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Intuition

• Given a network (sets of nodes and edges)

• We want to find frequent substructures
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Intuition

• Nodes/edges can be labeled or have other properties 
attached to them
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Motivation 

• Large networks are ubiquitous in real-world: computer 
networks, people networks, natural structures 
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Existing work 

• Most graph miners are for transactional setting

– E.g. gSpan (Yan and Han, ICDM'02), Gaston (Nijssen and 
Kok, KDD'04)
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Existing work 

• Most graph miners for transactional setting

– E.g. gSpan (Yan and Han, ICDM'02), Gaston (Nijssen and 
Kok, KDD'04)

• Typically graphs are not large: 10-200 nodes

• Trivial modifications to these miners, to mine in single graphs, 
renders them computationally infeasible

• For single large graphs miner only with homomorphism as 
matching operator, not with isomorphism
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Main contribution 

• Novel miner for mining labeled rooted trees in large networks 
under subgraph isomorphism

– Main focus on tractability since subgraph isomorphism 
matching is NP-complete

– Realised theoretical results of Koutis&Williams' [ICALP'09] 

• Show practical applicability of our miner by evaluating on 
synthetic and real-world data

– Compare with state-of-the-art matching strategy employed 
in transactional miner
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Problem definition

• Let Tr be the set of all rooted Trees

• Given a network (any arbitrary graph) G, frequency (support) 
measure f, and a threshold     find the set of all rooted trees     
         such that:

• Finding good frequency measure challenging! Other work only 
on this problem exits,  but not focus of this research

– Can't count all isomorphic embeddings

• Not anti-monotone w.r.t pattern size, and #P-hard

T ={t∈T r ∣ f G , t ≥ }

T⊆T r


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Frequency Measure

• Count number of root images ­ number of vertices xi to 
which the root can be mapped under isomorphism

• Gives frequency at most n

• Anti-monotone w.r.t increasing pattern size

x1

x2

x3

x4

x5

frequency: 4

r

X
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1. Candidate generation 

• Same technique as Nijssen and 
Kok [KDD'04] and Nakano and 
Uno [IPL'02]

– Rightmost extension

– Canonical form 

• pre-order depth sequence
ensures trees are left heavy

• Technique ensures each candidate is 
generated and tested only once
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2. Evaluating Matching Operator / 
    Frequency Counting
• Use exact/deterministic VF2 [IEEE TPAMI'04] method as 

baseline in our experiments 

– State-of-the-art for subgraph isomorphism between 
general/arbitrary graphs

– Used by some earlier transactional miners

– In best case O(k), in worst case O(nk)

• Recent theoretical results by Koutis&Williams [ICALP'09] on 
subgraph isomorphism of rooted trees in graphs 

– Current state-of-the-art for rooted trees (2k exponential 
factor) 

– Our method of choice
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2. Subgraph Isomorphism – Koutis&Williams

• Based on enumeration of all homomorphisms of a (rooted) 
tree in a network

x1 x2
2
x1 x2 x3x1 x2 x3

x1 x 2 x4x1 x 2 x4x1 x3
2

x1 x3 x4x1 x3 x4x1 x 4
2

x
1

x
2

x
3

x
4 r
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2. Subgraph Isomorphism – Koutis&Williams

• Encodes O(nk) size polynomial as an arithmetic circuit of size 
O(km)

– For patterns of size k, and network with n nodes, m edges

x1 x 2
2
x1 x2 x3x1 x2 x3

x1 x 2 x4x1 x 2 x4x1 x3
2

x1 x3 x4x1 x3 x4x1 x4
2

x2 x3x1

+

X

x4

+

X

x1 {x 2x3x4 x2x3x4}

x
1

x
2

x
3

x
4

r
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2. Subgraph Isomorphism – Koutis&Williams

• Next step is to evaluate this circuit

• Evaluate on random elements from subset of

x2 x3x1

+

X

x4

+

X

x1 {x 2x3x4 x2x3x4}

GF 23log k [ℤ2
k ]

x1 x 2
2
x1 x2 x3x1 x2 x3

x1 x 2 x4x1 x 2 x4x1 x3
2

x1 x3 x4x1 x3 x4x1 x4
2

x
1

x
2

x
3

x
4

r
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2. Subgraph Isomorphism – Koutis&Williams

