
Arenberg Doctoral School of Science, Engineering & Technology
Faculty of Engineering
Department of Computer Science

Formalisation and Soundness of Static
Verification Algorithms for Imperative
Programs

Frédéric VOGELS

Dissertation presented in partial
fulfilment of the requirements for
the degree of Doctor
in Engineering

December 2012

Formalisation and Soundness of Static Verification
Algorithms for Imperative Programs

Frédéric VOGELS

Jury:
Prof. Dr. ir. Willy Sansen, chair
Prof. Dr. ir. Frank Piessens, supervisor
Prof. Dr. Bart Jacobs, co-supervisor
Prof. Dr. ir. Eric Steegmans
Prof. Dr. ir. Wouter Joosen
Prof. Dr. David Clarke
Prof. Dr. Marieke Huisman

(University of Twente)

Dissertation presented in partial
fulfilment of the requirements for
the degree of Doctor
in Engineering

December 2012

© Katholieke Universiteit Leuven – Faculty of Engineering
Celestijnenlaan 200A box 2402, B-3001 Heverlee (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenig-
vuldigd en/of openbaar gemaakt worden door middel van druk, fotokopie,
microfilm, elektronisch of op welke andere wijze ook zonder voorafgaande
schriftelijke toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form
by print, photoprint, microfilm or any other means without written permission
from the publisher.

D/2012/7515/139
ISBN 978-94-6018-605-9

Abstract

Not only does our software grow larger and more complex, we also become
more dependent on it, thus making it all the more necessary to develop tools
that assist us in writing correct programs. As a consequence, much research has
been done in the field of static verification, i.e. the development of algorithms
that analyse source code and determine whether it contains certain kinds of
errors. This can range from checking that no null dereferences can occur at
runtime to full functional correctness.

Verification algorithms, however, are just as much subject to mistakes. Therefore,
it is important to put these algorithms under scrutiny: our trust in software
can only be as strong as the confidence we can have in our verification tools.
In a first step, we closely examine some existing approaches to verification.
More specifically, we fully formalise the verification algorithms and prove their
soundness.

If we are not willing to trust our software nor our verification algorithms, one
can wonder why we should trust our formalisations and proofs. For this reason,
we also provide full Coq implementations of all verification algorithms we
consider, and, for most of them, machine check the soundness proofs.

This thesis is divided into two parts. In the first part, we discuss verification
condition generation. This approach consists of deriving a logical formula
(called verification condition) from a program’s source code, whose validity
implies the correctness of the program with respect to given specifications.
Three such algorithms are investigated, namely the strongest postcondition,
the weakest liberal precondition and the weakest precondition.

Extra attention is given to the weakest precondition algorithm. In its classic
form, it produces a verification condition that grows exponentially with respect
to the size of the program. An alternative formulation is available which
generates a verification condition that grows only polynomially, but requires
the program to be passive, i.e. to not contain any assignments. Fortunately,

i

ii

it is possible to transform any program into an equivalent passive form. We
implement this transformation in Coq as well as the more efficient variant of
the weakest precondition algorithm, and we provide fully machine checked
proofs that this approach is sound.

In the second part of the thesis, we turn our attention to symbolic execution.
This approach consists of abstractly interpreting the program in such a way
that all possible execution paths are considered simultaneously. Verification
succeeds if no errors are encountered during this execution.

Based on this technique we develop Featherweight VeriFast, representing
the core part of VeriFast, an existing verifier developed at the KU Leuven.
Featherweight VeriFast is formally defined as a denotational semantics, but
it has been implemented in Coq and is extractable, making it usable as a
standalone verifier.

Featherweight VeriFast’s formalisation is built on top of three abstraction layers.
The first layer, the result algebra, allows us to reason about angelic and demonic
choices, both needed to express the result of a symbolic execution. The second
layer defines operators, composable monadic functions which allow us to
elegantly deal with the two kinds of nondeterminism and state in a purely
functional setting. The third layer provides basic operators, which together
form a domain specific language, abstracting away the details of the result
algebra. The symbolic execution, central to Featherweight VeriFast’s operation,
is then defined in terms of these basic operators. Finally, we also provide a
(partially machine checked) soundness proof for Featherweight VeriFast.

A last chapter discusses verification automation techniques. Some verifiers, for
example VeriFast, require the code to be annotated (with for example routine
contracts or loop invariants) to be able to determine a program’s correctness.
Generating these annotations automatically can dramatically decrease the effort
required to verify programs. We discuss and compare three different automation
techniques. Lastly, we propose a framework in which automation techniques
can be added without compromising the soundness of the verification.

Abstract (Nederlands)

Niet alleen wordt onze software alsmaar omvangrijker en complexer, we
hangen er eveneens steeds meer van af, wat het des te noodzakelijker maakt
hulpmiddelen te ontwikkelen om ons bij te staan bij het schrijven van correcte
programma’s. Bijgevolg werd veel onderzoek gevoerd in het domein van
statische verificatie, d.i. het uitwerken van algoritmes dewelke broncode
analyseren en uitmaken of het bepaalde types fouten bevat. Dit kan variëren
van het nakijken dat er geen null dereferences gebeuren tijdens de uitvoering
van het programma tot het verifiëren van volledige functionele correctheid.

Verificatiealgoritmes zijn echter eveneens onderhevig aan fouten. Daarom
is het belangrijk om deze algoritmes nauwkeurig te onderzoeken: het
vertrouwen dat we hebben in onze software kan niet sterker zijn dan dat
in onze verificatiehulpmiddelen. In een eerste stap bekijken we verschillende
benaderingen tot verificatie; meer in het bijzonder formaliseren we de algoritmes
en bewijzen we hun correctheid.

Indien we niet bereid zijn onze software noch onze verificatiealgoritmes
te vertrouwen, kunnen we ons afvragen waarom we onze formalisaties en
correctheidsbewijzen wel zouden vertrouwen. Om deze reden implementeren
we in een tweede stap alle door ons beschouwde verificatiealgoritmes in Coq en
bieden we in de meeste gevallen ook machinaal nagekeken correctheidsbewijzen
aan.

Deze thesis bestaat uit twee delen. In het eerste deel behandelen we het
genereren van verificatiecondities. Dit houdt in dat we op basis van de
broncode van een programma een logische formule genereren waarvan de
validiteit impliceert dat het programma correct werkt ten opzichte van gegeven
specificaties. We onderzoeken drie zulke algoritmes, namelijk de sterkste
postconditie, de zwakste vrije preconditie en de zwakste preconditie.

Extra aandacht wordt besteed aan het zwakste preconditie algoritme. In zijn
klassieke vorm genereert het een verificatieconditie die exponentieel groeit in de

iii

iv

grootte van het programma. Er bestaat echter wel een alternatieve formulering
die polynomiale verificatiecondities produceert, maar deze kan enkel gebruikt
worden op passieve programma’s, met andere woorden programma’s die geen
toekenningen bevatten. Het is gelukkig mogelijk om willekeurige programma’s
om te zetten naar een equivalente passieve vorm. We implementeren deze
programmatransformatie samen met de efficiëntere vorm van het zwakste
preconditie algoritme in Coq, waarna we machinaal bewijzen dat deze aanpak
correct is.

In het tweede deel van de thesis behandelen we symbolische uitvoering. Dit
bestaat erin om een programma op abstracte wijze te interpreten zodat alle
uitvoeringspaden tegelijkertijd beschouwd worden. Verificatie slaagt indien
men geen fouten tegenkomt tijdens deze uitvoering.

Op basis van deze techniek ontwerpen we Featherweight VeriFast, dewelke de
kern voorstelt van VeriFast, een bestaand verificatieprogramma dat ontwikkeld
wordt aan de KU Leuven. Featherweight Verifast wordt formeel gedefinieerd
als een denotationele semantiek, maar vermits het geïmplementeerd werd in
Coq en extraheerbaar is, is het eveneens bruikbaar als verificatieprogramma.

De formalisatie van Featherweight VeriFast steunt op drie abstractielagen.
In een eerste laag definiëren we de resultatenalgebra. Deze laat ons toe te
redeneren over demonisch en angeliek nondeterminisme, dewelke nodig zijn
om de resultaten van symbolische uitvoering uit te drukken. De tweede laag
definieert operatoren: dit zijn samenstelbare monadische functies die ons
toelaten om op elegante wijze om te gaan met de twee types nondeterminisme
en bieden ons toestand aan binnen een zuiver functionele context. De derde
laag definieert de basisoperatoren. Samen vormen deze een domeinspecifieke
taal die de details van de resultatenalgebra wegabstraheert. De symbolische
uitvoering, de centrale component van Featherweight VeriFast, wordt dan
uitgedrukt in termen van deze basisoperatoren. We geven ook een (gedeeltelijk
machinaal nagekeken) correctheidsbewijs van Featherweight VeriFast.

Het laatste hoofdstuk bespreekt verificatie-automatiseringstechnieken. Som-
mige verificatieprogramma’s, waaronder VeriFast, vereisen dat de code
geannoteerd wordt met bijvoorbeeld routinecontracten en lusinvarianten. Het
automatisch genereren van deze annotaties kan de hoeveelheid werk dat
nodig is om een programma te verifiëren drastisch doen afnemen. Om af te
sluiten stellen we een algemeen kader voor dat het mogelijk maakt om nieuwe
automatiseringstechnieken toe te voegen zonder daarbij de betrouwbaarheid
van de verificatie in het gedrang te brengen.

Acknowledgements

I wish to thank my supervisor Prof. Dr. ir. Frank Piessens for his commitment
to my cause. His dedication to his PhD students and his sense of responsibility
never ceased to impress me and I hope I never abused his qualities as a
supervisor. I also thank Prof. Dr. ir. Wouter Joosen for taking a chance on me
and accepting me as a PhD student within DistriNet.

I am also grateful to Prof. Dr. ir. Eric Steegmans, whom I have always respected
and will always remember as an excellent teacher, as I am sure will his many
students. His immense devotion to his students has been a great inspiration to
me.

Prof. Dr. Bart Jacobs certainly also deserves a special thanks for all his assistance
during my years at DistriNet. Our weekly gatherings and our many talks have
turned him into more than just a supervisor. I hope this tradition survives my
departure. I also wish him great success with his career at the KU Leuven.

I would also like to thank the other jury members for their valuable time and
their many suggestions to improve this thesis: Prof. Dr. Dave Clarke, Prof. Dr.
Marieke Huisman and Prof. Dr. ir. Willy Sansen.

Many other people deserve to be thanked for the role they played in my life.
I can only (futilely) hope the following list is exhaustive; my apologies for
anyone I missed. I inductively thank all my ancestors; without them there
would be no PhD. A special thanks goes to my mother; she’s everything a son
could wish for, and more. Though a single mother, it felt like I had three. T’es
la meilleuse. I hope I made her proud.

I thank Michel Boghe, my lawyer, my psychologist, my friend. Life would not
be the same without you. I thank Bastiaan Boghe for being the cute and smart
little guy he is. Do not forget to thank your godfather in your own PhD.

I thank Pim Volders, my fellow traveller on the road to graduation. It was quite
a challenge to keep ahead of you. Thank you for choosing to be my teammate

v

vi

during many projects. You could always be counted on.

I thank my office buddies, who have had to put up with my (occasional)
presence for years. Yves Younan, thank you for letting me buy your car. Pieter
Philippaerts, my partner in crime, thank you for all the great times we had. I
count on you to take good care of Freddy Bear. Raoul Strackx, thank you for
having endured my extravagances. The extent of my gratitude is unknown to
you, but I am working on repaying you. Just eight to go. Mathy Vanhoef, sadly
our time together at the university will be short. I wish you good luck with
your research. As (non-negligible) contribution to your future career, I donate
my part of the whiteboard to you.

I thank Ansar-Ul-Haque Yasar and Nelson Matthys for the great times we
had in Switzerland, and Marco Patrignani for the equally great moments in
Iceland. I wish to thank the (self-proclaimed) awesome and unforgettable
Milica Milutinović for bettering my life: seldom have I met such strict fitness
and diet coach.

I thank Marleen Giedts: thank you for your good advice regarding my finances
and for your tireless attempts at trying to educate me in the matter. Thank you
for giving me a chance, and although the bumpy road has not led us to the
destination I had hoped for, we still ended up somewhere nice. Know that it is
cherished, and I wish it may last.

I thank Yolande Berbers, I thank you for choosing to have me on your didactic
team for four years, for your trust and for the freedom you gave us. I also
thank all past and present members of Team Olympus: Ruben Vermeersch,
Dominique Devriese, Willem De Groef, Job Noorman and Jasper Bogaerts.

I thank my colleagues for making my time at DistriNet so memorable. I
apologise to the people I forget to mention: Pieter Agten, Mario Henrique Cruz
Torres, Philippe De Ryck, Lieven Desmet, Francesco Gadaleta, Kristof Geebelen,
Bert Lagaisse, Jan Tobias Mühlberg, Nick Nikiforakis, Willem Penninckx, Davy
Preuveneers, Jose Paiva Proenca, Rula Sayaf, Ilya Sergey, Jan Smans, Klaas
Thoelen, Marko van Dooren, Gijs Vanspauwen, Dries Vanoverberghe and Koen
Yskout.

I thank Nancy Mazur, which even more than ten years later has remained
unforgotten. I thank you for having opened the eyes of a die hard C++ fan and
introduced him to the wonders of functional programming. I have yet to repeat
your accomplishment.

I thank all members of the administrative force for their excellent work which
is all too often taken for granted: Denise Brams, Inge Vandenborne, Marleen
Somers, Karen Verresen, Esther Renson, Liesbet Degent, Karin Michiels and

vii

Margot Peeters.

I thank Katrien Janssens and Ghita Saevels, members of the project office. Ghita,
I am looking forward to the excellent waffles you so generously offered to make
for my reception.

I thank my students, of which there are too many to mention, for having made
my educational duties which were part of my doctoral training more gratifying.
I hope most of them will graduate having good memories of me.

This thesis presents the results of research that has been partially funded by
the Research Fund KU Leuven and by the EU FP7 project NESSoS, with the
financial support from the Prevention of and Fight against Crime Programme
of the European Union.

