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Abstract—In this paper, we present a scalable approach for
DSM (demand side management) of PHEVs (plug-in hybrid
electric vehicles). Essentially, our approach consists of three steps:
aggregation, optimization, and control. In the aggregation step,
individual PHEV charging constraints are aggregated upwards
in a tree structure. In the optimization step, the aggregated con-
straints are used for scalable computation of a collective charging
plan, which minimizes costs for electricity supply. In the real-time
control step, this charging plan is used to create an incentive signal
for all PHEVs, determined by a market-based priority scheme.
These three steps are executed iteratively to cope with uncer-
tainty and dynamism. In simulation experiments, the proposed
three-step approach is benchmarked against classic, fully central-
ized approaches. Results show that our approach is able to charge
PHEVs with comparable quality to optimal, centrally computed
charging plans, while significantly improving scalability.

Index Terms—Demand side management, market-based control,
plug-in hybrid electric vehicles.

I. INTRODUCTION

LOBAL environmental concerns, decreasing fossil fuel
G reserves, and government policies are expected to in-
crease the share of renewables in global electricity generation
from 19% in 2008 to almost a third in 2035 [1]. The intermit-
tent nature of this type of electricity generation, combined with
the rising electricity demand, requires an efficient usage of the
available electricity generation. One solution for this problem is
DSM (demand side management).

DSM is the modification of user demand for optimal usage
of the electrical grid and its connected generation units. Cur-
rently, utilities use two techniques to achieve DSM: direct load
control (DLC) and real-time pricing. Direct load control is a
DSM technique where large consumers allow utilities to con-
trol part of their electricity demand. An example application of
direct load control is the control of dimmers within a building’s
lighting system [2]. Real-time pricing is a DSM technique where
consumers pay a variable tariff, which reflects the utility’s cost
of generating or purchasing electricity at a wholesale level. An
example of real-time pricing is the usage of smart meters in
California, which vary prices by season and time of day [3].
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Current research concerning DSM is focussed on large-scale
DSM of local devices, such as domestic appliances and elec-
tric cars [4], [5].

A PHEV is a car with both an electric motor and a combustion
engine, together with a battery that can be charged through a
plug. Coordinated charging of electric vehicles in a smart grid is
an important research topic, because DSM of PHEVs offers an
opportunity for managing fluctuations in electricity generation
and consumption [6]. To enable DSM of PHEVs, two major
challenges were identified.

The first challenge is the constantly increasing number of
PHEVs. By 2035, plug-in hybrid vehicles and electric vehi-
cles are expected to constitute around 40% of the global car
sales [1]. Consequently, a scalable DSM approach for PHEVs
is necessary.

The second challenge is the uncertainty and dynamism in-
herent to DSM of PHEVs. For example, PHEVs are continu-
ously connected and disconnected from the grid at uncertain
times. Consequently, a DSM approach has to take into account
dynamic user behavior.

Driven by these challenges, we present an approach for DSM
of PHEVs. The main contributions of this paper are:

» Description of a three-step approach, which achieves scal-
able computation of a charging plan, based on aggregated
PHEV charging constraints. The short execution times en-
able fast, continuous iterations of the three steps, in order
to cope with dynamism and uncertainty.

+ Evaluation of the three-step approach through bench-
marking against two fully-centralized approaches, defined
by using QP (Quadratic Programming). This evaluation
shows that our approach significantly improves scalability
for an increasing number of PHEVs and optimization
horizon.

II. RELATED WORK

In research studies concerning smart grids, several ap-
proaches are proposed for DSM of local devices. These
approaches can be classified in two categories: centralized
and decentralized (agent-based) approaches. In centralized
approaches, a central optimizer has all information about
the devices in its control area. In agent-based approaches,
devices locally optimize their energy usage, while externally
exchanging a limited amount of information. This section gives
a representative selection of centralized and decentralized
approaches in smart grids and the position of our three-step
approach in current research.
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A. Centralized Approaches for Smart Grids

In centralized approaches for smart grids, energy usage
of individual devices is centrally scheduled. Central sched-
uling is typically achieved by state of the art scheduling
techniques, including linear programming, quadratic program-
ming, (approximate) dynamic programming, and stochastic
programming [7], [8].

