∀X : ¬ human(X) ∨mortal(X), ∀X : ¬ greek(X) ∨ human(X)

∀X : mortal(X) ∨ ¬ greek(X)

The resulting formula, or resolvent, stating that all Greeks are mortal, is
a logical consequence of the initial theory. In a single step of automated
reasoning, resolution has proven a property of all Greeks in the world. This
was possible because, at the level of abstraction of the logical theory, all Greeks
are indistinguishable.

Resolution can perform inference independent of how many objects there are
in the world. It is even capable of reasoning about an infinite number of objects.
To prove a theorem in graph theory, for example, an automated reasoning
algorithm needs to reason about an infinite number of possible graphs of all
possible sizes. This propertymakes first-order resolution so powerful and allows
it to prove mathematical theorems.



DIFFERENT NOTIONS OF LIFTED INFERENCE 143

Its ability for lifted inference was an important realization of first-order
resolution. In his original paper on resolution, Robinson wrote what is now
known as the lifting lemma.

Lemma 5.1 (Robinson’s Lifting Lemma). Let γ1 and γ2 be two first-order clauses
whose resolvent is γ. Let δ1 be a ground instance of γ1 and δ2 a ground instance of γ2.
If δ1 and δ2 have a resolvent δ, then δ is a ground instance of γ.

This lemma establishes the connection between propositional and first-order
resolution, showing that one step of first-order resolution corresponds to a
potentially infinite number of propositional resolution steps.

Example 5.11. The first-order resolution step of Example 5.10 corresponds to
the propositional resolution steps

¬ human(alice) ∨mortal(alice), ¬ greek(alice) ∨ human(alice)
mortal(alice) ∨ ¬ greek(alice)

¬ human(bob) ∨mortal(bob), ¬ greek(bob) ∨ human(bob)
mortal(bob) ∨ ¬ greek(bob)

...

Both ground resolvents are instances of the first-order resolvent.

The lifting lemma reflects the more general notion of lifted inference which says
that a single lifted inference step performsmultiple steps of some corresponding
ground inference algorithm. Although this is not a precise definition of lifting,
it has until recently been the sole argument for classifying algorithms as being
“lifted”.

5.3.3 Lifting in Constraint Satisfaction

Our final example of lifted inference is in the fields of constraint satisfaction
and mathematical programming. These fields are concerned with finding
assignments to a set of variables such that a set of constraints is satisfied, possibly
also optimizing an objective function of the variables.

When permuting variables or values in the model leaves the structure of the
model unchanged, the model is said to have symmetries. The presence of a large



144 EXACT LIFTED PROBABILISTIC INFERENCE

number of these symmetric states can complicate inference, by unnecessarily
increasing the size of the search space. A search algorithm potentially has to
visit all symmetries of a state that does not satisfy the constraints before it finds a
satisfying solution. Methods to remove symmetries add random perturbations
to the model, fix certain variables or add constraints that are only satisfied in a
subset of symmetric states. These are called symmetry breaking constraints.

Lifted algorithms along these lines were developed for mathematical program-
ming (Margot, 2010; Liberti, 2012; Mladenov, Ahmadi, and Kersting, 2012),
constraint satisfaction (Crawford et al., 1996; Cohen et al., 2005) and constraint
programming (Gent and Smith, 2000; Fahle, Schamberger, and Sellmann, 2001).

Lifted inference by symmetry breaking is fundamentally different from the lifted
inference examples outlined above and the lifted algorithms for probabilistic
inference we will discuss next. In constraint satisfaction and mathematical
programming, we are usually only interested in finding a single solution, even
though there may exist many symmetric ones. Symmetry breaking techniques
therefore do not keep track of which solutions are removed from the model. For
these other inference tasks, we do want to keep track of symmetric solutions.
For example, in resolution, we want the resolvent to imply all consequences
of a pair of clauses. In lifted probabilistic inference, we also have to count the
probability mass of symmetric possible worlds when estimating beliefs.

5.3.4 Domain-Lifted Probabilistic Inference

The concept of lifted inference is mostly introduced at an informal and intuitive
level:

• “...lifted, that is, deals with groups of random variables at a first-order level” (de
Salvo Braz, Amir, and Roth, 2005)

• “The act of exploiting the high level structure in relational models is called lifted
inference” (Apsel and Brafman, 2011)

• “The idea behind lifted inference is to carry out as much inference as possible
without propositionalizing” (Kisyński and Poole, 2009a)

• “lifted inference, which deals with groups of indistinguishable variables, rather
than individual ground atoms” (Singla, Nath, and Domingos, 2010)



DIFFERENT NOTIONS OF LIFTED INFERENCE 145

While the term lifted inference emerges as a quite coherent algorithmic
metaphor, it is not immediately obvious what its precise formal meaning should
be. Since a rich variety of different algorithmic approaches are collected under
the label “lifted”, and since most of them can degenerate for certain models to
ground, or propositional, inference, it is difficult to precisely define the class of
lifted inference techniques in algorithmic terms.

Definition

Amore fruitful approach is to formalize the concept of lifted inference in terms
of its objectives, rather than in terms of its algorithmicmeans. Here one observes
that exact lifted inference techniques very consistently are evaluated on, and
compared against each other, by how well inference complexity scales as a
function of the domain for which the general model is instantiated. Empirical
evaluations of lifted inference techniques are usually presented in the form of
domain size vs. inference time plots, as shown in Figure 5.3.

R
u

n
 T

im
e

Domain Size

propositional
lifted

Figure 5.3: A typical performance evaluation of lifted inference algorithms

We therefore propose a formal definition of domain-lifted inference in terms of
polynomial time complexity in the domain size parameter.

Definition 5.2 (Domain-Lifted Inference). A probabilistic inference procedure
is domain-lifted for a model ∆, query q and evidence e iff it computes Pr(q|e)
in time polynomial in each |D1|, . . . , |Dk|, where Di is the domain of the logical
variable Xi appearing in ∆, q or e.



146 EXACT LIFTED PROBABILISTIC INFERENCE

Discussion

The requirements for domain-lifted inference are quite strict. Any algorithm
that saves some computations by avoiding a grounding step or exploiting a
symmetry could conceivably be called lifted. However, it is difficult to precisely
define such a notion of lifted inference, which is less strict than domain-lifted
inference. Chapter 6 will define an alternative notion that is even more strict,
also looking at complexity in terms of the size of the query and evidence.

On the other hand, for certain models, the requirements for domain-lifted
inference are too flexible. There is the undesirable effect that many classical
algorithms are domain-lifted for models that have a bounded treewidth with
increasing domain size, such as models with singly connected groundings.
Interestingly, on these models, lifted inference algorithms often have a
complexity that is logarithmic in the domain size (Poole, Bacchus, and Kisyński,
2011). Hence, there is also an exponential complexity separation between lifted
algorithms, and for instance variable elimination (VE). Therefore, one way to
remove this undesirable effect is to require that lifted inference algorithms
are exponentially faster than VE. The disadvantage of this definition is that it
turns algorithms such as VE into a universal complexity baseline. Furthermore,
algorithms that exploit local structure to attain exponential speedups over VE
could by this alternative definition also be called lifted.

Domain-lifted inference is not the only notion one might have of exact lifted
inference. Despite its drawbacks, it does formalize a useful common intuition.
For example, first-order resolution can be regarded as a domain-lifted inference
algorithms for 0/1 probabilities. Its complexity is independent of the number
of objects in the world. Also note that the problem of precisely defining what
lifted approximate inference could mean is still open.

5.4 Lifted Inference by Weighted Model Counting

Reduction to weighted model counting is a state-of-the-art approach for
inference in probabilistic graphical models (Section 2.4.1) and statistical
relational models (Section 5.2.2). We will first show how to lift the weighted
model counting task on logical theories to the first-order level. We will then
reduce inference in popular statistical relational models to this new task.



LIFTED INFERENCE BY WEIGHTED MODEL COUNTING 147

5.4.1 Weighted First-Order Model Counting

Weighted First-Order Model Counting (WFOMC) takes as input a sentence
∆ in FOL (or FOL-DC) and two functions wT and wF : P → R≥0 that
associates a non-negative weight with every predicate in the sentence (P).
Consider the interpretation ω = ωT ∪ ωF consisting of positive literals
ωT and negative literals ωF. The weight associated with this interpretation
is ∏l∈ωT wT(pred(l))∏l∈ωF wT(pred(l)), where pred(.) maps a literal to its
predicate symbol. These interpretation weights are aggregated into the
weighted first-order model count of a sentence as follows.

Definition 5.3 (WFOMC). The weighted first-order model count of sentence ∆
with modelsMOD∆ is

WFOMC(∆, wT, wF) = ∑
ω∈MOD∆

∏
l∈ωT

wT(pred(l)) ∏
l∈ωF

wF(pred(l)).

5.4.2 Reductions to Weighted First-Order Model Counting

We will now show that computing the partition function of a MLN or Parfactor
graph can be reduced to a WFOMC task. This lifts the approach outlined in
Section 2.4.1, which explains the reduction of the partition function computation
for factor graphs to a propositional weighted model counting problem. Each
reduction outputs a theory ∆ and weight functions wT and wF, which are in
turn the inputs to the WFOMC function.

Reducing Markov Logic Networks

Let us first convert an example MLN into a WFOMC problem.

Example 5.12. Consider the MLN of Example 5.1:

1.5 smokes(X) ∧ friends(X, Y)⇒ smokes(Y)

1.3 smokes(X)⇒ cancer(X)



148 EXACT LIFTED PROBABILISTIC INFERENCE

Its corresponding WFOMC problem counts the models of the theory ∆:

∀X, Y ∈ People : θ1(X, Y)⇔ [smokes(X) ∧ friends(X, Y)⇒ smokes(Y)]

∀X ∈ People : θ2(X)⇔ [smokes(X)⇒ cancer(X)] ,

The weight function wT maps wT(θ1) to e1.5, wT(θ2) to e1.3 and all other
predicates to 1. The function wF maps all predicates to 1.

In general, the WFOMC-reduction constructs a theory ∆ using the predicates in
the MLN and a set of additional predicates, here denoted by θi. The predicate
θi represents the truth value of the ith MLN formula (wi, φi), for each of its
instances. Let Xi be the set of free variables in φi and let csi be the constraint
set that enforces that each variable in Xi be a member of its domain (as defined
by the MLN). The theory ∆ then contains the formula ∀Xi, csi : θi(Xi) ⇔ φi.
The weight function wT maps each θi to ewi and all other predicates to 1. The
function wF maps all predicates to 1.

Proposition 5.2. The partition function Z of an MLN equals the weighted first-order
model count WFOMC(∆, wT, wF).

Proof outline. Each possible world of the MLN corresponds to exactly one
interpretation of ∆. When the possible world contains ni true groundings
of formula φi, the weight of this possible world according to Equation 5.1 is
exp

(
∑
|Ψ|
i wini(ω)

)
. In the weighted model counting problem, the correspond-

ing interpretation will contain exactly ni positive θi literals, which increase the
weight of the interpretation by a factor wT(θi) = ewi . Hence, the weight of an
interpretation equals the weight of its corresponding possible world.

Reducing Parfactor Graphs

A similar reduction is possible for parfactor graphs by reducing each parfactor
(X, cs, A, f ) individually. Here we have to distinguish between Boolean parfac-
tors, where the atoms range over truth values, and general parfactors, where
atoms may be assigned elements from any finite range of values.

In the first case, the parfactor can be reduced to a single weighted formula per
row of the potential table f . The row that assigns potential value f (T, . . . ,F)
to the state a1 = T, . . . an = F is reduced to the formula ∀X, cs : θ(X) ⇔



LIFTED INFERENCE BY WEIGHTED MODEL COUNTING 149

a1 ∧ · · · ∧ ¬an and the weight functions map wT(θ) to f (T, . . . ,F) and wF(θ) to
1. The weights of all original parfactor predicates are set to 1.

In the second case, the multi-valued atoms in A need to be encoded in Boolean
logic. We can represent the atom p(X) taking on value v with the atom p(X, v).
First, we encode in ∆ that the atom must take on exactly one value from its
range R:

∀X, cs : ∃Y ∈ R : p(X, Y)

∀X, cs : ∀Y, Z ∈ R, Y 6= Z :¬p(X, Y) ∨ ¬p(X, Z).

With this addition, the reduction is similar to the reduction of Boolean parfactors.
The row for state p1(X1) = v1, . . . pn(Xn) = vn with potential f (v1, . . . , vn) is
reduced to the formula ∀X, cs : θ(X) ⇔ p1(X1, v1) ∧ · · · ∧ pn(Xn, vn) and the
weight functions map wT(θ) to f (v1, . . . , vn) and wF(θ) to 1.

We can show that the partition function of the parfactor graph again corresponds
to the weighted model count WFOMC(∆, wT, wF).

Reducing Probabilistic Logic Programs

Clark’s completion (Clark, 1978) is a transformation from logic programs
to first-order logic. For certain classes of logic programs, called tight logic
programs (Fages, 1994), this transformation is correct, in the sense that every
model of the logic program is a model of the completion, and vice versa.

Example 5.13. The Prolog rules in Example 5.4 have the following completion.

∀X, Y ∈ N : path(X, Y)⇔ [edge(X, Y)

∨(∃Z ∈ N : edge(X, Z) ∧ path(Z, Y))] ,
(5.7)

where N is the set of nodes in the probabilistic graph. In case the edge/2 relation
is well-founded (Van Gelder, Ross, and Schlipf, 1991), when the probabilistic
network is acyclic, the models of the completion correspond one-to-one to the
models of the logic program.

We can reduce inference in tight probabilistic logic programs into a weighted
first-order model counting problem. For ProbLog programs, the reduced logical



150 EXACT LIFTED PROBABILISTIC INFERENCE

theory ∆ is obtained by taking the completion of the rules R conjoined with
a single formula per probabilistic fact in F . The reduction of probabilistic
facts is similar to the reduction of unit clauses in Markov logic. The fact φi
with probability pi and free variables Xi is represented by the formula ∀X, csi :
θi(Xi) ⇔ φi. The associated weight function sets all wT(θi) = pi, wF(θi) =

1− pi and all other weights to 1. This reduction to a weighted FOL-DC theory
depends on the existence of a finite domain for each logical variable, as defined
by the constraint set csi. One can obtain this domain by exhaustively executing
the ProbLog program as a deterministic Prolog program and keeping track of
the goals that are called during resolution.

5.4.3 Computing Marginal and Conditional Probabilities

The weighted model counting approach to inference is not restricted to
computing partition functions. As for the propositional case (Section 2.4.1),
it can be used to compute marginal and conditional probabilities.

Assuming we have obtained a weighted FOL-DC theory ∆ with weight functions
wT and wF, the marginal probability Pr(q) can be computed as WFOMC(∆ ∧
q, wT, wF)/ WFOMC(∆, wT, wF). Conditional probabilities can be computed
as

Pr(q|e) = Pr(q ∧ e)
Pr(e)

=
WFOMC(∆ ∧ q ∧ e, wT, wF)

WFOMC(∆ ∧ e, wT, wF)
. (5.8)

We will now present a very basic form of lifted inference of marginal and
conditional probabilities, by exploiting equiprobability. Even though this
approach does not conform to the definition of domain-lifted inference, it
can save many redundant computations, even when applying ground inference
techniques to compute the weighted model counts in Equation 5.8.

Exploiting Equiprobability

When answering a large number of queries in a single model, we can exploit
the knowledge that certain random variables are equiprobable.

Definition 5.4 (Equiprobable Set). A set of random variables V is called
equiprobable w.r.t. distribution Pr and evidence e iff for all v1, v2 ∈ V :
Pr(v1|e) = Pr(v2|e).



LIFTED INFERENCE BY WEIGHTED MODEL COUNTING 151

Intermezzo 3: Inference in Probabilistic Logic Programs by
Weighted Model Counting and Max-SAT
Fierens, Van den Broeck, Thon, Gutmann, and De Raedt (2011a) propose an
approach to inference for probabilistic logic programs by reducing conditional
probability queries to weighted model counting tasks and MPE queries to
weighted Max-SAT problems. Compared to existing PLP inference algorithms,
this approach supports answering of multiple queries with evidence.
These reductions have their first step in common: to construct an equivalent
weighted sentence in propositional logic. For tight ProbLog programs,
Example 5.13 explained how to reduce a PLP to an equivalent sentence in
FOL. We can directly obtain a weighted propositional sentence by grounding
the first-order sentence (assuming a finite Herbrand universe). For example,
the grounding of Formula 5.7 (for the Prolog rules of Example 5.4) includes

path(a, z)⇔ [edge(a, z) ∨ (edge(a, b) ∧ path(b, z))

∨(edge(a, c) ∧ path(c, z)) ∨ . . . ]

The probabilistic facts p :: f in the ProbLog program are represented by the
corresponding weight function. Each grounding g of f maps to p and each ¬g
maps to 1− p. All other literals get weight 1.
After this reduction to a weighted propositional theory, standard inference
algorithms can be used to compute conditional probabilities by weighted
model counting and most probable explanations by off-the-shelf weighted
Max-SAT solvers. For example, exact probabilities and MPE can be computed
by knowledge compilation to d-DNNF (cf., Section 2.4.2) and approximate
probabilities can be computed using MC-SAT (Poon and Domingos, 2006).
For more general logic programs programs, however, there exists no equivalent
first-order sentence and the transformation to propositional logic becomes
more challenging. This is due to the fact that PLPs are more expressive than
other SRL formalisms that extend FOL: they can express inductive definitions,
transitive closure, etc. (Fierens et al., 2012a). Transforming inductive definitions
to propositional logic involves a change of semantics, from well-founded
semantics (Van Gelder, Ross, and Schlipf, 1991) to the semantics of classical
logic, which complicates the reduction.
The transformation used by Fierens et al. is query- and evidence- specific and
employs techniques from answer set programming (Janhunen, 2004) in order
to remove positive loops from the logic program. It can lead to an explosion of
the size of the model: the size of the weighted logical theory can be exponential
in the size of the first-order model and the domain size, whereas for the KBMC
approaches outlined in Section 5.2, the size is always polynomial.
Fierens et al. (2012b) also apply this approach to learning the parameters of
probabilistic logic programs from (partial) interpretations.



152 EXACT LIFTED PROBABILISTIC INFERENCE

After partitioning the set of all random variables into equiprobable sets, it
suffices to compute the probability of a single random variable in each element
of the partition to obtain the probability of all variables.

In general, partitioning into equiprobable sets is hard, even when there is no
evidence.

Proposition 5.3 (Niepert (2012b)). Finding the smallest partition of random variables
into equiprobable sets for a given distribution is NP-hard.

Proof. Deciding satisfiability of a Boolean formula φ can be reduced to finding
equiprobable sets. The MLN representing (φ ∨ v1) ∧ v2 induces a probability
distribution. If φ is unsatisfiable, then in the smallest partition (assuming no
evidence), v1 and v2 are in the same equiprobable set (with probability 1). If φ

is satisfiable, there is a non-zero probability that v1 is false, and v1 and v2 must
be in different equiprobable sets.

Despite this, the preemptive shattering operation outlined in Section 4.3.1 gives
us a tool to group together equiprobable random variables (ground atoms) on
a purely syntactic basis. However, the obtained partition will not be minimal.

To find equiprobable sets for a weighted FOL-DC theory ∆ and evidence e, we
will partition the atoms for each predicate separately. Consider the predicate
p(X) whose arguments can take on values defined by the constraint set cs. Let
K be the set of constants appearing as logical terms in ∆ ∧ e, let V be the set
of free logical variables in ∆ ∧ e and let D be the set of domain terms in ∆ ∧ e.
Consider then the set of constrained atoms returned by the following call to
the preemptive shattering procedure (Algorithm 8):

{γ1, . . . , γn} = ShatterClause((∀X, cs : p(X)), K ∪V,D)

Each γi represents a disjoint set of ground atoms gr(γi).

Proposition 5.4. {gr(γ1), . . . , gr(γn)} is a partition of the atoms gr((∀X, cs :
p(X))) into equiprobable sets.

Proof. Consider two groundings γiθ1 and γiθ2 of the same shattered constrained
atom. For these ground atoms to be equiprobable (i.e., Pr(γiθ1|e) = Pr(γiθ2|e)),
from Equation 5.8, we need to prove that WFOMC(∆ ∧ γiθ1 ∧ e, wT, wF) =

WFOMC(∆ ∧ γiθ2 ∧ e, wT, wF). It follows from Lemma 4.3 that ∆ ∧ γiθ1 ∧ e



LIFTED INFERENCE BY KNOWLEDGE COMPILATION 153

and ∆ ∧ γiθ2 ∧ e are equivalent up to a permutation of constants. Hence, there
exists a permutation that maps each model of the one into a model of the other.
Furthermore, because each pair of mapped models has the same number of
true and false atoms for each predicate, their weights are identical. Therefore,
the weighted model counts of both theories are the same.

In the best case, preemptive shattering of a predicate returns one atom and the
induced equiprobable partition has one element. In that case, we can compute
the probability of all groundings of the predicate by computing the probability
of a single grounding. Since the number of ground atoms for a predicate is a
polynomial of the domains of the logical variables, exploiting equiprobability
reduces the amount of work by a factor polynomial in the domain size. Therefore,
exploiting equiprobability does not qualify as domain-lifted inference (there
is no exponential speedup). Even so, it does often make a significant practical
difference.

5.5 Lifted Inference by Knowledge Compilation

We have established that inference in statistical relational models can be
reduced to a weighted first-order model counting problem. However, we did
not present algorithms for actually solving this new task. One way would
be to propositionalize the problem, using the grounding function gr(.) and
use ground weighted model counting solvers (Section 2.4.1). Knowledge
compilation to sd-DNNF (Section 2.4.2) is an example of such a solver. This
section presents a lifted analogue of that approach, which performs first-order
knowledge compilation to FO-sda-DNNF.

5.5.1 Weighted Model Count of a FO-sda-DNNF Circuit

Aspropositional sd-DNNF circuits, FO-sda-DNNF circuits permit efficientweighted
model counting. The following function computes the weighted first-order
model count of a given FO-sda-DNNF sentence and weight functions wT and wF.

Definition 5.5. The base cases of the function are WFOMC(F, wT, wF) = 0,
WFOMC(T, wT, wF) = 1, WFOMC(l, wT, wF) = wT(pred(l)) when l is a
positive ground literal andWFOMC(l, wT, wF) = wF(pred(l))when l is a negative



154 EXACT LIFTED PROBABILISTIC INFERENCE

ground literal. The recursive definition is as follows. For an extensional conjunction,
WFOMC(φ1 ∧ · · · ∧ φn, wT, wF) equals

WFOMC(φ1, wT, wF)× · · · ×WFOMC(φn, wT, wF).

For an extensional disjunction, WFOMC(φ1 ∨ · · · ∨ φn, wT, wF) equals

WFOMC(φ1, wT, wF) + · · ·+ WFOMC(φn, wT, wF).

For an intensional operator (∀, ∃)X, cs : φ over a set of logical variables X, with
some θ ∈ solutions(cs,X) and n = | solutions(cs, V)|,

WFOMC((∀X, cs : φ), wT, wF) = WFOMC(φθ, wT, wF)
n

WFOMC((∃X, cs : φ), wT, wF) = n×WFOMC(φθ, wT, wF).

For an intensional operator (∀, ∃)D, cs : φ over a domain variable D, with Θn =

{[D/d] | [D/d] ∈ solutions(cs, D) ∧ (|d| = n)} and with θn ∈ Θn,

WFOMC((∀D, cs : φ), wT, wF) = ∏
n

WFOMC(φθn, wT, wF)
|Θn |

WFOMC((∃D, cs : φ), wT, wF) = ∑
n
|Θn| ×WFOMC(φθn, wT, wF).

The WFOMC-function is similar to, and has the same complexity as the count-
function (Definition 3.33) for solving the model counting task.

5.5.2 A Domain-Lifted Inference Algorithm

We now have all the tools that together form an exact lifted probabilistic
inference algorithm, executing the following steps:

1. Reduce the statistical relational model to a weighted first-order model
counting problem with theory ∆ and weight functions wT and wF (see
Section 5.4.2)

2. For the queryPr(q|e), compile two FO-sda-DNNF circuits,Cqe = Compile(∆∧
q ∧ e) and Ce = Compile(∆ ∧ e) (see Chapter 4)



LIFTED INFERENCE BY KNOWLEDGE COMPILATION 155

3. Compute the required weighted model counts on the compiled cir-
cuits (see Section 5.5.1):

Pr(q|e) =
WFOMC(Cqe, wT, wF)

WFOMC(Ce, wT, wF)
. (5.9)

We will refer to this algorithm as probabilistic inference by first-order knowledge
compilation.

An important property of the WFOMC-function on FO-sda-DNNF circuits is
that it has a polynomial complexity in the size of the circuit node labels, and
therefore in the size of the sets of constants, or domains, in these labels. This
establishes the following result.

Theorem 5.5. Probabilistic inference by first-order knowledge compilation is a domain-
lifted inference algorithm for those inference tasks it can solve without grounding.

Proof. The reduction from statistical relational models to a weighted first-
order model counting problem is polynomial in the domain sizes of the
logical variables. The compilation algorithm (Algorithm 1) has a complexity
independent of the domain sizes (they can even be free variables during
compilation). Finally, the evaluation of these circuitswith theWFOMC-function
is polynomial in the domain sizes.

Note that domain-lifted inference is always defined w.r.t. a class of inference
tasks. In Chapter 6, we will define the notion of completeness and identify
classes of models and inference tasks for which probabilistic inference by first-
order knowledge compilation is domain-lifted.

5.5.3 Conditional Probabilities

The main motivation for using knowledge compilation is the ability to reuse
compiled circuits to answer multiple queries. Section 2.2.2 explained that in
propositional knowledge compilation, any circuit can be conditioned on a term.
Section 2.4.2 explained how to use that ability to perform probabilistic inference.
With conditioning, we can evaluate all conditional probabilities Pr(q|e) on the
same compiled circuit, assuming that q and e are terms. This section investigates
whether the same applies to probabilistic inference by first-order knowledge
compilation.



156 EXACT LIFTED PROBABILISTIC INFERENCE

Conditioning on Propositions

Proposition 3.19 states that a FO-sda-DNNF circuit can efficiently be conditioned
on propositions, that is, literals with arity zero. We can exploit this in our lifted
inference algorithm. Assume we have a set of queries Pr(qi|ei)which only differ
in the propositions contained in the terms qi and ei, that is qi = q>0 ∧ q0

i and
ei = e>0 ∧ e0

i . Here γi denotes all literals of arity i in the term γ and γ>i denotes
all literals of arity higher than i. For each of these queries, our vanilla inference
algorithm compiles circuits for ∆ ∧ qi ∧ ei and ∆ ∧ ei.

We can answer all queries above by compiling only two circuits, Cqe =

Compile
(
∆ ∧ q>0 ∧ e>0) and Ce = Compile

(
∆ ∧ e>0). The requested posterior

probabilities can then be computed as

Pr (qi|ei) =
WFOMC

((
Cqe|

(
q0

i ∧ e0
i
))

, wT, wF
)
·∏l∈q0

i
weight(l)

WFOMC
((

Ce|e0
i
)

, wT, wF
)

where weight(l) is wT(p(l)) when l is a positive literal and wF(p(l)) when l is
a negative literal.

Conditioning on Unary Relations

Open Problem 2 states that it is unknown wheter a FO-sda-DNNF circuit can
efficiently be conditioned on unary relations, that is, literals with arity one.

However, by modifying the weighted first-order model counting theory ∆ with
additional domain variables, it is possible to condition on any unary relation
term. The applicability of this transformation is independent of the domains the
theory is evaluated on and the specific terms on which it will be conditioned. In
order to support conditioning for a unary predicate p /1, each clause it appears
in must be split into three clauses, representing the cases when a grounding
of p /1 is true, false or unknown. We add a domain variable that partitions
the domain of a unary literal’s logical variable into three sets: true, false or
unknown. The compilation algorithm of Chapter 4 allows these domains to be
free variables.

Proposition 5.6. Any theory ∆ in FOL-DC can be transformed into an equivalent
representation ∆′ that allows for conditioning on a unary relation p(X). First, each
clause containing p(X) is split into three copies with additional constraints: (i) X ∈ DT
(ii) X ∈ DF and (iii) X /∈ DT, X /∈ DF. For clauses with a positive p(X) literal, copy



LIFTED INFERENCE BY KNOWLEDGE COMPILATION 157

(i) is removed and the literal p(X) is removed from copy (ii). Conversely, for clauses
with a negative p(X) literal, copy (ii) is removed and ¬p(X) is removed from copy (i).

