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Chapter 1
Introduction

1.1 Background

Belgium is an early adopter of smart card based electronic identity cards. It is also one of the few
countries worldwide where eID cards are mandatory. This has opened the door to new applications
for government and industry, but has also resulted in the discovery of shortcomings in the current
system. One major limitation is the limited availability of smart card readers. Now that advanced
mobile devices are becoming ubiquitous, there is a new opportunity for applications that leverage
government issued electronic identities.

The main objective of the MobCom project is to transform the mobile device into a powerful,
flexible and user friendly tool for managing identities in a privacy friendly way and to act as the
interface to personalized services.

Identities and user profiles are an integral part of many types of services such as e-government,
e-health, e-commerce, social networking and banking. The goal of this project is the creation of
an open and trustworthy infrastructure that builds on existing authentication methods, such as
the electronic identity card. We will focus on developing the technological building blocks and
infrastructure that will bring mobile identity management to a wide range of application domains:

• rich mobile identities consisting of traditional identity data already present on electronic
identity cards, but extensible with user profiling information that can enable personalized
service delivery, in spirit of the mobile 2.0 concept.

• a distributed, secure architecture supporting the exchange of identity data between
devices, and between devices and services under the control of the user. Identities will be
easily accessible and will be managed by a trusted third party.

• privacy-enabled policy management will let the user decide what data can be accessed
by each specific application. Users will be able to manage and fine-tune their identity
data. The user interface for this policy management will be easy to use and guarantee full
transparency.

• user friendly methods for user authentication, and device and user attestation based on
biometrics and advanced cryptographic protocols.

• an easy to use application programming interface for the creation of new applications
by third party developers. This API will allow developers to build new applications on top
of our mobile identity infrastructure. Powerful APIs contributed much to the success of web
services such as Google Maps, YouTube or Flickr.
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1.2 Summary of Contents

This document reports on the current state of work packages Architecture, Applications and Val-
idation. We present an identity framework and several concrete prototypes that bring mobile
identities to a wide variety of application domains. Each chapter presents the rationale and
requirements for one particular development track. After discussing application features and im-
plementation details, each prototype is validated against the requirements.

• A privacy-preserving identity framework is presented in chapter 2.

• Chapters 3, 4 and 5 encompass the advanced access control domain.

• The context-aware services domain is covered by chapter 6.

• An application that demonstrates loyalty cards and payment vouchers is discussed in
chapter 7.
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Chapter 2
Framework and Software Architecture

2.1 Introduction

The increasing capabilities of application and service providers to collect information about their
users pose a serious threat to privacy. For example, authentication mechanisms such as passwords
and X.509 certificates reveal personal information and allow providers to track and profile their
users. As a result, anonymous credential systems such as Idemix [21,49] and U-Prove [13,71] have
been proposed. Such systems allow users to have more control over the information released during
a transaction with a service provider, thus, offering better privacy guarantees. Unfortunately, the
adoption of anonymous credentials systems have been slow, despite the fact that they have been
around for more than a decade and free development libraries are available. One of the reasons
for this slow adoption is that, compared to traditional credential systems, anonymous credentials
systems rely on more complex cryptographic concepts and are more challenging to configure and
deploy. Therefore, developers face a steeper learning curve when evaluating anonymous credential
systems. In addition, anonymous credential systems are more computationally expensive than tra-
ditional credential systems, requiring more careful implementation and configuration, particularly
in platforms with constrained resources such as mobile devices (e.g., smartphones). Thus, it is
important to design tools that simplify the development of privacy-preserving applications based
on anonymous credentials and other privacy-enhancing technologies.

In this chapter we present PriMan, a privacy-preserving framework that hides the complexity of
anonymous credential systems and facilitates the development of applications with better privacy
guarantees. PriMan’s reusable software architecture offers a uniform and technology agnostic
interface to traditional and anonymous credentials systems and other supporting technologies
(e.g., secure storage, user and server policy languages and secure communication channels). With
PriMan, developers can quickly prototype applications, predict performance problems, analyze
security and privacy properties and, hence, steer basic research to solve problems and gaps in
this area. In addition, the framework is easily adaptable and extensible, allowing developers to
easily try different privacy-enhancing technologies and switch to new ones as they become available
without changes to the application code.

The PriMan framework is based on work from the ADAPID (“Advanced Applications for the
Belgian eID card”) project [1]. PriMan not only extends the ADAPID framework by implementing
a more lightweight design and support for new technologies, but also it has been optimized for
mobile platforms such as the Android operating system. PriMan introduces a thinner middleware
layer between the application code and the different privacy-enhancing technologies supported,
resulting on lower performance overheads.
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2.2 Requirements

In this section we describe the general and functional requirements used to design the PriMan
framework.

2.2.1 General Requirements

• Usability. The framework must provide a uniform, technology agnostic interface that hides
the complexities of the different credentials systems and supporting technologies. Thus, it
should be easier and faster for developers to build privacy-preserving applications using the
framework than using PETs technologies directly.

• Performance. The computational overhead introduced by the framework must be small
and should not impact significantly the overall performance of the application in both desktop
and mobile platforms.

• Extensibility. The framework must support the addition of new technologies without re-
quiring changes to its core components and the interface exposed to the developers. In
particular, new technologies should be dynamically available without requiring the recompi-
lation of the framework (i.e., a software plug-in approach)

• Portability. The framework must be developed in a language that is portable to both desk-
top/sever and mobile platforms. The framework should support the functionality required
to build the server and client components of the targeted application.

2.2.2 Functional Requirements

• Support for different credential technologies. The framework must support the is-
suance and verification of different credential technologies, both traditional (e.g., passwords,
X.509 certificates, BeID, etc.) and privacy-preserving (e.g., Idemix and U-Prove). All the
functionality provided by a particular credential type must be available via the framework.

• Support for server and user policies. The framework must support the creation and
use of server and user policies for the different technologies available. For this purpose, the
framework must support standard policy languages for traditional credentials such as SAML,
XACML and WS-Trust and for anonymous credential systems such as CARL.

• Support for secure storage of credentials and related data. The framework must
support the use of different storage technologies for credentials and related data. These
should include local (e.g., disk, SD card) and remote storage (e.g., cloud storage service) as
well as secure (e.g., encrypted XML, PKCS #12) and non-secure (e.g., plain XML, object
databases, etc.) storage formats. Support for TPM chips and other secure elements (e.g.,
JavaCard) is also required.

• Support for different type of network protocols. The framework must support dif-
ferent network protocols for the communication between the user, providers and any other
participant of the application protocol. This includes support for protocols with no security
(e.g., raw sockets, TCP, HTTP), with security (e.g., SSL/TLS, IPsec) and with anonymity
(e.g., Tor, I2P).

• Support for dispute handling. The framework must offer support to detect misbehavior
by users abusing their anonymity and the possibility must be given to take appropriate
measures against such users.

• Support for anonymity metrics. The framework must be able to monitor and estimate
the consequences of disclosures of personal properties on the user’s anonymity and to provide
advice.

4



Figure 2.1: High level view of the PriMan architecture.

• Support for client side profiles. The framework at the client side has to keep track of
the properties disclosed to other parties. Secondly, the possibility must be given to the user
to maintain profiles with transactional data and user preferences.

2.3 PriMan Architecture

Figure 2.1 presents a high-level view of the PriMan framework architecture. The PriMan’s design
is based on two well-known design patterns: the service provider framework pattern [11] and the
capability pattern [12]. The light-blue blocks represent PriMan components and the orange blocks
represent external code components (e.g., application’s code, technology providers libraries). Three
layers can be identified: the application, the framework and the provider layers.

The application layer contains the code of the applications (orange rectangles) that rely on
the functionality offered by PriMan. Applications can use PriMan’s API directly to build au-
thentication protocols or use protocol façades, which offers a simplified interface to authentication
protocols already implemented with PriMan (e.g., Idemix’s credential issuance, Idemix authenti-
cation, X.509 authentication). In this layer, PriMan also offers to developers with ready to use
graphical user interfaces (GUIs) to display and manage authentication objects such as credentials
and policies.

The framework layer contains the main components of PriMan: managers, core classes and
service provider interfaces (SPIs). The managers and core classes form the service access API
of the framework, which applications use to access the functionality provided by PriMan. The
managers expose methods for high-level operations (e.g., issue credential, get connection) while
core classes provide access to more specific operations according to the type of object (e.g., list
credential’s attributes, send data). References to core objects can only be obtained through their
corresponding managers. Configuration files are used to define the type of technology and required
parameters for such technology. Thus, no changes to the application code are required when
switching technologies (e.g., using X.509 instead of Idemix). The SPIs define a uniform interface
that providers implement to support the operations requested by the managers. In general, the
managers, core classes and SPIs do not implement any logic (i.e., abstract classes and interfaces).

The provider layer includes the different technology providers supported by the framework.
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The providers are not part of the framework but can be plugged in using platform-dependent plu-
gin mechanism (e.g., dependency injection using java.util.ServiceLoader). Providers implement
the interface defined by SPIs, acting as the glue between the framework and technology imple-
mentations. In addition, providers extend and instantiate classes that implement or extend core
classes and pass references of these instances to the corresponding managers.

To use the PriMan framework API directly, a developer only needs to instantiate the PriMan
class. The PriMan object will then provide access to the different managers. To guarantee cor-
rectness, the PriMan class can be instantiated only once (i.e., singleton pattern). As mentioned
before, most classes in the framework layer are abstract classes or interfaces that are extended
or implemented by the providers. This design reduces the performance overhead introduced by
the framework. The uniform API exposed by the framework allows developers to try different
credential technologies using in most cases the same code. To change technologies and configu-
rations, the developers will only need to modify configuration files without having to recompile
the application. In the next sections, we present more details of the different components of the
PriMan framework.

2.3.1 Managers

As stated before, managers and core classes implement the service access API of the framework
– a uniform interface to different credential systems and other privacy-enhancing technologies.
Managers are organized according to their functional area. The framework relies on four basic
manager classes: credential, policy, persistence and connection managers. Additional managers
can be added to the framework to provide additional functionality and extend the framework’s
API. Each manager keeps track of the different technologies it has access to, allowing developers to
determine and select the technologies that are more appropriate for their applications. By offering
a uniform interface to the different technologies supported, the managers effectively reduce the
developer’s learning curve, as developers only need to get familiar with one API.

Managers expose high level methods (e.g., issueCredential(), verifyProof(), getConnection())
that use core objects (Section 2.3.2) and return references to such objects (e.g., credential object).
Only managers can return references to core objects; developers cannot instantiate core classes
directly. In addition, managers do not communicate directly with each other, instead, they rely
on core objects to exchange data and functionality. Each manager produces and consumes core
objects. For example, the policy manager produces a policy object that is used to create a
claim object. This claim object can then be used by the credential manager to generate a proof
object. To access the functionality offered by different technology implementations (e.g., Idemix
library), managers rely on the interface defined by the SPIs (Section 2.3.3) and implemented by
the providers (Section 2.3.4. Moreover, managers offer methods for both client and server side
applications. The next sections present more details about each manager.

2.3.1.1 Credential Manager

The credential manager provides high-level operations for controlling the life cycle of user authen-
tication credentials. Standard credential technologies (e.g., X.509 certificates, BeID and shared
secrets) as well as anonymous credential systems (e.g., Idemix and U-Prove) are supported by the
credential manager using a common set of public methods. In general, the credential manager
offers the following functionality:

• Issuance and receipt of credentials. Different options can be set depending on the credential
technology: the validity period, whether signing or authentication is allowed, the type of
credentials that can be issued, the number of times the credential can be shown, whether
or not attribute values are updatable and the credential attribute values. The latter can, if
allowed by the credential technology, be partly chosen by the issuer, partly by the receiver or
jointly. The other options can be set by the issuer. Depending on the credential technology,
a credential can be issued to a pseudonym.
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• Issuance and creation of pseudonyms. Some credential technologies allow issuing and showing
credentials under a certain pseudonym agreed with the issuing or verifying entity. It is also
possible that a pseudonym is locally created and that the well-formedness of it is proven as
part of an authentication or signature protocol.

• Authentication and signing. The signatures can be interactive or non-interactive. Other
features are dependent on the credential technology. For example, fine grained and flexible
selective disclosure of credential values can be offered. Also, several credentials, commitments
and verifiable encryptions can be involved in this selective disclosure. Some technologies
allow for authentication or signing under a pseudonym.

• Credential expiration and revocation. The credential manager also takes care of determining
if a credential has expired and needs to be removed from the client application. In addition,
it also offers different mechanisms for revoking active credentials in case the credentials are
compromised.

The credential manager relies on several core classes (Section 2.3.2) for its operations. For
example, to create a new credential object, the client application sends a request to the issuer’s
server. The credential structure is defined in a credential specification document published by the
issuer. The client, thus, uses the credential specification object to send a credential request to
the issuer. In the server side, the issuer uses the credential specification object to generate a new
credential object, which is then sent to the client application. Finally, the credential manager reg-
isters the new created credential object and passes it to the persistence manager (Section 2.3.1.3)
for storage.

2.3.1.2 Policy Manager

Policy support is important for the development of more advanced authentication protocols. A
policy is a mechanism that puts constrains on the behaviour of a system. For example, a policy
could require certain properties on communication channels, restrict the use of credentials or
regulate access to different user profiles. In general, policies shift most of the burden of operational
decision making from people to the technology.

The framework supports both user and server policies through the policy manager. In general,
the client will receive an authentication policy from the server describing the properties the user
must (and may) disclose in order to access a particular resource or service. The policy manager
takes this server policy as an input and matches it with all the user’s credentials to determine the
credentials that can be used to fulfill the server policy. To decide what credentials and attributes
can be used to satisfy the server policy, the policy manager also takes into consideration the user
policy. The user policy defines what credentials and attributes should be used and what actions
(e.g., proof of ownership, revealing attributes) are allowed to fulfill the policy of a particular service
provider. Different combinations of credentials can be used to satisfy a particular server policy.
Each combination of credentials that satisfy a server policy is known as a claim.

After receiving the server policy, the policy manager returns a reference to a policy object that
contains the parsed policy and at least one claim. If more than one claim is possible, then the
policy object will also include all the possible attribute options that can be combined to generate
a claim (i.e., attributes from different credentials that can be used to satisfy a particular policy
requirement). At this point, the application can request the user to build a claim based on the
available options or could select a default claim. The claim object is then used by the credential
manager to build a proof object.

