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Abstract

The stress redistribution after a single fibre break is a fundamental issue in longitudinal
strength models for unidirectional composites. Current models assume hexagonal or
square fibre packings. In the present work, random fibre packings were modelled using
3D finite element analysis and compared to ordered fibre packings. Significant
differences in the stress redistribution are found. Compared to square and hexagonal
packings, random fibre packings result in smaller stress concentration factors for fibres
at the same distance from the broken fibre. These random packings, however, also show
higher maximal stress concentration factors. The influence of the fibre breakage is more
localised, which results in lower ineffective and overload lengths. The presence of fibres
at smaller distances from the broken fibre explains these phenomena. For an accurate
representation of the stress redistribution after a fibre breakage, random fibre packings
should be used.
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1 Introduction

A fundamental understanding of the failure of fibre-reinforced composites is crucial for
their widespread application as it improves their overall performance and helps in
designing better parts. The failure process of unidirectional fibre-reinforced composites
is now reasonably well understood [1-3]. When a fibre breaks, it locally loses its load
transfer capability. The surrounding matrix is loaded in shear and transfers the load back
onto the broken fibre. Hence, the fibre recovers its stress and the length over which this
occurs is called the ineffective length. Near the broken fibre, the stress in the
surrounding fibres is increased. This increase in stress is quantified using the stress
concentration factor (SCF), which is the relative increase in stress in the neighbouring
fibres due to the fibre breakage of one fibre. SCFs increase the probability of fracture of
the neighbouring fibres. When enough neighbouring fibres are broken, a critical cluster
size is reached and catastrophic failure occurs. This failure propagation scheme shows
the importance of the stress distribution after a fibre fracture. The ineffective length and
the SCF are crucial parameters to predict the strength of unidirectional composites.

Shear lag models (SLM) were developed to calculate this stress redistribution. They
assume that the fibres carry all the axial loads and the matrix only the shear loads. The
first SLM was developed by Hedgepeth for a 1D packing [4]. A 1D packing is a single-
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layer arrangement of parallel fibres on a straight line. Hedgepeth predicted a SCF of
33% for this case [4]. Later, Hedgepeth and Van Dyke [5] extended the SLM to 2D
packings, which consist of a planar arrangement of parallel fibres. The authors
calculated a SCF of 14.6% and 10.4% for square and hexagonal 2D packings,
respectively. SLMs are straightforward to incorporate into an analytical strength model,
as they give an analytical solution for the stress redistribution after a fibre breakage.
Combining SLM with a Weibull strength distribution and some assumptions can give an
analytical solution for the strength of unidirectional composites [6, 7]. However, SLM
also has several disadvantages: (1) it does not include matrix plasticity, (2) it does not
allow anisotropic properties of fibres, (3) it cannot predict matrix cracking, (4) it
assumes perfect fibre-matrix bonding, and (5) it assumes an ordered packing. Many
authors have published improvements on these issues [8-13]. The SCF has in all cases
been estimated to be lower than Hedgepeth’s prediction [4, 5].

An alternative approach to calculate the stress redistribution after a fibre breakage is to
use 3D finite element models (FEM). 3D FEM is computationally intensive, which
limits the amount of fibres that can be included in the model. Therefore, this method on
its own is insufficient to predict the full statistical nature of composite failure. The 3D
FEM stress redistribution after a fibre breakage can however be used as input for
strength models [3]. Nedele and Wisnom [14] predicted a SCF of 5.8% for a hexagonal
packing of carbon fibres. This represents a much lower value than the 10.4% predicted
by Hedgepeth and Van Dyke [5]. Moreover, Xia et al. [15] showed that the fibre shear
deformation, which is neglected in SLMs, can affect the stress redistribution after a
fibre breakage. Furthermore, van den Heuvel et al. [16] experimentally validated the
accuracy of the 3D FEM approach for calculating SCFs in a microcomposite with five
fibres. Good agreement was found between micro-Raman spectroscopy and 3D FEM
calculations. Small discrepancies were found only at small fibre spacings.

