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Abstract 
The stress redistribution after a single fibre break is a fundamental issue in longitudinal 
strength models for unidirectional composites. Current models assume hexagonal or 
square fibre packings. In the present work, random fibre packings were modelled using 
3D finite element analysis and compared to ordered fibre packings. Significant 
differences in the stress redistribution are found. Compared to square and hexagonal 
packings, random fibre packings result in smaller stress concentration factors for fibres 
at the same distance from the broken fibre. These random packings, however, also show 
higher maximal stress concentration factors. The influence of the fibre breakage is more 
localised, which results in lower ineffective and overload lengths. The presence of fibres 
at smaller distances from the broken fibre explains these phenomena. For an accurate 
representation of the stress redistribution after a fibre breakage, random fibre packings 
should be used. 
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1 0B0BIntroduction 
A fundamental understanding of the failure of fibre-reinforced composites is crucial for 
their widespread application as it improves their overall performance and helps in 
designing better parts. The failure process of unidirectional fibre-reinforced composites 
is now reasonably well understood [1-3]. When a fibre breaks, it locally loses its load 
transfer capability. The surrounding matrix is loaded in shear and transfers the load back 
onto the broken fibre. Hence, the fibre recovers its stress and the length over which this 
occurs is called the ineffective length. Near the broken fibre, the stress in the 
surrounding fibres is increased. This increase in stress is quantified using the stress 
concentration factor (SCF), which is the relative increase in stress in the neighbouring 
fibres due to the fibre breakage of one fibre. SCFs increase the probability of fracture of 
the neighbouring fibres. When enough neighbouring fibres are broken, a critical cluster 
size is reached and catastrophic failure occurs. This failure propagation scheme shows 
the importance of the stress distribution after a fibre fracture. The ineffective length and 
the SCF are crucial parameters to predict the strength of unidirectional composites. 
 
Shear lag models (SLM) were developed to calculate this stress redistribution. They 
assume that the fibres carry all the axial loads and the matrix only the shear loads. The 
first SLM was developed by Hedgepeth for a 1D packing [4]. A 1D packing is a single-
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layer arrangement of parallel fibres on a straight line. Hedgepeth predicted a SCF of 
33% for this case [4]. Later, Hedgepeth and Van Dyke [5] extended the SLM to 2D 
packings, which consist of a planar arrangement of parallel fibres. The authors 
calculated a SCF of 14.6% and 10.4% for square and hexagonal 2D packings, 
respectively. SLMs are straightforward to incorporate into an analytical strength model, 
as they give an analytical solution for the stress redistribution after a fibre breakage. 
Combining SLM with a Weibull strength distribution and some assumptions can give an 
analytical solution for the strength of unidirectional composites [6, 7]. However, SLM 
also has several disadvantages: (1) it does not include matrix plasticity, (2) it does not 
allow anisotropic properties of fibres, (3) it cannot predict matrix cracking, (4) it 
assumes perfect fibre-matrix bonding, and (5) it assumes an ordered packing. Many 
authors have published improvements on these issues [8-13]. The SCF has in all cases 
been estimated to be lower than Hedgepeth’s prediction [4, 5]. 
 
An alternative approach to calculate the stress redistribution after a fibre breakage is to 
use 3D finite element models (FEM). 3D FEM is computationally intensive, which 
limits the amount of fibres that can be included in the model. Therefore, this method on 
its own is insufficient to predict the full statistical nature of composite failure. The 3D 
FEM stress redistribution after a fibre breakage can however be used as input for 
strength models [3]. Nedele and Wisnom [14] predicted a SCF of 5.8% for a hexagonal 
packing of carbon fibres. This represents a much lower value than the 10.4% predicted 
by Hedgepeth and Van Dyke [5]. Moreover, Xia et al. [15] showed that the fibre shear 
deformation, which is neglected in SLMs, can affect the stress redistribution after a 
fibre breakage. Furthermore, van den Heuvel et al. [16] experimentally validated the 
accuracy of the 3D FEM approach for calculating SCFs in a microcomposite with five 
fibres. Good agreement was found between micro-Raman spectroscopy and 3D FEM 
calculations. Small discrepancies were found only at small fibre spacings. 
 