The policy manager has support for several policy languages. For example, for traditional
credentials such as X.509 attribute certificates, the policy manager should support policy languages
such as SAML, XACML and WS-Trust. For anonymous credentials, the policy manager should
support CARL [22] (Credential-based Authentication Requirements Language).
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2.3.1.3 Persistence Manager

The framework uses many different data objects (e.g. credentials, parameters, policy files, etc.).
To make them available the next time the user starts the application, the persistence manager can
be used by developers to save and load data objects. This manager keeps track of the locations
of all these data objects. For instance, credentials with confidential information (e.g., medical
health records) can be stored in off-line devices (e.g., encrypted USB token, smart card, etc.)
and credentials that are used more frequently can be stored in a key store in a PC’s hard disk.
Moreover, some data objects can also be kept in cloud storage (a popular alternative nowadays).
The persistence manager keeps metadata for each data object. This allows searching for the correct
data object without having to load the objects first (which would be difficult or inefficient since
it can be stored on remote or off-line storage locations).

If the user runs the framework on different devices (e.g., desktop, laptop, smartphone, etc.),
the persistence manager has to take care of the synchronization of data objects and corresponding
metadata information. For some data objects (e.g., frequently used credentials, settings, etc.), it
may be required to cache these data locally to improve performance or allow for off-line transactions
(an alternative to these type of scenarios is to used cloud storage services).

The persistence manager has access to different storage technologies through the interface de-
fined by the persistence SPI and associated core classes. The persistence providers and the corre-
sponding technology implementation are responsible implementing the logic for saving and loading
data objects. Each persistence provider defines a location type (e.g., smart card or server), an
encoding structure (e.g., XML, ASN.1) and the appropriate protection mechanism (e.g. password,
biometric template). Also, in the case of remote storage technologies, each provider implements its
own communication mechanism (connection parameters are defined in a configuration file). Non-
secure storage technologies (e.g., XML, text files, PEM) and secure storage technologies (e.g.,
smart cards, PKCS11 keystore, PKCS12) are supported.

2.3.1.4 Connection Manager

The connection manager allows developers to establish communication channels with external
entities (and, thus, other instances of the framework). Basically, this manager creates connection
objects that send and receive data via different communication technologies. The data can be
in any format (e.g., XML file, serialized Java object, etc.). Developers can use the connection
manager to get references to connection objects that can be used to exchange data with remote
entities (e.g., client-server communication). For example, the credential manager requires of a
connection object to send requests and received responses with the issuer server to obtain a new
credential. The connection manager also allows the framework to send an error message to the
other entity when something goes wrong (authentication exception, general Java exception, etc.).

Developers can access several communication technologies through the connection manager and
connection objects: network sockets (e.g., TCP, UDP, raw IP), application layer protocols (e.g.,
HTTP), secure protocols (e.g., SSL/TLS, IPsec), anonymity networks (e.g., Tor, I2P), personal
area network protocols (e.g., Bluetooth) and near field communications (NFC) protocols. By
using a similar interface, switching between communication protocols is straightforward for the
application developer. Only the initialization parameters are technology specific and are included
in configuration files.

2.3.1.5 Other Managers

Future versions of the framework will also include additional managers that extend the framework’s
functionality and allow the design and implementation of more advanced authentication scenarios.
Examples of these additional managers (and their corresponding core classes, SPIs and providers)
are:

• Privacy manager.
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When using privacy-preserving credentials, the properties that are selectively disclosed will
affect the users level of anonymity. Also, if the same pseudonym is used several times
in credential shows (signatures or authentications), the different credential shows can be
linked, which will further reduce the users anonymity towards the service provider. The
privacy manager estimates the level of anonymity of pseudonyms towards other parties and
the impact of disclosing certain properties. This manager will rely in different technology
implementations to keep concrete metrics of the user anonymity level.

• Dispute manager.

In order to prevent abuse and fraud, anonymity can be made conditional, which makes
dispute handling harder. In more complex protocols, the evidence required to accuse or
to exonerate someone could be spread over different parties. The dispute manager offers
the means to file complaints in case of abuse. Complementary, evidence to (e.g., to protect
against false accusations) can be stored and later be disclosed to trusted third parties.
These parties may do a de-anonymization when certain conditions are fulfilled. Disputes
are application specific and a different provider handles each type of abuse. The dispute
manager supports all the disputes supported by the underlying dispute providers.

• Profile manager.

Profiles can be locally maintained by the users framework to keep track of the personal
properties that have been disclosed to service providers and of transactional data and user
preferences. The latter may be accessible to service providers. The profile manager main task
is maintain these profiles. Each profile provider keeps track of a single profile. Depending on
the framework policy, authorization can be given to external entities to make certain types
of queries on one or more profiles: adding or requesting for data that can be application
or context specific (e.g., books bought). Also, a user can add data to a profile (e.g., books
he is interested in). The profile manager determines to which profiles data are added. A
second type of profile provider maintains personal data that has been disclosed to the service
providers.

• Biometric manager.

Biometric authentication technologies (e.g., face recognition, fingerprints and voice recogni-
tion) provide a more robust and usable alternative to user-to-device authentication, particu-
larly for mobile devices. In addition, the binding of credentials with biometric templates can
prevent the non-authorized sharing of credentials (i.e., transferability). The biometric man-
ager will provide developers with access to different biometric technologies, in both desktop
and mobile platforms. Thus, developers will be able to integrate biometric authentication
technologies in their applications.

2.3.2 Core Classes

As previously stated, managers and core classes provide a uniform API to developers to access all
the technologies supported by the framework. Core classes are abstract classes that are extended
and instantiated by their corresponding providers. For example, the IdemixCred subclass in the
Idemix provider extends the Idemix core class. Providers pass references to instances of these
classes to the respective managers, which make them available to developers and other managers.
Each core class provides developers and managers a set of methods common to all the technologies
associated with the class.

Each manager relies on a set of core objects to perform its operations. For example, the
credential manager uses the credential, claim, proof and nonce classes. Figure 2.2 depicts a
simplified class diagram of the credential class and associated classes: Attribute and Issuer. The
credential class exposes a set of generic methods (e.g., getAttributes(), getIssuer()) that can be
used by the managers and the developers. Each technology provider extends the credential class
with a technology specific subclass (e.g., IdemixCred, X.509, BeID). In this way, the provider
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Figure 2.2: Credential class structure and its associated classes

Figure 2.3: Claim, Proof and Nonce classes

has access to all the functionality of each technology implementation, while the managers and
developers only has access to the generic functionality offered by the superclass (i.e., credential
class). A similar design can be observed in Figure 2.3, where the claim, proof and nonce classes
are shown.

2.3.3 Service Provider Interfaces

The Service Provider Interfaces (SPIs) allows managers to access the different technologies sup-
ported by the framework. Each manager has a corresponding SPI (e.g, credential manager and
credential SPI). The SPI defines an interface with all the methods that the manager requires.
Different technology providers then implement this interface. (e.g., Idemix and X.509 providers).
Thus, the SPI defines a uniform interface that the different providers should implement to add
new technologies to the framework. In this way, new technologies can be added to the framework
without requiring changes to the managers and core classes.

2.3.4 Providers

Providers are the code used to translate technology implementation interfaces (e.g., Idemix library
API) into the interfaces defined by SPIs (e.g., credential SPI). In addition, providers also extend
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and instantiate core classes (e.g., credential class is extended by IdemixCred class in the Idemix
provider). In general, providers act as wrappers for adapting third-party technology implementa-
tions to the framework (e.g., Idemix, U-Prove and Bouncy Castle libraries). However, providers
not always need a third-party library; providers could also implement a particular functionality
directly without external code. For example, a provider could implement new mechanisms that
have not been made available yet in a third-party library. As Figure 2.1 shows, providers are not
part of the framework. They are added dynamically to the framework through a plug in mech-
anisms (e.g., dependency injection using java.util.ServiceLoader). Thus, new technologies can be
added to the platform, according to the platform used, without modifying other components of
the framework (i.e., no recompilation of the framework is required). For this purpose, each man-
ager keeps track of the different technologies available under its control. Developers can select a
particular technology by modifying configuration files.

2.3.5 Protocol Façades

In general, developers can use the rich functionality offered by the framework API to implement
different type of authentication scenarios and protocols. The different technologies supported
by the framework can be viewed as building blocks that developers can use to build privacy-
preserving applications. In addition, the framework offers different protocol “templates”, ready
to use authentication protocols (e.g., Idemix and X.509 standard authentication protocols) that
developers can add directly into their applications. These protocols templates are available through
the protocol Façades, a simplified interface that unifies a set of PriMan’s managers and core
classes to implement well-know authentication protocols (i.e., Façade design pattern). The protocol
Façades are not part of the framework, they are an auxiliary API to help developers to evaluate
standard authentication protocols in a faster and easier way. In addition, new protocol Façades
can be added as needed, without modifying the framework.

2.3.6 GUIs

To accelerate development, the framework also offers a set of default GUIs for displaying and
managing different types of core objects such as: user and server policies, credentials and claims.
These GUIs take as input core objects and display them to the users. These GUIs are based on
design guidelines from the research and industry communities, focusing on usability. Developers
can use these GUIs directly into their applications or can use them as a guide to design and
implement GUIs that match the look and feel of the application. PriMan offers two set of GUIs:
desktop GUIs and mobile device GUIs (for devices with small screens such as smartphones).
Similar to protocol Façades, these GUIs are not part of the framework and new GUIs can be
added as needed.

2.4 Initial Performance Evaluation

We performed a preliminary experimental evaluation of PriMan to estimate the performance
overhead introduced by the framework. The experiments focused on Idemix proof of ownership
using a mobile device (smartphone) as a client. Three basic scenarios were evaluated:

• Proof of ownership using a credential with no attributes.

• Proof of ownership using a credential with three integer attributes and hiding all the at-
tributes.

• Proof of ownership using a credential with three integer attributes and revealing all the
attributes.

Each scenario was evaluated using three different sizes of the SRSA modulus: 1024, 1536 and
2048 bits. In the server side, we used a Apple MacBook Pro (Intel Core i5 @2.5 GHz, 4GB
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msec (stdev) 1024 1536 2048
(at, ar) Prove Verify Prove Verify Prove Verify

(0,0) 58,5 (2,1) 21,1 (6,0) 138,6 (2,7) 39,6 (8,7) 285,6 (9,2) 59,5 (10,6)
(3,0) 83,4 (6,6) 25,1 (3,9) 191,3 (12,7) 46,8 (6,4) 360,0 (4,9) 78,4 (5,0)
(3,3) 59,0 (2,8) 17,9 (3,0) 137,7 (4,5) 32,6 (3,0) 285,2 (9,0) 57,7 (2,5)

Table 2.1: Total execution time for Prove and Verify Idemix operations using the PriMan frame-
work and a smartphone as a client. Three types of proof were evaluated: ownership with credential
with no attributes (0,0), ownership with credential with three hiden attributes (3,0) and ownership
with credential with three revealed attributes (3,3).

msec (stdev) 1024 1536 2048
(at, ar) Prove Verify Prove Verify Prove Verify

(0,0) 0,15 (0,36) 0,05 (0,33) 0,09 (0,29) 0,11 (0,40) 0,56 (0,36) 0,04 (0,24)
(3,0) 0,19 (0,44) 0,02 (0,14) 0,40 (1,10) 0,03 (0,17) 0,16 (0,39) 0,04 (0,14)
(3,3) 0,21 (0,48) 0,02 (0,14) 0,19 (0,39) 0,03 (0,17) 0,17 (0,38) 0,01 (0,10)

Table 2.2: Framework only estimated execution time for Prove and Verify Idemix operations.
Three types of proof were evaluated: ownership with credential with no attributes (0,0), ownership
with credential with three hiden attributes (3,0) and ownership with credential with three revealed
attributes (3,3).

RAM, Mac OS X 10.8.2 64 bits, JavaSE 1.6). In the client side, we used a Samsung Galaxy S
III smartphone (Quad-core 1.4 GHz Cortex-A9, 1 GB RAM, Android 4.0.4). A isolated WiFi
network was used for the communication between the server and the smartphone.

For the experiments, a small client and server application were developed using the framework.
We used code instrumentation to measure the total execution time required to generate a proof
(i.e., client operations) and to verify such proof (i.e., server operations). The instrumentation code
allowed us to measured not only the total execution time, but also the time that the technology
implementation (i.e., Idemix) required on each task. Thus, by computing the difference between
the total time and the Idemix time, we were able to estimate the execution time of the framework
(i.e., framework overhead). Each experiment was executed at least 100 times to guarantee the
statistical significance of the experiments.

Table 2.1 shows the total execution time (i.e., Idemix + PriMan) for proof generation (Prove)
and proof verification (Verify) for each experiment. The results show that, even for a 2048 bit
modulus, executing Idemix operations in a mobile device is practical (less than 300 msec to generate
a proof). Also, as expected, proof generation takes significantly more time than proof verification,
mainly because the former is executed in the mobile device and the latter in the server (i.e.,
MacBook Pro). The values in Table 2.1 represent mean values and their corresponding standard
deviation.

Table 2.2 shows the estimated execution times of the PriMan framework only (i.e., PriMan
overhead). As mentioned before, we estimated these values by computing the different between
the total execution time and the execution time due to Idemix only. Mean values and their corre-
sponding standard deviation are reported. Note that these values include not only the execution
time of the framework layer components but also of the Idemix provider. The results show that
the overhead introduced by the framework is small – less than 1 msec. This is expected as the
framework contains little logic; it consists mainly of abstract classes and interfaces. In addition,
the standard deviation values are higher than the average values. The reason for this outcome is
that the time resolution of the counters used is only in milliseconds, thus, inadequate to measure
PriMan’s small overhead. Nevertheless, these results show that the overhead introduced by the
framework is insignificant and unlikely to affect the overall performance of applications using the
framework.
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2.5 Conclusions and Next Steps

In this chapter we have described the overall architecture of PriMan, a privacy-preserving frame-
work aimed to help developers to evaluate different privacy-enhancing technologies in a faster and
easier way. PriMan achieves this by introducing a thing middleware layer that exposes a uniform
API to developers to access a variety of credential systems and other privacy-enhancing technolo-
gies. Our initial experimental evaluation demonstrates that the overhead introduced by PriMan
is small and unlikely to affect the overall performance of an application. We are currently working
on the addition of more technology providers and defining the first stable of the API exposed by
PriMan to developers and technology providers (i.e., PriMan 0.1). We plan to evaluate PriMan
with more advanced authentication scenarios, including the use of more complex credentials and
server and user policies.
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Chapter 3
Claim-based Access Control

3.1 Rationale and Motivation

In this chapter, we show how mobile devices may facilitate the use of anonymous credentials,
as an electronic identity, for data-minimizing authentication. We envision scenarios where users
authenticate to terminals using their mobile, with the requirement that it is ensured that the
user at the terminal is the one performing the authentication. We denote these scenarios user-to-
terminal authentications.

