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Abstract
Sparse Classification (SC) is an exemplar-based approach
to Automatic Speech Recognition. By representing noisy
speech as a sparse linear combination of speech and noise
exemplars, SC allows separating speech from noise. The
approach has shown its robustness in noisy conditions,
but at the cost of degradation in clean conditions. In this
work, rather than using the state probability estimates ob-
tained with SC directly in a Viterbi decoding, the proba-
bility distributions of SC are modeled by Gaussian Mix-
ture Models (GMMs), for which purpose we introduce a
novel whitening transformation. Results on the AURORA-
2 task show that our proposed approach is especially ef-
fective in clean speech and in the matched noise condi-
tions in test set A. Except in the -5 dB SNR condition we
also find substantial improvements in the non-matched
noise conditions in test set B.
Index Terms: template-based ASR, noise robustness,
speech modeling

1. Introduction
Sparse Classification (SC) or Sparse Coding [1, 2, 3],
a non-parametric exemplar-based approach to automatic
speech recognition, has shown superior robustness in
very noisy conditions. Noisy speech is modeled as a lin-
ear combination of both clean speech and noise exem-
plars; when a suitable dictionary of speech and noise ex-
emplars is available, the exemplar-based model is inher-
ently noise robust. In SC, each speech exemplar, which
spans multiple frames to model dependencies between
neighboring frames, can be labelled with a sequence of
sub-word units. In this research, we used state labels
from an HMM framework to label subsequent frames of
the exemplars. Using the weights of the linear combi-
nation of speech exemplars these labels were then used
to estimate unscaled likelihoods of the states in an un-
known speech segment. These likelihoods can then be
normalized to obtain probabilities. In the well-known
AURORA-2 task [4], SC with a classical Viterbi back-
end outperforms traditional GMM-based systems signif-
icantly in matched noisy conditions [1], at the cost of a
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degradation of its performance in cleaner conditions.
In [5] it has been shown that transforming posterior

probability estimates for context-independent phones ob-
tained with a multi-layer perceptron (MLP) into a rep-
resentation that makes them suitable for modeling as
Gaussian Mixtures (similar to conventional MFCC fea-
tures) can lead to improved performance in both clean
and noisy conditions. In that approach the phone poste-
rior probabilities estimated by a conventional three-layer
MLP are used as base features after a two-step transfor-
mation, namely Gaussianization followed by decorrela-
tion. Finally, the resulting so-called “tandem features”
are processed by a conventional Gaussian Mixture Model
(GMM)-based speech decoding system.

In this work, we investigated a similar approach for
the SC output posterior probabilities. However, unlike
the classifiers in [5], in which all phones get a non-zero
probability mass, the probability vectors resulting from
SC contain many “hard” zeros [1]. This may be due to
the fact that the SC system yields posterior probability
estimates for 179 states, instead of for the 18 phones that
are relevant for the AURORA-2 task. As a result, it is
not possible to use a straightforward log-transform, per-
haps followed by a PCA for dimensionality reduction and
decorrelation. To alleviate this problem, we here present
an alternative way to whiten the SC probabilities into fea-
tures that are suitable for being modeled by GMMs, by
replacing all hard zeros (and all near-zero probability es-
timates) by samples drawn from an appropriately chosen
Gaussian distribution. The transformed SC features are
modeled by GMMs in the traditional GMM-HMM based
way. Experimental results on AURORA-2 task show that
the proposed approach is effective in all conditions, ex-
cept SNR -5dB in test set B.

The rest of the paper is organized as follows, in Sec-
tion 2 we review the basic properties of the SC approach.
Then we describe our proposed tandem approach and ex-
periments in Section 3 and Section 4, respectively. This
is followed by a discussion in Section 5. Finally conclu-
sions and future plan can be found in Section 6.

