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Abstract

This work presents an automatic speech recognition system
which uses a missing data approach to compensate for envi-
ronmental noise. The missing, noise-corrupted components are
identified using binaural features or a support vector machine
(SVM) classifier. To perform speech recognition using the par-
tially observed data, the missing components are substituted
with clean speech estimates calculated using sparse imputation.
Evaluated on the CHiME reverberant multisource environment
corpus, the missing data approach significantly improved the
keyword recognition accuracy in moderate and poor SNR con-
ditions. The best results were achieved when the missing com-
ponents were identified using the binaural features and the clean
speech estimates associated with observation uncertainty esti-
mates.

Index Terms: noise robust, speech recognition, binaural, SVM,
sparse imputation, observation uncertainties

1. Introduction

Automatic speech recognition (ASR) can reach the performance
level of human listeners in controlled and noise-free conditions,
but environmental noise typically degrades the system perfor-
mance dramatically unless noise compensation is used. Miss-
ing data techniques (MDT) draw motivation from the human
auditory processing to improve the ASR performance in noisy
environments [1]. The methods are based on finding reliable
information in the noise-corrupted speech signal and regard-
ing the unreliable information as missing. Thus, the observed
data is first partitioned into reliable, speech-dominated compo-
nents and unreliable, noise-dominated components, and speech
recognition is then attempted based on the reliable informa-
tion alone. The unreliable components are either completely
discarded using marginalization [2] or substituted with clean
speech estimates [3].

Several approaches have been proposed for separating be-
tween reliable and unreliable information in the observed data.
For example, a number of cues can be extracted from auditory
models to assist with mask estimation. This includes cues re-
lated to fundamental frequency, common onset and offset, and
amplitude modulation (see [4] for a review). In addition, if
stereo signals (such as those recorded from a dummy head)
are available, cues related to binaural hearing can be exploited.
Human listeners are able to localize sound sources in space by

measuring the interaural differences between the time of arrival
(ITD) and sound level (ILD) at the two ears. Binaural mecha-
nisms also suppress echoes and, therefore, counteract the nega-
tive effects of reverberation [5], and contribute to the ability to
focus on a relevant sound source in the presence of other inter-
fering sources. In mask estimation for missing-data methods,
binaural cues can be used to exploit, for example, knowledge of
the position of the speaker.

An alternative approach to mask estimation is to formulate
the problem as a binary classification task [6]. In this case,
a number of machine learning methods may be trained to as-
sociate features computed from the noisy speech observations
with reliability scores obtained from suitable training material.
In this work, we compare an auditory approach based on us-
ing binaural cues as proposed in [7] and a machine learning
approach based on using a support vector machine (SVM) clas-
sifier as proposed in [8].

After the observed features are divided into reliable and
unreliable (missing) components, the speech recognition sys-
tem needs to be able to perform recognition using partial data.
In the so-called reconstruction or imputation approach, the re-
gions labeled as unreliable by the estimated mask are replaced
by clean speech estimates of the missing features. Recently,
the exemplar-based missing-feature reconstruction method re-
ferred to as sparse imputation [9] has shown good performance
in a variety of noise robust speech recognition tasks. Sparse im-
putation processes the noisy data in windows that span several
time frames, which leads to significant performance gains over
frame-based methods especially in low-SNR conditions where
reliable information is scarce. Experiments on real-world and
artificially constructed noisy recordings show that sparse impu-
tation substantially outperforms conventional imputation tech-
niques especially when exact information about the reliable fea-
tures is provided [8, 10].

In this work, a missing data ASR system using binaural
cues or SVM classifier for identifying reliable data and sparse
imputation for missing-feature reconstruction is evaluated on
the CHiME challenge corpus [11]. To analyze the effect of
mask estimation in the system performance, results using a ex-
act information about the reliable components are also reported
when possible. In order to mitigate the effect of possible re-
construction errors in the speech recognition performance, the
sparse imputation results are augmented with observation un-
certainty measures as proposed in [12].