Examples in the real world are: the age verification of customers or buyers in a bar when
selling alcoholic beverages, access control to the premises of one’s employer, and a broad variety
of electronic ticketing solutions. For the age check, an important property is that no third party
can perform the authentication instead of the user at the terminal.

We present the requirements (Sect. 3.2) and protocol constructions (Sect. 3.3), based on short-
range QR channels between a user’s handheld device and a terminal to establish an authenticated
channel between the user’s handheld and the terminal. As key property, the user is authenticated
based on her properties instead of identifying attributes. We therefore use the Identity Mixer
credential system on the mobile device. Through the properties of the short-range channels, we
acquire a higher level of trust in that the device executing the protocol is the one interacting with
the terminal, and vice versa. As a particularly important security feature, the prototype employs
a Secure microSD card as a secure element for handling secret cryptographic tokens throughout
their life cycle. That is, storing them and performing all computations related to them. We have
implemented a prototype system on top of an Android mobile phone. Implementation specific
details can be found in Sect. 3.4. In Sect. 3.5, we present measurements of the key metrics that
determine protocol runtimes. We found the results encouraging for a practical application of
anonymous authentication technologies on standard mobile devices. We discuss the properties of
our prototype. Finally, we conclude in Sect. 3.6.

Related Work. Chari et al. [25] presented a taxonomy of different m-commerce scenarios with
mobile devices. Our user-to-terminal scenarios fit in their Kiosk-Centric and Full Connectivity
model respectively. Similarly, our solution also fits in the model of Claessens [27], in which the
mobile is combined with a workstation in order to have a higher degree of security and mobility.

Next to manual authentication [44] or authentication based on image comparison [37,63], many
schemes have been presented that use physically constrained channels in order to obtain a secure
communication channel between two nearby devices. Although they are often related to device
pairing, they also apply to our user-to-terminal authentication. Examples are based on physical
contact [5,69], motion [58], infrared [5], audio [45,68], bar- and QR codes [57,59,70], Bluetooth [54]
and radio profiling [73].

In contrast to the schemes above, where privacy is often of a lesser concern (e.g., for device
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pairing), our solution combines the short-range communication channel with a more privacy-
friendly authentication mechanism, namely anonymous credentials. In our prototype, we apply
a QR based communication channel. Nevertheless, our solution also supports other short-range
channels, as mentioned above.

3.2 Requirements

The requirements can be summarized as follows:

1. authentication should only happen with the user’s consent;

2. authentication should only be possible by the user in front of the terminal;

3. sharing of credentials (e.g., with friends) should be impossible;

4. when the smart phone is lost or stolen, the credentials should no longer be usable.

The first requirement demands that for every authentication, at least some user interaction
is necessary (e.g., at least a click on an OK-button).

The second requirement is more difficult to realize. The authentication process needs to involve
a short-range communication channel between the terminal and the mobile device. An ideal
channel would be an NFC-channel. However, most smart phones do not yet support this kind of
communication and terminals even less. Bluetooth is not really short-range, and WiFi certainly
not. Therefore, our scenarios will use a visual channel: QR-codes will be displayed on the screen
and scanned by the camera of the device at the other end of the channel. Since the camera must be
positioned a few centimeters in front of the displayed QR-code, this way of exchanging information
certainly realizes a short-range communication channel.

The third requirement can be realized by introducing a secure element. In our scenarios, we
will assume that the smart phone has a free slot for a µSD card. A (secure) smart µSD card is
used to store the user’s secrets of the credentials. Every credential is associated with a secret;
when using a credential, the user needs to prove knowledge of the corresponding secret. Since the
user has no longer direct access to these secrets, the original Identity Mixer library that we use as
anonymous credential system, had to be modified as follows:

• the user secret is generated on the smart µSD card and never leaves the card;

• the credential issue protocol and the credential show protocol have been adapted so that all
computations (exponentiations) that involve the user secret are delegated to the smart µSD
card.

Since one needs the user secret for showing a credential, and user secrets are kept in a secure
element, it becomes impossible to share credentials.

For the fourth requirement, the use of the smart µSD card is further restricted: the card will
only perform an operation if the correct PIN-code is given. Hence, when the mobile device is lost
or stolen, the new owner will not be able to use the stored credentials since she cannot ”activate”
the card via the correct PIN-code.

Note that in this solution we do not prevent relay attacks such as mafia fraud attacks and
terrorist attacks [6]. In a mafia fraud attack, the attacker forwards messages between an honest
prover and an honest verifier. Whereas in a terrorist attack, the prover is dishonest and collaborates
with the attacker. The latter could allow an adult, to help a youngster to prove that she is older
than 18, based on the credentials of the adult. Mafia fraud attacks may be prevented using
distance bounding [2, 3, 14, 47, 55, 67], a mechanism mostly discussed in the context of RFID.
Distance bounding in combination with the tamper resistance of the smart card also makes the
terrorist attacks harder to achieve, as the prover has less control on the actual protocol running
on his device. Unfortunately, in contrast to radio based channels such as NFC, when using a
QR-based visual channel or an out-of-band channel, distance bounding is hard to achieve.
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3.3 Construction

We now discuss the general architectural concepts used, as well as protocols for realizing our
mobile authentication application.

Roles and setting. Figure 3.1 illustrates the parties in our setting. A user U is the holder
of a mobile device M. An issuer IP provides credentials to the user U. U keeps the credentials
on the mobile; they can later be used when U authenticates towards a terminal T. In order to
allow a more flexible setup, with multiple terminals, verification is not performed at the terminal
itself. The terminal is in direct connection with a trusted authorization server AS, who performs
all verifications. In this case the terminal simply acts as gateway between the user and the
authorization server. We denote the relying party RP as consisting of both T and AS. Note that
communication between the terminal and the authorization server, is SSL/TLS protected, in order
to obtain a higher level of security.

Figure 3.1: Parties in User-To-Terminal authentication. The User U, the Mobile M, the Issuer IP,
the Authorization Server AS and the Terminal T. The Terminal T and Authorization Server AS
together Form the Relying Party RP.

To address the proximity requirement, it is sufficient to have the first request sent through a
short-range channel and cryptographically bind the response to that event, leaving open how the
response is returned (e.g., using an out-of-band channel).

System Setup. The issuer IP publishes the public key information used in the anonymous
credential-issue and credential-show protocols. To ensure entities that the public key is indeed the
one of the trusted issuer, this information can be certified in a PKI-infrastructure, using standard
X.509 certificates [28]. IP can then use this certificate for server authentication. Similarly, AS has
a standard X.509 certificate for server authentication.

Setting Authentication Requirements. The authentication requirements are defined using
the CARL policy language. Multiple policies may be defined for a single resource being protected.
For instance, the user is allowed to prove, based on the date of birth included in a credential, that
she has actually reached the age of majority, without revealing her date of birth. On the other
hand, she is also allowed to prove possession of a valid driver’s license, implying age majority. In
addition, the relying party may also specify a response channel, and a destination address (e.g.,
URI or Bluetooth address), over which and to which the response should be returned.
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Registration of U with IP. The user first registers with the registration server IP. The system
can be bootstrapped by the user when getting issued an anonymous credential on M in a variety
of ways. A guard protects the issuing of credentials at IP, specified in a policy on the requirements
for obtaining a credential. Note that guards for multiple authentication schemes may be used.
For instance, a practical use case for Belgium, where eID cards are issued to all citizens as of 12
years and older, is that the guard requires an attribute statement based on the user’s eID card.
The attributes obtained in such way can then be issued as attributes of an anonymous credential.
IP, relying on the correctness of attributes originating from the Belgian eID card, then acts as a
(re-)certifier of these attributes. The guard-based and policy-based architecture of the issuer leaves
the authentication of U with IP open to a concrete deployment of our system, thereby ensuring
flexibility.

Authentication of U at T. Figure 3.2 illustrates how the user may authenticate towards the
terminal, based on whether or not an out-of-bound channel is used. In both cases, the terminal
receives an authentication request (linked to the HTTP session) from the authorization server (1),
and hands it over to the mobile over the short-range channel (2).

(a) (b)

Figure 3.2: Route (a) over T to AS, and (b) Directly to AS.

M parses the received authentication request, containing a challenge and the server policies. It
may also include the relying party’s certificate to encrypt the response, if it is to be kept secret.
The applicable policies are selected, based on the availability of credentials, and rendered by the
application to a for humans easy-to-understand presentation format, which is then displayed on
the screen of M. Each policy comprises a data request that needs to be disclosed and proved with
the Identity Mixer or other technologies in our framework. U is required to choose how to fulfill
the policy and to give her consent to the information release (3). If the master secret is protected
by a secure element, the user is also challenged to enter her PIN code.

The privacy and security framework computes a credential proof and the authentication re-
sponse, which includes this proof and a reference to the chosen policy, is returned to AS. Now,
depending on the response channel, as specified in the authentication request, the response may
follow a different path.

(a) From the user’s perspective, the most straightforward scenario is to reply to the terminal
from which the user received its authentication request (4) (see Fig. 3.2(a)). This could be
over another or the same short-range channel as used in (2). Then, the terminal forwards the
authentication response to the authorization server over a secure channel (5). The latter parses
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the response and verifies the correctness of the included proof. Finally, the authorization server
notifies the terminal about the result.

(b) In the second case, illustrated in Fig. 3.2(b), the reply is sent directly to the authorization server
over an out-of-band channel (4’). Next, the server notifies the terminal (of the corresponding
HTTP session) about the verification result.

3.4 Implementation

We have designed and implemented a prototype for validating our constructions and showing the
practical feasibility of our ideas.1

Specifications. The mobile application was written in Java running on an Android mobile (i.e.,
Samsung Galaxy i9000: 1 GHz ARM Cortex-A8 with 512MB RAM, a 480x800 WVGA Super
AMOLED screen and as 2592 x 1944 Camera) and the relying party was implemented as a Java
EE web service combined with a GWT web application running on a desktop (i.e., DELL E4300:
Intel Core2 Duo P9600 @2.54GHz with 4GB RAM running Windows 7(64) with a HD 1280x720
Webcam). We refer to [56] for details on the implementation.

In addition, we present how, in the case of Identity Mixer anonymous credentials, the authen-
tication is implemented using existing standards.

Standard Authentication Protocol. The authentication protocol based on anonymous cre-
dentials, is realized according to the HTTP/1.1 standard [40]. In short, whenever a request is
made (01) and client authentication is required, the server replies with a [401 Unauthorized]
response (01a). The header of this response contains a [www-Authenticate] header field, in
which it passes the authentication info, containing challenge information in order to allow proper
authentication. If the client decides to authenticate, she includes an [Authorization] header field
into the new request (01b), containing the proof claim. The server may then parse the response
and verify the proof.

In the case of authentication based on anonymous credentials, the [www-Authenticate]
header field contains the policies accepted by the server, and a challenge, allowing the client to
authenticate correctly. The client may then compute a proof based on a chosen policy. The proof
and a reference to the chosen policy is included into the [Authorization] header field.

For our mobile to terminal authentication application, there is a slight difference between the
two scenarios (see Fig. 3.2(a)). In the first scenario (a), the terminal plays the role of the client.
It therefore sends a request to AS, obtaining the [401 Unauthorized] response, and converts this
into a QR code. In order to limit the size of the QR code, only the [www-Authenticate] header
field (i.e., the authentication info) is converted into a QR code, which is displayed on the screen
and should be scanned by the mobile device’s camera. Next, the mobile displays the policy to the
user, waits for the user’s consent, computes the proof and displays its proof and choice in a QR
code, which is then scanned by the terminal’s webcam. This QR code is parsed by the terminal
and its content is included into the [Authorization] header field of a new HTTP request to AS.
In this case, the terminal is immediately notified about the verification result.

In the second scenario (b), after having scanned the QR code displayed on the terminal,
and processing the user interaction, the mobile itself includes the proof and choice into the
[Authorization] header field of an HTTP request and sends it directly to AS. Note that in
order to get notified, T has to frequently poll AS for the verification result related to a specific
authentication request.

1 Lines Of Code: ≈19000 (incl. middleware, mobile app, web services, terminal website and widgets).
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3.5 Results and Analysis

Using the implementation of our prototype, a number of measurements were obtained. In this
section we present and discuss these measurements. We looked at three different metrics that have
a major effect on the overall system performance:

1. The execution time for a cryptographic Identity Mixer proof, that is, the time for construct-
ing a proof and for verifying the proof;

2. The additional overhead introduced by the use of the secure element;

3. The encoding size of the Identity Mixer proof, which is relevant in the context of the
bandwidth-limited QR channels we employ.

3.5.1 Identity Mixer Proof Execution Times

We present measurements for a spectrum of different variants of Identity Mixer proofs by using
three sizes of the RSA modulus used for the protocol computations, credentials with zero and
with three attributes, and proof specifications which hide or reveal all attributes, which need an
inequality proof over one attribute, and a proof over one enumeration-type attribute. For these
tests, the protocols are entirely computed on the mobile device (without a smart card). This leads
to the proofs (a), (b), (c), (d), and (e) that are each constructed with the different modulus sizes
1024 bits, 1536 bits, and 2048 bits. We use the following encoding triplets as a shorthand notation
for the structure (i.e., attributes and used features) of a proof: At, Ar, F with At the total number
of integer attributes contained in the credential, Ar the number of revealed attributes, and F a
feature to be proved or ∅ for no feature.

Proofs (a) and (b) perform a basic credential show in which only the fact that the user has a
valid credential, is revealed. In case (a), the credential contains no attributes (0, 0, ∅), while in (b)
it contains three (3, 0, ∅), none of them being disclosed. The proofs in (c), (d) and (e) use the same
credential with 3 attributes as in (b), though, compute different proofs on them. In proof (c), all
attributes are revealed (3, 3, ∅). In (d) and (e), the attributes remain hidden and additional proofs
are performed in addition to the basic credential show, resulting in more complex cryptographic
protocols.

Table 3.1 summarizes the median values we have measured for the prover and verifier side
of the protocol and the overall runtime for the proof variants (a) - (e) with the used modulus
sizes, without considering communication overhead, nor user-interaction. We may notice that
for (c) the resulting timings closely resemble those of (a), which can be explained by how the
cryptographic proof is computed as shown in [50] Sect. 6.2.3: Revealed attributes are realized with
modular exponentiations with rather small exponents corresponding to the actual attribute sizes
and thus have no major influence on the overall protocol runtime.

