Nearly Exact Mining of Frequent Trees in Large Networks

Ashraf M. Kibriya 25th Sep 2012

DECLARATIVE LANGUAGES & ARTIFICIAL INTELLIGENCE

Overview …

- Intuition
- Motivation / Existing work
- Main contribution
- Problem definition
- Our Miner
- Experimental results / Conclusion

• Given a network (sets of nodes and edges)

- Given a network (sets of nodes and edges)
- We want to find frequent substructures

• Nodes/edges can be labeled or have other properties attached to them

Motivation

• Large networks are ubiquitous in real-world: computer networks,

Motivation

• Large networks are ubiquitous in real-world: computer networks, people networks,

Motivation

Large networks are ubiquitous in real-world: computer networks, people networks, natural structures

Existing work

- Most graph miners are for transactional setting
	- E.g. gSpan (Yan and Han, ICDM'02), Gaston (Nijssen and Kok, KDD'04)

Existing work

- Most graph miners for transactional setting
	- E.g. gSpan (Yan and Han, ICDM'02), Gaston (Nijssen and Kok, KDD'04)
- Typically graphs are not large: 10-200 nodes
- Trivial modifications to these miners, to mine in single graphs, renders them computationally infeasible
- For *single large* graphs miner only with homomorphism as matching operator, not with isomorphism

Main contribution

- Novel miner for mining labeled rooted trees in large networks under subgraph isomorphism
	- Main focus on tractability since subgraph isomorphism matching is NP-complete
	- Realised theoretical results of Koutis&Williams' [ICALP'09]
- Show practical applicability of our miner by evaluating on synthetic and real-world data
	- Compare with state-of-the-art matching strategy employed in transactional miner

Problem definition

- Let T_r be the set of all rooted Trees
- Given a network (any arbitrary graph) *G,* frequency (support) measure f , and a threshold θ find the set of all rooted trees $T \subseteq T_r$ such that:

$$
T = \{ t \in T_r \mid f(G, t) \ge \theta \}
$$

- Finding good frequency measure challenging! Other work only on this problem exits, but not focus of this research
	- Can't count all isomorphic embeddings
		- Not anti-monotone w.r.t pattern size, and #P-hard

Frequency Measure

- Count number of *root images* number of vertices x_i to which the root can be mapped under isomorphism
- Gives frequency at most *n*
- Anti-monotone w.r.t increasing pattern size

frequency: 4

Overview …

- Intuition to what we're trying to achieve
- Motivation / Existing work
- Main contribution
- Problem definition
- *Our Miner*
	- *Background*
		- *Candidate Generation*
		- *Subgraph Isomorphism Koutis&Williams*
	- *Optimizations/Implementation Details*
- Experimental results / Conclusion

1. Candidate generation

- Same technique as Nijssen and Kok [KDD'04] and Nakano and Uno [IPL'02]
	- Rightmost extension
	- Canonical form
		- pre-order depth sequence ensures trees are left heavy
- Technique ensures each candidate is generated and tested only once

2. Evaluating Matching Operator / Frequency Counting

- Use exact/deterministic VF2 [IEEE TPAMI'04] method as baseline in our experiments
	- State-of-the-art for subgraph isomorphism between general/arbitrary graphs
	- Used by some earlier transactional miners
	- $-$ In best case O(k), in worst case O(n^k)
- Recent theoretical results by Koutis&Williams [ICALP'09] on subgraph isomorphism of rooted trees in graphs
	- Current state-of-the-art for rooted trees $(2^k$ exponential factor)
	- Our method of choice

• Based on enumeration of all homomorphisms of a (rooted) tree in a network

- Encodes $O(n^k)$ size polynomial as an arithmetic circuit of size O(km)
	- For patterns of size k, and network with n nodes, m edges

- Next step is to evaluate this circuit
- Evaluate on random elements from subset of $\mathit{GF(2^{(3+\log k)})}[\mathbb{Z}_2^k]$

- All non-multilinear terms in the circuit evaluate to zero
- Circuit may evalute to non-zero, if there is at least one multilinear term representing an isomorphism

• Properties of the method

• Success rate can be boosted to an arbitrary p' by repeating it:

$$
\left\lceil \frac{\log(1-p')}{\log(1-0.2)} \right\rceil \text{ times}
$$

For e.g.

- Worst case complexity for counting frequency $O(log^2(k)k^2m2^k)$
	- $-$ Much less than O(n^k) of classical methods such as VF2 or Ullman's

Optimizations

- Build once and use the same circuit
- Can share circuit/results for different root images

Optimizations

- Can perform homomorphic test first, and cache its results
	- Takes O(n+km) instead of O(n+log²(k)k²m2^k)
		- Can be done over $\mathbb Z$ instead of $GF(2^l)[\mathbb Z_2^k]$

 $x1$ { $(x2+x3+x4)$ $(x2+x3+x4)$ }

Optimizations

- Can share circuit/results for different candidate trees!
	- Decompose upto **batch-size** candidate trees into subtree
	- Build/Evaluate a circuit for each unique common subtree once

