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Abstract

This work studies the use of observation uncertainty mea-

sures for improving the speech recognition performance of an

exemplar-based source separation based front end. To generate

the observation uncertainty estimates for the enhanced features,

we propose the use of heuristic methods based on the sparse

representation of the noisy signal in the exemplar-based source

separation algorithm. The effectiveness of the proposed mea-

sures is evaluated in a large vocabulary noisy speech recogni-

tion task. The best proposed measure achieved relative error

reductions up to 18 % over the baseline feature enhancement

method without uncertainty measures.

Index Terms: robustness, speech recognition, source separa-

tion, observation uncertainties

1. Introduction

Feature enhancement is a common way to improve the perfor-

mance of automatic speech recognition (ASR) in the presence

of noise. In general, the goal is to produce estimates of the un-

derlying clean speech features, discarding the effects of noise

on the signal. Feature enhancement can be seen from a source

separation point of view, where the task is to extract the origi-

nal signals, in particular the uncorrupted speech signal, from a

mixture of speech and noise.

A feature enhancement method for improving noise robust

speech recognition based on source separation was recently pro-

posed in [1]. The feature enhancement method is based on rep-

resenting the noisy observations using a sparse, non-negative

linear combination of a predefined collection of speech and

noise samples called exemplars. Non-negative matrix factor-

ization (NMF) methods are used to obtain this sparse represen-

tation [2].

The reconstruction of the clean speech signal, however, is

never exactly identical to the original. Taking into account the

reliability, or conversely, the uncertainty of the reconstructed

features using either observation uncertainty techniques [3, 4]

or uncertainty decoding [5] generally improves ASR perfor-

mance in noisy conditions. In order to utilize these methods,

uncertainty estimates need to be produced for the observed fea-

tures.

In this work, we investigate the use of observation uncer-

tainty measures in improving the speech recognition perfor-

mance of the feature enhancement front-end of [1]. As the

source separation algorithm does not directly produce estimates

for the variance of the enhanced features, we propose heuris-

tic methods to characterize the uncertainty of the observations.

Four measures are constructed based on the structure of the

sparse representation in the exemplar-based source separation

approach and evaluated in a large vocabulary continuous noisy

speech recognition task.

2. Source separation

2.1. Exemplar-based representation of noisy speech

The source separation technique employed in this paper was

presented in [2]. It operates on magnitude mel-spectrograms Y

of the noisy speech signal, described as a B × T dimensional

matrix (with B frequency bands and T time frames), which is a

linear addition of underlying clean speech S and noise N mag-

nitude spectrograms. To simplify the notation, the columns of

each matrix are stacked into the vectors y, s and n, respectively,

each of length D = B · T .

We model s as a sparse, non-negative linear combination of

example speech spectrograms exemplars, which have been ex-

tracted from the training data. The exemplars are denoted as as
j ,

with j = 1, . . . , J denoting the exemplar index. Accordingly,

the noise spectrogram is modelled using K noise exemplars an
k,

with k = 1, . . . , K. This can be expressed as

y ≈ s + n (1)
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with xs and xn sparse representations of the underlying speech

and noise, respectively. In order to obtain x, we minimize the

cost function:

d(y,Ax) + ||λ .∗ x||1 s.t., x ≥ 0 (5)

where d is the generalized Kullback-Leibler (KL) divergence

and the second term a sparsity inducing L-1 norm of the acti-

vations weighted by element-wise multiplication (operator .∗)
with vector λ = [λ1 λ2 . . . λL]. The cost function (5) is mini-

mized using a multiplicative updates routine as in [1].

2.2. Feature enhancement

Let us denote the noisy speech spectrum in frame t as yt. Sim-

ilarly, let us denote the spectra of speech exemplar j and noise

exemplar k in frame t as as
j,t and an

k,t, respectively. Models for

the clean speech and noise are then given as

s̃t =

J
X

j=1

xs
ja

s
j,t, (6)
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In order to decode utterances of arbitrary lengths, we adopt

a sliding time window approach as in [1]. In this approach, we

represent a noisy utterance as a number of fixed-size, overlap-

ping speech segments, each of length T . For each segment, we

calculate clean speech estimates s̃t and noise estimates ñt as

described above. To get a single clean speech and noise esti-

mate for each frame of the original utterance, the segment-wise

estimates are then averaged over all the segments overlapping

the frame.

