Nearly Exact Mining of Frequent Trees in Large Networks

Ashraf M. Kibriya 25th Sep 2012

DECLARATIVE LANGUAGES & ARTIFICIAL INTELLIGENCE

Overview ...

- Intuition
- Motivation / Existing work
- Main contribution
- Problem definition
- Our Miner
- Experimental results / Conclusion

• Given a network (sets of nodes and edges)

- Given a network (sets of nodes and edges)
- We want to find frequent substructures

 Nodes/edges can be labeled or have other properties attached to them

Motivation

Large networks are ubiquitous in real-world: computer networks,

Motivation

 Large networks are ubiquitous in real-world: computer networks, people networks,

Motivation

 Large networks are ubiquitous in real-world: computer networks, people networks, natural structures

Existing work

- Most graph miners are for transactional setting
 - E.g. gSpan (Yan and Han, ICDM'02), Gaston (Nijssen and Kok, KDD'04)

Existing work

- Most graph miners for transactional setting
 - E.g. gSpan (Yan and Han, ICDM'02), Gaston (Nijssen and Kok, KDD'04)
- Typically graphs are not large: 10-200 nodes
- Trivial modifications to these miners, to mine in single graphs, renders them computationally infeasible
- For *single large* graphs miner only with homomorphism as matching operator, not with isomorphism

Main contribution

- Novel miner for mining labeled rooted trees in large networks under subgraph isomorphism
 - Main focus on tractability since subgraph isomorphism matching is NP-complete
 - Realised theoretical results of Koutis&Williams' [ICALP'09]
- Show practical applicability of our miner by evaluating on synthetic and real-world data
 - Compare with state-of-the-art matching strategy employed in transactional miner

Problem definition

- Let T_r be the set of all rooted Trees
- Given a network (any arbitrary graph) *G*, frequency (support) measure *f*, and a threshold θ find the set of all rooted trees
 T⊆*T_r* such that:

$$T = \{ t \in T_r \mid f(G, t) \ge \theta \}$$

- Finding good frequency measure challenging! Other work only on this problem exits, but not focus of this research
 - Can't count all isomorphic embeddings
 - Not anti-monotone w.r.t pattern size, and #P-hard

Frequency Measure

- Count number of *root images* number of vertices x_i to which the root can be mapped under isomorphism
- Gives frequency at most *n*
- Anti-monotone w.r.t increasing pattern size

frequency: 4

Overview ...

- Intuition to what we're trying to achieve
- Motivation / Existing work
- Main contribution
- Problem definition
- Our Miner
 - Background
 - Candidate Generation
 - Subgraph Isomorphism Koutis&Williams
 - Optimizations/Implementation Details
- Experimental results / Conclusion

1. Candidate generation

- Same technique as Nijssen and Kok [KDD'04] and Nakano and Uno [IPL'02]
 - Rightmost extension
 - Canonical form
 - pre-order depth sequence ensures trees are left heavy
- Technique ensures each candidate is generated and tested only once

2. Evaluating Matching Operator / Frequency Counting

- Use exact/deterministic VF2 [IEEE TPAMI'04] method as baseline in our experiments
 - State-of-the-art for subgraph isomorphism between general/arbitrary graphs
 - Used by some earlier transactional miners
 - In best case O(k), in worst case $O(n^k)$
- Recent theoretical results by Koutis&Williams [ICALP'09] on subgraph isomorphism of rooted trees in graphs
 - Current state-of-the-art for rooted trees (2^k exponential factor)
 - Our method of choice

• Based on enumeration of all homomorphisms of a (rooted) tree in a network

- Encodes O(n^k) size polynomial as an arithmetic circuit of size O(km)
 - For patterns of size k, and network with n nodes, m edges

- Next step is to evaluate this circuit
- Evaluate on random elements from subset of $GF(2^{(3+\log k)})[\mathbb{Z}_2^k]$

- All non-multilinear terms in the circuit evaluate to zero
- Circuit may evalute to <u>non-zero</u>, if there is at least one <u>multilinear term</u> representing an isomorphism

• Properties of the method

• Success rate can be boosted to an arbitrary p' by repeating it:

$$\left[\frac{\log(1-p')}{\log(1-0.2)}\right]$$
 times

• For e.g.

Repeats	Success Prob.
1	0.2
10	0.893
20	0.9885
50	0.999986
100	0.9999999998

- Worst case complexity for counting frequency O(log²(k)k²m2^k)
 - Much less than O(n^k) of classical methods such as VF2 or Ullman's

Optimizations

- Build once and use the same circuit
- Can share circuit/results for different root images

Optimizations

- Can perform <u>homomorphic</u> test first, and cache its results
 - Takes O(n+km) instead of $O(n+log^2(k)k^2m2^k)$
 - Can be done over \mathbb{Z} instead of $GF(2^l)[\mathbb{Z}_2^k]$

 $x1\{(x2+x3+x4)(x2+x3+x4)\}$

Optimizations

- Can share circuit/results for different candidate trees!
 - Decompose upto **batch-size** candidate trees into subtree
 - Build/Evaluate a circuit for each unique common subtree once

Overview ...