Centralized approaches for DSM of PHEVs are proposed
in [9], for minimizing power losses in distribution grids, and
in [6], for correcting errors in wind predictions. Small-scale
evaluations show that these approaches are able to find the
best possible solution, based on the available data. In terms of
scalability, Galus et al. [6] report that for a large number of
PHEVs, memory constraints are violated.

Centralized approaches based on approximate dynamic pro-
gramming (ADP) are proposed in [10], for management of dis-
tributed generation and storage, and in [11], for a V2G aggre-
gator who optimizes bidirectional power flows of PHEVs. The
results of these experiments show that the ADP solutions are
suboptimal, while limiting computation times.

In summary, centralized approaches can guarantee optimal
solutions, given the available data by using mathematical op-
timization techniques. While approximate methods can reduce
execution times, computational complexity is usually unavoid-
able due to the large amount of data about individual devices.
In agent-based research, centralized approaches can be used as
a benchmark.

B. Decentralized Approaches for Smart Grids

In decentralized (agent-based) approaches for smart grids, de-
vices make autonomous decisions (through a software agent)
concerning their energy usage.

In [4], an iterative, agent-based control concept is presented.
In this approach, all devices individually determine their en-
ergy schedule, which is aggregated in a hierarchical structure.
Based on the aggregated energy schedule, a global controller it-
eratively determines an appropriate incentive signal to reach a
global objective. Results show that good local predictions lead
to a better matching of demand and supply.

In [5], the authors propose a consumption scheduling game.
This game provides the proof that the energy management ap-
proach converges, finds the optimal solution, and avoids users
from cheating.

In summary, agent-based approaches can provide a solu-
tion which naturally maps onto a distributed environment. A
recurring strategy in current approaches is computing a local
schedule and adjusting this schedule until a global equilibrium
is reached. An inherent challenge in these strategies is control-
ling the emergent consumption schedule for a group of devices.

C. Position of Our Three-Step Approach

Our approach is not fully centralized, neither fully decen-
tralized. While the charging plan for a PHEV fleet (group of
PHEVs contracted by the same energy supplier) is calculated
centrally, the control power of individual PHEVs is calculated
locally (Table I).

The most significant difference between our approach and
centralized approaches is that the central part of our approach
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TABLE I
COMPARISON OF DSM APPROACHES IN TERMS OF DECISION MAKING AT
DIFFERENT LEVELS (L. = LOCAL, C = CENTRAL)

SM decisi A. Centralized | B. Decentralized | C. Three-step
DSM decisions approaches approaches approach
energy planning C L C
power control C L L

(step 2) does not calculate an individual charging plan for each
PHEV. Rather, a collective charging plan for all PHEVs is cal-
culated, which is less computationally intensive. In step 3, this
collective charging plan is translated to individual PHEV power
setpoints through a market-based priority scheme.

The difference between our approach and decentralized ap-
proaches, is that the collective PHEV consumption is not a result
of iterations of locally proposed charging plans. Instead, the col-
lective PHEV consumption is a result of a centrally calculated
charging plan (step 2). For energy suppliers, central availability
of a charging plan is important for assessing the costs associated
with supplying energy to their PHEV fleet.

III. BACKGROUND: MARKET-BASED CONTROL

The DSM approach presented in this paper uses demand
functions from market-based MAS (multi-agent system) con-
trol [12]. In market-based MAS control, demand and supply
functions are used to match demand and supply in a cluster
of devices (Fig. 1). A demand function represents the prices
a consumer is willing to pay for different power consumption
values, while a supply function represents the prices a producer
is willing to accept for different power generation values.

The matching process in market-based control is coordinated
by an auctioneer agent. First, the auctioneer agent gathers
demand and supply functions from all device agents in the
cluster. These device agents control a local device (e.g., PHEV,
diesel generator). Then, the auctioneer agent finds an equilib-
rium price, at which device agents are willing to consume and
generate the same amount of power. Finally, the equilibrium
price is announced to all device agents in the cluster and device
agents will start consuming and producing appropriately. The
fundamentals of this mechanism originate from traditional
demand and supply matching in economics.

While market-based control is a well-known approach for
matching demand and supply, many challenges remain to be
solved. One of these challenges is ahead-planning of energy
usage in an uncertain and dynamic environment.