Frédéric Vogels
December 2012

Contents

Contents ix

List of Figures xvii

1 Introduction 1

1.1 Static Verification Of Imperative Programs 2

1.2 Overview of Contributions . 4

1.3 Summary . 6

I Verification Condition Generation 7

2 Overview 9

3 Phase I: From Source to Intermediate Language 13

3.1 BoogiePL[. 14

3.2 Source Language . 15

3.2.1 Syntax . 16

3.2.2 Typing . 18

3.2.3 Operational semantics . 20

3.2.4 Modularisation . 25

ix

x CONTENTS

3.3 Translation . 27

3.3.1 Logical Part . 28

3.3.2 Procedural Part . 29

4 Formal Semantics of the Intermediate Verification Language 31

4.1 Syntax . 31

4.2 Operational Semantics . 32

4.3 Conclusion . 39

5 Phase II: Generating Verification Conditions 41

5.1 Hoare Logic . 41

5.2 Strongest Postcondition . 43

5.3 Weakest Liberal Precondition . 46

5.4 Weakest Precondition . 49

5.5 Conclusion . 56

6 Efficient Weakest Preconditions 57

6.1 Single Assignment Form . 59

6.2 Passification . 63

6.3 Efficient Weakest Preconditions 64

6.4 Soundness and Size . 66

6.5 Conclusion . 68

II Symbolic Execution and Separation Logic 71

7 Introduction 73

8 VeriFast Introduction 77

8.1 Separation Logic . 77

CONTENTS xi

8.1.1 Rationale . 78

8.1.2 Separating Conjunction and Frame Rule 80

8.2 VeriFast: Hands On . 82

8.2.1 Basics . 82

8.2.2 User Defined Predicates 84

8.2.3 Recursive User Defined Predicates 89

8.2.4 List Reversal . 91

8.2.5 Ambiguous Matches . 99

8.3 Related Verification Tools . 100

8.4 Conclusion . 100

9 Featherweight VeriFast 103

9.1 Small Imperative Language . 103

9.2 Overview . 107

9.3 Result Algebra . 108

9.3.1 Examples . 108

9.3.2 Operations and Axioms 110

9.3.3 Lemmas . 116

9.4 Operators . 120

9.5 Basic Operators . 126

9.6 Result Algebra Models . 130

9.6.1 Inductive Formulae . 133

9.6.2 Weakest Preconditions . 136

9.7 Operator Lemmas . 138

9.8 Concrete Execution . 142

9.8.1 Formalisation . 142

9.8.2 Shortcomings . 149

xii CONTENTS

9.9 Semiconcrete Execution . 151

9.9.1 Formalisation . 151

9.9.2 Relation with Concrete Execution 159

9.10 Symbolic Execution . 173

9.10.1 Formalisation . 173

9.10.2 Relation with Semiconcrete Execution 186

9.10.3 Relation with Concrete Execution 196

9.11 Conclusion . 197

10 Automation 199

10.1 General Approach And Rationale 200

10.2 Working Example . 201

10.3 Auto-open and Auto-close . 206

10.4 Autolemmas . 207

10.5 Shape Analysis . 208

10.6 Comparison . 210

10.7 Conclusion . 211

11 Conclusion and Future Work 213

11.1 Summary . 213

11.2 Verification Condition Generation vs Symbolic Execution 215

11.2.1 Similarities . 215

11.2.2 Performance . 217

11.3 Related Work . 219

11.3.1 Verification Condition Generation 220

11.3.2 Symbolic Execution and Separation Logic 221

11.4 Future Work . 224

11.4.1 Further Formalisation of Verification Condition Generation224

CONTENTS xiii

11.4.2 Featherweight VeriFast . 225

11.4.3 VeriFast . 226

11.4.4 Reflection . 227

A Notations 233

A.1 Notation definitions . 233

B Monads 239

B.1 Basics . 239

B.2 The List Monad . 240

B.3 The Maybe Monad . 242

B.4 Kleisli Triples . 243

B.5 Do Notation . 244

B.6 The State Monad . 245

B.7 Combining the State and Maybe Monads 248

B.8 Combining the State and List monads 249

C (An Attempt At) A Short Introduction to Coq 251

C.1 The Curry-Howard Isomorphism 251

C.2 Curry-Howard in C++ . 252

C.2.1 Objects as Witnesses . 252

C.2.2 Moving it to Compile-Time 253

C.2.3 Compile-time Checked Indexing 257

C.2.4 Disadvantages . 258

C.3 Curry-Howard in Coq . 259

C.3.1 Implementing ≤ . 261

C.3.2 Implementing Lists . 262

C.3.3 Implementing List Indexing 263

xiv CONTENTS

C.4 Type Hierarchy . 264

C.5 Extraction . 266

C.6 Clarifications . 270

C.6.1 Result Algebra Definitions 270

C.6.2 Result Algebra Axioms 271

C.6.3 Effective Result Algebra 273

C.6.4 Inductive Formulae Model 274

D Coq Scripts 279

D.1 Assertion . 280

D.2 AssocList . 281

D.3 BooleanExpression . 282

D.4 Chunk . 284

D.5 ConcreteExecution . 285

D.6 DependentProduct . 290

D.7 EInductiveFormulae . 291

D.8 ERAAxioms . 296

D.9 ERADefinitions . 298

D.10 ERANotations . 299

D.11 ERAOperators . 300

D.12 ESymbolicExecution . 303

D.13 EWP . 311

D.14 EnsembleExt . 373

D.15 EqDec . 375

D.16 Expression . 376

D.17 FakeModel . 378

D.18 Formula . 380

CONTENTS xv

D.19 Fresh . 383

D.20 Heap . 384

D.21 Identifier . 386

D.22 InductiveFormulae . 387

D.23 ListExt . 389

D.24 ListSetExt . 390

D.25 Misc . 391

D.26 Nat . 393

D.27 Notations . 394

D.28 Predicate . 395

D.29 RAAxioms . 396

D.30 RADefaultOperators . 398

D.31 RADefinitions . 399

D.32 RANotations . 400

D.33 RAOperatorTheorems . 401

D.34 RAOperators . 409

D.35 RATheorems . 412

D.36 Routine . 422

D.37 SIL . 423

D.38 SILPP . 425

D.39 SMT . 429

D.40 SemiconcreteExecution . 435

D.41 SetHolder . 442

D.42 SetOfSets . 443

D.43 Store . 445

D.44 Symbol . 447

D.45 SymbolicExecution . 448

xvi CONTENTS

D.46 Term . 456

D.47 VCG . 458

D.48 WeakestPreconditions . 466

Bibliography 471

E Publications 481

E.1 Papers at international conferences and symposia, published in
full in proceedings . 481

E.2 Internal reports . 482

List of Figures

2.1 Translations . 10

3.1 A Short BoogiePL[Example . 16

3.2 Syntax of the Source Language 17

3.3 Three-Layered Typing . 18

3.4 Typing Rules . 21

3.5 The Step-Over Relation (Part 1) 27

3.6 The Step-Over Relation (Part 2) 28

3.7 Translation of a Method m . 29

3.8 Compilation Scheme . 30

4.1 Syntax of the Intermediate Verification Language 32

4.2 Single Step Reduction Rules . 34

4.3 Translating a while loop . 36

6.1 Overview . 58

6.2 Single Assignment Transformation Algorithm 62

8.1 Linked Lists Sharing Nodes . 80

9.1 Overview of the Different Abstraction Layers 108

xvii

xviii LIST OF FIGURES

9.2 Basic Operators (in Coq Module RAOperators) 127

9.3 Formalisation for Example 9.5.4 131

9.4 Computability Requirements . 132

9.5 Coq Implementations of Result Algebra Models 133

9.6 Concrete Execution . 150

9.7 Semiconcrete Execution . 158

9.8 Symbolic Execution . 187

9.9 Execution Comparison . 188

9.10 Visualisation of the Relation Between the Different Executions . 197

10.1 Annotation Statistics . 200

10.2 Finding a Fixed Point . 210

10.3 Annotation Line Count Comparison 211

11.1 Overview of Coq Formalisation (approximate numbers) 216

11.2 Merging Execution Paths . 218

11.3 Steps for Weakest Preconditions of Unstructured Programs . . . 225

A.1 General Notations . 233

A.2 Logical Notations . 234

A.3 Set Related Notations . 234

A.4 Source Language Notations (Chapter 3) 235

A.5 Intermediate Verification Language Notations 235

A.6 Hoare Triples . 235

A.7 Efficient Weakest Precondition Auxiliary Notations 235

A.8 Result Algebra Notations . 236

A.9 SIL/SIL++ Notations . 236

A.10 Execution Notations . 237

LIST OF FIGURES xix

B.1 RPN Calculator . 247

B.2 Nondeterministic RPN Calculator 250

C.1 Coq Metatype Hierarchy . 266

Listings

8.1 A Linked List in C . 78
8.2 List Reversal in C . 78
8.3 Contract for Linked List Reversal C 79
8.4 Calling the List Reversal Function 80
8.5 Cell Struct . 85
8.6 Cell Destruction . 85
8.7 Elaborately Leaving a Cell Untouched 85
8.8 A User Defined Predicate for Cells 86
8.9 Updated Contract for destroy . 86
8.10 Corrected Version of destroy . 86
8.11 Memory Safe Triple . 87
8.12 Improved Cell Predicate . 88
8.13 destroy with Improved Cell Predicate 88
8.14 triple Proven Fully Functional Correct 88
8.15 List Predicate . 89
8.16 Destroying Lists . 90
8.17 Verified List Reversal (No Full Functional Crrectness) 92
8.18 List Inductive Data Type . 93
8.19 Updated List Predicate . 93
8.20 Function Contract . 93
8.21 Reverse Function . 94
8.22 Append Function . 95
8.23 Fully Annotated List Reversal Function 96
8.24 AppendAssoc Lemma . 97
8.25 AppendNil Lemma . 98
8.26 Reverse Lemmas . 99
8.27 Ambiguous Match . 100
9.1 Result Algebra Signature in Coq 111
9.2 Result Algebra Axioms in Coq 112
9.3 Effective Result Algebra Signature in Coq 133
9.4 Effective Result Algebra Axioms in Coq 134

xx

LISTINGS xxi

9.5 Inductive Formulae Model in Coq 135
10.1 Basic Definitions for Integer Carrying Singly Linked Lists 202
10.2 Linked List Lemmas . 203
10.3 A VeriFast-Verified List-Copying Algorithm 204
10.4 Destroying a Node . 207
B.1 Linq . 242
C.1 File Names in C++ . 254
C.2 LEQ in C++ . 255
C.3 LEQ<X, Y> in C++ . 256
C.4 Proving that 3 ≤ 5 in C++ . 257
C.5 A List with Compile-Time Index Checking 258
C.6 Example Usage of a Compile-Time Checked List 258
C.7 A Loop Using Templates . 260
C.8 Circumventing C++’s Type System 261
C.9 ≤ in Coq . 262
C.10 3 ≤ 5 in Coq . 262
C.11 List in Coq . 263
C.12 List indexing in Coq (Ltac) . 265
C.13 List indexing in Coq (Gallina) . 265
C.14 List indexing in Coq (Gallina) . 266
C.15 Type of Sorting Function . 267
C.16 Type of Sorting Function (Finite Lists) 268
C.17 or vs sumbool Type . 269
C.18 Result Algebra Signature in Coq 270
C.19 Result Algebra Axioms in Coq 272
C.20 Effective Result Algebra Signature in Coq 273
C.21 Effective Result Algebra Axioms in Coq 275
C.22 Inductive Formulae Model in Coq 276

Chapter 1

Introduction

Quis custodiet ipsos custodes?
(Who watches the watchmen?)

Juvenal

Software pervades our world. It has become our entertainment: our music
has been digitised, our movies make no profit without special effects, our
games are no fun without realtime 3D graphics. Software has also become
an indispensable tool: our books are written using text processors and our
homes and bridges are constructed using CAD/CAM programs. Software also
permeates our social lives: Facebook has, at the time of this writing, almost a
billion users.

But software is also present in our cars, our airplanes, our medical devices, our
banking terminals, our power plants, our military weapons. And in these cases,
we expect our software to be no less than infallible. Sadly, this is not the case
and software failures have led to disasters [115, 114] such as fatal overradiation
during medical treatments [19, 26, 84] and airplane crashes [85, 74] involving
hundreds of deaths.

It is not our intention to scare the reader into moving back into his ancestor’s
cave. Instead, we wish to reassure the reader: software verification is a very
active research area and much progress has been made this last decade. Many
different verification techniques exist, and even more tools apply them with
great success.

Next to the many good uses listed above to which software is put, it thus also

1

2 INTRODUCTION

serves to verify software. But since verification software is just as much subject
to mistakes as other software, it is of paramount importance that both the
algorithms they employ and the implementation of said algorithms are correct.

This brings us to the subject of this thesis. In the following chapters, we will
discuss multiple verification techniques. These techniques are well established:
some of them are decades old and they form the basis of many existing
verification tools.

Our contribution consists of proving these techniques’ soundness, i.e. that they
produce correct results. While in many cases proofs already existed, we aim for
a higher level of rigor: most of our proofs [110] are machine checked. For this,
we rely on Coq [33, 16], a proof assistant. This tool aids in the development and
checking of mathematical proofs. As far as we know, this can be considered
the most rigorous form of proving currently available.

1.1 Static Verification Of Imperative Programs

Let us first define what we understand under “static verification of imperative
programs”, starting with “imperative programs” for the sake of completeness.
In simple terms, we can distinguish two styles of programming: functional
and imperative. Both styles use variables to store values. Functional style
entails that once a variable has been assigned a value, it is bound to this value
forever. In contrast, imperative style allows us to reassign new values to these
variables at any moment. Imperative style effectively adds a dimension of time
to programs compared to functional programs: the same piece of code can act
differently depending on the time at which it is executed.

While functional style is far easier to reason about, in practice, the imperative
style is by far the most in use (mostly for reasons of efficiency, modularity and
legacy). By choosing imperative programs as the subject of our verification
algorithms, we may be taking the difficult path, but it is also the most general
path: functional code can be seen as a special subset of imperative code,
meaning that all verification algorithms we discuss will also be applicable on
functional programs.

The term “verification” refers to the act of ascertaining that a given set of
correctness properties hold. There is an entire spectrum of such properties: in
languages with manual memory management we might wish to check that
there are no memory leaks. In multithreaded programs we might want to
make sure that no race conditions or deadlocks can occur. Full functional
correctness is one of the most ambitious verification targets, as it not only

STATIC VERIFICATION OF IMPERATIVE PROGRAMS 3

requires the program not to crash or hang, but also to always produce correct
results. Still other programs can benefit of information flow analysis so as to
prevent sensitive data from reaching unintended recipients.

The verification techniques we will discuss are not inherently limited to any
specific verification property mentioned above. On the contrary: they are
generally capable of proving verification properties ranging from memory
safety to full functional correctness.

Only “static” remains to be explained, which is easiest by contrast. One way of
verifying that a program produces correct results consists of letting it verify its
own results. This is often possible as it is generally easier (if not trivial) to verify
a result than to compute it. For example, a sorting algorithm could check, prior
to returning its result, whether it did successfully accomplish its task. While
this “runtime checking” is easy to implement, it suffers from many flaws:

• Runtime checking inflicts a performance penalty: programs run slower
and consume more memory.

• What should happen when the program discovers an erroneous result?
It could deliberately crash, thereby guaranteeing that if it does produce a
result, it is correct. In some situations, this might be acceptable, but we
would prefer a more robust solution.

• Not every verification property can be checked this way: it is unclear
how data races could be detected this way.

• If is possible to forget implementing some runtime checks, which severely
undermines trustworthiness. Admittedly, this can be remedied by
extending the compiler so that checks are automatically added.

• Even a perfectly runtime checked program can only make limited
promises about its behaviour. Say the program forces a crash when
a mistake is detected, it is then perfectly possible it will do so after five
minutes of usage, or even never start up.

Static verification instead operates before (or during) compile time: it analyses
the program’s source code and determines whether certain verification
properties could be violated at runtime. If the algorithm cannot fully
ascertain that no violations will occur during execution, verification fails.
Static verification, while more complex to achieve, shares only few of the
disadvantages of runtime checking listed above:

• There is no performance penalty, as the code remains unchanged. The
converse can even be true. For example, type systems, an ubiquitious

4 INTRODUCTION

kind of static verification, provide the compiler with extra information so
as to allow optimisations, thereby enhancing a program’s performance.

• Error detection is moved up to compile time, i.e. a program will not
compile if it contains bugs. Once the program starts executing, no errors
(the ones looked for, at least) can occur.

• Some verification properties may be very difficult to check using static
verification.

• Advanced static verification often demands considerable effort from the
programmer and requires a specialised skill set.

1.2 Overview of Contributions

This thesis is split into two parts. The first focuses on techniques based on
verification condition generation. In short, a verification tool will generate a
logical formula from the program’s source code whose validity implies the
correctness of the program. The actual task of determining a formula’s validity
is delegated to a (preferably automated) theorem prover, such as Z3 [37],
Simplify [39] or Coq [33, 16].

Although the theoretical foundation of this approach is relatively old and more
modern developments are available, it is still relied upon by many of today’s
verifiers such as VCC [31], Dafny [78] or tools built on the Why verification
platform [50, 17].

We will discuss multiple verification condition generation algorithms, formalise
them and prove their soundness. Definitions, theorems and proofs [110] of
this part have also been implemented in the Coq proof assistant [33, 16], which
means that all proofs have been machine checked, dramatically increasing our
confidence in their correctness.