2. Methods
2.1. Missing data techniques

Missing data techniques [2] use the so-called mask estimation
methods to divide observed log-mel spectral features Y into
speech and noise dominated regions. The speech-dominated
time-frequency components Y (¢, f) are considered reliable es-
timates of the clean speech information, Y (¢, f) ~ S(t, f),
where S(t, f) denotes the clean speech value that would have
been observed if the signal had not been corrupted with noise.
The noise dominated components, on the other hand, are con-
sidered unreliable, and assuming the noise correlation origi-
nates from an uncorrelated source, the unreliable observations
provide only an upper bound to the corresponding clean speech
values, Yy, (t, f) > S(t f). Thus, the clean speech infor-
mation in the unreliable components is effectively missing.
Missing-data reconstruction techniques such as sparse impu-
tation [9] replace the unreliable values with clean speech es-
timates S, (t, f). The reconstructed clean speech spectrograms
S may be further processed as usual or combined with observa-
tion uncertainty estimates as proposed [13].

2.2. Mask estimation methods
2.2.1. Mask estimation based on binaural features

Time-frequency masks are generated from binaural features us-
ing an approach based on [7]. First, the left-ear and right-ear
signals (from the CHIME dummy-head recordings) are passed
through a gammatone filterbank consisting of 21 channels be-
tween center frequencies of 171 Hz and 7097 Hz. The center
frequencies and bandwidths of the gammatone filters are cho-
sen to give mel-spaced filters that overlapped at approximately
the same 3 dB points as the filters used to generate the MFCC
features used for recognition (see Section 3.2). The output of
each gammatone filter is half-wave rectified, and then ILD and
ITD features are computed by the following parallel pathways.

In the ILD pathway, the short-term energy is computed for
each channel of the gammatone filter output, for the left and
right ears, over a 16 ms rectangular window with an 8 ms hop
size. The ILD at each time frame is then calculated by taking
the ratio of the left-ear and right-ear energies, and converting
to decibels. In the ITD pathway, the cross-correlation is com-
puted between the left-ear and right-ear gammatone filterbank
outputs, for each frequency channel, with an 8 ms hop size.
Time lags are computed between -1 ms and +1 ms in steps of
the sampling period. The time lag at which the largest peak oc-
curred in the cross-correlation function is taken to be the ITD.
Hence, two sets of time- and frequency-dependent binaural fea-
tures are obtained, corresponding to ILD(¢, f) and ITD(t, f),
where ¢ and f index the time frame and frequency channel re-
spectively.

Following [7], masks are estimated using the binaural fea-
tures as follows (see also [14] for a related approach). First,
there is a training stage in which the joint distribution of ILD
and ITD features is estimated for the target source, which is
known to be at zero degrees azimuth. The ILD and ITD fea-
tures are computed for 120 utterances selected from the clean
CHiME development set, as described above. Joint ILD-ITD
distributions for the target talker are then obtained by construct-
ing histograms of the ILD and ITD values. For ILD, the width
of each histogram bin was 0.2 dB; for ITD, bins are spaced at
intervals of the sampling period. This is done separately for
each frequency channel, giving 21 joint ILD-ITD histograms

Hy. Histograms are shown for two frequency channels in Fig-
ure 1. As expected the histograms peak at an ILD of 0 dB and
an ITD of 0 ms (because the time of arrival and sound level are
approximately equal at the two ears of the dummy head, for the
target speaker). However, there are frequency-dependent differ-
ences due to the effects of room reverberation, and the depen-
dency of ILD and ITD upon frequency (see [15] for a review).
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Figure 1: Joint ILD-ITD histograms for the target speaker (at
zero degrees azimuth) obtained from the clean development set.
Histograms derived from two channels of the gammatone filter-
bank are shown, with center frequencies (CFs) of 272 Hz (left)
and 3340 Hz (right).

During recognition, ILD and ITD features are computed
for each test utterance as described above, and the mask values
m(t, f) are set according to

_J1 it Hf[ILD(t, f),ITD(t, f)] > 0
m(t, f) = { 0 otherwise M
where H ; is the joint ILD-ITD histogram for frequency channel
f obtained during the training stage. Finally, any single-unit
regions are removed from the masks. The threshold 6 was tuned
on the noisy development set to give optimum performance. An
example of an estimated mask is shown in Figure 2.

