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Abstract

The evaluation of future cash flows and solvency capital recently gained impor-

tance in general insurance. To assist in this process, our paper proposes a novel

loss reserving model, designed for individual claims in discrete time. We model

the occurrence of claims, as well as their reporting delay, the time to the first pay-

ment, and the cash flows in the development process. Our approach uses develop-

ment factors similar to those of the well–known chain–ladder method. We suggest

the Multivariate Skew Normal distribution as a suitable framework for modeling

the multivariate distribution of development factors. Empirical analysis using a

realistic portfolio and out–of–sample prediction tests demonstrate the relevance of

the model proposed.

Keywords: Stochastic loss reserving, general insurance, Multivariate Skew Normal

distribution, chain–ladder, individual claims.

1 Introduction

We develop a novel stochastic model for loss reserving in general insurance. The model
uses detailed information on the development of individual claims. A vector of dis-
crete random variables describes the claim’s evolution over time, which evolves from
occurrence of the accident till settlement or censoring of the claim. The corresponding
stream of payments is expressed in terms of chain–ladder alike development factors
(or: link ratios) and modeled with a multivariate, parametric distribution. The model
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leads to a theoretical expression for the best estimate of the outstanding amount for
each claim, and a corresponding predictive distribution follows by simulation.

We divide the time structure of a general insurance claim in three parts (see Fig-
ure 1). Between occurrence of the accident and notification to the insurance company,
the insurer is liable for the claim amount but is unaware of the claim’s existence. The
claim is said to be Incurred But Not Reported (IBNR). After notification, the claim is
known by the company and the first payment (if any) will follow. In this paper, we use
the expression Reported But Not Paid (RBNP) to describe an incurred and reported
claim for which no payments have been made yet. Then, the initial payment occurs
and several partial payments (and refunds) follow. The claim finally closes at the clo-
sure or settlement date. From the first payment to the closure of the claim, the insurer
is aware of the existence of the claim, but the final amount is still unknown: the claim is
Reported But Not Settled (RBNS). This structure provides a flexible framework which
can be simplified or extended if necessary.

t1 t2 t3 t4 t5 t6

IBNR RBNP RBNS

Occurrence

Notification

Loss payments Closure

Figure 1: Evolution of a general insurance claim.

At the evaluation date the actuary should estimate technical provisions. Loosely
speaking, the insurer must predict, with maximum accuracy, the total amount needed
to pay claims that he has legally committed to cover. One part of the total amount
comes from the completion of Reported But Not Settled (RBNS) claims. Predictions for
costs related to Reported But Not Paid (RBNP) claims and Incurred But Not Reported
(IBNR) claims form the second part of the total amount.

With the introduction of Solvency 2 and IFRS 4 Phase 2, the evaluation of future
cash flows and regulatory required solvency capital becomes more important and cur-
rent techniques for loss reserving may have to be improved, adjusted or extended. In
general, existing methods for claims reserving are designed for aggregated data, con-
veniently summarized in a run–off triangle with occurrence and development years.
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The chain–ladder approach (Mack’s model in Mack (1993) and Mack (1999)) is the most
popular member of this category. A rich literature exists about those techniques, see
England and Verrall (2002) or Wüthrich and Merz (2008) for an overview.

Leaving the track of data aggregated in run–off triangles, Arjas (1989), Norberg
(1993) and Norberg (1999) develop a mathematical framework for the development of
individual claims in continuous time. More recent contributions in this direction are
Zhao et al. (2009) and Antonio and Plat (2012). Verrall et al. (2010), Martinez et al. (2011)
and Martinez et al. (2012) extend the traditional chain–ladder framework towards the
use of extra data sources. Their work connects the triangular approach with the idea
of micro–level loss reserving. We develop a model at the confluence of Norberg (1993),
Antonio and Plat (2012) and the chain–ladder model. Instead of using a continuous
time line, we use discrete random variables – at the level of an individual claim – for
the reporting delay, the first payment delay, the number of payments and the num-
ber of periods between two consecutive payments. Individual development factors
structure the development pattern, which is similar to the chain–ladder method. We
propose the framework of Multivariate Skew Symmetric distributions (more specifi-
cally: the Multivariate Skew Normal distribution) to model the resulting dependent
development factors at individual claim level.

Our paper is organized as follows. We introduce the statistical model in Section 2.
We present the data in Section 3 and this real example is developped in Sections 4 and
5. Finally, we conclude in Section 6. Some technical developments are gathered in an
appendix, for the sake of completeness.

2 The Model

Suppose we have a data set at our disposal with detailed information about the de-
velopment of individual claims. More specifically, the model uses the occurrence date,
the declaration date, the date(s) of payment(s) (and refund(s)) done for the claim, the
amount(s) paid for the claim and the closure date.

2.1 Model Specification

2.1.1 Time Components

We denote the kth claim from occurrence period i (with k = 1, . . . , Ki and i = 1, . . . , I)
with (ik). In our discrete framework we identify:

• the random variable Tik is the reporting delay for claim (ik), i.e. the difference
between the occurrence period of the claim and the period of its notification to
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the insurance company;

• the random variable Qik is the first payment delay, representing the difference be-
tween the notification period and the first period with payment for claim (ik);

• the random variable Uik models the number of period(s) with partial payment after
the first one; and

• the random variable Nikj represents the delay between two periods with payment
which is the number of periods between payments j and j + 1. We use Nik,Uik+1

to denote the number of periods between the last payment and the settlement
of the claim. Consequently, Nik = ∑Uik+1

j=1 Nikj is the number of periods between
occurrence period and settlement of the claim.

Each component follows a discrete distribution f : N → [0, 1], respectively f1(t;ν),
f2(q;ψ), f3(u;β) and f4(n;φ). By definition, Pr(Nikj = 0) = 0, ∀j. An example of this
structure for a real–life data set is in Section 3. In the sequel of the text we will interpret
‘periods’ as years.

2.1.2 Exposure and Occurrence Measures

To distinguish explicitly between IBNR and RBNS/RBNP claims, we need a stochastic
process driving the occurrence of claims, while accounting for the exposure in a spe-
cific occurrence period. The number of claims for occurrence period i, say Ki, follows
a Poisson process with occurrence measure θw(i). w(i) is the exposure measure for
occurrence period i (i = 1, . . . , I). However, since we only observe reported claims, the
Poisson process should be thinned in the following way

θw(i)F1(t∗i − 1;ν), (1)

where t∗i denotes the number of periods between the occurrence period i and the eval-
uation date. As introduced in Section 2.1.1, F1(.) is the cdf assumed for reporting delay.