The second part focuses on symbolic execution [75] and separation logic
[98], which constitute a fundamentally different approach to verification
than verification condition generation. Separation logic is a relatively recent
development in the field of software verification. It provides specialised
support for dealing with shared mutable data structures, which are common in
imperative programs, and provides an elegant solution to the frame problem.
We postpone a more detailed discussion until later.

Many verification tools (e.g. Smallfoot [12], jStar [45]) are based on separation
logic, one of which is VeriFast [67]. This tool is under active development at the

OVERVIEW OF CONTRIBUTIONS 5

KU Leuven and has been used for multiple real world projects [95, 68]. However,
it has no solid theoretical foundation, such as for example exists for Smallfoot
[4, 108]. This thesis attempts to fill this lacuna: we define Featherweight
VeriFast, a small verifier that uses the same core concepts as VeriFast (i.e.
separation logic, symbolic execution, heap abstraction, modularisation, etc. all
of which will be explained in due time).

First, we will give a full mathematical description of the algorithms underlying
Featherweight VeriFast. Next, we will formally prove that together they form
a sound verifier. These algorithms have all been implemented in Gallina,
Coq’s specification language. While it would be possible and desirable to
mechanise the soundness proof, time constraints have prevented us from doing
so: many lower level lemmas have been proved in Coq, but unfortunately our
mechanisation process did not reach the top level theorems.

If certain conditions are met, Coq can perform a program extraction. Put
succinctly, this allows us to compile Featherweight VeriFast into an actual
executable program. We have taken the necessary measures to satisfy these
conditions, meaning the end result of our work is a fully functional sound
verifier.

In a next chapter, we discuss automation techniques for separation logic based
verifiers. Verifiers can be fully automated, requiring only a push of a button to
perform their task. However, these tools can generally only check for a limited
set of correctness properties: for example, while verifying memory safety is
automatable, full functional correctness remains out of their reach.

Other tools, such as VeriFast, have chosen to rely on the programmer’s help,
requiring source code to be annotated. This extra effort pays off as this enables
the verifier to check for a much larger range of correctness properties.

Unfortunately, the amount of required annotations can be considerable,
sometimes doubling or even tripling the size of the source code. To mitigate
this, we have developed a number of automation techniques which aim to
generate as many annotations as possible, thereby relieving the programmer of
some of the burden imposed by manual verification tools.

Lastly, we will propose a verification framework whose purpose it is to allow
any number of untrusted automation tools to be used without compromising
the soundness of the verification result. It also makes an iterative approach to
verification possible, in which verification is performed in multiple steps, the
advantages of which we will discuss elaborately.

6 INTRODUCTION

1.3 Summary

The ubiquity, the growing complexity and our increasing reliance on software
has made it necessary to develop tools to assist us in writing correct programs.
However, software verification is no trivial task and verification tools are just
as much subject to mistakes as other software. For this reason, we have fully
formalised a selection of verification algorithms and proven their soundness.
The most part has also been machine checked, leading to increased trust. In
short, we attempt to provide an answer to the question “who verifies the
verifiers?”

Part I

Verification Condition
Generation

7

Chapter 2

Overview

Verification condition (VC) generation is one of the classic techniques for
program verification: from the program and its specification one computes
a set of logical sentences (the verification conditions) whose validity implies
the correctness of the program with respect to the given specification. The
technique can be traced back to the very roots of program verification [42].

Example 2.0.1. As a simple illustration of this concept, consider code which computes
the Lorentz factor1:

lorentz(v) =
1√

1 − v2

c2

In order to successfully compute2 this expression’s value, we must put some restrictions
on the values v can take:

• To prevent complex values from appearing in our result, we need v2

c2 ≤ 1.

• We strengthen this last condition to v2

c2 < 1 to avert a division by zero.

Put more succinctly, successful evaluation requires 0 ≤ |v| < c. This condition can
thus be seen as a verification condition for computing the Lorentz factor. Since the
verification condition is not a tautology, evaluating lorentz(v) for arbitrary v might
go wrong. We can solve this problem by restricting the function’s domain: we require

1The Lorentz factor is an important component of the theory of special relativity and expresses
among other things by what factor time slows down when travelling at high speeds. However, for
our purposes, it is just a mathematical expression.

2Here, successful means “yielding a real value (R), assuming v and c to be real.”

9

10 OVERVIEW

program source & specifications
↓

intermediate language translation
↓

verification condition
↓

(automatic) theorem prover

Figure 2.1: Translations

that −c < v < c. We will see later that this restriction corresponds to establishing a
precondition for the function and that 0 ≤ |v| < c is actually a weakest precondition.

Analogously, we can use verification conditions to prevent out-of-bound array
indexing, dereferencing invalid pointers, etc. or, in other words, to ensure that
execution stays within the bounds of well-defined behaviour (in the case of
C or C++), or does not raise unwanted exceptions (Java, C], . . .). By adding
program specifications (e.g. preconditions, postconditions, invariants) it is also
possible to enforce specific behaviour.

However, programming languages have grown more and more complex,
supporting features such as dynamic memory allocation, pointers, exception
handling mechanisms, objects, inheritance, dynamic binding and so forth,
making the process of generating VCs also significantly more complex. To
master this increased complexity, many modern program verifiers split the VC
generation in two phases. As shown in Fig. 2.1, first the source program and
its specification are compiled to an intermediate verification language, and
then VCs are generated from the intermediate language. A prominent example
of such an intermediate language is the BoogiePL language [82, 7]. BoogiePL
is the intermediate language of the Spec] program verifier [9] and the VCC
verifying C compiler [100], and the ESC/Java [51] line of verifiers is moving to
a very similar intermediate language.

Another unfortunate consequence of the increased complexity of VC generation
for current programming languages is that soundness proofs are either omitted
(and hence the VC generation is seen as some form of axiomatic semantics of
the source language [82]), or are presented only informally.

The main focus of this part lies on the translation from intermediate language to
verification condition. However, to improve understandability, we also provide
an elaborate example of the translation from source language to intermediate

OVERVIEW 11

language, which can be found in Chapter 3.

Chapter 4 defines an intermediate verification language and its operational
semantics. Next, in Chapter 5 we discuss multiple verification condition
generation algorithms for this intermediate verification language, such as the
strongest postcondition and the weakest precondition.

Since the weakest precondition algorithm is the one used most in practice, it
deserves a bit more of our attention. The algorithm suffers a major drawback:
the generated verification condition grows exponentially with the size of the
program. Chapter 6 describes a more efficient algorithm: it can produce
verification conditions which grow only polynomially, if the input program
satisfies certain criteria. Fortunately, it is possible to transform any program
into an equivalent form which satisfies these criteria. We will show that both
the program transformation and the polynomial VC generation algorithms are
sound.

Our contribution is not the development of the discussed verification generation
algorithms, but the full formalisation in Coq accompanied by (machine-checked)
proofs of soundness of all presented approaches to VC-generation.

Most of the results in this part of this thesis have been reported in the following
publications:

• Frédéric Vogels, Bart Jacobs, and Frank Piessens. A machine checked
soundness proof for an intermediate verification language. In Mogens
Nielsen, Antonín Kucera, Peter Bro Miltersen, Catuscia Palamidessi, Petr
Tuma, and Frank D. Valencia, editors, SOFSEM, volume 5404 of Lecture
Notes in Computer Science, pages 570–581. Springer, 2009.

• Frédéric Vogels, Bart Jacobs, and Frank Piessens. A machine-checked
soundness proof for an efficient verification condition generator. In
Sung Y. Shin, Sascha Ossowski, Michael Schumacher, Mathew J. Palakal,
and Chih-Cheng Hung, editors, SAC, pages 2517–2522. ACM, 2010.

Chapter 3

Phase I: From Source to
Intermediate Language

Chapter 2 discusses how verification condition generation can be split up into
two phases (see Fig. 2.1) by introducing the use of an intermediate verification
language. This chapter focuses on the first phase, i.e. the translation from
source language (e.g. Java, C, . . .) to intermediate language.

In this chapter, we use BoogiePL[[82] as the intermediate verification language.
It is essentially a stripped down version of BoogiePL [38], the intermediate
verification language used by many program verifiers such as VCC [31],
HAVOC [76], Dafny [78], Chalice [80] and Spec] [9]. Section 3.1 gives a short
introduction to BoogiePL[.

We then proceed to formalise an example object oriented language (Sect. 3.2)
by defining its syntax (Sect. 3.2.1), its typing rules (Sect. 3.2.2) and its semantics
(Sect. 3.2.3). Lastly, we show how to translate it into BoogiePL[(Sect. 3.3).

Since this chapter serves only as an elaborate illustration of how to translate to
an intermediate verification language, we have omitted (most) theorems and
proofs. A more thorough version of this chapter is available in [111]. Also note
that no Coq implementation exists for this part.

13

14 PHASE I: FROM SOURCE TO INTERMEDIATE LANGUAGE

3.1 BoogiePL[

A BoogiePL[program consists of two parts: on the one hand, a logical part that
defines constants, function symbols and axioms. The constants and functions
define the value domains of the program and become part of the first-order
logical signature in terms of which expressions and assertions are formulated.
The signature plus the axioms constitute a classical logical theory. As this part
is fairly standard, we refer the interested reader to [82] for a more detailed
description. Suffice it to say that it has an axiomatisation for integers, finite
maps, booleans and so forth.

On the other hand there is the imperative part that consists of (1) global variables
which take values in the mathematical structure axiomatised by the logical part
and contribute to the program state, and (2) a number of procedures that can be
thought of as describing the possible control-flow paths in the program being
verified. For example, as BoogiePL[does not provide a heap, a translation can
instead encode it as a global variable being a map of (object reference, field
name) pairs to values in the case of an object oriented source language.

Procedures are parameterised operations on the state space defined by the
global variables. A procedure’s body consists of a single command. The
following commands are provided:

• variable declaration, written var id : type, introduces a new variable with
unknown initial value.

• assert expression states that the expression must evaluate to true when
execution passes that point, which can be used to specify proof obligations.

• assume expression tells the verifier that the given expression can be
assumed to be true, e.g. preconditions can be assumed to be true at the
beginning of a procedure or postconditions to hold just after a procedure
call.

• havoc identifier is the opposite of assume; it removes any information
about the specified variable by assigning an arbitrary value to it.

• choice, written c1 [] c2, represents a control flow fork: execution could
continue with either c1 or c2. This command is typically used to model
conditional branches, such as if- or while-statements.

• assignment, written x := expression, changes the variable x’s value.

• sequential composition, written c1; c2.

SOURCE LANGUAGE 15

• procedure calls id := call id(Expression∗).

• blocks allow grouping commands together.

Since procedure specifications are so common, BoogiePL[supports them
directly: one can define procedure specifications followed by one or more
procedure implementations, which all have to obey the specifications. The
specifications consist of a number of requires clauses (the preconditions),
ensures clauses (the postconditions), and a modifies clause, which indicates
which global variables have their values changed by the procedure.

Example 3.1.1. Figure 3.1 shows an example taken from [82]. The first three lines
form the logical part. It introduces an integer constant K and a uninterpreted function
f whose behaviour is only described by the axiom on the third line, i.e. the only thing
we know is that there exists some k such that f (k) = K. The procedural part of the code
declares a procedure Find which according to its specification sets out to find a k for
which f (k) = K. A recursive implementation is then given. The body can be seen as an
if-then-else with three branches1.

3.2 Source Language

Our source language has support for classes which contain fields and methods.
There are no constructors: newly created objects (using new) have their fields
initialised to null. There is no support for inheritance. There are no built-in
types, meaning there are no integers or booleans, though it is certainly possible
to define them.

Methods must be annotated with a specification which consists of a precondition
and a postcondition. A precondition must be true at method invocation while
conversely a postcondition must be true at method exit.

Preconditions can refer to the method arguments (including the this reference),
and through these, the heap. We model the preconditions as functions taking
two arguments, written Prem(H,F) where m is the method whose preconditions
we refer to, H represents the heap and F the frame containing the necessary
information about the arguments’ values.

Postconditions have access to both the “old state” (i.e. the state at method
invocation), and the “new state” (i.e. the state at method exit), hence

1Technically, in order for it to represent a true if-then-else, the second assume should have
condition f (a) , K∧ f (b) = K, since if-then-else chains have a clear order in which each condition is
considered: an else-clause can assume that the conditions of all preceding tests evaluated to false.

16 PHASE I: FROM SOURCE TO INTERMEDIATE LANGUAGE

const K : int;
function f (int) returns (int);
axiom (∃ k : int. f (k) = K);

procedure Find(a : int, b : int) returns (k : int);
requires a ≤ b ∧ (∀ j : int. a < j ∧ j < b⇒ f (j) , K);
ensures f (k) = K;

implementation Find(a : int, b : int)
{

assume f (a) = K;
k := a

[]
assume f (b) = K;
k := b

[]
assume f (a) , K ∧ f (b) , K;
call k := Find(a − 1, b + 1)
}

Figure 3.1: A Short BoogiePL[Example

postconditions can refer to the method arguments, the old heap, the new
heap, and the method’s return value. We model postconditions as functions
Postm(H,F,H′,R) with m the method whose postcondition we are referring to,
H the old heap, F containing all information about argument values, H′ the
new heap and R the method’s return value.

3.2.1 Syntax

Definition 3.2.1 (syntax). The syntax of our source language is summarised in
Fig. 3.2.

Note the rather unorthodox syntax for method call. The sole reason for adding
an extra type annotation is to simplify the operational semantics. Given a
method name m, it is necessary to know the type of the object the method is
invoked on as more than one class could contain a method with this name m.
Instead of dragging along this typing information in the operational semantics,
we have chosen to put this burden on the syntax2. Another possible solution to

2This syntactic choice forces us to only make use of static dispatch, but this is no restriction as
the language does not support subclassing anyway.

SOURCE LANGUAGE 17

Program ::= Class∗

Class ::= class Identifier { Field∗ Method∗ }

Field ::= field Identifier : Type

Method ::= method Identifier (Parameter∗) : Type Specification
{ Statement∗ }

Argument ::= Identifier : Type

Specification ::= requires Precondition ensures Postcondition

Statement ::= local Identifier : Type ;
| Identifier = null ;
| Identifier = Identifier . Identifier ;
| Identifier = Identifier . Type :: Identifier (Identifier∗) ;
| Identifier = new Identifier ;
| Identifier.Identifier = Identifier ;
| if (Identifier == Identifier) Statement else Statement

Type ::= Identifier

Figure 3.2: Syntax of the Source Language

this problem would be to forbid a method name to be used in more than one
class.

The language is intentionally kept minimal to keep the formalisation simple,
but it is still Turing complete. For example, the if statement may seem overly
specific in that it does not allow us to compare x.f with y.g, but using temporary
variables as follows:

local t1 : C1; local t2 : C2; t1 = x.f; t2 = y.f; if (t1 == t2) . . .

Also worthy of attention is the lack of a return statement. We took the same
approach as the Eiffel-language: a special local variable named result (initialised
to null) contains the return value of the method. One can image there being a
return result; statement at the end of each method body.

18 PHASE I: FROM SOURCE TO INTERMEDIATE LANGUAGE

class set
method table field table

method verification

Figure 3.3: Three-Layered Typing

3.2.2 Typing

Typing happens in three layers (see Fig. 3.3), every layer only depending on
information accumulated in the one before it. To type-check a program P we
follow the following steps:

• First, we collect all class names in what we call P’s class set (see Def. 3.2.2).

• Next, we build a method table (Def. 3.2.4) containing type information
about the methods (i.e. argument types, return type) and field table
(Def. 3.2.5) which stores the fields’ types. Both these tables are well-
formed (Def. 3.2.6 and Def. 3.2.7) if all types are contained in the class
set.

• Lastly, we check each method body in turn, making sure every statement
is valid.

Definition 3.2.2 (class set). Given a program P, we define the class set ∆P
c as the set

containing the names of all defined classes in the program.

class C { . . . } ∈ P ⇐⇒ C ∈ ∆P
c

Definition 3.2.3 (class body). We define the class body of C, written classbody(C)
as the set of method and field declarations contained in the class declaration.

