

LEUVEN

Mining Frequent Trees in Networks

Problem

Declaratieve Talen en Artificiële Intelligentie

Frequent Tree Mining:

Given a graph G and threshold t, find and list all trees that **occur** in G at least **t** times

Setting:

- Single large networks
- Subgraph isomorphism as matching operator
- Pattern: Labeled rooted trees

- Deciding whether a pattern is subgraph isomorphic to G itself is NP-Complete (naïve solution is O(n^k))
- •How to measure frequency?
- Main focus was to tackle computational complexity of the problem

Proposal

 Recent advances in parameterized complexity theory, give us (randmized) algebraic methods that for tree patterns, reduce subgraph isomorphism from O(n^k) to O(m.k².2^k.log²k)

Method Overview

Researcher

Ashraf M. Kibriya

Promoter

Jan Ramon

- Combined with a simple anti-monotone frequency measure, we can mine *all* tree patterns with similar complexity, in **delay** O(|Σ|.m.k².2^k.log²k)
 - \rightarrow Frequency: *Images* of root under isomorphism
- Accuracy can be boosted arbitrarily by repeating subgraph isomorphism multiple times
 - Exponential factors are relatively small, to allow for practical applications

Delay time:

The time between any two consecutive outputs (including start and 1st output) is an unchanging delay

Sponsors

1) What pattern/networks size can we handle within reasonable time?
 → up to trees size 15 in 10⁴ and size 10 in 10⁶ networks

2) How does our strategy compare to state of

Results

* * *

- the art methods?
 - \rightarrow outperforms VF2 even for moderate size problems
- 3) Does implementation really scale as well as given theoretical bounds?
 → approximately, yes
- 4) What is the influence of different parameters and optimizations?
 - \rightarrow See right

DEPT. COMPUTERWETENSCHAPPEN