- Intuition
- Motivation / Existing work
- Main contribution
- Formal problem definition
- Our Miner
 - Background
 - Candidate Generation
 - Subgraph Isomorphism Koutis&Williams
 - Optimizations/Implementation Details
- Experimental results / Conclusion

Experiments - Data

- Synthetic data
 - Power-law graphs (similar to Barabási-Albert [Science'99]), with degree distribution $P(d_i) \propto d_i^{-4}$
- Real data
 - Facebook friendship data (uniform & random walk sampling)
 - Dblp citation network
 - IMDB movie-actor network

Experiments - Setup

- Randomized method was repeated to get (1-10⁻⁶) accuracy
- Performed two sets of experiments:
 - Measure runtime w.r.t to increasing pattern size
 - Used a high enough frequency threshold to find as large trees as possible
 - Used sampling to measure time per pattern
 - To evaluate asymptotic behaviour of Koutis&Williams

Experiments - Questions

- 1) What pattern and network sizes can mined in reasonable time?
- 2) How does our pattern matching strategy compare to state of the art, i.e. VF2 (used by transactional miners)?
- 3) Does our miner scale as well as the theoretical bounds of Koutis-William's?
- 4) What is the influence of pattern mining parameters and optimizations?

Results – Synthetic

Results – Real data

Results – Asymptotic

Results – Asymptotic (2)

Result Summary

- 1) What pattern and network sizes can mined in reasonable time?
 - Main bottleneck is exponential growth of freq. patterns, otherwise we can mine upto size 15 in reasonable time
- 2) Our pattern matching strategy compared to state-of-the-art?
 - Ours is clearly orders of magnitude better
- 3) Does our miner scale as well as the theoretical bounds?
 - It does appear to, also as opposed to VF2, it is linear in network size
- 4) What is influence of parameters and optimizations?
 - Homomorphism test adds significant improvement, especially on real-world data, batch optimization adds little significant advantage

Conclusion & future work

- We have presented a novel pattern miner
 - It works reasonably well in practice, without any restriction to pattern (size / degree etc), or to the network
 - It is *linear* in network size
 - Allows for nearly exact mining of frequent trees
 - Orders of magnitude better than existing state-of-the-art
- Further heuristics/optimizations may improve performance on real-world datasets
- Would like to extend the method to other graph classes (other than trees)

Thank you for your attention

The End

25-Sep-2012

Ashraf M. Kibriya - Mining Freq. Trees in Large Networks

Squares (or higher degree terms) in the polynomial evaluate to:

• Now combine group \mathbb{Z}_2^k with coefficients from $GF(2^l)$ and perform the algebra on $GF(2^l)[\mathbb{Z}_2^k]$

$$\begin{aligned} & (W_0 + v_i)^2 \\ &= W_0^2 + 2 W_0 v_i + v_i^2 \\ &= W_0 + 2 v_i + W_0 \\ &= 2 W_0 + 2 v_i \\ &= 0 + 0 \quad \text{[in field with characteristic 2, } a_x + a_x = 0, \forall a_x \in F \text{]} \\ &= 0 \end{aligned}$$

3. Isomorphism – VF2 method

- Exhaustive search
 - Considers all possible combinations, with pruning
 - In best case O(k), in worst case $O(n^k)$

3. Isomorphism – VF2 method

- Performs a number of lookahead checks to ensure any new node we map is consistent with previous mappings
- In best case O(k), worst case O(n^k)

Optimizations to VF2

- Smarter use of core data structures for larger networks
 - On large networks repeated initializations can have a high computational toll

The complete miner

Algorithm 1 PatternMiner

function findPatterns(G, k, t): $S_{1\dots k} := \emptyset$ {array of frequent trees of size $1\dots k$ } $C_{1\dots k} := \emptyset \{ \text{array of candidate trees of size } 1 \dots k \}$ $T := \emptyset$ {set of all frequent trees} for i = 1 to k do if i = 1 then $C_1 := \{ \text{initialise to just one single vertex graph} \}$ else $C_i := \text{generateCandidates}(S_{i-1})$ end if $S_i := \{c_j : c_j \in C_i \land \text{countFreq}(c_j) \ge t\}$ $T := T \cup S_i$ end for return Tfunction generate Candidates(S): $C := \emptyset$ for all $t \in S$ do for all $v \in V(t)$ do $t' := (V(t) \cup v', E(t) \cup (v, v'))$ $C := C \cup \{t'\}$ end for end for return C

Koutis & Williams method ...

• We can define all homomorphisms for a tree T, with root mapped to x_i , by $\varphi(T, r, x_i \in G)$:

- If label(
$$r$$
)=label(x_j)

return 0

$$- If |V(T)| = 1$$

return x_{i}

$$T' = T \setminus \{r\}$$

return $x_{j} \cdot \left(\prod_{(r,r')\in E(T)} \left(\sum_{(j,j')\in G} \varphi(T',r',j')\right)\right)$
 $x l \{(x2+x3+x4)(x2+x3+x4)\}$