2. Review of Sparse Classification
In this section, we first provide a brief review of the prin-
ciple of the exemplar-based sparse representation and es-
timation of class conditional probabilities. In Section 2.3
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Figure 1: Block diagram of the SC baseline system, which uses posteriors as local scores, and the GSC system, in which
posteriors are treated as features and imported to a GMM/HMM decoder.

we discuss some limitations of non-parametric classifiers,
such as SC.

2.1. Linear Combination

The SC system assumes that speech spectrograms (after
reshaping all matrices into vectors) can be expressed as
a sparse, linear, non-negative combination of the spectro-
grams of clean speech exemplars as

j , with j = 1, . . . , J
denoting the exemplar index. We model noise spectro-
grams as a linear combination of noise exemplars an

k ,
with k = 1, . . . ,K the noise exemplar index. This leads
to representing noisy speech spectrograms y as a linear
combination of both speech and noise exemplars:

y ≈ s+ n (1)

≈
J∑

j=1

xs
ja

s
j +

K∑
k=1

xnka
n
k (2)

with xs and xn sparse representations of the underly-
ing speech and noise, respectively. The sparse represen-
tations can be obtained by minimizing a cost function
based on the generalized Kullback-Leibler (KL) diver-
gence (For more details see [1]).

2.2. State Probability Estimation

Each exemplar as
j in the speech exemplar dictionary is

labelled using HMM-state labels obtained from a con-
ventional MFCC-based decoder. Using a frame-by-frame
state description of the exemplars in the dictionary, we
associate each exemplar as

j with a label matrix Lj , of di-
mensions Q× T , with Q the total number of states in the
system and T the number of frames in an exemplar. The
matrix Lj is a binary matrix containing for each frame
τ ∈ [1, T ] a single nonzero value for its corresponding
state label. For each observed speech segment, the un-
scaled likelihood matrix is calculated as:

L =

J∑
j=1

Ljx
s
j (3)

In computing the likelihoods special attention must
be paid to proper balancing between the likelihoods of
the silence states on the one hand and the speech states
on the other. As in [1] we increased the likelihood of the
silence states by adding a value based on the estimated

speech activity in each segment. Finally, the likelihoods
are normalized into probabilities for each frame and zero
values are replaced by a floor value θ > 0 to make sure
that the Viterbi search always can find a complete path.

2.3. Drawbacks of Non-parametric Approaches

Like all exemplar (template) based systems, SC is a non-
parametric classifier. A problem shared by all exemplar-
based systems is that they are crucially dependent on the
size and the representativeness of the dictionary [6, 7, 8]
and that they may not generalize very well to data char-
acteristics that are not represented in the exemplar dic-
tionary. As a consequence, the posterior probability es-
timates from an SC system may occasionally be biased
to the wrong states. Transforming the SC probabilities
into features and training GMMs on these features may
help to improve the capability of the output of a non-
parametric classifier to generalize to unseen conditions.
Therefore, we developed a method for transforming SC
probability estimates such that they can be modeled by a
GMM.

3. SC Probability-based Features
In the tandem approach proposed by [5], Gaussianized
and decorrelated phone posterior features have already
shown better performance on both clean and noisy speech
than a conventional GMM or a hybrid system [9]. Simi-
larly, we propose a GSC system in this work, where the
estimated state posterior probabilities from SC are Gaus-
sianized into features that can be used in a GMM/HMM
system. The architecture is shown in the flowchart in Fig-
ure 1.

As briefly mentioned in Section 1, in each time frame
many states receive a zero activation in the Sparse Rep-
resentation. This results in a large proportion of hard ze-
ros in the probability vectors produced by the SC system.
This makes it impossible to Gaussianize the probability
estimates by means of a straightforward log-transform.
Moreover, especially in noisy cases, states with very
small non-zero values in the SC probability vector are
probably due to random speech exemplars, used in the
linear SC approximation to fill in the gap between the un-
known noisy speech and the noise-free speech exemplars.
Consequently, states with very low probabilities may not
represent useful information.