Instead of using the above clean speech estimates directly,

we further process the the original noisy features yt as follows.

A spectral domain filter ht is designed for each frame t as

ht = s̃t ./(s̃t + ñt), (8)

with ./ denoting element-wise division. The enhanced features

are then obtained as ŝt = ht . ∗ yt. The above feature en-

hancement procedure was first proposed and analyzed in more

detail in [1]. Finally, the enhanced features are transformed into

the acoustic model domain features ς̂t of the recognition system

described in Section 4.2.

3. Observation uncertainties

3.1. Use of observation uncertainties

In any feature enhancement task, the accuracy of estimated fea-

tures varies depending on e.g. the noise level in the original fea-

tures. Therefore, observation uncertainties [6] were proposed

in [3] to characterize the expected error i.e. variance in the clean

speech estimates ς̂t based on which the acoustic model likeli-

hoods are calculated. With estimated uncertainties, the point

estimates ς̂t can be replaced with the complete estimated pos-

teriors p(ςt|θ,yt), where θ denotes the parameters applied in

feature enhancement and yt the observed noisy speech features.

The likelihood of the q-th state of the clean speech acoustic

models M is then calculated as

L(q) =

Z

p(ς |θ,yt) p(ς |M, q) dς . (9)

Decoding with observation uncertainties is closely related to

so-called uncertainty decoding and has been successfully used

with several feature enhancement techniques; see [5] for a re-

view and discussion.

Assuming the states q are modelled as Gaussian mixtures,

the state likelihoods are calculated as a weighted sum over the

likelihoods of each mixture component l. Furthermore, assum-

ing a Gaussian posterior p(ςt|θ,yt) as proposed in [3], the like-
lihood of the l-th Gaussian component is calculated as

L(l ) =

Z

N (ς ; ς̂t,Σς̂,t) N (ς ; µ(l),Σ(l)) dς

= N (ς̂t; µ
(l),Σ(l) + Σς̂,t),

(10)

where µ(l) and Σ(l) are the mean and covariance of the l-th
Gaussian in the uncompensated clean speech model and ς̂t and

Σς̂,t are the mean and covariance of the clean speech posterior

estimate at frame t. Thus, decoding with observation uncertain-
ties reduces to adding the estimated uncertainties Σς̂,t to the

model covariances Σ(l). In this work, the covariances are as-

sumed diagonal, with the notation Σς̂ = diag(σς̂).

3.2. Uncertainty measures from source separation

The exemplar-based source separation approach produces an es-

timate of the clean speech features but does not directly allow

the estimation of feature variances that could be used as obser-

vation uncertainties. In this work, we consider several heuristic

measures based on the source separation algorithm for estimat-

ing the uncertainties of the enhanced features. Here we denote

by yt the noisy, observed mel-spectral features in frame t, and
by st and ŝt the underlying clean speech and feature enhance-

ment outputs, respectively. The following uncertainty measures

σ̂t are considered:

H1 Under the assumption that the enhanced features that dif-

fer the most from the observed noisy mixture are most un-

reliable, the uncertainty related to yt can be set propor-

tional to the relative energy difference between yt and ŝt

as proposed in [7]. Hence we define the uncertainty vector

as σ̂t = log [(yt − ŝt) ./yt] . Logarithmic compression is

used for better fit with the mixture of Gaussians used for

mapping the uncertainties; the mapping is discussed in Sec-

tion 3.3.

H2 If the exemplars that are chosen for the sparse represen-

tation of a particular observed feature are mostly selected

from the noise dictionary, the signal is likely to have been

relatively noisy. The enhanced features can therefore be

considered to be more uncertain than in the case when the

observation is represented primarily using clean speech ex-

emplars.