Conditioning ∆ on a term γ = (p(x1) ∧ · · · ∧ p(xn) ∧ ¬p(y1) ∧ · · · ∧ ¬p(ym))

is performed by substituting the newly introduced domain variables in ∆′:

∆|γ ≡ ∆′[DT/{x1, . . . , xn}, DF/{y1, . . . , ym}].

Example 5.14. To illustrate the procedure, consider the following clause, which
omits constraints on Y for readability:

∀X ∈ D : p(X) ∨ q(X, Y) (5.10)

We now introduce the subdomain DT ⊆ D of constants for which we condition
on p(X) being true, and the subdomain DF ⊆ D of constants for which we
condition on p(X) being false. Knowing that DT ∩ DF = ∅, this divides the
clause into

∀X, X ∈ D ∧ X ∈ DT : p(X) ∨ q(X, Y)

∀X, X ∈ D ∧ X ∈ DF : p(X) ∨ q(X, Y)

∀X, X ∈ D ∧ X /∈ DT ∧ X /∈ DF : p(X) ∨ q(X, Y)

Since p(X) appears as a positive literal in the initial formula, and we know that
∀X ∈ DT : p(X) and ∀X ∈ DF : ¬p(X) are true, these can be simplified to

∀X, X ∈ D ∧ X ∈ DF : q(X, Y) (5.11)

∀X, X ∈ D ∧ X /∈ DT ∧ X /∈ DF : p(X) ∨ q(X, Y) (5.12)

Substituting [DT/∅, DF/∅] fills in empty domains in the constraint sets, which
makes Clause 5.11 and the additional constraints X /∈ DT ∧ X /∈ DF in
Clause 5.12 trivially satisfied, thereby recovering the original Clause 5.10.
However, filling in non-empty domains for DT or DF, conditions the theory on a
termof literals ofp /1. Note that the atoms ∀X ∈ DT : p(X) and ∀X ∈ DF : p(X)

which we conditioned on are removed from the new theory entirely, in the
sense that they do not appear in its grounding.

The procedure outlined in Proposition 5.6 can be repeated to support condi-
tioning on multiple unary relations. In summary, it is possible to condition



158 EXACT LIFTED PROBABILISTIC INFERENCE

FO-d-DNNF circuits on any term of unary literals. However, this comes at the
cost of a more complex compilation and a larger circuit.

The implications of this for our lifted inference algorithm are as follows.
Assuming that applying the procedure of Proposition 5.6 to the theory ∆ results
in ∆′, we can now answer all queries Pr (qi|ei) that differ only in propositions
and unary relations, that is qi = q>1 ∧ q0,1

i and ei = e>1 ∧ e0,1
i . This is done by

compiling two circuits, for Cqe = Compile
(
∆′ ∧ q>1 ∧ e>1) and Ce =

(
∆′ ∧ e>1)

and computing weighted model counts as

Pr (qi|ei) =
WFOMC

((
Cqe

∣∣∣(q0,1
i ∧ e0,1

i

))
, wT, wF

)
·∏l∈q0,1

i
weight(l)

WFOMC
((

Ce

∣∣∣e0,1
i

)
, wT, wF

)
(5.13)

This means that we can compile a single circuit to compute posterior probabili-
ties for all propositions and unary atoms in our distribution.

5.6 Related Work

Probabilistic inference by weighted first-order model counting is based on the
propositional weighted model counting approach to inference in probabilistic
graphical models (Sang, Beame, and Kautz, 2005; Chavira and Darwiche, 2008)
and statistical relational models (Chavira, Darwiche, and Jaeger, 2006; Fierens
et al., 2011a). Independent of our work, Gogate and Domingos (2011) proposed
a similar reduction for inference in Markov logic networks, to what they call
lifted weighted model counting. Our first-order knowledge compilation approach
to weighted model counting lifts the approach of Chavira and Darwiche (2008)
to the first-order case.

We will now briefly review existing exact lifted probabilistic inference ap-
proaches. Approximate lifted inference algorithms are discussed in Chapter 7.
See Kersting (2012) for a more general overview.

We note here that there exist lifted versions of the belief propagation algo-
rithm (Jaimovich, Meshi, and Friedman, 2007; Singla and Domingos, 2008;
Kersting, Ahmadi, and Natarajan, 2009). On models whose factor graph
representation is singly connected, these algorithms are exact. Whenever



RELATED WORK 159

faced with a loopy theory, these are approximate algorithms. Moreover, the
approximation provided by loopy belief propagation has been shown to
deviate from the true distribution in presence of short loops containing near-
deterministic dependencies, a case which can happen frequently in statistical
relational models. We defer the discussion on lifted belief propagation to
Chapter 7.

5.6.1 First-Order Variable Elimination

Poole (2003) posed the problem of lifted inference for parfactor models. He
proposed a first solution which lifts the variable elimination algorithm. This
lead to a line of work on first-order variable elimination (FOVE) (Poole, 2003; de
Salvo Braz, Amir, and Roth, 2005; de Salvo Braz, Amir, and Roth, 2006; Milch
et al., 2008; Choi, Amir, and Hill, 2010; Apsel and Brafman, 2011; Taghipour
et al., 2012; Taghipour and Davis, 2012). The structured variable elimination
algorithm (Pfeffer et al., 1999; Pfeffer, 1999) is an important precursor to FOVE.

Our approach differs from these types of methods in two significant ways. First,
we take a logical, model theoretic approach to inference, whereas these existing
algorithms lift a probabilistic inference algorithm. Second, our algorithm
exploits the local structure, context specific independences and determinism
that are abundant in statistical relational models. This can substantially improve
the efficiency of inference, as we know from the literature on probabilistic
graphical models (Zhang and Poole, 1999). This disadvantage of FOVE is
mitigated by the work of (Kisyński and Poole, 2009b; Choi, de Salvo Braz, and
Bui, 2011) who only exploit a very specific type of local structure that appears
in so-called aggregate factors, such as “noisy-or”.

5.6.2 Lifted Inference by Search

The approaches of Jha et al. (2010), Gogate and Domingos (2010) and Gogate
and Domingos (2011) are more similar in spirit to our approach. Together with
the work of Poole, Bacchus, and Kisyński (2011), they have in common that
they perform lifted inference by search.

Jha et al. (2010) reduce the problem of computing the partition function of an
MLN to finding the generating function of a counting program. Their approach
focuses on the case when inference can be done fully on the lifted level. They



160 EXACT LIFTED PROBABILISTIC INFERENCE

identify a limited class of models where tractable lifted inference is possible.
However, this class is not defined declaratively. It is implicitly the class of
models whose counting program can be evaluated using their inference rules.
In addition, they do not allow the same predicate to appear more than once in
a clause.

Lifted AND/OR search (Gogate and Domingos, 2010) approaches the problem
from a different angle and uses weighted constraints instead of a weighted
model counting formulation. The Probabilistic Theorem Proving (PTP) (Gogate
and Domingos, 2011) algorithm is similar to lifted AND/OR search but recasts
the problem into weighted first-order model counting, which they call lifted
weighted model counting. These approaches are based on logical inference and
constraint satisfaction and hence also exploit local structure.

The relation between lifted AND/OR search, PTP and first-order knowledge
compilation was discussed in Section 4.7.2. An important difference noted there
was that these methods do not allow free variables or domain constraints in
their inputs. First-order knowledge compilation is capable of reusing circuits
to answer queries about different domains. In contrast, each step of AND/OR
search and PTP is specific to one domain. The expressivity of domain constraints
allows us to efficiently condition on unary evidence. This technique does
not apply to AND/OR search and PTP because they do not support domain
constraints. The same holds for the parameters of the probability distribution.
In first-order knowledge compilation, these are external to the compiled circuit
and only used during evaluation. For example, we can reuse the same circuit
for inference with different sets of MLN weights. We will see applications of
this in Chapters 7 and 8. In contrast, the parameters of the model influence each
step of the AND/OR search and PTP algorithms.

Another method related to our approach is search-based lifted inference (Poole,
Bacchus, and Kisyński, 2011), also developed in parallel research. This approach
uses a parfactor graph model, in contrast to our model counting formulation.
Search-based inference is then performed on this model by lifting the method of
recursive conditioning (Darwiche, 2001c). The similarities between (propositional)
recursive conditioning and weighted model counting manifest themselves also
in the lifted level between search-based lifted inference and our approach. Also
this method does not use a compiled structure.



EXPERIMENTS 161

5.7 Experiments

To complement the theoretical results of the previous sections, this section
reports on some empirical results. We obtained these results by implementing
our first-order knowledge compilation approach to probabilistic inference in
the WFOMC tool.3

The experiments are set up to investigate the following questions:

(Q1) How does WFOMC compare to first-order variable elimination?

(Q2) How does WFOMC scale with domain size?

(Q3) How does probabilistic inference by propositional knowledge compilation
compare to first-order knowledge compilation?

(Q4) Does first-order knowledge compilation still pay offwhen the compilation
algorithm has to ground the model during inference?

(Q5) How does computing posterior probabilities by circuit reuse and logical
conditioning on evidence (Equation 5.13) compare to the approach that
compiles a circuit that includes all evidence (Equation 5.9)?

5.7.1 Marginal Probabilities

Methodology

In this section, we evaluate our approach on common benchmarks in the lifted
inference literature including competing workshops and workshop attributes (Milch
et al., 2008), friends and smokers (Singla and Domingos, 2008), sick and death
(de Salvo Braz, Amir, and Roth, 2005) and friends, smokers and drinkers (Van
den Broeck et al., 2011a). We investigate the task of computing unconditional
marginal probabilities and compare the performance ofWFOMCwith counting
first-order variable elimination (C-FOVE) (Milch et al., 2008) and propositional
variable elimination (VE) (Zhang and Poole, 1994; Dechter, 1996). We used
the publicly available Java implementations of C-FOVE and VE in the BLOG
system.4

3http://dtai.cs.kuleuven.be/wfomc/
4http://people.csail.mit.edu/milch/blog/

http://dtai.cs.kuleuven.be/wfomc/
http://people.csail.mit.edu/milch/blog/


162 EXACT LIFTED PROBABILISTIC INFERENCE

 10

 100

 1000

 10000

 100000

 400  600  800  1000

R
u
n

 T
im

e 
[m

s]

Number of People

(a) Competing Workshops

 10

 100

 1000

 10000

 0  2000  4000  6000  8000

R
u
n

 T
im

e 
[m

s]

Number of People

(b) Friends and Smokers

 10

 100

 1000

 10000

 0  5  10  15  20

R
u

n
 T

im
e 

[m
s]

Number of People

(c) Friends, Smokers and Drinkers

WFOMC (comp+inf)

WFOMC (inf)

C-FOVE

VE

Figure 5.4: Run time comparison of WFOMC, C-FOVE and VE.

Results

Figure 5.4 contains representative results on three different tasks. It plots how
inference time varies with the domain size, that is, the number of people in the
world. For the competing workshops experiment, we also varied the number
of workshops proportionally with the number of people. The figure includes
two results for WFMOC, one which only measures circuit evaluation time (inf)
and another that includes both compilation and evaluation time (comp+inf).
Compilation is only needed once per theory and can be amortized across all
domain sizes. For C-FOVE and ground VE, the plot shows inference time as
these methods have no compilation phase.

For both the competing workshops and friends and smokers tasks, ground VE
quickly runs out of memory and achieves worse performance than the lifted
methods. When considering only inference time, WFOMC is similar to or faster



EXPERIMENTS 163

than C-FOVE.When considering both compilation and inference time,WFOMC
is faster for larger domain sizes, but C-FOVE is slightly faster for small domain
sizes.

The friends, smokers and drinkers benchmark extends the standard friends and
smokers benchmark with an extra MLN formula:

1.4 drinks(X) ∧ friends(X, Y)⇒ drinks(Y)

WFOMC can lift this theory whereas C-FOVE cannot lift it. The curve for C-
FOVE is not shown because the implementation fails.5 Ground VE quickly runs
out of memory.

Lifted inference provides a significant advantage compared to ground inference.
WFOMC can identify and lift more structures than C-FOVE making it more
efficient in these cases. In cases where the operators in C-FOVE are sufficient
to fully lift the theory, WFOMC’s inference is faster, but has a small overhead
associated with the compilation step. This answers question (Q1).

It is important to note that knowledge compilation only needs to be performed
once per theory, that is, it is independent of the domain size (for a fixed
evidence set). The evaluation of these circuits scales well with the domain
size, outperforming C-FOVE on all benchmarks. We can conclude that WFOMC
as a whole scales well with the domain size, answering question (Q2).

5.7.2 Influence of Grounding

Methodology

To investigate the influence of the grounding compilation rule (Section 4.5), we
performed experiments with the symmetric friends and smokers theory (Van den
Broeck, 2011b), which is a version of the friends and smokers model extended
with a hard formula that makes the friends-relation symmetric:

2.0 smokes(X) ∧ friends(X, Y)⇒ smokes(Y)

friends(X, Y)⇒ friends(Y, X).

5In theory, C-FOVE should be able to solve this theory by grounding it and performing VE.



164 EXACT LIFTED PROBABILISTIC INFERENCE

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 10  20  30  40  50  60  70  80

R
u
n
 T

im
e 

[s
]

Number of People

c2d
WFOMC - CR1
WFOMC - CR2

Figure 5.5: Symmetric friends and smokers experiment, comparing proposi-
tional (c2d) to first-order (WFOMC) knowledge compilation, for different sets
of compilation rules.

We evaluate the performance of querying Pr(smokes(alice)) with increasing
domain size, comparing the following algorithms for knowledge compilation:

c2d First ground the theory and then compile it to d-DNNF with the c2d
compiler6 (Darwiche, 2004).

WFOMC-CR1 The Compile algorithm of Chapter 4, without the independent
paired grounding compilation rule of Section 4.4.4.

WFOMC-CR2 The Compile algorithm of Chapter 4 with all compilation rules.

The effect of removing the independent paired grounding rule from WFOMC-
CR1 is that the compilation algorithm will at some point fail to apply any lifted
inference rule. It then resorts to using the grounding compilation rule. This
corresponds to a partially lifted, partially ground inference algorithm. We did
not compare to C-FOVE because it cannot perform lifted inference on this
model.

Results

Figure 5.5 shows the experimental results. Propositional inference quickly
becomes intractable when there are more than 20 people. The lifted inference
algorithms scale much better. This answers question (Q3).

6http://reasoning.cs.ucla.edu/c2d/

http://reasoning.cs.ucla.edu/c2d/


EXPERIMENTS 165

The CR1 rules can exploit some symmetries in the model. For example, they
eliminate all the smokes-atoms from the theory. They do, however, resort to
grounding at a later stage of the compilation process. With all compilation
rules active in CR2, there is no need for grounding. This advantage is clear
in the experiments, having an almost constant inference time in this range of
domain sizes. We answer question (Q4) by observing that there can still be an
advantage in performing first-order knowledge compilation, even if grounding
is needed at some stage, as can be seen from comparing run time of c2d and
WFOMC-CR1.

Note that the run times for c2d and WFOMC-CR1 include compilation and
evaluation of the circuit, whereas the WFOMC-CR2 run times only represent
evaluation of a single compiled FO-d-DNNF. Compilation takes a constant two
seconds for WFOMC-CR2.

5.7.3 Conditional Probabilities

We will now investigate the task of computing conditional probabilities.
More specifically, we compare the utility of conditioning a FO-sda-DNNF on
evidence (cf. Equation 5.13) versus compiling a circuit that includes all
evidence (cf. Equation 5.9).

Methodology

We compare the performance of three systems:

Conditioning Compiles FO-sda-DNNF circuits that support conditioning on
unary literals, using Proposition 5.6.

Naive Compiles a separate FO-sda-DNNF circuit for each query and evidence
set.

Ground Compiles a separate d-DNNF circuit for each query and evidence set
using the c2d compiler.

Even though d-DNNF circuits support conditioning, we do not compile a single
d-DNNF to reuse it for each query. The reason is that the unconditioned, grounded
models are too large to compile, so the evidence must be used to simplify them,
after which they can be compiled.



166 EXACT LIFTED PROBABILISTIC INFERENCE

We evaluate these algorithms on the competing workshops and friends and smokers
benchmarks. In all experiments, the goal is to compute the partition function (i.e.,
the denominator of Equation 5.8).

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0  200  400  600  800 1000 1200 1400

R
u

n
 T

im
e 

[s
]

Domain size

ground
naive

conditioning

(a) Competing Workshops

 1

 10

 100

 1000

 0  20  40  60  80  100

R
u

n
 T

im
e 

[s
]

Domain Size

ground
naive

conditioning

(b) Friends and Smokers

 0.01

 0.1

 1

 10

 100

 1000

 0  20  40  60  80  100

R
u

n
 T

im
e 

[s
]

% Evidence

naive
conditioning

(c) Competing Workshops

 1

 10

 100

 1000

 0  20  40  60  80  100

R
u

n
 T

im
e 

[s
]

% Evidence

ground
naive

conditioning

(d) Friends and Smokers

Figure 5.6: Plots (a) and (b) show run time with varying domain size and fixed
percentage of evidence (50%). Plots (c) and (d) show run time with varying
percentage of evidence and fixed domain size ((c) 1000 people, (d) 50 people).

Results

The experimental results are shown in Figure 5.6. The conditioning curve shows
the sum of the transformation, the compilation, and the circuit evaluation (i.e.,
we are not amortizing the fixed costs over all answered queries).

Figures 5.6a and 5.6b illustrate the results for the first experiment where we
vary the number of objects in the domain while holding the proportion of
observed unary literals at 50%. Both the naive and ground approaches are



CONCLUSIONS AND FUTURE WORK 167

always slower than conditioning, whose curve stays relatively flat. When the
domain size reaches 20 objects, conditioning is between one and two orders of
magnitude faster than the baseline algorithms. It quickly becomes impossible
for the baseline algorithms to compile the theories, whereas the conditioning
approach has no such difficulty.

Figures 5.6c and 5.6d illustrate the results for the second experiment. Here, we
hold the domain size constant (1000 and 50 people) and vary the proportion
of observed unary literals. Conditioning works for any amount of evidence
with relatively consistent run times. The naive approach works for low
levels of evidence, which is the ideal case of lifted inference, as the lack of
evidence preserves the symmetries encoded by the model (i.e., most objects are
indistinguishable). Additionally, the compilation does not have the overhead
of supporting conditioning. However, adding evidence quickly breaks the
symmetries in the model, causing the theory to become mostly ground after
shattering and the run time to dramatically increase, eventually making it
impossible to compile the theory. Once evidence reaches 10%, conditioning
is one to three orders of magnitude faster than the naive approach. Ground
compilation fails entirely for the competing workshops domain. In the friends
and smokers domain, both the naive and ground strategies work for high
evidence levels because the evidence sufficiently simplifies the theory. Still,
both are at least two orders of magnitude slower than conditioning.

Both experiments clearly demonstrate that the benefit of supporting condition-
ing on unary relations far outweighs the cost of applying the transformation
from Proposition 5.6 and compiling a more complex circuit. This answers
question (Q5).

5.8 Conclusions and Future Work

This chapter started by giving an overview of statistical relational languages.
Insights from lifted algorithms for other tasks, and the observation that
performing inference in statistical relational models is hard, motivated the need
for lifted probabilistic inference algorithms. We proposed a definition of lifted
inference, called domain-lifted inference, and a new approach to exact lifted
probabilistic inference. The proposed approach reduces probabilistic inference
problems to weighted first-order model counting problems. It decouples



168 EXACT LIFTED PROBABILISTIC INFERENCE

the logical, relational part of statistical relational models from their specific
probabilistic parametrization.

We showed how to solve the weighted first-order model counting problem
efficiently by first-order knowledge compilation to FO-sda-DNNF circuits. Fur-
thermore, we presented an algorithm to efficiently condition on propositional
and unary evidence, by using domain variables in first-order knowledge
compilation. Our experiments showed that this approach provides benefits
over propositional inference algorithms and advances the state of the art in
lifted probabilistic inference.

For future work, we want to investigate new notions of lifted inference, other
than domain-lifted inference. More specifically, we are still lacking a formal
definition of what approximate lifted inference means. Alternative notions
of exact lifted inference ideally can also distinguish between partially lifted
algorithms, that at some point have the ground the model, and classical non-
lifted inference algorithms. It should also be possible to define notions of lifted
inference for cases where non-lifted algorithms are already polynomial in the
domain size.

The work needed to increase the class of models for which we can perform
lifted inference is closely tied with extensions of our first-order knowledge
compilation algorithm presented in Chapter 4. For example, adding support for
existential quantifiers in compilation would allow us to perform lifted inference
for a larger class of probabilistic logic programs. A more challenging problem
for future work is to develop lifted inference algorithms for probabilistic logic
programs that are not tight, and cannot be represented in first-order logic, or for
open-universe probabilistic models. These problems are still completely open.



Completeness and Liftability

6

This chapter introduces a general framework for defining classes of statistical
relational models and associated classes of inference problems. Within this
framework, we investigate the complexity of inference in terms of the size of
logical variable domains and the size of the query and evidence, corresponding
to different notions of lifted inference. We propose the notion of completeness of
a lifted inference algorithm for a class of inference tasks, indicating that it can
solve all such tasks in a lifted manner. The related notion of liftability of a class
of inference tasks is concerned with the existence of a complete algorithm for
this class.

Experimental and theoretical analyses of existing lifted inference techniques
show that they provide (domain-)lifted inference in some cases where basic
propositional inference techniques would exhibit exponential complexity.
However, until recently, these positive resultsweremostly limited to examples of
individual models, and little was known about the feasibility of lifted inference
for certain well-defined classes of models.

The main contribution of this chapter is the first positive result that shows the
feasibility of lifted inference for a non-trivial class of models and inference tasks.
This result states that the problem of computing single marginal probabilities
in the two-variable fragment of universally quantified FOL-DC is amenable to lifted

169



170 COMPLETENESS AND LIFTABILITY

inference. More specifically, the first-order knowledge compilation approach
to lifted inference is complete for this class of inference problems. This class
corresponds to the class of quantifier-free Markov logic networks with up to
two logical variables per formula.

In addition, we have several other contributions. We prove that the problem
of computing conditional probabilities is not liftable by any inference algorithm,
unless the evidence consists solely of unary atoms and propositions. We also show
that inference in monadic FOL-DC or Markov logic is liftable. By combining these
results with existing complexity results, we present an initial liftability map for
inference in statistical relational models.

We introduce our formal framework for analyzing the complexity of inference in
statistical relational models in Section 6.1. This includes the definition of classes
of models and inference tasks and definitions of lifted inference. Section 6.2
introduces the notion of completeness and proves several related results. The
notion of liftability is introduced in Section 6.3, which indicates which classes
of inference tasks are amenable to lifted inference. We show several positive
and negative liftability results and give an overview of related work on lower
complexity bounds for inference in statistical relational models. Finally, we give
some related work and challenges for future work in Section 6.4.

This chapter is based on the following publications:

G. Van den Broeck (2011b). “On the completeness of first-order
knowledge compilation for lifted probabilistic inference”. In: Ad-
vances in Neural Information Processing Systems 24 (NIPS), pp. 1386–
1394
M. Jaeger and G. Van den Broeck (2012). “Liftability of probabilistic
inference: Upper and lower bounds”. In: Proceedings of the 2nd
International Workshop on Statistical Relational AI,

6.1 Liftability Framework

This section introduces the classes of models, classes of inference problems and
definitions of lifted inference used in this chapter.



LIFTABILITY FRAMEWORK 171

6.1.1 Classes of Inference Tasks

A probabilistic inference problem PI(∆, wT, wF, q, e) for a weighted first-order
theory is given by FOL-DC sentence ∆, two weight functions wT,wF, and two
first-order sentences q, e. The solution to the inference problem is the conditional
probability

Pr(q|e) = Pr(q ∧ e)
Pr(e)

=
WFOMC(∆ ∧ q ∧ e, wT, wF)

WFOMC(∆ ∧ e, wT, wF)
. (5.8′)

A class of inference problems is defined by allowing arguments ∆, φ, and ψ only
from some restricted classes S (the class of sentences), Q (the query class), and
E (the evidence class), respectively. We use the notation

PI(S ,Q, E) =
⋃

wT,wF

{PI(∆, wT, wF, q, e) | ∆ ∈ S , q ∈ Q, e ∈ E} (6.1)

for classes of inference problems. Note that our definition does not depend on
the model parameters expressed by the functions wT, wF.

For queries Q and evidence E , we will use the following classes

• A for single ground atoms,

• T for terms (conjunctions) of ground literals,

• T0,1 for terms of ground literals with arity 0 or 1,

• ∅ for empty sets of evidence.

For example, Q = A and E = ∅ denotes queries for single marginals, without
evidence.

Classes S are defined by various syntactic restrictions on the sentences in the
model. All considered classes are sentences in function-free first-order logic
with domain constraints (FOL-DC, see Section 3.1), with constraint sets as defined
in Section 4.1.1.

We will additionally consider two fragments of FOL-DC:



172 COMPLETENESS AND LIFTABILITY

• MonL, formonadic FOL-DC, that is, FOL-DC with no predicates of arity higher
than one,1 and

• RFOL, for relational FOL, that is, FOL-DC with a single unique domain term
(set of constants) and no constants appearing in the logical atoms.

The RFOL class corresponds to formulas in classical first-order logic with a single
finite domain of discourse and no constants.

We further distinguish between classes based on their support for quantifiers and
the equality predicate. Sentences with arbitrary quantifiers are denoted by (∀∃).
Otherwise, sentences are assumed to be in Skolem normal form (Definition 4.1).
Support for the equality predicate is indicated with (=). For example,
FOL-DC(∀∃,=) is FOL-DC with quantifiers and equality and FOL-DC(=) is FOL-DC in
Skolem normal form with equality. A last type of subclass limits the number
of bound logical variables per formula. For example, k-FOL-DC is FOL-DC with k
bound logical variables per formula.

An algorithm solves a class PI(S ,Q, E), if it computes Pr(q|e) for all instances
PI(∆, wT, wF, q, e) in the class.

6.1.2 Definitions of Lifted Probabilistic Inference

Definition 5.2 in Section 5.3.4 proposed the following definition of lifted
inference, in terms of the computational complexity of inference w.r.t. the
domains of logical variables.

Definition (Domain-Lifted Inference). A probabilistic inference procedure is
domain-lifted for a model ∆, query q and evidence e iff it computes Pr(q|e) in
time polynomial in each |D1|, . . . , |Dk|, where Di is the domain of the logical
variable Xi appearing in ∆, q or e.

Domain-lifted inference does not prohibit the algorithm to have an exponential
complexity in the number of formulas, predicates and logical terms in ∆, φ and
ψ. The definition was motivated by the observation that first-order theories are
often concise, but the presence of large domains causes inference to become
intractable, when done at the propositional level.

1Monadic first-order logic only permits predicates with arity exactly one. We will here also
permit propositions in the sentence.



COMPLETENESS 173

In this chapter we will also consider an alternative definition, which takes into
account the query and evidence.

Definition 6.1 (DQE-Lifted Inference). A probabilistic inference procedure
is domain-, query- and evidence-lifted (DQE-lifted) for a model ∆, query q and
evidence e iff it is domain-lifted and it computes Pr(q|e) in time polynomial in
the size of q and e.

This definition is motivated by the fact that domain-lifted inference algorithms
tend to performpoorly in the presence of evidence,which breaks the symmetries
in the first-order model (cf., Section 5.7.3). When sufficient amounts of evidence
are present, lifted inference algorithms will start to behave identically to
their propositional counterparts, that is, first-order variable elimination (Poole,
2003) will perform variable elimination (Zhang and Poole, 1994), first-order
knowledge compilation to FO-sda-DNNF will perform propositional knowledge
compilation to d-DNNF, etc.

6.2 Completeness

This section proves completeness results for lifted inference by weighted first-
order model counting and first-order knowledge compilation (WFOMC).

Definition 6.2 (Completeness). An algorithm is called a complete domain-lifted
(DQE-lifted) inference algorithm for the class PI(S ,Q, E) iff it is domain-lifted
(DQE-lifted) and solves this class.

Theorem 5.5 already established that WFOMC is a domain-lifted inference
algorithm. Hence, it is a complete domain-lifted algorithm for the class of
problems it can solve. Unfortunately, this class cannot easily be captured in
a single syntactic definition. We will now show several syntactically defined
classes that WFOMC can solve, leading to our completeness results.