2.1.3 Development Pattern

Structuring the development pattern Let the random variable Yikj represent the jth

incremental partial amount for the kth claim (k = 1, . . . , Ki) from occurrence period i
(i = 1, . . . , I). We obtain the total cumulative amount paid for claim (ik) by multiply-
ing the initial amount, Yik1, by one or more link ratios. The initial amount, together with
the vector of link ratio(s), forms the development pattern of the claim. This approach is
similar to the one used in the chain–ladder model (see Mack (1993) and Mack (1999)).
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However, with chain–ladder, the index j is for development period instead of par-
tial payment. Using a development–to–development period model (as chain–ladder does)
with individual claims can be problematic because the length of the development pat-
tern differs among claims, and many development factors will have value one. We
avoid this in the payment–to–payment approach used in our paper.

For a claim (ik) with a strict positive value of Uik = uik, the vector Λ
(ik)
uik+1 of length

uik + 1 gives the development pattern

Λ
(ik)
uik+1 =

[
Yik1 λ

(ik)
1 . . . λ

(ik)
uik

]′
, (2)

where

λ
(ik)
j =

∑
j+1
r=1 Yikr

∑
j
r=1 Yikr

, (3)

for j = 1, . . . , uik. In the stochastic version of the chain–ladder model, successive devel-
opment factors are supposed to be non–correlated given past information. Moreover,
independence is assumed between the initial payment and the vector of development
factors. The so–called PIC model from Merz and Wüthrich (2010) is an exception.
The study by Happ and Merz (2012) examines dependence structures for link ratios in
the PIC model. In the individual framework developed in our paper assuming inde-
pendence is problematic and unrealistic (as demonstrated empirically in Section 4.2.3,
Figure 8 (Bodily Injury) and 11 (Material Damage)). This motivates the use of a flexible
multivariate distribution for Λ

(ik)
uik+1 (i = 1, . . . , I and k = 1, . . . , Ki). Such a distribu-

tion should be able to account for the dependence present in the development pattern
vectors, as well as the asymmetry in each of its components.

A flexible multivariate distribution for the development pattern. Our paper uses
the family of Multivariate Skew Symmetric (MSS) distributions (see Gupta and Chen
(2004) and Deniz (2009)) to model the development pattern of a claim (ik) on log scale.
More specifically, we will use the Multivariate Skew Normal (MSN) distribution as
multivariate versions of the Univariate Skew Normal (USN) distribution (from Roberts
and Geisser (1966) and Azzalini (1985)).

Definition 2.1 (MSS and MSN distribution.) Let µ = [µ1 . . . µk]
′ be a vector of loca-

tion parameters, Σ a (k× k) positive definite symmetric scale matrix and ∆ = [∆1 . . . ∆k]
′

a vector of shape parameters. The (k× 1) random vector X follows a Multivariate Skew
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Symmetric (MSS) distribution if its density function is of the form

MSS
(

X;µ, Σ1/2, ∆
)

=
2k

det(Σ)1/2 g∗
(

Σ−1/2 (X−µ)
) k

∏
j=1

H
(

∆je′jΣ
−1/2 (X−µ)

)
,

(4)
where g∗ (x) = ∏k

j=1 g(xj), g(·) is a density function symmetric around 0, H(·) is an
absolutely continuous cumulative distribution function with H′(·) symmetric around
0 and e′j are the elementary vectors of the coordinate system Rk. 1

The Multivariate Skew Normal (MSN) distribution is obtained from (4) by replacing
g(·) and H(·) with the pdf and cdf of the standard Normal distribution, respectively.

2.2 The Likelihood

For the sake of clarity, the likelihood function will be divided into three parts: an ex-
pression for the likelihood of closed, RBNP and RBNS claims.

Closed claims. For closed claims (Cl), the likelihood function is given below. Hereby,
t∗ik refers to the evaluation date, expressed as number of periods after occurrence. (ik)Cl

refers to a closed claim.

LCl ∝ ∏
(ik)Cl

MSS(ln
(
Λuik+1

)
;µuik+1, Σ1/2

uik+1, ∆uik+1|uik) · f1(tik;ν|Tik ≤ t∗ik − 1)

· ∏
(ik)Cl

f2(qik;ψ|Qik ≤ t∗ik − tik − 1) · f3(uik;β|Uik ≤ t∗ik − qik − tik − 1)

· ∏
(ik)Cl

{I(uik = 0)(1)} · {I(uik ≥ 1) f4(nik1;φ|0 < Nik1 ≤ t∗ik − tik − qik − uik)}

· {I(uik ≥ 2)
uik

∏
j=2

f4(nikj;φ|0 < Nikj ≤ t∗ik − tik − qik − (uik − j + 1)−
j−1

∑
p=1

nikp).}

(5)

The first component in this likelihood (i.e. ‘MSS(. . .)’) is the multivariate distribution
of the development pattern, given the total number of link ratio(s). The other com-
ponents, f1(.), f2(.), f3(.) and f4(.), refer to reporting delay, first payment delay, the
number of periods with payment and the delay between two periods with payment.
The random variables involved in the time structure (T, Q, U and N) have their distri-
bution censored at the evaluation date.

1The scale parameter Σ is not the usual variance-covariance matrix as in the Multivariate Normal
distribution. A MSS random vector is defined by Σ1/2 in place of Σ because of the plurality of the
square roots of Σ. Without subscript, Σ1/2 designs any square root of the matrix Σ.
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RBNS claims. For Reported But Not Settled claims (RBNS), the likelihood is (with
u∗ik the observed number of periods with payment after the first one, and (ik)RBNS

indicating an RBNS claim)

LRBNS ∝ ∏
(ik)RBNS

MSS(ln
(

Λu∗ik+1

)
;µu∗ik+1Σ1/2

u∗ik+1, ∆u∗ik+1|u∗ik) · f1(tik;ν|Tik ≤ t∗ik − 1)

· ∏
(ik)RBNS

f2(qik;ψ|Qik ≤ t∗ik − tik − 1) · (1− F3(u∗ik − 1;β))

· ∏
(ik)RBNS

I(u∗ik = 0)(1) · I(u∗ik ≥ 1) f4(nik1;φ|0 < Nik1 ≤ t∗ik − tik − qik − u∗ik)

· {I(u∗ik ≥ 2)
u∗ik

∏
j=2

f4(nikj;φ|0 < Nikj ≤ t∗ik − tik − qik − (u∗ik − j + 1)−
j−1

∑
p=1

nikp)}.