Accordingly, we propose to set the observation uncertainty

estimates for each frame t proportional to the ratio of the

summed weights of the noise and speech exemplar acti-

vations: σ̂t = g(
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), where
xτ,n

i and xτ,s
i are the noise and clean speech sparse repre-

sentations of Equation (3) for speech segment τ , and the

summation index τ ranges over the speech segments that

contain the frame t.

The normalization function g is an affine transformation

chosen independently for each utterance to scale the un-

certainty estimates to the interval [0, 1], as the range of the
proposed measure varies widely between utterances.

H3 If an observation does not match well with the clean speech

dictionary As, there is no single exemplar that would be

sufficiently similar to the underlying clean speech observa-

tion and the sparse representation of the clean speech will

consist of multiple different exemplars. In this case, also,

the uncertainty of the reconstructed features for that frame

can be considered relatively large.

We therefore propose setting the uncertainties (inversely)

proportional to the number of clean speech exemplars used:

σ̂t = g(
P

τ

P

i
f(p : xτ,s

i > 0.01)), where notation from

H2 has been used, and f(p) = 1 if the proposition p is true,

otherwise zero.

H4 Similar to H3, we can use the combined speech and noise

activation vector to consider also how well the noise is be-

ing modeled by the noise exemplars: σ̂t = g(
P

τ

P

i
f(p :

xτ
i > 0.01)), where xτ

i is the combined sparse representa-

tion in Equation (4).

H* A combined uncertainty measure denoted by H* is defined

as a simple concatenation of the uncertainty estimates for

methods H1–H4.

Finally, if the clean speech features st are known, an oracle

uncertainty estimate in the mel-spectral domain can be com-

puted as the squared error between the known clean speech

features and the enhanced features: [σ̂t]i = log [(ŝt − st)]
2
i
,



where log-compression is used for a better fit with the mix-

ture of Gaussians used in mapping the uncertainties. The mel-

spectral domain oracle uncertainties are denoted as OS in this

work. The oracle uncertainties computed in the acoustic model

domain as squared difference between ςt and ς̂t are denoted as

OA.

3.3. Mapping uncertainties between domains

The uncertainty measures proposed in Section 3.2 characterize

the uncertainty of either the produced mel-spectral feature com-

ponents or the entire frame. The decoding process described

in Section 3.1, however, requires observation uncertainty esti-

mates in the acoustic model domain. In this work, the uncer-

tainty estimates σ̂ are transformed to the acoustic model domain

observation uncertainties σς̂ using a Gaussian mixture model

(GMM). The joint distribution of the estimated and acoustic

model domain uncertainties is modelled as

p(z) =
X

k

P (k)N (z; µ(k),Σ(k)), (11)

where zT = [σ̂T log σT

ς̂ ] are the concatenated uncertainty vec-
tors, k is a mixture component index, P (k) are the component

weights, and µ(k) and Σ(k) the means and covariances. The

acoustic model domain uncertainties are logarithmically com-

pressed to improve fit with the model. The component index k
is assumed a hidden variable.

Given the uncertainty measure σ̂t calculated from the t-th
frame and the joint distribution from Equation (11), the mini-

mum mean square error (MMSE) estimate for the correspond-

ing acoustic model domain uncertainties is calculated as

E{log σς̂ | σ̂t, Λ} =
X

k

P (k | σ̂t, Λ) E{log σς̂ | σ̂t, Λ, k},

(12)

where σ̂t denotes σ̂ = σ̂t and Λ the model parameters. The

posterior probabilities for clusters k are calculated from P (k)
and likelihoods p(σ̂t | Λ, k) which are calculated using diag-

onal covariances. The cluster-conditional estimates are calcu-

lated as

E{log σς̂ | σ̂t, Λ, k} = µ2 + Σ12Σ
−1
11 (σ̂t − µ1), (13)

where µ1 and µ2 are the means of heuristic and acoustic model

domain uncertainties, Σ12 the cross-covariance, and Σ11 the

covariance of the heuristic uncertainties. The means and co-

variances are subsets of µ(k) and Σ(k) in Equation (11).