IV. THREE-STEP APPROACH FOR DSM ofF PHEVS

Based on the identified challenges (Section I), a novel three-
step, agent-based approach for DSM of PHEVs is presented. In
this approach, a PHEV agent represents its PHEV at the local
domestic level, while a PHEV fleet agent represents the en-
ergy supplier, which globally manages a number of contracted
PHEVs (called the energy supplier’s “PHEV fleet”). Agents
have the following goals:

* PHEV agent

Charge PHEV battery before departure time, while re-
specting local power limitations (e.g., maximum power of
a household connection).
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Fig. 1. Market-based control.

+ PHEV Fleet agent
Charge PHEYV fleet to minimize costs for energy supply (de-
pendent on production units managed by the energy sup-
plier, prices at the wholesale electricity market, etc.).

To take into account all individual PHEV constraints, while
minimizing energy supply costs, the agents coordinate in three
steps (Fig. 2). In the first step, local PHEV constraints are ag-
gregated towards the PHEV fleet agent. In the second step, the
aggregated constraints are used for scalable computation of a
collective charging plan for the PHEV fleet, which minimizes
energy supply costs. In the third step, a market-based control
signal is propagated from the fleet agent towards the PHEV
agents. While computational scalability is achieved through ag-
gregation of constraints (step 2), adaptability to a dynamic, un-
certain environment is achieved through continuous iterations
of the three steps.

A. Step 1: PHEV Constraints Aggregation

The goal of this step is to inform the fleet agent about the
collective charging constraints of its PHEV fleet. The charging
constraints of a PHEV can be classified in two types of con-
straints: energy constraints and power constraints. Energy con-
straints express the limits to which energy can be shifted in time,
while power constraints express the limits to which the momen-
tary charging power of PHEVs can be adjusted. Both types of
constraints can be aggregated to represent collective energy and
power constraints of a PHEV fleet.

Throughout the paper, F is defined as the set of PHEVs con-
tained within the PHEV fleet, and F.; C F is defined as the
subset of PHEVs which are grid-connected at time ¢. For each
PHEV i € F.., ‘P is defined as the power drawn at time ¢,
and ‘E; as the energy charged at time ¢. Granularity of time is
determined by the time interval A¢, chosen between two iter-
ations of the three-step approach. This choice is based on the
business model used by the energy supplier. For example, if en-
ergy is bought at a wholesale market, At equals the length of a
trading period. Consequently, we assume PHEV charging plans
are discretized according to these trading periods.

The individual energy constraints of a PHEV ¢ at time { = 0
can be specified by its required energy at departure time itdcp:

B, =0

t e {0} (N

STEP 1 STEP 2

constraints aggregation  fleet optimization
PHEV PHEV
fleet agent fleet agent

HEEE SR

Fig. 2. Three-step approach.

STEP 3
real-time control

PHEV
fleet agent

By, = BTl t € {'tacp } 2)
Eip1 = ‘B, + 'PA vie {0....  taept  (3)
0 <P, <P Vi€ {0, taep) ()
Vi e .7:070
where:

+ 'F™®4 is the energy that a PHEV i needs to charge between
the current time 0 and its departure time ""tdep.

« P™ is the maximum power at which a PHEV i can
charge its battery. P can be dependent on the power
limitations of the battery, the BMS (battery management
system) or the local grid connection. E.g., at a fast charging
station, PHEVs can charge at a higher power than at a reg-
ular household connection.

Note that time ¢ is expressed relative, where ¢ = 0 is defined as
the time where step 1 is initiated.

Constraints (1)—(4) are translated to the energy constraint vec-
tors “E™* and "E™" for a each PHEV i at time ¢ = 0, which
will be used in the calculation of the PHEV fleet charging plan
(step 2, Section IV-B):

max

lEHlaX — {’LEtIHaX |1Et

. 4y ax
= min(‘P

ta iEreq)ﬂ
vt e {0,... . taep} b (5)
=max (i’qu — Z‘Pmax(%dep — 1), 0) .

vt e {0,.... taep} b (6)

i min ;o min

iEmin:{zEt |ZEt

VieFop

An example of these battery constraints is shown in Fig. 3(a).
The area between 'E™* and E™" contains all possible
charging values *Ej.

The individual power constraints of a PHEV ¢ at time ¢ = 0
are represented in a demand vector "P9°™ which contains all
possible power values for charging the PHEV’s battery. These
power values vary between ‘P ™ and P F ig. 4(a)], and are
specified by a self-defined piecewise linear function ’f;.