Batdorf and Ghaffarian [17] noticed a significant discrepancy between experimental and 
modelling results of strength of unidirectional composites. The authors indicated that 
the major cause for this discrepancy was the variation in fibre spacing. Incorporation of 
the statistical variation of fibre spacing led to a smaller discrepancy between experiment 
and model. The authors themselves realised the limitations of their model and suggested 
more work was needed to confirm this hypothesis. The number of shear lag models for 
a random fibre packing is limited. Only a few studies have addressed this issue [8, 18, 
19]. Even though all these models were limited to 1D packings, it showed that SCFs 
should be approached in a statistical manner. To the authors’ best knowledge, no SCFs 
values have been reported for 2D random fibre packings, neither for SLM nor for 3D 
FEM. This can be explained by the inherent difficulty in creating 2D random fibre 
packings, which are statistically equivalent to fibre packings in real fibre-reinforced 
composites. Several models are limited to fibre volume fractions of less than 55% [20], 
which is too low for unidirectional fibre bundles. Some models are capable of reaching 
higher fibre volume fraction, however, these were not analysed statistically [21, 22].  
 
The present paper shows 3D FEM results for stress concentration factors in random 2D 
fibre packings. An adapted version of the algorithm of Melro et al. [23] was used to 
generate random fibre packings. This algorithm is capable of reaching fibre volume 
fractions of more than 70%, with a high degree of randomness [24]. After proving the 
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computational validity of the model, it will be illustrated that SCFs depend on the type 
of fibre packing. The influence of fibre volume fraction and fibre/matrix stiffness ratio 
will also be investigated. Finally, the importance of using anisotropic elastic properties 
of fibres will be shown. 
 

2 1B1BDescription of the model 

2.1 6B6BProcedure 

Firstly, a random fibre packing model is generated. The basic principles of the used 
generator are described in [23]. The algorithm requires three input parameters: the fibre 
radius, the fibre volume fraction and the size of the representative volume element 
(RVE). The first step is a hard-core algorithm, which adds fibres at random coordinates 
within a square RVE as long as the fibres do not touch each other. This step is limited to 
a fibre volume fraction of about 55%. The second step tries to move each fibre closer to 
its nearest, second nearest and third nearest neighbour. The third and final step pushes 
the fibres on the edges of the RVE inwards. These three steps are repeated until the 
required fibre volume fraction is achieved. A criterion for the minimal fibre distance 
was added. In the original algorithm [23], the minimal distance between the fibre 
centres is two times the fibre radius. This criterion was adapted to randomly generate 
the minimal distance in the interval between 2 and 2.1 times the fibre radius. This 
adaptation increases the similarity of the statistical descriptors between generated and 
real fibre distributions [24]. 
 
Secondly, the finite element model is created using the generated random fibre packing. 
A circular model is cut out of the square RVE (see figure 1a). In contrast with the 
square or hexagonal packings [14, 25, 26], a random packing model cannot be reduced 
to one-eighth or one-twelfth of the model (like in square or hexagonal models) due to 
lack of symmetry. Even for the reference square and hexagonal models, the full 360° 
model was deliberately chosen to avoid any impact on the results. The applied boundary 
conditions are shown in figure 1b. The entire top plane is displaced vertically with a 
strain of 0.1%, while z-symmetry is applied to the bottom plane. This z-symmetry is not 
applied to the middle fibre, which represents a fibre breakage. Traction free boundary 
conditions are applied to the lateral surface of the cylinder. This set of boundary 
conditions has been used previously to represent a unidirectional composite with one 
broken fibre [25]. Linear elasticity and perfect bonding are assumed for matrix and 
fibres. More details about the model can be found in Table 1. 
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Table 1: Parameters of the finite element model 

 
Finally, the necessary data are extracted out of the stress field. The stress field in a 
cross-section through a fibre is not constant (see figure 2). The average fibre stresses 
will be used rather than the peak stresses. This is more relevant for application in 
strength models in the future.  
 

 
 

Fibre radius 3.5 µm 

Length L of RVE (see Figure 1c) 40*R 

Diameter Ø of RVE (see Figure 1c) 24*R 

Number of fibres 
42-51 fibres for VRRfRR = 30% 
79-84  fibres for VRRfRR = 50% 
116-122 fibres for Vf = 70% 

Number of elements > 180000 elements 

Type of elements 
70-90% second-order brick elements 
10-30% second-order wedge elements 

2R

x y 

z 

uz = 0.001*L 

L 

Location 
of broken 

fibre 

Figure 1: Description of the model: (a) Creation of a circular model out of the square RVE, with the 
broken fibre indicated in black (b) boundary conditions (c) 3D view of the mesh 