2.2.2. SVM masks

Mask estimation can also be approached using machine learn-
ing methods to classify each feature as either reliable or unreli-
able. The classifier is trained to separate between reliable and
unreliable features using training material that must necessarily
consist of oracle masks, and therefore requires the use of artifi-
cially corrupted clean speech for training.

A Bayesian classification approach was proposed for mask
estimation in [6], whereas in this work, we use support vector
machine (SVM) classifiers. SVM is a machine learning algo-
rithm known for its excellent performance on binary classifi-
cation tasks and its generalization power when trained on rel-
atively small data sets [16]. From the machine learning per-
spective, frame-based mask estimation is a multi-class classifi-
cation problem with 2F classes, where F is the number of mel-
frequency bands. Since such high-dimensional multi-class clas-
sification is infeasible, we assume that the reliability estimates
are independent between frequency bands and train a separate
SVM classifier for each of the F' mel-frequency bands. This
SVM mask was shown to be effective in [8].

In this work, each classifier used the same set of single-
frame-based (7 - F' + 1)-dimensional features consisting of: 1)
the F'-dimensional noisy speech features themselves, 2) the har-
monic and 3) the aperiodic part of the harmonic decomposition
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Figure 2: From top: a noisy development signal with 0 dB SNR,
the respective oracle mask with a -2 dB SNR threshold and the
estimated masks derived using binaural features or the SVM
classifier, respectively. Black regions in masks denote unreliable
features.

described in [17], 4) long-term energy noise estimate, and 5)
a gain factor. Additionally, we used 6) the ‘sub-band energy
to sub-band noise floor ratio’ and 7) ‘flatness’ features derived
from the noisy mel-spectral features as described in [6], and
finally 8) a single-dimensional VAD feature. The VAD was in-
spired by the integrated bi-spectrum method described in [18].

Figure 2 contains an example of a mask estimated by the
SVM classifier.

2.3. Sparse imputation
2.3.1. Sparse representation

The sparse imputation algorithm [9, 10] is based on processing
the log-mel spectral features S of the observed speech as a se-
quence of overlapping F' x T' dimensional spectrograms, where
T is the window length in frames, and F' the number of spectral
channels. In the following, each window is treated as a single
D = T'- F-dimensional vector by concatenating the consecutive
frames. The vector s(7)7 = [S(7 — T/2)T --- S(7+T/2)7]
is then represented as a linear combination of example windows
i.e. exemplars a,,

s(7) =~ Z zn(T)an, = Ax(7), 2)

where x(7) is the activation vector corresponding to the 7-th
window, and A a D x N sized fixed dictionary of clean speech
windows. The activation vectors x(7) are obtained by solving

x"(7) = argmin {||Ax —s(7)[, + Alx[,},  (3)

xRN
where the A ||x||, term is a sparsity-inducing penalty, in order to
represent the window s(7) using as few exemplars as possible.

2.3.2. Feature reconstruction

In missing-feature reconstruction, the sparse representation
x(7) is calculated based on only the reliable components in the
7-th window y (7) in the observed noisy speech spectrogram Y.
The corresponding missing data mask is denoted as m(7) and
the activations are calculated as

x" (1) = arg min {||WAx - Wy(r)|l, + A HX||1} , @)
x€RN

where the matrix W = diag(m(7)) is used to select only
the reliable components. The sparse representation can then be
used to reconstruct an estimate of the clean speech features in
the window as s*(7) = Ax™(7). The imputed feature (7, d)
is then set to the observed feature y(7, d) if the component is
considered reliable, and min {s* (7, d), y(7,d)} if the compo-
nent is unreliable. The component-wise min operation reflects
the additive noise assumption, under which the clean speech
feature cannot exceed the observed noisy speech value. Finally,
the clean speech estimates for the overlapping windows are av-
eraged to give the enhanced features S(t) as described in [10].