: P (TS o<y <y

Zfd (pr) - ; min Pe . - (7)
P PP S PT S Priax
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Fig. 3. PHEV energy constraints. (a) Individual energy constraints. (b) Aggre-
gated energy constraints.

with p”. the corner priority of PHEV i (defined in step 3). The
priority domain p” of a demand function represents the charging
priority, which indicates the wish (priority) for consuming or
producing at a certain power. This charging priority is a more
general representation of consumer incentives, compared to spe-
cific prices in market-based control. In Section IV-C (step 3,
“real-time control”), the corner priority is explained in more de-
tail.

Once the PHEV agents have assembled their individual en-
ergy and power constraint vectors, as defined in (5), (6), and (8),
the vectors are aggregated:

— Z Pmax )
=1

Emin _ Z ifgmin (10)
=1

Pdem _ i iPdem (11)

i=1

where n. = |F. ¢/, the amount of grid-connected PHEVs. An
example of aggregated energy constraints is shown in Fig. 3(b),
and an example of aggregated power constraints in Fig. 4(b).

The final result of the first step in our approach is the ag-
gregated constraints of the PHEV fleet, located at the PHEV
fleet agent. In step 2, the aggregated energy constraint vectors
are used in the calculation of a collective charging plan for
the PHEV fleet, and in step 3, the aggregated power constraint
vector is used to control individual PHEVs.

B. Step 2: Optimization of the PHEV Fleet

The goal of this step is to determine a collective charging plan
for the PHEV fleet, which minimizes costs for the energy sup-
plier. The cost model for charging a PHEV fleet is dependent on
the considered business model of an energy supplier. Among
others, this cost model can contain distribution costs, genera-
tion costs, and energy bought or sold at energy markets (e.g., at
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Fig. 4. PHEV power constraints. (a) Individual power constraints. (b) Aggre-
gated power constraints.

the day-ahead market). In general, these costs can be defined by
an objective function C, which needs to be minimized. PHEV
charging requirements are taken into account through the ag-
gregated energy constraints (9) and (10). Both cost function and
aggregated constraints are used to define the complete optimiza-
tion problem for PHEV fleet charging:

mFi’n C(P) (12)

subject to:
0< P, < plimit vVt e {0,... ,tend}, (13)
EMn < B <E™ Wie {0, tona},  (14)
Eip = B+ PAL Vi€ {0, tend}- (15)

where .4 is the latest departure time among all vehicles, and
PUmit the total power limit of the PHEV fleet to avoid grid over-
load. The result of solving the PHEV fleet charging problem is
the control vector P, which defines control values for the PHEV
fleet.

Dependent on the shape of the objective function C, sev-
eral solution methods are applicable (e.g., linear programming,
quadratic programming). In this paper, we have chosen to use
dynamic programming (DP) [8] as generic solution method to
allow inclusion of a diverse range of cost functions. To enable
usage of DP, the optimization problem is redefined as a dynamic
decision problem [13]. In general, a dynamic decision problem
consists of a state space S and decision space D. For the PHEV
fleet charging problem, the state space is defined by a number
of energy states I, € S, which represent an amount of energy
off-taken by the PHEV cluster after time Z. The state space is
constraint by E™** and E™" | as can be seen in (14). A visual
representation of all states F, in the state space are shown in
Fig. 3(b). The decision space is defined by a number of charging
decisions P, € D. At each energy state I, a decision P, trans-
lates Iy to a new energy state F;; as in (15). The decision
space is constraint by P™it asin (13). A visual representation
of an action F; in the action space is shown in Fig. 3(b).
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The objective function in (12) is redefined into a recursive
value function, known as the Bellman equation [8]:

V(Ey) = néin{F(Et, ar) + V(Fep1)} (16)
where F is the price of action a; in state F;. By applying
backwards induction to the Bellman equation, the PHEV fleet
problem is solved. The result of solving this equation is a
sequence of decisions which minimizes the objective function
C. In terms of our problem, where a decision is a power value,
this sequence of decisions is a charging plan P, for the entire
fleet:

Pctrl:{P()vPl'/P?v"'anend*l} (17)

The first decision F; is used to control the PHEVs in real-
time, by translating P, to individual PHEV charging power
values (step 3).