Batdorf and Ghaffarian [17] noticed a significant discrepancy between experimental and
modelling results of strength of unidirectional composites. The authors indicated that
the major cause for this discrepancy was the variation in fibre spacing. Incorporation of
the statistical variation of fibre spacing led to a smaller discrepancy between experiment
and model. The authors themselves realised the limitations of their model and suggested
more work was needed to confirm this hypothesis. The number of shear lag models for
a random fibre packing is limited. Only a few studies have addressed this issue [8, 18,
19]. Even though all these models were limited to 1D packings, it showed that SCFs
should be approached in a statistical manner. To the authors’ best knowledge, no SCFs
values have been reported for 2D random fibre packings, neither for SLM nor for 3D
FEM. This can be explained by the inherent difficulty in creating 2D random fibre
packings, which are statistically equivalent to fibre packings in real fibre-reinforced
composites. Several models are limited to fibre volume fractions of less than 55% [20],
which is too low for unidirectional fibre bundles. Some models are capable of reaching
higher fibre volume fraction, however, these were not analysed statistically [21, 22].

The present paper shows 3D FEM results for stress concentration factors in random 2D
fibre packings. An adapted version of the algorithm of Melro et al. [23] was used to
generate random fibre packings. This algorithm is capable of reaching fibre volume
fractions of more than 70%, with a high degree of randomness [24]. After proving the
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computational validity of the model, it will be illustrated that SCFs depend on the type
of fibre packing. The influence of fibre volume fraction and fibre/matrix stiffness ratio
will also be investigated. Finally, the importance of using anisotropic elastic properties
of fibres will be shown.

2 Description of the model
2.1 Procedure

Firstly, a random fibre packing model is generated. The basic principles of the used
generator are described in [23]. The algorithm requires three input parameters: the fibre
radius, the fibre volume fraction and the size of the representative volume element
(RVE). The first step is a hard-core algorithm, which adds fibres at random coordinates
within a square RVE as long as the fibres do not touch each other. This step is limited to
a fibre volume fraction of about 55%. The second step tries to move each fibre closer to
its nearest, second nearest and third nearest neighbour. The third and final step pushes
the fibres on the edges of the RVE inwards. These three steps are repeated until the
required fibre volume fraction is achieved. A criterion for the minimal fibre distance
was added. In the original algorithm [23], the minimal distance between the fibre
centres is two times the fibre radius. This criterion was adapted to randomly generate
the minimal distance in the interval between 2 and 2.1 times the fibre radius. This
adaptation increases the similarity of the statistical descriptors between generated and
real fibre distributions [24].

Secondly, the finite element model is created using the generated random fibre packing.
A circular model is cut out of the square RVE (see figure 1a). In contrast with the
square or hexagonal packings [14, 25, 26], a random packing model cannot be reduced
to one-eighth or one-twelfth of the model (like in square or hexagonal models) due to
lack of symmetry. Even for the reference square and hexagonal models, the full 360°
model was deliberately chosen to avoid any impact on the results. The applied boundary
conditions are shown in figure 1b. The entire top plane is displaced vertically with a
strain of 0.1%, while z-symmetry is applied to the bottom plane. This z-symmetry is not
applied to the middle fibre, which represents a fibre breakage. Traction free boundary
conditions are applied to the lateral surface of the cylinder. This set of boundary
conditions has been used previously to represent a unidirectional composite with one
broken fibre [25]. Linear elasticity and perfect bonding are assumed for matrix and
fibres. More details about the model can be found in Table 1.
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(a) (b) (c)
Figure 1: Description of the model: (a) Creation of a circular model out of the square RVE, with the
broken fibre indicated in black (b) boundary conditions (c) 3D view of the mesh

Table 1: Parameters of the finite element model

Fibre radius 3.5 um

Length L of RVE (see Figure 1c) 40*R

Diameter @ of RVE (see Figure 1c)  |24*R

42-51 fibres for V¢ = 30%
Number of fibres 79-84 fibres for V¢ = 50%
116-122 fibres for VIf=70%

Number of elements > 180000 elements

70-90% second-order brick elements

Type of elements 10-30% second-order wedge elements

Finally, the necessary data are extracted out of the stress field. The stress field in a
cross-section through a fibre is not constant (see figure 2). The average fibre stresses
will be used rather than the peak stresses. This is more relevant for application in
strength models in the future.