Definition 3.2.4 (method table). Given a program P, the method table ∆P
m is a

partial map from class names to a partial map from names to method types.

∆P
m(C)(id) = C1 → C2 → · · · → Cn → Cr

where

method id(x1 : C1, x2 : C2, . . . , xn : Cn) : Cr . . . ∈ classbody(C)

Definition 3.2.5 (field table). Given a program P, the field table ∆P
f is a partial map

from class names to a partial map from names to field types.

∆P
f (C)(id) = C f

SOURCE LANGUAGE 19

where
field id : C f ∈ classbody(C)

Definition 3.2.6 (well-formed method table). We say a program P’s method table
∆P

m is well-formed, written ∆P
m ok, if every type mentioned in it is an element of P’s

class set ∆P
c .

∆P
m ok ⇐⇒ ∀ C, id.

 ∆P
m(C)(id) = C1 → C2 → · · · → Cn → Cr

⇓

C1 ∈ ∆P
c ∧ C2 ∈ ∆P

c ∧ . . . ∧ Cn ∈ ∆P
c ∧ Cr ∈ ∆P

c

Definition 3.2.7 (well-formed field table). We say a program P’s field table ∆P

f is
well-formed, written ∆P

f ok, if every type mentioned in it is an element of P’s class
set ∆P

c .
∆P

f ok ⇐⇒ (∀ C, id. ∆P
f (C)(id) = C f ⇒ C f ∈ ∆P

c)

Definition 3.2.8 (program data). Given a program P, P’s program data, written
∆P is the triplet (∆P

c ,∆
P
m,∆

P
f).

Definition 3.2.9 (well-typed method). Given a program P, a method m from a class
C is well-typed if

∆P; Γ ` s ok

where

method m(x1:C1, . . . , xn:Cn):Cr specs {s} ∈ classbody(C)
Γ = ε, x1 : C1, . . . , xn : Cn, result : Cr

Figure 3.4 contains the actual typing rules.

The typing rules are standard and kept simple mainly due to the lack of
subtyping. We briefly clarify the typing rules:

• T-Local requires a newly declared local variable x to be fresh with respect
to the current environment, i.e. it is not allowed to reuse identifiers in the
same scope. The type C of x must be a declared class, and the rest of the
program s must be well-typed given that x has type C.

• The typing rules (more specifically T-StoreNull) don’t make any special
demands regarding the assignment of null to variables.

• T-StoreField deals with the x=y. f command and requires that y is of
some type Cy which declares a field f which must have the same type as
x. The type rule T-WriteField makes similar demands.

20 PHASE I: FROM SOURCE TO INTERMEDIATE LANGUAGE

• T-StoreNew requires x to have been declared of type C if it is to be
assigned a new object of type C.

• T-If requires x and y to have the same type.

• T-MethodCall demands that y is of a type C which declares a method
named m. All arguments zi must have types that match the parameter
types Ci. The method’s return type Cr must match x’s declared type.

Definition 3.2.10 (well-typed program). A program is well-typed if its method
and field tables are well-formed and if every method of every class is well-typed.

From now on, we will always assume every piece of code we deal with is
well-typed.

3.2.3 Operational semantics

In this section we define an operational semantics for our source language. The
operational semantics is modelled as a binary relation on program states. Thus,
we first define the program states, after which we define both the single step
{ and multiple step{∗ reduction rules.

State

We define the operational semantics as a binary relation on states, written
σ1 { σ2. Operational semantics describe how execution proceeds step by
step: σ1 { σ2 expresses that execution a single step while in state σ1 leads to
a new program state σ2. Chaining these together σ1 { σ2 { σ3 { . . . { σn
represents the entire execution of the program.

We distinguish two kinds of states: a failure state, written Fail, and an in-
progress state which is a quintuplet containing

1. The heap: a partial function mapping object identifiers (oids) to objects,
which themselves are partial functions mapping field names to oids.

2. The store: a stack of frames, which are partial functions mapping
identifiers to oids. A frame keeps track of the local variable bindings.
At each method invocation, a new frame is pushed onto the store and
conversely, at each method exit, a frame is popped from the store.

SOURCE LANGUAGE 21

x < dom(Γ) C ∈ ∆P
c ∆P; (Γ, x : C) ` s ok

∆P; Γ ` local x:C; s ok
T-Local

∆P; Γ ` s ok
∆P; Γ ` x=null; s ok

T-StoreNull

x : Cx ∈ Γ y : Cy ∈ Γ Cx = ∆P
f (Cy)(f) ∆P; Γ ` s ok

∆P; Γ ` x=y. f ; s ok
T-StoreField

x : C ∈ Γ ∆P; Γ ` s ok
∆P; Γ ` x=new C; s ok

T-StoreNew

x : Cx ∈ Γ y : Cy ∈ Γ Cy = ∆P
f (Cx)(f) ∆P; Γ ` s ok

∆P; Γ ` x. f=y; s ok
T-WriteField

x : C ∈ Γ y : C ∈ Γ ∆P; Γ ` s1 ok ∆P; Γ ` s2 ok ∆P; Γ ` s ok

∆P; Γ ` if (x == y) s1 else s2; s ok
T-If

x : Cr ∈ Γ y : C ∈ Γ z1 : C1 ∈ Γ . . . zn : Cn ∈ Γ
∆P

m(C)(m) = C1 → · · · → Cn → Cr ∆P; Γ ` s ok

∆P; Γ ` x=y.C::m(z1, . . . ,zn); s ok
T-MethodCall

∆P; Γ ` ε ok
T-Nil

Figure 3.4: Typing Rules

22 PHASE I: FROM SOURCE TO INTERMEDIATE LANGUAGE

3. The condition stack: it is used to keep track of methods’ postconditions.
At each method invocation, the postcondition is pushed onto this stack,
and at method exit, it is popped and verified.

4. The receiver stack. A receiver is a local variable to which the result value
of a method invocation needs to be written to, e.g.

x = y.T::m();

In this example, x is the receiver. The receiver stack has the same dynamics
as the previously mentioned once: a new item is pushed on method
invocation and one is popped at method exit.

5. A statement stack: this stack contains statement lists, each containing
(part of) a method body.

Reduction rules

In this section we define the operational semantics as both small step{ and
multiple step relations{∗. Neither have any surprising elements: they are
deliberately kept as straightforward as possible.

Definition 3.2.11 (single step). We define the following single step reduction rules:

• E-Local: introduces a new local variable which is initialised to null.

F′ = (F, x 7→ null)
(H,F ◦ Fs,Cs,Rs, (local x:T; s) ◦ Ps){ (H,F′ ◦ Fs,Cs,Rs, s ◦ Ps)

• E-StoreNull: writes null to a local variable.

F′ = (F, x 7→ null)
(H,F ◦ Fs,Cs,Rs, (x=null; s) ◦ Ps){ (H,F′ ◦ Fs,Cs,Rs, s ◦ Ps)

• E-StoreField: fetches a field value and stores it in a local variable.

oid = F[y] oid , null F′ = (F, x 7→ H[oid][f])
(H,F ◦ Fs,Cs,Rs, (x=y. f ; s) ◦ Ps){ (H,F′ ◦ Fs,Cs,Rs, s ◦ Ps)

• E-StoreFieldNull: reading a field through a null reference results in failure.

F[y] = null
(H,F ◦ Fs,Cs,Rs, (x=y. f ; s) ◦ Ps){ Fail

SOURCE LANGUAGE 23

• E-StoreNew: creates a new object and stores a reference to it in a local variable.

oid < H H′ = H, oid 7→ F F = ε, f 7→ null F′ = (F, x 7→ oid)
(H,F ◦ Fs,Cs,Rs, (x=new K; s) ◦ Ps){ (H′,F′ ◦ Fs,Cs,Rs, s ◦ Ps)

• E-WriteField: writes a value to an object field.

oid = F[y] , null F = H[oid] v = F[y]
F′ = F, f 7→ v H′ = H, oid 7→ F′

(H,F ◦ Fs,Cs,Rs, (x. f = y; s) ◦ Ps){ (H′,F ◦ Fs,Cs,Rs, s ◦ Ps)

• E-WriteFieldNull: attempts to write to a field through a null reference results
in failure.

F[x] = null
(H,F ◦ Fs,Cs,Rs, x. f = y; s ◦ Ps){ Fail

• E-IfTrue: if the condition is true, the then-branch must be executed next.

F[x] = F[y]
(H,F◦Fs,Cs,Rs, (if (x == y) s1 else s2; s)◦Ps){ (H,F◦Fs,Cs,Rs, (s1; s)◦Ps)

• E-IfFalse: if the condition is false, the else branch must be executed next.

F[x] , F[y]
(H,F◦Fs,Cs,Rs, (if (x==y) s1 else s2; s)◦Ps){ (H,F◦Fs,Cs,Rs, (s2; s)◦Ps)

• E-MethodCall: method invocation x=y.T::m(z). In case that y points to a
valid object (i.e. not null) and the precondition is satisfied by the current state, the
new body is added to the statement stack, a new stack frame is created containing
bindings for the this reference, method arguments and result variable. The
method’s postcondition is pushed on the condition stack with the before-state
already filled in for use later on: upon method exit (described by E-ExitMethod

and E-ExitMethodFail) the postcondition will be popped from the condition
stack and evaluated. Lastly, the receiver variable (the one to which the method
result will be written to upon return) is pushed on the receiver stack.

F′ = ε, this 7→ oid, argsT::m 7→ F[z], result 7→ null
oid = F[y]
oid , null

PreT::m(H,F′) = true
H

F ◦ Fs
Cs
Rs

(x=y.T::m(z); s) ◦ Ps

{

H
F′ ◦ F ◦ Fs

PostT::m(H,F′) ◦ Cs
x ◦ Rs

bodyT::m ◦ s ◦ Ps

24 PHASE I: FROM SOURCE TO INTERMEDIATE LANGUAGE

• E-MethodCallFail: calling a method whose preconditions aren’t satisfied
yields failure.

F′ = ε, this 7→ oid, argsT::m 7→ F[z], result 7→ null
oid = F[y]
oid , null

PreT::m(H,F′) , true

(H,F ◦ Fs,Cs,Rs, x=y.T::m(z) s ◦ Ps){ Fail

• E-MethodCallNull: invoking a method through a null reference leads to
failure.

F[y] = null
(H,F ◦ Fs,Cs,Rs, x=y.T::m(z) s ◦ Ps){ Fail

• E-ExitMethod: pops the necessary stacks and writes the result value to the
receiver variable.

C(H,F′[result]) = true F′′ = (F, x 7→ F′[result])
(H,F′ ◦ F ◦ Fs,C ◦ Cs, x ◦ Rs, ε ◦ Ps){ (H,F′′ ◦ Fs,Cs,Rs,Ps)

• E-ExitMethodFail: exiting a method fails if the method’s postcondition isn’t
satisfied.

C(H,F[result]) , true
(H,F ◦ Fs,C ◦ Cs,Rs, ε ◦ s ◦ Ps){ Fail

The reduction rules show in which way a failure state can be reached. We
summarise them here.

• E-StoreNull: reading a field through a null reference, for example

x = null; y = x.field;

will inevitably lead to failure.

• E-StoreFieldNull: writing to a field through a null reference, for example

x = null; x.f = y;

• E-MethodCallNull: calling a method on a null reference, for example

x = null; y = x.m();

SOURCE LANGUAGE 25

• E-MethodCallFail: calling a method while its preconditions are not
satisfied.

• E-ExitMethodFail: returning from a method while its postconditions are
not satisfied.

These are the failures we wish to prevent using verification condition generation.
If a program verifies, it means that none of these failures will be encountered at
runtime.

Definition 3.2.12 (multiple step). We define a binary multiple step relation as
follows:

σ{∗ σ E∗-Reflexive

σ1 { σ2 σ2 {∗ σ3

σ1 {∗ σ3
E∗-Step

Definition 3.2.13 (initial state). Given a program P where some class X is the only
to contain a nullary preconditionless T-returning method named main, the initial state
σinit(P) is equal to

(ε, ε ◦ ε, ε, ε, s ◦ ε)

where
s = local x:X;

x = new X;
local r : T;
r = x.X::main();

3.2.4 Modularisation

During verification, we are not interested in the actual evaluation of the program,
but only in whether or not failure is encountered. For this, we split the program
up in pieces, i.e. we consider each method apart.

To achieve this, we take a method from the program, we evaluate this method
(keeping in mind we only want to detect failures, so we cut down as much as
possible), and check that no failures occur. If we do this for every method in the
program and find that no single method fails, the program in its entirety won’t
fail either. In order to do this, we need to apply some changes:

• We need a new kind of state: as we are confining execution to within
a method, we don’t need the stacks: only the top items are of interest.
Hence, a state (H,F ◦ Fs,C ◦ Cs,Rs, s ◦ Ps) gets “flattened” to (H,F,C, s).

26 PHASE I: FROM SOURCE TO INTERMEDIATE LANGUAGE

• We also need to know what initial state to use. The only guarantee we
have is that the method’s precondition will be satisfied, so we have to
consider every state which satisfies those as initial state.

• A method body often contains calls to other methods. Since we want
to limit ourselves to only one method, we must find a way to deal with
those invocations. For this, we completely rely on the called method’s
specifications. Method invocation then gets dealt with by a new reduction
rule, which first checks that the current state satisfies the invoked method’s
preconditions and then produces a new state which is only guaranteed to
satisfy the method’s postconditions, meaning this new method-invocation
rule is nondeterministic.

• Not only do we want a method execution not to fail when starting off
from a random state satisfying the method’s preconditions, we also
want it to end in a state which satisfies the method’s postcondition. In
our operational semantics, E-ExitMethod takes care of verifying this.
However, we can’t use this rule directly as it makes execution leave the
current method.

We have given these new rules the name “step over relation”, and they are
fully defined in Fig. 3.5 and Fig. 3.6. Most H- rules are directly derived from a
corresponding E- rule (Def. 3.2.11): in most cases, the only change needed is
the replacement of the stack state components by their respective top element.

Definition 3.2.14 (step over relation). We introduce a new binary relation over
states which we call the step-over relation. The exact rules are contained in Fig. 3.5
and Fig. 3.6.

Definition 3.2.15 (multistep-over relation). The multisteps-over relation is defined
as follows:

σy∗ σ H∗-Reflexive

σ1 y σ2 σ2 y∗ σ3

σ1 y∗ σ3
H∗-StepOver

Theorem 3.2.1. If we consider the execution of a method body from immediately
after E-MethodCall to just before E-ExitMethod and replace E-MethodCall by
a nondeterministic rule that leads to a random state satisfying the invoked method’s
postcondition, then, if the step rules lead to failure, so will the step-over rules.