6.2.1 Completeness for Monadic Logic

To prove that WFOMC can solve the class MonL, we first prove the following
lemmas, related to the first-order knowledge compilation algorithm into
FO-da-DNNF (Algorithm 1, p. 84), as presented in Chapter 4.



174 COMPLETENESS AND LIFTABILITY

Lemma 6.1. Algorithm 1 removes all atoms without bound logical variable arguments
(including propositions) from a FO-CNF.

Proof. Since all atoms in the sentence contain no bound variables, the Shan-
nonDecomposition rule (Section 4.2.3) can be applied as long as the sentence
contains atoms. A subsequent application of the UnitPropagate rule (Sec-
tion 4.2.1) removes one atom from the sentence. This continues until all atoms
are removed.

Lemma 6.2. Algorithm 1 can compile any FO-CNF with one bound variable per atom
into FO-da-DNNF.

Proof. We can assume that all atoms without bound variables have been
removed from the theory (Lemma 6.1). What is left are all atoms with one
bound variable argument. As long as there are atoms left in the theory, the
AtomCounting rule (Section 4.4.6) applies. Its preconditions can always be
met by applying the ShatteredCompilation rule (Section 4.3.4). A subsequent
application of the UnitPropagate rule (Section 4.2.1) removes a non-empty
set of atoms from the theory. When all atoms are removed, the base case of
Algorithm 1 is met.

This shows that we can always compile the circuits for ∆ ∧ q ∧ e and ∆ ∧ e
in Equation 5.8′, given that these are all monadic.2 Therefore, we have the
following result.

Theorem 6.3. WFOMC is a complete domain-lifted inference algorithm for the class
PI(MonL(=), MonL(=), MonL(=)).

Let us now look at completeness for the definition of DQE-lifted inference. This
requires that inference is also polynomial in the size of the query and evidence.

Proposition 6.4. WFOMC is not a complete DQE-lifted inference algorithm for the
class PI(MonL(=), MonL(=), MonL(=)).

Proof. Converting an arbitrary query into FO-CNF, which is the input of the
compilation algorithm, can cause an exponential increase in the size of the

2Note that the input to Algorithm 1 is a FO-CNF in Skolem normal form, where the FOL part of
each formula is a clause. We can convert the FOL part of an arbitrary formula in Skolem normal
form into CNF and thereby convert any theory in Skolem normal form into a FO-CNF.



COMPLETENESS 175

theory, making inference exponential in the size of the query. This follows from
the succinctness relation between CNF and DNF (Gogic et al., 1995).

Theorem 6.5. WFOMC is a complete DQE-lifted inference algorithm for the class
PI(MonL(=), T , T ).

Proof. Section 5.5.3 outlines an approach to compile FO-sda-DNNF circuits
that can be conditioned on any proposition or unary literal. It involves a
transformation of the theory ∆ (Proposition 5.6). The set of monadic theories
MonL is closed under this transformation. In case the query or evidence term
contains higher-arity literals, these are independent of the theory ∆, and can
simply be conjoined with its circuit. Hence, it follows from Lemma 6.2 that the
circuits built by this technique can be compiled. Subsequently conditioning the
circuit on the propositional and unary evidence and evaluating its weighted
model counts is polynomial in the node labels and therefore polynomial in the
domain size, query size and evidence size.

6.2.2 Completeness for the Two-Variable Fragment

Monadic logic has a very limited expressivity. It can only represent knowledge
about properties of objects, not about relations between objects. In this section,
we analyze the completeness of WFOMC for a more powerful class of models,
namely the two-variable fragment of FOL-DC.

We first prove that first-order knowledge compilation can compile any theory
with up to two bound logical variables per clause.

Theorem 6.6. Algorithm 1 can compile any FO-CNF with up to two bound logical
variables per formula into FO-da-DNNF.

Proof. Algorithm 1 compiles these formulas by using three sets of compilation
rules in sequence:

(i) All atoms with zero or one logical variables are removed from the theory
by the ShannonDecomposition, AtomCounting and UnitPropagation
rules (cf., proof of Lemma 6.2). In a theory with up to two bound logical
variables per formula, this leaves us only with atoms that contain both
variables. Hence, every variable is root and every class of unifying
variables is a root unifying class (Definition 4.3).



176 COMPLETENESS AND LIFTABILITY

(ii) Lemma 4.7 states that when a theory is first shattered and independent
subtheories are decomposed, any root unifying class contains the same
number of variables from each atom in the theory. By applying the
Independence (Section 4.2.2) and ShatteredCompilation rules, we can
always satisfy the conditions stated in Lemma 4.7.

(iii) Step (i) guarantees that the theory is either empty or contains a root
unifying class. Step (ii) guarantees that this root unifying class either
contains

– one logical variable per atom in the theory, which means the
IndependentSingleGroundings (Section 4.4.3) rule applies, or

– two logical variables per atom in the theory, which means the
IndependentPairedGroundings (Section 4.4.4) rule applies.

These rules recursively call Algorithm 1 to compile a theory with at most
one bound logical variable per atom, which Lemma 6.2 states can always
be compiled.

We can now use this result to establish two completeness results for the two-
variable fragment. According to Equation 5.8′, we need to compile the formulas
∆ ∧ q ∧ e and ∆ ∧ e into FO-da-DNNF. For the class PI(2-FOL-DC(=), 2-FOL-DC(=),
2-FOL-DC(=)), these formulas can be converted into FO-CNFs that have up to two
bound logical variables per formula, which can be compiled (Theorem 6.6).
Because compilation has a complexity that is independent of the domain sizes
and weighted first-order model counting on these circuits is polynomial in the
domain sizes, we have the following main result.

Theorem 6.7. WFOMC is a complete domain-lifted inference algorithm for the class
PI(2-FOL-DC(=), 2-FOL-DC(=), 2-FOL-DC(=)).

Again, by applying the conditioning technique outlined in Section 5.5.3, we
obtain a corresponding result for the notion of DQE-lifted inference.

Theorem 6.8. WFOMC is a complete DQE-lifted inference algorithm for the class
PI(2-FOL-DC(=), T0,1, T0,1).

Proof. Analogous to the proof of Theorem 6.5, only using Theorem 6.6 instead
of Lemma 6.2.



COMPLETENESS 177

This means that lifted inference is possible when we have (partial) type
information about every object in the world. When we have evidence on
properties (which have arity one), this induces a type for each object, which is
the set of properties of that object. For example, when there are k properties,
each object can belong to one of 2k types, and we can have partial evidence
about the type of each object, which induces 3k equivalence classes. Theorem 6.8
shows that probabilistic reasoning with such information is polynomial in the
number of objects in the world.

6.2.3 Completeness for Markov Logic Networks, Parfactor
Graphs and ProbLog Programs

To put these completeness results into perspective, we will now investigate their
implications on popular statistical relational modeling languages. Section 5.4.2
outlines the reduction from Markov logic networks, parfactor graphs and ProbLog
programs to WFOMC problems. Next, we discuss the syntactic properties of the
generated WFOMC problems and how our completeness results carry over.

All completeness results pertain to sentences in Skolem normal form. The
reduction fromMLNs is in this formwhen theMLN is quantifier-free.When the
MLN contains a universal or existential quantifier, the reduction will contain
an existential quantifier and will not be in Skolem normal form.3 The reduction
from parfactor graphs is in Skolem normal form when it contains no counting
formulas. For ProbLog programs, the conditions are more strict. To obtain a
Skolem normal form theory, all the logical variables that appear in the body of
a Prolog clause must also appear in its head.

Under these conditions, our completeness results for monadic WFOMC models
(Theorems 6.3 and 6.5) also apply to monadic MLNs, monadic parfactor graphs
and ProbLog programs with monadic bodies. This is not immediate, because
these models can reduce to WFOMC problems that are not monadic. However,
the reduction has at most one non-monadic atom per clause, and we can extend
Lemma 6.2 to show that Algorithm 1 can compile any such FO-CNF.

Under the above restrictions to obtain Skolem normal form reductions, the
completeness results for the two-variable fragment of WFOMC do carry over
directly. WFOMC is a complete domain-lifted inference algorithm for MLNs

3One can always replace an existential quantifier in the MLN by a finite disjunction, at the cost
of introducing additional explicit constants in the model and increasing its size.



178 COMPLETENESS AND LIFTABILITY

with up to two logical variables per formula, parfactor graphs with up to two
variables per parfactor, and ProbLog programs with up to two variables per
clause. For MLNs, this covers many of the models in use today. As we will see
in Chapter 8, many MLNs generated by structure learning algorithms are in
this class. In contrast, the condition for ProbLog that all variables that appear
in the body must also appear in the head is very restrictive.

The two-variable fragment is not trivial and surprisingly expressive, containing
many models in practical use today. It can contain important concepts such as
symmetric, anti-symmetric, total and homophily relations (in MLN syntax):

friends(X, Y)⇒ friends(Y, X).

parent(X, Y)⇒ ¬parent(Y, X).

¬ ≤ (X, Y)⇒≤ (Y, X).

smokes(X) ∧ friends(X, Y)⇒ smokes(Y).

Furthermore, all models currently used in the lifted inference literature are in
this class. Still, there are useful models that are not in it, most notably models
with existential quantifiers and concepts such as transitivity and generalized
homophily:

friends(X, Y) ∧ friends(Y, Z)⇒ friends(X, Z). (6.2)

likes(X, Z) ∧ friends(X, Y)⇒ likes(Y, Z). (6.3)

which contain three logical variables per formula. For these formulas, com-
pilation fails because after removing all atoms with less than two logical
variables (step (i) of Theorem 6.6), not all logical variables are guaranteed
to be root, the groundings of the model are still connected and do not
decompose. Manymodels not in the two-variable fragment can still be compiled
to FO-da-DNNF, but there are no guarantees in the form of a completeness result.

6.3 Liftability

The related notion of liftability talks about the existence of a complete domain-
lifted algorithm.



LIFTABILITY 179

Definition 6.3 (Liftability). A class PI(S ,Q, E) is domain-liftable (DQE-liftable)
iff there exists an algorithm that is complete domain-lifted (DQE-lifted) for this
class.

The above definition of liftability pertains only to exact inference. An anal-
ogous notion is approximate liftability, when there exists an algorithm that ε-
approximately solves all problems in a class and is domain-lifted. An algorithm
ε-approximately solves PI(S ,Q, E), if for any PI(∆, wT, wF, q, e) in the class it
returns a number in [Pr(q | e)− ε, Pr(q | e) + ε].4

The following sections will investigate the liftability of different classes of
PI(S ,Q, E). Table 6.1 summarizes the results and indicates several unknown
liftability results.

Open Problem 5. Question marks in Table 6.1.

N
ot
io
n

S Q E Ex
ac
t

A
pp

ro
x.

Th
eo

re
m

domain

RFOL(∀∃,=) A ∅ 7 7 6.14
RFOL A ∅ 7∗ 7∗ 6.15

k-RFOL A ∅ ? ?
3-RFOL A ∅ ? ?

2-FOL-DC(=) 2-FOL-DC(=) 2-FOL-DC(=) 3 3 6.11
MonL(=) MonL(=) MonL(=) 3 3 6.9

dqe
2-RFOL A T 7 ? 6.17

2-FOL-DC(=) T0,1 T0,1 3 3 6.12
MonL(=) T0,1 T0,1 3 3 6.10

Table 6.1: Liftability results (contingent on complexity assumptions)w.r.t. classes
of knowledge bases S , queriesQ and evidence E . For negative/positive results,
the most specific/general class is shown. 7∗: subject to an additional condition
on polynomial time complexity as a function of parameter complexity.

6.3.1 Positive Liftability Results

A proof that one particular algorithm for lifted probabilistic inference is
complete for a class of problems is also a constructive proof that this class

4Implicitly, Pr denotes the distribution w.r.t. the given ∆, wT and wF.



180 COMPLETENESS AND LIFTABILITY

of models is liftable. Hence, from Theorems 6.3, 6.5, 6.7 and 6.8, we obtain the
following liftability results.

Corollary 6.9. The class PI(MonL(=), MonL(=), MonL(=)) is domain-liftable.

Corollary 6.10. The class PI(MonL(=), T0,1, T0,1) is DQE-liftable.

Corollary 6.11. The class PI(2-FOL-DC(=), 2-FOL-DC(=), 2-FOL-DC(=)) is domain-
liftable.

Corollary 6.12. The class PI(2-FOL-DC(=), T0,1, T0,1) is DQE-liftable.

Because these classes are exactly liftable, they are also trivially approximately
liftable.

6.3.2 Negative Domain-Liftability Results

Before the problem of lifted probabilistic inference was posed, Jaeger (2000)
showed that under certain assumptions on the expressivity of a statistical
relational modeling language, probabilistic inference is not polynomial in the
domain size, thereby demonstrating some inherent limitations in terms of
worst-case complexity for the goals of lifted inference. The results of Jaeger
(2000) essentially assume a directed modeling framework, and the expressivity
requirements amount to a probabilistic version of full first-order logic.

Because FOL-DC andmanypopular statistical relational languages are undirected
and, more significantly, because we are interested in the liftability of classes of
models without the expressivity of full first-order logic, Jaeger and Van den
Broeck (2012); Jaeger (2012) investigate how these earlier intractability results
are applicable to ongoing efforts. Extending the general approach taken in
Jaeger (2000), this work derives new lower complexity bounds that show that
domain-lifted inference still is infeasible when the strong assumptions of Jaeger
(2000) are loosened, and only the expressivity of Skolem normal form relational
first-order logic without equality (RFOL) is required.

All negative liftability results for domain-lifted inference are obtained by
reducing the spectrum recognition problem to probabilistic inference problems.
We give a brief overview of Jaeger and Van den Broeck (2012); Jaeger (2012) and
how these results fit into the liftability framework.

We first briefly review the fundamental concepts about spectra of first-order
logic sentences, and the complexity class ETIME.



LIFTABILITY 181

Definition 6.4. Let ψ be a sentence in first-order logic. The spectrum of ψ is the
set of integers n ∈N for which ψ is satisfiable by an interpretation of domain
size n.

Example 6.1. Let ψ = ψ1 ∧ ψ2 ∧ ψ3, where

ψ1 ≡ ∀X, Y : u(X, Y)⇔ u(Y, X)

ψ2 ≡ ∀X ∃Y : Y 6= X ∧ u(X, Y)
ψ3 ≡ ∀X, Y, Y′ : (u(X, Y) ∧ u(X, Y′)⇒ Y = Y′)

ψ expresses that the binary relation u defines an undirected graph (ψ1) in
which every node is connected to exactly one other node (ψ2, ψ3). Thus, ψ

describes a pairing relation that is satisfiable exactly over domains of even size:
spec(ψ) = {n | n even}.

The complexity class ETIME consists of problems solvable on a deterministic
Turing machine in time O(2cn), for some constant c (Johnson, 1990). The
corresponding nondeterministic class is NETIME. Based on a characterization
of NETIME in terms of first-order spectra given by Jones and Selman (1972),
we obtain the following.

Proposition 6.13. If NETIME 6= ETIME, then there exists a first-order sentence φ,
such that {n | n ∈ spec(φ)} cannot be recognized by a deterministic algorithm in
time polynomial in n.

Thus, by reducing the spectra-recognition problem to a class of inference
problems PI(S ,Q, E), one establishes that the latter is not polynomial in the
domain size (under the assumption ETIME 6= NETIME).

We first state a result for knowledge bases using RFOL(∀∃,=). This is rather
straightforward, and (for exact inference) already implied by the results of
Jaeger (2000).

Theorem 6.14. If NETIME 6= ETIME, then there does not exist an algorithm that
0.25-approximately solves PI(RFOL(∀∃,=),A, ∅) in time polynomial in the domain size.

The following theorem extends Theorem 6.14 to knowledge bases with only
quantifier-free formulas without equality. At the same time a slight weakening
is introduced by imposing an additional condition on the complexity in terms
of representation size of the weight parameters wT, wF.



182 COMPLETENESS AND LIFTABILITY

Theorem 6.15. If NETIME 6= ETIME, then there does not exist an algorithm
that 0.25-approximately solves PI(RFOL,A, ∅) in time polynomial in n and the
representation size l := ∑i log(wi) of the weight parameters in wT, wF.

The basic strategy for proving this theorem is to replace quantifiers with
relational encodings of Skolem functions, and the equality predicate = with an
ordinary binary relation E(·, ·). The problem, then, is to enforce that the newly
introduced relations behave like functions, respectively like the equality relation.
Given the expressive power only of RFOL, this, naturally, is not possible to do
exactly. However, by adding predicates and formulas and by using suitable
weight functions, one can ensure that interpretations in which the Skolem
relations and the E relation do not show the desired properties have a negligible
weight. The weights for the formulas constraining the Skolem and E relations,
now, have to be calibrated as a function of the domain size n. Thus, for a given
first-order formula ψ, the problem n ∈ spec(ψ) is reduced to an inference
problem PI(∆(n), wT(n), wF(n), q,T), where for different n, we have different
∆, wT, wF.

6.3.3 Negative DQE-Liftability Result

We will now prove a negative DQE-liftability result for the class of models
2-FOL-DC(=), in spite of its positive domain-liftability result. Section 3.4.4
investigated the problem of conditioning a FO-da-DNNF circuit. Theorem 3.18
established that this is impossible in general, unless P=NP. With a similar proof
strategy, we can prove our negative liftability result.

The proof strategy shows that one can solve #2SAT, that is, the model counting
problem for propositional CNFswith 2 literals per clause (2CNF), by conditioning
the following theory and computing its model count.

∀X, Y ∈ Prop : ¬ q∨ p(X) ∨ p(Y) ∨ ¬ c1(X, Y)

∀X, Y ∈ Prop : ¬ q∨ p(X) ∨ ¬p(Y) ∨ ¬ c2(X, Y)

∀X, Y ∈ Prop : ¬ q∨¬p(X) ∨ ¬p(Y) ∨ ¬ c3(X, Y) (6.4)

Assuming for now that we have conditioned on q being true, this formula is
equivalent to Formula 3.11. Atoms p(X) represent propositions and atoms



RELATED AND FUTURE WORK 183

ci(X, Y) represent clauses. Conditioning on a positive ci literal includes the
clause of type i for the propositions p(X) and p(Y) in the CNF (see Section 3.4.4).

Given that the #2SAT problem is #P-complete (Valiant, 1979), we will now show
that computing conditional probabilities is #P-hard, by showing that #2SAT is
reducible to it.

Theorem 6.16. For any S that can express a uniform distribution over the models of
Formula 6.4, solving PI(S ,A, T ) is #P-hard.

Proof. Querying for Pr(q |ψ), where ψ assigns a truth value to every ci atom,
returns c/(c + 2n), where c is the model count of the 2CNF represented by ψ

and 2n the number of possible assignments to the n propositions in the 2CNF.
By solving for c, we can answer arbitrary #2SAT problems.

Because Formula 6.4 is in 2-RFOL, we have the following liftability result.

Corollary 6.17. PI(2-RFOL,A, T ) is not (DQE-)liftable, unless P=NP.

This result highlights an important limitation of all exact lifted inference
methods: computing probabilities with evidence on binary relations cannot
be polynomial in the size of the evidence, unless P=NP. This result identifies a
sharp contrast between lifted and propositional inference algorithms: whereas
evidence in undirected models simplifies inference in the propositional case, it
complicates inference in the lifted case.

6.4 Related and Future Work

The IndependentPairedGroundings is an essential tool in establishing the
completeness result for the two-variable fragment. The lack of an inference
rule that could deal with theories with a root unifying class with two variables
per atom, used to be the major limitation of early lifted inference approaches,
such as first-order variable elimination. Recently, Taghipour et al. (2012b) have
shown that first-order variable elimination with an extension similar to the
IndependentPairedGroundings rule is complete domain-lifted.

Domingos and Webb (2012) introduce “Tractable Markov Logic (TML)”, which
also is a syntactically restricted statistical relational modeling language. TML is
not directly defined as a fragment of first-order logic fitting our weighted model



184 COMPLETENESS AND LIFTABILITY

counting framework, and therefore its placement into our complexity map of
Table 6.1 is not immediate, but still seems quite feasible based on a precise
first-order representation of TML syntax. It is remarkable, though, that TML is
related to probabilistic description logics, and that description logics, in turn,
are well-known to be representable in the 2-variable fragment of first-order
logic (Hustadt, Schmidt, and Georgieva, 2004). Thus, it may well turn out that
TML and PI(2-FOL-DC(=), T , T ) actually exploit the same underlying source of
tractability, and that a combination of the two could lead to the identification of
a tractable class that has both a natural and concise characterization, and that
is more expressive than either of the two classes alone.

Further important open problems include a complexity results for the 3-
variable fragment 3-RFOL. Formulas with three variables provide important
added expressivity compared to the 2-variable fragment. The transitive clause
(Formula 6.2) and generalized homophily (Formula 6.3) are in 3-RFOL. Liftability
for at least some inference classes PI(3-RFOL, ?, ?) would be an important
extension. For transitivity, we know precisely which are the symmetries of
the model (e.g., by preemptive shattering), but we do not know how to exploit
them.

Another open problem is a complexity result for RFOL with bounded weight
parameters. Our lower complexity bound of Theorem 6.15 is based on the
assumptions that weights can be arbitrarily small or big. For practical modeling
tasks it would not be a significant limitation to restrict weights to lie between a
certain lower and upper bound (in addition to zeroweights for hard constraints).
While, on the one hand, our results do not imply non-liftability for such
weight-bounded knowledge bases, it is hard to imagine how a concrete exact
inference algorithm could exploit weight-boundedness, since such an algorithm
would then have to exhibit non-polynomial complexity with respect to the
representation size of the weights. However, in the case of approximate
inference, it is feasible that disallowing extreme weights improves worst-case
approximation quality and therefore also approximate liftability. For different
tasks and parameter spaces, it is clear that broader classes of problems are
liftable. For example, MPE inference with 0/1 weights is identical to the SAT
problem, for which first-order resolution is complete.



CONCLUSIONS 185

6.5 Conclusions

In this chapter, we have collected existing and new results that are the beginning
of a systematic formal analysis of lifted inference. The general factorization of
classes of inference problems according to knowledge base, query, and evidence-
classes allows us to accommodate a variety of different complexity aspects in
a coherent framework, with a particular focus on the question of liftability
of inference. Furthermore, our framework aligns the complexity of inference
analysis with well-established concepts of syntactic complexity of predicate
logic formulas, notably in terms of quantifier complexity and the number of
variables.

Within this framework, we obtained several concrete results. We identified of a
first non-trivial classes of models and inference tasks that is amenable to lifted
inference. On the other hand, we showed that for certain other classes, lifted
inference is unlikely to be possible. We expect future work that extends these
proofs to larger classes, and to approximate inference, as well as work that
introduces additional notions of lifting.





From Approximate to Exact
Lifted Inference

7

This chapter proposes an approach to approximate lifted inference that is based
on performing exact lifted inference in a simplified first-order model. Namely,
we simplify the structure of a first-order model until it is amenable to exact
lifted inference, by relaxing first-order equivalence constraints in the model.
Relaxing equivalence constraints ignores (many) dependencies between random
variables, so we compensate for this relaxation by restoring a weaker notion of
equivalence, in a lifted way. We then incrementally improve this approximation
by recovering first-order equivalence constraints back into the model.

In fact, our proposal corresponds to an approach to approximate inference,
called Relax, Compensate and then Recover (RCR) for (ground) probabilistic
graphicalmodels (see Section 2.5.2).1 For suchmodels, the RCR framework gives
rise to a spectrum of approximations, with iterative belief propagation on one
end (when we use the coarsest possible model), and exact inference on the other
(whenweuse the originalmodel).We showhow relaxations, compensations and
recovery can all be performed at the first-order level, giving rise to a spectrum of
first-order approximations, with lifted first-order belief propagation on one end,

1A solver based on the RCR framework won first place in two categories evaluated at the UAI’10
approximate inference challenge, in the most demanding sub-category of 20-second response
time (Elidan and Globerson, 2010).

187



188 FROM APPROXIMATE TO EXACT LIFTED INFERENCE

and exact lifted inference on the other.

The propositional RCR framework operates on probabilistic graphical models.
In order to motivate our Lifted RCR algorithm, we first adapt RCR to work
with propositional, or ground Markov logic networks in Section 7.1. A Lifted
RCR algorithm that operates on first-order MLNs is presented in Section 7.2
An essential component in the Lifted RCR framework is an algorithm that
partitions equiprobable equivalences. Section 7.3 discusses this problem in
more detail. Section 7.4 discusses related work on approximate lifted inference.
It identifies propositional inference algorithmswhose approximations are in the
spectrum of Lifted RCR, as well as existing lifted inference algorithms that fit
into this framework. In Section 7.5, we evaluate our approach on benchmarks
from the lifted inference literature. Experiments indicate that recovering a small
number of first-order equivalences can improve on the approximations of lifted
belief propagation by several orders of magnitude. We show that, compared
to Ground RCR, Lifted RCR can recover many more equivalences in the same
amount of time, leading to better approximations.

The work presented in this chapter was previously published as:

G. Van den Broeck, A. Choi, and A. Darwiche (2012). “Lifted relax,
compensate and then recover: From approximate to exact lifted
probabilistic inference”. In: Proceedings of the 28th Conference on
Uncertainty in Artificial Intelligence (UAI)

7.1 RCR for Ground MLNs

Although our main objective is to present a lifted version of the RCR framework,
we start by adapting RCR to ground Markov logic networks (MLNs). This is
meant to both motivate the specifics of Lifted RCR and to provide a basis for
its semantics (i.e., the correctness of Lifted RCR will be against the results of
Ground RCR).

The syntax and semantics ofMLNswere introduced in Section 5.1.1. In addition,
we will here assume that all logical variables in the MLN are free. This can
always be achieved by transforming existential quantifiers into disjunctions and
universal quantifiers into conjunctions. As a consequence of this assumption, all
instances of MLN formulas are ground. The grounding of an entire MLN ∆ can
simply be obtained by replacing each formula in ∆ with all its instances (using



RCR FOR GROUND MLNS 189

the same weight). The ground distribution of MLN ∆ is then the probability
distribution induced by the grounding of ∆.

Example 7.1. As a running example, we will use the MLN from Example 5.1.

1.5 smokes(X) ∧ friends(X, Y)⇒ smokes(Y) (5.2′)

1.3 smokes(X)⇒ cancer(X) (5.3′)

For the domain {alice, bob}, this first-order MLN represents the ground MLN

1.5 smokes(alice) ∧ friends(alice, alice)⇒ smokes(alice)

1.5 smokes(alice) ∧ friends(alice, bob)⇒ smokes(bob)

1.5 smokes(bob) ∧ friends(bob, alice)⇒ smokes(alice)

1.5 smokes(bob) ∧ friends(bob, bob)⇒ smokes(bob)

1.3 smokes(alice)⇒ cancer(alice) (7.1)

1.3 smokes(bob)⇒ cancer(bob)

The RCR algorithm can be understood in terms of three steps: Relaxation (R),
Compensation (C), and Recovery (R). Next, we examine each of these steps and
how they apply to ground MLNs.

7.1.1 Ground Relaxation

Relaxation is the process of ignoring interactions between the formulas of
a ground MLN. An interaction takes place when the same ground atom
ag appears in more than one ground formula in an MLN. We can ignore
this interaction via a two step process. First, we rename one occurrence of
ag into, say, a′g, through a process that we call cloning. We then assert an
equivalence constraint between the original ground atom ag and its clone,
ag ⇔ a′g. At this point, we can ignore the interaction by simply dropping the
equivalence constraint, through a process that we call relaxation. Bringing back
the equivalence is known as recovery and will be discussed in more detail later.

Example 7.2. The smokes(alice) atom in Formula 7.1 leads to an interaction
between this formula and some of the other five formulas in the groundMLN. To



190 FROM APPROXIMATE TO EXACT LIFTED INFERENCE

ignore this interaction, we first rename this atom occurrence into smokes2(alice)
leading to the modified formula

1.3 smokes2(alice)⇒ cancer(alice) (7.2)

which replaces Formula 7.1 in the MLN. The corresponding equivalence is

smokes2(alice)⇔ smokes(alice) (7.3)

Dropping this equivalence constraint amounts to removing the interaction
between Formula 7.2 and the rest of the MLN.

7.1.2 Ground Compensation

When relaxing an equivalence constraint ag ⇔ a′g, the connection between the
ground atoms ag and a′g is lost. One can compensate for this loss by adding two
weighted atoms

w ag and w′ a′g

If the weights w and w′ are chosen carefully, one can reestablish a weaker
connection between the ground atoms. For example, one can choose these
weights to ensure that the ground atoms have the same probability, establishing
a weaker notion of equivalence.