C. Step 3: Real-Time Control

The objective of this step is to divide F in (17) between the
individual PHEVs of the fleet. The deployed division strategy
is based on the PHEV demand vector in (8). For every pri-
ority, this demand vector represents a certain charging power,
where charging power slopes down from low to high priorities.
This shape is similar to a classic demand function in economics,
where demand slopes down from low to high prices.

The corner priority ‘p’, [Fig. 4(a)] is a heuristic which deter-
mines the slope of a demand function. Increasing values of *p’,
decrease the slope, which indicates that PHEV ¢ wants to charge
more at an increasing amount of priority values. Consequently,
‘pl is based on the “urgency” for PHEV i to charge its battery.
The formula of *p?, is based on a heuristic used in [6]:

iEreq

i .
‘D = 7jtdepiPm“ Vie Fepo

(18)

Note that these three parameters also define the individual
PHEYV constraints (1)—(4).

The aggregated demand vector in (11) is used to translate the
first decision P of the charging plan to the equilibrium priority

Peq [Fig. 4(b)]:

(19

arg min ’ngm - PO‘

T J—
peq -
Pr=0,...,p7, .«

Subsequently, this equilibrium priority is sent as an incen-
tive signal to all PHEV agents. Upon receiving the incentive
signal pg,, each PHEV agent will locally match pg, in its own
demand vector, which amounts to the individual charging power
Po = {Ppmp” = pLy}, Vi€ Fep. PHEVs with a corner
priority lower than p, will charge at most P™™ while PHEVs
with a corner priority greater than ipzq will start charging at a

;1N

charging power between ‘P
tive priorities in Fig. 4(b)].

;ylnax

and ‘P [indicated as the ac-

D. Iteration of the Three Steps

The three steps are continuously repeated to adapt towards a
dynamic, uncertain environment. In terms of DSM of PHEV,
there can be many sources of uncertainty: unknown arrival

planning horizon

A
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Fig. 5. Rolling horizon of the three-step approach.

times, stochastic departure times, inaccurate battery require-
ments, uncertain prices, etc. Through this iterative rolling
horizon approach, energy and power constraints are continu-
ously updated (step 1) to calculate a new charging plan (step 2)
and control individual PHEVs (step 3). An example of the
evolution of aggregated energy constraints, charging plan and
online control action is shown in Fig. 5. In the evaluation, we
consider unknown arrival times as source of uncertainty in the
environment. As the evaluation is focussed on scalability, other
sources of uncertainty are out of the scope of this paper.

V. EVALUATION

In this chapter, the proposed three-step approach is evaluated
through comparison with a series of fully centralized bench-
mark solutions. These benchmark solutions can guarantee the
best possible solution in terms of optimization objective, but are
limited in terms of scalability. The goal of this evaluation is to
determine to which degree our three-step approach can reach the
best possible solution in terms of optimization objective, while
improving scalability.

A. Scenario

The considered scenario is a residential PHEV fleet with two
stakeholders:

1) Energy Supplier: wants to minimize the charging costs of
its fleet. The costs made by charging PHEVs are described in an
hourly-based cost model C},(£},) in (20).

2) PHEV Owner: wants to charge its PHEV before depar-
ture. Consequently, PHEV owners provide their departure time
when they arrive at home. The prediction of PHEV driving be-
havior is based on a statistical availability model [14]. This
model represents the state of a car (home, driving, work, . . .). To
represent a realistic PHEV, the parameters from an Opel Ampera
are chosen. To obtain a realistic initial SOC (state of charge),
each simulation is ran one day beforehand starting with a full
battery. This day is omitted from the simulation results.
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B. Energy Cost Model

The energy cost model is based on the cost function Cy, (E},)
presented in [5], which is derived from a quadratic cost function
for thermal generators [15]:

Ch(EL) = anE; + by Ey + ¢y, (20)
where:

* ay is the wholesale price of electricity at each hour 4.

» [ is the load of the whole fleet at each hour A.

* by, and ¢y, are assumed O for simplicity.

This cost function can represent either the actual energy cost
for thermal generators or simply artificial cost tariffs to impose
proper load control [5]. The hourly wholesale prices are used
from the Belgian power exchange platform Belpex [16] for the
year 2010. The typical shape of the daily prices are low prices
during the night and high prices during the evening (Fig. 8).

In step 2 of the three-step approach, this energy cost model is
used as fleet objective function in (12). In the next section, the
optimization problem for the benchmark solutions is described,
which also uses this cost model as objective function.