Proof. We refer the interested reader to [111]. �

TRANSLATION 27

(H,F,C, local x:T; s)y (H, (F, x 7→ null),C, s)
H-Local

(H,F,C, x=null; s)y (H, (F, x 7→ null),C, s)
H-StoreNull

F[y] , null
(H,F,C, x=y. f ; s)y (H, (F, x 7→ H[F[y]][f]),C, s)

H-StoreField

F[y] = null
(H,F,C, x=y. f ; s)y Fail

H-StoreFieldNull

oid < H H′ = H, oid 7→ F F = ε, f 7→ null
(H,F,C, x=new K; s)y (H′, (F, x 7→ oid),C, s)

H-StoreNew

oid = F[x] , null F′ = H[oid], f 7→ F[y]
(H,F,C, x. f = y; s)y ((H, oid 7→ F′),F,C, s)

H-WriteField

F[y] = null
(H,F,C, x. f = y; s)y Fail

H-WriteFieldNull

F[x] = F[y]
(H,F,C, if (x == y) s1 else s2; s)y (H,F,C, s1 s)

H-IfTrue

F[x] , F[y]
(H,F,C, if (x == y) s1 else s2; s)y (H,F,C, s2 s)

H-IfFalse

Figure 3.5: The Step-Over Relation (Part 1)

3.3 Translation

Now that we have formally defined our source language, we are ready to
translate it to BoogiePL[. In Sect. 3.3.1, we first define some axioms which

28 PHASE I: FROM SOURCE TO INTERMEDIATE LANGUAGE

F′ = ε, this 7→ oid, argsT::m 7→ F[z] oid = F[y] , null
PreT::m(H,F′) = true PostT::m(H,F′)(H′,F′′) = true

(H,F,C, x=y.T::m(z); s)y (H′,F,C, s)
H-MethodCall

F′ = ε, this 7→ oid, argsT::m 7→ F[z]
PreT::m(H,F′) , true

(H,F,C, x=y.T::m(z); s)y Fail
H-MethodCallPreFail

F[y] = null
(H,F,C, x=y.T::m(z); s)y Fail

H-MethodCallNull

C(H,F) , true
(H,F,C, ε)y Fail

H-MethodExitFail

Figure 3.6: The Step-Over Relation (Part 2)

describe the heap. Next, Sect. 3.3.2 shows how to translate each method of our
source language into BoogiePL[commands. This section is mostly inspired by
[82], which we refer to reader to for more elaborate examples.

3.3.1 Logical Part

Our verifier promises that if a program verifies, it will never encounter failure
during its execution. It does however not make any guarantees regarding a
program’s success, i.e. if a program does not verify, it means the program could
fail, but might as well run correctly. In short, false positives (the program
verifies) are excluded, but false negatives are not. To maximise a verifier’s
usability, we wish to minimise the number of false negatives. For this, we
can provide BoogiePL[with more information about the heap in the form of
axioms.

Definition 3.3.1 (well-formed heap). We say the heap is well-formed, written
wfh(H) if for each object it contains the fields are either null or refer to other existent
objects.

wfh(H) ⇐⇒ (∀ oid, oid′, f . oid′ = H[oid][f] ⇒ oid′ = null ∨ oid′ ∈ dom(H))

TRANSLATION 29

Theorem 3.3.1. The multistep preserves the well-formedness of heaps.

wfh(H)⇒ (H,Fs,Cs,Rs,Ps){∗ (H′,Fs′,Cs′,Rs′,Ps′)⇒ wfh(H′)

Definition 3.3.2 (successor heap). We say a heap H′ succeeds a heap H iff

successor(H,H′) ⇐⇒ wfh(H′) ∧ ∀ oid. oid ∈ dom(H)⇒ oid ∈ dom(H′)

Theorem 3.3.2. If H is well-formed, and

(H,Fs,Cs,Rs,Ps){∗ (H′,Fs′,Cs′,Rs′,Ps′)

then H′ succeeds H.

3.3.2 Procedural Part

We translate each method in turn. Figure 3.7 shows the skeleton, which sets up
the environment in which the method will execute: Locals and parameters are
declared, the heap is initialised, and the program state is assumed to satisfy the
method precondition. Next comes the translation of the actual method body
(see Fig. 3.8). Translation ends with an assertion of the method postcondition.

var idlocal : ref; for every declared local variable in the method
var initheap : [ref, name]any;
initheap := heap;
var idarg;
var init$idarg;
init$idarg := idarg;

 for every argument

assume this , null;
assume wfh(heap);
assume PreT::m;
Translation of the method body
assert PostT::m

Figure 3.7: Translation of a Method m

Theorem 3.3.3 (translation soundness). Given a (well-typed) program P, m a
method of P, c its translation to BoogiePL[(Fig. 3.7 and Fig. 3.8). If for any H,F for
which Prem(H,F) the following is true

(H,F,Postm(H,F), bodym)y∗ Fail

30 PHASE I: FROM SOURCE TO INTERMEDIATE LANGUAGE

local x : T; x := null
x = null; x := null
x = y.f; assert y , null;

x := heap[y, f]
x = y.m(z) {

var oldheap : [name, ref]any;
oldheap := heap;
assert y , null;
assert Prem;
havoc heap;
assume successor(oldheap, heap);
assume Postm

}
x = new T; {

var oid : ref;
assume oid , null;
assume heap[oid, alloc] = false;
assume (∀ f : name. heap[oid, f] = null);
heap[oid, alloc] := true

}
x.f = y; assert x , null;

heap[x, f] := y
if (x == y) s1 else s2 {

assume x = y;
translation of s1

[]
assume x , y;
translation of s2

}

Figure 3.8: Compilation Scheme

then, for some store µ:
∃ µ′. 〈c, µ〉 −→∗ failure µ′

where −→∗ refers to BoogiePL[’s operational semantics, see next chapter for more
details.

Chapter 4

Formal Semantics of the
Intermediate Verification
Language

This chapter formally defines the intermediate verification language for which
we will define verification condition generation algorithms in the next chapter.
We have taken our inspiration from BoogiePL[, an existing intermediate
verification language [82].

The intermediate verification language’s syntax is defined in Sect. 4.1, after
which Sect. 4.2 formalises its semantics. We also state some theorems which will
prove useful in later chapters. Corresponding Coq definitions (see Appendix D)
are referred to between parenthesis using this font.

4.1 Syntax

In this section we define the syntax of the intermediate verification language
(IVL), which consists of the core part of BoogiePL[. More specifically, the IVL
is a subset of BoogiePL[’s command language [82] (see Sect. 3.1 on page 14)
which is used to abstractly model the computations to be verified.

Definition 4.1.1 (VCG.command). The syntax is shown in Fig. 4.1.

We summarise the differences:

31

32 FORMAL SEMANTICS OF THE INTERMEDIATE VERIFICATION LANGUAGE

command ::= assert expression assertion
| assume expression assumption
| havoc identifier forgetting
| skip no-op
| identifier := expression assignment
| command [] command nondeterministic choice
| command; command sequencing

Figure 4.1: Syntax of the Intermediate Verification Language

• We omitted a procedure call command as it can be desugared to asserting
the precondition, havocing the appropriate variables and assuming the
postconditions. Details can be found in [82].

• There are no variable declarations in our intermediate verification
language; all variables are bound by the store at all times.

• We do not support blocks, which allow us to limit variable scope. These
are not strictly necessary as it is possible to move all variables to the
outermost scope after having given them unique names.

• We keep our expressions abstract: they are modelled as functions mapping
stores to values. There is no need to define a syntax for expressions.

• We added a skip command, which, although it amounts to a no-op,
considerably simplifies the operational semantics.

The meaning of these commands will be made clear in the next section, where
we formally describe the behaviour of each.

4.2 Operational Semantics

In this section, we formalise the semantics of programs written in our
intermediate verification language. We do so using small step operational
semantics i.e. a binary relation over program states which describes how
programs are executed. An execution step transforming an input state σ into an
output state σ′ is written σ −→ σ′. σ′ is also called σ’s successor. Full execution
then consists of a chain of program states: σ0 −→ σ1 −→ σ2 −→ Execution
ends when it reaches an irreducible state, i.e. a state for which no successor is
defined.

OPERATIONAL SEMANTICS 33

Two kinds of program states exist: in-progress states and failure states. The
latter are irreducible and indicate that execution has failed. An in-progress state
must contain all information needed to execute the program further. Hence,
it needs some sort of program counter indicating what commands are left
to execute. We achieve this by rewriting the program at every step, i.e. the
program state has a command component representing what is left to execute.

The intermediate verification language also supports variables, hence it is
necessary to keep track of their bindings. This responsibility falls on the store,
which maps variables to values. Since we are not interested in performing
actual computations, values are kept abstract in our formalisation. The only
value of interest to us is true, which is needed to define the semantics of the
assert and assume commands. We now formally define each concept in turn.

Definition 4.2.1 (VCG.value, .value_eq_dec). The set of values is denoted Val.
There exists a value true ∈ Val. The only operation defined on values is the equality
test.

Definition 4.2.2 (VCG.store). A store µ is a total function from identifiers to values.

store ≡ Id→ Val

Since the store is a total function, every variable is bound and one does not
have to worry about undeclared variables.

Like values, expressions are kept as abstract as possible. An expression can be
an arbitrary mathematical expression. Since it can refer to variables, evaluation
requires a store.

Definition 4.2.3 (VCG.expression). An expression e is a function from stores to
values.

expression ≡ store→ Val

Example 4.2.1. The expression 5 · x + y is modelled by the following function:

λ µ. 5 · µ(x) + µ(y)

Definition 4.2.4 (VCG.state). We distinguish two kinds of program states:

• In-progress states 〈c, µ〉 consist of a command c and a store µ.

• Failure states failure µ have a store component1 µ.

We use the symbol σ to denote states.

34 FORMAL SEMANTICS OF THE INTERMEDIATE VERIFICATION LANGUAGE

e(µ) = true
〈assert e, µ〉 −→ 〈skip, µ〉 E-AssertTrue

e(µ) , true
〈assert e, µ〉 −→ failure µ E-AssertFalse

e(µ) = true
〈assume e, µ〉 −→ 〈skip, µ〉 E-AssumeTrue

〈c1, µ〉 −→ 〈c′1, µ
′
〉

〈c1; c2, µ〉 −→ 〈c′1; c2, µ′〉
E-Seq

〈c1, µ〉 −→ failure µ′

〈c1; c2, µ〉 −→ failure µ′
E-SeqFail

〈skip; c2, µ〉 −→ 〈c2, µ〉
E-SeqSkip

v ∈ Val
〈havoc x, µ〉 −→ 〈skip, µ[x := v]〉 E-Havoc

〈x := e, µ〉 −→ 〈skip, µ[x := e(µ)]〉 E-Assign

〈c1 [] c2, µ〉 −→ 〈c1, µ〉
E-ChoiceLeft

〈c1 [] c2, µ〉 −→ 〈c2, µ〉
E-ChoiceRight

Figure 4.2: Single Step Reduction Rules

OPERATIONAL SEMANTICS 35

Definition 4.2.5 (VCG.step). The single step reduction rules are listed in Fig. 4.2.
We say that σ′ is a successor of σ if σ −→ σ′.

We briefly clarify the meaning of the single step reduction rules:

• An assert e command is used to express target verification properties,
meaning we expect e to evaluate to true on penalty of failure. The
rules E-AssertTrue and E-AssertFalse reflect this: if e evaluates to true
in the current store, the former applies and the assertion reduces to
skip, allowing for further execution. If e evaluates to a different value,
E-AssertFalse applies and execution ends up in a failure state.

• One of the uses of assume is to model language guarantees. For
example, the this pointer is generally2 guaranteed not to be null. Adding
assume this , null informs the verifier of this fact. Executing assume e
entails checking if e evaluates to true in the current store. If it does, it
amounts to a no-op (E-AssumeTrue). If e evaluates to false, execution
gets stuck as there are no applicable reduction rules. Note that getting
stuck does not equate with failure: it merely means this execution path
need not be considered any further.

• Sequencing is dealt with in the expected way: the left command is reduced
as much as possible (E-Seq). If it eventually reaches skip, it is dropped
from the sequence (E-SeqSkip). If, however, it fails, so does the entire
sequence (E-SeqFail).

• havoc x removes all information about x’s binding (E-Havoc). This rule
is nondeterministic, i.e. the rule associates more than one successor state
to a given state. We further explain the meaning of this shortly.

• Assignment is conventional: it updates the store’s binding (E-Assign).

• The choice command is another nondeterministic command: execution
proceeds with either branch (E-ChoiceLeft, E-ChoiceRight). Choice is
commonly used to model control flow, such as if statements or while
loops: at verification time, it is generally impossible to determine which
branch will be taken, so we ask the verifier to check both. Typically,
assume commands are used to express in which conditions each path is
taken, such as the knowledge that the then-clause of an if-statement is
only executed in case the if-condition evaluated to true.

1The store component carries information that is used in some proofs.
2Notable exceptions to this are C++ and C]’s extension methods.

36 FORMAL SEMANTICS OF THE INTERMEDIATE VERIFICATION LANGUAGE

translation(while b invariant I do body) =
assert I;
havoc syntactic targets of b
assume I
((assume b; translation(body); assert I; assume false) [] assume ¬b)

Figure 4.3: Translating a while loop

These commands should allow us to model all possible control flows. For
example, while there is no direct support for modelling loops, we can encode
them as shown in Fig. 4.3. First, loops need to be annotated with an invariant.
The invariant must hold when execution reaches the loop: this is expressed by
assert I. Next, we consider a “generalised loop iteration”: since we don’t know
at verification time how many times a loop will be iterated over at runtime, we
demand that a loop iteration preserves the invariant. That way, regardless of
how many times the loop body is executed, we know that upon exiting it, the
loop invariant will hold. The havoc destroys all information about the variables
modified by the loop body. Information about their values is then restored
using the loop invariant (assume I). Next, there are two choice branches. The
left one models a generalised loop iteration: the loop condition can be assumed
to hold (assume b), next the body is executed, and finally we check that the
loop invariant still holds (assert I). Thus, in short, we can say that given I ∧ b
at the beginning of the l The assume false blocks further execution along this
path. The right choice path models loop exit, hence we can assume that the
loop condition evaluates to false (assume ¬b) on this execution path.

Definition 4.2.6 (VCG.irreducible). We say a state σ is irreducible if it cannot be
reduced any further.

irreducible(σ) ≡ ¬(∃ σ. σ −→ σ′)

As mentioned above, the reduction rules are nondeterministic: in some cases,
more than one reduction rule applies, so that a state can have more than one
successor. Nondeterminism gives rise to an execution tree: the initial execution
state constitutes the root of the tree and a node’s children are its successors.
The leaves correspond with irreducible states. Every path from the root to a
leaf represents an execution path.

We now define a multiple step relation which allow us to chain together multiple
single steps.

OPERATIONAL SEMANTICS 37

Definition 4.2.7 (VCG.steps). The multiple step relation groups zero or more steps
together.

〈c, µ〉 −→∗ 〈c, µ〉 E*-Reflexive

〈c1, µ1〉 −→ 〈c2, µ2〉 〈c2, µ3〉 −→
∗
〈c3, µ3〉

〈c1, µ1〉 −→
∗
〈c3, µ3〉

E*-Step

Detecting failures constitutes a major part of verification. Since we are dealing
with nondeterministic execution, we need to take into account all possible
execution paths, of which there are potentially infinitely many.

Definition 4.2.8 (VCG.fails). We say a state σ fails if there exists an execution
leading from σ to some failure state.

〈c, µ〉 fails ≡ ∃ µ′. σ −→∗ failure µ′

Definition 4.2.9 (VCG.succeeds). A state σ succeeds if it does not fail, i.e. if there
exists no path leading to failure.

〈c, µ〉 succeeds ≡ ¬(σ fails)

In other words, a state σ succeeds iff the execution tree with root σ does not
have a single failure leaf. We now prove a few lemmas about the reduction
rules which will be needed in a later section.

Lemma 4.2.1 (VCG.seq_skips). If a sequence c1; c2 reduces to skip, we know that
both c1 and c2 must reduce to skip separately. More formally, from

〈c1; c2, µ〉 −→
∗
〈skip, µ′〉

follows that

∃ µ′′. 〈c1, µ〉 −→
∗
〈skip, µ′′〉 ∧ 〈c2, µ

′′
〉 −→

∗
〈skip, µ′〉

Proof. By induction on the derivation of 〈c1; c2, µ〉 −→∗ 〈skip, µ′〉. The case
for E*-Reflexive is trivially dealt with as c1; c2 cannot be equal to skip. Only
E*-Step remains. We have the following proof state:

〈c1; c2, µ〉 −→ σ′ −→∗ 〈skip, µ′〉
H : ∀ cx,1, cx,2, µx. σ′ = 〈cx,1; cx,2, µx〉 ⇒

∃ µ′′. 〈cx,1, µx〉 −→
∗
〈skip, µ′′〉∧

〈cx,2, µ′′〉 −→∗ 〈skip, µ′〉
∃ µ′′. 〈c1, µ〉 −→∗ 〈skip, µ′′〉 ∧ 〈c2, µ′′〉 −→∗ 〈skip, µ′〉

〈c1; c2, µ〉 −→ σ′ can only be the result of three reduction rules.