(a) (b) (c) 

Ø 

Figure 2: The longitudinal stress field of an intact glass fibre near a broken glass fibre in the 
crack plane. The applied strain is 0.1% and fibre volume fraction 70%. 
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The location that requires the highest mesh density is the edge of the broken fibre in the 
crack plane. If the mesh density is too low, the stress field in the intact fibres will be 
influenced. The default mesh is shown in figure 4a. To verify whether this mesh is 
refined enough, the mesh was refined near the fibre surface (see figure 4b). The 
maximal difference in ineffective length, SCF and overload lengths only amounts to 
0.002%. Therefore, the default mesh in figure 4a was used for all models. 

 

 
Figure 4: A quarter of the mesh in the broken fibre (at the crack plane): (a) default mesh (b) 

refined mesh. Both meshes remain the same along the fibre direction. 
 

The amount of fibres that are included in the models can also influence the results. The 
diameter Ø of the model (see figure 1c), and the fibre volume fraction determine the 
amount of fibres included. Since the model diameter is the most critical for a low fibre 
volume fraction, this mesh optimisation was done for models with 30% fibre volume 
fraction (referred to as 30% models later in this paper). The diameter Ø was increased 
from 24*R to 36*R. This changes the ineffective and overload lengths by less than 3%. 
The relative change in SCF was 1% at most. Therefore, all the model diameters Ø were 
limited to 24*R. Depending on the fibre volume fraction, this results in a different 
amount of included fibres (see table 1). 
 

3 2B2BResults and discussion 

3.1 8B8BFibre packing 

This section examines the influence of the fibre packing. Two ordered fibre packings, 
namely square and hexagonal, are compared to five random fibre packings. The fibre 
volume fraction is 70% in all cases. This is a realistic fibre volume fraction inside the 
yarns of textile based composites, but is also present locally in UD-based composites. 
The model composite consists of glass fibres (stiffness of 70 GPa and Poisson’s ratio of 
0.22) in an epoxy matrix (stiffness of 3 GPa and Poisson’s ratio of 0.4). 

Figure 5a shows the ineffective length for the different packings: single values for the 
square and hexagonal packings, and an average value with standard deviation for the 
random packing. The random packing has the lowest ineffective length, while the 
hexagonal packing has the highest ineffective length. These differences are due to 
differences in the shear stiffness around the broken fibre. The material immediately 

(a) (b) 
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surrounding the broken fibre is loaded in shear and transfers the longitudinal stress back 
on to the broken fibre. In a material with higher shear stiffness, this stress recovery will 
occur over a smaller length. The shear stresses leading to the stress recovery are mainly 
located in the material surrounding the broken fibre. Therefore, the shear stiffness of 
that part of the material will contribute more to the stress recovery. In hexagonal 
packings, all nearest neighbours of the broken fibre are at the same distance. In random 
packings, some fibres are almost touching the broken fibre, while others are located 
further away. If the fibres are closer to each other, the shear stresses in the matrix will 
be higher than when they are far from each other.  This leads to a faster stress build up 
in the broken fibre away from the crack plane, and hence to a lower ineffective length 
for random packings (see figure 5a). The ineffective length of square packings is in 
between the ineffective lengths for random and hexagonal packings. This is because the 
nearest neighbours in square packings are closer to the broken fibre than in hexagonal 
packings, but not as close as in random packings. 

Figure 5b shows the SCF in the neighbouring fibres for the three fibre packings. It 
should again be emphasised that these SCFs are calculated based on the average stresses 
in one plane at distance z* from the crack plane, and hence they underestimate the local 
stresses, which are higher at the side of the fibre closer to the broken fibre. A strongly 
decreasing trend is observed as a function of the distance. The data points for the 
random fibre packings have SCFs of up to 12%. This is almost twice as much as for the 
square packing and three times as much as for the hexagonal packing. When comparing 
data points at the same distance to the broken fibre, the ordered packings show higher 
SCFs. In the hexagonal model, this is even 45% higher than the SCF found for the same 
d/R in the random models. This is due to the shielding effect. The six nearest 
neighbours in hexagonal packings shield the second nearest neighbours from the stress 
concentration. Therefore, the second nearest neighbours show a much lower SCF. A 
similar, but much stronger shielding effect is found in random packings. The single 
nearest neighbour in a random packing is much closer to the broken fibre than the six 
nearest neighbours in a hexagonal packing. This results in SCFs of up to 14% in random 
packings, as can be seen in figure 5b. Because of these higher SCFs, a larger part of the 
total overload is already transferred, which results in a smaller overload on the other 
fibres. Hence, random packings shield the fibres that are further away more efficiently 
and show a lower SCF for the same normalised distance. 