• All non-multilinear terms in the circuit evaluate to zero

• Circuit may evalute to non-zero, if there is at least one 
multilinear term representing an isomorphism

x2 x3x1

+

X

x4

+

X

x1 {x 2x3x4 x2x3x4}

x
1

x
2

x
3

x
4

r

x1 x 2
2
x1 x2 x3x1 x2 x3

x1 x 2 x4x1 x 2 x4x1 x3
2

x1 x3 x4x1 x3 x4x1 x4
2
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2. Subgraph Isomorphism – Koutis&Williams

• Properties of the method

• Success rate can be boosted to an arbitrary p' by repeating it:

                                                        times

Present Not Present

Yes 0.2 0

No 0.8 1

⌈ log (1− p' )
log (1−0.2) ⌉
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2. Subgraph Isomorphism – Koutis&Williams

• For e.g.

• Worst case complexity for counting frequency O(log2(k)k2m2k )

– Much less than O(nk) of classical methods such as VF2 or 
Ullman's

Repeats Success Prob.

1 0.2

10 0.893

20 0.9885

50 0.999986

100 0.9999999998
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Optimizations

• Build once and use the same circuit

• Can share circuit/results for different root images

x2 x3x1

+

X

x4

+

X

x1{x2x3x4 x2x3x4 }
x2⋯
x3⋯
x4⋯

x1

x2

x3

x4 r
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Optimizations

• Can perform homomorphic test first, and cache its results

– Takes O(n+km) instead of O(n+log2(k)k2m2k )

• Can be done over      instead of 

x2 x3x1

+

X

x4

+

X

x1{x2x3x4 x2x3x4 }

ℤ GF (2l)[ℤ2
k ]
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Optimizations

• Can share circuit/results for different candidate trees!

– Decompose upto batch-size candidate trees into subtree

– Build/Evaluate a circuit for each unique common subtree 
once  

A

A

B

A A

B

A

A

A

C B

A A

A

A

C

B

A A

A

A
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Overview … 

• Intuition

• Motivation / Existing work

• Main contribution

• Formal problem definition 

• Our Miner

– Background

• Candidate Generation

• Subgraph Isomorphism - Koutis&Williams 

– Optimizations/Implementation Details

• Experimental results / Conclusion
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Experiments - Data

• Synthetic data

– Power-law graphs (similar to Barabási-Albert 
[Science'99] ), with degree distribution

• Real data

– Facebook friendship data (uniform & random walk 
sampling)

– Dblp citation network

– IMDB movie-actor network

P (d i) ∝ d i
−4
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Experiments - Setup

• Randomized method was repeated to get (1-10-6) accuracy

• Performed two sets of experiments:

– Measure runtime w.r.t to increasing pattern size

• Used a high enough frequency threshold to find as 
large trees as possible

– Used sampling to measure time per pattern

• To evaluate asymptotic behaviour of Koutis&Williams
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Experiments - Questions

1) What pattern and network sizes can mined in reasonable 
time?

2) How does our pattern matching strategy compare to state of 
the art, i.e. VF2 (used by transactional miners)?

3) Does our miner scale as well as the theoretical bounds of 
Koutis-William's?

4) What is the influence of pattern mining parameters and 
optimizations?



3025-Sep-2012 Ashraf M. Kibriya - Mining Freq. Trees in Large Networks

Results – Synthetic
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Results – Real data

  

 0.1

 1

 10

 100

 1000

 10000

 100000

1 2 3 4 5 6 7

lo
g(

ru
nt

im
e 

in
 s

ec
s)

FB-uniform

VF2
Std

Homo
Batch

 0.1

 1

 10

 100

 1000

 10000

 100000

1 2 3 4 5 6

FB-mhrw

VF2
Std

Homo
Batch

 0.1

 1

 10

 100

 1000

 10000

1 2 3 4 5 6

Dblp-0305

VF2
Std

Homo
Batch

 0.1

 1

 10

 100

 1000

 10000

 100000

1 2 3 4 5 6

lo
g(

ru
nt

im
e 

in
 s

ec
s)