2.3.3. Observation uncertainties

In missing-feature reconstruction, the acoustic model likeli-
hoods are calculated based on the reconstructed features S(t)
Since the estimates vary in accuracy, using observation uncer-
tainties [19] to emphasize the reliable reconstruction can im-
prove speech recognition performance as reported in [12, 13].
Observation uncertainties represent the expected squared error
(i.e., variance in each estimated feature) and allow decoding
based on the complete estimated posterior p(S(t)| A, Y (t)),
where A denotes the parameters used in reconstruction. If the
posterior distribution is assumed Gaussian when mapped in the
acoustic model domain, decoding with observation uncertain-
ties reduces to adding the estimated uncertainties to the model
variances in the acoustic model states [12, 19].

Uncertainty estimates usually reflect the variance of the fea-
ture enhancement or reconstruction process, but since sparse
imputation does not employ statistical modeling, using heuristic
measures to characterize the expected uncertainty was proposed
in [12]. According to the experiments reported in [12], the best
results are achieved when the uncertainty & (t) associated with
the reconstructed values in frame ¢ is either set proportional to
the number of clean speech exemplars (M4) or inversely pro-
portional to the number of reliable components (M5) used in
calculating S(¢). The naming convention of M4 and M5 fol-
lows the line of [12].The uncertainties are scaled to the interval
[0, 1] in each utterance and the reliable components associated
with zero uncertainty. For details on the uncertainty measures,
see [12].

The uncertainty estimates & (¢) calculated in the log-mel
spectral domain are mapped to the acoustic model domain us-
ing a supervised learning approach as proposed in [13]. In this
work, a Gaussian mixture model (GMM) is used for the map-
ping as proposed in [20]. The model is trained on stereo data



(clean and noisy) to represent the statistical dependencies be-
tween the log-mel spectral domain uncertainty estimates and
the observed uncertainties in the acoustic model domain. These
so-called oracle uncertainties (OA) are calculated as the squared
error between the clean speech and the reconstructed features in
the acoustic model domain and log-compressed to better fit the
model. In reconstruction phase, the acoustic model domain un-
certainties are calculated as the minimum mean squared error
(MMSE) estimate of the oracle uncertainty given the model and
the log-mel spectral domain uncertainty & (t).

3. Experiments
3.1. Experimental setup

The proposed system was evaluated using the CHiME chal-
lenge corpus described in [11]. The standard CHiME training
set, consisting of 17000 utterances of clean speech reverberated
with a binaural room impulse response (BRIR) filter, was used
to train the speech recognition system. The CHiME develop-
ment and evaluation sets, both consisting of 6 sets of 600 utter-
ances at signal-to-noise ratios (SNR) of —6 dB, —3 dB, 0 dB,
3 dB, 6 dB and 9 dB, were used to evaluate the recognition
performance of the systems. Only the isolated utterances from
the CHiME corpus were used: in particular, the surrounding
noise context was not used by the systems. In addition, a noisy
training set of 2000 utterances was built following the CHiME
test data construction method described in [11]. The underlying
clean speech utterances were taken as a random subset of the
clean speech training set. The resulting noisy training set con-
tained utterances with SNR values uniformly distributed in the
—6 dB to 9 dB range.

For the binaural feature mask described in Section 2.2.1, the
masking threshold value 6 of Equation (1) was setto § = 0.075,
based on small-scale recognition tests on the development set.

In the case of the SVM-based masks of Section 2.2.2, an in-
dividual SVM classifier was trained for each of the 34 speakers
using LIBSVM [21] on 5400 frames randomly extracted from
utterances of that particular speaker in the noisy training set.
Reliability labels used in training were obtained from the oracle
mask, derived by using the corresponding clean and noisy utter-
ances of the noisy training set, using a SNR threshold of -2 dB.
We used an RBF-kernel and hyper-parameters of the classifier
were optimized by doing 5-fold cross validation on a held-apart
set of 600 additional frames.

The sparse imputation algorithm described in Section 2.3.1
was applied on 21-dimensional log-mel spectral features. The
imputation was performed with the Matlab implementation
used in [10]. A random selection of 34000 exemplars from the
CHiME training set was used to construct the basis vector dic-
tionary for sparse imputation. Based on development set tests, a
window size of T = 15 frames was chosen. The 5-component
GMM used for mapping the the observation uncertainty mea-
sures from the log-mel spectral domain used for the imputation
to the acoustic model domain of the speech recognition sys-
tem was trained using a 500 utterance subset of the constructed
noisy training set. The model parameters were estimated using
the expectation-maximization (EM) algorithm implemented in
the GMMBAYES Matlab toolbox [22].