4. Experiments

4.1. Experimental setup

The proposed uncertainty measures were evaluated in a speech

recognition task using artificially corrupted clean speech data.

The clean speech data was taken from the Finnish SPEECON

corpus and the noise samples from the NOISEX-92 database.

Separate segments of factory noise recorded near plate-cutting

and electrical welding equipment were used as training set noise

and matching test set noise. In addition, a factory noise sample

recorded in a car production hall was used as mismatched test

set noise.

Training data for the acoustic models consisted of approxi-

mately 30 hours of clean speech from 293 speakers. The evalu-

ation set contained 564 sentences (57 minutes) of clean speech

from 40 speakers. Three variants of the evaluation set were

used: two with matching noise at SNR of 10 dB and 5 dB, and

one with mismatched noise at SNR of 10 dB.

The exemplar-based source separation method (Section 2.2)

was applied on 21-dimensional mel-spectral features calculated

in 25 ms windows with a 10 ms frame shift and processed in

T = 15 frame segments. The speech exemplar dictionary As

in Equation (3) had J = 8000 samples randomly selected from

read sentences in the clean speech training data, and the noise

exemplar dictionary An had K = 4000 random samples of the

training set noise.

The sparsity coefficient vector λ in Equation (5) was of the

form [λs · · ·λs λn · · ·λn], with λs and λn corresponding to the

clean speech and noise exemplars. Based on speech recognition

experiments on separate development datasets, we chose λs =
0.7, λn = 0.5 for matching noise and λs = 0.65, λn = 0 for

mismatched noise.

The GMM parameters in Equation (11) were trained us-

ing the expectation-maximization algorithm implemented in the

GMMBAYES Matlab toolbox1. The dataset used for parame-

ter estimation was a subset of 500 utterances (52 minutes) ran-

domly selected from the read sentences of the SPEECON train-

ing set, corrupted with the training set noise at SNR of 10 dB.

The target acoustic model domain uncertainties were computed

as the OA measure in Section 3.2.

Finally, two baseline systems were provided for compari-

son. One was trained on the clean speech training data and one

trained on multicondition training set i.e. the clean speech train-

ing data where each utterance is either used as clean speech or

corrupted with the training set noise, at SNR of 5 dB, 10 dB

or 15 dB, with uniform probability for each alternative. The

baseline systems are as described in Section 4.2.

4.2. Speech recognition system

Input speech is represented with 12 MFCC coefficients and log-

arithmic frame energy, and their first and second differentials.

Cepstral mean subtraction (CMS) and a maximum likelihood

linear transformation (MLLT) are applied as post-processing

steps. The acoustic models are state-clustered hidden Markov

models that use cross-word triphones as units. State feature dis-

tributions are modeled as Gaussian mixtures, and Gamma distri-

butions are used for state duration modeling; see [8] for details.

Language modeling is based on a variable-length, growing n-

gram model of statistical morphemes learned with an unsuper-

vised method [8]. 145-million word Finnish book and newspa-

per corpus was used in training the model. The decoder em-

ployes a one-pass time-synchronous Viterbi beam search algo-

rithm. Letter error rate (LER) is used to measure the recognition

performance as it is better suited for agglutinative languages

such as Finnish than word error rate (WER).

5. Results

Table 1 presents the speech recognition performance of the eval-

uated methods. The baseline recognizer, which does not use

observation uncertainties, was evaluated using the noisy fea-

tures (BL) and with the speech separation feature enhancement

method (SS). The recognizer using observation uncertainties

was evaluated with the oracle uncertainties calculated in the

acoustic model domain (OA) and in the mel-spectral domain

(OS) and with the uncertainty heuristics (H1–H4, H*). Re-

sults obtained with a multicondition trained baseline recognizer

(MC) are provided for reference.

All the uncertainty measures proposed in this work improve

recognition performance over the SS baseline. The overall best

1Available in http://www.it.lut.fi/project/gmmbayes/



Table 1: Letter error rates (LER) for the compared systems.