We will now suggest a specific compensation scheme based on a key result
from Choi and Darwiche (2006). Suppose that we relax a single equivalence
constraint, ag ⇔ a′g, which splits the MLN into two disconnected components,
one containing atom ag and another containing atom a′g. Suppose further that
we choose the compensations w and w′ such that

Pr(ag) = Pr(a′g) =
ew+w′

1 + ew+w′ . (7.4)

We now have a number of guarantees. First, the resulting MLN will yield
exact results when computing the probability of any ground atom. Second,
the compensations w and w′ can be identified by finding a fixed point for the



RCR FOR GROUND MLNS 191

following equations:

wi+1 = log
(

Pr i(a′g)
)
− log

(
Pr i(¬a′g)

)
− w′i

w′i+1 = log
(
Pr i(ag)

)
− log

(
Pr i(¬ag)

)
− wi. (7.5)

Following Choi and Darwiche (2006), we will seek compensations using these
update equations even when the relaxed equivalence constraint does not
disconnect the MLN, and even when relaxing multiple equivalence constraints.
In thismore general case, a fixed-point to the above equationswill still guarantee
the weak equivalence given in Equation 7.4. However, when computing the
probabilities of ground atoms, we will only get approximations instead of exact
results.2

Searching for compensations using Equations 7.5 will lead to the generation
of a sequence of MLNs that differ only on the weights of atoms added during
the compensation process. The first MLN in this sequence is obtained by
using zero weights for all compensating atoms, leading to an initial ground
distribution Pr0. Each application of Equations 7.5 will then lead to a newMLN
(with new compensations) and, hence, a new ground distribution, Pri+1. Upon
convergence, the resulting MLN and its ground distribution will then be used
for answering queries. This is typically done using an exact inference algorithm
as one usually relaxes enough equivalence constraints to make the groundMLN
amenable to exact inference. Note that applying Equations 7.5 also requires
exact inference, as one must compute the probabilities Pri(ag) and Pri(a′g).

7.1.3 Ground Recovery

Now thatwe can relax equivalences and compensate for their loss, the remaining
question is which equivalences to relax. In general, decidingwhich equivalences
to relax is hard, because it requires inference in the original model, which is
intractable. Instead, Choi and Darwiche (2006) take the approach of relaxing
every equivalence constraint and then incrementally recovering them as time
and exact inference allow.

2In this more general case, there is no longer a guarantee that Equations 7.5 will converge to a
fixed point. Convergence can be improved by using damping in Equations 7.5. Damping sets the
new parameters to a weighted sum of the parameters from the previous iteration, and the updates
as defined in Equations 7.5.



192 FROM APPROXIMATE TO EXACT LIFTED INFERENCE

It follows from their results that when (i) relaxing all equivalence constraints,
(ii) using the above compensation scheme and (iii) doing exact inference in
the approximate model, the approximate marginals found correspond to the
approximations found by iterative belief propagation (IBP, see Section 2.5.1) (Pearl,
1988). The connection to IBP is even stronger: the compensating weights
computed in each iteration of Equations 7.5 exactly correspond to the messages
passed by IBP.

Several heuristics have been proposed to decide which equivalences to recover,
by performing inference in the relaxed model. We will work with the residual
recovery heuristic (Choi and Darwiche, 2011). It is based on the practical
observation that when IBP converges easily, the quality of its approximation is
high. The heuristic tries to recover those edges whose convergence was most
difficult in previous compensation steps. It recovers the equivalence that least
satisfies Equation 7.4 after the compensation algorithm has converged. This is
measured by taking the three-way symmetric KL divergence between the three
terms of Equation 7.4.

7.2 Lifted RCR

We now introduce a lifted version of the relax, compensate and recover frame-
work, which is meant to operate directly on first-order MLNs without having
to ground them. Lifted RCR is based on first-order relaxation, compensation
and recovery.

7.2.1 First-Order Relaxation

We begin with a first-order notion of relaxation where the goal is to ignore
interactions between groundMLN formulas, yet without having to fully ground
the MLN. This requires a first-order version of atom cloning and first-order
equivalences.

Definition 7.1 (First-Order Cloning). Cloning an atom occurrence in an MLN
formula amounts to renaming the atom by concatenating its predicate with (i)
an identifier of the formula, (ii) an identifier of the occurrence of the atomwithin
the formula, and (iii) the logical variables appearing in the atom’s formula.



LIFTED RCR 193

Example 7.3. The first-order cloning of the atom occurrence smokes(Y) in
Formula 5.2′ gives

1.5 smokes(X) ∧ friends(X, Y)⇒ smokes1b<X,Y>(Y) (7.6)

Here, 1 is an identifier of the formula, b is an identifier of the atom occurrence
in the formula, and <X, Y> are the logical variables appearing in the formula.

As in the ground case, each first-order cloning is associated with a corre-
sponding equivalence between the original atom and its clone, except that
the equivalence is first-order in this case.

Example 7.4. The first-order cloning of atom occurrence smokes(Y) into
smokes1b<X,Y>(Y) in the example above leads to introducing the following
first-order equivalence:

smokes(Y)⇔ smokes1b<X,Y>(Y) (7.7)

Let us now consider the groundings of Formulas 7.6 and 7.7, assuming a domain
of {p, q}:

1.5 smokes(p) ∧ friends(p, p)⇒ smokes1b<p,p>(p)

1.5 smokes(p) ∧ friends(p, q)⇒ smokes1b<p,q>(q)

1.5 smokes(q) ∧ friends(q, p)⇒ smokes1b<q,p>(p)

1.5 smokes(q) ∧ friends(q, q)⇒ smokes1b<q,q>(b)

smokes(p)⇔ smokes1b<p,p>(p)

smokes(q)⇔ smokes1b<p,q>(q)

smokes(p)⇔ smokes1b<q,p>(p)

smokes(q)⇔ smokes1b<q,q>(q)

We have a few observations on the proposed cloning and relaxation techniques.
First, the four groundings of Formula 7.6 contain distinct groundings of the
clone smokes1b<X,Y>(Y). Second, if we relax the equivalence in Formula 7.7,
the ground instances of Formula 7.6 will no longer interact through the



194 FROM APPROXIMATE TO EXACT LIFTED INFERENCE

clone smokes1b<X,Y>(Y). Third, if we did not append the logical variables
<X, Y> during the cloning process, the previous statement would no longer be
correct. In particular, without appending logical variables, the four groundings
of Formula 7.6 would have contained only the two distinct clone groundings,
smokes1b(p) and smokes1b(q). This would lead to continued interactions
between the four groundings of Formula 7.6

Removing all interactions among groundings of the same formula is necessary
for the following reasoning. Consider an MLN with the single formula,

w friends(X, Y) ∧ friends(Y, Z)⇒ friends(X, Z)

If we clone all atom occurrences, yet without appending logical variables, and
then relax all equivalences, we would obtain the MLN (w, friendsa(X, Y) ∧
friendsb(Y, Z) ⇒ friendsc(X, Z)), which still has many interacting random
variables at the ground level. As we will see in Chapter 6, there is currently no
exact lifted inference algorithm that can handle this MLN without grounding
it first. Furthermore, because this ground model has high treewidth for non-
trivial domain sizes, it is also not amenable for exact inference by propositional
algorithms. However, by cloning atoms in Lifted RCR, we are able to perform
approximate lifted inference in this model.

The proposed cloning technique leads to MLNs in which one quantifies over
predicate names (as in second-order logic). This can be avoided, but it leads
to less transparent semantics. In particular, we can avoid quantifying over
predicate names by using ground predicate names with increased arity. For
example, smokes1b<X,Y>(Y) could have been written as smokes1b(X, Y) where
we pushed <X, Y> into the predicate arguments. The disadvantage of this,
however, is that the semantics of the individual arguments is lost as the
arguments become overloaded.

We now have the following key theorem.

Theorem 7.1. Let ∆r be the MLN resulting from cloning all atom occurrences in
MLN ∆ and then relaxing all introduced equivalences. Let ∆g be the grounding of ∆r.
The formulas of ∆g are then fully disconnected (i.e., they share no atoms).

Proof. First, concatenating each predicate occurrence with an identifier for its
formula causes all formulas to become disconnected. Second, cloned atoms
contain all logical variables in the formula. For two groundings g1, g2 of a



LIFTED RCR 195

formula, there is a difference in the assignment to at least one logical variable.
Hence, there is a difference in the arguments of any pair of atoms a1 from g1
and a2 from g2. Therefore, a1 and a2 are distinct random variables and the
groundings g1 and g2 are disconnected.

With this theorem, the proposed first-order cloning and relaxation technique
allows one to fully disconnect the grounding of an MLN by simply relaxing
first-order equivalences in the first-order MLN.

7.2.2 First-Order Compensation

In principle, one can just clone atom occurrences, relax some equivalence
constraints, and then use the resulting MLN as an approximation of the
original MLN. By relaxing enough equivalences, the approximate MLN can be
made arbitrarily easy for exact inference. Our goal in this section, however, is
to improve the quality of approximations by compensating for the relaxed
equivalences, yet without making the relaxed MLN any harder for exact
inference. This will be done through a notion of first-order compensation.

Equiprobable Equivalences

The proposed technique is similar to the one for ground MLNs, that is, using
weighted atomswhose weights will allow for compensation. The key, however,
is to use first-order weighted atoms instead of ground ones. For this, we need
to define the notion of equiprobable equivalences, based on the notion of
equiprobable sets of random variables (Definition 5.4).

Definition 7.2 (Equiprobable Equivalence). Let ∆ be an MLN from which
a first-order equivalence a ⇔ a′ was relaxed. Let a1 ⇔ a′1, . . . , an ⇔ a′n be
all groundings of a ⇔ a′. The equivalence a ⇔ a′ is equiprobable iff the sets
{a1, . . . , an} and {a′1, . . . , a′n} are both equiprobablew.r.t the grounddistribution
of MLN ∆.

The basic idea of first-order compensation is that when relaxing an equiprobable
equivalence a⇔ a′, under certain conditions, one can compensate for its loss
using only two weighted first-order atoms of the form:

w a and w′ a′



196 FROM APPROXIMATE TO EXACT LIFTED INFERENCE

This follows because if we were to fully ground the equivalence into a1 ⇔
a′1, . . . , an ⇔ a′n and then apply ground compensation, the relevant ground
atoms will attain the same weights. That is, by the end of ground compensation,
the weighted ground atoms,

wi ai and w′i a′i

will have wi = wj and w′i = w′j for all i and j.

Partitioning Equivalences

To realize first-order compensation, onemust address two issues. First, a relaxed
first-order equivalence may not be equiprobable to start with. Second, even
when the equivalence is equiprobable, it may cease to be equiprobable as we
adjust the weights during the compensation process. Recall that equiprobability
is defined with respect to the ground distribution of an MLN. Yet, this
distribution changes during the compensation process, which iteratively
changes the weights of compensating atoms and, hence, also iteratively changes
the ground distribution.

Example 7.5. Consider the following relaxed equivalences: p(X) ⇔ q(X)

and q(X) ⇔ r(X). Suppose the domain is {a, b} and the current ground
distribution, Pri, is such that Pri(p(a)) = Pri(p(b)), Pri(q(a)) = Pri(q(b)),
and Pri(r(a)) 6= Pri(r(b)). In this case, the equivalence p(X) ⇔ q(X) is
equiprobable, but q(X)⇔ r(X) is not equiprobable.

If an equivalence constraint is not equiprobable, one can always partition it into
a set of equiprobable equivalences— in the worst case, the partition will include
all groundings of the equivalence. In the above example, one can partition the
equivalence q(X)⇔ r(X) into the equivalences q(a)⇔ r(a) and q(b)⇔ r(b),
which are trivially equiprobable.

Given this partitioning, the compensation algorithm will add distinct weights
for the compensating atoms q(a) and q(b). Therefore, the set {q(a), q(b)} will
no longer be equiprobable in the next ground distribution, Pri+1. As a result,
the equivalence p(X)⇔ q(X) will no longer be equiprobable w.r.t. the ground
distribution Pri+1, even though it was equiprobable with respect to the previous
ground distribution Pri.



LIFTED RCR 197

Strongly Equiprobable Equivalences

To attain the highest degree of lifting during compensation, one needs to
dynamically partition equivalences after each iteration of the compensation
algorithm, to ensure equiprobability. We defer the discussion on dynamic
partitioning to Section 7.3.3, focusing here on a strong version of equiprobability
that allows one to circumvent the need for dynamic partitioning.

The mentioned technique is employed by our current implementation of
Lifted RCR, which starts with equivalences that are strongly equiprobable. An
equivalence is strongly equiprobable if it is equiprobable w.r.t all ground
distributions induced by the compensation algorithm (i.e., ground distributions
that result from only modifying the weights of compensating atoms).

Example 7.6. Consider again Formula 5.2′ where we cloned the atom occur-
rence smokes(Y) and relaxed its equivalence, leading to the MLN:

1.5 smokes(X) ∧ friends(X, Y)⇒ smokes1b<X,Y>(Y)

and relaxed equivalence

smokes(Y)⇔ smokes1b<X,Y>(Y) (7.8)

Suppose we partition this equivalence as follows:3

X = Y : smokes(Y)⇔ smokes1b<X,Y>(Y)

X 6= Y : smokes(Y)⇔ smokes1b<X,Y>(Y)

These equivalences are not only equiprobable w.r.t. the relaxed MLN, but
also strongly equiprobable. That is, suppose we add to the relaxed model

3We are using an extension of MLNs that allows constraints, such as X 6= Y, to be associated
with logical variables. Our implementation is in terms of parfactor graphs (Section 5.1.2), which do
allow for the representation of such constraints. In extended MLNs, we will write cs : φ to mean
that cs is a constraint set that applies to formula φ.



198 FROM APPROXIMATE TO EXACT LIFTED INFERENCE

the compensating atoms

w1 smokes(X)

w′1 X = Y : smokes1b<X,Y>(Y)

w2 smokes(X)

w′2 X 6= Y : smokes1b<X,Y>(Y)

The two equivalences will be equiprobable w.r.t. any ground distribution that
results from adjusting the weights of these compensating atoms.

We will present an equivalence partitioning algorithm in Section 7.3 that guar-
antees strong equiprobability of the partitioned equivalences. This algorithm is
employed by our current implementation of Lifted RCR and will be used when
reporting experimental results later.

7.2.3 Count-Normalization

We are one step away from presenting our first-order compensation scheme.
What is still missing is a discussion of count-normalized equivalences, which are
also required by our compensation scheme.

Example 7.7. Consider Equivalence 7.8, which has four groundings

smokes(p)⇔ smokes1b<p,p>(p)

smokes(q)⇔ smokes1b<p,q>(q)

smokes(p)⇔ smokes1b<q,p>(p)

smokes(q)⇔ smokes1b<q,q>(q)

for the domain {p, q}. There are two distinct groundings of the original atom
smokes(Y) in this case and each of them appears in two groundings.When each
grounding of the original atom appears in exactly the same number of ground
equivalences, we say that the first-order equivalence is count-normalized.



LIFTED RCR 199

Now consider a constrained version of Equivalence 7.8

X 6= q ∨Y 6= q : smokes(Y)⇔ smokes1b<X,Y>(Y)

which has the following groundings

smokes(p)⇔ smokes1b<p,p>(p)

smokes(q)⇔ smokes1b<p,q>(q)

smokes(p)⇔ smokes1b<q,p>(p)

This constrained equivalence is not count-normalized since the atom smokes(p)
appears in two ground equivalences while the atom smokes(q) appears in only
one.

Generally, we have the following definition.

Definition 7.3. Let (cs : a ⇔ a′) be a first-order equivalence. Let θ be an
instantiation of the variables X in the original atom a for which the constraint
set cs is satisfiable. The equivalence is count-normalized iff for each instantiation
θ, cs θ has the same number of solutions for the remaining variables Y. More
formally, the condition is as follows.

∀θ1, θ2 ∈ solutions(cs,X) : | solutions(cs θ1,Y)| = | solutions(cs θ2,Y)|

Moreover, the number of groundings for cs : a is called the original count and
the number of groundings for cs : a′ is called the clone count.

Count-normalization can only be violated by constrained equivalences. More-
over, for a certain class of constraints, count-normalization is always preserved.
The algorithmwe shall present in Section 7.3 for partitioning equivalences takes
advantage of this observation. In particular, the algorithm generates constrained
equivalences whose constraint structure guarantees count-normalization.

7.2.4 The Compensation Scheme

We now have the following theorem.



200 FROM APPROXIMATE TO EXACT LIFTED INFERENCE

Theorem 7.2. Let ∆i be an MLN with relaxed equivalences (cs : a⇔ a′) and, hence,
corresponding compensating atoms:

wi cs : a and w′i cs : a′

Suppose that the equivalences are count-normalized and strongly equiprobable. Let
(ag ⇔ a′g) be one grounding of equivalence (cs : a⇔ a′), let n be its original count
and n′ be its clone count. Consider now the MLN ∆i+1 obtained using the following
updates:

wi+1 =
n′

n

(
log
(

Pr i(a′g)
)
− log

(
Pr i(¬a′g)

)
− w′i

)
w′i+1 = log

(
Pr i(ag)

)
− log

(
Pr i(¬ag)

)
− wi (7.9)

The ground distribution of MLN ∆i+1 equals the one obtained by applying Ground
RCR to MLN ∆i.

Proof. It follows from Equations 7.5 that Ground RCR assigns the same
compensating weights to the groundings of a⇔ a′, because it is equiprobable.
Each grounding of a′ occurs in a single grounding of a⇔ a′ and gets the same
weight fromLifted orGroundRCR. FromDefinition 7.3 for count-normalization,
each grounding of a occurs in n′/n groundings of a⇔ a′. Ground RCR would
add n′/n compensating weighted atoms which all get the same weight. Lifted
RCR aggregates these ground weighted atoms in a single first-order weighted
atom, and aggregates the weights for each grounding into a single weight
by multiplying it with n′/n. Finally, because of strong equiprobability, the
equivalences that were equiprobable in ∆0 will also be equiprobable in ∆i
and the computed weights correspond to the weights of Ground RCR in each
iteration i.

Note that first-order compensation requires exact inference on the MLN
∆i, which is needed for computing Pri(ag) and Pri(a′g). Moreover, these
computations will need to be repeated until one obtains a fixed point of the
update equations given by Theorem 7.2. The key, however, is that one does
not need to change the set of compensating atoms during the compensation
process, given the strong equiprobability of relaxed equivalences.



PARTITIONING EQUIVALENCES 201

7.2.5 First-Order Recovery

Recovering a first-order equivalence (cs : a ⇔ a′) amounts to removing its
compensating atoms

wi cs : a and w′i cs : a′

and then adding the equivalence back to the MLN.

Adapting the ground recovery heuristic suggested earlier, one recovers the
first-order equivalence that maximizes the symmetric pairwise KL-divergence4

n′ ·KLD

(
Pr(ag), Pr(a′g),

ewi+w′i

1 + ewi+w′i

)
,

where n′ is the clone count of the equivalence. Note here that n′ is also the
number of equivalence groundings since, by definition, the clone atom contains
all logical variables that appear in the equivalence.

Please note that recovering first-order equivalences may destroy the equiproba-
bility of equivalences that continue to be relaxed. Hence, one generally needs
to re-partition these relaxed equivalences.

7.3 Partitioning Equivalences

We will now discuss a method for partitioning first-order equivalences, which
guarantees both strong equiprobability and count-normalization. It builds on
the preemptive shattering algorithm to partition atoms into equiprobable sets.
First, we review these results from earlier chapters. Second, we present the
partitioning method that is used by our current implementation of Lifted RCR.
It uses the atompartitions to partition first-order equivalences. Third,we discuss
the problem of dynamic partitioning of equivalences.

4This is the sum of the KL-divergences between all pairs of arguments, in both directions.



202 FROM APPROXIMATE TO EXACT LIFTED INFERENCE

7.3.1 Partitioning Atoms by Preemptive Shattering

Section 5.4.3 proposed an algorithm, called preemptive shattering, that identifies
equiprobable atoms, on a purely syntactic basis. More precisely, Proposition 5.4
established that the preemptive shattering algorithm (Algorithm 8) of Sec-
tion 4.3.1 can be used for this purpose.

Preemptive shattering looks at the constants K, domainsD and free variables V
that appear in the model. When using MLN models, the set of domains D and
free variables V is always empty.5 Hence, for the special case of MLN models,
the preemptive shattering algorithm adds (in)equality constraints such that
each logical variable in the MLN is either equal to exactly one constant in K, or
different from all of them. It furthermore adds (in)equality constraints between
logical variables that appear in the same literal, so that there is an inequality
constraint between each pair of variables.

Example 7.8. Consider the formula smokes(X) ⇔ smokes<X,Y>(X) and
assume we have evidence smokes(alice) and therefore K = {alice}. Preemptive
shattering of the input atom smokes(X) returns back

X = a : smokes(X)

X 6= a : smokes(X)

Preemptive shattering of the input atom smokes<X,Y>(X) returns back

X = a ∧Y = a : smokes<X,Y>(X)

X = a ∧Y 6= a : smokes<X,Y>(X)

X 6= a ∧Y = a : smokes<X,Y>(X)

X 6= a ∧Y 6= a ∧ X = Y : smokes<X,Y>(X)

X 6= a ∧Y 6= a ∧ X 6= Y : smokes<X,Y>(X)

We will next show how this shattering procedure forms the basis of a method
for partitioning equivalence constraints, with the aim of ensuring both strong
equiprobability and count-normalization.

5All variables are quantified when transforming the MLN to a WFOMC representation, on
which preemptive shattering is defined.



PARTITIONING EQUIVALENCES 203

7.3.2 Partitioning Equivalences by Preemptive Shattering

Consider an MLN which results from cloning some atom occurrences and
then adding corresponding equivalence constraints. Let K be all the constants
appearing explicitly in the MLN.

To partition a first-order equivalence a ⇔ a′, our method will first apply
preemptive shattering to the original atom a and clone atom a′, yielding a
partition for each. Suppose that {(cs1 : a1), . . . , (csn : an)} is the partition
returned for original atom a. Suppose further that {(cs′1 : a′1), . . . , (cs′m : a′m)}
is the partition returned for clone atom a′. By definition of cloning, all variables
that appear in original atom a must also appear in clone atom a′. This implies the
following property. For every (original) constraint csi, there is a corresponding
set of (clone) constraints cs′j that specialize, or partition csi. Each pair of
constraints csi and cs′j will then generate a member of the equivalence partition:
(csi ∧ cs′j : ai ⇔ a′j). Note that csi ∧ cs′j ≡ cs′j since cs′j implies csi.

Example 7.9. Suppose we are partitioning the equivalence smokes(X) ⇔
smokes<X,Y>(X). Example 7.8 showed the preemptive shattering of the atoms
smokes(X) and smokes<X,Y>(X). These give rise to the following equivalence
partition:

X = a ∧Y = a : smokes(X)⇔ smokes<X,Y>(X)

X = a ∧Y 6= a : smokes(X)⇔ smokes<X,Y>(X)

X 6= a ∧Y = a : smokes(X)⇔ smokes<X,Y>(X)

X 6= a ∧Y 6= a ∧ X = Y : smokes(X)⇔ smokes<X,Y>(X)

X 6= a ∧Y 6= a ∧ X 6= Y : smokes(X)⇔ smokes<X,Y>(X)

We now have the following results.

Lemma 7.3. Partitioning by preemptive shattering returns equiprobable equivalences.

Proof outline. Let cs ∧ cs′ : a ⇔ a′ be an element of the partition of an
equivalence constraint found by preemptive shattering. The constrained atoms
(cs : a) and (cs′ : a′) themselves were found by preemptive shattering of the
MLN ∆. It follows from Proposition 5.4 that the groundings of (cs : a) and
(cs′ : a′) are equiprobable.



204 FROM APPROXIMATE TO EXACT LIFTED INFERENCE

Lemma 7.4. Partitioning by preemptive shattering returns count-normalized equiva-
lences.

Proof outline. Let cs : a ⇔ a′ be an element of the partition of an equivalence
constraint found by preemptive shattering. Let X be the set of logical variable
arguments of a and X ∪ Y be the logical variable arguments of its clone a′. For
a each grounding of a, that is, each substitution of the variables X by constants
that satisfy cs, the clone a′ has the same number of groundings of the variables
Y that satisfy cs. This follows from the fact that each logical variable that is not
bound to a constant has the same set of inequality constraints associated with
it.

Lemma 7.5. Partitioning by preemptive shattering returns strongly equiprobable
equivalences.

Proof outline. The preemptive shattering procedure neither depends on the
weight parameters of the MLN model ∆, nor on the precise formulas in ∆. It
only depends on the constants K that appear in it. The partition returned by
preemptive shattering does not introduce any constants that were not in the
input ∆. Therefore, the MLNs ∆i that are constructed in each iteration of the
compensation algorithm (with compensating weighted atoms) do not introduce
additional constants and each call to preemptive shattering returns identical
partitions in each iteration of the compensation algorithm.

Theorem 7.6. Partitioning by preemptive shattering returns count-normalized,
strongly equiprobable equivalences.

Proof. Follows from Lemmas 7.3, 7.4 and 7.5.

7.3.3 Dynamic Equivalence Partitioning

To attain the highest degree of lifting, one may need to dynamically partition
equivalences after each iteration of the compensation scheme. Moreover, one
would need to find the smallest possible partition for each considered equiva-
lence, while guaranteeing both equiprobability and count-normalization.6

6There is a unique smallest partition satisfying these properties.



RELATED AND FUTURE WORK 205

Dynamic partitioning leads to a higher degree of lifting as it removes the
need for strong equiprobability, which usually leads to larger partitions
of equivalences. We do not employ dynamic partitioning in our current
implementation of Lifted RCR, leaving this to future work. We point out,
however, that dynamic partitioning requires a slight adjustment to the
compensation scheme given by Theorem 7.2.

Suppose that the first-order equivalence cs : a⇔ a′ was equiprobable in MLN
∆i, but ceases to be equiprobable in MLN ∆i+1 due to the adjustment of weights
for compensating atoms. A dynamic partitioning schemewill then partition this
equivalence into a set of equiprobable and count-normalized equivalences. One
implication of this partitioning is that the two compensating atoms associated
with the equivalence cs : a⇔ a′ in MLN ∆i will now have to be partitioned as
well. That is, the compensating atoms in MLN ∆i

wi : cs : a and w′i : cs : a′

will need to be replaced in MLN ∆i+1 by two compensating atoms for each
equivalence in the computed partition. Moreover, the initial weights of these
new compensating atoms will be precisely wi (for original atoms) and w′i for
cloned atoms.

7.4 Related and Future Work

In this section,we discuss related propositional and lifted approximate inference
algorithms and identify future work on the problem of equivalence shattering.

7.4.1 Relation to Propositional Algorithms

The RCR framework has previously been used to characterize loopy belief
propagation and some of its generalizations. In the case that the simplified
model is fully disconnected, the approximate marginals of RCR correspond to
the approximate marginals provided by iterative belief propagation (Pearl, 1988;
Choi and Darwiche, 2006). The approximation to the partition function further
corresponds to the Bethe free energy approximation (Yedidia, Freeman, and
Weiss, 2003; Choi and Darwiche, 2008). When equivalence constraints have
been recovered, RCR corresponds to a class of generalized belief propagation (GBP)



206 FROM APPROXIMATE TO EXACT LIFTED INFERENCE

approximations (Yedidia, Freeman, and Weiss, 2003), in particular iterative
joingraph propagationwith the corresponding joingraph free energies (Aji and
McEliece, 2001; Dechter, Kask, and Mateescu, 2002). RCR further inspired
a system that was successfully employed in a recent approximate inference
competition (Elidan andGloberson, 2010; Choi andDarwiche, 2011).Mini-bucket
approximation can be viewed as an instance of RCR where no compensations
are used (Kask and Dechter, 2001; Dechter and Rish, 2003; Choi, Chavira, and
Darwiche, 2007). In these cases, RCR is also capable of providing upper bounds
on the partition function. Since every approximate MLN found by Lifted RCR
corresponds to a solution found by Ground RCR on the groundMLN, the above
mentioned results carry over to the lifted setting.

7.4.2 Relation to Lifted Algorithms

The motivation for calling our approach lifted is threefold. First, in the
compensation phase, we are compensating for many ground equivalences at the
same time. Computing compensating weights for all of these requires inferring
only a single pair of marginal probabilities. Second, computing marginal
probabilities is done by an exact lifted inference algorithm. Third, we relax
and recover first-order equivalence constraints, which correspond to sets of
ground equivalences.