38 FORMAL SEMANTICS OF THE INTERMEDIATE VERIFICATION LANGUAGE

• E-Seq. We get σ′ = 〈c′1; c2, µ′′〉:

〈c1, µ〉 −→ 〈c′1, µ
′′
〉

〈c1; c2, µ〉 −→ 〈c′1; c2, µ′′〉 −→∗ 〈skip, µ′〉
H : ∀ cx,1, cx,2, µx. 〈c′1; c2, µ′′〉 = 〈cx,1; cx,2, µx〉 ⇒

∃ µ′′′. 〈cx,1, µx〉 −→
∗
〈skip, µ′′′〉 ∧

〈cx,2, µ′′′〉 −→∗ 〈skip, µ′〉
∃ µ′′. 〈c1, µ〉 −→∗ 〈skip, µ′′〉 ∧ 〈c2, µ′′〉 −→∗ 〈skip, µ′〉

We specialise H with cx,1 = c′1, cx,2 = c2 and µx = µ′′, which yields some
store µ′′′ such that

〈c1, µ〉 −→ 〈c′1, µ
′′
〉 −→

∗
〈skip, µ′′′〉 〈c2, µ

′′′
〉 −→

∗
〈skip, µ′〉

which is exactly what we need.

• E-SeqSkip: trivial, since c1 = skip and σ′ = 〈c2, µ〉.

〈skip; c2, µ〉 −→ 〈c2, µ〉 −→
∗
〈skip, µ′〉

• E-SeqFail: since 〈c1, µ〉 −→ failure µ′′ for some store µ′′, we get as
hypothesis

〈c1; c2, µ〉 −→ failure µ′′ −→∗ 〈skip, µ′〉

This is impossible: failures are irreducible and hence can’t reduce to skip.

�

Lemma 4.2.2 (VCG.seq_fails). If a sequence c1; c2 reduces to failure, either c1 or c2
must fail. More formally, given

〈c1; c2, µ〉 −→
∗ failure µ′

then we know that

〈c1, µ〉 −→
∗ failure µ′ ∨ ∃ µ′′. 〈c1, µ〉 −→

∗
〈skip, µ′′〉∧〈c2, µ

′′
〉 −→

∗ failure µ′

Proof. By induction on the derivation of 〈c1; c2, µ〉 −→∗ failure µ′. �

Lemma 4.2.3 (VCG.append_steps). Transitivity of −→∗: it is possible to chain steps
together.

σ −→∗ σ′ −→∗ σ′′ ⇒ σ −→∗ σ′′

Proof. By induction on the derivation of σ −→∗ σ′. �

CONCLUSION 39

Lemma 4.2.4 (VCG.steps_seq). We can lift E-Seq to the multiple step relation.

〈c1, µ〉 −→
∗
〈c′1, µ

′
〉 ⇒ 〈c1; c2, µ〉 −→

∗
〈c′1; c2, µ

′
〉

Proof. By induction on the derivation of 〈c1, µ〉 −→∗ 〈c′1, µ
′
〉. �

Lemma 4.2.5 (VCG.steps_seq_skip).

〈c1, µ〉 −→
∗
〈skip, µ′〉 ⇒ 〈c1; c2, µ〉 −→

∗
〈c2, µ

′
〉

Proof. Follows from Lemma 4.2.4 and Lemma 4.2.3. �

4.3 Conclusion

In this chapter, we have formally defined the intermediate verification language
which will be the subject of verification condition generation algorithms in the
following chapters. The language cannot be used to perform computations:
it is only meant to be used to model control flows and specify which target
verification properties we wish to enforce along which path using the assert
command.

Execution of programs written in the intermediate verification language can
fail; this is due to an assertion condition not evaluating to true. The aim
of verification is to prevent this from happening. For example, one way
to accomplish this is to compute the set of initial program states for which
execution will not fail. “Holes” in this set then indicate which inputs are not
dealt with correctly. Full details will be given in the following chapter.

Chapter 5

Phase II: Generating
Verification Conditions

Having formally defined our intermediate verification language (Chapter 4),
we are able to express formally what program properties we wish to verify and
how to generate verification conditions for them.

In this chapter, we examine multiple verification condition generation
algorithms. First, Sect. 5.1 gives a short introduction to Hoare logic. Next,
we discuss strongest postconditions (Sect. 5.2), weakest liberal preconditions
(Sect. 5.3) and weakest preconditions (Sect. 5.4). For each algorithm, we prove
its soundness, and where possible, relate them to each other. All definitions
and theorems have been formalised in Coq (see Appendix D) and proofs are
machine checked.

5.1 Hoare Logic

In Sect. 4.2, we have formally defined the behaviour of code written in our
intermediate verification language using operational semantics. An alternative
way to formalise semantics consists of specifying axiomatic semantics, Hoare
Logic [57] being the canonical example.

Hoare logic’s main feature is the Hoare triple, written {P} c {Q}, where c is a
command and P and Q are (in our formalisation) store predicates named the

41

42 PHASE II: GENERATING VERIFICATION CONDITIONS

precondition and postcondition, respectively. It represents the fact that if c is
executed in a store satisfying P, it will transform the state into one satisfying Q.

Definition 5.1.1 (VCG.store_predicate). A store predicate is the characteristic
function of a set of stores.

store-predicate ≡ store→ Prop

Prop is the type of propositions and for the purposes of this chapter can
interpreted as equivalent to bool. A more elaborate explanation can be found
in Sect. C.4.

Example 5.1.1. Given a square root function r = sqrt(x), its postcondition r2 = x
would be modelled by the function λ µ. µ(r)2 = µ(x), which represents the set of all
stores where the given postcondition holds.

Definition 5.1.2 (Hoare triple). {P} c {Q} expresses that executing c starting in a
store satisfying P will not fail and reach an end store satisfying Q.

{P} c {Q} ≡ ∀ µ, µ′. P(µ)⇒ 〈c, µ〉 succeeds ∧
(
〈c, µ〉 −→∗ 〈skip, µ′〉 ⇒ Q(µ′)

)
Definition 5.1.3 (soft Hoare triple). |P| c |Q| expresses that all nonfailing executions
starting in a store satisfying P end in a store satisfying Q.

|P| c |Q| ≡ ∀ µ, µ′. P(µ)⇒ 〈c, µ〉 −→∗ 〈skip, µ′〉 ⇒ Q(µ′)

{P} c {Q} is stronger than |P| c |Q| as it also disallows failure from happening.
Note that the distinction between these two kinds of Hoare triples is unrelated to
program termination, i.e. we are not dealing with partial versus total correctness.
Programs written in the intermediate verification language (Def. 4.1.1, page 31)
will always terminate, which means this distinction is irrelevant in our case.

Example 5.1.2. skip is a no-op, meaning {P} skip {P}. Regarding sequencing of
commands:

{P} c1 {Q} {Q} c2 {R}
{P} c1; c2 {R}

Given a Hoare triple {P} c {Q}, we can wonder how we can adjust the
precondition and postcondition so that it still remains a valid Hoare triple. We
can always strengthen the precondition:

{P′} c {Q} P⇒ P′

{P} c {Q}

STRONGEST POSTCONDITION 43

However, this fails to yield interesting Hoare triples, as it throws information
away. An extreme example would be to maximally strengthen the precondition,
resulting in {false} c {Q}, which is trivially true for all c and Q.

Analogously, we can also weaken the postcondition:

{P} c {Q′} Q′ ⇒ Q
{P} c {Q}

which again amounts to discarding valuable information, e.g. in the extreme, it
yields a rather meaningless {P} c {true}.

Doing the opposite, i.e. weakening the precondition and strengthening the
postcondition, would be more useful, but one needs to be careful that the
resulting Hoare triples are still valid. Finding the weakest precondition and
the strongest postcondition is the subject of the following sections.

5.2 Strongest Postcondition

Finding the strongest postcondition sp(c,P) for a given precondition P and
command c consists of finding that postcondition for which

∀ Q′. |P| c |Q′| ⇒ sp(c,P)⇒ Q′ ∧ |P| c |sp(c,P)|

In terms of sets of states1, this is equivalent with

sp(c,P) =
{
µ′ | P(µ) ∧ 〈c, µ〉 −→∗ 〈skip, µ′〉

}
i.e. the strongest postcondition sp(c,P) collects all states one can reach when
executing c in a state described by P. It is the strongest postcondition because
sp(c,P) only contains those states.

1Since a term predicate is a set’s characteristic function, we sometimes use a more intuitive
set comprehension notation. In this example, it is possible to reformulate it as the following
characteristic function:{

µ′ | P(µ) ∧ 〈c, µ〉 −→∗ 〈skip, µ′〉
}

denotes λ µ′. ∃ µ. P(µ) ∧ 〈c, µ〉 −→∗ 〈skip, µ′〉

44 PHASE II: GENERATING VERIFICATION CONDITIONS

Definition 5.2.1 (VCG.strongest_postcondition). The strongest postcondition
generation algorithm is defined as follows:

sp : command × store-predicate→ store-predicate
sp(assert e,P) = λ µ. e(µ) ∧ P(µ)

sp(assume e,P) = λ µ. e(µ) ∧ P(µ)
sp(x := e,P) = λ µ. ∃ v. P(µ[x := v]) ∧ µ(x) = e(µ[x := v])

sp(havoc x,P) = λ µ. ∃ v. P(µ[x := v])
sp(skip,P) = P

sp(c1 [] c2,P) = λ µ. sp(c1,P)(µ) ∨ sp(c2,P)(µ)
sp(c1; c2,P) = sp(c2, sp(c1,P))

The attentive reader might wonder why assume and assert produce the same
verification condition. While we will of course formally prove this is indeed
correct, an intuitive explanation goes as follows: the goal of the strongest
precondition is to describe the set of all “output states” (i.e. states reaching
skip) and given that both “failing” assumes and asserts keep execution from
proceeding, the strongest postcondition must take care of filtering out those
states that lead to the condition of the assume or assert command to evaluate
to false. If a distinction between a failing assume and assert is to be made, the
strongest postcondition algorithm needs to be adapted so that it returns more
than just a selection of succeeding states, e.g. we could make it return two store
predicates: one describing the set of all output states and a second describing
all input states that lead to failure.

Example 5.2.1. Consider

c = assume x ≥ 0; y := x [] assume x < 0; y := − x

We compute the strongest postcondition in steps (we use a more lightweight notation
since this is just an example):

sp(assume x ≥ 0,P) = x ≥ 0 ∧ P
sp(y := x,P) = ∃ v. P[v/y] ∧ y = x

sp(assume x ≥ 0; y := x,P) = ∃ v. x ≥ 0 ∧ P[v/y] ∧ y = x
sp(assume x < 0,P) = x < 0 ∧ P

sp(y := − x,P) = ∃ v. P[v/y] ∧ y = −x
sp(x < 0; y := − x,P) = ∃ v. x < 0 ∧ P[v/y] ∧ y = −x

sp(c,P) = ∃ v. P[v/y]∧
(x ≥ 0 ∧ y = x)∨
(x < 0 ∧ y = −x)

= ∃ v. P[v/y] ∧ y = |x|

STRONGEST POSTCONDITION 45

Thus, if we consider an arbitrary state (represented by taking true as precondition,
which allows any state), we get

sp(c, true) = y = |x|

We will now prove that the strongest postcondition generation works as
advertised. On the one hand, we wish them to yield postconditions; on the
other hand, we wish them to be the strongest.

Theorem 5.2.1 (VCG.sp_soundness). The strongest postcondition algorithm is sound.
If execution of a command c in a store satisfying a store predicate P ends up in a state
〈skip, µ′〉, then µ′ satisfies sp(c,P)(µ′).

P(µ)⇒ 〈c, µ〉 −→∗ 〈skip, σ′〉 ⇒ sp(c,P)(µ′)

Proof. By structural induction on c and Lemma 4.2.1 for dealing with sequencing.
�

Lemma 5.2.1 (VCG.sp_strongest_aux). A state µ′ allowed by the strongest
postcondition sp(c,P) is reachable from a state 〈c, µ〉 where µ satisfies the precondition.

sp(c,P)(µ′)⇒ ∃ µ. P(µ) ∧ 〈c, µ〉 −→∗ 〈skip, µ′〉

Proof. By structural induction on c, relying on Lemma 4.2.5 and Lemma 4.2.3
for the sequence case. �

Theorem 5.2.2 (VCG.sp_strongest). Given a command c, a precondition P and a
postcondition Q such that

∀ µ, µ′. P(µ)⇒ 〈c, µ〉 −→∗ 〈skip, µ′〉 ⇒ Q(µ′)

i.e. Q “catches” all states produced by executing c starting off in P. Then

∀ µ′. sp(c,P)(µ′)⇒ Q(µ′)

i.e. the strongest postcondition is stronger than Q.

Proof. We start with the following proof state:

H : ∀ µx, µ′x. P(µx)⇒ 〈c, µx〉 −→
∗
〈skip, µ′x〉 ⇒ Q(µ′x)

sp(c,P)(µ′)
Q(µ′)

46 PHASE II: GENERATING VERIFICATION CONDITIONS

Using Lemma 5.2.1, we know of some store µ such that

H : ∀ µx, µ′x. P(µx)⇒ 〈c, µx〉 −→
∗
〈skip, µ′x〉 ⇒ Q(µ′x)

sp(c,P)(µ′)
P(µ)
〈c, µ〉 −→∗ 〈skip, µ′〉
Q(µ′)

We apply H with µx = µ and µ′x = µ′. �

The strongest postcondition allows us to verify the output of successful
executions, i.e. executions ending in some state 〈skip, µ′〉 for some store µ′.
However, they do not give us a means to detect failing execution paths.

Example 5.2.2. We consider the command

c = assert x ≥ 0 [] assert x ≤ 0

The only path which does not fail is the one that starts with a store which binds x to
0. Let us examine if this is reflected in the strongest postcondition. The strongest
postcondition is

sp(c,P) ⇐⇒ (x ≥ 0 ∨ x ≤ 0) ∧ P
⇐⇒ P
⇐⇒ sp(skip,P)

Thus, strongest postconditions can make no distinction between the potentially failing
assert x ≥ 0 [] assert x ≤ 0 and the always succeeding skip.

5.3 Weakest Liberal Precondition

The strongest postconditions we discussed in Sect. 5.2 produced a postcondition
based on a precondition, i.e. reasoning proceeded in the forward direction. In
this section, we turn this around: given a postcondition, the weakest liberal
postcondition wlp(c,Q) is that precondition for which

∀ P′. |P′| c |Q| ⇒ P′ ⇒ wlp(c,Q) ∧ |wlp(c,Q)| c |Q|

WEAKEST LIBERAL PRECONDITION 47

Definition 5.3.1 (VCG.weakest_liberal_precondition). The weakest liberal
precondition algorithm is defined as follows:

wlp : command × store-predicate→ store-predicate
wlp(assert e,Q) = λ µ. e(µ)⇒ Q(µ)

wlp(assume e,Q) = λ µ. e(µ)⇒ Q(µ)
wlp(x := e,Q) = λ µ. Q(µ[x := e(µ)])

wlp(havoc x,Q) = λ µ. ∀ v. Q(µ[x := v])
wlp(skip,Q) = Q

wlp(c1 [] c2,Q) = λ µ. wlp(c1,Q)(µ) ∧wlp(c2,Q)(µ)
wlp(c1; c2,Q) = wlp(c1,wlp(c2,Q))

Example 5.3.1. Let us take the same program as in Example 5.2.1:

c = assume x ≥ 0; y := x [] assume x < 0; y := −x

The weakest liberal precondition is

wlp(assume x ≥ 0,Q) = x ≥ 0⇒ Q
wlp(y := x,Q) = Q[x/y]

wlp(assume x ≥ 0; y := x,Q) = x ≥ 0⇒ Q[x/y]
wlp(assume x < 0,Q) = x < 0⇒ Q

wlp(y := −x,Q) = Q[−x/y]
wlp(assume x < 0; y := −x,Q) = x < 0⇒ Q[−x/y]

wlp(c,Q) = (x ≥ 0⇒ Q[x/y]) ∧ (x < 0⇒ Q[−x/y])
= Q[|x|/y]

If our expectation of c is to produce a positive y, we get

wlp(c, y ≥ 0) = |x| ≥ 0

which is a tautology, i.e. no matter what input we feed our program, y will come out
positive. If we strengthen our expectations, namely that we wish y to be equal to the
absolute value of x, we get

wlp(c, y = |x|) = |x| = |x|

which again is a tautology. If we make any stronger demands however,

wlp(c, y = 3) = |x| = 3

Thus, we can relate this to the strongest postcondition by noting that deriving the wlp
amounts to finding the strongest Q for which wlp(c,Q) is valid.