Matching noise Mismatched Clean

SNR 10 SNR 5 SNR 10 speech

BL 21.2 58.7 57.9 3.4

SS 10.4 22.8 21.8 3.4

OA 9.4 16.3 13.6 3.3

OS 9.3 18.0 18.3 3.3

H1 9.6 18.7 20.4 3.4

H2 10.1 19.6 20.5 3.4

H3 9.9 19.6 20.1 3.3

H4 9.9 19.7 20.5 3.4

H* 9.6 19.0 20.0 3.4

MC 6.5 12.9 17.2 4.4

heuristic, H1, achieves relative error rate reductions of 8–18 %

for matching noise and 6 % for mismatched noise. The corre-

sponding relative improvements with OS are 11–21 % and 16

%, respectively. Finally, with OA relative improvements of 9–

38 % are obtained.

The letter error rates for the matching noise at SNR 10 dB

are in general substantially lower than for mismatched noise

at SNR 10 dB, for all methods including the clean speech

trained baseline system. This is mostly due to the different fre-

quency characteristics of the noise samples, which causes cross-

comparison of the linear SNR values to be misleading. The

matching noise sample contains a strong low-frequency compo-

nent that dominates in a linear SNR measurement. A-weighted

SNR values for the nominal 10 dB and 5 dB matching noise sets

are 13.3 dB and 8.3 dB, respectively, whereas the SNR 10 dB

mismatched noise set has an A-weighted SNR of 9.3 dB.

6. Discussion

All the proposed uncertainty heuristics improved the recogni-

tion performance of the exemplar-based source separation fea-

ture enhancement method. The observed error reductions are

comparable with results reported for observation uncertainties

derived from the variance of a feature enhancement process [3]

and for similar heuristics evaluated with a sparse imputation

front-end [4].

The overall best performing method was the H1 measure

proposed in [7]. This is likely because the relative difference

of the enhanced and original features used in H1 has a direct

correspondence with the amount of attenuation in the spectral

domain filter ht employed by the feature enhancement method.

In contrast, when heuristics similar H3 and H4 which are based

on the number of active exemplars were evaluated in the con-

text of a sparse imputation, they were found to measure well the

reliability of the clean speech estimate s̃t [4]. In sparse impu-

tation, the clean speech estimate is directly used to compute the

enhanced features ς̂ .

The difference in recognition results for acoustic model do-

main uncertainties (OA) and the transformed mel-spectral do-

main uncertainties (OS, H1–H4) is significantly larger for the

mismatched noise case. As the matching noise type was also

used in training the mapping between uncertainty domains de-

scribed in Section 3.3, the difference likely reflects imperfec-

tions in the uncertainty mapping. Various approaches could be

investigated for improving the mapping of the mel-spectral ob-

servation uncertainties into the acoustic model domain. In par-

ticular, the uncertainties for the first and second order differen-

tial features could be more accurately approximated by utilizing

the time context in the mel-spectral domain.

The combined heuristic measure H* did not achieve promi-

nent improvement over the best-performing individual heuris-

tics. This suggests that the proposed heuristic estimates make

similar errors. In order to improve generalization to the mis-

matched noise case, a multi-view learning algorithm instead of

simple concatenation could be used to produce acoustic model

domain uncertainty estimates based on multiple heuristics.

In most conditions, the recognition performance of the

feature enhancement method did not reach the multicondition

trained model performance reported for reference. However,

for the clean speech test set the letter error rate of the mul-

ticondition trained model was notably higher than the clean

speech baseline. In contrast, this is not the case for the fea-

ture enhancement method and the use of observation uncertain-

ties, where the results were comparable to the baseline model.

Moreover, in the mismatched noise case, the recognition perfor-

mance achieved by the speech separation feature enhancement

method with acoustic domain oracle uncertainties was higher

than that of the multicondition trained reference model, and no-

tably higher than with the uncertainty heuristics. This suggests

that further recognition performance improvements are possible

by improving the uncertainty estimates. In future work, activa-

tion variances produced by a probabilistic NMF model could be

used as a source for uncertainty estimates.
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