Besides the above mentioned cases, without attributes and with three attributes, more exten-
sive tests have been run with different numbers of attributes, and they clearly show a linearity in
the computational overhead with respect to the number of attributes in the credential. Overall,
the figures show the expected dependencies of the proof runtime on the key size and the number
of non-released attributes of the credential.

Proof (d) illustrates the overhead caused by an inequality proof (3, 0, ineq). Proofs like this
allow, for instance, to convince the verifier that the user’s date of birth is more than 18 years
back in the past. For such predicate to be shown with the Identity Mixer library, a substantial
protocol runtime overhead is incurred, which confirms the expectations deduced from the protocol
specification [50].

Similarly, in proof (e) (3, 0, enum), additional overhead results from the proof that an attribute
of type enumeration (e.g., Drivers License Category [A,B,EB]) contains a specific value (e.g., B).

The modulus size of 2048 bits as recommended for high-security applications leads to a creden-
tial show having a runtime of at least about 0.9 s. Note that the computation time on the mobile
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(ms) 1024 1536 2048
(At, Ar, F ) prove verify total prove verify total prove verify total

(a) 0, 0, ∅ 103 78 181 240 187 427 495 375 870
(b) 3, 0, ∅ 139 125 264 323 265 588 634 515 1149
(c) 3, 3, ∅ 102 78 180 243 187 430 495 375 870
(d) 3, 0, ineq 481 436 917 1182 1077 2259 2358 2184 4542
(e) 3, 0, enum 247 213 460 617 510 1127 1259 1014 2273

Table 3.1: Timing Results (median over 100 runs), in Milliseconds, for Proving and Verifying a
Credential Show with a Modulus of 1024, 1536 and 2048 bits

At: number of attributes in the credential
Ar: number of revealed attributes
F : feature to be proved

phone is comparable to that on the server, although the prover side of the protocol needs to per-
form more computations [50]. This is an unexpected result as the CPU of the phone has a lower
clock frequency and less RAM than the one of the PC we used. However, further investigations
related to the implementation of the BigInteger class in the Android environment showed that it
invokes native code, while on the PC, the class is entirely implemented in Java. This explains the
excellent performance of the mobile phone with respect to arbitrary precision arithmetic.

3.5.2 Overhead through the Secure Element

We have measured the overhead incurred during a credential show, because of the use of the
optional Secure microSD card as a secure element for protecting the user’s master secret key.

The figures in Table 3.2 show a substantial additional overhead compared to the timing results
in Table 3.1. The overhead for each key length is fixed and independent of the proof specification.
Moreover, it has no influence on the performance of the verification of the proof. As an example, a
basic proof, case (a) with a 1024-bit modulus, now lasts about 1.44 s, of which about 0.18 s comes
from the software and 1.26 s from the secure element fraction of the prover’s protocol, compared
to the 0.18 s without the secure element.

Compared to the full Javacard implementation of Bichsel et al. [7], taking 7.4 s, and the DAA
implementation of Sterckx et al. [72] (which is partially run on the host) requiring 4.2 s, our
protocol is substantially faster. Note that the DAA implementation provides protection against
corrupted TPMs when issuing, which is not the case in our scheme in which we need a trusted
setup of the card, during which a credential is issued to the card. In addition, the full card
implementation offers enhanced privacy properties with regard to the host.

Table 3.2 also shows that a significant share of the overhead amounts to communication be-
tween the host and the secure element. This is partially explained by the current implementation
requiring four rounds of communication. This can be reduced to only two cryptographic protocol
requests of the Identity Mixer library, by combining the PIN verification and protocol selection
rounds (i.e., issue or prove) with the first of those requests.

Note that for the 1024 and 1536-bit keys the delay due to the communication is the same,
while for the 2048-bit modulus, the communication takes longer. The reason for this is that
communication with the secure element happens in message blocks of 254 bytes. In case of 2048-
bit keys, it does no longer fit into a single message block, resulting in an extra block and, hence,
additional overhead.

3.5.3 Size of QR Codes

Proofs generated by the Identity Mixer library are formatted in XML, a verbose syntax. As the QR
code-based channels are severely limited in bandwidth, and the Identity Mixer proof is the largest
part of the content to be transferred back to the terminal, we created a customized space-efficient
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(ms) 1024 1536 2048
build proof 1262 1606 2082

communication 310 310 375
computation 952 1296 1707

Table 3.2: Overhead, in Milliseconds, Incurred by the Secure Element, for a Modulus of 1024,
1536 and 2048 bits. The Overhead is Split Up into the Overhead Due To the Communication,
and the Overhead Due To the Computation in the Secure Element.

(bytes) 1024 1536 2048
(a) 0, 0, ∅ 793 878 1005

proof 589 675 802
header info 147 148 148
response info 57 56 56

(b) 3, 0, ∅ 1053 1138 1267
proof 811 897 1024
header info 186 185 187
response info 56 57 57

(d) 3, 0, ineq 3243 4031 4855
proof 2867 3657 4488
header info 319 317 311
response info 57 57 56

Table 3.3: Average Size of the Authentication Response (in bytes), for a Modulus of 1024, 1536
and 2048 bits, for Proofs with Credentials without Attributes (a), with Three Attributes (b, d)
and with an Inequality Proof (d). The Total Proof Size is Divided into the Theoretical Proof Size,
the Size of Header Info (e.g., names of attributes) and Response Info (e.g., session information).

binary format for representing Identity Mixer proofs. The format is based on an ordered length-
value encoding. Note that it is straightforward to replace the formatting with a more standardized
formats such as ASN.1 [38]. Table 3.3, presents the average size of the authentication response,
containing as its major part the proof generated on the mobile. In the table, the message size
is decomposed into: the proof size, being the theoretical number of bytes of the Identity Mixer
proof; the header info size, being additional information required to encode the Identity Mixer
proof in our custom format such as attribute names and lengths of proof values; and the response
info size, being additional information such as a reference to the chosen policy. Table 3.3 also
shows that different proof specifications result in quite different proof sizes.

For the more complex proofs, such as proof (d), the size of the proof becomes too big to be
encoded in a single display-readable QR code: as defined by the QR standard, only about three
kilobytes of binary data may be included in a single QR code. To work along those constraints,
one solution is to use the out-of-band channel and send the proof through the radio channel to
AS. Another solution, also implemented, is splitting the message into multiple chunks and cycle
through the resulting QR codes until the reader has scanned them all.

Note that the generation of the QR codes on the mobile device currently takes a substantial
fraction of the overall protocol runtime. When showing a credential without attributes, the QR
code is generated in about 0.8 s. For the case of an interval proof with a 2048-bit modulus size, it
requires two (larger) QR codes generated in about 2.5 s.
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3.6 Discussion

For increased security and assurance, our system architecture and implementation comprises an
optional secure element based on a Java Card microSD token. This achieves not only sharing
prevention and theft protection for the user’s master secret, but also a stronger binding between
a user and her device through the PIN-based authentication. Those properties give the relying
party a stronger assurance of the authenticating person having the claimed properties.

The short-range communication channel offers a higher level of security, in that the required
proximity decreases the chance that another party is communicating with the terminal. However,
the terminal is still not fully ensured about this, as the mobile could simply forward the messages
to another mobile that performs the authentication instead.

Mobile devices are carried along most of the time, and therefore are an ideal target as a
deployment platform. Though, today’s mobile devices suffer from vulnerabilities that may make
the software-based computations or the I/O between the user and her device untrusted (e.g.,
captured or provided by a virus). Trusted Execution Environments [34, 41, 42, 66] allow certain
processes to be executed with a higher level of assurance, thereby ensuring that no malicious
software can change computations or intercept the I/O of this process to the user. Developments
on this are ongoing and can be employed as an orthogonal mechanism in our system architecture
once they will be deployed on mainstream platforms.

3.7 Conclusion

We provide a solution to the authentication dilemma of users being required to identify themselves
in most of their authentications today. We have brought anonymous credential systems to mobile
devices as a privacy-preserving authentication solution and defined protocols for establishing secure
channels between a user’s mobile device and a terminal, based on short-range channels. This allows
us to handle user-to-terminal authentication solutions through an easy-to-use system. While our
protocol constructions apply to a range of short-range channels, we employ QR code technology
to establish visual short-range channels in our prototype.

Our system is applicable to a wide range of practically-relevant authentication scenarios which
users come across on a daily basis, ranging from user-to-terminal authentication such as age
verification in a bar, over access to premises, to authentication to Web services from a home
computer.

Future extensions on the protocol level may comprise including the introduction of the user
accountability property [4, 23] through the use of verifiable encryption [20], or the support of
credential revocation mechanisms, e.g., based on dynamic accumulators. Those features are not
conceptually changing the constructions or architecture which are the main focus of this paper,
but rather require some additions, like for key management.
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Chapter 4
Network-based Access Control

4.1 Rationale and Motivation

Over the past couple of years, a multitude of authentication and access control technologies have
been designed and implemented. Although not always clearly, a distinction can be made between
two major categories: claim-based and network-based technologies. Each of them offers interesting
advantages, yet also poses a number of drawbacks.

In both technologies, three important actors can be identified: the user, the service provider
and the identity provider. In a network-based system, the user is typically redirected to an identity
provider, which authenticates the user and supplies a token upon successful authentication. This
token is then verified by the service provider and access is granted if it is valid. The procedure also
includes the provisioning of any required user attributes, from the identity provider to the service
provider. In a claim-based system, on the other hand, the service provider informs the user about
the prerequisites to fulfill. If the user consents, he returns a claim. The latter can be regarded
as a response to the server’s challenge, along with a verifiable statement about required user at-
tributes. A claim may be endorsed by one or multiple issuers. The user sits in between the identity
providers and the service provider, thereby controlling the information exchange between the two
sides. This leads to less trust assumptions and better privacy properties, in comparison to a typ-
ical network-based system, where the identity provider’s role is more pervasive. The latter is also
capable of transaction monitoring and linking, collusion with other identity or service providers,
and user impersonation. In addition, the concentration of multiple security-critical responsibil-
ities makes network-based identity providers a high-value (single) point of attack. However, in
terms of interoperability and standardisation, network-based systems have an advantage over their
claim-based counterparts. For instance, deployment of eID technology is typically country-wide,
thereby imposing additional efforts at best, or excluding international users altogether. Moreover,
there is a need to facilitate the adoption of new privacy-friendly credential technologies. The reuse
of existing infrastructure and expertise is important in this respect. The design of this appli-
cation synthesises a hybrid counterpart of network-based and claim-based identity management
architectures, striving to leverage the strengths and to mitigate the weaknesses of both.

4.2 Application Description

4.2.1 Requirements

Prior to devising a suitable architecture, we list the requirements that should be fulfilled.
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4.2.1.1 General requirements

G1 Security issues in the network-based authentication protocol, are resolved or mitigated. The
specific problems and the extent to which they are treated, is specific to the network-based
system that is considered.

G2 Pluralism of operators, claim-based credential technologies, as well as network-based authen-
tication protocols, is facilitated.

4.2.1.2 User requirements

U1 User trust in the network-based identity provider is decreased. Depending on the incorpo-
rated claim-based and network-based systems, this requirement ideally results in reduced
capabilities for transaction linking and profiling.

U2 The user has control over which personal attributes are released.

U3 Switching to a different claim-based technology is facilitated.

4.2.1.3 Service provider requirements

SP1 Service providers can obtain reliable user information for service personalisation.

SP2 The service provider is agnostic towards credential technologies and authentication protocols:
he needs to support only few implementations to reach the majority of users.

4.2.2 Components

Figure 4.1: The proposed identity management architecture.
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The proposed architecture is depicted in figure 4.1. There are four components: the service
provider, the identity broker, the user agent and the claim provider.

4.2.2.1 Service provider

Service providers offer personalised services to users. To enable personalisation, the release of a
set of user attributes is required during authentication. Service providers interact with an identity
broker (see 4.2.2.2) to authenticate users and obtain personal information from them. Hence, their
role and implementation is unchanged, compared to original network-based service providers.

4.2.2.2 Identity broker

Similarly to claim-based systems, the user presents to the identity broker a claim proving the ful-
fillment of the service provider’s requirements. However, in the proposed architecture the identity
broker extracts the user attributes or their properties, and provisions them to the service provider.
This is performed according to a the network-based authentication protocol. Hence, brokers can
be regarded as a conversion layer. They no longer store and maintain user information.

An identity broker implements credential-specific connectors to authenticate the user and ob-
tain required user attributes. Each connector supports a credential technology. Once proven,
the required attributes are transferred to service provider. This step can be achieved using
any network-based authentication protocol that is supported by the identity broker: OpenID,
SAML,. . .

4.2.2.3 Claim provider

The claim-based identity provider, or claim provider for short, corresponds with the issuer of a
claim-based system. It is henceforth the only responsible for user attribute storage and mainte-
nance, whereas the network-based identity provider is transformed to an identity broker. Each
claim provider can support a different technology.

4.2.2.4 User agent

Similarly to the ABC4Trust project terminology, the user agent is responsible for managing the
user’s claims. Multiple technologies may be incorporated. Some necessitate no online presence
of the claim provider during authentication, while others may require the user agent to fetch
additional credentials or attributes on the fly. This component is typically implemented on a
(portable) device, like a smartphone or a smartcard.

Apart from managing credentials and authenticating the user to service providers, the user
agent also implements other useful functionality. This may include a connection component,
providing support for different communication types: TCP/IP-based socket connections, HTTP,
Bluetooth, etc. Furthermore, a privacy component can display the service provider the user is
authenticating to, along with the personal attributes that are about to be released. In addition,
the user agent allows the user to select the claims he wants to authenticate with. User preferences
can be automated as policies. They comprise restrictions that can be posed on communication
channels, credentials, attribute disclosure,. . . Lastly, the user agent can also give feedback about
the anonymity impact of an ongoing authentication.

4.2.3 Trust relationships

This subsection shortly reflects on the changes in trust relationships.

4.2.3.1 User → identity broker:

The identity broker attests the user’s identity to the service provider. The user no longer needs to
entrust the broker with the storage of his personal data, as this is now assigned to claim providers,
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of which the corresponding credential technology often provides better privacy properties than
purely network-based approaches. For instance, user profiling is far less trivial in an anonymous
transaction where only a common attribute (e.g. gender = “F”) or a property thereof (e.g. age
> 18 ) needs to be attested.