To alleviate this problem, a modified approach is de-
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Figure 2: A schematic diagram of two distributions gen-
erated by two conditions in Eq. 4.

fined in Eq. (4), where all probabilities above a thresh-
old θ are log-transformed as in the original Tandem ap-
proach. All values ≤ θ (which might not carry useful in-
formation) are replaced by samples from a Gaussian dis-
tribution with mean µ and variance σ2. Preliminary ex-
periments have shown that decorrelating the transformed
state posterior features does not improve performance.

y(P ) =

{
ln(P ) if P > θ
ŷ ∈ N (µ, σ2) otherwise (4)

The shape of the distribution obtained after the trans-
formation defined by Eq. (4) is very schematically de-
picted in Figure 2. The narrow distribution on the right
models the transformed estimates of the posterior “non-
zero” probabilities ≥ θ of the states that were activated
in the SC system; the wide distribution on the left results
from the random values that replace the posterior “zero”
probability values below θ. The resulting transformed SC
features are fed as input to a traditional GMM/HMM sys-
tem.

4. Experimental Setup and Results
We used the AURORA-2 database for our experiments,
where a subset (755 utterances) of the multi-condition
training data is set apart as the validation data set, which
will be used to find optimal values for the parameters µ
and σ in Eq. (4). The utterances in this set are evenly
distributed across SNR and noise types. The remaining
data are used in training the GMMs. We used test set A
(utterances corrupted by the same noise types as in the
multi-condition training set) and test set B, containing ut-
terances corrupted by four other noise types. Both test
set A and B contain 4004 utterances consisting of a se-
quence of one to seven digits, 1001 utterances for each
noise type. All utterances occur in seven noise levels,
viz. clean, and SNR = 20, 15, 10, 5, 0, and -5 dB.

The conventional AURORA-2 setup described in [4] is
used in the SC system: 16 states are used for each of the
11 digit words and 3 states for the single silence model.
To obtain the posterior probability estimates from the SC
system, we used the same configuration as in [1], where
a floor value θ = 10−3 was used. In a nutshell, the SC
method operates on 23-dimensional Mel-scale magnitude
features, and uses a dictionary comprising 4000 clean

Table 1: Results of the grid search over µ and σ in Eq. 4
with θ = 10−3. WER on validation data in %.

µ
-10 -9 -8 -7 -6 -5 -4 -3

σ

1 2.3 1.7 0.9 0.5 0.7 1.1 0.9 1.4
2 1.1 0.9 0.8 0.9 0.9 0.9 0.9 0.9
3 1.1 1.1 1.1 1.0 0.9 0.9 0.9 0.9
4 1.2 1.3 1.2 1.1 1.1 1.1 0.9 1.1

Table 2: WER in %. SC refers to the SC baseline and
GSC refers to Tandem SC system. Relative improvements
are given in the %diff column.

test set A test set B
SNR SC GSC %diff SC GSC %diff
clean 6.6 1.9 -71.2 6.6 1.9 -71.2

0-20 dB 11.8 6.7 -43.2 15.8 12.7 -20.0
-5 dB 42.9 30.4 -29.1 63.1 63.5 +0.1

exemplars, randomly extracted from the speech in the
multi-condition training set and 4000 noise exemplars,
also randomly selected from the multi-condition training
set (by subtracting the corresponding clean speech sig-
nals). We used an exemplar size of 300ms (30 frames).
For each frame, the output of the SC system is a 179 di-
mensional vector, corresponding to the posterior proba-
bility estimate of each state.

In order to obtain the optimal values of µ and σ, we
performed a grid search with µ varying from -10 to -3
and σ varying from 1 to 4 in steps of 1 on the validation
data. The results (averaged over the five SNR conditions
in the validation data) are shown in Table 1. The best pair
of values (µ = −7, σ = 1) in terms of WER is used
in the transformation defined by Eq. (4). In training the
diagonal covariance GMMs, three Gaussians are used for
each state – this number was expected to be high enough
to accurately model the distribution after application of
Eq.4. Experiments are conducted in HTK [10]. The word
error rates obtained for the test sets A and B are shown in
Table 2.