(6)

RBNP claims. Finally, for Reported But Not Paid claims (RBNP), the likelihood func-
tion is (with (ik)RBNP indicating an RBNP claim)

LRBNP ∝ ∏
(ik)RBNP

f1(tik;ν|Tik ≤ t∗ik − 1) · (1− F2(t∗ik − tik − 1;ψ)). (7)

2.3 Analytical Results for Best Estimates of Outstanding Reserves

The model specified in Section 2.1 and 2.2 allows to derive analytical results for the nth

moment of an IBNR, RBNP and RBNS claim, as well as for the expected value of the
IBNR, RBNP and RBNS reserve. Proofs are deferred to Appendix A. We drop the (ik)
subscript for reasons of simplicity.

Proposition 2.2 (nth moment of an IBNR or RBNP claim.) Let C be the random vari-
able representing the total claim amount of an IBNR (or RBNP) claim

C = Y1 · λ1 · λ2 · . . . · λU. (8)

Using the model assumptions from Section 2.1 and 2.2 with location vector µ, scale
matrix Σ and shape vector ∆, the nth moment of C is given by

E

2U+1 exp
(

t′nµU+1 + 0.5t′nΣ1/2
U+1

(
Σ1/2

U+1

)′
tn

)
·

U+1

∏
j=1

Φ


∆j ·

((
Σ1/2

U+1

)′
tn

)
j√

1 + ∆2
j




U

. (9)

tn is an ((U + 1)× 1) vector, specified as [n n . . . n]′.
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Proposition 2.3 gives the corresponding result for an RBNS claim. The distinguishing
feature between Proposition 2.2 and 2.3 is the fact that for an RBNS claim part of the
development pattern is already observed.

Proposition 2.3 (nth moment of an RBNS claim.) Define

ΛU+1 =

[
ΛA

ΛB

]
, µU+1 =

[
µA

µB

]
,

Σ1/2
U+1 =

[
ΣAA 0
ΣBA ΣBB

]
, ∆U+1 =

[
∆A

∆B

]
, (10)

where ΛA, µA and ∆A are UA × 1 (with UA < U + 1). ΣAA is a UA ×UA lower trian-
gular matrix with positive diagonal elements and ΣBB is a UB ×UB lower triangular
matrix with positive diagonal elements. Hereby, UB + UA = U + 1, the total number
of periods with partial payment.

We define [µ∗U+1|ΛA = `A] := µB + ΣBAΣ−1
AA (`A −µA), Σ∗U+1 = ΣBB and ∆∗U+1 =

∆B. The conditional final amount of a claim C, given past information, is defined as

[C|ΛA = `A] = y1 · `1 · . . . · `uA−1 · λuA . . . · λU. (11)

Using the model assumptions from Section 2.1 and 2.2, the nth moment of C is given
by

E[Cn|ΛA = `A] =
(
y1 · `1 · . . . · `uA−1

)n

· E

2UB exp
(
h′nµ

∗
U+1 + 0.5h′n

(
Σ∗U+1

)1/2
((

Σ∗U+1
)1/2

)′
hn

)
·∏UB

j=1 Φ

∆∗j ·
((
(Σ∗U+1)

1/2)′
hn

)
j√

1+
(

∆∗j
)2




UB

(12)

with the (UB × 1) vector hn := [n n . . . n]′.

Analytical expressions for the total outstanding IBNR, RBNP and RBNS reserve follow
immediately from Proposition 2.2 and 2.3.

Proposition 2.4 (Best estimates for the IBNR, RBNP and RBNP reserves.) Let I denote
the observed information for all claims in the data set. We define tn, hn, µ∗U+1, Σ∗U+1

and ∆∗U+1 as in Proposition 2.2 and 2.3, respectively. Using the model assumptions
from Section 2.1 and 2.2, the best estimate of the outstanding IBNR, RBNP and RBNS
reserves follow.

(a) The expected value of the total amount outstanding for IBNR and RBNP claims,
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respectively, is

E[IBNR|I ] versus E[RBNP|I ]

= (x) · E
[

2U+1 exp(t′1µU+1 + 0.5t′1Σ1/2
U+1

(
Σ1/2

U+1

)′
t1) ·∏U+1

j=1 Φ

(
∆j·((Σ1/2

U+1)
′t1)j√

1+∆2
j

)]
U

,

(13)

where (x) should be replaced with E[KIBNR] in case of IBNR reserves, and with
kRBNP, the observed number of open claims without payment, in case of RBNP
reserves. The expected number of IBNR claims follows from the Poisson pro-
cess driving the occurrence of claims (appropriately thinned to represent IBNR
claims).

(b) The expected value of the total amount outstanding for RBNS claims is

E[RBNS|I ]
= ∑

(ik)RBNS

y1 · `1 · . . . · `u1−1

· E

2UB exp(h′1µ
∗
U+1 + 0.5h′1

(
Σ∗U+1

)1/2
((

Σ∗U+1
)1/2

)′
h1) ·∏UB

j=1 Φ

∆∗j ·
((
(Σ∗U+1)

1/2)′
h1

)
j√

1+
(

∆∗j
)2




UB

,

(14)

where the sum goes over all RBNS claims.

3 The Data

3.1 Background

We study the data set from Antonio and Plat (2012) on a portfolio of general liability
insurance policies for private individuals 2. Available information is from January 1997
till December 2004. Originally, information is available till August 2009, but to enable
out–of–sample prediction we remove the observations from January 2005 to August
2009. Two types of payments are registered in the data set: Bodily Injury (BI) and
Material Damage (MD) 3. Figure 2 represents the development of a random claim from
the data set. Following the approach presented in this paper, Figure 3 transforms the
data set to discrete time periods (here: one period is one year).

2As in Antonio and Plat (2012) we discount payments to 1/1/1997 with the appropriate consumer
price index.