Overview …

- Intuition
- Motivation / Existing work
- Main contribution
- Formal problem definition
- Our Miner
	- Background
		- Candidate Generation
		- Subgraph Isomorphism Koutis&Williams
	- Optimizations/Implementation Details
- *Experimental results / Conclusion*

Experiments - Data

- Synthetic data
	- Power-law graphs (similar to Barabási-Albert [Science'99]), with degree distribution $P(d_i) \propto d_i^{-4}$
- Real data
	- Facebook friendship data (uniform & random walk sampling)
	- Dblp citation network
	- IMDB movie-actor network

Experiments - Setup

- Randomized method was repeated to get $(1-10^{-6})$ accuracy
- Performed two sets of experiments:
	- Measure runtime w.r.t to increasing pattern size
		- Used a high enough frequency threshold to find as large trees as possible
	- Used sampling to measure time per pattern
		- To evaluate asymptotic behaviour of Koutis&Williams

Experiments - Questions

- 1) What pattern and network sizes can mined in reasonable time?
- 2) How does our pattern matching strategy compare to state of the art, i.e. VF2 (used by transactional miners)?
- 3) Does our miner scale as well as the theoretical bounds of Koutis-William's?
- 4) What is the influence of pattern mining parameters and optimizations?

Results – Synthetic

Results – Real data

Results – Asymptotic

Results – Asymptotic (2)

Result Summary

- 1) What pattern and network sizes can mined in reasonable time?
	- − *Main bottleneck is exponential growth of freq. patterns, otherwise we can mine upto size 15 in reasonable time*
- 2) Our pattern matching strategy compared to state-of-the-art?
	- *Ours is clearly orders of magnitude better*
- 3) Does our miner scale as well as the theoretical bounds?
	- *It does appear to, also as opposed to VF2, it is linear in network size*
- 4) What is influence of parameters and optimizations?
	- *Homomorphism test adds significant improvement, especially on real-world data, batch optimization adds little significant advantage*

Conclusion & future work

- We have presented a novel pattern miner
	- It works reasonably well in practice, without any restriction to pattern (size / degree etc), or to the network
	- It is *linear* in network size
	- Allows for nearly exact mining of frequent trees
	- Orders of magnitude better than existing state-of-the-art
- Further heuristics/optimizations may improve performance on real-world datasets
- Would like to extend the method to other graph classes (other than trees)

Thank you for your attention

The End

25-Sep-2012 Ashraf M. Kibriya - Mining Freq. Trees in Large Networks 37

• Squares (or higher degree terms) in the polynomial evaluate to: \overline{E}

$$
E.g.\n= W_0^2 + 2 W_0 v_i + v_i^2\n= W_0 + 2 v_i + W_0\n= 2 W_0 + 2 v_i\n= $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \end{bmatrix}^2$
\n= $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} + 2 \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
\n= $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} + 2 \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = 2 \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} + 2 \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
$$

• Now combine group \mathbb{Z}_2^k with coefficients from $GF(2^l)$ and perform the algebra on $GF(2^l)[\mathbb{Z}_2^k]$

$$
(W_0 + v_i)^2
$$

= $W_0^2 + 2 W_0 v_i + v_i^2$
= $W_0 + 2 v_i + W_0$
= $2 W_0 + 2 v_i$
= 0 + 0 [in field with characteristic 2, $a_x + a_x = 0, \forall a_x \in F$]
= 0

3. Isomorphism – VF2 method

- Exhaustive search
	- Considers all possible combinations, with pruning
	- $-$ In best case O(k), in worst case O(n^k)

3. Isomorphism – VF2 method

- Performs a number of lookahead checks to ensure any new node we map is consistent with previous mappings
- In best case $O(k)$, worst case $O(n^k)$

Optimizations to VF2

- Smarter use of core data structures for larger networks
	- On large networks repeated initializations can have a high computational toll

The complete miner

function findPatterns (G, k, t) : $S_{1...k} := \emptyset$ {array of frequent trees of size $1...k$ } $C_{1...k} := \emptyset$ {array of candidate trees of size $1...k$ } $T := \emptyset$ {set of all frequent trees} for $i = 1$ to k do if $i=1$ then $C_1 := \{$ initialise to just one single vertex graph $\}$ else $C_i := \text{generateCandidates}(S_{i-1})$ end if $S_i := \{c_j : c_j \in C_i \wedge \text{countFreq}(c_j) \geq t\}$ $T := T \cup S_i$ end for return T function generateCandidates (S) : $C := \emptyset$ for all $t \in S$ do for all $v \in V(t)$ do $t' := (V(t) \cup v', E(t) \cup (v, v'))$ $C:=C\cup\{t'\}$ end for end for return C

Koutis & Williams method ...

• We can define all homomorphisms for a tree *T*, with root mapped to x_i , by $\varphi(T, r, x_i \in G)$:

$$
- If label(r)=label(x_j)
$$

return 0

$$
- \, \text{If} \, |V(T)| = 1
$$

return x ^j

$$
- Else
$$

$$
T'=T\setminus\{r\}
$$

return $x_j \cdot \left(\prod_{(r,r')\in E(T)} \left(\sum_{(j,j')\in G} \varphi(T',r',j')\right)\right)$
 $xI\{(x2+x3+x4)(x2+x3+x4)\}$