The work on lifted approximate inference has mainly focused on lifting the IBP
algorithm. The correspondence between IBP and RCR carries over to their lifted
counterparts: Lifted RCR compensations on a fully relaxedmodel correspond to
lifted belief propagation (lifted BP) (Jaimovich, Meshi, and Friedman, 2007; Singla
and Domingos, 2008). Starting from a first-order model, Singla and Domingos
(2008) proposed lifted network construction (LNC), which partitions the random
variables and factors of a factor graph into so-called supernodes and superfeatures.
The ground atoms represented by these supernodes send and receive the same
messages when running IBP. Kersting, Ahmadi, and Natarajan (2009) proposed
a color-passing (CP) algorithm that achieves similar results as LNC, only starting
from a ground model, where the first-order structure is not apparent.

Bisimulation-based lifted inference (Sen, Deshpande, and Getoor, 2009) uses a
mini-bucket approximation on a model that was compressed by detecting
symmetries. Because of the correspondence between Ground RCR and mini-
buckets mentioned above, also this approach can be seen as an instance of Lifted
RCR with the compensation phase removed.



RELATED AND FUTURE WORK 207

Lifted BP was the first approximate lifted inference approach and dominated
the field for some time. In the last year, however, several alternatives have
been proposed. One line of work performs lifted importance sampling on the
search space of the probabilistic theorem proving algorithm (Gogate and
Domingos, 2011; Gogate, Jha, and Venugopal, 2012). This search space is
closely related to a FO-da-DNNF circuit, as discussed in Section 4.7.2. Two lifted
Markov chain Monte Carlo algorithms were recently proposed, one starting from
propositional models (Niepert, 2012c; Niepert, 2012a) and another from first-
order models (Venugopal and Gogate, 2012). Finally, there has been recent work
on lifting variational inference algorithms (Choi and Amir, 2012; Bui, Huynh,
and Riedel, 2012).

7.4.3 Opportunities for Equivalence Partitioning

Formodels that contain few explicit constants (K is small), preemptive shattering
will find partitions of equivalence constraints that are close to minimal. When
K is large, however, it will create large partitions, defeating the purpose of lifted
inference.

The work on lifted BP provides us with alternative partitioning algorithms
that work correctly on a fully relaxed model. These algorithms construct lifted
networks whose nodes send and receive the same messages when running
IBP. This means that they partition the atoms into equiprobable sets (w.r.t.
the approximate distribution) and that LNC can be used for equivalence
partitioning in Lifted RCR, when the model is fully relaxed.

However, preemptive shattering is the only partitioning algorithm to our
knowledge that works for any level of relaxation. Oneway tomake the partitions
found by preemptive shattering smaller (with fewer sets) is by exploiting
the actual structure of the model ∆ itself. Knowing that there are certain
independences in ∆ might remove the need to ground atoms for all constants
in K. This requires reasoning on the model, as is done by the vanilla shattering
algorithm (see Section 4.3.3). We believe our work can motivate future work on
finding more efficient general partitioning algorithms.

Much of the work on lifted BP has looked at more intelligently constructing
lifted networks. Given the strong connection between LNC and partitioning
of equiprobable equivalences, these high-level ideas can directly be applied to
Lifted RCR, as we discuss next.



208 FROM APPROXIMATE TO EXACT LIFTED INFERENCE

The problem of dynamic equivalence partitioning is related to anytime lifted
BP (de Salvo Braz et al., 2009; Freedman et al., 2012), which gradually shatters
its partitions of random variables and factors with each iteration of lifted BP. In
addition, it makes these partitions specific to a query and propagates bounds
on the marginals, in order to stop message passing early, when the desired
approximation quality has been reached. This would correspond to a version
of RCR where compensating weights are not numbers but intervals that are
tightened with each iteration of the compensation algorithm.

Several ways of constructing an approximate lifted networkwere proposed (Singla,
Nath, and Domingos, 2010; Kersting et al., 2010). This corresponds to partition-
ing into approximately equiprobable equivalences in the context of Lifted RCR.
Approximating the partition can be done by ignoring long-range dependencies
in the model or by looking at the actual parameters of the model, instead of
only its logical syntax. Another line of work looks at efficient lifted network
construction for multiple queries with changing evidence (Nath and Domingos,
2010; Ahmadi, Kersting, and Hadiji, 2010; Hadiji, Ahmadi, and Kersting, 2011;
Ahmadi, Kersting, and Sanner, 2011). These techniques also allow for the
efficient computation of joint marginals.

7.5 Experiments

In this section, we evaluate the Lifted RCR algorithm on common benchmarks
from the lifted inference literature. The experiments were set up to answer the
following questions:

(Q1) To what extent does recovering first-order equivalences improve the
approximations found by Lifted RCR?

(Q2) Can IBP be improved considerably through the recovery of a small number
of equivalences?

(Q3) Is there a significant advantage to using Lifted RCR over Ground RCR?

(Q4) What is the run time behavior of the compensation algorithm?



EXPERIMENTS 209

7.5.1 Implementation

We implemented Lifted RCR in the WFOMC tool.7 To compute exact marginal
probabilities in Equations 7.9, we use exact lifted inference by first-order
knowledge compilation (cf., Section 5.5). In combination with preemptive
shattering, we compile a first-order circuit once for every equiprobable set
of random variables (cf., Section 5.4.3) and re-evaluate it in each iteration
of the compensation algorithm. This is possible because the structure of the
compensated MLNs does not change between iterations, only their parameters
change. Re-evaluating an already compiled first-order circuit can be done very
efficiently. In the compensation phase, we use damping with a weight of 50%.

In practice, the Ground RCR algorithm does not start off with a fully relaxed
model. Instead, it starts with some equivalences intact, such that the relaxed
model forms a spanning tree, and exact inference is still efficient. As long
as the relaxed model is a tree, the set of approximate single marginals that
can be found with RCR correspond to the set of marginals that the loopy BP
algorithm can converge to in the original model. Relaxing equivalences beyond
a spanning tree neither makes inference more tractable, nor does it change the
approximations made by RCR.

For these reasons, we do not clone all atoms occurrences and atom groundings
in the relaxation step of Lifted RCR. Instead, we clone all but one atom per
MLN formula. This guarantees that the relaxed model is still a tree (but not
necessarily spanning). To select the atom that is not cloned, we choose one
with a high number of logical variable arguments, to have as few equivalences
relaxed as possible overall. As a consequence of this approach to relaxation,
weighted unit clauses are never relaxed.

7.5.2 Results

To answer (Q1-2)we ran Lifted RCR on MLNs from the exact lifted inference
literature, where computing exact marginals is tractable. This allows us to
evaluate the approximation quality of Lifted RCR for different degrees of
relaxation.We used themodels p-r and sick-death (de Salvo Braz, Amir, and Roth,
2005), workshop attributes (Milch et al., 2008), smokers (Singla and Domingos,
2008), smokers and drinkers (Van den Broeck et al., 2011a) and symmetric smokers

7http://dtai.cs.kuleuven.be/wfomc/

http://dtai.cs.kuleuven.be/wfomc/


210 FROM APPROXIMATE TO EXACT LIFTED INFERENCE

1e-08%

1e-06%

0.0001%

0.01%

1%

100%

0% 25% 50% 75% 100%

%
 K

L
D

 o
f 

IB
P

% Recovered Equivalences

(i)
(ii)

(iii)
(iv)
(v)

(vi)

(a) Small domains - 100 random variables

1e-08%

1e-06%

0.0001%

0.01%

1%

100%

0% 25% 50% 75% 100%

%
 K

L
D

 o
f 

IB
P

% Recovered Equivalences

(i)
(ii)

(iii)
(iv)
(v)

(vi)

(b) Large Domains - 10,000 random variables

Figure 7.1: Normalized approximation error of Lifted RCR for different levels
of approximation on the models (i) p-r, (ii) sick-death, (iii) workshop attributes,
(iv) smokers, (v) smokers and drinkers and (vi) symmetric smokers.

(Van den Broeck, 2011b). Each of these models represents a new advance in
exact lifted inference. They are incrementally more complex and challenging
for lifted inference.

The results are shown in Figure 7.1, where we ran Lifted RCR on the above
models for two sets of domain sizes: a small and a large set, where the number
of random variables is on the order of 100 and 10,000 respectively. We plot the
symmetric KL divergence between the exact marginals and the approximations
found by Lifted RCR, as a percentage of the KL divergence of the fully relaxed
approximation (the IBP approximation). The horizontal axis shows the level of
relaxation in terms of the percentage of recovered ground equivalences. The
0% recovery point corresponds to the approximations found by (lifted) IBP. The



EXPERIMENTS 211

100% recovery point corresponds to exact inference.8

We see that each recovered first-order equivalence tends to improve the
approximation quality significantly, often bymore than one order of magnitude,
answering (Q1). In the case of smokerswith a large domain size, recovering a
single equivalencemore than the IBP approximation reduced the KL divergence
by 10 orders ofmagnitude, giving a positive answer to (Q2). The sick-deathmodel
is the only negative case for (Q2), where recovering equivalences does not lead
to approximations that are better than IBP.9

To answer (Q3), first note that as argued in Section 7.4, the 0% recovery point of
Lifted RCR using LNC or CP to partition equivalences corresponds to lifted BP.
For this case, the work of Singla and Domingos (2008) and Kersting, Ahmadi,
and Natarajan (2009) has extensively shown that Lifted BP/RCR methods can
significantly outperform Ground BP/RCR. Similarly, computational gains for
the 100% recovery point were shown in the exact lifted inference literature. For
intermediate levels of relaxation, we ran Ground RCR on the above models with
large domain sizes. On these, Ground RCR could never recover more than 5%
of the relaxed equivalences before exact inference in the relaxed model becomes
intractable. This answers (Q3) positively.

To answer (Q4), we report on the quality of the approximations and the
convergence of the compensation algorithm, both as a function of run time and
the number of iterations. The results for the four most challenging benchmarks
(small and large smokers and drinkers and symmetric smokers) are shown in
Figure 7.2.

The figures on the left show convergence as a function of the number of iterations
of the compensation algorithm.

• The solid line shows the KL divergence between the approximate
marginals (according to the relaxed MLN and compensating weights
of that iteration) and the exact marginals (computed with exact lifted
inference).

• The dashed line shows the three-way pairwise symmetric KL divergence
between the three terms of Equation 7.4. Our compensation algorithm
aims to satisfy this equation, lowering the reported KLD.

8All experiments ran up to the 100% point, which is not shown in the plot because it has a KL
divergence of 0.

9Interestingly, it is also the only example where some compensations failed to converge without
using damping.



212 FROM APPROXIMATE TO EXACT LIFTED INFERENCE

 1e-30
 1e-25
 1e-20
 1e-15
 1e-10
 1e-05

 1
 100000

 0  20  40  60  80  100  120  140  160

K
L

D

Iteration of Compensation Algorithm

Approximation
Compensation

(a) Smokers and Drinkers (Small) - Iterations

 1e-30

 1e-25

 1e-20

 1e-15

 1e-10

 1e-05

 1

 100000

 0  10  20  30  40  50  60  70  80  90 100 110

Run Time [s]

(b) Smokers and Drinkers (Small) - Time

 1e-30
 1e-25
 1e-20
 1e-15
 1e-10
 1e-05

 1
 100000

 0  20  40  60  80 100 120 140 160 180 200

K
L

D

Iteration of Compensation Algorithm

Approximation
Compensation

(c) Smokers and Drinkers (Large) - Iterations

 1e-30

 1e-25

 1e-20

 1e-15

 1e-10

 1e-05

 1

 100000

 0  200 400 600 800 1000 1200 1400 1600 1800

Run Time [s]

(d) Smokers and Drinkers (Large) - Time

 1e-30
 1e-25
 1e-20
 1e-15
 1e-10
 1e-05

 1
 100000

 0  20  40  60  80  100  120

K
L

D

Iteration of Compensation Algorithm

Approximation
Compensation

(e) Symmetric Smokers (Small) - Iterations

 1e-30

 1e-25

 1e-20

 1e-15

 1e-10

 1e-05

 1

 100000

 0  2  4  6  8  10  12  14  16  18  20

Run Time [s]

(f) Symmetric Smokers (Small) - Time

 1e-30
 1e-25
 1e-20
 1e-15
 1e-10
 1e-05

 1
 100000

 0  20  40  60  80  100  120

K
L

D

Iteration of Compensation Algorithm

Approximation
Compensation

(g) Symmetric Smokers (Large) - Iterations

 1e-30

 1e-25

 1e-20

 1e-15

 1e-10

 1e-05

 1

 100000

 0  2  4  6  8  10  12  14  16  18  20

Run Time [s]

(h) Symmetric Smokers (Large) - Time

Figure 7.2: Convergence Rate of Lifted RCR



CONCLUSIONS 213

We see that the compensation KLD increases dramatically between certain
iterations. This happens when we recover a relaxed first-order equivalence.
After a recovery step, the compensating weights still stem from the previous
compensation iteration. These weights no longer satisfy Equation 7.4. The
compensation KLD is increased and the compensation algorithm starts
searching for a better set of compensating weights. In the iterations where
recovery happens, we also see a change in the quality of the approximation. It
can improve, because of the added equivalence, but it can also decrease, because
the compensating weights no longer satisfy Equation 7.4. In either case, we
see that running the compensation algorithm after recovering an equivalence
improves both the compensation objective and the quality of the approximations.
The KLD of the approximation right before each recovery corresponds to the
errors reported in Figure 7.1.

The figures on the right show the same quality of approximation (solid line to
the left), this time as a function of time. In between reported data points, there
are large gaps. These again correspond to recovery steps, where the algorithm
needs to compile a set of new circuits to perform exact inference in the new
approximate, relaxed model. Evaluating these circuits in the compensation
phase (to compute all marginals) is typically fast, leading to a quick succession
of iterations. For one experiment, in Figure 7.2d, the compilation is not the
bottleneck. This is because evaluating the compiled circuits for its large domain
size becomes expensive when most equivalences have been recovered.

As a final observation, the iterations on the left side become increasingly time-
consuming. For example, in Figure 7.2a, the first 80 iterations out of 160 take less
than 10 seconds out of 100 in Figure 7.2b. Similarly, in Figure 7.2c, the first 150
iterations out of 180 take 300 seconds out of 1800 in Figure 7.2d. To complement
our earlier claim that it suffices to recover a small number of equivalences in
order to significantly improve upon IBP approximations, this also shows that
recovering these first few equivalences can be done very efficiently.

7.6 Conclusions

This chapter presented Lifted RCR, a lifted approximate inference algorithm
that performs exact inference in a simplified model. We showed how to obtain
a simplified model by relaxing first-order equivalences, compensating for their
loss, and recovering them as long as exact inference remains tractable. The



214 FROM APPROXIMATE TO EXACT LIFTED INFERENCE

algorithm can traverse an entire spectrum of approximations, from lifted
iterative belief propagation to exact lifted inference. Inside this spectrum
is a family of lifted joingraph propagation (and GBP) approximations. We
empirically showed that recovering first-order equivalences in a relaxed model
can substantially improve the quality of an approximation. We also remark that
Lifted RCR relies on an exact lifted inference engine as a black box, and that
with Lifted RCR, any future advances in exact lifted inference have immediate
impact in lifted approximate inference.



Lifted Learning

8

This chapter addresses the problem of learning the parameters, or weights
associated with each formula in a MLN model from data. Lifted inference
algorithms improve the efficiency of inference by exploiting symmetries in
statistical relational models and reasoning about groups of objects. However,
when learning the parameters of these models, one often resorts to reasoning
over individual objects. We propose to harness the full power of relational
representations in the learning phase by using lifted inference.

Ideally, generative weight learning of undirected models is performed by
convex optimization of the likelihood of the parameters. However, computing
this likelihood and its gradient is intractable for most models. Therefore,
the standard approach is to optimize an approximate objective such as
pseudolikelihood. Instead, this chapter investigates using lifted inference in order
to efficiently learn weights that maximize the actual likelihood, in a lifted manner.

We start by reviewing existing weight learning algorithms for Markov logic in
Section 8.1. The next two sections put forward our lifted learning approach.
First, Section 8.2 provides a generic overview of how lifted inference can be
integrated into weight learning. A key insight from lifting is the possibility to
identify indistinguishable groups of objects, which can be reasoned about as a
whole and significantly reduce the number of inferences needed to compute

215



216 LIFTED LEARNING

gradients. Furthermore, lifting can compute gradients and likelihoods in
time polynomial in the size of the data, as opposed to exponential when
using classical methods. Second, Section 8.3 describes a concrete weight
learning algorithm for Markov logic based on weighted first-order model
counting (WFOMC). Its most appealing property for weight learning is that
compilation only needs to be performed once. On each iteration of convex
optimization, the circuit can be reparametrized with updated weights to
compute a new likelihood and its gradient.

Finally, Section 8.4 evaluates our approach on three standard real-world
SRL data sets. We find that our algorithm learns models with better test-set
likelihood than two competing approaches.We can employ exact lifted inference,
because the generative setting does not require conditioning on evidence, which
is #P-hard as it breaks the symmetries in the model. This is a new application
of exact lifted inference algorithms to real-world data.

The work in this chapter is under review as

G. Van den Broeck, W. Meert, and J. Davis (2012). Lifted parameter
learning for Markov logic. (submitted)

8.1 Weight Learning for Markov Logic

Several algorithms have been proposed for learning the weights associated
with each formula in Markov logic (Singla and Domingos, 2005; Richardson
and Domingos, 2006; Lowd and Domingos, 2007), as well as for learning the
formulas themselves (Kok and Domingos, 2005; Mihalkova and Mooney, 2007;
Huynh and Mooney, 2009). The input to these algorithms is a set of training
examples DB. Each training example is a database that assigns a truth value to
each ground atom. This corresponds to the learning from interpretations setting
in inductive logic programming (De Raedt and Džeroski, 1994). This chapter
focuses on the weight learning task. Weight learning uses data to automatically
learn the weight associated with each feature (formula) by optimizing a given
objective function.



WEIGHT LEARNING FOR MARKOV LOGIC 217

Ideally, each candidate weight vector w would be scored by its training set
log-likelihood

log Prw(DB) =
N

∑
i=1

log Prw(DBi), (2.6′)

where N is the number of examples, DBi is the ith database in DB and Prw(DBi)

is defined by the MLN semantics (see Section 5.1.1):

Prw(db) =
1
Z

exp

(|Ψ|
∑

i
wini(db)

)
. (5.1′)

For MLNs, the log-likelihood is a convex function of the weights and
learning can be solved via convex optimization. The derivative of the log-
likelihood (Richardson and Domingos, 2006) with respect to the jth feature is

∂

∂wj
log Prw(db) = nj(db)−Ew[nj], (8.1)

where nj(db) is the number of true groundings of formula ψj in the training data
and Ew[nj] is computed using the current weight vector. The jth component of
the gradient is simply the difference between the empirical counts of the jth
feature in the database and its expectation according to the current model.

Thus, each iteration of weight learning must perform inference on the current
model to compute the expectations. This is often computationally infeasible.
As for propositional undirected graphical models, optimizing pseudo-log-
likelihood (Equation 2.7) is a tractable alternative to optimizing the likelihood of
a MLN. This is currently the standard approach for generative weight learning
for Markov logic.

In the context of discriminative learning, there has been work on optimizing the
conditional log-likelihood. The most advanced work for this setting is by Lowd
and Domingos (2007). They propose several approaches, the best of which is a
second-order method called pre-conditioned scaled conjugate gradient (PCSG).
They useMC-SAT (Poon andDomingos, 2006), which is a slice-samplingMarkov
chain Monte Carlo method, to approximate the expected counts. In principle,
this approach could be used to learn maximum likelihood weights by setting
the query set to include all the variables in the domain. To the best of our



218 LIFTED LEARNING

knowledge, this has yet to be attempted until now. In Section 8.4, we compare
against this approach.

Independent of our work, Ahmadi, Kersting, and Natarajan (2012) recently
proposed the use of approximate lifted inference, namely lifted belief propa-
gation (Jaimovich, Meshi, and Friedman, 2007; Singla and Domingos, 2008;
Kersting, Ahmadi, and Natarajan, 2009), in a stochastic gradient optimization
approach to piecewise discriminative weight learning. Together with this work,
our approach is the first application of lifted inference to learning, opening up
new possibilities for lifted techniques.

8.2 Lifted Generative Weight Learning

In this section, we provide a general overview of how lifted inference can be
used in the context of weight learning. This approach yields two benefits:

First Benefit Leveraging insights from the lifted inference literature allows
weight learning to compute a small number of marginals to compute the
gradient.

Second Benefit Each query is computed more efficiently using lifted inference.
Namely, it is polynomial in the size of the databases, that is, in the number
of objects in the databases, whereas propositional inference is in general
exponential in this size.

To illustrate the intuition behind the approach, assume that we want to learn
the weight for a MLN that contains a single formula w : ψ(X1, . . . , Xn). Assume
we have access to a lifted inference oracle that can efficiently compute the
marginal probability of any random variable (ground atom) in the MLN, even
for large domain sizes. Learning a weight that maximizes the probability of the
data is challenging because it requires computing Ew[nψ] at each iteration of
an optimization algorithm, by summing over the probability of each possible
grounding of ψ:

Ew[nψ] =Pr(ψ(X1, . . . , Xn)θ1) + · · ·+ Pr(ψ(X1, . . . , Xn)θm) (8.2)

where θi is a grounding substitution which replaces all the logical variables (Xi)
in the atom by constants.



LIFTED GENERATIVE WEIGHT LEARNING 219

We now first review some lifted probabilistic inference techniques. Second, we
will show how to use these techniques to efficiently compute Equation 8.2.

8.2.1 Equiprobable Random Variables

In the absence of evidence, many of the queries in anMLNwill be equiprobable,
because of the symmetries imposed by the model. Lifted inference excels
at answering these types of queries. In fact, one of the key insights from
lifted inference is that we can partition the set of random variables into
equiprobable sets (Definition 5.4) by purely syntactic operations on the first-
order model (see Section 5.4.3). The procedure is based on the preemptive
shattering algorithm (Algorithm 8) of Section 4.3.1. This algorithm can also be
used for finding equiprobable instances of a quantifier-free MLN formula.

Example 8.1. To review this point, consider again the model

w smokes(X) ∧ friends(X, Y)⇒ smokes(Y) (5.2′′)

which states that smokers are more likely to be friends with other smokers.
Assuming a domain of three constants, alice, bob, and charlie, the atoms
friends(alice, bob) and friends(bob, charlie) are equiprobable, but the atoms
friends(alice, alice) and friends(bob, charlie) are not. The first two have identical
probabilities because they are indistinguishable w.r.t. the MLN. Intuitively,
this can be seen by looking at a permutation of the constants, mapping alice
into bob and bob into charlie. This permutation turns Pr(friends(alice, bob))
into Pr(friends(bob, charlie)), whereas the MLN model is invariant under this
permutation (it does not even explicitly mention the constants). Therefore, these
atoms are indistinguishable and they must have the same marginal probability.

The same reasoning applies to instances of the entire formula: smokes(alice) ∧
friends(alice, bob)⇒ smokes(bob) is equiprobable with

smokes(bob) ∧ friends(bob, charlie)⇒ smokes(charlie)

but not with

smokes(alice) ∧ friends(alice, alice)⇒ smokes(alice)

The latter happens to be a tautology and thus has probability 1.



220 LIFTED LEARNING

This technique can be applied to a model with an arbitrary number of formulas.
If the model does not mention specific constants, the algorithm enumerates
all ways in which the logical variables in the same atom can be equal or
different. More formally, Pr(ψ(X1, . . . , Xn)θk) = Pr(ψ(X1, . . . , Xn)θl) when
two arguments Xiθk = Xjθk iff Xiθl = Xjθl . If the model itself mentions
certain unique information about specific constants, we can still partition atoms
into equiprobable sets, but finding such sets gets slightly more complicated.
Section 5.4.3 contains the full details on this procedure.

8.2.2 Evaluating Expected Counts

We will now show how to use lifted inference techniques to compute the
gradient.

First Benefit

To achieve the first benefit, we identify equiprobable sets. This allows us to
reduce the number of queries (Equation 8.2) that need to be answered during
weight learning. For each set of equiprobable queries, only one representative
query needs to be answered as each other query in the group will have the
samemarginal probability. Answering these queries simply requires calculating
the probability that each formula is true according to the model, and does not
involve conditioning on the data. The only way in which the probabilities
depend on the data is through the domain size of each variable, that is, the
number of objects in the world.

Let P = {E1, . . . Eq} denote the equiprobable partition found for formula
ψ(X1, . . . , Xn) by preemptive shattering and let ψ(X1, . . . , Xn)θEi be some
element of Ei. We can then reduce the computation of Equation 8.2 to computing

Ew[nψ] =|E1| · Pr(ψ(X1, . . . , Xn)θE1) + · · ·+ |Eq| · Pr(ψ(X1, . . . , Xn)θEq),
(8.3)

involving as many queries as there are elements in the partition (i.e., |P| = q).

In the multiple database setting (e.g., when performing cross-validation), it
is necessary to compute the gradient for each database, as the domain size
and therefore the size of each Ei can vary according to the fold. The size of



LIFTED GENERATIVE WEIGHT LEARNING 221

the partition |P|, however, does not depend on the domain size, only on the
structure of the MLN formulas.

Theorem 8.1. Given b databases and an equiprobable partition P , evaluating
the gradient of the likelihood (Equation 8.1) requires computing b · |P| marginal
probabilities.

In the special case of a single formula with n logical variables, the number of
queries we need to pose is the Bell number Bn (Bell, 1934; Rota, 1964).

Definition 8.1 (Bell Number). Bell numbers are recursively defined as

Bn+1 =
n

∑
k=0

(
n
k

)
Bk with B0 = B1 = 1.

The Bell number Bn represents the number of partitions of n elements into
non-empty sets. In our case, it is the number of equivalence relations on the
n logical variables in the formula, which does not depend on the size of the
domains or database. Assuming a domain size of D, that same formula will
have Dn groundings and computing Equation 8.1 without using these insights
from lifted inference would require answering Dn queries.

When more generally, we have multiple formulas that do not explicitly mention
any constants from the database, the analysis is also easy, based on properties
of the preemptive shattering algorithm.

Proposition 8.2. A Markov logic network with k formulas (w1, ψ1(X1
1 , . . . , Xn1

1 ))

to (wk, ψk(X1
k , . . . , Xnk

k )) without constants has an equiprobable partition P such
that |P| = ∑k

i=1 Bni .

For this case, Equation 8.2 requires computing ∑k
i=1 Dni marginals per database,

whereas lifted learning requires computing ∑k
i=1 Bni , essentially removing the

dependency on the size of the database from Equation 8.2. This difference can
be significant. Typically, formulas have a bounded number of variables ni, on
the order of between two and four, which gives Bell numbers B2 = 2, B3 = 5
and B4 = 15. Databases in SRL, on the other hand, typically describe relations
between hundreds of objects (D), resulting in models with tens of thousands
of random variables. This is also true for the databases used in Section 8.4.
In the most general case where the MLN being learned explicitly mentions
certain constants, the analysis becomes more complex. However, the size of the



222 LIFTED LEARNING

partition found by preemptive shattering will still be polynomial in the number
of such constants and independent of the number of constants in the entire
domain and in the databases used for learning.

Second Benefit

The second benefit of lifted learning over its propositional counterpart is the
complexity of inference for each query. When using a lifted inference oracle that
is domain-lifted (Definition 5.2), computing the probabilities in Equation 8.3 will
be polynomial in the domain size, and therefore polynomial in the size of the
databases. On the other hand, when doing propositional inference to compute
the same numbers, inference is in general exponential in the domain size. For
most non-trivialMLNs, the treewidth (Robertson and Seymour, 1983; Robertson
and Seymour, 1986) of its corresponding probabilistic graphical models is a
polynomial of the domain size and propositional inference is exponential in
this treewidth.

8.3 Lifted Learning by Knowledge Compilation

The previous section assumed the presence of a lifted inference oracle. We
will now look at the implications of choosing one particular algorithm, namely
lifted probabilistic inference by first-order knowledge compilation (see Section 5.5),
which reduces the probabilistic inference task to a weighted first-order model
counting (WFOMC) problem on a corresponding theory ∆ withweight functions
wT and wF.

To illustrate the benefits of using a knowledge compilation approach, we first
consider computing the gradient of the likelihood for a single formula. Then
we present our full lifted weight learning algorithm.