3In contrast with Antonio and Plat (2012) a claim can have both BI payments, as well as MD pay-
ments. In Antonio and Plat (2012) a claim with at least one BI payment was considered as BI.
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Figure 2: Development of a random claim in continuous time. The x–axis represents
the date of each event and the y–axis represents the cumulative amount paid for the
claim.
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Figure 3: Development of the claim from Figure 2 in a discrete time framework (an-
nual).

The accident occurs at 06/17/1997. The claim is reported to the company on 07/22/1997,
thus: t(ik) = 0. A first payment is done on 09/24/1997, implying a first payment delay
of 0 periods (q(ik) = 0). Consequently, payments follow on 10/21/1997, 11/07/1997,
05/08/1998, 12/11/1998, 03/23/1999, 02/23/2000, 01/03/2001 and 02/24/2001. There-
fore, u(ik) = 4 and n(ik),1 = n(ik),2 = n(ik),3 = n(ik),4 = 1. Closure is at 08/13/2001, thus
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n(ik),5 = 0.

3.2 Descriptive Statistics

The data set consists of 279, 094 claims; 273, 977 claims are related to Material Damage
(MD) and 5, 117 claims to Bodily Injury (BI). 268, 484 MD claims (181, 828 with at least
one payment and 86, 656 with no payment) and 4, 098 BI claims (2, 961 with at least one
payment and 1, 137 with no payment) are closed in the data set. We present descriptive
statistics for closed claims with positive payments in Table 1. In Section 4.1 descriptive
graphics follow representing reporting delay, first payment delay and the number of
periods with payment (see Figure 5). We illustrate correlation between development
factors in Figures 8 (Bodily Injury) and 11 (Material Damage).

Class Variables Mean Median s.e. Minimum Maximum Number of
Observations

Y1 1, 008 351 3, 274 0.18 148, 900 2, 961
λ1 10.24 3.23 31.52 1.01 653.33 991

BI λ2 4.50 1.95 10.80 1.00 127.74 253
λ3 2.73 1.80 2.18 1.00 11.94 89
λ4 2.67 1.92 2.22 1.00 11.44 37
Total Claim 2, 961 624 11, 825 6.3 410, 500 2, 961

Y1 298 151 528 0.35 68, 810 181, 828
MD λ1 5.44 2.18 11.71 1.00 371.40 1, 555

λ2 2.16 1.41 1.73 1.01 6.93 13
Total Claim 305 153 679 0.35 108, 300 181, 828

Table 1: Descriptive statistics for closed claims: first payment, total claim amount, and
development factors λi with i ≤ 4 for BI claims and i ≤ 2 for MD claims.

4 Distributional Assumptions and Estimation Results

4.1 Distributional Assumptions

Distributions for number of periods For the random variables describing the time
structure part of a claim’s development (i.e. {Tik}, {Qik}, {Uik} and {Nik} from Sec-
tion 2.1), we consider mixtures of a discrete distribution with degenerate components
(similar to Antonio and Plat (2012)). For reporting delay, for instance, we investigate
distributions of the following type

f1(t;ν) =
p

∑
s=0

νs Is(t) +

(
1−

p

∑
s=0

νs

)
fT|T>p(t), (15)

where Is(t) = 1 for reporting in the sth period after the period of occurrence and 0
otherwise. f (t) is the pdf of a discrete distribution with parameter(s) νp+1, . . . , νp+q.
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Further on, we investigate the use of a Geometric, Binomial, Poisson and Negative
Binomial distribution for f (.), combined with different values for p (p = 0, 1, 2, 3).

Development pattern For the logarithm of the development pattern vector (as in (2)),
we consider the MSN distribution on the one hand and the special case where ∆ = 0,
i.e. the Multivariate Normal distribution (MN), on the other hand. The following struc-
tures are considered for the z× z matrix Σ1/2

c
4: unstructured (UN), Toeplitz (TOEP),

Compound Symmetry (CS) and Diagonal (DIA) (see below).



σ2
1 0 0 . . . 0

σ21 σ2
2 0 . . . 0

...
. . .

...
...

. . .
...

σz1 σz2 σz3 . . . σ2
z


(UN)



σ2
1 0 0 . . . 0

σ2σ1ρ1 σ2
2 0 . . . 0

σ3σ1ρ2 σ3σ2ρ1 σ2
3 . . . 0

...
. . .

...

σzσ1ρz−1 σzσ2ρz−2 σzσ3ρz−3 . . . σ2
z


(TOEP)

σ2
1 0 0 . . . 0

σ2σ1ρ σ2
2 0 . . . 0

σ3σ1ρ σ3σ2ρ σ2
3 . . . 0

...
. . .

...

σzσ1ρ σzσ2ρ σzσ3ρ . . . σ2
z


(CS)



σ2
1 0 0 . . . 0

0 σ2
2 0 . . . 0

0 0 σ2
3 . . . 0

...
. . .

...

0 0 0 . . . σ2
z


(DIAG)

4.2 Estimation Results

Following the discussion and approach in Antonio and Plat (2012), we fit the model
separately for Material Damage and Bodily Injury payments. We perform data manip-
ulations and likelihood optimization with R (using additional packages, like ChainLad-

der and sn for the Skew Normal distribution). We use numerical approximations of the
Hessian matrix to estimate standard errors. For each component in the model, a model
selection step is performed, comparing different models based on AIC and BIC. We
highlight selected model specifications in blue in the tables following below.

4.2.1 Distributions for number of periods

For the discrete random variables {Tik}, {Qik}, {Uik} and {Nik}, we investigate the
use of a mixture of p degenerate distributions with a basic count distribution (see (15)).
Consequently, p + q + 1 parameters have to be estimated for each variable. Our model

4For MSN and MN, matrix Σ1/2
c refers to the square root of the covariance matrix Σ, as obtained by

Cholesky decomposition.
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selection procedure (based on AIC and BIC) prefers the use of a Geometric distribution,
combined with degenerate components. Figure 6 shows model selection steps assisting
in the choice of the number of degenerate components. Figure 7 displays parameter
estimates and standard errors for the preferred specifications. Observed and estimated
results are compared in Figure 5, at least for the components necessary to project claims
till settlement.