Dblp-0507

VF2
Std

Homo
Batch

 0.1

 1

 10

 100

 1000

 10000

 100000

1 2 3 4 5 6 7

Dblp-9202

VF2
Std

Homo
Batch

 1

 10

 100

 1000

 10000

 100000

 1e+06

1 2 3 4

IMDB

VF2
Std

Homo



3225-Sep-2012 Ashraf M. Kibriya - Mining Freq. Trees in Large Networks

Results – Asymptotic

   

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

lo
g(

de
la

y)

10^3

VF2
Std

Homo
Batch

k^2*2^k*log^2(k)*C

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
lo

g(
de

la
y)

10^4

VF2
Std

Homo
Batch

k^2*2^k*log^2(k)*C



3325-Sep-2012 Ashraf M. Kibriya - Mining Freq. Trees in Large Networks

Results – Asymptotic (2)
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Result Summary

1) What pattern and network sizes can mined in reasonable 
time?

− Main bottleneck is exponential growth of freq. patterns, 
otherwise we can mine upto size 15 in reasonable time 

2) Our pattern matching strategy compared to state-of-the-art?

– Ours is clearly orders of magnitude better

3) Does our miner scale as well as the theoretical bounds?

– It does appear to, also as opposed to VF2, it is linear in 
network size

4) What is influence of parameters and optimizations?

– Homomorphism test adds significant improvement, 
especially on real-world data, batch optimization adds little 
significant advantage
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Conclusion & future work

• We have presented a novel pattern miner

– It works reasonably well in practice, without any restriction 
to pattern (size / degree etc), or to the network

– It is linear in network size

– Allows for nearly exact mining of frequent trees

– Orders of magnitude better than existing state-of-the-art

• Further heuristics/optimizations may improve performance on 
real-world datasets

• Would like to extend the method to other graph classes (other 
than trees)



3625-Sep-2012 Ashraf M. Kibriya - Mining Freq. Trees in Large Networks

Thank you for your attention
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The End
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4. Subgraph Isomorphism – Koutis&Willams

• Squares (or higher degree terms) in the polynomial evaluate 
to:

(W 0+ vi)
2

= W 0
2
+ 2W 0 vi+ vi

2

= W 0+ 2 vi+ W 0

= 2W 0+ 2 vi

E.g.

( [
0
0
0]+ [

1
0
1] )

2

= [
0
0
0] .[

0
0
0]+ 2[

0
0
0] .[

1
0
1]+ [

1
0
1] .[

1
0
1]

= [
0
0
0]+ 2[

1
0
1]+ [

0
0
0] = 2[

0
0
0]+ 2[

1
0
1]
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4. Subgraph Isomorphism – Koutis&Willams

• Now combine group       with coefficients from            and 
perform the algebra on                    

                   [in field with characteristic 2,                             ]

ℤ2
k GF (2l)

GF 2l[ℤ2
k ]

(W 0+ vi)
2

= W 0
2
+ 2W 0 vi+ vi

2

= W 0+ 2 vi+ W 0

= 2W 0+ 2 vi

=0+ 0
=0

a x+ a x=0,∀a x∈F
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Problem
Solutions
Our aims

Current Solutions
   - Brute Force
   - State-of-the-art

• Exhaustive search

– Considers all possible combinations, with pruning 

– In best case O(k), in worst case O(nk)

3. Isomorphism – VF2 method
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3. Isomorphism – VF2 method

• Performs a number of lookahead checks to ensure any new 
node we map is consistent with previous mappings

• In best case O(k), worst case O(nk)

U
i

V
i

Mapped

Unmapped

HG
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Optimizations to VF2

• Smarter use of core data structures for larger networks

– On large networks repeated initializations can have a high 
computational toll
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The complete miner
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Koutis & Williams method ...

return x j . ∏
r , r ' ∈E T   ∑

 j , j ' ∈G

T ' , r ' , j ' 

return x j

x1{ x2x3x4 x2x3x4}

• We can define all homomorphisms for a tree T, with root 
mapped to xi, by φ(T, r, xi ∈G):

– If label( r )=label( xj 
)

– If |V(T)|=1

– Else 

T'=T \ {r}

return 0

x1

x2

x3

x4