Location
of broken
fibre

Figure 2: The longitudinal stress field of an intact glass fibre near a broken glass fibre in the
crack plane. The applied strain is 0.1% and fibre volume fraction 70%.
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Within each fibre, the average stress is calculated in 25 planes parallel to and at
distances z* from the crack plane. In each of these planes, the longitudinal fibre stress
is probed in at least 2400 locations and averaged out over the plane, resulting in the
average fibre stress o at z*. From this, three parameters are calculated: the

zZ,avg
ineffective length, the SCF, and the overload length. Firstly, in accordance with Rosen’s
definition [27], the ineffective length is defined as twice the fibre length over which
90% of strain recovery occurs (see figure 3a). Secondly, the stress concentration factor
(SCF) at a certain z-coordinate z* is defined as the relative increase in fibre stress at
that point due to the fibre breakage. An equivalent definition by Fukuda [18] was used:

the SCF is calculated as the relative increase in average fibre stress o, at z* divided

by the average fibre stress o, far away from the failure location.

z=L
cavg ).100%

O-z,avg(z = L) (Cq 1)

1=7% -0

SCF (2 = 7%) = Zzan'

This assumes that the fibre stress at z = L is not influenced by the broken fibre. This
was verified for all models. This definition eliminates the need to calculate the stress
field without the fibre breakage, which saves calculation time. An example of the SCF
as a function of the distance along the fibre is shown in figure 3b. The SCFs used in the
graphs later in this paper are always the peak values along the fibre length.
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Figure 3: Definition of (a) ineffective length and (b) overload length and max SCF
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Thirdly, the overload length for the intact fibres is calculated similarly to the ineffective
length for the broken fibre. This parameter is defined as twice the distance between the
crack plane and the plane at which the fibre has a SCF of 0% (see figure 3b). It is a
measure for the length over which the stress is increased. This is important, because
together with the SCF, it will determine the increase in failure probability of the intact
fibres.

2.2 Mesh verification
Highly refined meshes are needed near the stress concentration sites, but these meshes

are computationally expensive. To keep the models tractable, the mesh needs to be
optimised. Two of these mesh optimisations will be shown here.
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The location that requires the highest mesh density is the edge of the broken fibre in the
crack plane. If the mesh density is too low, the stress field in the intact fibres will be
influenced. The default mesh is shown in figure 4a. To verify whether this mesh is
refined enough, the mesh was refined near the fibre surface (see figure 4b). The
maximal difference in ineffective length, SCF and overload lengths only amounts to
0.002%. Therefore, the default mesh in figure 4a was used for all models.

Figure 4: A quarter of the mesh in the broken fibre (at the crack plane): (a) default mesh (b)
refined mesh. Both meshes remain the same along the fibre direction.

The amount of fibres that are included in the models can also influence the results. The
diameter @ of the model (see figure 1c), and the fibre volume fraction determine the
amount of fibres included. Since the model diameter is the most critical for a low fibre
volume fraction, this mesh optimisation was done for models with 30% fibre volume
fraction (referred to as 30% models later in this paper). The diameter @ was increased
from 24*R to 36*R. This changes the ineffective and overload lengths by less than 3%.
The relative change in SCF was 1% at most. Therefore, all the model diameters @ were
limited to 24*R. Depending on the fibre volume fraction, this results in a different
amount of included fibres (see table 1).

3 Results and discussion
3.1 Fibre packing

This section examines the influence of the fibre packing. Two ordered fibre packings,
namely square and hexagonal, are compared to five random fibre packings. The fibre
volume fraction is 70% in all cases. This is a realistic fibre volume fraction inside the
yarns of textile based composites, but is also present locally in UD-based composites.
The model composite consists of glass fibres (stiffness of 70 GPa and Poisson’s ratio of
0.22) in an epoxy matrix (stiffness of 3 GPa and Poisson’s ratio of 0.4).