4.2.3.2 User → claim provider:

The user trusts the claim provider to securely store a justifiable subset of his personal data. Note
that the user has multiple partial identities that are distributedly stored across claim providers.
Additionally, this actor is also trusted to only perform authenticated provisioning to the user
agent. The claim provider cannot monitor or link the user’s transactions.

4.2.3.3 Service provider → claim provider:

The service provider trusts the claim provider to only enforce genuine user attributes.

4.2.3.4 Service provider → identity broker:

The service provider trusts the identity broker to only assert verified attributes. Furthermore, the
service provider may request from the identity broker to only accept credentials from a trusted set
of claim providers. This allows the service provider to maintain a clear overview of trusted actors
in the system.

4.3 Validation

4.3.1 Prototype Description

A proof of concept of the architecture in section 4.2 is implemented using Shibboleth as a network-
based identity management system. The Shibboleth service provider remains unchanged upon its
integration in the proposed architecture. This implies that the network-based authentication pro-
tocol between the service provider and the identity broker is unaltered, compared to a standard
Shibboleth configuration. The user agent is implemented on a smartphone for two significant
reasons. The device is nearly always in the user’s presence and most often bound to the user
exclusively. An additional advantage is the widespread adoption of smartphones. The user agent
interacts with the identity broker. Modifications to Shibboleth to support this, consist of inte-
grating authentication and provisioning support for two claim-based credential technologies. The
first claim provider is an Idemix issuer, whereas the second one is part of Msec’s internally devel-
oped identity management architecture. Both systems allow for selective disclosure and support
pseudonymous and anonymous transactions.

4.3.1.1 Interactions

Two distinct setups are implemented. In the first one, a service is consumed on the user’s smart-
phone. In the second configuration, the Web service is accessed on a device other than the user
agent (e.g. a workstation and a smartphone, respectively).

In both cases, the user’s browser is typically redirected to the Shibboleth Discovery Service.
Next, the user selects his preferred identity broker. The latter is responsible for endorsing the
attributes that are provided by the user agent. The next steps are discussed separately, due to
the differences between both scenarios.

First setup: the device on which the service is consumed, also contains the user agent.
In the first setup, the user agent on the smartphone has direct access to the session context of the
transaction that was initiated with the identity broker. The user agent can, hence, authenticate
the user through this session. This is similar to a standard Shibboleth setup that implements
advanced authentication mechanisms, such as PKI-based authentication.
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Figure 4.2: The hybrid access control procedure

Second setup: the device on which the service is consumed, does not contain the user
agent. This setup is depicted in figure 4.2. It is slightly more complex, as the authentication
and the service request do not share the same session context. Therefore, a binding needs to be
established between the two. This is carried out as follows:

1. the identity broker generates a QR barcode, containing a credential-specific authentication
challenge. In addition, it also contains a policy that must be satisfied for the authentication
to succeed. For example, a policy may demand a proof that the user is over the age of
18, and that the authentication response be sent back only over HTTP. The barcode also
contains the Id of the session that is to be authenticated.

2. the barcode is displayed by the device on which the service is consumed (e.g. a workstation’s
browser). The user subsequently scans the QR code with his the smartphone.

3. the user agent generates an authentication response and transfers it back to the identity
broker, using a secure and authentic out-of-band communication channel.

4. The authentication response is verified. If valid, the identity broker extracts the user’s
personal attributes (or properties thereof) from the response and generates a SAML response,
which is then transferred to the service provider, using the standard Shibboleth protocol.

4.3.1.2 Implementation details

The prototype builds upon Shibboleth v2. Section 4.2.3.4 mentions the ability of the service
provider to specify a trusted list of claim providers. The implementation at hand attains this by
incorporating the trusted list in the Shibboleth SAML Metadata. The latter is exchanged when
service providers and identity providers join a Shibboleth trust federation.

Furthermore, the user agent is implemented on an Android-powered smartphone, running
Idemix 2.3 and Msec’s IdM architecture alongside each other.

Authentication Support for the two included claim-based credential systems is added by imple-
menting a Shibboleth LoginHandler for each credential technology. This component authenticates
the user, also obtaining required personal attributes along the way. During this procedure, the
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identity broker transfers information about the service provider to the user agent. This allows the
latter to inform the user about the authentication details.

Attribute provisioning The standard Shibboleth approach to impose restrictions on attribute
disclosure, consists of the identity provider configuring attribute filter policies. Therefore, decisions
about the disclosure of personal information are taken by the identity provider on behalf of the
user.

The proposed approach entrusts the user with the decision of which attributes to disclose. The
introduction of this notion, renders Shibboleth Attribute Filter Policies obsolete and leads to a new
question. Namely, how can the user be informed of the service provider’s policy? The prototype
stores this policy in the Shibboleth Metadata, similarly to the trusted set of trusted providers.
This allows the identity broker to obtain user attributes on behalf of the service provider.

Secure credential storage Secure credential storage is implemented on the Giesecke & De-
vrient Mobile Security Card 1.0. The storage requirements differ, depending on the credential
technology being used. Msec’s IdM architecture, for instance, relies on the tamperproofness of
the card. Idemix, on the other hand, can either be run entirely on the smartphone if speed is an
important factor or with the master secret securely stored in the secure micro SD card.

4.3.2 Evaluation

The identity broker is only responsible for user authentication and attribute provisioning. Storage
of users’ personal data is moved towards the claim providers, thereby reducing the identity broker’s
value and exposure as a target of attack. Additionally, some claim providers need not be online
permanently, by which their issuance key is less susceptible to attack. Moreover, phishing is less
likely to be successful, due to the authentication feedback that is displayed by the user manager. In
addition, the latter could be extended to allow the user or administrator to preconfigure preferred
identity brokers. Therefore, the architecture positively contributes to requirement G1.

Since users are no longer bound to the same party for personal data storage on one hand
and authentication and attribute provisioning on the other, they can more easily switch identity
brokers. The latter are now generic actors that support a variety of claim-based credential tech-
nologies and network-based authentication protocols, thereby giving users a broader choice and
facilitating interoperability with service providers. Hence, requirement G2 is satisfied.

The identity broker remains a trusted party in the system. However, drawing from the proper-
ties of some claim-based credential technologies, the user’s privacy is now better protected. This
is, for instance, the case in transactions where non-uniquely identifiable information is released. In
addition, some authentications are anonymous, making it harder to monitor and link transactions
and to compile profiles. Therefore, the architecture positively contributes to requirement U1.

The user agent shows information about the service provider and the requested user attributes
during authentication. This allows the user to give his informed consent prior to the disclosure.
This satisfies requirement U2.

Requirement U3 is trivially satisfied, since an identity broker in the architecture supports
multiple claim-based credential technologies.

A typical Shibboleth identity provider maintains his own data storage, while claim providers in
the proposed architecture endorse their provisioned data and thereby convince the identity broker
of its correctness. As previously mentioned, service providers can specify a set of trusted claim
providers. Therefore requirement SP1 is fulfilled.

Furthermore, the identity broker implements a variety of network-based authentication proto-
cols, making it interoperable with many service providers and fulfilling requirement SP2.
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Chapter 5
Biometric Access Control

5.1 Rationale and Motivation

This chapter presents the design of a strategy for misuse prevention of credentials. The system
impedes credential sharing and theft and it realizes informed consent to users. This prevents mal-
ware from abusing the credentials by misinforming the user about the transaction or authentication
being processed.

The approach is applied to a scenario in which an individual accesses a remote and protected
resource via a workstation. The user’s credentials, stored on his mobile device, are bound to the
biometrics of the user. This biometric binding is verified on the workstation, in a secure execution
environment trusted by both the user and the service provider. This strategy avoids leaking
biometric information to, for instance, service providers. This secure execution environment is
realized by using the secure virtualization technologies currently available in many workstations
and, hence, requires no additional hardware infrastructure to be rolled out. This environment
is generic, hence, the user is not restricted to his personal workstation but can also use public
workstations.

Related Work. Some credential systems such as Idemix [24] provide all-or-nothing non-trans-
ferability to discourage users from sharing their credentials. All the credentials of the user are tied
together. Hence, assuming that the user owns at least one valuable credential, he will not be will-
ing to share his credentials with other users. A similar approach is PKI-assured non-transferability
where the credentials are bound to a valuable secret outside the system (e.g. credit card infor-
mation). Where these systems focus on the prevention of credential sharing, the system in this
chapter also focuses on theft prevention and informed consent.

In [10,51] the wallet with observer architecture [26] is extended to include biometric authenti-
cation towards the observer. The user is issued a tamper-resistant card containing the credentials
and the biometric data of the user and a biometric scanner. Before the card will participate as
prover in any protocol, it requires the holder to scan his biometric data which is subsequently
matched with the data stored inside the card. In [30, 31] similar principles are applied in the
design of a privacy-preserving identity card. These system are further improved in [9] where Fuzzy
extractors [35, 36, 48] are used to generate a cryptographic key based on the retrieved biometric
features. Subsequently, the key can be used during credential issuance and show protocols. The
cryptographic key value is not stored with the credential, the tamper-resistant device is trusted to
erase the value after authentication. Hence, fresh biometric readings are required to reconstruct
the cryptographic key. These systems focus on theft and sharing prevention but do not realize the
aspect of informed consent. Moreover, the tamperproof devices on which the credential operations
are executed are typically resource constrained, impeding the performance of privacy friendly cre-
dential technologies [15,24]. These tamperproof devices also decrease the flexibility of the system
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with respect to using new biometric or credential technologies.
Other approaches prevent digital credentials from easily being copied and shared by embedding

them in a tamper-resistant device. The system proposed in [19] leverages the DAA [17] protocols
implemented in Trusted Platform Modules (TPMs) to bind the user’s anonymous credentials to
a TPM and, hence, a workstation. In [8, 61] implementations of anonymous credential systems
on smart cards are presented. These systems have similar weaknesses, related to the use of
tamperproof devices, as the systems described in the previous paragraph.

5.2 Application Description

This section first lists the different actors in the system. Subsequently, the requirements are listed.

5.2.1 Actors

5.2.1.1 Credential carrier

The Credential Carrier (C) stores the biometric template and the authentication credential(s)
of the user. These credentials are only released to a predefined trusted application (i.e. the
application maps to a known digest value T ) running in the secure environment. The credential
carrier also contains a set of public keys of CAs trusted by the user. These are used to verify the
authentication certificate of the service provider.

5.2.1.2 Service Provider

The Service Provider (P) provides services to users. Users are required to authenticate to prevent
unauthorized users from gaining access. Moreover, the service provider requires that users prove
ownership of the used credentials via biometrics. Ownership verification is done by an application
on the workstation of the user. The service provider is assured that the verification was executed
by a trusted application (i.e. the application maps to a known specified digest value T ) running
in a secure environment. The service provider further owns a certificate CertP and private key
SKP to establish a secure authenticated channel with the workstation of the user.

5.2.1.3 Workstation

The Workstation is equipped with TPM based hardware technologies for running applications in
a secure execution environment. The workstation is also equipped with a biometric scanner.

Legacy operating system. A regular operating system is running on top of the workstation
of the user. The user can interact with service providers using an application (R), such as the
browser, running on the operating system. If the user needs to authenticate or sign a transaction,
the application leverages the authentication functionality of the trusted authentication application
running in the secure environment to handle the authentication/signing.

Trusted authentication application. The secure environment capabilities of the workstation
are leveraged to run a trusted authentication application (T ). This application maps to a digest
value T which is known to the credential carrier and service provider.

This application executes three main tasks. First, the credentials of the user are obtained
from his Credential Carrier. This is done over an authenticated secure channel (i.e. C checks
the asserted T against the known value). Second, it is verified that the user is the owner of the
obtained authentication credentials. T therefore scans the biometric traits of the user via the
biometric sensors attached to the workstation and verifies the biometric binding. Third, if the
biometric binding verification was successful, T uses the authentication credentials of the user to
satisfy the service provider’s access control policy.
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5.2.1.4 User

The User (U) wants to gain access to the services provided by the service providers via a work-
station. The Credential Carrier is used to transfer the authentication credential and biometric
certificate to the trusted authentication application on the workstation.

5.2.2 Requirements and adversary model

5.2.2.1 Functional requirements

F1 The system for biometric binding is credential technology agnostic.

F2 The solution should not require that authentication needs to be performed on one particular
workstation.

F3 The system can be realized using a commodity infrastructure.

F4 The system is extensible, allowing for new biometric systems or algorithms and credential
technologies to be included.

5.2.2.2 Security requirements

S1 The misuse through credential sharing and theft is impeded.

S2 Malicious software cannot mislead the user into approving malicious signing transactions or
authentication attempts.

5.2.2.3 Privacy requirements

P1 The system does not require releasing information that can be used to uniquely identify
users or link user profiles of different service providers.

5.2.2.4 Adversary model

A1 Regarding the secure execution environment, we make the same assumptions as the Trusted
Computing Group [46]. This means that attackers can launch simple hardware attacks such
as attaching a hardware debugger but sophisticated attacks such as monitoring the high
speed bus that links the CPU with memory are not allowed.

A2 T is assumed to be formally verified.

A3 The biometric system used is secure (i.e. sufficiently low false acceptance and false rejection
rate).

A4 The credential carrier correctly verifies the integrity of the secure application running on the
workstation before transferring the credentials of the user.

5.3 Implementation

5.3.1 Technologies

5.3.1.1 Secure execution environment

Where the TPM [46] is embedded in workstations for several years now, a more recent evolution
is the adoption of secure execution environment technologies such as Intel’s Trusted Execution
Technology (TXT) [29] and AMD’s Secure Virtual Machine (SVM) [32]. These technologies are
nowadays being embedded in commodity workstations and allow the execution of code indepen-
dently of previously executed software. The TPM specification has been extended with additional
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capabilities dedicated to software running in the secure execution environment. Before these
technologies can be used, they need to be activated through the BIOS of the workstation.

Recent work [60] implements a framework that allows developers to isolate security critical
code from applications and run it in the secure execution environment. It, therefore, temporarily
suspends the main OS and subsequently uses the secure execution environment technologies to
securely execute the sensitive code. When execution of the sensitive code is completed, the OS
resumes execution. The framework also allows passing data to the secure environment application
and obtaining the resulting response. Moreover, in conjunction with the TPM data attestation and
secure session establishment can be realized. This is further discussed in the following subsections.
The framework supports both Windows and Linux systems. In [16] the framework is extended to
allow secure user I/O. The system proposed in this chapter uses the framework and its extension
for the implementation of a secure environment application. The execution of a secure environment
application is denoted as shown below.