In the single formula case, computing the expected number of groundings of
ψ(X1, . . . , Xn) requires estimating Pr(ψ(X1, . . . , Xn)θEi ) once for each equiprob-
able partition. Following Equation 5.8, WFOMC solves this by computing the
ratio

WFOMC(ψ(X1, . . . , Xn)θEi ∧ ∆, wT, wF)

WFOMC(∆, wT, wF)



LIFTED LEARNING BY KNOWLEDGE COMPILATION 223

Notice that each partition has the same denominator WFOMC(∆, wT, wF),
which corresponds to the partition function of the MLN. If we have q
equiprobable partitions, evaluating the weighted model counts requires
compiling q + 1 circuits: one for each equiprobable partition, and one for the
partition function. These circuits are independent of the weights and domains of
the first-order model and can therefore be used to compute Equation 8.3 for any
database size and weight vector. Thus, each circuit can be reused on each iteration
of weight learning. This exemplifies the idea behind the knowledge compilation
approach to inference: transform the model once from a representation where
a certain task is hard to a representation where the task is easy, and reuse that
representation to solve multiple problems.

Algorithm 17 outlines our Lifted Weight Learning (LWL) approach. It takes
a MLN ∆ and a set of databases DB as inputs and returns a weight vector
w̄. The algorithm works as follows. First, it builds all the circuits needed to
compute the likelihood and its gradient. It compiles one circuit for ∆ to compute
the partition function. Then it preemptively shatters each weighted formula
ψ in ∆ to identify its equiprobable partition. It compiles one circuit for every
equiprobable partition of the formula. Second, it runs an iterative procedure to
learn theweights. During each iteration i of the convex optimization, it computes
the gradient of the likelihood given the current weights w̄i. First it computes
the partition function. Then, for each of the b databases, the expected counts
for each formula are calculated by reevaluating the compiled circuit associated
with every one of the formula’s equiprobable partitions. Traditionally, this is the
most challenging step in computing Equation 8.1 (the gradient). The algorithm
terminates when a stop condition is met (e.g., after a predefined number of
iterations).

The computational saving of employing first-order knowledge compilation
during inference can be characterized as follows. Over t iterations of the convex
optimization algorithm, instead of answering t · b · |P| hard inference queries,
as done by a vanilla lifted learning algorithm, the knowledge compilation
approach performs 1 + |P| hard compilation steps and reuses each circuit t · b
times by reevaluating it for different weight vectors wi and domain sizes D.

For the special case of a single formula with n logical variables, by using both
knowledge compilation and lifted inference, we went from answering t · b · Dn

queries that are exponential in the size of the databases to 1 + Bn compilations
that are independent of the training examples and t · b circuit evaluations that
are polynomial in the size of the databases.



224 LIFTED LEARNING

Algorithm 17 LiftedWeightLearning(∆, DB)

Input.
∆: A set of MLN formulas with initial weights
DB: A set of databases.

Supporting Functions.
Compile Compile to FO-sda-DNNF circuit (Algorithm 1, p. 84)
Shatter Partition into equiprobable sets (Algorithm 8, p. 96)
WFOMC Compute weighted first-order model count (Def. 5.5, p. 153)
LBFGS Convex optimization algorithm (Liu and Nocedal, 1989)

Function.
1: let Ddb be the domain sizes in database db
2: let ndb

ψ be the number of true groundings of formula ψ in database db
3: let w̄ be the initial weight vector of ∆
4: CZ ← Compile(∆) // Compile circuits
5: for each ψ ∈ ∆ do
6: Pψ ← Shatter(∆, ψ) // Partition into equiprobable sets
7: for each E ∈ Pψ do
8: for some α ∈ E do
9: CE ← Compile(∆ ∧ α)

10: repeat // Optimize weights
11: L ← 0 // Log-likelihood
12: ∇L ← 0̄ // Log-likelihood gradient vector
13: for each db ∈ DB do
14: Z ←WFOMC(CZ, w̄, Ddb)
15: L ← L− log(Z)
16: for each ψi ∈ ∆ do
17: L ← L+ w̄i · ndb

ψi

18: ∇Li ← ∇Li + ndb
ψi

19: for each E ∈ Pψ do
20: p←WFOMC(CE, w̄, Ddb)/Z
21: ∇Li ← ∇Li − |E| · p
22: w̄← LBFGS(L, w̄,∇L)
23: until convergence
24: return w̄



EMPIRICAL EVALUATION 225

 2

 4

 6

 8

 10

 12

 14

 0  5000  10000  15000  20000  25000  30000

R
u
n
 T

im
e 

[s
]

Domain Size (Number of People)

Figure 8.1: Run time of learning weights for the friends and smokers model as
a function of the domain size of the training database.

8.4 Empirical Evaluation

We evaluate our approach on one synthetic domain and three real-world
datasets.

8.4.1 Synethetic Data: Scaling Behavior

We use the friends and smokers model from Example 8.1 (Singla and Domingos,
2005) as a controlled enviroment to explore how our algorithm scales with
respect to domain size. We vary the number of people in the domain from
100 to 30,000 and randomly generate a training database for each size. The
results are shown in Figure 8.1. This model is fully liftable and training time is
polynomial in the domain size. The largest database, for domain size 30, 000,
assigns truth values to 30, 0002 + 30, 000 or approximately 900 million ground
atoms.

8.4.2 Real-World Data: Test-Set Likelihood

We use three real-world datasets to compare the following three MLN weight
learning algorithms:

PLL optimizes the pseudolikelihood of the data (Equation 2.7) via the LBFGS
algorithm (Liu and Nocedal, 1989) and is the default generative weight



226 LIFTED LEARNING

learning algorithm in the Alchemy package (Kok et al., 2008).

PSCG is a discriminative weight learning algorithm (Lowd and Domingos,
2007) in Alchemy. However, it generatively optimizes the likelihood of
the data when all predicates are treated as query atoms (i.e., the evidence
set is empty).

LWL is our proposed approach. It uses our implementation of lifted proba-
bilistic inference by first-order knowledge compilation to compute the
likelihood and its gradient and the limited-memory BFGS optimizer
in the Factorie system (McCallum, Schultz, and Singh, 2009). Our
implementation of LWL is available as open-source software.

The goal of this empirical evaluation is to compare whether exactly optimizing
the likelihood is better than optimizing the approximated likelihood. Addition-
ally, we are interested in whether learned theories, and not just hand-crafted
ones, can be compiled.

Datasets and Methodology

We first briefly describe the datasets we use.1 The IMDB data comes from the
IMDB.com website. The data set contains information about attributes (e.g.,
gender) and relationships among actors, directors, and movies. The data is
divided into five different folds. The UWCSE data contains information about
the University of Washington CSE Department. The data contains information
about students, professors, and classes and models relationships (e.g., TAs
and Advisor) among these entities. The data consists of five folds, each one
corresponding to a different group in the CSE Department. The WebKB
data consists of Web pages from the computer science departments of four
universities (Craven and Slattery, 2001). The data has information about words
that appear on pages, labels of pages and links between Web pages. There are
four folds, one for each university. We limit the number of words considered on
each fold to the ten with the highest information gain with respect to a page’s
class.

1All datasets are available on http://alchemy.cs.washington.edu

http://alchemy.cs.washington.edu


EMPIRICAL EVALUATION 227

UWCSE
PSCG PLL LWL

BUSL -1671 -2564 -1523
-684 -909 -541
-1702 -2871 -1283
-3291 -2660 -2565
-3399 -5280 -2362

MSL -25745 -1519 -1497
-1070 -535 -524
-21936 -1213 -1209
-2756 -2472 -2471
-51903 -2261 -2274

IMDB
PSCG PLL LWL

BUSL -379 -1190 -377
-580 -1241 -558
-907 -1581 -968
-291 -660 -284
-608 -539 -267

MSL -1641792 -9672 -831
-1690616 -12471 -766

-32286 -18242 -1307
-229063 -1354 -698
-16250 -982 -700

WebKB
PSCG PLL LWL

MSL -9453 -5860 -5655
-27628 -5129 -5047
-26548 -4135 -3917
-18052 -4367 -4280

Table 8.1: Log-likelihoods for models learned in the UWCSE, IMDB andWebKB
domains.

To generate a set of models, we use two standard MLN structure learning
algorithms: BUSL (Mihalkova andMooney, 2007), which works bottom-up, and
MSL (Kok and Domingos, 2005), which works top-down. During structure
learning, we limit each clause to contain at most four literals and three
variables.2 In all domains, we perform cross-validation and hold out one fold
as the test set, and use the remaining folds to learn the model. Each fold
serves as a test set once. Given the learned structure, each weight learning
algorithm uses the same data that produced the structure to learn weights.
Then we compute the test-set likelihood for each learned model. We always use
WFOMC to compute the test-set likelihood so the only difference among the
three approaches is how the weights were learned.



228 LIFTED LEARNING

Results and Discussion

Table 1 reports results for all learned models. LWL consistenly outperforms
both PLL and PSCG in terms of test-set likelihood. It loses once to PLL and once
to PSCG. The magnitude of differences varies. LWL does better than PLL if the
pseudolikelihood assumption is violated (e.g., long chains of interactions). For
some of the learned theories this results in large differences between LWL and
PLL. For models that contain mostly nearly deterministic formulas, LWL and
PLL tend to have similar test-set likelihoods. For example, MSL learns a number
of such formulas for the UWCSE domain, which express statements like ‘all
people are either students or professors’. PSCG performance is quite variable.
PSCG performs very poorly for some models as MC-SAT can sometimes give
very bad estimates of the gradient. This can occur if MC-SAT fails to converge
(e.g., because it gets stuck in a single mode of the distribution).

LWL is able to compile all the learned theories, except for those learned by
BUSL on WebKB. These theories, while theoretically compilable, are very large
as they contain more than 50 learned complex formulas. The compilation ran
out of 25 GB of memory. In terms of run time, on average PLL takes 1 second,
LWL takes 2 minutes, and PSCG takes 40 minutes. For LWL, about 25% of the
time is spent on compilation.

8.5 Conclusions

We investigated the effect of lifted inference for parameter learning in the
statistical relational learning setting. Specifically, we proposed aweight learning
algorithm for Markov logic based on weighted first-order model counting.
Calculating the gradient of the likelihood is the crucial step in parameter
learning. Applying insights from lifted inference allows us to compute the
gradient exactly while querying fewer marginals and answering each query
more efficiently. Lifted weight learning yields a further benefit in that its
compiled circuits are independent of the database and can be reused over
all databases and iterations during optimization. Our proposed approach was
evaluated on learned models from three real-world data sets. Our approach
consistently resulted in better test-set likelihoods than two approximate weight
learning algorithms.

2The objective function for structure learning is pseudo-likelihood.



Conclusions

We conclude by summarizing the presented work, restating its main contribu-
tions, and providing an outlook on future research.

Thesis Summary

The success of fields such as statistical relational learning and probabilistic logic
learning depends on efficient algorithms to reason about highly structured
and uncertain information. The expressivity of the statistical relational models
used in these fields comes at a significant cost: inference is often intractable,
especially when using traditional automated reasoning techniques. The recently
emerged area of automated reasoning that deals with this type of problems
is called lifted probabilistic inference. The algorithms developed in that area
draw upon techniques developed in two disparate fields: first-order knowledge
representation and reasoning, and probabilistic graphical models.

229



230 LIFTED LEARNING

Contributions

This thesis contributes several algorithms, techniques and theoretical results in
first-order logical reasoning and lifted probabilistic inference. Furthermore, it
investigates the use of these techniques for machine learning. We identify five
main contributions:

1. First-order knowledge compilation into negation normal form

2. Lifted probabilistic inference by weighted first-order model counting and
first-order knowledge compilation

3. A formal framework for lifted probabilistic inference as a well-defined
problem

4. A lifted relax, compensate & recover framework for approximate lifted
inference

5. The application of exact lifted inference to lifted learning

In logical reasoning, ourmain contributionwas a newdata structure to represent
first-order logical theories, called first-order negation normal form circuits,
raising the problem of first-order knowledge compilation into this new language.
We distinguished subclasses of circuits that permit tractable model counting
inference and identified theoretical properties of these new languages, including
a classification of supported polytime queries and transformations. In order
to use the new data structure, we proposed an algorithm that compiles logical
theories into these tractable circuit forms.

In lifted probabilistic inference, our most important contribution was a formal
definition of lifted inference in terms of complexity considerations, called
domain-lifted inference, and a first completeness result that identifies a non-
trivial class of inference problems where lifted inference is guaranteed to work.
This was formulated as the following claim.

Claim. Computing single marginal probabilities in quantifier-free models with
up to two logical variables per formula is amenable to lifted inference.

These theoretical results were supported by a new lifted algorithm that reduces
probabilistic inference in several statistical relational languages to a weighted
first-order model counting problem on logical theories. This algorithm made use



CONCLUSIONS 231

of the first-order knowledge compilation techniques that we developed for
logical reasoning.

The above claim about the feasibility of exact lifted inference was part of a more
general formal framework for lifted inference, which includes two alternative
definitions of lifted inference, the notion of completeness of a lifted inference
algorithmw.r.t. a class of inference problems and the notion of liftability of these
classes. With these concepts, we drew an initial liftability map for inference in
statistical relational models, establishing several complexity bounds.

Even when using lifted inference techniques, performing exact inference
is an unattainable goal in many statistical relational models. We therefore
proposed a new approximate lifted inference algorithm called lifted relax,
compensate & recover. It has the advantage that it allowed us to use exact lifted
inference algorithms to perform approximate inference in a relaxed, simplified
model. This algorithm led to a spectrum of approximations, corresponding
to lifted versions of several propositional inference algorithms. A theoretical
contribution of this work was a unifying semantics for different existing
approximate lifted inference approaches.

Finally, we looked at the implications that our new results in automated
reasoning have on the problem of learning the parameters of statistical relational
models from data. Here, we identified several opportunities to make learning
algorithms scale better with the size of the training data. Because of this
increased efficiency, we were able to optimize the exact likelihood of learned
models, where this was previously impossible.

Evidence – A Recurring Theme

The problem of efficiently dealing with evidence was a recurring theme
throughout this dissertation, as this has always been a major issue for lifted
inference. It occurred for the first time in the analysis of first-order circuits,
where we looked at the conditioning transformation, which incorporates
new evidence into a logical knowledge base. The problem came back in the
description of our lifted probabilistic inference algorithm, where we introduced
a technique to efficiently compute posterior probabilities for certain types of
evidence. The theme was most central in our liftability framework, where
we defined DQE-lifted inference in terms of the complexity of inference as
a function of, among others, the size of the evidence, where we classified



232 LIFTED LEARNING

inference problems based on classes of evidence, and analyzed which classes
allow for DQE-lifted inference. Among other results, this permitted us to make
the following claim.

Claim. The problem of computing conditional probabilities in general is not
liftable by any inference algorithm. It becomes liftable when the evidence
consists solely of unary atoms and propositions.

Despite these clear limitation, we identified a powerful positive interplay
between lifted inference techniques and evidence in the work on lifted learning.
In that context, we were able to learn statistical relational models from large,
real-world data sets.

Discussion, Perspectives and Future Work

The work presented in this thesis has significantly advanced the area of
lifted inference, practically and theoretically. Practically, it proposed several
new efficient algorithms, to compile and perform inference in first-order
circuits, for exact and approximate lifted inference while exploiting local
structure, for conditioning on certain types of evidence, and to learn the
parameters of statistical relational models. We hope that these practical
advances will contribute to lifted inference techniques being used in more
real-world applications in the future. Theoretically, the work has advanced our
understanding of lifted inference and first-order knowledge compilation, their
algorithms and the fundamental strengths and limitations of these techniques.
This thesis has opened up new avenues, but closed others. We will now discuss
long-term perspectives and concrete topics of future work.

First-Order Knowledge Compilation

The avenues that were opened include the problem of first-order knowledge
compilation to negation normal form circuits and its possible applications.
Our development of first-order knowledge compilation had a single purpose
in mind, namely weighted first-order model counting. Consequently, the set
of circuit languages we proposed is not nearly as rich as the circuits used for
propositional knowledge compilation. For example, it is not yet clear how binary
and sentential decision diagrams, DNNF circuits, Horn approximations and other



CONCLUSIONS 233

standard propositional techniques fit into our view on first-order knowledge
compilation. Our initial characterization of the properties of first-order negation
normal form is still far away from a first-order knowledge compilation map.

We believe that in the next decade, a much broader first-order knowledge
map will be developed in the NNF tradition. We expect to see first-order
knowledge compilation being applied to a much richer set of first-order
languages, including description logics, logic programs and modal logics. Our
hope is that first-order circuits can play ameaningful role in application areas of
knowledge compilation other than probabilistic inference, such as verification
and planning.

As a first step towards this goal,we propose the following extensions of ourwork.
A major limitation of our proposed compilation algorithm is that it does not
support existentially quantified input. For precisely this reason, our proposed
probabilistic inference algorithm cannot deal with most directed statistical
relational models, whose weighted first-order model counting formulation uses
existential quantifiers. It is feasible to extend at least some compilation rules to
also support existential quantification in a lifted manner, although this would
raise new questions of completeness and liftability. Both in the definition of our
circuit languages and the compilation algorithm, there are many assumptions
that can be relaxed in order to pose new problems. For example, what happens
if we allow for function symbols and infinite interpretations? What if we extend
the expressivity of the constraint language?

A Theory of Lifted Inference

Around the time our work on lifted inference started, there was considerable
skepticism about lifted probabilistic inference. For many it was a hollow word,
and anyone could in principle call his algorithm “lifted” to make it more
appealing. We believe this was largely due to a lack of formal grounds for
lifted inference and its algorithms. In part by the work presented here, on
domain-lifted inference and the liftability framework, we believe that such
skepticism is no longer justified. Whether the notion of domain-lifted inference
will be found useful and stand the test of time is unsure. In the next decade,
it may be refined or replaced. However, there will from now on always be a
formal definition of lifted inference to work with. The problem has been stated,
and the discussion can move forward.



234 LIFTED LEARNING

Another avenue that was closed in this thesis is the overly optimistic idea that
in the future, lifted inference algorithms will be able to efficiently deal with
any type of query, in any type of statistical relational model. The liftability
framework and its initial results on the feasibility of lifted inference provide a
rich stream of new research questions. We expect that it will always be possible
to more precisely define which classes of inference problems are liftable and to
design new tractable languages. The most pressing open question in this regard
is whether the three-variable fragment of statistical relational models is liftable,
or any other class that includes transitive relations.

The theoretical limitations that were identified here allow us to put forth
concrete new challenges. To overcome the problem of efficiently dealing with
evidence on binary relations, we want to look at techniques to condition on
more specific types of relations, such as functions. Our negative theoretical
results do not necessarily apply to these more restricted cases. Results in this
direction would vastly increase the applicability of lifted inference to real-world
problems. It is clear that certain types of binary evidence do not form a problem
for lifted inference. For example, conditioning on all ground atoms for one
relation being true does not pose any challenge, even though this is evidence
about a large number of binary atoms. We want to investigate the complexity of
conditioning on evidence in terms of other properties of the evidence, leading
to stricter complexity bounds. A related opportunity appears in the lifted relax
compensate & recover algorithm, where the largest remaining challenge is to
develop algorithms that efficiently partitioning equiprobable equivalences in
the presence of evidence. Here, we can seek inspiration in the work on lifted
belief propagation.

Lifted Inference and Learning Algorithms

A first breakthrough for automated probabilistic reasoning came at the
end of the 1980s, with the advent of inference algorithms for probabilistic
graphical models. These algorithms have in common that they exploit conditional
independencies in the model to speed up inference. In terms of the number
of random variables, this speedup can be exponential, when comparing to
inference by naively enumerating possible worlds. A second breakthrough
came at the end of the 1990s, when it was realized that exploiting context-
specific independencies, determinism, and local structure in general can speed up
probabilistic inference significantly. Again, this speedup can be exponential. We



CONCLUSIONS 235

believe that before long, it will be generally accepted that exploiting symmetries
in the model is the next major advance in speeding up automated probabilistic
reasoning, not only in statistical relational models, but also in standard
probabilistic graphical models. As we also showed here, these speedups can
again be exponential in terms of the domain size of logical variables, and hence
in terms of the number of random variables.

Through the weighted first-order model counting framework that we proposed
for lifted probabilistic inference, advances that will be made in first-order
knowledge compilation will directly lead to improvements in exact lifted
inference. Through our relax, compensate and recover framework, lifted
approximate inference can in turn directly benefit from such progress.

Finally, we have only scratched the surface of using lifted techniques formachine
learning. It is our hope that symmetries can play a similar role to sparsity in
machine learning, as a means of regularization in very large hypothesis spaces.
The problem of learning structures that are liftable is completely unexplored.
For lifted learning of statistical relational models, possible approaches would
be to learn theories in the two-variable fragment, or to learn first-order
negation normal form circuits directly. In probabilistic graphical models, a lifted
learner could give preference to network structures that are more symmetric.
Furthermore, there are opportunities in using approximate lifted inference,
such as lifted relax, compensate & recover, for the parameter learning task.





Bibliography

B.Ahmadi, K. Kersting, and F.Hadiji (2010). “Lifted belief propagation: pairwise
marginals and beyond”. In: Proceedings of the 5th European Workshop on
Probabilistic Graphical Models (PGM–10). Helsinki, Finland (cit. on p. 208).

B. Ahmadi, K. Kersting, and S. Natarajan (2012). “Lifted online training of
relational models with stochastic gradient methods”. In: Proceedings of
the European Conference on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases (ECML PKDD) (cit. on p. 218).

B. Ahmadi, K. Kersting, and S. Sanner (2011). “Multi-evidence lifted message
passing, with application to pagerank and the Kalman filter”. In: Proceedings
of the twenty-second international joint conference on Artificial Intelligence (IJCAI).
AAAI Press, pp. 1152–1158 (cit. on p. 208).

S. M. Aji and R. J. McEliece (2001). “The generalized distributive law and
free energy minimization”. In: Proceedings of the 39th Allerton Conference
on Communication, Control and Computing, pp. 672–681 (cit. on p. 206).

U. Apsel and R. I. Brafman (2011). “Extended lifted inference with joint
formulas”. In: Proceedings of the Twenty-Seventh Conference Annual Conference
on Uncertainty in Artificial Intelligence (UAI), pp. 11–18 (cit. on pp. 133, 144,
159).

237



238 BIBLIOGRAPHY

U. Apsel and R. I. Brafman (2012b). “Lifted MEU by weighted model counting”.
In: Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence.
Palo Alto, California, USA (cit. on p. 136).

F. Bacchus (1991). “Representing and reasoning with probabilistic knowledge:
a logical approach to probabilities”. In: (cit. on p. 135).

F. Bacchus, S. Dalmao, and T. Pitassi (2009). “Solving #SAT and Bayesian
inference with backtracking search”. In: Journal of Artificial Intelligence
Research 34(1), pp. 391–442 (cit. on p. 31).

F. Bacchus, A. Grove, J. Halpern, and D. Koller (1996). “From statistical
knowledge bases to degrees of belief”. In: Artificial Intelligence 87(1),
pp. 75–143 (cit. on p. 135).

R. Bahar, E. Frohm, C. Gaona, G. Hachtel, E. Macii, A. Pardo, and F. Somenzi
(1997). “Algebraic decision diagrams and their applications”. In: Formal
methods in system design 10(2), pp. 171–206 (cit. on p. 78).

J. S. Baras and G. Theodorakopoulos (2010). Path Problems in Networks. Vol. 3.
Synthesis Lectures on Communication Networks. Morgan & Claypool
Publishers (cit. on p. 31).

P. Baumgartner (2000). “FDPLL – a first-orderDavis-Putnam-Logeman-Loveland
procedure”. In: Automated Deduction-CADE-17, pp. 200–219 (cit. on pp. 75,
122).

P. Baumgartner and C. Tinelli (2008). “The model evolution calculus as a first-
order dpll method”. In:Artificial Intelligence 172(4), pp. 591–632 (cit. on pp. 75,
122).

P. Beame, H. Kautz, and A. Sabharwal (2004). “Towards understanding and
harnessing the potential of clause learning”. In: Journal of Artificial Intelligence
Research 22, pp. 319–351 (cit. on pp. 74, 75).

E. Bell (1934). “Exponential numbers”. In: American Mathematical Monthly,
pp. 411–419 (cit. on p. 221).

R. Bellman (1957). Dynamic programming. Princeton University Press (cit. on
p. 4).

J. Besag (1975). “Statistical Analysis of Non-Lattice Data”. In: The Statistician 24,
pp. 179–195 (cit. on p. 36).

A. Biere (2009). “Bounded Model Checking”. In: Handbook of Satisfiability.
Vol. 185. Frontiers in Artificial Intelligence and Applications. IOS Press.
Chap. 14 (cit. on p. 17).



BIBLIOGRAPHY 239

H. Blockeel and L. De Raedt (1998). “Top-down induction of first-order logical
decision trees”. In: Artificial Intelligence 101(1-2), pp. 285–297 (cit. on p. 76).

E. Börger, E. Grädel, and Y. Gurevich (2001). The classical decision problem.
Springer Verlag (cit. on p. 41).

C. Boutilier, N. Friedman, M. Goldszmidt, and D. Koller (1996). “Context-
specific independence in Bayesian networks”. In: Proceedings of the twelfth
international conference on uncertainty in artificial intelligence. Morgan Kauf-
mann Publishers Inc., pp. 115–123 (cit. on p. 26).

C. Boutilier, R. Reiter,M. Soutchanski, S. Thrun, et al. (2000). “Decision-theoretic,
high-level agent programming in the situation calculus”. In: Proceedings of
the National Conference on Artificial Intelligence. Menlo Park, CA; Cambridge,
MA; London; AAAI Press; MIT Press; 1999, pp. 355–362 (cit. on p. 4).

R. Brachman and H. Levesque (2004). Knowledge representation and reasoning.
Morgan Kaufmann (cit. on pp. 40, 46).

R. Bryant (1986). “Graph-based algorithms for Boolean function manipulation”.
In: IEEE Transactions on Computers 100(8), pp. 677–691 (cit. on pp. 18, 92).

H. Bui, T. Huynh, and S. Riedel (2012). “Automorphism groups of graphical
models and lifted variational inference”. In: (cit. on p. 207).

W. Buntine (1994). “Operations for learning with graphical m odels”. In: Journal
of Artificial Intelligence Research 2, pp. 159–225 (cit. on p. 135).

M. Cadoli and F. Donini (1997). “A survey on knowledge compilation”. In: AI
Communications 10(3-4), pp. 137–150 (cit. on p. 17).

M. Campbell, A. Hoane, and F. Hsu (2002). “Deep blue”. In: Artificial intelligence
134(1), pp. 57–83 (cit. on p. 2).

M. Chavira and A. Darwiche (2005). “Compiling Bayesian networks with local
structure”. In: Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI). Vol. 19, p. 1306 (cit. on p. 26).

M. Chavira and A. Darwiche (Apr. 2008). “On probabilistic inference by
weighted model counting”. In: Artificial Intelligence 172(6-7), pp. 772–799.
(Cit. on pp. 19, 25, 26, 28, 158).

M. Chavira, A. Darwiche, and M. Jaeger (May 2006). “Compiling relational
Bayesian networks for exact inference”. In: International Journal of Approximate
Reasoning 42(1-2), pp. 4–20. (Cit. on pp. 19, 139, 158).

J. Chen and S. Muggleton (2009). “Decision-theoretic logic programs”. In:
Proceedings of ILP. (Cit. on p. 136).



240 BIBLIOGRAPHY

A. Choi, M. Chavira, and A. Darwiche (2007). “Node splitting: a scheme for
generating upper bounds in Bayesian networks”. In: Proceedings of the 23rd
Conference on Uncertainty in Artificial Intelligence (UAI), pp. 57–66 (cit. on
p. 206).

A. Choi and A. Darwiche (2006). “An edge deletion semantics for belief propa-
gation and its practical impact on approximation quality”. In: Proceedings of
the 21st AAAI Conference on Artificial Intelligence, pp. 1107–1114 (cit. on pp. 34,
190, 191, 205).

A. Choi and A. Darwiche (2008). “Approximating the partition function by
deleting and then correcting for model edges”. In: Proceedings of the 24th
Conference on Uncertainty in Artificial Intelligence (UAI), pp. 79–87 (cit. on
p. 205).

A. Choi and A. Darwiche (2011). “Relax, Compensate and then Recover”. In:
New Frontiers in Artificial Intelligence. Vol. 6797. Lecture Notes in Computer
Science. Springer Berlin / Heidelberg, pp. 167–180 (cit. on pp. 33, 192, 206).