Finally, the overload lengths are shown in figure 5c. Stress concentrations on the intact 
fibres occur because the broken fibre is not carrying the full load. Therefore, the 
ineffective length and the overload length follow a similar trend. This can be seen in 
figure 5c. 
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3.3 10B10BFibre/matrix stiffness ratio 

This section uses three different isotropic fibres. The fibre stiffness is 10, 70 or 230 
GPa, while the Poisson’s ratio is 0.22 in all cases. The matrix is epoxy, with an isotropic 
stiffness of 3 GPa and a Poisson’s ratio of 0.4. The fibre volume fraction is 70% for all 
models. Five models were examined for each fibre stiffness. 
 
If the Poisson’s ratio is the same, it is expected that a higher fibre stiffness results in 
higher shear stresses in the matrix in between the fibres. Indeed, shear lag models 
indicate that a higher stiffness mismatch between fibre and matrix leads to higher shear 
stresses. Such higher shear stresses should result in a smaller ineffective length. This is 
clearly not the case in figure 7a. A higher longitudinal fibre stiffness also results in 
higher stress far away from the crack plane, since the applied strain is the same. Since 
more stress needs to be transferred onto the broken fibre, the stress recovery will be 
spread out over a larger distance. The latter effect is more important than the increase in 
shear stress. The increased fibre shear stiffness only partially affects the shear stresses in 
the matrix, because those stresses also depend on the matrix shear stiffness and the 
distance from the broken fibre. Since the matrix occupies most of the volume near the 
broken fibre, the matrix shear stiffness will dominate the shear stresses. The fibre 
stiffness only has a small influence on the SCF (see figure 7b). A higher fibre stiffness 
only slightly increases the shielding effect. For a fibre stiffness of 10 GPa, the matrix 
can also carry a substantial part of the stress concentration. If the fibre stiffness is a lot 
higher than the matrix stiffness, the influence of the matrix contribution to the shielding 
effect diminishes and the SCF increases slightly. 
 
The overload length follows the same trend as the ineffective length (see figure 7c). A 
higher fibre stiffness results in a higher overload length, because the stress recovery in a 
stiff fibre requires more stress transfer. This effect is more important than the increased 
shear stresses in the matrix. 
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Table 2: Engineering constants of isotropic and transversely isotropic fibres 
Fibre type ERR11 

RR(GPa) 
ERR22 

RR(GPa) 
ERR33RR 

(GPa)
νRR12 νRR13 νRR23 GRR12RR 

(GPa) 
GRR13RR 

(GPa) 
GRR23RR 

(GPa)

Isotropic 230 230 230 0.25 0.25 0.25 92 92 92 

Transversely 
isotropic 

230 15 15 0.25 0.25 0.25 13.7 13.7 6 

 

The anisotropic carbon fibres have a much lower shear stiffness than the isotropic 
carbon fibres (see table 2). This results in lower shear stresses in the matrix and thus a 
higher ineffective and overload length (see figure 8a and c). This increase of the 
ineffective length is not proportional to the increase in fibre shear stiffness. This is due 
to the same reason as explained in paragraph 3.3: the matrix is still responsible for a 
major part of the shear stresses in the matrix region in between two fibres.  

Figure 8b shows that anisotropic fibres have a higher SCF for all distances from the 
broken fibre. The anisotropic fibres have a much lower shear stiffness than the isotropic 
fibres (see table 2). This lower shear stiffness results in more shear deformation and 
more stress transfer onto the intact fibres. SLMs assume a zero fibre radius and thus an 
infinite shear stiffness. This simplification is only justified if the ratio of the fibre and 
matrix shear stiffness is large. This confirms the findings of Xia et al. [15], where 
similar effects are noticed. Comparing the SCF values to literature data on SCFs in 
anisotropic carbon fibres is not straightforward. Taking into account the influence of the 
random fibre packing and distance from the broken fibre, the results coincide well with 
literature on hexagonal packings [14, 26].  
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strength is however still unclear. The subject of future work is to create a strength 
model for unidirectional composites with random fibre packings. This model will 
elucidate whether random fibre packings are needed for an accurate strength model. 
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