C. Benchmark Solutions

To evaluate the three-step approach in the described scenario,
two centralized benchmark solutions are defined (Fig. 6). Both
these solutions are based on QP (quadratic programming) to op-
timize towards the quadratic cost function in (20).

The first benchmark is an online QP solution. Instead of ag-
gregating PHEV constraints, the online solution uses individual
PHEV constraints to schedule each grid-connected PHEV ¢ €
F..¢ its energy usage. To account for connecting PHEVs, this
optimization is repeated every hour. The online QP problem is
defined as

tend n 2
min E ap E ‘B,
lE n E

@)
..... Pt =1

subject to :

iEh — iEma‘X h e {itdep} , (22)

’i/Eh—‘,—l - ’iEh + ‘i/PhAt Vh e {O, Tt ”i/ tdop} ’ (23)

0 S iph S ipmax Vh € {0, Caes Z‘tdep} ) (24)
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(£

Z i Ph, S P}l]‘imit

=1

Vhe {0,... . taep ),  (25)

Vi€ Foy.

with “E™" the maximum battery content of PHEV i. Ac-
cordingly, PHEVs fully charge their batteries, given unknown
driving times.

The second benchmark is an offline QP solution, which
creates one offline schedule based on the complete and exact
charging and driving information of all PHEVs in the future.

tond " 2
min E ay, g ‘L
I, "E —
1=

(26)
h=1
subject to :
0< By <E™ VYhe {0, taal, 27)
Erii="En+ PoAt  Vhe{0,..  tenat, (28)
0 <t P, < pmax Vh e {0,... tenat, (29)
> P, < Pt Vh € {0,.. . teona},  (30)
= Vi € For,
Bhor =By =" Dyt Yhe{0,... tana}, (31)
Vi € F\Fer.

where ! D, is battery energy required for driving PHEV i. Note
that #¢,,q is the optimization horizon in the offline QP solution.
In practical simulations, {4 is the final timepoint of the given
data profiles.

D. Simulation Results: Solution Quality

In this part of the evaluation, the three-step approach is bench-
marked in terms of total cost, as defined in (20). If no infor-
mation is available about driving times of a PHEV (as in the
three-step approach and online benchmark), PHEVs are charged
as much as possible, given the power limitations of their house-
hold connection. If information about driving times is available
(as in the offline benchmark), PHEVs are charged to maximize
their electric driving time.

The total charging cost is assessed in a simulation of a sce-
nario with 100 cars during 31 days. Each solution is simulated
100 times with different driving cycles for each car. In Fig. 7,
the distributions of the total cost resulting from each solution are
plotted in a histogram. On the right end of the histogram is un-
controlled charging, because most cars arrive in the evening and
start charging during the highest prices. On the left end of the
histogram is the offline benchmark, yielding the lowest charging
cost due to an infinite optimization horizon.

The difference between the results of the offline and online
benchmark solution is the “online gap.” This gap is inherent to
the online solution’s limited optimization horizon, in contrary to
the offline solution’s infinite optimization horizon. The results
of the offline benchmark solution show that, during weekdays,
PHEVs are charged just enough to drive electrically. During
weekends, however, PHEVs are fully charged to benefit from
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the typically lower electricity prices. In a real setting, this solu-
tion is undesirable because PHEV owners do not exactly know
their driving times beforehand.

The distribution of the total charging cost of the three-step
approach and the online benchmark are similar (Fig. 7). While
the offline benchmark has all information and uncontrolled
charging none, the online benchmark has exactly the same
amount of information as the three-step approach. The only
difference is that the online benchmark individually sched-
ules PHEVs, while the three-step approach uses aggregated
constraints and a market-based incentive signal. On average,
the online benchmark outperforms the three-step approach
with 1.5% less total charging costs. This difference is further
analyzed in a typical simulation run (Fig. 8).

In this simulation run, the online benchmark solution outper-
formed the three-step approach with 1.4%. This difference is
a direct result of a suboptimal division of P between PHEVs

(step 3, Section IV-C). In Fig. 9, the charging behavior of one
car, managed by the three-step approach, is shown. During hour
1 to 5, the corner priority of this PHEV is a small fraction higher
than the global equilibrium priority, causing this car to charge.
Other cars, which leave earlier, should have been charged during
this time, but are charged less.