5. Discussion
The purpose of the transformation in Eq. (4) is to obtain
a distribution that is suitable for subsequent processing
by a GMM/HMM decoding system. This means that we
must shape and position the Gaussian that generates the
random numbers that replace probability estimates≤ θ in
such a way that it forms the tail of the distributions of the
probability estimates ≥ θ, without overlapping substan-
tially with the latter distribution. The best performance is
found when µ is set to −7, which is close to ln(θ) with
θ = 10−3 [ln(10−3) = −6.9]; if µ decreases further, per-
formance on the validation set decreases. The fact that
the mean of the distribution that is sampled to replace
zero-values is very close to the threshold suggests a cor-
respondence with Good-Turing back-off in N-gram Lan-
guage Models. The fact that we found an optimal value



Table 3: WER in %. SC refers to the SC baseline and
GSC refers to Tandem SC system. ETSI refers to the ref-
erence system using the ETSI advanced front-end [11].

test set A test set B
SNR SC GSC ETSI SC GSC ETSI
clean 6.6 1.9 0.79 6.6 1.9 0.79

0-20 dB 11.8 6.7 7.7 15.8 12.7 8.2
-5 dB 42.9 30.4 56.5 63.1 63.5 57.7

of σ = 1 suggests that the overlap with the distributions
of ”really observed” posteriors must be limited.

From Table 2 it can be seen that the GSC sys-
tem, which uses the SC features in a conventional
GMM/HMM system, improves the performance over us-
ing the ‘raw’ SC output in a Viterbi search in all SNR
conditions, except the -5 dB condition in test set B. In the
0-20dB SNR conditions the average relative WER reduc-
tion is 47.4% in test set A and 29.9% in test set B respec-
tively. The relative reduction in the clean condition is as
high as 71.2%.

However, the improvement obtained by the Tandem
approach is at least in part due to the sub-standard per-
formance of the original SC system in clean conditions.
In Table 3 the performance of the SC and GSC systems
are compared to the performance that can be obtained by
using the ETSI Advanced Front End [11]. It can be seen
that the Tandem approach outperforms the ETSI front end
in the matched noise condition (test set A). However, in
the non-matched condition in test set B the performance
of the GSC system is still weaker than the ETSI advanced
front end. Thus, it appears that modeling the posteriors
obtained with the SC system by means of GMMs does
improve the generalizability, but only to a limited extent.

As in [5], we have no completely convincing expla-
nation for the improvement of the GSC system over the
SC system. The GSC system uses more parameters, and
it is given an extra opportunity to learn the structure in
the data. The fact that the overall improvement in test
set B is substantially smaller than in test set A is prob-
ably due to the fact that learning three-mixtures GMMs
from the multi-condition training data does not solve the
problem that the noise exemplars in the SC system do not
cover the noises in test set B. Thus, it seems that train-
ing GMMs does improve the capability of the posterior
estimates of the SC system to generalize, but that this is
not enough to compensate for the basic problem that the
noise exemplar dictionary of the SC system is essentially
incomplete.

6. Conclusions and Future Work
In this work, we present a technique for transforming the
output of an SC system in such a way that it becomes
suitable for being modeled by means of GMMs. The
purpose of this operation is to increase the capability of
the non-parametric SC system to generalize to data that
are not well covered by the exemplars. The results for
the AURORA-2 task show that the approach does indeed

improve the generalization power of the SC system in
matched-noise conditions. However, the generalization is
not enough to fully compensate for the fact that the noise
exemplars do not cover some realistic noises.

Follow-up research can be done along two lines.
First, there are several options for better handling the
distributions of the posterior estimates. For example, in-
stead of trying to force the distributions into a Gaussian
framework, a linear discriminant analysis (LDA) can be
directly used on raw posteriors [12] or the KL divergence
based HMM approach [13] can be explored that removes
the need for transforming the posterior distributions. The
second line is to investigate the effect of the reduction of
probability dimensions, for example using LDA or PCA,
in order to scale well to large vocabulary tasks.
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