Theorem 5.3.1 (VCG.wlp_soundness). The weakest liberal precondition algorithm is
sound. Given a command c and a postcondition Q, if we start execution of c in a state
satisfying wlp(c,Q), we will end up in a state satisfying Q.

wlp(c,Q)(µ) ⇒ 〈c, µ〉 −→∗ 〈skip, µ′〉 ⇒ Q(µ′)

48 PHASE II: GENERATING VERIFICATION CONDITIONS

Proof. By structural induction on c and Lemma 4.2.1 for sequences. �

Note this theorem focuses solely on executions which end in skip, i.e. failures
are ignored. The weakest liberal preconditions suffer the same problem as the
strongest preconditions: they don’t allow us to prevent failures.

Example 5.3.2. We examine the same command as in Example 5.2.2.

c = assert x ≥ 0 [] assert x ≤ 0

The weakest liberal precondition is

wlp(c,Q) = (x ≥ 0⇒ Q) ∧ (x ≤ 0⇒ Q)
= Q
= wlp(skip,Q)

As with the strongest postcondition, the weakest liberal postcondition does not
distinguish assert x ≥ 0 [] assert x ≤ 0 from skip.

We now relate the weakest liberal precondition with the strongest postcondition,
from which follows that wlp does indeed yield the weakest possible predicate.

Lemma 5.3.1 (VCG.wlp_sp). wlp and sp are related as follows:

(∀ µ. sp(c,P)(µ)⇒ Q(µ)) ⇒ P(µ)⇒ wlp(c,Q)(µ)

Proof. By structural induction on c. �

Theorem 5.3.2 (VCG.wlp_weakest). Given a precondition P and a postcondition Q, if
execution starting in any state satisfying P ends up in a state satisfying Q:

∀ µ, µ′. P(µ)⇒ 〈c, µ〉 −→∗ 〈skip, µ′〉 ⇒ Q(µ′)

then P is stronger than the weakest liberal precondition:

∀ µ. P(µ)⇒ wlp(c,Q)(µ)

Proof. From Theorem 5.2.2, we know that from

∀ µ, µ′. P(µ)⇒ 〈c, µ〉 −→∗ 〈skip, µ′〉 ⇒ Q(µ′)

follows that
∀ µ′. sp(c,P)(µ′)⇒ Q(µ′)

This combined with Lemma 5.3.1 finishes the proof. �

WEAKEST PRECONDITION 49

5.4 Weakest Precondition

The weakest liberal precondition, as discussed in 5.3, cannot be used to detect
failures. In this section, we define the weakest precondition algorithm which
provide a remedy for this shortcoming.

The weakest precondition wp(c,Q) makes an extra guarantee compared to
the weakest liberal precondition: for all executions starting in a wp-satisfying
initial store, not only will all successful paths (i.e. ending in skip) end up with
a store satisfying Q, it is also guaranteed that no execution path will encounter
failure. Using Hoare triples, we can write

∀ P. {P} c {Q} ⇒ P⇒ wp(c,Q) ∧ {wp(c,Q)} c {Q}

Definition 5.4.1 (VCG.weakest_precondition). The weakest precondition algo-
rithm is defined as follows:

wp : command × store-predicate→ store-predicate
wp(assert e,Q) = λ µ. e(µ) ∧Q(µ)

wp(assume e,Q) = λ µ. e(µ)⇒ Q(µ)
wp(x := e,Q) = λ µ. Q(µ[x := e(µ)])

wp(havoc x,Q) = λ µ. ∀ v. Q(µ[x := v])
wp(skip,Q) = Q

wp(c1 [] c2,Q) = λ µ. wp(c1,Q)(µ) ∧wp(c2,Q)(µ)
wp(c1; c2,Q) = wp(c1,wp(c2,Q))

Example 5.4.1. We examine the same command as in Example 5.2.2 and Example 5.3.2:

c = assert x ≥ 0 [] assert x ≤ 0

The weakest precondition is

wp(c,Q) = (x ≥ 0 ∧Q) ∧ (x ≤ 0 ∧Q)
= x = 0 ∧Q

For example, if we make no demands about the postcondition,

wp(c, true) = x = 0

This clearly reflects that successful execution depends on x = 0. We will come back to
this later.

Definition 5.4.2 (VCG.final_state). We say a state σ is final if it is either a failure
state or an in-progress state with skip as command component.

final(failure µ) = true
final(〈c, µ〉) = c = skip

50 PHASE II: GENERATING VERIFICATION CONDITIONS

Lemma 5.4.1 (VCG.irreducible_final_state). Final states are irreducible.

∀ σ. final(σ) ⇒ irreducible(σ)

Definition 5.4.3 (VCG.bigstep). The big step relation relates a state to reachable
final states.

σ ↓f σ
′
≡ σ −→∗ σ′ ∧ final(σ′)

Lemma 5.4.2 (VCG.wp_skip). Given a state σ = 〈c, µ〉 and a store predicate Q. If the
initial store µ satisfies the weakest precondition wp(c,Q), the big step relation will
only lead to non-failure states whose store satisfies Q. More formally,

∀ c,Q, µ, σ. wp(c,Q)(µ) ⇒ 〈c, µ〉 ↓f σ ⇒ ∃ µ′. σ = 〈skip, µ′〉 ∧Q(µ′)

Proof. By structural induction on c:

• c = skip: trivial.

• c = assert e. The proof state becomes

e(µ) ∧Q(µ)
〈assert e, µ〉 ↓f σ
∃ µ′. σ = 〈skip, µ′〉 ∧Q(µ′)

There are two applicable reduction routes: through E-AssertTrue and
E-AssertFalse (see Fig. 4.2).

– E-AssertTrue.

e(µ) ∧Q(µ)
〈assert e, µ〉 ↓f σ
σ = 〈skip, µ〉
∃ µ′. σ = 〈skip, µ′〉 ∧Q(µ′)

We pick µ′ = µ.

– E-AssertFalse. This rule only applies when ¬e(µ):

e(µ) ∧Q(µ)
¬e(µ)
〈assert e, µ〉 ↓f σ
σ = failure µ
∃ µ′. σ = 〈skip, µ′〉 ∧Q(µ′)

There is a clear contradiction in the hypotheses, allowing us to ignore
this case.

WEAKEST PRECONDITION 51

• c = assume e.
e(µ)⇒ Q(µ)
〈assume e, µ〉 ↓f σ
∃ µ′. σ = 〈skip, µ′〉 ∧Q(µ′)

There is only one possible path, namely through E-AssumeTrue. This
rule only applies when e(µ) yields true.

e(µ)⇒ Q(µ)
〈assume e, µ〉 ↓f σ
e(µ)
σ = 〈skip, µ〉
∃ µ′. σ = 〈skip, µ′〉 ∧Q(µ′)

We pick µ′ = µ.

• c = havoc x. Only E-Havoc applies:

∀ v. Q(µ[x := v])
〈havoc x, µ〉 ↓f σ
v ∈ val
σ = 〈skip, µ[x := v]〉
∃ µ′. σ = 〈skip, µ′〉 ∧Q(µ′)

We pick µ′ = µ[x := v].

• c = x := e. Only E-Assign applies:

Q(µ[x := e(µ)])
〈x:=e, µ〉 ↓f σ
σ = 〈skip, µ[x := e(µ)]〉
∃ µ′. σ = 〈skip, µ′〉 ∧Q(µ′)

We pick µ′ = µ[x := e(µ)].

• c = c1 [] c2. Induction yields two induction hypotheses H1 and H2:

wp(c1,Q)(µ) ∧wp(c2,Q)(µ)
〈c1 [] c2, µ〉 ↓f σ

H1 : ∀ Qx, µx, σx. wp(c1,Qx)(µx)⇒ 〈c1, µx〉 ↓f σx ⇒

∃ µ′. σx = 〈skip, µ′〉 ∧Qx(µ′)
H2 : ∀ Qx, µx, σx. wp(c2,Qx)(µx)⇒ 〈c2, µx〉 ↓f σx ⇒

∃ µ′. σx = 〈skip, µ′〉 ∧Qx(µ′)
∃ µ′. σ = 〈skip, µ′〉 ∧Q(µ′)

52 PHASE II: GENERATING VERIFICATION CONDITIONS

We can distinguish two reduction paths: one through E-ChoiceLeft, the
other through E-ChoiceRight. We consider only one, the second can be
dealt with analogously.

wp(c1,Q)(µ) ∧wp(c2,Q)(µ)
〈c1 [] c2, µ〉 −→ 〈c1, µ〉
〈c1, µ〉 ↓f σ

H1 : ∀ Qx, µx, σx. wp(c1,Qx)(µx)⇒ 〈c1, µx〉 ↓f σx ⇒

∃ µ′. σx = 〈skip, µ′〉 ∧Qx(µ′)
H2 : ∀ Qx, µx, σx. wp(c2,Qx)(µx)⇒ 〈c2, µx〉 ↓f σx ⇒

∃ µ′. σx = 〈skip, µ′〉 ∧Qx(µ′)
∃ µ′. σ = 〈skip, µ′〉 ∧Q(µ′)

The goal follows from the induction hypothesis H1, taking Qx = Q, µx = µ
and σx = σ.

• c = c1; c2.

wp(c1,wp(c2,Q))(µ)
H0 : 〈c1; c2, µ〉 ↓f σ
H1 : ∀ Qx, µx, σx. wp(c1,Qx)(µx)⇒ 〈c1, µx〉 ↓f σx ⇒

∃ µ′. σx = 〈skip, µ′〉 ∧Qx(µ′)
H2 : ∀ Qx, µx, σx. wp(c2,Qx)(µx)⇒ 〈c2, µx〉 ↓f σx ⇒

∃ µ′. σx = 〈skip, µ′〉 ∧Qx(µ′)
∃ µ′. σ = 〈skip, µ′〉 ∧Q(µ′)

We know σ to be a final state; we distinguish two cases:

– σ = 〈skip, µf〉 for some store µf. In the goal, we pick µ′ = µf.

wp(c1,wp(c2,Q))(µ)
H0 : 〈c1; c2, µ〉 ↓f 〈skip, µf〉

H1 : ∀ Qx, µx, σx. wp(c1,Qx)(µx)⇒ 〈c1, µx〉 ↓f σx ⇒

∃ µ′. σx = 〈skip, µ′〉 ∧Qx(µ′)
H2 : ∀ Qx, µx, σx. wp(c2,Qx)(µx)⇒ 〈c2, µx〉 ↓f σx ⇒

∃ µ′. σx = 〈skip, µ′〉 ∧Qx(µ′)
〈skip, µf〉 = 〈skip, µf〉 ∧Q(µf)

WEAKEST PRECONDITION 53

The goal’s left conjunct is trivial. With the help of Lemma 4.2.1 we
can split H0 into two parts:

wp(c1,wp(c2,Q))(µ)
〈c1, µ〉 ↓f 〈skip, µ′′〉
〈c2, µ′′〉 ↓f 〈skip, µf〉

H1 : ∀ Qx, µx, σx. wp(c1,Qx)(µx)⇒ 〈c1, µx〉 ↓f σx ⇒

∃ µ′. σx = 〈skip, µ′〉 ∧Qx(µ′)
H2 : ∀ Qx, µx, σx. wp(c2,Qx)(µx)⇒ 〈c2, µx〉 ↓f σx ⇒

∃ µ′. σx = 〈skip, µ′〉 ∧Qx(µ′)
Q(µf)

Specialising H1 with Qx = wp(c2,Q), µx = µ and σx = 〈skip, µ′′〉
yields

wp(c1,wp(c2,Q))(µ)
〈c1, µ〉 ↓f 〈skip, µ′′〉
〈c2, µ′′〉 ↓f 〈skip, µf〉

H1 : wp(c2,Q)(µ′′)
H2 : ∀ Qx, µx, σx. wp(c2,Qx)(µx)⇒ 〈c2, µx〉 ↓f σx ⇒

∃ µ′. σx = 〈skip, µ′〉 ∧Qx(µ′)
Q(µf)

We can now specialise H2 with Qx = Q, µx = µ′′ and σx = 〈skip, σf〉.

wp(c1,wp(c2,Q))(µ)
〈c1, µ〉 ↓f 〈skip, µ′′〉
〈c2, µ′′〉 ↓f 〈skip, µf〉

H1 : wp(c2,Q)(µ′′)
H2 : Q(µf)

Q(µf)

– σ = failure µf for some store µf. We show this leads to a contradiction.

wp(c1,wp(c2,Q))(µ)
H0 : 〈c1; c2, µ〉 ↓f failure µf
H1 : ∀ Qx, µx, σx. wp(c1,Qx)(µx)⇒ 〈c1, µx〉 ↓f σx ⇒

∃ µ′. σx = 〈skip, µ′〉 ∧Qx(µ′)
H2 : ∀ Qx, µx, σx. wp(c2,Qx)(µx)⇒ 〈c2, µx〉 ↓f σx ⇒

∃ µ′. σx = 〈skip, µ′〉 ∧Qx(µ′)
∃ µ′. σ = 〈skip, µ′〉 ∧Q(µ′)

Using Lemma 4.2.2, we again distinguish two cases: either c1 fails,
or c1 reduces to skip and c2 fails.

54 PHASE II: GENERATING VERIFICATION CONDITIONS

* c1 fails.

wp(c1,wp(c2,Q))(µ)
〈c1, µ〉 ↓f failure µf

H1 : ∀ Qx, µx, σx. wp(c1,Qx)(µx)⇒ 〈c1, µx〉 ↓f σx ⇒

∃ µ′. σx = 〈skip, µ′〉 ∧Qx(µ′)
H2 : ∀ Qx, µx, σx. wp(c2,Qx)(µx)⇒ 〈c2, µx〉 ↓f σx ⇒

∃ µ′. σx = 〈skip, µ′〉 ∧Qx(µ′)
∃ µ′. σ = 〈skip, µ′〉 ∧Q(µ′)

Specialising H1 with Qx = wp(c2,Q), µx = µ and σx = failure µf
leads to ∃ µ′. failure µf = 〈skip, µ′〉, which is absurd.