R ↔ T : output := invokeSecureAp(input)

Data attestation. When the secure environment application has finished executing, it passes
the output data it generated based on the provided input back to the operating system. Appli-
cations running on top of the operating system can now obtain the data and use the attestation
capabilities of the TPM to ensure a remote party (V ) that the output was produced by a specific
(trusted) application. Each secure environment application is uniquely represented by a digest,
denoted as T . This digest can be mapped to the implemented functionality. The protocol is de-
noted as shown below. It can also be extended to include input attestation (i.e. assert that output
was generated based on input). However, this property is not required for the system presented
in this chapter and is, hence, not reflected in the protocol description below.

R ↔ V : assertData(T , output)

Secure session establishment. The secure session establishment protocol allows setting up a
secure channel between an application running in a trusted environment (T ) and a remote party
(V ). The remote party is ensured that a fresh session key (Ks) is established with the secure
environment application represented by T .

T ↔ V : Ks := secureSession(T )

5.3.1.2 Credential technologies

In this chapter, abstraction is made of the different properties achieved by the credential tech-
nologies that can be used for user authentication. Two credential primitives are defined. The first
operation generates an authentication response (auth resp) using an authentication credential of
the user (CredU) based on the authentication request (auth req, typically containing the access
control policy and a challenge) and the X.509 certificate (CertP ) of the service provider. Including
the certificate of the service provider prevents the authentication response from being used to au-
thenticate towards other service providers than the one intended by the user. The access control
policy states the requirements for gaining access to the service. Subsequently, the authentication
response can be verified using the public key of the credential issuer (PKI ).

U : auth resp := genAuthResponse(CredU, auth req, CertP )

P : true/false := verifyAuthResponse(auth resp, PKI , auth req)
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5.3.1.3 Binding credentials to biometric data

Biometry can be used to uniquely identify a person [52, 53]. Commonly used biometric traits
include a fingerprint, iris, face and voice. A sensor scans the biometric trait of the user. During
enrollment, a distinguishing feature set is extracted from the biometric data and stored as a
Biometric Template (BTU) of the user. During authentication, the user scans his biometric trait.
The resulting feature set is matched to the feature set contained in the template of the user.
Based on the similarity between the two sets the authentication is either accepted or rejected.
These biometric templates can be bound to the authentication credentials of the user. This allows
for verifying that the user of the credentials is also the owner of these credentials. The binding
verification procedure is denoted as shown below. In section 5.3.3, a more elaborate description
on the realization of the binding between credentials and biometrics can be found.

V : true/false := verifyBioBinding(CredU, BTU, scan(U))

5.3.2 Protocols

5.3.2.1 Using the user’s authentication credentials

The workstation initiates the trusted authenticated application and passes the access control policy
and the certificate of the service provider. The trusted authentication application retrieves the
credentials of the user and verifies the biometric binding. If the binding is successfully verified, it
generates an authentication response and passes it back to the workstation as output data. The
protocol is described in more detail below and in Table 5.1.

After receiving the service provider’s access control policy and certificate (1), T initiates a
secure session with the credential carrier (C) of the user (2). C is hereby assured that T is an
instance of the trusted authentication application. Subsequently, the certificate of the service
provider is transferred to C where it is verified using the set of CAs trusted by the user (3-4).
C now transfers the authentication credential(s) (CredU) and biometric template (BTU) of the
user to T (5). Subsequently, T notifies the user about the service provider and his access control
policy (6). If the user wants to carry forward with the authentication, he scans his biometric
data with the biometric reader attached to the workstation (7). T now verifies if the scanned
biometric data matches with the biometric template bound to the credentials of the user (8). If
so, an authentication response is generated using the authentication credentials (CredU) of the
user and the authentication request and certificate of the service provider (9). When the secure
authentication application is terminated, the auth resp is passed back to the workstation (10).

T ↔ R: auth resp := invokeSecureAp(auth req, CertP ):

(1) R → T : auth req, CertP
(2) T ↔ C : Ks := secureSession(T )
(3) T → C : {CertP }Ks
(4) C : if (! verify (CertP ) ) abort()
(5) T ← C : {CredU, BTU, PKI }Ks
(6) U ← T : auth req, CertP
(7) U → T : bio features
(8) T : if (! verifyBioBinding(CredU, BTU, bio features) ) abort()
(9) T : auth resp := genAuthResponse(CredU, auth req, CertP )

(10) R ← T : auth resp

Table 5.1: Using T to satisfy the access control policy.
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5.3.2.2 Accessing remote resource

The user wants to gain access to a remote protected resource via his workstation. The service
provider enforces an access control policy to ensure that only legitimate users access the resource.
Moreover, the service provider requires assurance that the owner of the credentials that are used
during authentication is in the proximity of the workstation. The protocol is described below and
in Table 5.2.

The user requests access to a remote protected resource via an application running on his
workstation (1). Subsequently a secure session is established during which the service provider
authenticates (2). In the context of Web applications, this is typically a HTTPS connection with
server authentication that is established. The service provider now sends the authentication re-
quest to the workstation over the secure channel (3). The workstation now invokes the secure
authentication application that verifies the credential binding and generates an authentication
response (4). See previous section for a detailed description of the internals of the secure authen-
tication application. The workstation now uses te assertion capabilities of the TPM to assure the
service provider that auth resp was generated by the trusted application (5). This ensures the
service provider that the response was generated using credentials whose owner was physically
present at the workstation. Subsequently, the service provider verifies the authentication response
(6). If the response satisfied the access control policy, access is granted to the protected resource
over the secure channel (7).

U ↔ P: accessRemoteService():

(1) U→ R→ P : access request

(2) R ↔ P : Ks := authKeyAgreement(CertP , SKP )
(3) R ← P : {auth req}Ks
(4) T ↔ R : auth resp := invokeSecureAp({auth req, CertP })
(5) R ↔ P : assertData(T auth resp)
(6) P : if (! verifyAuthResponse(auth resp, PKUI , policy)) abort()
(7) U← R ← P : {resource}Ks

Table 5.2: The user gains access to a remote resource via his workstation.

5.3.3 Binding credentials to biometric data

Several mechanisms can be used to bind the biometric template of the user (BTU) to the user’s
credentials (CredU). This section further discusses some of these mechanisms.

Attribute based binding. The user registers with a biometric certificate issuer (e.g. the
government) which subsequently provides the user with one or more biometric certificates. These
certificates contain user information (e.g. name, data of birth, address, NRN) and the biometric
template of the user.

To verify the binding between the user’s biometric template and the user’s credential(s), the
trusted environment application matches the attributes contained in the credential with the in-
formation contained in the biometric certificate(s). If a matching set of information is found
which (sufficiently) uniquely identifies the user, the biometric template contained in the biometric
certificate can be used to identify the owner of the credential(s).

This approach is very scalable. Once the biometric certificates are issued, no additional over-
head is introduced when issuing credentials. While the binding verification procedure can be
straightforward when the same unique attribute (e.g. the NRN) can be found in both the bio-
metric certificate and the credential, it can also be complex if unique subsets of user information
need to be matched. Moreover, the credentials need to include a set of attributes that sufficiently
uniquely identifies a user and which is also contained in one of the user’s biometric certificates.
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This approach is especially useful for integrating the system proposed in this chapter in an existing
credential infrastructure.

Credential based binding. In credential based binding, a cryptographic hash of the user’s
biometric template is included in the user’s credentials.

Before using a credential, the trusted environment application verifies that the cryptographic
hash of the biometric template corresponds with the value included in the credential and that the
scanned biometric data matches with the biometric template.

This system allows a straightforward binding verification procedure. It, however, introduces
additional overhead as for each new credential the biometric template needs to be included. The
overhead, could, however, be reduced by extracting the template from an existing credential.

Hardware based binding. In hardware based binding, the credentials of the user are stored
on a tamperproof device (embedded in C), together with the biometric template of the user. The
trusted application running on he tamperproof device is certified, allowing it to authenticate to a
third party.

The trusted environment application on the workstation initiates an authenticated secure chan-
nel with the tamperproof device. The tamperproof device subsequently transfers the credentials
and biometric template to the trusted environment application. The credentials and biometric
template are, consequently, bound under the tamperproofness assumption.

This system allows a straightforward binding verification procedure and, moreover, provides a
secure environment for storing the credentials of the user. However, it also requires an additional
hardware infrastructure to be rolled out and it increases the complexity of the credential issuance
phase as the credentials need to be stored on the tamperproof device over an end-to-end encrypted
channel with the credential issuer. Moreover, it does not allow easy integration of existing creden-
tial infrastructures. This approach is especially useful in settings where a tamperproof hardware
infrastructure is already available such as bank or SIM cards.

5.4 Evaluation

5.4.1 Security and privacy analysis

5.4.1.1 Requirements review

This section discusses how the requirements presented in section 5.2.2 are realized in the design.

Functional requirements. A credential technology independent notation was used during the
system design. Furthermore, as discussed in the privacy requirements review section, the system
does not require the disclosure of any uniquely identifiable information to the service provider.
This allows privacy preserving credential technologies to be used to their full extent, satisfying
requirement F1.

The only component in the system that is uniquely dedicated to one user is the credential
carrier. This component can be implemented on a mobile device such as a smart card or a
smartphone. T is user independent, hence, not restricting the user to his own workstation(s),
satisfying requirement F2. The workstation does need to meet certain requirements. It needs to
be equipped with a biometric scanner and provide a secure environment for running T .

The technology for secure environment applications is being embedded in commodity off-the-
shelf workstations, satisfying requirement F3. However, the used technologies are not by default
enabled. Hence, some BIOS configuration changes need to be made and some additional software
deployed (i.e. the trusted environment binary and some middleware).

The trusted environment application can easily be updated by distributing a new binary to
the workstation and updating the digest of the application with the credential carrier and ser-
vice providers. This can be managed by a trusted third party that certifies and revokes these
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digests. This allows the integration of additional biometric technologies or credential technologies,
satisfying requirement F4.

Security requirements. The authentication credentials of the user are bound to his biometrics.
The trusted environment application requires a reading of the user’s biometrics to verify the
biometric binding. The service provider is assured that the credential proof was generated by a
trusted application, ensuring that the biometric verification was performed, satisfying requirement
S1.

The credential operations are executed in the secure environment on the workstation. Its
integrity is verified by the service provider and the credential carrier of the user. Hence, the user
can trust the information provided by the application and, hence, give an informed consent to the
transaction. Since the authentication response is bound to the certificate of the service provider,
it cannot be abused for authentication towards other parties, satisfying security requirement S2.

Privacy requirements. To protect the privacy of the user, the system should avoid leaking
additional information, apart from what is leaked by the used credential technology. If DAA is
used to assert the data from the trusted authentication application, the system only leaks the group
information in which the DAA credential was issued and the digest of the trusted authentication
application (T ). If sufficient TPMs are included in the DAA group, this information cannot be
used to identify users or workstations. As T is also released to the remote party, it must not
be uniquely identifiable. This can be realized by embedding the platform dependent code (i.e.
the drivers for the biometric reader(s)) for all the supported platforms in T . This results in an
identical T for all users but is less flexible (e.g. adding new drivers) and increases the trusted
computing base. A second option is deploying a limited set of T binaries, each targeting a single
or limited set of hardware configurations. This decreases the anonymity set of the user but is
more flexible and decreases the trusted computing base compared to the previous option. Hence,
privacy requirement P1 is satisfied.

5.4.1.2 Adversary model discussion

Assumption A1 is required to ensure a trustworthy attestation of T . If the attestation is not
trustworthy a malicious user can use credentials obtained from a legitimate user (i.e. stolen or
shared) to satisfy the access control policy of a service provider. It also allows malicious users to
steal credentials from legitimate users as C can be wrongfully assured that a trusted application
is running. To mitigate this risk, the keys of compromised TPMs should be revoked.

Assumption A2 is required for similar reasons as A1 since implementation flaws could be
exploited to produce undesired behavior of T . The functionality of the trusted authentication
application is kept minimal (i.e. obtaining user credentials, biometric verification and user au-
thentication). The code contained in the trusted application is therefore minimal, decreasing the
chance of bugs and suggesting that formal verification is possible. Moreover, as mentioned in
the functionality requirements review section, the trusted environment application can be easily
updated after which the previous version can be revoked by blacklisting the digest (i.e. T ).

Assumption A3 ensures that the false acceptance rate of the biometric technology used does
not allow malicious users to use the credentials of other users. This could by achieved by using
multiple biometric traits.

Assumption A4 ensures that the credentials of the user are not leaked to an attacker. This
would impact the privacy of the user as private information may be contained in the credentials and
provides opportunity for abuse if service providers do not require biometric binding verification.

5.4.1.3 Discussion

Although the system provides additional protection against credential sharing and theft, there
exist attack vectors that can be used to exploit the system. These attack vectors are further
discussed in this section.
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Biometric verification. Ideally, the biometric reader used for obtaining the biometric data
of the user is bound to the workstation on which the user is working. However, most biometric
scanners are plug-and-play and can, hence, be easily removed and replaced with other hardware
devices. If a fingerprint reading of the user is obtained, it can be replayed as a fresh reading. This
risk can be mitigated by implementing a protocol between the trusted environment application and
the reader that endorses the biometric reading. To prevent relay attacks, the trusted environment
should also be able to verify that the used biometric reader is, in fact, attached to the workstation
on which the trusted environment is running.

Untrusted OS. The service is consumed via the untrusted workstation, this can have implica-
tions on the security and privacy of the system.

To violate the privacy of the user, the service provider can use application fingerprinting [39]
or network traffic analysis to link different sessions of the user. Hence, techniques need to be used
to anonymize network traffic [64, 65] between the workstation and the service provider. This is
not enforced by the system, hence, the workstation needs to be trusted to correctly apply these
techniques to protect the privacy of the user.

Malware on the untrusted OS can hijack and transfer active sessions the user established to
a remote workstation. Similarly, a user could exploit this to authenticate to a service on behalf
of a friend. Especially data provisioning services (e.g. news sites) are vulnerable to this type of
attack. Services such as eBanking where transactions are signed are less vulnerable to this type
of attack as they can be entirely processed in the trusted environment.

5.4.2 Applicability

This section discusses two possible application domains in which the system presented in this
chapter can be used to realize increased security compared to currently deployed systems, namely
eID systems and online banking.

5.4.2.1 eID Systems

typically allow the user to access a wide range of personal services. This can go from very privacy
sensitive services such as online tax submission to less privacy sensitive services such as pay-per-
view news site. While these privacy sensitive services will typically only be accessed from a trusted
home computer, other services might be accessed on workstations not fully trusted by the user.
However, when using the same authentication credentials for the privacy sensitive and the other
services, malware on an untrusted workstation could use the authentication credentials to access
other services then requested by the user. The system presented in this chapter prevents this type
of abuse by correctly informing the user about the service which will be accessed.