J. Choi and E. Amir (2012). “Lifted relational variational inference”. In:
Proceedings of the 28th Conference on Uncertainty in Artificial Intelligence (UAI)
(cit. on p. 207).

J. Choi, E. Amir, and D. Hill (2010). “Lifted inference for relational continuous
models”. In: Proceedings of the 26th Conference on Uncertainty in Artificial
Intelligence (UAI) (cit. on p. 159).

J. Choi, R. de Salvo Braz, andH. Bui (2011). “Efficientmethods for lifted inference
with aggregate factors”. In: Proceedings of the Twenty-Fifth AAAI Conference
on Artificial Intelligence, AAAI, pp. 1030–1036 (cit. on p. 159).

K. Clark (1978). “Negation as failure”. In: Logic and data bases 1, pp. 293–322
(cit. on pp. 21, 149).

D. Cohen, P. Jeavons, C. Jefferson, K. Petrie, and B. Smith (2005). “Symmetry
definitions for constraint satisfaction problems”. In: Principles and Practice of
Constraint Programming (CP), pp. 17–31 (cit. on p. 144).

G. Cooper and E. Herskovits (1992). “A Bayesian method for the induction of
probabilistic networks from data”. In: Machine learning 9(4), pp. 309–347
(cit. on p. 35).

M. Craven and S. Slattery (2001). “Relational learning with statistical predicate
invention: better models for hypertext”. In:Machine Learning Journal 43(1/2),
pp. 97–119 (cit. on p. 226).

J. Crawford, M. Ginsberg, E. Luks, and A. Roy (1996). “Symmetry-breaking
predicates for search problems”. In: pp. 148–159 (cit. on p. 144).



BIBLIOGRAPHY 241

J. M. Crawford and A. B. Baker (1994). “Experimental results on the application
of satisfiability algorithms to scheduling problems”. In: In Proceedings of
the Twelfth National Conference on Artificial Intelligence, pp. 1092–1097 (cit. on
p. 17).

N. Dalvi, K. Schnaitter, and D. Suciu (2010). “Computing query probability
with incidence algebras”. In: Proceedings of ACM SIGMOD/PODS Conference,
pp. 203–214 (cit. on p. 19).

A.Darwiche (1999). “Compiling knowledge into decomposable negation normal
form”. In: Proceedings of IJCAI. Vol. 16, pp. 284–289 (cit. on p. 49).

A. Darwiche (2001a). “Decomposable negation normal form”. In: Journal of the
ACM (JACM) 48(4), pp. 608–647 (cit. on p. 49).

A. Darwiche (2001b). “On the tractability of counting theory models and its
application to belief revision and truth maintenance”. In: Journal of Applied
Non-Classical Logics 11(1-2), pp. 11–34 (cit. on pp. 18, 19, 30, 119).

A. Darwiche (2001c). “Recursive conditioning”. In: Artificial Intelligence 126(1),
pp. 5–41 (cit. on pp. 25, 160).

A. Darwiche (2003). “A differential approach to inference in Bayesian networks”.
In: Journal of the ACM (JACM) 50(3), pp. 280–305 (cit. on p. 30).

A. Darwiche (2004). “New advances in compiling CNF to decomposable
negation normal form”. In: Proceedings of ECAI, pp. 328–332 (cit. on pp. 121,
125, 164).

A. Darwiche (2009). Modeling and Reasoning with Bayesian Networks. Cambridge
University Press. (Cit. on pp. 21, 32, 35).

A. Darwiche (2011). “SDD: a new canonical representation of propositional
knowledge bases”. In: Proceedings of the twenty-Second international joint
conference on artificial Intelligence (IJCAI). AAAI Press, pp. 819–826 (cit. on
pp. 18, 77).

A. Darwiche and P.Marquis (2002). “A knowledge compilationmap”. In: Journal
of Artificial Intelligence Research 17, pp. 229–264 (cit. on pp. 17, 18, 20, 50–56,
63, 64, 70, 72, 119).

A. Darwiche (2000). “Model-based diagnosis under real-world constraints”. In:
AI Magazine, Summer 21, pp. 57–73 (cit. on p. 17).

M. Davis, G. Logemann, and D. Loveland (1962). “A machine program for
theorem-proving”. In: Communications of the ACM 5(7), pp. 394–397 (cit. on
pp. 74, 92, 122).



242 BIBLIOGRAPHY

M. Davis and H. Putnam (1960). “A computing procedure for quantification
theory”. In: Journal of the ACM (JACM) 7(3), pp. 201–215 (cit. on pp. 74, 122).

J. De Kleer, A. Mackworth, and R. Reiter (1992). “Characterizing diagnoses and
systems”. In: Artificial Intelligence 56(2), pp. 197–222 (cit. on p. 17).

L. De Raedt (2008). Logical and relational learning. Springer (cit. on p. 4).
L. De Raedt and S. Džeroski (1994). “First-order jk-clausal theories are PAC-

learnable”. In: Artificial Intelligence 70(1), pp. 375–392 (cit. on p. 216).
L. DeRaedt, A. Kimmig, andH. Toivonen (2007). “Problog: a probabilistic prolog

and its application in link discovery”. In: Proceedings of the 20th international
joint conference on Artifical intelligence, pp. 2468–2473 (cit. on pp. 133, 139).

L. De Raedt, P. Frasconi, K. Kersting, and S. Muggleton, eds. (2008). Probabilistic
inductive logic programming: theory and applications. Berlin, Heidelberg:
Springer-Verlag. (Cit. on pp. 4, 129).

R. de Salvo Braz, S. Natarajan, H. Bui, J. Shavlik, and S. Russell (2009). “Anytime
lifted belief propagation”. In: Proceedings of the 6th International Workshop on
Statistical Relational Learning (cit. on p. 208).

R. de Salvo Braz, E. Amir, and D. Roth (2005). “Lifted first-order probabilistic
inference”. In: Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI), pp. 1319–1325 (cit. on pp. 94, 101, 144, 159, 161, 209).

R. de Salvo Braz, E. Amir, and D. Roth (2006). “MPE and partial inversion in
lifted probabilistic variable elimination”. In: Proceedings of the 21st national
conference on Artificial intelligence (AAAI). Boston, Massachusetts, pp. 1123–
1130 (cit. on pp. 124, 159).

R. Dechter (1996). “Bucket elimination: a unifying framework for probabilistic
inference”. In: Proceedings of the twelfth international conference on uncertainty
in artificial intelligence (UAI). Morgan Kaufmann Publishers Inc., pp. 211–219
(cit. on pp. 25, 161).

R. Dechter and R. Mateescu (2007). “And/or search spaces for graphical
models”. In: Artificial intelligence 171(2), pp. 73–106 (cit. on p. 122).

R. Dechter, K. Kask, and R. Mateescu (2002). “Iterative join-graph propagation”.
In: Proceedings of the 18th conference on uncertainty in artificial intelligence (UAI),
pp. 128–136 (cit. on pp. 34, 206).

R. Dechter and I. Rish (2003). “Mini-buckets: a general scheme for bounded
inference”. In: Journal of the ACM (JACM) 50(2), pp. 107–153 (cit. on p. 206).

D. Déharbe and S. Ranise (2002). BDD-driven first-order satisfiability procedures.
Tech. rep. (cit. on p. 77).



BIBLIOGRAPHY 243

A. Del Val (1996). “Approximate knowledge compilation: the first order case”.
In: Proceedings of the National Conference on Artificial Intelligence, pp. 498–503
(cit. on p. 75).

A. Del Val (2005). “First order LUB approximations: characterization and
algorithms”. In: Artificial Intelligence 162(1), pp. 7–48 (cit. on p. 75).

S. Della Pietra, V. Della Pietra, and J. Lafferty (1997). “Inducing features of
random fields”. In: Pattern Analysis andMachine Intelligence, IEEE Transactions
on 19(4), pp. 380–393 (cit. on p. 35).

A. Dempster, N. Laird, and D. Rubin (1977). “Maximum likelihood from
incomplete data via the EM algorithm”. In: Journal of the Royal Statistical
Society. Series B (Methodological), pp. 1–38 (cit. on p. 35).

M. Denecker, M. Bruynooghe, and V. W. Marek (2001). “Logic programming
revisited: logic programs as inductive definitions”. In: ACM Transactions on
Computational Logic 2(4), pp. 623–654 (cit. on p. 135).

P. Domingos and D. Lowd (2009). “Markov logic: an interface layer for artificial
intelligence”. In: Synthesis Lectures on Artificial Intelligence and Machine
Learning 3(1), pp. 1–155 (cit. on p. 131).

P. Domingos and W. Webb (2012). “A tractable first-order probabilistic logic”.
In: Proceedings of the Twenty-Sixth National Conference on Artificial Intelligence
(cit. on p. 183).

J. Eisner, E. Goldlust, and N. Smith (2005). “Compiling Comp Ling: weighted
dynamic programming and the Dyna language”. In: Proceedings of the Human
Language Technology Conference and Conference on Empirical Methods in Natural
Language Processing (HLT/EMNLP), pp. 281–290 (cit. on p. 31).

G. Elidan and A. Globerson (2010). “Summary of the 2010 UAI approximate
inference challenge”. http://www.cs.huji.ac.il/project/UAI10/ (cit. on
pp. 187, 206).

P. Elliott and B. Williams (2006). “DNNF-based belief state estimation”. In:
Proceedings of the 21st National Conference on Artificial Intelligence (AAAI) (cit.
on p. 19).

F. Fages (1994). “Consistency of Clark’s completion and existence of stable
models”. In: Journal of Methods of logic in computer science 1(1), pp. 51–60
(cit. on p. 149).

T. Fahle, S. Schamberger, and M. Sellmann (2001). “Symmetry breaking”. In:
Principles and Practice of Constraint Programming. Springer, pp. 93–107 (cit. on
p. 144).



244 BIBLIOGRAPHY

A. Felfernig, G. Friedrich, D. Jannach, and M. Stumptner (2004). “Consistency-
based diagnosis of configuration knowledge bases”. In: Artificial Intelligence
152(2), pp. 213–234 (cit. on p. 17).

D. Ferrucci, E. Brown, J. Chu-Carroll, J. Fan, D. Gondek, A. Kalyanpur, A. Lally,
J. Murdock, E. Nyberg, J. Prager, N. Schlaefer, and C.Welty (2010). “Building
watson: an overview of the deepqa project”. In: AI Magazine 31(3), pp. 59–79
(cit. on p. 2).

D. Fierens, H. Blockeel, M. Bruynooghe, and J. Ramon (2005). “Logical Bayesian
networks and their relation to other probabilistic logical models”. In:
Inductive Logic Programming, pp. 121–135 (cit. on p. 137).

D. Fierens, G. Van den Broeck, I. Thon, B. Gutmann, and L. De Raedt (2011a).
“Inference in probabilistic logic programs using weighted CNF’s”. In:
Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence (UAI),
pp. 211–220 (cit. on pp. 12, 19, 139, 151, 158).

D. Fierens, G. Van den Broeck, M. Bruynooghe, and L. De Raedt (Dec. 2012a).
“Constraints for probabilistic logic programming”. In: Proceedings of the NIPS
Probabilistic Programming Workshop, (cit. on pp. 135, 151).

D. Fierens, G. Van den Broeck, J. Renkens, D. Shterionov, B. Gutmann, I. Thon,
G. Janssens, and L. De Raedt (2012b). “Inference and learning in probabilistic
logic programs using weighted Boolean formulas”. In: (submitted) (cit. on
pp. 12, 41, 151).

R. Fikes and N. Nilsson (1972). “STRIPS: a new approach to the application of
theorem proving to problem solving”. In: Artificial intelligence 2(3), pp. 189–
208 (cit. on p. 4).

R. Freedman, R. de Salvo Braz, H. Bui, and S. Natarajan (2012). “Initial empirical
evaluation of anytime lifted belief propagation”. In: Proceedings of StaRAI
(cit. on p. 208).

N. Friedman, L. Getoor, D. Koller, and A. Pfeffer (1999). “Learning probabilistic
relational models”. In: Proceedings of IJCAI, pp. 1300–1309 (cit. on pp. 41,
137).

M. Gelfond and V. Lifschitz (1988). “The stable model semantics for logic
programming”. In: Proceedings of the 5th International Conference on Logic
programming. Vol. 161 (cit. on p. 21).

I. Gent and B. Smith (2000). “Symmetry breaking during search in constraint
programming”. In: Proceedings ECAI. Vol. 2000. Citeseer (cit. on p. 144).

L. Getoor and B. Taskar, eds. (2007). An Introduction to Statistical Relational
Learning. MIT Press (cit. on pp. 4, 129).



BIBLIOGRAPHY 245

J. Gillis and J. Van den Bussche (2012). “Expressive power of safe first-order
logical decision trees”. In: Inductive Logic Programming, pp. 160–172 (cit. on
p. 76).

V. Gogate and R. Dechter (2011). “Samplesearch: importance sampling in
presence of determinism”. In:Artificial Intelligence 175(2), pp. 694–729 (cit. on
p. 28).

V. Gogate and P. Domingos (2010). “Exploiting logical structure in lifted
probabilistic inference”. In: Proceedings of StaRAI (cit. on pp. 122, 159, 160).

V. Gogate and P. Domingos (2011). “Probabilistic theorem proving”. In:
Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence (UAI),
pp. 256–265 (cit. on pp. 75, 122, 124, 158–160, 207).

V. Gogate, A. Jha, and D. Venugopal (2012). “Advances in lifted importance
sampling”. In: Proceedings of the AAAI Conference on Artificial Intelligence (cit.
on p. 207).

G. Gogic, H. Kautz, C. Papadimitriou, and B. Selman (1995). “The comparative
linguistics of knowledge representation”. In: Proceedings of the International
Joint Conference on Artificial Intelligence. Vol. 14, pp. 862–869 (cit. on p. 175).

C. P. Gomes, A. Sabharwal, and B. Selman (2009). “Model Counting”. In:
Handbook of Satisfiability. Vol. 185. Frontiers in Artificial Intelligence and
Applications. IOS Press. Chap. 20 (cit. on p. 41).

N. D. Goodman, V. K.Mansinghka, D.M. Roy, K. Bonawitz, and J. B. Tenenbaum
(2008). “Church: a language for generative models”. In: Proceedings of UAI,
pp. 220–229 (cit. on p. 137).

J. Goubault (1995). “A BDD-based simplification and Skolemization procedure”.
In: Logic Journal of IGPL 3(6), pp. 827–855 (cit. on pp. 77, 78).

J. F. Groote and O. Tveretina (2003). “Binary decision diagrams for first-order
predicate logic”. In: Journal of Logic and Algebraic Programming 57(1-2), pp. 1–
22 (cit. on p. 78).

P. Haddawy (1994). “Generating Bayesian networks from probability logic
knowledge bases”. In: Proceedings of the Tenth international conference on
Uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc.,
pp. 262–269 (cit. on p. 137).

F. Hadiji, B. Ahmadi, and K. Kersting (2011). “Efficient sequential clamping
for lifted message passing”. In: KI 2011: Advances in Artificial Intelligence,
pp. 122–133 (cit. on p. 208).

J. Halpern (1990). “An analysis of first-order logics of probability”. In: Artificial
Intelligence 46(3), pp. 311–350 (cit. on p. 135).



246 BIBLIOGRAPHY

T. Hinrichs and M. Genesereth (2006). Herbrand Logic. Tech. rep. LG-2006-02.
http://logic.stanford.edu/reports/LG-2006-02.pdf. Stanford, CA: Stanford
University (cit. on p. 46).

J. Huang and A. Darwiche (2005). “DPLL with a trace: from SAT to knowledge
compilation”. In: Proceedings of the International Joint Conference On Artificial
Intelligence. Vol. 19, p. 156 (cit. on pp. 74, 75, 122).

U. Hustadt, R. Schmidt, and L. Georgieva (2004). “A survey of decidable first-
order fragments and description logics”. In: Journal of Relational Methods in
Computer Science 1, pp. 251–276 (cit. on p. 184).

T. N. Huynh and R. J. Mooney (2009). “Max-margin weight learning for Markov
logic networks”. In: European Conference pm Machine Learning and Knowledge
Discovery in Databases, pp. 564–579 (cit. on p. 216).

M. Jaeger (1997). “Relational Bayesian networks”. In: Proceedings of the Thirteenth
conference on Uncertainty in artificial intelligence (UAI). Morgan Kaufmann
Publishers Inc., pp. 266–273 (cit. on p. 137).

M. Jaeger (2000). “On the complexity of inference about probabilistic relational
models”. In: Artificial Intelligence 117, pp. 297–308 (cit. on pp. 180, 181).

M. Jaeger (2012). “Lower complexity bounds for lifted inference”. In: CoRR
abs/1204.3255 (cit. on p. 180).

M. Jaeger and G. Van den Broeck (2012). “Liftability of probabilistic inference:
Upper and lower bounds”. In: Proceedings of the 2nd International Workshop
on Statistical Relational AI, (cit. on pp. 11, 170, 180).

A. Jaimovich, O. Meshi, and N. Friedman (2007). “Template based inference in
symmetric relational Markov random fields”. In: Proceedings of the Twenty-
Third Conference on Uncertainty in Artificial Intelligence (UAI) (cit. on pp. 158,
206, 218).

T. Janhunen (2004). “Representing normal programs with clauses”. In: ECAI.
Vol. 16, p. 358 (cit. on p. 151).

M. Järvisalo, D. Le Berre, O. Roussel, and L. Simon (2012). “The international
SAT solver competitions”. In: AI Magazine 33(1), p. 89 (cit. on p. 41).

R. Jensen (1968). “On the consistency of a slight (?) modification of Quine’s new
foundations”. In: Synthese 19(1), pp. 250–263 (cit. on p. 47).

A. Jha, V. Gogate, A. Meliou, and D. Suciu (2010). “Lifted inference seen from
the other side: the tractable features”. In: Proceedings of the 24th Conference on
Neural Information Processing Systems (NIPS) (cit. on pp. 105, 124, 159).



BIBLIOGRAPHY 247

D. Johnson (1990). “A catalog of complexity classes”. In: Handbook of theoretical
computer science 1, pp. 67–161 (cit. on p. 181).

N. D. Jones and A. L. Selman (1972). “Turing machines and the spectra of first-
order formulas with equality”. In: Proceedings of the Fourth ACM Symposium
on Theory of Computing, pp. 157–167 (cit. on p. 181).

M. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul (1999). “An introduction
to variational methods for graphical models”. In: Machine learning 37(2),
pp. 183–233 (cit. on p. 30).

S. Joshi and R. Khardon (2011). “Probabilistic relational planning with first
order decision diagrams”. In: Journal of Artificial Intelligence Research 41(2),
pp. 231–266 (cit. on p. 78).

K. Kask and R. Dechter (2001). “A general scheme for automatic generation of
search heuristics from specification dependencies”. In: Artificial Intelligence
129(1-2), pp. 91–131 (cit. on p. 206).

H. Kautz, B. Selman, et al. (1992). “Planning as satisfiability”. In: Proceedings of
the 10th European conference on Artificial intelligence, pp. 359–363 (cit. on p. 17).

K. Kersting (2012). “Lifted probabilistic inference”. In: Proceedings of the 20th
European Conference on Artificial Intelligence (ECAI), pp. 33–38 (cit. on p. 158).

K. Kersting, B. Ahmadi, and S. Natarajan (2009). “Counting belief propagation”.
In: Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence
(UAI). AUAI Press, pp. 277–284 (cit. on pp. 158, 206, 211, 218).

K. Kersting and L. De Raedt (2001a). “Bayesian logic programs”. In: arXiv
preprint cs/0111058 (cit. on p. 137).

K. Kersting and L. De Raedt (2001b). “Towards combining inductive logic
programming with Bayesian networks”. In: Inductive Logic Programming,
pp. 118–131 (cit. on p. 41).

K. Kersting, Y. El Massaoudi, B. Ahmadi, and F. Hadiji (2010). “Informed lifting
for message-passing”. In: Proceedings of the 24th AAAI Conference on Artificial
Intelligence, (cit. on p. 208).

A. Kimmig, G. Van den Broeck, and L. De Raedt (2011). “An algebraic Prolog
for reasoning about possible worlds”. In: Proceedings of the Twenty-Fifth AAAI
Conference on Artificial Intelligence, pp. 209–214 (cit. on pp. 12, 31).

A. Kimmig, G. Van den Broeck, and L. De Raedt (Nov. 2012a). “Algebraic Model
Counting”. In: arXiv:1211.4475. (Cit. on pp. 12, 31).

http://arxiv.org/abs/1211.4475


248 BIBLIOGRAPHY

J. Kisyński and D. Poole (2009a). “Constraint processing in lifted probabilistic
inference”. In: Proceedings of the 25th Conference on Uncertainty in Artificial
Intelligence (UAI). AUAI Press, pp. 293–302 (cit. on pp. 103, 132, 144).

J. Kisyński and D. Poole (2009b). “Lifted aggregation in directed first-order
probabilistic models”. In: Proc. IJCAI. Vol. 9, pp. 1922–1929 (cit. on p. 159).

S. Kok and P. Domingos (2005). “Learning the structure of Markov logic
networks”. In: Proceedings of the International Conference on Machine Learning,
pp. 441–448 (cit. on pp. 216, 227).

S. Kok,M. Sumner,M. Richardson, P. Singla, H. Poon, D. Lowd, and P.Domingos
(2008). The Alchemy System for Statistical Relational AI. Tech. rep. http://
alchemy.cs.washington.edu. Seattle, WA: Department of Computer Science
and Engineering, University of Washington (cit. on p. 226).

D. Koller and N. Friedman (2009). Probabilistic graphical models: principles and
techniques. MIT press (cit. on pp. 21, 32, 35, 36).

D. Kroening (2009). “Software Verification”. In:Handbook of Satisfiability. Vol. 185.
Frontiers in Artificial Intelligence and Applications. IOS Press. Chap. 16
(cit. on p. 17).

F. Kschischang, B. Frey, and H. Loeliger (2001). “Factor graphs and the sum-
product algorithm”. In: Information Theory, IEEETransactions on 47(2), pp. 498–
519 (cit. on p. 24).

K. Kunen (1980). Set theory. Elsevier (cit. on p. 46).
N. Kushmerick, S. Hanks, and D. Weld (1995). “An algorithm for probabilistic

planning”. In: Artificial Intelligence 76(1), pp. 239–286 (cit. on p. 4).
L. Liberti (2012). “Symmetry in mathematical programming”. In: Mixed Integer

Nonlinear Programming, pp. 263–283 (cit. on p. 144).
F. Lin and Y. Zhao (2004). “ASSAT: computing answer sets of a logic program

by SAT solvers”. In: Artificial Intelligence 157(1), pp. 115–137 (cit. on p. 17).
D. C. Liu and J. Nocedal (1989). “On the Limited Memory BFGS Method for

Large Scale Optimization”. In: Mathematical Programming 45(3), pp. 503–528
(cit. on pp. 224, 225).

D. Lowd and P. Domingos (2007). “Efficient weight learning for Markov logic
networks”. In: Proceedings of PKDD, pp. 200–211 (cit. on pp. 216, 217, 226).

F. Margot (2010). “Symmetry in integer linear programming”. In: 50 Years of
Integer Programming 1958-2008, pp. 647–686 (cit. on p. 144).

http://alchemy.cs.washington.edu
http://alchemy.cs.washington.edu


BIBLIOGRAPHY 249

P. Marquis (1995). “Knowledge compilation using theory prime implicates”. In:
Proceedings of the International Joint Conference On Artificial Intelligence. Vol. 14,
pp. 837–845 (cit. on p. 17).

A. McCallum, K. Schultz, and S. Singh (2009). “Factorie: probabilistic pro-
gramming via imperatively defined factor graphs”. In: Neural Information
Processing Systems (NIPS) (cit. on pp. 137, 226).

W. Meert, N. Taghipour, and H. Blockeel (2010). “First-order Bayes-ball”. In:
Machine Learning and Knowledge Discovery in Databases, European Conference,
ECML PKDD 2010, pp. 369–384. (Cit. on p. 138).

C. Meinel and T. Theobald (1998). Algorithms and Data Structures in VLSI Design:
OBDD-foundations and applications. Springer Verlag (cit. on pp. 17, 19).

E. Mendelson (1997). Introduction to mathematical logic. Chapman & Hall/CRC
(cit. on p. 47).

P. Meseguer, F. Rossi, and T. Schiex (2006). “Soft Constraints”. In: Handbook of
constraint programming. Elsevier Science, pp. 281–328 (cit. on p. 31).

L. Mihalkova and R. J. Mooney (2007). “Bottom-up learning of Markov logic
network structure”. In: Proceedings of the 24th International Conference on
Machine Learning, pp. 625–632 (cit. on pp. 216, 227).

B.Milch, B.Marthi, S. Russell, D. Sontag, D. Ong, andA. Kolobov (2007). “BLOG:
probabilistic models with unknown objects”. In: Introduction to statistical
relational learning, p. 373 (cit. on p. 137).

B. Milch, L. Zettlemoyer, K. Kersting, M. Haimes, and L. Kaelbling (2008).
“Lifted probabilistic inference with counting formulas”. In: Proceedings of the
23rd AAAI Conference on Artificial Intelligence, pp. 1062–1068 (cit. on pp. 132,
133, 159, 161, 209).

M. Mladenov, B. Ahmadi, and K. Kersting (2012). “Lifted linear programming”.
In: 15th International Conference on Artificial Intelligence and Statistics (AISTATS
2012). Vol. 22 (cit. on p. 144).

R. Moore (1985). “Semantical considerations on nonmonotonic logic”. In:
Artificial intelligence 25(1), pp. 75–94 (cit. on p. 21).

S. Muggleton (1996). “Stochastic logic programs”. In: Advances in inductive logic
programming 32, pp. 254–264 (cit. on p. 133).

S. Muggleton and L. De Raedt (1994). “Inductive logic programming: theory
and methods”. In: The Journal of Logic Programming 19, pp. 629–679 (cit. on
pp. 4, 129).



250 BIBLIOGRAPHY

C. Muise, S. McIlraith, J. Beck, and E. Hsu (2010). “Fast d-DNNF compilation
with sharpSAT”. In: Workshops at the Twenty-Fourth AAAI Conference on
Artificial Intelligence (cit. on pp. 121, 125).

C. Muise, S. McIlraith, J. Beck, and E. Hsu (2012). “D sharp: fast d-DNNF
compilationwith sharpSAT”. In:Advances in Artificial Intelligence, pp. 356–361
(cit. on p. 121).

K. Murphy, Y. Weiss, and M. Jordan (1999). “Loopy belief propagation for
approximate inference: an empirical study”. In: Proceedings of the Fifteenth
conference onUncertainty in artificial intelligence.MorganKaufmannPublishers
Inc., pp. 467–475 (cit. on p. 32).

A. Nath and P. Domingos (2009). “A language for relational decision theory”.
In: Proceedings of the International Workshop on Statistical Relational Learning
(cit. on p. 136).

A. Nath and P. Domingos (2010). “Efficient lifting for online probabilistic
inference”. In: Proceedings of the 24th AAAI Conference on Artificial Intelligence
(cit. on p. 208).

M. Niepert (2012a). “Lifted probabilistic inference: an MCMC perspective”.
In: Proceedings of the Second International Workshop on Statistical Relational AI
(StaRAI) (cit. on p. 207).

M. Niepert (2012b). Personal communication (cit. on p. 152).
M. Niepert (2012c). “Markov chains on orbits of permutation groups”. In:

Proceedings of the 28th Conference on Uncertainty in Artificial Intelligence (UAI)
(cit. on p. 207).

N. Nilsson (1986). “Probabilistic logic”. In: Artificial intelligence 28(1), pp. 71–87
(cit. on pp. 21, 135).

H. Palacios, B. Bonet, A. Darwiche, and H. Geffner (2005). “Pruning conformant
plans by counting models on compiled d-DNNF representations”. In:
Proceedings of the 15th International Conference on Automated Planning and
Scheduling, pp. 141–150 (cit. on p. 19).

M. Paskin (2002).Maximum entropy probabilistic logic. Tech. rep. UCB/CSD-01-
1161. Computer Science Division, University of California, Berkeley (cit. on
p. 135).

J. Pearl (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann (cit. on pp. 21, 25, 30, 32, 192, 205).

A. Pfeffer (2001). “Ibal: a probabilistic rational programming language”. In:
International Joint Conference on Artificial Intelligence. Vol. 17. 1, pp. 733–740
(cit. on pp. 136, 137).