3.2. Speech recognition system

The acoustic models of the ASR system utilized 39-dimensional
features composed of 12 MFCC coefficients, the logarithmic
frame energy, and their first and second differentials. The

features were post-processed by applying cepstral mean sub-
traction (CMS) and maximum likelihood linear transformation
(MLLT) steps. State-clustered hidden Markov models using
cross-word triphone units were used to model the features. A
LVCSR system trained on the Wall Street Journal British En-
glish (WSJCAMO) corpus was used in “forced alignment” mode
to generate triphone-level segmentations for the CHiME train-
ing data. GMMs were used to model the acoustic feature do-
main, and Gamma distributions for explicit state duration mod-
eling. The recognition system is described in more detail in
[23]. For language modeling, a no-backoff bigram model with
uniform frequencies for all valid bigrams was constructed to
restrict recognized sentences to conform to the Grid utterance
grammar specified in [24].

A single speaker-independent clean speech model was
trained using the full 17000 utterance CHiME training set. This
baseline system achieved recognition results comparable to the
standard CHiME baseline system.

4. Results

All the compared systems used the speaker-independent model
trained with the clean CHiME training data set. In the baseline
system, this model was used as-is to recognize the noisy utter-
ances. On the clean speech version of the development set, a
keyword accuracy of 95.9% was achieved.

Table 1 presents achieved keyword accuracy rates for the
noisy utterances of the CHiME development set data using the
different mask estimation methods. In addition to the offi-
cial CHiME baseline recognizer (“CHiME bl.”) and our base-
line system (“baseline”), results using sparse imputation feature
enhancement are given for three different mask types: oracle
masks that utilize knowledge of the clean samples (“oracle”),
the binaural masks described in Section 2.2.1 (“binaural”) and
the SVM based masks described in Section 2.2.2 (“SVM”). Of
the two mask estimation methods, only the binaural mask was
able to surpass the recognition performance of the baseline rec-
ognizer in the cases where the SNR was between 0 dB and
—6 dB. Relative improvements in these cases range between
4% and 17%. The binaural mask was therefore selected for the
observation uncertainty experiments. However, neither mask
estimation method outperformed the baseline on SNRs between
9 dB and 3 dB.

Results using the three different uncertainty measures,
along with the baseline and imputation-only performance, are
given in Table 2. The considered measures are acoustic model
domain oracle uncertainties (OA) as well as the two heuristic
measures described in Section 2.3.3 (M4, M5). Here both M4
and MS measures gave similar improvements over the SI-only
system for all SNR levels. As the M4 measure achieved slightly
better results, it was chosen for the final evaluation set experi-
ments.

Based on the results on the development set, the SI system
with binaural feature masks and uncertainty measure M4 was
chosen as the primary system. Results on the final CHiME eval-
uation set are presented in Table 3, both with and without us-
ing the observation uncertainty measure M4. As corresponding
clean speech for the evaluation set was not available, the oracle
mask and oracle uncertainty results are not shown. The evalu-
ation set results closely match the corresponding development
set experiments. Overall relative improvements in keyword ac-
curacy over our baseline system for the 0 dB to —6 dB SNR test
sets were between 7-13% and 14-21% for the imputation-only
and observation uncertainty utilizing systems, respectively.



5. Discussion

Significant differences can be seen when comparing the ob-
tained keyword accuracy rates between systems using oracle
masks and the binaural feature based masks. The high recog-
nition performance obtainable with sparse imputation when or-
acle masks are used suggests that mask estimation is pivotal to
the performance of the system. Imputation with the SVM clas-
sifier based masks, shown to perform well with sparse imputa-
tion in realistic noise environments [8], failed to outperform the
baseline system in this work. This indicates that the CHiME
data set is a challenging case from the mask estimation point of
view. To improve the mask estimation, the binaural cues could
be added as features to the SVM classifier. Further improve-
ment to the expected performance would be achievable by us-
ing speaker-dependent models instead of speaker-independent
models which were our primary interest.