Figure 5a shows the ineffective length for the different packings: single values for the
square and hexagonal packings, and an average value with standard deviation for the
random packing. The random packing has the lowest ineffective length, while the
hexagonal packing has the highest ineffective length. These differences are due to
differences in the shear stiffness around the broken fibre. The material immediately
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surrounding the broken fibre is loaded in shear and transfers the longitudinal stress back
on to the broken fibre. In a material with higher shear stiffness, this stress recovery will
occur over a smaller length. The shear stresses leading to the stress recovery are mainly
located in the material surrounding the broken fibre. Therefore, the shear stiffness of
that part of the material will contribute more to the stress recovery. In hexagonal
packings, all nearest neighbours of the broken fibre are at the same distance. In random
packings, some fibres are almost touching the broken fibre, while others are located
further away. If the fibres are closer to each other, the shear stresses in the matrix will
be higher than when they are far from each other. This leads to a faster stress build up
in the broken fibre away from the crack plane, and hence to a lower ineffective length
for random packings (see figure 5a). The ineffective length of square packings is in
between the ineffective lengths for random and hexagonal packings. This is because the
nearest neighbours in square packings are closer to the broken fibre than in hexagonal
packings, but not as close as in random packings.

Figure 5b shows the SCF in the neighbouring fibres for the three fibre packings. It
should again be emphasised that these SCFs are calculated based on the average stresses
in one plane at distance z* from the crack plane, and hence they underestimate the local
stresses, which are higher at the side of the fibre closer to the broken fibre. A strongly
decreasing trend is observed as a function of the distance. The data points for the
random fibre packings have SCFs of up to 12%. This is almost twice as much as for the
square packing and three times as much as for the hexagonal packing. When comparing
data points at the same distance to the broken fibre, the ordered packings show higher
SCFs. In the hexagonal model, this is even 45% higher than the SCF found for the same
d/R in the random models. This is due to the shielding effect. The six nearest
neighbours in hexagonal packings shield the second nearest neighbours from the stress
concentration. Therefore, the second nearest neighbours show a much lower SCF. A
similar, but much stronger shielding effect is found in random packings. The single
nearest neighbour in a random packing is much closer to the broken fibre than the six
nearest neighbours in a hexagonal packing. This results in SCFs of up to 14% in random
packings, as can be seen in figure 5b. Because of these higher SCFs, a larger part of the
total overload is already transferred, which results in a smaller overload on the other
fibres. Hence, random packings shield the fibres that are further away more efficiently
and show a lower SCF for the same normalised distance.

Finally, the overload lengths are shown in figure 5c. Stress concentrations on the intact
fibres occur because the broken fibre is not carrying the full load. Therefore, the
ineffective length and the overload length follow a similar trend. This can be seen in
figure Sc.



Composites Science and Technology 74 (2013) p. 113-120.
http://dx.doi.org/10.1016/j.compscitech.2012.10.013

18 16

Rz = Broken Intact = Random
16 =14 fibre fibre ,
& 14 S " |'.' RA_d /) W Square
2 1 ;’: 12 4 Nearest N/ Nz e Hexagonal
1= ] =10 " neighbours
5 10 s Fr A
= . i
2 8 = 8 v Second nearest
5 6 3 6 - neighbours
2 2 e
o 4 5 4
= R ™
- 2 Z g o .
0 L1z ¥ % s gt
- \ 0
s & &£ 0.0 0.5 10 1.5 2.0
& S 57 . . . .
F < Q&_.__o Normalized distance to the broken fibre d/'R
o (b)
25
i = Random Second nearest
: neighbours
® Square e,
20 ;
® Hexagonal i
L
i 15 Wearest r “ u”
neighbours i‘_ at W _..' Lt

Owverload length z/R

0
0.0 0.5 1.0 1.5 2.0
Normalized distance to the broken fibre d/R
()

Figure 5: The three parameters describing the stress redistribution in different fibre packings with
a fibre volume fraction of 70% (a) ineffective length with error bars for the standard deviation of
the 5 random packings, (b) SCF, and (c) overload length.