5.4.2.2 Online banking

enables a wide variety of banking services (e.g. viewing the status of your bank accounts, loans
and execute bank transactions) via a workstation connected to the Internet. The user owns a
credential with which he can log in and authorize transactions (e.g. wire transfer).

In current eBanking systems this secret is stored in an smart card (i.e. the bank card of the
user). To authorize transactions, the details of the transaction are transferred to the bank card
that subsequently generates an authorization response. This approach protects the credentials of
the user but is vulnerable to phishing attacks. Our approach also tackles the latter as the secure
execution environment application correctly informs the user about the pending transaction.
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Chapter 6
Context-Aware Services

6.1 Rationale and Motivation

As the user becomes swamped with more and more information, filtering this information becomes
ever more important. This is especially true for mobile devices where small screens and limited
input capabilities form an obstacle when searching for information. Recommender systems can
offer a solution because they learn the preferences of the user and filter out the most relevant
information. On mobile devices, this recommendation process can be further improved by taking
into account the user’s current context and even their current activity.

Smartphone and mobile internet usage is growing at a fast pace. For some time now, websites
have been using context in a limited way to deliver a personalized experience. A typical use case
is the delivery of advertisements tailored to the user’s language and general location. Connected
mobile devices can derive a much more detailed model of the user context by using various physical
sensors and online information services. The GPS receiver provides a precise location. Accelerom-
eter data can hint at the current method of transportation (e.g. walking, cycling, riding the train).
Online information services can tell us if the user is in a busy city center, in an urban space or
in a rural environment. All of this information can be used to anticipate the user’s needs and
personalize various applications.

6.2 Application Description

6.2.1 Requirements

The primary goal is to develop a software framework that is capable of detecting the activity
and context of the user of the mobile device. Secondly, a proof of concept application must
be developed that leverages this framework to deliver a personalized service. This application
must recommend the most relevant and interesting information to the user based on their current
activity and context, without losing sight of the need for privacy and transparency.

6.2.1.1 Activity Detection Framework Requirements

• Detect basic activities such as standing still, sitting down, walking, running, cycling.

• Detect complex activities such as sitting down on a moving train.

• Easy and efficient integration into other applications.

• Limit battery drain.
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6.2.1.2 Proof of Concept Requirements

• Integrate the activity framework so the user context can be determined.

• Create a personal interest profile for the user based on the locations they visit, the activities
they take part in and the events they attend.

• Assist the user in quickly finding the information that is most relevant under the current
circumstances through a context-aware recommendation system.

• Design and implement a modular, context-aware recommendation framework that combines
multiple techniques. A modular approach allows for specific recommendation techniques to
be turned off in the interest of privacy and transparancy.

• Provide a graphical user interface for presenting points of interest and collecting feedback.

6.2.2 Components

This section describes the components of the entire proof of concept application. Like the client
application, the activity detection framework runs entirely on the mobile device itself, but its
description is kept separate from the (graphical) user client.

6.2.2.1 Activity Detection Framework

The detection framework runs as a background service so that it can still collect sensor data when
the client application is sent to the background. Activity detection occurs through three distinct
steps, where the output of each phase is used as the input for the next phase. At the end of
this process, raw sensor data from a multitude of sources will have been converted into a complex
activity.

• Monitor sensors, physical or otherwise.

• Process the sensor data.

• Analyse the data to determine the current context.

6.2.2.2 Server

The server-side part of the proof of concept has the following components:

• Recommender system: a hybrid recommendation system that combines multiple tech-
niques to determine what type of activities fit a particular user context.

• Information retrievers: components that retrieve data from external services such as
point of interest data or event information.

• Support functions: various methods for creating and managing user profiles.

• Connection: server functions are exposed through a webservice.

6.2.2.3 Mobile Application

The mobile application is made up of five main components:

• ApplicationManager: creates an instance of the application according to the model-view-
controller pattern and manages access to the other application components.

• ServerManager: used for communicating with the server.

• RecommendableManager: retrieves a list of recommended activities or events.
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• ContextManager: integrates the activity detection framework and notifies other compo-
nents when the context changes.

• FeedbackManager: collects and stores user feedback.

6.3 Validation

6.3.1 Prototype Description

6.3.1.1 Activity Detection Framework

The implementation details of the three phases of activity detection (sensing, processing, analysis)
are discussed here.

Monitor sensors. Mobile platform have many kinds of sensors. Some sensors only deliver new
data when a particular value has changed. An example of such a sensor is the proximity sensor,
which is only triggered when the user raises the phone to their ear. These sensors can be monitored
all the time. Other sensors, like GPS, deliver new data constantly. This type of sensor will use up
a lot of battery power, so the framework tries to monitor them only when needed. In addition to
hardware sensors on the phone itself, the framework provides custom sensors that use data from
online services. An overview is given here:

• Acceleration

• GPS location

• GSM Cell ID

• Proximity to ear

• Battery status

• Urbanization degree

• Weather

Process sensor data. Before it can be analyzed, the raw sensor data must be processed into
structured data. The framework offers processing implementations that can each be attached to
a particular sensor. A few interesting Processors are described here.

• MovingToProcessor: takes the output of the GPS sensor and generates a list of interesting
hotspots (locations) that the user is currently moving towards.

• SpeedProcessor: uses the GPS sensor output to determine the user’s current velocity.

• HotSpotProcessor: using either GPS or CellID data, this processor determines whether
the user has arrived at a particular hotspot.

• CellIDProcessor: receives a list of recent locations as determined by the CellIDMonitor
and computes the number of cell handovers and approximate distance traveled.

• AccelerationProcessor: determines the basic user activity (sitting, walking, running) from
the X-, Y- and Z-axis acceleration data provided the AccelerationMonitor. A Support Vector
Machine model was trained with motion data from 11 test users, allowing the framework to
quickly classify the user’s current movement type.
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Analyse data. In this final step, the output of the Processing phase is analysed to determine
the actual user context. A number of Goals may be triggered when framework is reasonably
sure that the processed data meets certain requirements. To decrease the chance of incorrectly
classifying the context, multiple iterations may be required before the framework will conclude
that a particular Goal was reached.

The basic principle is that a complex activity such as sitting down on the train or walking
around in the city center can be defined as goals between which there exists some temporal
relationship, such as the activities taking place simultaneously. This way, a developer that is
using the detection framework can easily define what actions the application should perform for a
given user context.

A few Goals are defined here:

• BasicActivityGoal: determines whether the user is standing still, walking, running or
cycling.

• CityGoal: triggered when the user is in a city.

• TrainCellIDGoal: activated when the battery is being charged.

• TimeGoal: determines the time of day, such as morning, evening, office hours, weekday,
weekend.

• HotspotGoal: triggered when the user reaches a particular location.

• WeatherGoal: decides on weather conditions, such as sunny, (partially) clouded, rainy.

Two kinds of temporal relationships are currently supported:

• ParallelCondition: this condition checks whether two or more Goals are met simultane-
ously.

• TimeCondition: checks whether two goals were met independantly of eachother within a
given timeframe.

6.3.1.2 Context-Aware Recommendation Framework

Recommending context-appropriate events or activities is a three-phase process. Figure 6.1 gives
a schematic overview of the process.

First, four models determine which categories are most appropriate for the given user context.
Events or activities that are inappropriate under the given context are discarded.

• ActivityModel: a knowledge-based approach that consists of basic rules. Users that are
walking towards a train station are likely interested in train schedules. Users that are in
a new city in the evening may be interested in restaurants. This model requires no prior
knowledge of the user’s interests and helps to solve the cold start problem of recommendation
systems.

• HistoryModel: keeps track of the user’s history and explicit feedback and thus learns what
type of events or categories have proven relevant for this user under a given context.

• PopulationModel: uses the same data as the HistoryModel, but from all users in the
system to identify general trends in the population.

• PreferencesModel: lets the user set explicit preferences for what type of activities or
events to suggest for a particular context.
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Figure 6.1: Context-aware recommendation framework.

After determining which categories are best suited, the framework retrieves activity or event
data from online services. This way, the framework does not spend power and network traffic
retrieving items that will not be recommended anyway.

Finally, the framework assigns a score to each event or activity based on the user’s own interests
based on five recommendation models. Some models again incorporate the user context, while
other models may use general trends from the entire user base.

• CollaborativeFilteringModel: a straightforward collaborative filtering approach using
Pearson correlation that does not consider the current context.

• StatedPreferencesModel: uses explicitly stated preferences to rank the activities or
events.

• LearnedPreferencesModel: favors activities or events with metadata that is similar to
items that the user has rated positively in the past under similar contextual circumstances.

• DistancePunisherModel: discourages activities or events that are further away. This is
a function of both current method of transportation and weather circumstances; users will
be willing to walk a little longer if it is sunny.

• BoredomPunisherModel: attempts to increase serendipity and novelness of the recom-
mended activities or events. This has a stronger influence on some categories than others.
The user will not be recommended a movie he has already paid to see. A restaurant that
was visited previously and rated favorably may again appear in the list of recommendations,
but behind a new venue.
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(a) (b) (c)

Figure 6.2: Screenshots of the mobile application showing the Settings screen (a), stated prefer-
ences (b) and recommendation (c).

6.3.1.3 Mobile Client

After starting the application, the user is asked to either provide his credentials or create a new
account. The user is then presented with four application tabs that each serve a specific purpose.
For the purpose of this demonstrator, we will focus on the Home and Settings tabs. The Friends
and Search tabs allow the user to manage his friends list and indicate who is currently in their
company. This is additional information that can enrich the context even further, allowing for rec-
ommendations that take the entire group’s interests and context into account. This functionality
will be available in a future iteration.

Home The Home tab, seen in 6.2(a), presents a list of nearby points of activities, sorted by
relevance given the current user context. The items are grouped by category. The user can give
explicit feedback in the form of a thumbs up or thumbs down rating. The application tries to
show as much background information as is available. In the case of a train, this includes the
departing time, platform number and estimated delay. Movies include a brief description and a
list of screening times.

Settings The Settings tab, shown in 6.2(b) and 6.2(c), lets the user assign an explicit preference
for the various categories. This solves the cold start problem of recommendation systems as well
as giving more insight into why a particular activity is being recommended. It also lets the user
set their mood, since this is not something that can be detected automatically.

6.3.2 Evaluation

In this section we evaluate if the activity detection and proof of concept meet the stated require-
ments. We also let a small panel of test users evaluate the application in a real-world setting.
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6.3.2.1 Activity Detection Framework

The activity detection framework is able to detect basic activities such as walking or standing
still as well as more complex contexts like walking towards the station in the rain. The proof of
concept that we have developed illustrates how applications can integrate the framework. It is
sufficient to start a background service, activate the desired sensors and register listeners that will
be notified when the context changes. By only monitoring desired sensors, the framework reduces
battery drain. Other techniques such as falling back on GSM Cell ID rather than GPS further
reduce power consumption.

6.3.2.2 Proof of Concept

The proof of concept consists of a mobile application and a context-aware recommendation frame-
work. This recommendation framework combines multiple techniques to find the most appropriate
content. The PopulationModel uses data of all users, reducing transparency and posing a risk to
the privacy of the user. If the user were to choose to disable this particular model, no data would
have to be sent to a central server and the user would still get recommendations based on the
other three models. The ActivityModel, PreferencesModel en HistoryModel approaches can all
be performed on the mobile device itself. The framework can thus offer better recommendations
to users that choose to disclose some information, while still adding value for users that wish to
keep their usage data entirely private. The mobile application is able to deliver a personalized
experience to users, whether they are in their hometown or an entirely new location.

6.3.2.3 User Test

To test whether the application creates any value for the end-user, we asked a test panel of sixteen
users to install the proof of concept on their smartphone and try it out in their daily activities. The
users, all between the ages of 20 and 30, had a lot of experience with smartphones and frequently
used their mobile device in their daily life. They were asked to use the application at least once
per day, and at least three times outside their home. After one week, they were given a survey
consisting of nine multi-point (Likert-scale) questions and three open questions. Figure 6.3 shows
the response to three of the multi-point questions, indicating users generally felt the application
is useful and provides interesting recommendations.

Figure 6.3: User test survey response.
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Chapter 7
Mobile Electronic Payments

7.1 Rationale and Motivation

Mobile electronic payments are rapidly becoming a reality. There is no doubt that users of mobile
phones are willing and even asking to be able to use their phone as a convenient and always
available payment method. In May 2012, Gartner [43] predicted a total of $171.5 billion in mobile
payment transactions for the year 2012, a rise of over 60 percent compared to 2011. They estimate
a total of 212.2 million people (an increase of 32 percent from 160.5m in 2011) using some form of
mobile payment service. They predict mobile payments will keep increasing to a volume of $617
billion by 2016.

For the moment, SMS based payment schemes are dominant in developing markets, while in
more mature markets, about 80% of payments are made via mobile web portals. NFC adoption
is still rather low and Gartner predicts it will take until 2015 before NFC payments become
mainstream. This is due to the fact that NFC payments require changes in business case and
better collaboration between banks, mobile carriers, mobile device manufacturers, card networks
and merchants.

Not only require NFC payment schemes a change in behavior by the stakeholders, they are
also more difficult to secure than pure web portal based solutions. Therefore, we have selected to
different approaches to mobile payments applications and developed them in two proof of concept
demonstrators.

7.1.1 Related work

Mobile payment systems and wallets are rapidly growing and new initiatives are being placed in
the market every week. We will briefly discuss the most prominent players that are active today:

Google Wallet The Google Wallet App for Android phones is a Cloud based mobile credit card
solution. When the user registers for this service, he can connect one or more real credit
cards to his Google Wallet account. The card details are stored on the servers at a Google
data center and not on the phone. Instead, a virtual prepaid Mastercard issued by Bancorp
is stored on the embedded SE inside the Android phone. When you pay in-store by tapping
your phone, Google Wallet passes the virtual card to the merchant for payment, and charges
your selected credit or debit card for the purchase.

Mastercard Paypass MasterCard PayPass is an EMV compatible, contactless payment feature
based on the ISO/IEC 14443 standard that provides cardholders with a simpler way to pay
by tapping a payment card or other payment device, such as a phone or key fob, on a point-
of-sale terminal reader rather than swiping or inserting a card.1 Currenlty, Mastercard is in

1Citation from Wikepedia.
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the process of certifying NFC mobile devices for approval to be used for mobile payments.
Approved devices will be allowed to carry the MasterCard PayPass Ready identifier. The
certification entails the mobile device, the secure element and the wallet application.