4.2.2 Occurrence of claims

Using the distributions selected for reporting delay, we estimate the thinned Poisson
process from (1). Hereby, the exposure measure w(.) is expressed in years. Results are:
θ̂BI = 0.7445 (s.e. 0.02) and θ̂MD = 38.96 (s.e. 0.11).

4.2.3 Development pattern

The development consists of a single payment. For the logarithm of the severity of
the first and only payment, we explore the use of a Univariate Skew Normal (USN) as
well as a Normal (N) distribution. The estimation results and a graphical goodness–
of–fit check are in Figure 4. For the data at hand, the Normal distribution is to be
preferred.

The development consists of more than one payment. We examine the use of the
Multivariate Skew Normal (MSN), as well as the Multivariate Normal (MN), distribu-
tion for the logarithm of the development pattern vector Λ

(ik)
Uik+1 (see (2)). For Bodily

Injury we restrict the maximal dimension of the development vector, say mp, to 5 and
to mp = 3 for Material Damage 5. Therefore, we fit a location vector of dimension
mp × 1, a scale matrix of dimension mp ×mp and a shape vector of dimension mp × 1.
When observed claims use less development factors, appropriate subvectors and sub-
matrices are used in the likelihood. If the simulated number of periods with payment
is bigger than mp, we apply a tail factor 6. Figures 9 and 10 (Bodily Injury) and 12 and
13 (Material Damage) present results of the model selection steps, as well as parameter
estimates for the preferred Multivariate Skew Normal and the preferred Multivariate
Normal distribution. Empirical data and contour plots for the chosen MSN multivari-
ate density are compared in Figure 8 (Bodily Injury) and 11 (Material Damage).

5In the data set we observe only 8 BI claims with more than 5 periods with payment and 2 MD claims
with more than 3 periods with payment.

6This tail factor is the geometric average of empirically observed development factors.

13



BI MD
USN N USN N

µ 5.9377 5.9226 4.9541 5.0428
(s.e.) (1.04) (0.03) (0.06) (< 0.01)

σ 1.3966 1.3968 1.1663 1.1637
(s.e.) (0.02) (0.02) (0.01) (< 0.01)

δ −0.0139 - 0.0959 -
(s.e.) (0.94) - (0.07) -

AIC 4, 124 4, 122 284, 855 284, 853
BIC 4, 141 4, 133 284, 885 284, 873

Single payment severity
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Figure 4: Logarithm of the severity of the first and only payment: (on the left) estima-
tion results for the Univariate Skew Normal distribution (USN) (with parameters µ, σ
and scale parameter δ) and the Normal distribution (N) (with parameters µ and σ); (on
the right) empirical and fitted densities for Bodily Injury (top) and Material Damage
(bottom).
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Figure 5: Observed and estimated frequency distributions for Bodily Injury
(BI, top row) and Material Damage (MD, bottom row). From left to right:
reporting delay, first payment delay and number of intermediate payments
after the first one.

BI MD
p AIC BIC AIC BIC

(T; ν) baseline 3, 120 3, 126 88, 730 88, 740
0 2, 987 3, 000 85, 714 85, 735
1 2, 966 2, 985 85, 484 85, 515
2 2, 961 2, 987 85, 479 85, 521
3 2, 963 2, 994 85, 485 85, 537

(Q; ψ) baseline 4, 882 4, 888 116, 611 116, 621
0 4, 605 4, 617 111, 045 111, 066
1 4, 575 4, 594 110, 680 110, 711
2 4, 577 4, 602 110, 676 110, 717
3 4, 578 4, 609 110, 680 110, 732

(U; β) baseline 6, 102 6, 108 18, 255 18, 265
0 6, 096 6, 108 18, 250 18, 270
1 6, 025 6, 043 18, 233 18, 264
2 6, 026 6, 051 18, 233 18, 273
3 6, 017 6, 048 18, 235 18, 285

Figure 6: Model selection for {Tik}, {Qik}, {Uik}, us-
ing the structure from (15) with a Geometric distri-
bution for the basic count distribution.

Class Parameter Report delay First pmt delay Number partial pmt
Index (T; νs) (Q; ψs) (U; βs)

(s.e.) (s.e.) (s.e.)

0 0.8953 0.7127 0.5192
(< 0.001) (< 0.001) (0.010)

1 0.0819 0.2522 0.2470
(0.003) (0.003) (0.008)

BI 2 0.5144 0.6431 0.3094
(0.064) (0.052) (0.022)

0 0.9565 0.9181 0.9896
(< 0.001) (< 0.001) (< 0.001)

1 0.0421 0.0794 0.0103
(< 0.001) (< 0.001) (< 0.001)

MD 2 0.6820 0.6729 0.7184
(0.031) (0.026) (0.125)

Figure 7: Estimation results for the selected distri-
bution for {Tik}, {Qik}, {Uik}, i.e. a Geometric dis-
tribution with degenerate components. Parameters
are denoted as in (15).
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Figure 8: Bodily injury: empirical observations of the develop-
ment vector (2) and contour plots obtained from selected MSN
model (see right). First row of plots (from left to right): first
link ratio vs. initial payment, second link ratio vs. initial pay-
ment, third link ratio vs. initial payment. Second row (from left
to right): fourth link ratio vs. initial payment, second vs. first
link ratio, third vs. first link ratio. Third row (from left to right):
fourth vs. first link ratio, third vs. second link ratio, fourth vs.
second link ratio. Fourth row: fourth vs. third link ratio.

Model # Parms. −ll AIC BIC

MSN UN 20 3, 431 6, 902 7, 000
TOEP 14 3, 435 6, 897 6, 966
CS 11 3, 444 6, 910 6, 964
DIA 10 3, 605 7, 230 7, 279

MN UN 20 3, 496 7, 032 7, 128
TOEP 14 3, 499 7, 025 7, 094
CS 11 3, 531 7, 083 7, 137
DIA 10 3, 723 7, 465 7, 514

Figure 9: Bodily Injury: model selection steps examining MSN
and MN specifications for the development pattern vector.