3.2 Fibre volume fraction

This section examines the influence of fibre volume fraction on the stress concentrations
in random fibre packings. The chosen fibre volume fractions are 30%, 50% and 70%.
Five packings were examined for fibre volume fractions of 50% and 70%. For 30%, this
number was increased to 7 to obtain sufficient data points. The model composite
consists of glass fibres (stiffness of 70 GPa and Poisson’s ratio of 0.22) in an epoxy
matrix (stiffness of 3 GPa and Poisson’s ratio of 0.4). The results are shown in figure 6.

Figure 6a shows the results for the ineffective length. The V¢ = 70% packings have a
much lower SCF than the V¢ = 30% and V¢ = 50% packings. The V¢ = 70% packings
have higher shear stresses in the matrix, because they have more fibres at small
distances. These higher shear stresses result in a faster stress recovery and thus a lower
ineffective length.

Figure 6b shows the results for the SCF. A high fibre volume fraction results in a low
SCF for the same distance. The trend line for V¢ = 30% is approximately twice as high
as for V¢ = 70%. This is again due to the shielding effect. A high fibre volume fraction
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has more fibres nearby, which results in a stronger shielding effect. Interestingly,
previous publications [14-16] concluded that the SCF increases with fibre volume
fraction. Figure 6b indicates that the opposite is true for random packings. All previous
publications with 2D packings used ordered packings. In these ordered packings, the
fibre volume fraction is directly related to the distance between the considered fibre and
the broken fibre. In random packings, these two parameters are decoupled. As can be
seen in figure 6b, a higher fibre volume fraction results in more fibres at small distances
and thus with high SCFs. However, when comparing SCFs at the same distance from
the broken fibre (for instance at d/R = 0.5), the higher fibre volume fraction results in a
lower SCF.

The overload length again shows the same trend as the ineffective length (see figure 6¢).
A high fibre volume fraction results in a low overload length.
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Figure 6: The three parameters describing the stress redistribution for random fibre packings with
different fibre volume fractions (a) ineffective length (b) SCF (c) overload length.
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3.3 Fibre/matrix stiffness ratio

This section uses three different isotropic fibres. The fibre stiffness is 10, 70 or 230
GPa, while the Poisson’s ratio is 0.22 in all cases. The matrix is epoxy, with an isotropic
stiffness of 3 GPa and a Poisson’s ratio of 0.4. The fibre volume fraction is 70% for all
models. Five models were examined for each fibre stiffness.

If the Poisson’s ratio is the same, it is expected that a higher fibre stiffness results in
higher shear stresses in the matrix in between the fibres. Indeed, shear lag models
indicate that a higher stiffness mismatch between fibre and matrix leads to higher shear
stresses. Such higher shear stresses should result in a smaller ineffective length. This is
clearly not the case in figure 7a. A higher longitudinal fibre stiffness also results in
higher stress far away from the crack plane, since the applied strain is the same. Since
more stress needs to be transferred onto the broken fibre, the stress recovery will be
spread out over a larger distance. The latter effect is more important than the increase in
shear stress. The increased fibre shear stiffness only partially affects the shear stresses in
the matrix, because those stresses also depend on the matrix shear stiffness and the
distance from the broken fibre. Since the matrix occupies most of the volume near the
broken fibre, the matrix shear stiffness will dominate the shear stresses. The fibre
stiffness only has a small influence on the SCF (see figure 7b). A higher fibre stiffness
only slightly increases the shielding effect. For a fibre stiffness of 10 GPa, the matrix
can also carry a substantial part of the stress concentration. If the fibre stiffness is a lot
higher than the matrix stiffness, the influence of the matrix contribution to the shielding
effect diminishes and the SCF increases slightly.

The overload length follows the same trend as the ineffective length (see figure 7¢). A
higher fibre stiffness results in a higher overload length, because the stress recovery in a
stiff fibre requires more stress transfer. This effect is more important than the increased
shear stresses in the matrix.