While the priority scheme does not ensure a perfect division
between PHEVs like the online benchmark, a close approxima-
tion is achieved by weighing between departure time, required
energy and maximum charging power of PHEVs in the corner
priority heuristic (18).

E. Simulation Results: Scalability

In this part of the evaluation, the scalability of the three-step
approach is benchmarked by comparing its execution time with
the online QP solution!. Because the PHEV scheduling problem
can be defined as a convex optimization problem, execution
time of the QP solution is known to be bounded by a polynomial.
In the proceeding experiments, this polynomial is estimated and
compared to the time complexity of the three-step approach. The
input to a PHEV scheduling problem, which indicates the scale
of the problem, is defined by the number of cars (vertical scal-
ability) and the length of their optimization horizon (horizontal
scalability), shown in Fig. 10.

1) Vertical Scalability (Fig. 11): To evaluate vertical scal-
ability of the three-step approach, 10000 to 100000 cars are
scheduled within a horizon of 144 time slots (e.g., one day for
time slots of 10 min). Each simulation is repeated 10 times with
different PHEVs. Results show that the execution time of the
three-step approach is constant, while the centralized solution
scales as a 3rd order polynomial.

2) Horizontal Scalability (Fig. 12): To evaluate horizontal
scalability of the three-step approach, 50 000 cars are scheduled
within a growing scheduling horizon from 10 to 140 time slots.
Each simulation is repeated 10 times with different PHEVs. The
results show that the execution time of the three-step approach
scales linearly, while the centralized solution scales as a 5th
order polynomial.

In summary, the proposed three-step approach ensures a
constant execution time in terms of vertical scalability, due to
an optimization independent of the PHEV fleet size (step 2,

ISimulations are performed using a workstation with Intel Xeon processor
(3.46 GHz, 12 MB cache, 4 cores) and 12 GB of ram.
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Section IV-B) and a linear execution time in terms of hori-
zontal scalability. For both directions of scalability, the online
benchmark calculates a solution several magnitudes slower,
with polynomial time complexity.

F. Simulation Results: Conclusion

In this chapter, the proposed three-step approach was evalu-
ated through comparison with a series of centralized benchmark
solutions. Simulation results show that the offline benchmark
calculates an optimal, but unrealistic result, while the online
benchmark performs only 1.5% better than the three-step
approach in terms of cost minimization. The cause for this
difference is the suboptimal priority scheme used in step 3
of our approach. In terms of scalability, the execution time
of QP problems is polynomial bounded, while the three-step
approach scales linearly with the optimization horizon and
remains constant with the amount of cars.

VI. GENERAL CONCLUSION

In the future smart grid, DSM will be important to assure
grid stability and secure power supply. To enable large-scale
deployment of DSM, scalable DSM of local devices is essential.
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Furthermore, an uncertain and dynamic environment has to be
taken into account.

The solution presented in this article is a three-step, agent-
based approach for DSM of PHEVs that combines the opti-
mality of centralized DSM approaches with the scalability of
decentralized DSM approaches. Essential in this three-step ap-
proach is the aggregation of local PHEV constraints through en-
ergy and power constraint vectors, which are used for scalable
calculation of a charging plan for the PHEV fleet.

Simulations show that the three-step approach performs
comparable to an online, centralized QP solution. An average
cost difference of 1.5% between both solutions is caused by
the difference between per-car optimization (QP solution) and
a heuristic priority scheme (three-step approach). In exchange
for this small difference, the three-step approach provides a
realistic, decentralized solution with good scalability qualities.
While the focus of this paper is scalability of execution time
in a dynamic environment, communication scalability and
privacy of local PHEV charging requirements are also expected
to improve over centralized solutions.

VII. FUTURE WORK

Current and future work focuses on the evaluation of the
three-step approach in a variety of business models (e.g.,
deployment of PHEVs as a reserve capacity, balancing of
unpredictable wind generation) and in an environment with a
heterogenous group of consumers and generators. One aspect
herein is the usage of stochastic optimization for integration
of predictions (e.g., predictions of departure times, generation
from renewables) Another aspect herein is the integration of
grid constraints (e.g., power constraints of transformers and
cables, limitation of voltage levels). Besides scalability of
computations, communication scalability will also be a topic
of future research. To assess communication scalability, we are
developing an event-based three-step approach, where PHEVs
asynchronously send their energy and power constraints to-
wards the PHEV fleet agent.
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