In the CHIME corpus, the interfering noise is often highly
variable and is in many cases a voice of a single interfering
talker. Models tailored specifically for separation of overlap-
ping speech, e.g. following [25], could perform better in these
cases. The SVM mask estimation method used in the present
study was not specifically developed for interfering speech. In
addition, in this work the SVM based masks used only monau-
ral features based on harmonic decomposition. The use of the
harmonic decomposition as a feature implicitly assumes that
speech characteristics can be identified by the harmonic part of
the spectrum, an assumption which may not be suited very well
to the noise types encountered in the CHiME challenge.

Although using sparse imputation with the binaural mask
described in Section 2.2.1 improved the recognition rates in
low-SNR conditions, it should be noted that the binaural mask
estimation used here is a very crude approximation of human
processing. Two factors that contribute to human performance
in multisource reverberant environments are not considered
here, namely the precedence effect [5] and better-ear listening.
Regarding the latter, Edmonds and Culling [26] have shown that
better-ear listening plays a substantial role in the perceptual sep-
aration of speech from an interfering voice. Better-ear listening
could be incorporated into the system described here by using
the binaural model to identify the stereo channel with the most
favorable SNR, and using only this channel for speech recogni-
tion.

Using sparse imputation on the development data with ex-
act knowledge of the missing components (the “oracle” masks)
resulted in impressive performance gains at all noise levels, sug-
gesting that the reconstruction method as such is well-suited for
noise conditions that are present in the CHiME data. However,
when used with the estimated masks, sparse imputation de-
graded the recognition results compared to the uncompensated

Table 1: Keyword accuracy rates for CHIME development set
data with sparse imputation only.

9dB 6dB 3dB 0dB -3dB -6dB

CHiMEbl. | 83.1 738 640 49.1 36.8 31.1

baseline 833 779 673 529 422 36.8
oracle 927 931 903 906 893 88.4
binaural 758 719 648 551 495 43.1
SVM 765 694 546 444 376 34.6

Table 2: Keyword accuracy rates for CHIME development set
data with binaural mask estimation and observation uncertainty
measures.

‘ 9dB 6dB 3dB 0dB -3dB -6dB
baseline | 833 779 673 529 422 36.8
Slonly | 758 719 64.8 551 495 43.1
SI+0A | 893 874 831 802 726 69.7
SI+M4 | 789 747 678 593 540 46.8
SI+M5 | 788 747 678 583  53.7 46.3

Table 3: Keyword accuracy rates for CHiME evaluation set
data. The highest keyword accuracy for each data set is indi-
cated in bold type.

9dB 6dB 3dB 0dB -3dB -6dB

CHiMEbL | 824 750 629 495 354 30.3

baseline 8.6 779 663 512 40.0 38.7
SI only 743 70.1 643 547 453 42.8
SI + M4 773 735 673 585 478  46.8

baseline system in the relatively low-noise conditions (SNR 3—
9 dB). In [10], the sparse imputation method used in this work
was found to perform less well than an alternative, cluster-
based imputation system, when estimated masks were used in
the cleanest conditions. When the estimated mask has a low
number of isolated features erroneously marked as reliable, al-
most the entire 7'-frame window will be reconstructed based on
the clean speech exemplars, potentially leading to insertion er-
rors in the speech recognition stage. In the noisier conditions,
however, few isolated reliable features can be all of the true,
underlying clean speech signal that is left uncorrupted by noise.
In this case the ability of the SI reconstruction to reconstruct
longer clean speech segments can in fact improve the recogni-
tion performance.

Use of observation uncertainties can mitigate the degrada-
tion on less noisy data. For example in this work, SI when com-
bined with the M4 uncertainty measure surpasses the baseline
performance also in the 3 dB case. The use of observation un-
certainty estimates improves the recognition rate of the sparse
imputation system for all SNR levels, with relative improve-
ments in the keyword accuracy ranging from 4% to 9%. When
“oracle” (OA) uncertainty estimates are used with the develop-
ment set data, the SI system outperforms the baseline recognizer
in all noise conditions, with a relative improvement of from 7%
(SNR 9 dB) to 90% (SNR -6 dB).
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