As far as we know, Google Wallet is actually using a Mastercard Paypass account.

Online Wallets There are many players in the field of Online Wallets. In these systems, the user’s
account is stored in an online service. The user needs to “charge” his account with virtual
money. This charging process depends on the actual wallet application (using debit/credit
card transactions, through the mobile operator, etc.). In order to pay, the user just needs
to identify and or authenticate himself to the mobile service and the amount is debited
from his account. This identification or authentication can take many forms. Popular
examples include sending an SMS (identification through phone number), using an RFID
tag (identification through serial number of tag), or using a mobile App (authentication
through username/pasword or more advanced techniques).

7.2 Application Description

7.2.1 Actors

The two mobile payment applications described here involve 3 different actors the User, the Mer-
chant, and the Bank. Both the User and the Merchant have a “Wallet” (in the case of the User
this is stored on his mobile phone) and an account at the Bank.

These actors interact with each other using 3 protocols:

Withdraw. The User uses this protocol to Withdraw a certain amount from his account in the
Bank and transfer it to his Wallet on the mobile phone.

Spend. The User pays the merchant. This transaction is “stored” in both the User’s and Mer-
chant’s Wallet.

Deposit. The Merchant presents his Wallet to the Bank and deposits the money present in the
wallet to his account.

7.2.2 Requirements

7.2.2.1 Security Requirements

S1 Payments only happen with the user’s consent.

S2 Private credentials used in the payment protocol are stored and used in such a way that
unauthorized access is impossible, even if the phone is stolen.

S3 It is possible to revoke payment credentials in the case the smart phone is lost or stolen.

S4 It is impossible to forge or insert new “digital cash” in the system. This means that digital
cash, coins, stored value, vouchers, etc. can only enter the system through a valid run of the
Withdraw protocol. Similarly, the Deposit protocol ensures that only valid digital coins are
accepted by the bank.

7.2.2.2 Privacy Requirements

P1 The payment system should not release personal user data unless strictly necessary for that
particular transaction.
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7.2.2.3 Functional Requirements

F1 Transactions are atomic.

F2 The system can be realized using commodity hardware.

F3 The payment scheme allows offline transactions between the merchant and the user, i.e. no
online connection to the bank or any other third party is required during the payment phase.

7.2.3 Emulation of contactless smartcards with stored value

The first mobile payment application we consider is emulation of a contactless smartcard with
stored value. In this setting, the user’s smartphone presents itself as a contactless smartcard to
the merchants payment terminal.

7.2.3.1 User Wallet

The user has a smartcard embedded in his mobile phone. This smartcard contains a stored
value counter field that can be incremented or decremented with a specific value. The smartcard
enforces certain access rules on writing and or consulting the stored value. The access controls
and authentication mechanism depending on specific capabilities of the smartcard that is used.
This will be explained more in detail in Sect. 7.3.1.1.

The User interacts with the smartcard through a mobile App that is running on the smart-
phone. This App allows the user to consult the stored value and to approve or deny charging the
stored value from an account (Withraw money) or Spending money towards the merchant.

There are three types of smartcards that can be embedded in a mobile device. We will refer
to embedded smartcards as Secure Elements (SE). In order to add Applets (functionality) to
these smartcards, the issuer of the Applet needs to authenticate himself to the SE with valid
authentication credentials. The party controlling these credentials depends on the type of SE.

1. Embedded by the OEM in the mobile device itself. In this case, the SE is integrated within
the hardware of the mobile device. The OEM (or a designated partner) controls the access
rights to manage Applets on the SE. The Google Wallet (controlled by Google) is an example
of this type of SE.

2. Embedded in the SIM. Here, the SE is part of the SIM. As the SIM card is owned by your
service provider, it is also this service provider that has control over the SE.

3. Finally there are also SE’s embedded in SD memory cards. In this case, the SE can be
purchased by anybody and the owner of the SD card has control over the SE. Obviously,
any third party that is has build a business case on top of this type of SE is free to replace
the credentials in order to keep control over the SE after selling it to the end customer.

As only the third option allows easy and independent research on SE Applet development, our
payment application is running on an SE embedded in a SD memory card that is plugged in the
micro SD slot of the phone.

7.2.3.2 Merchant Wallet

Then Merchant’s payment terminal should at least be able to perform the following actions:

1. Execute a debit transaction on the User’s SE. For this, the terminal has to authenticate
to the SE using the necessary credentials. These credentials can either be stored locally in
the terminal or the terminal can act as a “bridge” or proxy between the SE and an online
payment service.

2. Generate a tamper proof log of the executed transactions. This log can be used by the
Merchant to claim money from the Bank.
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7.2.3.3 Payment Protocols

Withdraw The Withdraw protocol is executed between the User and the Bank. This protocol
credits the digital counter value that is stored within the SE and removes the equivalent
amount from the User’s bank account. The identification of the user is usually carried out
in some out of band mechanism, unrelated to the SE. For example, a user can use his debit
or credit card to authenticate to the Bank. In order to carry out the credit transaction, the
Bank requires access to the credit credentials related to this SE.

Spend The Spend protocol is executed by the User and the Merchant. Using the necessary debit
credentials, the Merchant decreases the counter value on the SE with the desired amount.
The Merchant’s terminal or online service should generate a tamper proof log of this debit
transaction. An example of how this works in practice with DESFire cards is shown in
Sect. 7.3.1.1.

Deposit The Merchant shows his transaction log and obtains the monetary value of all transac-
tions on his account.

7.2.4 Mobile anonymous e-cash system

The second mobile payment application we have developed within the MobCom project is an
anonymous e-cash system. In order to fulfill the security and privacy requirements specified
above, an e-cash system should at least have the following properties:

• Forgery of e-coins is hard,

• duplication should be either prevented or detected,

• multiple runs of the Spend protocol should be unlinkable (anonymity).

As described in Section 7.1.1, many different e-cash systems have been proposed in the litera-
ture. Some of them are focussed on efficiency, while others try to achieve more advanced properties
such as the possibility to transfer money from one user to the other, while still others aim at max-
imizing the privacy protection of the users. For the anonymous e-cash system in the MobCom
project we were particularly interested in a scheme that allows to share the necessary computa-
tions between the smartcard in the phone and the cpu of the mobile phone itself. Without this
load sharing it is currently not possible to implement the demanding cryptographic operations, as
the smart card does not have sufficient resources (RAM and cpu).

7.2.4.1 User Wallet

The user has a smartcard embedded in his mobile phone. This smartcard contains the user’s
private key that is used to authenticate to the Bank during the Withdraw protocol. Not only is
the private key stored in the smartcard, all computations in which this private key is involved
are also carried out on the smartcard. This way, the private key never has to leave its secure
environment.

The User interacts with the smartcard through a mobile App that is running on the smart-
phone. This App allows the user to execute the Withdraw and Spend protocols.

7.2.4.2 Merchant Wallet and Bank implementation

Both the Merchant and Bank also require credentials that they need to store securely in order
to avoid unauthorized access. The actual security mechanisms used in order to secure the con-
fidentiality, integrity and potential recovery of these credentials is not within the scope of this
work.

For a Bank it is probably practical to store the required credentials in some network-enabled
HSM (Hardware Security Module). For the Merchant the solution of choice depends on the setup
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of the sales channel and the scale (e.g., a large distributed online store might also invest in an
HSM, while a small local merchant might use a similar setup as the User).

7.2.4.3 Payment Protocols

In the e-cash system selected for this application [18], all three parties in the system have a
public/private key pair (skP , pkP) where P can be the User (U), the Merchant (M) or the Bank
(B). The private key is only known to the party that owns it, a certified version of the public keys
is known by all parties. To explain the e-cash system without going into all the mathematical
details, we will show how a single-use electronic cash system could be designed.

Withdraw The Withdraw protocol (see Fig. 7.1) is executed between the User and the Bank.
By means of this protocol, users are able to convert money from their account into e-cash
coins. The user is only able to perform the Withdraw protocol by using his private key that
is verified by the bank against his registered public key. At the end of a successful protocol
run, the user is in possession of a set of e-cash coins and the bank has lowered the account
with the monetary value of these coins. A coin consists of the digital signature by the Bank
on the set of values (skU , s, t). Here s is a random serial number of the coin and t is a value
used to blind the identity of the user during the Spend protocol.

Spend The Spend protocol (see Fig. 7.2) is executed by the User and the Merchant. In order
to protect the anonymity of the user (i.e., the e-cash coins themselves should not reveal
the identity, for example the public or private key, of the User), the user does not provide
the actual coins to the Merchant, but a cryptographic commitment C on the coin, together
with a cryptographic zero-knowledge proof that the coin has been signed by the Bank. In
response to this “blinded” coin, the Merchant returns a random value R. Finally, the User
reveals the serial number s and the value T = skU + Rt. The user also produces a second
zero-knowledge proof that the values s and T correspond to the values inside the earlier
commitment C.

Deposit The Deposit protocol (see Fig. 7.3) is executed between the Merchant and the Bank.
The Merchant submits the values (s,R, T, π1, π2), where π1,2 are the two zero-knowledge
proofs provided by the User during the Spend protocol to the Bank. The Bank stores all
the submitted coins in a database and verifies the zero-knowledge proofs.

After the Deposit protocol, the Bank will check for double spending. If the database already
contains the same coins (all five values are the same), than the Merchant is accused of double
spending. If the Bank sees that its database already contains a coin with serial number s, but
with different values for the other elements of the coin, then the user is accused of double spending.
By combining the different values of s, R and T , the Bank is able to solve the set of equations
T1 = skU +R1t and T2 = skU +R2t for the values t and skU and identify the cheating user by its
private key skU .

7.3 Validation

7.3.1 Prototype Description

7.3.1.1 Emulation of contactless smartcards with stored value

The prototype implementation was primarily focussed on the User’s SE in combination with a
mobile phone running the Android 4.0 operating system. The User’s implementation consists
of two components. First, the DESFire [62] specifications have been used to write a complete
DESFire emulator in software that is running inside the SE in the phone. The SE itself is a
Giesecke & Devrient Mobile Security Card (MSC) SE 1.0 [33] that is running the Java Card
Operating System Sm@rtCafé Expert 5.0. The DESFire emulator is written as a Java Applet for
Java Card and is installed on the User’s MSC. The Second part is an Android App of which the
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Figure 7.1: Single-use e-cash Withdraw protocol.
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Verify π2

Figure 7.2: Single-use e-cash Spend protocol. C is a cryptographic commitment to the values in
the coin, while π1 is a zero-knowledge proof of the fact that the coin “inside” the commitment is
signed by the Bank. Finally, π2 is a zero-knowledge proof of the fact that s and T correspond to
the values earlier committed to in C.
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Figure 7.3: Single-use e-cash Deposit protocol.

primary role is to channel messages (APDU’s) between the the Android NFC system and the MSC
that is residing in the phone’s SD memory slot. As a secondary role, the Android App also offers
some functionality to the User: approve transactions and consult transaction logs.

The security of DESFire transactions is based on a shared symmetric key. Figure 7.4 shows
how this key is used to provide mutual authentication between the Terminal and the Tag ac-
cording to the DESFire standard. Once this authentication is completed successfully, commands
can be given from the Terminal to the Tag. This commands can be either in the clear or en-
crypted/authenticated with the shared key ki.

Terminal

Authenticate(i)

Encki
(rB)

Encki
(rA, r

′
B)

Encki
(r′A)

rA ∈R {0, 1}∗
r′B = ROL(rB)

r′A = ROL(rA)

rB ∈R {0, 1}∗

r′B
?
= ROL(rB)

r′A
?
= ROL(rA)

Tag

Figure 7.4: DESFire implementation of the Spend protocol in the stored value scenario. “ROL” is
the bitwise rotate-left operation, while ki is a shared cryptographic key between the two parties.

The Android App in combination with the DESFire emulator running in an NFC enabled
Android phone is capable of emulating a DESFire card towards any reader, without requiring
any changes to the reader hardware or software. Unfortunately, this requires the NFC system
of the phone to run in “Card Emulation Mode”, which is not supported by stock Android ver-
sions. For prototyping purposes, this has been resolved by installing a tweaked version of Android
(CyanogenMod 9.0) on the phone.

The Merchant and Bank prototypes are both implemented in Java SE and can run in any
environment that support Java and the necessary drivers for the USB NFC reader. The Bank is
able to carry out Credit transactions, while the Merchant is able to carry out debit transactions.
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Table 7.1: Response times of the e-cash implementation
Protocol Host (s) MSC (s) total

Withdraw 1.020 17.804 18.824
Spend 0.148 23.340 23.488

7.3.1.2 Mobile anonymous e-cash system

Again, the prototype implementation effort was primarily targeted at the User side. Again, the
G&D MSC SE 1.0 was used in combination with an Android mobile phone. The e-cash payment
system was chosen for prototyping in order to investigate how fast an actual implementation would
run within the limited resources of the Java Card Operating System in combination with the more
powerful capabilities of an Android mobile phone.

For this reason, the Compact e-cash protocol developed by Camenish et al [18] was adapted to
split the load of the demanding computations between the cpu within the MSC and the CPU in
the mobile phone (the host). During the redesign of the protocol, special care was taken to ensure
that no information about the secret key of the User leaks from the MSC to the mobile phone.

7.3.1.3 Evaluation

Although the calculations were offloaded to the host, a large part of the calculations still have to
be carried out by the MSC. Because of the low CPU speed, EEPROM and RAM restrictions (1600
kB and 75MB respectively) and the very restricted Java RE on the MSC, the implementation on
the MSC was not trivial and is still very time consuming. Table 7.3.1.3 shows the response times
of the host and MSC for both the Withdraw and Spend protocols. This table clearly shows that
the response times are unacceptable for practical use in real life applications. The table also shows
that it is mostly the MSC that is just to slows to perform the demanding computations. But even
the host performance for the Withdraw protocol is borderline (> 1 second).

Although there probably still are some software optimizations possible, an acceptable im-
plementation would need to be 20 times faster. We don’t think this is possible with software
improvements only and can conclude that a practical implementation of e-cash systems requires
dedicated hardware co-processors to carry out the calculations.
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Chapter 8
Conclusions

We conclude the first 24 months of the project with a report on our progress creating the privacy-
preserving identity framework and the domain-specific application prototypes that were layed
out in the requirements document. The applications described here serve as validation of the
requirements study and the basic research that has been performed so far. They will also be
presented to the usergroup as a summary of the current state of the project, allowing us to gather
additional input for the direction and focus in the months and years to come.
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