BIBLIOGRAPHY 251

A. Pfeffer (2009). “Figaro: an object-oriented probabilistic programming
language”. In: Charles River Analytics Technical Report (cit. on p. 137).

A. Pfeffer, D. Koller, B. Milch, and K. Takusagawa (1999). “Spook: a system for
probabilistic object-oriented knowledge representation”. In: Proceedings of the
Fifteenth conference on Uncertainty in artificial intelligence. Morgan Kaufmann
Publishers Inc., pp. 541–550 (cit. on p. 159).

A. Pfeffer (1999). “Probabilistic reasoning for complex systems”. PhD thesis.
Stanford University (cit. on p. 159).

K. Pipatsrisawat and A. Darwiche (2011). “On the power of clause-learning SAT
solvers as resolution engines”. In: Artificial Intelligence 175(2), pp. 512–525
(cit. on p. 74).

D. Poole (1993). “Probabilistic horn abduction and Bayesian networks”. In:
Artificial Intelligence 64, pp. 81–129 (cit. on p. 133).

D. Poole (1997). “The independent choice logic for modelling multiple agents
under uncertainty”. In: Artificial Intelligence 94(1), pp. 7–56 (cit. on pp. 4, 133,
136).

D. Poole (2003). “First-order probabilistic inference.” In: Proceedings of the
International Joint Conference on Artificial Intelligence (IJCAI), pp. 985–991
(cit. on pp. 5, 88, 94, 101, 131, 140, 159, 173).

D. Poole, F. Bacchus, and J. Kisyński (2011). “Towards completely lifted search-
based probabilistic inference”. In: CoRR abs/1107.4035 (cit. on pp. 94, 146,
159, 160).

H. Poon and P. Domingos (2006). “Sound and efficient inference with probabilis-
tic and deterministic dependencies”. In: Proceedings of the National Conference
on Artificial Intelligence. Vol. 21. 1, p. 458 (cit. on pp. 151, 217).

J. Posegga (1993). Deduktion mit Shannongraphen für Prädikatenlogik erster Stufe.
Sankt Augustin: Infix Verlag (cit. on p. 77).

M. Puterman (1994). Markov decision processes: Discrete stochastic dynamic
programming. John Wiley & Sons, Inc. (cit. on p. 4).

R. Reiter (1980). “A logic for default reasoning”. In: Artificial intelligence 13(1),
pp. 81–132 (cit. on p. 21).

M. Richardson and P. Domingos (2006). “Markov logic networks”. In:Machine
learning 62(1), pp. 107–136 (cit. on pp. 41, 129, 216, 217).

J. Rintanen (2009). “Planning and SAT”. In: Handbook of Satisfiability. Vol. 185.
Frontiers in Artificial Intelligence and Applications. IOS Press. Chap. 15
(cit. on p. 17).



252 BIBLIOGRAPHY

N. Robertson and P. Seymour (1983). “Graph minors. I. Excluding a forest”. In:
Journal of Combinatorial Theory, Series B 35(1), pp. 39–61 (cit. on pp. 30, 222).

N. Robertson and P. Seymour (1986). “Graph minors. II. Algorithmic aspects of
tree-width”. In: Journal of algorithms 7(3), pp. 309–322 (cit. on pp. 30, 222).

J. Robinson (1965). “Amachine-oriented logic based on the resolution principle”.
In: Journal of the ACM (JACM) 12(1), pp. 23–41 (cit. on pp. 73, 75, 85, 90, 142,
143).

G. Rota (1964). “The number of partitions of a set”. In: The AmericanMathematical
Monthly 71(5), pp. 498–504 (cit. on p. 221).

S. J. Russell and P. Norvig (2010). Artificial Intelligence - A Modern Approach (3.
internat. ed.) Pearson Education (cit. on p. 2).

T. Sang, P. Beame, andH. Kautz (2005). “Solving Bayesian networks byweighted
model counting”. In: Proceedings of the Twentieth National Conference on
Artificial Intelligence. Vol. 1, pp. 475–482 (cit. on pp. 25, 26, 28, 158).

V. Santos Costa, D. Page, M. Qazi, and J. Cussens (2003). “CLP(BN): Constraint
logic programming for probabilistic knowledge”. In: Proceedings of the 19th
Conference on Uncertainty in Artificial Intelligence (UAI), pp. 517–524 (cit. on
p. 137).

T. Sato and Y. Kameya (1997). “PRISM: a language for symbolic-statistical
modeling”. In: Proceedings of the International Joint Conference on Artificial
Intelligence. Vol. 15, pp. 1330–1339 (cit. on p. 133).

T. Sato (1995). “A statistical learning method for logic programs with distribu-
tion semantics”. In: Proceedings of the 12th International Conference on Logic
Programming (ICLP), pp. 715–729 (cit. on pp. 133, 134).

K. Schneider, R. Kumar, and T. Kropf (1993). “Hardware verification using
first order BDDs”. In: Proceedings of IFIP Conference on Hardware Description
Languages and their Applications CHDL (cit. on p. 77).

R. Sebastiani and A. Tacchella (2009). “SAT Techniques for Modal and
Description Logics”. In: Handbook of Satisfiability. Vol. 185. Frontiers in
Artificial Intelligence and Applications. IOS Press. Chap. 25 (cit. on p. 17).

B. Selman, H. Kautz, et al. (1991). “Knowledge compilation using Horn
approximations”. In: Proceedings of the ninth national conference on artificial
intelligence (AAAI), pp. 904–909 (cit. on p. 17).

B. Selman, H. Kautz, et al. (1996). “Knowledge compilation and theory
approximation”. In: Journal of the ACM 43(2), pp. 193–224 (cit. on p. 75).



BIBLIOGRAPHY 253

P. Sen, A. Deshpande, and L. Getoor (2009). “Bisimulation-based approximate
lifted inference”. In: Proceedings of the 25th Conference on Uncertainty in
Artificial Intelligence (UAI). AUAI Press, pp. 496–505 (cit. on p. 206).

R. Shachter (1986). “Evaluating influence diagrams”. In:Operations research 34(6),
pp. 871–882 (cit. on p. 136).

C. Shannon (1949). “The synthesis of two-terminal switching circuits”. In: Bell
System Technical Journal 28(1), pp. 59–98 (cit. on p. 91).

J. Shavlik and S. Natarajan (2009). “Speeding up inference in Markov logic
networks by preprocessing to reduce the size of the resulting grounded
network”. In: Proceedings of the Twenty-first International Joint Conference on
Artificial Intelligence (IJCAI-09) (cit. on p. 138).

P. Singla and P. Domingos (2005). “Discriminative training of Markov logic
networks”. In: Twentieth National Conference on Artificial Intelligence, pp. 868–
873 (cit. on pp. 216, 225).

P. Singla and P. Domingos (2008). “Lifted first-order belief propagation”. In:
Proceedings of the 23rd AAAI Conference on Artificial Intelligence, pp. 1094–1099
(cit. on pp. 130, 158, 161, 206, 209, 211, 218).

P. Singla, A. Nath, and P. Domingos (2010). “Approximate lifted belief
propagation”. In: Proceedings of StaRAI (cit. on pp. 144, 208).

N. Taghipour and J. Davis (2012). “Generalized counting for lifted variable
elimination”. In: Proceedings of the Second International Workshop on Statistical
Relational AI (StaRAI) (cit. on pp. 133, 159).

N. Taghipour, D. Fierens, G. Van den Broeck, J. Davis, and H. Blockeel (Aug.
2012b). “Lifted variable elimination: a novel operator and completeness
results”. In: ArXiv e-prints. arXiv:1208.3809 [cs.AI] (cit. on pp. 115, 183).

N. Taghipour, D. Fierens, J. Davis, and H. Blockeel (2012). “Lifted variable
elimination with arbitrary constraints”. In: Proceedings of the fifteenth
international conference on artificial intelligence and statistics (cit. on pp. 132,
159).

H. Tamaki and T. Sato (1986). “OLD resolution with tabulation”. In: Third
International Conference on Logic Programming. Springer, pp. 84–98 (cit. on
p. 85).

W. Thompson and E. Schumann (1987). “Interpretation of statistical evidence
in criminal trials: the prosecutor’s fallacy and the defense attorney’s fallacy.”
In: Law and Human Behavior; Law and Human Behavior 11(3), p. 167 (cit. on
p. 6).

http://arxiv.org/abs/1208.3809


254 BIBLIOGRAPHY

A. Turing (1950). “Computing machinery and intelligence”. In:Mind 59(236),
pp. 433–460 (cit. on p. 1).

L. Valiant (1979). “The complexity of enumeration and reliability problems”. In:
SIAM Journal on Computing 8(3), pp. 410–421 (cit. on pp. 68, 183).

G. Van den Broeck (2011b). “On the completeness of first-order knowledge
compilation for lifted probabilistic inference”. In: Advances in Neural
Information Processing Systems 24 (NIPS), pp. 1386–1394 (cit. on pp. 11, 50, 82,
105, 111, 115, 129, 163, 170, 210).

G. Van den Broeck, A. Choi, and A. Darwiche (2012). “Lifted relax, compensate
and then recover: From approximate to exact lifted probabilistic inference”.
In: Proceedings of the 28th Conference on Uncertainty in Artificial Intelligence
(UAI) (cit. on pp. 12, 82, 188).

G. Van den Broeck and J. Davis (2012). “Conditioning in first-order knowledge
compilation and lifted probabilistic inference”. In: Proceedings of the Twenty-
Sixth AAAI Conference on Artificial Intelligence, Palo Alto, California, USA
(cit. on pp. 11, 40, 128).

G. Van den Broeck, W. Meert, and J. Davis (2012). Lifted parameter learning for
Markov logic. (submitted) (cit. on pp. 12, 216).

G. Van den Broeck, I. Thon,M. vanOtterlo, and L. De Raedt (2010). “DTProbLog:
A decision-theoretic probabilistic Prolog”. In: Proceedings of the Twenty-fourth
AAAI Conference on Artificial Intelligence,Menlo Park, California, pp. 1217–
1222 (cit. on pp. 12, 136).

G. Van den Broeck, N. Taghipour, W. Meert, J. Davis, and L. De Raedt (2011a).
“Lifted probabilistic inference by first-order knowledge compilation”. In:
Proceedings of the Twenty-Second International Joint Conference on Artificial
Intelligence (IJCAI). Menlo Park, California, pp. 2178–2185 (cit. on pp. 11, 40,
49, 50, 82, 92, 107, 128, 161, 209).

A. Van Gelder, K. Ross, and J. Schlipf (1991). “The well-founded semantics for
general logic programs”. In: Journal of the ACM (JACM) 38(3), pp. 619–649
(cit. on pp. 149, 151).

J. Vennekens, M. Denecker, and M. Bruynooghe (2009). “CP-logic: a language
of causal probabilistic events and its relation to logic programming”. In:
Theory and Practice of Logic Programming 9(3), pp. 245–308 (cit. on p. 133).

J. Vennekens, S. Verbaeten, and M. Bruynooghe (2004). “Logic programs with
annotated disjunctions”. In: Logic Programming, pp. 95–119 (cit. on p. 133).

D. Venugopal and V. Gogate (2012). “On lifting the Gibbs sampling algorithm”.
In: (cit. on p. 207).



BIBLIOGRAPHY 255

M. Wachter and R. Haenni (2006). “Propositional DAGs: a new graph-based
language for representing Boolean functions”. In: Proceedings of the 10th
International Conference on Principles of Knowledge Representation and Reasoning
(cit. on p. 77).

C. Wang, S. Joshi, and R. Khardon (2008). “First order decision diagrams for
relational MDPs”. In: Journal of Artificial Intelligence Research 31(1), pp. 431–
472 (cit. on p. 78).

W. Wei and B. Selman (2005). “A new approach to model counting”. In: Theory
and Applications of Satisfiability Testing. Springer, pp. 96–97 (cit. on p. 28).

M. Wellman, J. Breese, and R. Goldman (1992). “From knowledge bases to
decision models”. In: The Knowledge Engineering Review 7(01), pp. 35–53 (cit.
on p. 41).

J. S. Yedidia, W. T. Freeman, and Y. Weiss (2003). “Understanding belief
propagation and its generalizations”. In: Exploring Artificial Intelligence in the
New Millennium. Morgan Kaufmann. Chap. 8, pp. 239–269 (cit. on pp. 34,
205, 206).

H. Younes, M. Littman, D. Weissman, and J. Asmuth (2005). “The first
probabilistic track of the international planning competition”. In: Journal of
Artificial Intelligence Research 24(1), pp. 851–887 (cit. on p. 4).

L. Zhang, C. Madigan, M. Moskewicz, and S. Malik (2001). “Efficient conflict
driven learning in a boolean satisfiability solver”. In: Proceedings of the
2001 IEEE/ACM international conference on Computer-aided design. IEEE Press,
pp. 279–285 (cit. on p. 125).

N. Zhang and D. Poole (1994). “A simple approach to Bayesian network
computations”. In: Proceedings of the 10th Canadian conference on artificial
intelligence (cit. on pp. 25, 161, 173).

N. Zhang and D. Poole (1999). “On the role of context-specific independence
in probabilistic inference”. In: Proceedings of the 16th international joint
conference on Artificial intelligence-Volume 2. Morgan Kaufmann Publishers
Inc., pp. 1288–1293 (cit. on p. 159).





List of Publications

Journal Articles

D. Fierens, G. Van den Broeck, J. Renkens, D. Shterionov, B. Gutmann, I. Thon,
G. Janssens, and L. De Raedt (2012b). “Inference and learning in probabilistic
logic programs using weighted Boolean formulas”. In: (submitted) (cit. on
pp. 12, 41, 151).

A. Kimmig, G. Van den Broeck, and L. De Raedt (2012b). “Algebraic Model
Counting”. In: (submitted).

J. Renkens, G. Van den Broeck, and S. Nijssen (July 2012). “K-optimal: A novel
approximate inference algorithm for ProbLog”. In:Machine Learning 89(3),
pp. 215–231.

Winner of the “Turing Theory Prize” (best student paper award) at
the 21st International Conference on Inductive Logic Programming (ILP
2011), funded by Machine Learning Journal.

257



258 LIST OF PUBLICATIONS

Highly Selective Conferences

D. Fierens, G. Van den Broeck, I. Thon, B. Gutmann, and L. De Raedt (2011a).
“Inference in probabilistic logic programs using weighted CNF’s”. In:
Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence (UAI),
pp. 211–220 (cit. on pp. 12, 19, 139, 151, 158).

A. Kimmig, G. Van den Broeck, and L. De Raedt (2011). “An algebraic Prolog
for reasoning about possible worlds”. In: Proceedings of the Twenty-Fifth AAAI
Conference on Artificial Intelligence, pp. 209–214 (cit. on pp. 12, 31).

N. Taghipour, D. Fierens, G. Van den Broeck, J. Davis, and H. Blockeel (2012a).
“Completeness results for lifted variable elimination”. In: (submitted).

G. Van den Broeck (2011b). “On the completeness of first-order knowledge
compilation for lifted probabilistic inference”. In: Advances in Neural
Information Processing Systems 24 (NIPS), pp. 1386–1394 (cit. on pp. 11, 50, 82,
105, 111, 115, 129, 163, 170, 210).

G. Van den Broeck, A. Choi, and A. Darwiche (2012). “Lifted relax, compensate
and then recover: From approximate to exact lifted probabilistic inference”.
In: Proceedings of the 28th Conference on Uncertainty in Artificial Intelligence
(UAI) (cit. on pp. 12, 82, 188).

G. Van den Broeck and J. Davis (2012). “Conditioning in first-order knowledge
compilation and lifted probabilistic inference”. In: Proceedings of the Twenty-
Sixth AAAI Conference on Artificial Intelligence, Palo Alto, California, USA
(cit. on pp. 11, 40, 128).

G. Van den Broeck, K. Driessens, and J. Ramon (2009a). “Monte-Carlo tree
search in poker using expected reward distributions”. In: Proceedings of the
1st Asian Conference on Machine Learning (ACML), Lecture Notes in Computer
Science, pp. 367–381.

G. Van den Broeck, W. Meert, and J. Davis (2012). Lifted parameter learning for
Markov logic. (submitted) (cit. on pp. 12, 216).

G. Van den Broeck, I. Thon,M. vanOtterlo, and L. De Raedt (2010). “DTProbLog:
A decision-theoretic probabilistic Prolog”. In: Proceedings of the Twenty-fourth
AAAI Conference on Artificial Intelligence,Menlo Park, California, pp. 1217–
1222 (cit. on pp. 12, 136).

G. Van den Broeck, N. Taghipour, W. Meert, J. Davis, and L. De Raedt (2011a).
“Lifted probabilistic inference by first-order knowledge compilation”. In:
Proceedings of the Twenty-Second International Joint Conference on Artificial



LIST OF PUBLICATIONS 259

Intelligence (IJCAI). Menlo Park, California, pp. 2178–2185 (cit. on pp. 11, 40,
49, 50, 82, 92, 107, 128, 161, 209).

Other Conferences

D. Nitti, G. Van den Broeck, and L. De Raedt (2011). “Probabilistic logic in
dynamic domains: Particle filter with distributional clauses”. In: Preliminary
Papers ILP 2011, pp. 1–6.

J. Renkens, G. Van den Broeck, and S. Nijssen (2011). “K-Optimal: A novel
approximate inference algorithm for ProbLog”. In: Preliminary Papers ILP
2011, pp. 1–6.

J. Van Haaren and G. Van den Broeck (2011). “Relational learning for football-
related predictions”. In: Preliminary Papers ILP 2011, pp. 1–6.

Workshop Papers

M. Bruynooghe, B. De Cat, J. Drijkoningen, D. Fierens, J. Goos, B. Gutmann,
A. Kimmig, W. Labeeuw, S. Langenaken, N. Landwehr, W. Meert, E. Nuyts,
R. Pellegrims, R. Rymenants, S. Segers, I. Thon, J. Van Eyck, G. Van den
Broeck, T. Vangansewinkel, L. Van Hove, J. Vennekens, T. Weytjens, and
L. De Raedt (2009). “An exercise with statistical relational learning systems”.
In: International Workshop on Statistical Relational Learning, Leuven, Belgium,
2-4 July 2009.

D. Fierens, G. Van den Broeck, M. Bruynooghe, and L. De Raedt (Dec. 2012a).
“Constraints for probabilistic logic programming”. In: Proceedings of the NIPS
Probabilistic Programming Workshop, (cit. on pp. 135, 151).

M. Jaeger and G. Van den Broeck (2012). “Liftability of probabilistic inference:
Upper and lower bounds”. In: Proceedings of the 2nd International Workshop
on Statistical Relational AI, (cit. on pp. 11, 170, 180).

W.Meert, G. Van den Broeck, N. Taghipour, D. Fierens, H. Blockeel, J. Davis, and
L. De Raedt (Dec. 2012). “Lifted inference for probabilistic programming”.
In: Proceedings of the NIPS Probabilistic Programming Workshop,

J. Renkens, D. Shterionov, G. Van den Broeck, J. Vlasselaer, D. Fierens, W. Meert,
G. Janssens, and L. De Raedt (Dec. 2012). “ProbLog2: From probabilistic



260 LIST OF PUBLICATIONS

programming to statistical relational learning”. In: Proceedings of the NIPS
Probabilistic Programming Workshop, Accepted.

I. Thon, B. Gutmann, andG. Van den Broeck (2010). “Probabilistic programming
for planning problems”. Statistical Relational AI workshop, Atlanta, USA,
12. July 2010.

G. Van den Broeck and K. Driessens (2011). “Automatic discretization of actions
and states in Monte-Carlo tree search”. In: Proceedings of the ECML/PKDD
2011 Workshop on Machine Learning and Data Mining in and around Games,
pp. 1–12.

Technical Reports

D. Fierens, G. Van den Broeck, I. Thon, B. Gutmann, and L. De Raedt (2011b).
Inference in probabilistic logic programs using weighted CNF’s. CW Reports
CW607. Leuven, Belgium: Department of Computer Science, K.U.Leuven.

A. Kimmig, G. Van den Broeck, and L. De Raedt (Nov. 2012a). “Algebraic Model
Counting”. In: arXiv:1211.4475. (Cit. on pp. 12, 31).

N. Taghipour, D. Fierens, G. Van den Broeck, J. Davis, and H. Blockeel (Aug.
2012b). “Lifted variable elimination: a novel operator and completeness
results”. In: ArXiv e-prints. arXiv:1208.3809 [cs.AI] (cit. on pp. 115, 183).

Abstracts

H. Blockeel, J. Davis, L. De Raedt, D. Fierens, W. Meert, N. Taghipour, and
G. Van den Broeck (2012). “Recent advances in lifted inference at Leuven”.
Spring Workshop on Mining and Learning, Bad Neuenahr, Germany, 18-20
April 2012.

A. Kimmig, B. Gutmann, T. Mantadelis, G. Van den Broeck, V. Santos Costa,
G. Janssens, and L. De Raedt (2011). ProbLog. ALP Newsletter.

G. Van den Broeck (2011a). “Monte-Carlo tree search for multi-player, no-limit
Texas hold’em poker”. SIKS Symposium on Strategic Decision-Making in
Complex Games, Maastricht, the Netherlands, 15 June 2011.

G. Van den Broeck (2011c). Probabilistic programming in Scala. BeScala Meet-up,
13 September 2011.

http://arxiv.org/abs/1211.4475
http://arxiv.org/abs/1208.3809


LIST OF PUBLICATIONS 261

G.Vanden Broeck, K.Driessens, and J. Ramon (2009b). “Monte-Carlo tree search
in poker using expected reward distributions”. Benelux Conference on
Artificial Intelligence (BNAIC), Eindhoven, the Netherlands, 29-30 October
2009.

G. Van den Broeck, N. Taghipour, W. Meert, J. Davis, and L. De Raedt (2011b).
“Lifted probabilistic inference by first-order knowledge compilation”. IJCAI
Tutorial on Lifted Inference in Probabilistic LogicalModels, Barcelona, Spain,
18 July 2011.

J. Van Haaren and G. Van den Broeck (2012). “Relational learning for football-
related predictions”. BeneLearn, Gent, Belgium, 24-25 May 2012.





Curriculum Vitae

Guy Van den Broeck was born in Leuven, Belgium on June 5th 1986. He went
to school at the Sint-Jozefcollege in Turnhout and started higher education
in 2004, at the KU Leuven. In 2007, he obtained a Bachelor of Science degree
in engineering, specialized in computer science and electrical engineering. In
2009, he finished his Master studies at the same university, now specialized in
computer science, and graduated summa cum laude with congratulations of
the Board of Examiners. His Master thesis, titled “Algorithms and assessment in
no-limit computer poker”, was awarded the Alcatel-Lucent Innovation Award.

Supported by a four-year PhD fellowship (Aspirant) from the Research
Foundation-Flanders (FWO-Vlaanderen), he began doctoral studies in Septem-
ber 2009, under the auspices of Prof. Luc De Raedt at the DTAI lab (Declarative
Languages and Artificial Intelligence) of the KU Leuven. From February until
June 2012, he was a visiting student at the University of California, Los Angeles,
in the Automated Reasoning lab of Prof. Adnan Darwiche. In January 2013 he
will defend his doctoral thesis, titled “Lifted inference and learning in statistical
relational models”.

263







FACULTY OF ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE

DECLARATIVE LANGUAGES AND ARTIFICIAL INTELLIGENCE

Celestijnenlaan 200A box 2402

B-3001 Heverlee

guy.vandenbroeck@cs.kuleuven.be

http://people.cs.kuleuven.be/~guy.vandenbroeck/


	Abstract
	Contents
	List of Symbols
	List of Algorithms
	Introduction
	Artificial Intelligence
	Machine Learning and Automated Reasoning
	Logic and Probability
	Motivation and Problem Statement
	Thesis Contributions
	Structure of the Thesis

	Propositional Foundations
	Propositional Logic
	Logical Inference by Knowledge Compilation
	Model Counting
	Conditioning

	Probabilistic Graphical Models
	Bayesian Networks
	Markov Random Fields and Factor Graphs

	Exact Probabilistic Inference
	Probabilistic Inference by Weighted Model Counting
	Probabilistic Inference by Knowledge Compilation
	Intermezzo 1: Algebraic Model Counting

	Approximate Probabilistic Inference
	Iterative Belief Propagation
	Relax, Compensate & Recover

	Learning Probabilistic Graphical Models
	Conclusions

	First-Order Circuits
	First-Order Logic with Domain Constraints
	Motivation
	Syntax
	Semantics

	First-Order Negation Normal Form Circuits
	Syntax and Semantics
	Properties

	Subsets of the FO-NNF Language
	Constraints on FO-NNF Nodes
	Languages

	Properties of Tractable FO-NNF Subsets
	Completeness
	Succinctness
	Model Counting on FO-sda-DNNF Circuits
	Conditioning a FO-sda-DNNF Circuit
	Support for Queries

	Related Work
	Relation to the Resolution Principle
	Compiling First-Order Logic

	Conclusions

	Compilation Algorithm
	Outline of FO-da-DNNF Compilation
	Input and Output
	Compilation Rules
	Terminology and Notation

	Compilation to Extensional Nodes
	Unit Propagation
	Independence
	Shannon Decomposition

	Shattering: Exposing Symmetries of the Model
	Preemptive Shattering
	Automorphisms Introduced by Shattering
	Shattering by Splitting
	Shattered Compilation

	Compilation to Intensional Nodes
	Vacuous Conjunction
	Logical Variable Properties
	Independent Single Groundings
	Independent Paired Groundings
	Generalization to Any Root Unifying Class
	Atom Counting

	Grounding
	First-Order Smoothing
	Related Work
	Relation to Propositional Knowledge Compilation
	Relation to Lifted Search Algorithms

	Conclusions and Future Work

	Exact Lifted Probabilistic Inference
	Statistical Relational Learning
	Markov Logic Networks
	Parfactor Graphs
	Probabilistic Logic Progamming
	Intermezzo 2: Statistical Relational Decision Making
	Other Approaches

	Ground Inference for SRL Models
	Propositionalization to Probabilistic Graphical Models
	Propositionalization to Weighted Logic Theories

	Different Notions of Lifted Inference
	Lifting in Statistics
	Lifting in First-Order Logic
	Lifting in Constraint Satisfaction
	Domain-Lifted Probabilistic Inference

	Lifted Inference by Weighted Model Counting
	Weighted First-Order Model Counting
	Reductions to Weighted First-Order Model Counting
	Intermezzo 3: Inference in Probabilistic Logic Programs by Weighted Model Counting and Max-SAT 
	Computing Marginal and Conditional Probabilities

	Lifted Inference by Knowledge Compilation
	Weighted Model Count of a FO-sda-DNNF Circuit
	A Domain-Lifted Inference Algorithm
	Conditional Probabilities

	Related Work
	First-Order Variable Elimination
	Lifted Inference by Search

	Experiments
	Marginal Probabilities
	Influence of Grounding
	Conditional Probabilities

	Conclusions and Future Work

	Completeness and Liftability
	Liftability Framework
	Classes of Inference Tasks
	Definitions of Lifted Probabilistic Inference

	Completeness
	Completeness for Monadic Logic
	Completeness for the Two-Variable Fragment
	Completeness for Markov Logic Networks, Parfactor Graphs and ProbLog Programs

	Liftability
	Positive Liftability Results
	Negative Domain-Liftability Results
	Negative DQE-Liftability Result

	Related and Future Work
	Conclusions

	From Approximate to Exact Lifted Inference
	RCR for Ground MLNs
	Ground Relaxation
	Ground Compensation
	Ground Recovery

	Lifted RCR
	First-Order Relaxation
	First-Order Compensation
	Count-Normalization
	The Compensation Scheme
	First-Order Recovery

	Partitioning Equivalences
	Partitioning Atoms by Preemptive Shattering
	Partitioning Equivalences by Preemptive Shattering
	Dynamic Equivalence Partitioning

	Related and Future Work
	Relation to Propositional Algorithms
	Relation to Lifted Algorithms
	Opportunities for Equivalence Partitioning

	Experiments
	Implementation
	Results

	Conclusions

	Lifted Learning
	Weight Learning for Markov Logic
	Lifted Generative Weight Learning
	Equiprobable Random Variables
	Evaluating Expected Counts

	Lifted Learning by Knowledge Compilation
	Empirical Evaluation
	Synethetic Data: Scaling Behavior
	Real-World Data: Test-Set Likelihood

	Conclusions

	Conclusions
	Thesis Summary
	Discussion, Perspectives and Future Work

	Bibliography
	List of Publications
	Curriculum Vitae