MSN Model MN Model
Location Scale Shape Location Scale
µ (s.e.) Σ1/2

c ∆ µ (s.e) Σ1/2
c

µ1 = 5.44 σ1 = 1.27 ∆1 = 0.51 µ1 = 6.04 σ1 = 1.23
(0.05) σ2 = 1.18 ∆2 = 2.64 (0.05) σ2 = 0.97
µ2 = 0.53 σ3 = 1.00 ∆3 = 2.29 µ2 = 1.43 σ3 = 0.86
(0.03) σ4 = 0.83 ∆4 = −0.32 (0.04) σ4 = 0.82
µ3 = 0.63 σ5 = 0.69 ∆5 = −0.002 µ3 = 0.95 σ5 = 0.69
(0.05) ρ = −0.28 (0.05) ρ1 = −0.49
µ4 = 1.49 µ4 = 0.64 ρ2 = −0.23
(0.09) (0.08) ρ3 = −0.003
µ5 = 1.12 µ5 = 0.66 ρ4 = −0.26
(0.10) (0.11)

Figure 10: Bodily Injury: parameter estimates for preferred MSN
and MN distributions.
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Figure 11: Material Damage: empirical observations of the devel-
opment vector (2) and contour plots obtained from selected MSN
model (see right). First row of plots (from left to right): first link
ratio vs. initial payment, second link ratio vs. initial payment.
Second row: second vs. first link ratio.

Model # Parms. −ll AIC BIC

MSN UN 9 4, 260 8, 538 8, 586
TOEP 8 4, 282 8, 580 8, 622
CS 7 4, 508 9, 031 9, 068
DIA 6 4, 740 9, 492 9, 524

MN UN 9 4, 260 8, 538 8, 586
TOEP 8 4, 271 8, 557 8, 600
CS 7 4, 510 9, 033 9, 071
DIA 6 4, 743 9, 498 9, 530

Figure 12: Material Damage: model selection steps examining
MSN and MN specifications for the development pattern vector.

MSN Model MN Model
Location Scale Shape Location Scale
µ (s.e.) Σ1/2

c ∆ µ (s.e) Σ1/2
c

µ1 = 5.44 σ11 = 1.27 ∆1 = −0.01 µ1 = 5.43 σ11 = 1.27
(0.03) σ22 = 0.71 ∆2 = −0.01 (0.03) σ22 = 0.71
µ2 = 1.12 σ33 = 0.75 ∆3 = 23.61 µ2 = 1.13 σ33 = 0.40
(0.02) σ12 = −0.66 (0.02) σ12 = −0.66
µ3 = 0.18 σ13 = −0.26 µ3 = 0.93 σ13 = −0.36
(0.20) σ23 = −0.05 (0.17) σ23 = −0.07

Figure 13: Material Damage: parameter estimates for preferred
MSN and MN distributions.
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5 Prediction Results

We summarize the data set by occurrence and development year in run–off triangles,
see Tables 2 and 3. Information with respect to occurrence years 2005 to 2009 (Au-
gust) is available but not used in the analysis to enable out–of–sample prediction. This
information is printed in bold in the run–off triangles.

Arrival Development year
year 1 2 3 4 5 6 7 8

1997 261 614 359 526 546 137 130 339
1998 202 473 307 336 269 56 179 78
1999 238 569 393 270 249 286 132 97
2000 237 557 429 496 406 365 247 275
2001 389 628 529 559 446 375 147 239
2002 260 570 533 444 132 122 332 1, 082
2003 236 743 558 237 217 205 171
2004 248 794 401 236 254 98

Table 2: Incremental run-off triangle for Bodily Injury (in thousands).

Arrival Development year
year 1 2 3 4 5 6 7 8

1997 4, 427 992 89 13 39 27 37 11
1998 4, 389 984 60 35 76 24 0.5 16
1999 5, 280 1, 239 76 110 113 12 0.4 0
2000 5, 445 1, 164 172 16 6 10 0 10
2001 5, 612 1, 838 156 127 13 3 0.4 3
2002 6, 593 1, 592 74 71 17 15 9 9
2003 6, 603 1, 660 150 52 37 18 3
2004 7, 195 1, 417 109 86 39 15

Table 3: Incremental run-off triangle for Material Damage (in thousands).

5.1 Prediction of the IBNR and RBNP reserves

Best estimate for outstanding IBNR and RBNP reserves. Analytical expressions for
the IBNR and RBNP reserve are available from Section 2.3, see Proposition 2.2, where
unknown parameters should be replaced by estimates (as obtained in Section 4.2).
Note that these expressions evaluate claims till settlement, even if this takes place be-
yond the boundary of the triangle. Table 5 displays these analytical results for Bodily
Injury and Table 6 for Material Damage.
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Simulation of outstanding IBNR and RBNP reserves. For each occurrence period,
we simulate the number of IBNR claims (for Bodily Injury and Material Damage seper-
ately) from a Poisson distribution with occurrence measure

θ̂w(i)(1− F1(t∗i − 1; ν̂)). (16)

Consequently, for each IBNR claim (denoted with (ik)), we simulate the number of
period(s) with partial payments Uik and the corresponding development pattern vector
Λ

(ik)
Uik

. Note that - with this strategy - we develop a claim till settlement (which can
be beyond the boundary of the triangle). Taking the timing of partial payments into
account would require simulation of the random variables Tik, Qik and Nikj (see Table 5
and 6 for results simulated until the boundary of the triangle).

The prediction routine for the RBNP reserve is similar to the routine for IBNR
claims. However, the number of RBNP claims is observed, and therefore does not
require a simulation step. The variable Qik should be simulated from a truncated dis-
tribution, using the condition Qik > t∗ik − tik − 1.

Graphical results based on 5,000 simulations are shown in Figure 14. Tables 5 (Bod-
ily Injury) and 6 (Material Damage) display corresponding numerical results.
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Figure 14: Histograms of the reserve obtained for IBNR and RBNP claims with the
individual model for Bodily Injury (left) and Material Damage (right).

5.2 Prediction of the RBNS reserve

Best estimate for outstanding RBNS reserve. Tables 5 (Bodily Injury) and 6 (Material
Damage) display analytical results for Bodily Injury and Material Damage payments.
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Similar considerations apply as for IBNR and RBNP reserves.

Simulation of outstanding RBNS reserve. For each RBNS claim in the data set,
we first simulate the number of period(s) with payment from the conditional pdf
f3(u|u ≥ u∗) where u∗ is the observed number of periods with payment after the
first one. Then, we simulate the missing part of the development pattern vector from
the conditional MSN distribution (by conditioning on the observed part of the devel-
opment pattern vector). Finally, we evaluate the RBNS reserve. Numerical results
based on 5,000 simulations are in Tables 5 (Bodily Injury) and 6 (Material Damage) and
corresponding graphical results are in Figure 15.
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Figure 15: Histograms of the reserve obtained for RBNS claims with the individual
model for Bodily Injury (left) and Material Damage (right).