10
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Figure 7: The three parameters describing the stress redistribution for different fibre stiffnesses (a)
ineffective length (b) SCF (c) overload length.

3.4 Anisotropy

Most SLMs are not capable of incorporating anisotropic elastic properties. In the case of
carbon fibres, this results in a major overestimation of shear modulus of carbon fibre. In
previous paragraphs, arguments were developed that the shear stress build up in the
matrix is a function of the stiffness mismatch. This predicts a significant influence of
the fibre anisotropy on the ineffective length and overload length, but not on the SCF.
Three models were analysed for a fibre volume fraction of 30%, 50% and 70%. To
avoid cluttering up the graph, the results for only one packing at each fibre volume
fraction will be shown. Each of these models was duplicated, with exactly the same
mesh, but with two different sets of elastic fibre properties, one isotropic and the other
anisotropic. These properties are summarised in table 2. The anisotropic carbon fibre
data is based on data in [28, 29]. The matrix is epoxy, with an isotropic stiffness of 3
GPa and a Poisson’s ratio of 0.4.

11
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Table 2: Engineering constants of isotropic and transversely isotropic fibres

Fibre type En Exn | Es Vi2 Vi3 V23 G | Gz | G
(GPa) | (GPa) | (GPa) (GPa) | (GPa) | (GPa)
Isotropic 230 230 230 | 025 | 0.25 | 0.25 92 92 92

Transversely | 530 | 15 | 15 | 025 | 025 | 025 | 137 | 137 | 6
1sotropic

The anisotropic carbon fibres have a much lower shear stiffness than the isotropic
carbon fibres (see table 2). This results in lower shear stresses in the matrix and thus a
higher ineffective and overload length (see figure 8a and c). This increase of the
ineffective length is not proportional to the increase in fibre shear stiffness. This is due
to the same reason as explained in paragraph 3.3: the matrix is still responsible for a
major part of the shear stresses in the matrix region in between two fibres.

Figure 8b shows that anisotropic fibres have a higher SCF for all distances from the
broken fibre. The anisotropic fibres have a much lower shear stiffness than the isotropic
fibres (see table 2). This lower shear stiffness results in more shear deformation and
more stress transfer onto the intact fibres. SLMs assume a zero fibre radius and thus an
infinite shear stiffness. This simplification is only justified if the ratio of the fibre and
matrix shear stiffness is large. This confirms the findings of Xia et al. [15], where
similar effects are noticed. Comparing the SCF values to literature data on SCFs in
anisotropic carbon fibres is not straightforward. Taking into account the influence of the
random fibre packing and distance from the broken fibre, the results coincide well with
literature on hexagonal packings [14, 26].

12
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Figure 8: The three parameters describing the stress redistribution for different elastic properties
of the fibres: (a) ineffective length (b) SCF (c) overload length.

4 Conclusion

The stress redistribution after a single fibre breakage in various fibre packings was
analysed using 3D FEM. Random fibre packings are shown to have significantly
different stress concentrations in unidirectional composites with a broken fibre,
compared to those for ordered fibre packings. These ordered packings show a higher
SCF at the same normalised distance from the broken fibre. Relative differences in SCF
of up to 45% were found. However, the highest SCFs were found to be up to 70%
higher in random fibre packings. This is because these packings have fibres closer to the
broken fibre.

The fibre volume fraction was shown to have an important influence on the SCF, the
ineffective and overload length. The influence of the fibre/matrix stiffness ratio is small
for the SCF, but important for the ineffective and overload length. Finally, the
importance of including anisotropic elastic properties of fibres was illustrated for the
case of carbon fibres. Taking into account their anisotropy, they have a significantly
higher SCF, ineffective and overload lengths.

Random fibre packings are more realistic representations of unidirectional fibre bundles
than ordered packings. They result in significantly different stress redistributions around
a broken fibre. The influence of this different stress redistribution on the modelled
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strength is however still unclear. The subject of future work is to create a strength
model for unidirectional composites with random fibre packings. This model will
elucidate whether random fibre packings are needed for an accurate strength model.
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