5.3 Comparison of results

Tables 5 (for Bodily Injury) and 6 (for Material Damage) show prediction results ob-
tained with our individual claims reserving method, as well as Mack’s chain–ladder
technique. The first two ‘scenarios’ in these tables display IBNR+RBNP (=IBNR+),
RBNS and Total reserves obtained with our preferred distributional assumptions (see
Section 4.2.3) when claims are developed until settlement. Both analytical (first block
of rows) and simulation based results (second block of rows) are given. The best esti-
mate results obtained analytically are close to the mean of the corresponding predictive
distribution obtained from simulation. This underpins the usefulness and appropriate-
ness of the analytical formulas. The third block of rows shows simulation based results,
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including parameter uncertainty. This means that uncertainty in the location param-
eter was taken into account. The fourth block of rows gives simulation based results
from the individual reserving method taking the policy limit of 2.5 MEuro into account
(see Antonio and Plat (2012)). In a sixth block of rows we include simulation based re-
sults, accounting for policy limits, but restricting the development of claims to the right
boundary of the triangle (i.e. development year 8), instead of developing claims until
settlement. These results can be compared with Mack’s chain–ladder results, as well as
with the realized outcomes, displayed in bold in the lower triangles in Tables 2 and 3.
Figure 17 illustrates this comparison. Results obtained with the chain–ladder method
are represented by a lognormal density with mean and standard deviation as obtained
from Mack’s chain–ladder.

According to Figure 16 (simulation based, for Bodily Injury) and Table 4 (best esti-
mate analytical results), the structure implied to Σ1/2

c has minor impact on the resulting
predictive distribution (obtained with MSN or MN assumption for (2)). However, the
assumption of a Multivariate Normal versus Multivariate Skew Normal distribution
for (2) has a clear impact on the predictive distribution of the outstanding reserves, at
least for Bodily Injury payments. The impact is negligible for Material Damage (see
Table 4). Recall from Figure 10 and 13 that all information criteria prefer the MSN
distribution above the MN distribution. This sensitivity is a topic for future research.
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Figure 16: Bodily Injury: sensitivity of simulated predictive distributions with respect
to the specification of the multivariate distribution for the development pattern vector.
‘MSN’ refers to Multivariate Skew Normal and ‘MN’ to Multivariate Normal.

The best estimate results reported in Tables 5 and 6 (simulation based, until the
boundary of the triangle and taking the policy limit into account) are close to the results
obtained in Antonio and Plat (2012). Our out–of–sample test (see Figure 17) demon-
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MSN UN BI 8,132,051 MD 2,320,735
TOEP 8,476,498 2,331,575

CS 8,404,192 2,339,406

MN UN BI 6,836,694 MD 2,327,497
TOEP 6,578,931 2,327,733

CS 6,547,580 2,345,500

Table 4: Sensitivity of analytical best estimate results with respect to the specification
of the multivariate distribution for the development pattern vector. ‘MSN’ refers to
Multivariate Skew Normal and ‘MN’ to Multivariate Normal.

strates the usefulness of the method developed in this paper. As discussed in Antonio
and Plat (2012), the lower triangle for Bodily Injury (see Table 2) shows an extreme
payment (779,383 euro) in occurrence year 2002, development year 8. This is reflected
in a realistic way by the individual loss reserving model.

6 Conclusions

This paper proposes a discrete time individual reserving model inspired by the chain–
ladder model. The model is designed for a micro–level data set with the development
of individual claims. Highlights of our approach are twofold. Firstly, on a claim by
claim as well as aggregate level, analytical expressions for the first moment of the out-
standing reserve are available. Secondly, the predictive distribution of the outstanding
reserve is available by simulation. The latter approach allows to take policy charac-
teristics, such as a policy limit, into account. The case study performed on a real–life
general liability insurance portfolio demonstrates the usefulness of the model.

Several directions for future research can be envisaged. We plan further research
with respect to the modeling of the first payment, using the Lognormal-Pareto distri-
bution (see Pigeon and Denuit (2011)). Further investigation of the multivariate dis-
tribution for the development pattern vector is necessary. Nonparametric density es-
timation, as well as a copula approach, may be useful here. More precise modeling
of inflation effects and inclusion of the ‘time value of money’ will be of importance in
future work. Studying the approach in light of the new solvency guidelines, is another
path to be explored, as well as extending the model to the reinsurance industry.
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Model or Item Expected S.E. VaR0.95 VaR0.995
Scenario Value

Individual MSN IBNR+ 2, 970, 645
Theoretical RBNS 5, 433, 548

(until settlement) Total 8, 404, 192

Individual MSN IBNR+ 3, 035, 519 494, 771 3, 912, 159 4, 673, 340
Simulated RBNS 5, 439, 318 704, 701 6, 650, 958 7, 738, 003

(until settlement) Total 8, 474, 837 853, 812 9, 927, 439 11, 105, 174

Individual MSN Total 8, 533, 066 875, 989 10, 054, 807 11, 219, 311
Sim. + Unc.

(until settlement)

Individual MSN Total 8, 464, 661 823, 752 9, 875, 418 10, 912, 072
Sim. + Pol. Limit
(until settlement)

Individual MSN Total 7, 131, 164 766, 852 8, 449, 221 9, 353, 716
Sim. + Pol. Limit

(until triangle bound)

Mack Chain-Ladder Total 9, 082, 114 1, 184, 546 11, 150, 686 12, 583, 834
Observed Total 7, 684, 000

(bold, Table 2)

Table 5: Bodily Injury: comparison of estimation results. IBNR+ denotes the combina-
tion of IBNR and RBNP reserves. Results are displayed for: analytical best estimates
(until settlement of each claim), corresponding simulation based results, simulation
based results incorporating uncertainty in location parameters, simulation based re-
sults accounting for individual policy limit of 2.5 MEuro, simulation based results ac-
counting for policy limits and developing until development year 8. Mack’s chain–
ladder results for Table 2 are displayed. Observed amount (i.e. sum of bold numbers
in Table 2) is 7,684,000 euro.
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Model or Item Expected S.E. VaR0.95 VaR0.995
Scenario Value

Individual MSN IBNR+ 1, 785, 219
Theoretical RBNS 535, 517

(until settlement) Total 2, 320, 735

Individual MSN IBNR+ 1, 786, 860 42, 750 1, 858, 927 1, 903, 514
Simulated RBNS 535, 561 20, 398 563, 878 591, 452

(until settlement) Total 2, 322, 421 47, 125 2, 399, 713 2, 447, 808

Individual MSN Total 2, 345, 550 49, 842 2, 424, 624 2, 473, 893
Sim. + Unc.

(until settlement)

Individual MSN Total 2, 318, 058 46, 489 2, 404, 582 2, 447, 490
Sim. + Pol. Limit
(until settlement)

Individual MSN Total 2, 312, 532 46, 786 2, 388, 427 2, 431, 461
Sim. + Pol. Limit

(until triangle bound)

Mack Chain-Ladder Total 3, 024, 375 411, 507 3, 744, 588 4, 247, 807
Observed Total 2, 102, 800

(bold, Table 3)

Table 6: Material Damage: comparison of estimation results. IBNR+ denotes the com-
bination of IBNR and RBNP reserves. Results are displayed for: analytical best esti-
mates (until settlement of each claim), corresponding simulation based results, simula-
tion based results incorporating uncertainty in location parameters, simulation based
results accounting for individual policy limit of 2.5 MEuro, simulation based results
accounting for policy limits and developing until development year 8. Mack’s chain–
ladder results for Table 3 are displayed. Observed amount (i.e. sum of bold numbers
in Table 2) is 2,102,800 euro.
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Prediction for lower triangle: MSN vs. Chain−Ladder
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Figure 17: Histogram of the total reserve (light blue) obtained with the individual MSN model for Bodily Injury (left) and Material
Damage (right). The histograms are based on 5,000 simulations (for BI) and 10,000 simulations (for MD) until the boundary of the
triangle, taking the policy limit into account. The black reference line is the lognormal density function with mean and standard
deviation as obtained with Mack’s Chain–Ladder method. Dotted lines (on the BI plot) and red bullet (on the MD plot) represent
the observed total payment for years 2005 to 2009 (August), i.e. the sum of the numbers in bold in Table 2 and 3.
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A Proof of Proposition 2.2.

For a Multivariate Skew Symmetric random vector ((U + 1)× 1)

ln (ΛU+1) =
[
ln (Y1) ln (λ1) . . . ln (λU)

]′
(17)

and a ((U + 1)× 1) vector t, the moment generating function is given by (see Deniz
(2009))

Mln(ΛU+1)(t)

= exp
(
t′nµU+1

)
· E
[

exp
((

Σ1/2
U+1

)′
t′nzU+1

)
·

U+1

∏
j=1

H
(

∆je′jzU+1

)]
g∗(zU+1)

. (18)

By definition,

Mln(ΛU+1)(t) = E
[
exp

(
ln (ΛU+1)

′ t
)]

= E[exp (ln (Y1) t1 + ln (λ1) t2 + . . . + ln (λU) tU+1)] .

Taking t = tn = [ n n . . . n ]
′

we obtain

Mln(ΛU+1)(tn) = E[exp {n (ln (Y1) + ln (λ1) + . . . + ln (λU))}]
= E

[
(Y1 · λ1 · λ2 · . . . · λU)

n] . (19)

The nth moment of an IBNR claim C is given by

E[Cn] = E
[
E
[
(Y1 · λ1 · λ2 · . . . · λu)

n |U = u
]]

U

= E
[

Mln(ΛU+1)(tn)
]

U

= E

[
exp (t′nµU+1) E

[
exp

((
Σ1/2

U+1

)′
t′nzU+1

)
·∏U+1

j=1 H
(

∆je′jzU+1

)]
g∗(zU+1)

]
U

.

(20)
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For the specific case of a Multivariate Skew Normal distribution, the result becomes

E[Cn]

= E

[
2U+1 exp

(
t′nµU+1 + 0.5t′nΣ1/2

U+1

(
Σ1/2

U+1

)′
tn

)
·∏U+1

j=1 Φ

(
∆j

(
(Σ1/2

U+1)
′
tn

)
j√

1+∆2
j

)]
U

. (21)

B Proof of Proposition 2.3.

The conditional Multivariate Skew Normal random vector defined by

ln (ΛB|ΛA = `A)

=

[
ln (y1) ln (`1) . . . ln

(
`uA−1

)
ln (λuA) . . . ln (λU)

]
(22)

follows a Multivariate Skew Normal distribution with parameters µ∗U+1, Σ∗U+1 and
∆∗U+1 as defined in Proposition 2.3 (see Deniz (2009)). The rest of the proof is similar to
the reasoning given in Section A.

C Proof of Proposition 2.4

(a) For IBNR claims, the expected value of the total claim amount is

E[IBNR|I ] = E

[
I

∑
i=1

KIBNR,i

∑
k=1

Y(ik)
1 · λ(ik)

1 · . . . · λ(ik)
Uik

]
, (23)

where KIBNR,i is the random variable representing the number of IBNR claims
from occurrence period i. Because KIBNR,i and ΛU+1 are independent, we obtain

E[IBNR|I ] =
I

∑
i=1

E[KIBNR,i] E
[
Y(ik)

1 · λ(ik)
1 · . . . · λ(ik)

Uik

]
= E[KIBNR] · E

[
Y(ik)

1 · λ(ik)
1 · . . . · λ(ik)

Uik

]
. (24)

The result than follows from Proposition 2.2. The proof is similar for RBNP
claims.
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(b) For RBNS claims, the expected value of the total claim amount is

E[RBNS|I ] = ∑
(ik)RBNS

E
[

y(ik)1 · `(ik)1 · . . . · `(ik)
u(ik)

A −1
· λ(ik)

u(ik)
A

· . . . · λ(ik)
Uik

]
= ∑

(ik)RBNS

y(ik)1 · `(ik)1 · . . . · `(ik)
u(ik)

A −1
· E
[
λ
(ik)
uA · . . . · λ(ik)

U(ik)

]
. (25)

The proof then follows from Proposition 2.3.
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