* c1 skips, c2 fails.

wp(c1,wp(c2,Q))(µ)
〈c1, µ〉 ↓f 〈skip, µ′′〉
〈c2, µ′′〉 ↓f failure µf

H1 : ∀ Qx, µx, σx. wp(c1,Qx)(µx)⇒ 〈c1, µx〉 ↓f σx ⇒

∃ µ′. σx = 〈skip, µ′〉 ∧Qx(µ′)
H2 : ∀ Qx, µx, σx. wp(c2,Qx)(µx)⇒ 〈c2, µx〉 ↓f σx ⇒

∃ µ′. σx = 〈skip, µ′〉 ∧Qx(µ′)
∃ µ′. σ = 〈skip, µ′〉 ∧Q(µ′)

We specialise H1 with Qx = wp(c2,Q), µx = µ and σx =
〈skip, µ′′〉.

wp(c1,wp(c2,Q))(µ)
〈c1, µ〉 ↓f 〈skip, µ′′〉
〈c2, µ′′〉 ↓f failure µf

H1 : wp(c2,Q)(µ′′)
H2 : ∀ Qx, µx, σx. wp(c2,Qx)(µx)⇒ 〈c2, µx〉 ↓f σx ⇒

∃ µ′. σx = 〈skip, µ′〉 ∧Qx(µ′)
∃ µ′. σ = 〈skip, µ′〉 ∧Q(µ′)

Specialising H2 with Qx = Q, µx = µ′′ and σx = failure µf yields
∃ µ′. failure µf = 〈skip, µ′〉, which is absurd.

�

Theorem 5.4.1 (VCG.wp_nofail). Given a program c, its evaluation does not fail if
the initial store µ satisfies the weakest precondition.

∀ c, µ. wp(µ, c)(true) ⇒ 〈c, µ〉 succeeds

WEAKEST PRECONDITION 55

Proof. We must show that 〈c, µ〉 never reduces to a failure state. Let us assume it
does and show this leads to a contradiction: let’s say there exists a store µ′ such
that 〈c, µ〉 −→∗ failure µ′. According to Def. 5.4.2, the right hand state constitutes
a final state. Definition 5.4.3 then yields 〈c, µ〉 ↓f failure µ′. From Lemma 5.4.2
follows that there exists some store µ′′ such that failure µ′ = 〈skip, µ′′〉, which
is absurd. �

Theorem 5.4.2 (VCG.wp_postcondition). Given a program c and a postcondition Q,
any succeeding (i.e. ending in skip) execution beginning with a store satisfying
wp(c,Q) will end with a store satisfying Q.

wp(c,Q)(µ) ⇒ 〈c, µ〉 −→∗ 〈skip, µ′〉 ⇒ Q(µ′)

Proof. Follows from Lemma 5.4.2. �

Theorem 5.4.1 and Theorem 5.4.2 state two aspects of the weakest preconditions:
they prevent failures (as already mentioned in Example 5.4.1) and derive that
precondition such that execution ends satisfying a specified postcondition,
respectively. We make this explicit in Theorem 5.4.3. This property and others
will prove important in Chapter 6.

Lemma 5.4.3 (VCG.wp_monotonic). Monotonicity of the weakest preconditions: given
postconditions Q and Q′ for which Q(µ) ⇒ Q′(µ) for any store µ, then for any
command c,

∀ µ. wp(c,Q)(µ)⇒ wp(c,Q′)(µ)

Proof. By structural induction on c. �

Lemma 5.4.4 (VCG.wlp_monotonic). Monotonicity of weakest liberal precondition:
given postconditions Q and Q′ for which

∀ µ. Q(µ)⇒ Q′(µ)

then for any command c,

∀ µ. wlp(c,Q)(µ)⇒ wlp(c,Q′)(µ)

Proof. By structural induction on c. �

Lemma 5.4.5 (VCG.wp_impl_wlp). For all commands c and postconditions Q,

∀ µ. wp(c,Q)(µ)⇒ wlp(c,Q)(µ)

Proof. By structural induction on c, the sequence case using Lemma 5.4.4. �

56 PHASE II: GENERATING VERIFICATION CONDITIONS

Lemma 5.4.6 (VCG.wlp_conj). A conjunction of weakest liberal preconditions implies
the weakest liberal precondition of the conjunction of their postconditions. For any
command c and postconditions Q and Q′,

∀ µ. wlp(c,Q)(µ)⇒ wlp(c,Q′)(µ)⇒ wlp(c,Q ∧Q′)(µ)

Proof. By structural induction on c. �

Theorem 5.4.3 (VCG.wp_as_wlp_and_nf). The weakest precondition can be split into
nonfailure and postcondition establishment.

∀ µ. wp(c,Q)(µ) ⇐⇒ wlp(c,Q)(µ) ∧wp(c, true)(µ)

Proof. The⇒ part follows directly from Lemma 5.4.3 and Lemma 5.4.5. The⇐
part is proven by structural induction on c with the help of Lemma 5.4.6. �

5.5 Conclusion

In this chapter, we have discussed three verification condition generation
algorithms. The first, the strongest postcondition, reasons in the forward
direction: given a set of initial states (the precondition), it produces all reachable
states (the postcondition). However, it cannot discern successful execution
from failing ones, making it unsuitable for the purposes of verification.

The second verification condition generation algorithm which we discussed
was the weakest liberal preconditions. Contrary to the strongest postcondition,
it works backwards: it produces the set of initial states (a precondition) for
which execution will end in a state satisfying a given postcondition. It has the
same shortcoming as the strongest postcondition, namely it does not detect
failure.

Lastly, we discussed the weakest precondition algorithm, which operates
similarly to the weakest liberal precondition but has the added ability to
prevent failure, making it well suited for verification.

These algorithms are well established in the domain of software verification
and many verifiers rely on them, which makes it all the more important to
ascertain their soundness. Our contribution consists of having implemented
these algorithms and having proved their soundness in Coq.

Chapter 6

Efficient Weakest
Preconditions

In Chapter 5 we discussed several verification condition generation algorithms,
of which the weakest precondition algorithm stood out thanks to its ability to
prevent failures whereas the others could not. However, it still suffers from a
major weakness: the generated verification condition grows exponentially with
the size of the program. This is due to the way the choice command is handled:

wp(c1 [] c2,Q) = λ µ. wp(c1,Q)(µ) ∧wp(c2,Q)(µ)

It effectively duplicates the postcondition Q, which is the cause of the
exponential blowup.

In this section we develop an implementation of the “efficient weakest
preconditions” described by Leino [77], which is essentially a reformulation
of Flanagan and Saxe [52] and has the advantage of growing polynomially
instead of exponentially. After full formalisation, we prove its soundness and
show that its complexity is indeed polynomial.

However, the efficient weakest preconditions algorithm depends on the fact that
programs are passive, or in other words, that they do not contain assignments.
To circumvent this limitation, we define a way to transform an arbitrary program
into an equivalent passified form. This is done in two phases:

1. The first phase transforms an arbitrary program into single assignment
form and is the subject of Sect. 6.1.

57

58 EFFICIENT WEAKEST PRECONDITIONS

source language

↓ (Chapter 3)

intermediate verification language
(size |c|)

↓ (Sect. 6.1)

single assignment form
(size O(|c|2))

↓ (Sect. 6.2)

passified form
(size O(|c|2))

↓ (Sect. 6.3)

efficient weakest precondition
(size O(|c|4))

↓

valid/not valid

Figure 6.1: Overview

2. The second phase performs the actual passification by removing all
assignments. It is discussed in detail in Sect. 6.2.

In Sect. 6.3, we describe how to generate weakest preconditions efficiently
from passified programs. Finally, in Sect. 6.4, we prove the soundness of
this approach, i.e. we show that each transformation produces an equivalent
program for the purposes of verification, and thus that the generated verification
condition is meaningful for the original program. Figure 6.1 gives a complete
overview of all the steps needed to verify a program using efficient weakest
preconditions.

A note regarding havoc: our original work [112] did not consider this command

SINGLE ASSIGNMENT FORM 59

and hence no Coq proofs which take havoc into consideration are available.
Due to time constraints we have not been able to update the Coq script. For
this chapter, we have chosen to remain as consistent as possible with the
Coq formalisation i.e. havoc will not be taken into account in definitions and
theorems. However, we will at appropriate place (page 62) provide a small
sketch how havoc can be incorporated.

Omitting havoc has no insurmountable consequences: during the translation
from source language to intermediate verification language, one only has to
introduce a fresh variable1 instead of havocing an existing one.

6.1 Single Assignment Form

This section describes an algorithm to transform an arbitrary command to
single assignment form (SA), a form where each variable is assigned to at
most once during execution and is not read from prior to this assignment. As
noted in Sect. 4.2, all variables have values pre-assigned to them. For example,
the program assert x = 3; x := 8 assigns a value to x twice: the implicit initial
binding, and the assignment of 8 to x. Thus, the example program is not SA. A
SA-transformation would be assert x = 3; y := 8.

The algorithm presented in this section extends identifiers with version numbers
to deal with this issue in a simple way. One can imagine all identifiers in
the original program having an implicit version number of 0 associated with
them, e.g. assert x0 = 3; x0 := 8. Transforming this into SA then becomes
a matter of simply incrementing the version number in each assignment:
assert x0 = 3; x1 := 8. Similarly, all expressions need to be updated so they refer
to the correct version of variables. Thus, using version numbers is an easy way
to achieve “variable freshness.” To keep track of variable versions, we use a
version map.

Definition 6.1.1 (version map). A version map ν : V is a total function from
identifiers to natural numbers.

V ≡ id→N

The transformation algorithm (see Def. 6.1.6) then takes a command and version
map, and returns a transformed command and a new version map, e.g.

SA(assert x = 3; x := 8, λ id . 0) =
(assert x0 = 3; x1 := 8, (λ id. 0)[x := 1])

1Our proposed solution for incorporating havoc (page 62) essentially automates this process.

60 EFFICIENT WEAKEST PRECONDITIONS

The SA transformation is rather straightforward except for choice commands.
It would be tempting to turn the program graph into a tree (e.g. changing
(ca [] cb); c2 into (ca; c2) [] (cb; c2)), which leads to a series of deterministic
programs which can be dealt with separately in a simple manner. However,
the number of such programs grows exponentially with the number of choice
commands, which defeats the original goal of avoiding exponential blowup
during VC generation.

A better, more efficient way to deal with choice commands consists of first
transforming both branches to SA separately. Since both branches could
perform assignments to different variables, their versions could get “out of
sync”: the algorithm returns different version maps for either branch.

Example 6.1.1. Consider the following example:

x := 0; y := 0; (x := 5 [] y := 5); assert x , y

A first attempt to transform this to SA could be

x1 := 0; y1 := 0; (x2 := 5 [] y2 := 5); assert x2 , y2

This is clearly not correct: if the left path is taken, x2 should be compared to y1, and
conversely, if the right path is taken, x1 should be compared to y2.

To solve this problem, we build a “target version map” νt which both branches
have to accommodate to: at the end of both their executions, all variables
should have the versions mentioned in νt.

Example 6.1.2. To continue with Example 6.1.1, taking νt = (λ id . 0)[x 7→ 2][y 7→ 2],
we get

. . . ; (x2 := 5; y2 := y1 [] y2 := 5; x2 := x1); assert x2 , y2

The y2 := y1 and x2 := x1 commands can be seen as synchronisation commands, which
transform the current version map to the target version map.

In order to transform ca [] cb with initial version map ν0, the actual algorithm
proceeds as follows: it first transforms both branches ca and cb normally,
resulting in transformed commands c′a and c′b and updated version maps νa
and νb. It then builds (Def. 6.1.4) a target version map by taking the maximum
version number for each variable: νt(x) = max(νa(x), νb(x)). Next, it creates
synchronisation commands d1 and d2 (Def. 6.1.5) to handle the version transition
from νa and νb to νt. The final result of the transformation of the choice command
is then (c′1; d1 [] c′2; d2, νt).

Definition 6.1.2 (EWP.version_expr). The versioning ~e�ν of an expression e with
respect to a version map ν is defined as the following expression:

~e�ν ≡ λ µ. e(λ x. µ(xν(x)))

SINGLE ASSIGNMENT FORM 61

Definition 6.1.3 (EWP.targets). The function targets : command→ P(id) collects
all assignment targets in a command.

targets(skip) = ∅

targets(assert e) = ∅

targets(assume e) = ∅

targets(x:=e) = {x}
targets(c1; c2) = targets(c1) ∪ targets(c2)

targets(c1 [] c2) = targets(c1) ∪ targets(c2)

Definition 6.1.4 (EWP.join). The function join :V →V→V yields a new version
map containing the most recent version for each identifier.

join(v, v′) = λ x. max(v(x), v′(x))

Definition 6.1.5 (EWP.sync_vcommand). Given a finite set of (unversioned) identifiers
I = {x1, x2, . . . , xn} and two version maps ν and ν′, the synchronisation command
sync(I, ν, ν′) is built as follows:

c0 = skip
ci = if ν(xi) = ν′(xi) then ci−1 else (xi)ν′(xi) := (xi)ν(xi); ci−1

sync(I, ν, ν′) = cn

Definition 6.1.6 (EWP.transform_sa). The single assignment transformation
function SA : command→V→ vcommand ×V transforms a command into an
equivalent single assignment command. Figure 6.2 shows the full definition.

An important property of the single assignment transformation is the
preservation of failure: if the original program fails, so will its SA-
transformation.

Definition 6.1.7 (EWP.store_sync_vstore). We say stores are synchronised with
respect to a version map ν when

µ ∼ν µv ≡ ∀ x. µ(x) = µv(xν(x))

Lemma 6.1.1 (EWP.sa_transformation_skip). Given a command c and let (csa, ν′) =
SA(c, ν). If

〈c, µ〉 −→∗ 〈skip, µ′〉 ∧ µ ∼ν µsa

then there exists a µ′sa such that

〈csa, µsa〉 −→
∗
〈skip, µ′sa〉 ∧ µ′ ∼ν µ′sa

Proof. By structural induction on c. �

62 EFFICIENT WEAKEST PRECONDITIONS

SA(skip, ν) = (skip, ν)

SA(assert e, ν) = (assert ~e�ν, ν)

SA(assume e, ν) = (assume ~e�ν, ν)

SA(x := e, ν) = (xν(x)+1 := ~e�ν, ν[x := ν(x) + 1])

SA(c; c′, ν) = let (csa, ν′) = SA(c, ν) in
let (c′sa, ν

′′) = SA(c′, ν′) in
(csa; c′sa, ν

′′)

SA(c [] c′, ν) = let (csa, ν′1) = SA(c, ν) in
let (c′sa, ν

′

2) = SA(c′, ν) in
let t1 = targets(c) in
let t2 = targets(c′) in
let ν′ = join(v′1, v

′

2) in
let t = t1 ∪ t2 in
let d1 = sync(t, v′1, v

′) in
let d2 = sync(t, v′2, v

′) in
((csa; d1) [] (c′sa; d2), ν′)

Figure 6.2: Single Assignment Transformation Algorithm

Theorem 6.1.1 (EWP.sa_transformation_fail). Given a command c and (csa, ν′) =
SA(c, ν),

〈c, µ〉 −→∗ failure µ′ ⇒ µ ∼ν µsa ⇒ ∃ µ′sa. 〈csa, µsa〉 −→
∗ failure µ′sa

Proof. By structural induction on c, relying on Lemma 6.1.1 for the sequencing
case. �

Lastly, as promised, let us briefly examine how to deal with havoc x. The
command nondeterministically assigns a value to x, which is similar to have
the rest of the program refer to a fresh variable instead of x. This is easily
accomplished using the SA transformation:

SA(havoc x, ν) = (skip, ν[x := ν(x) + 1])

This rids us of havoc commands and hence we do not need consider it any
longer during the following sections.

PASSIFICATION 63

6.2 Passification

The SA transformation discussed in the previous section still produces
assignments (in fact, it even adds some). In order to produce our efficient
weakest preconditions, we need to get rid of those. This is where passification
comes in: this second transformation rewrites all assignments as assumptions.

Example 6.2.1. The following example program clearly fails:

x := 1; x := x + 1; assert x = 3

First it is transformed into SA:

x1 := 1; x2 := x1 + 1; assert x2 = 3

Passification turns this into

assume x1 = 1; assume x2 = x1 + 1; assert x2 = 3

Note the importance of the SA-transformation: without it we would get

assume x = 1; assume x = x + 1; assert x = 3

which would not fail, contrary to the first three programs.

Definition 6.2.1 (EWP.passify). Passification transforms all assignments into
equivalent assumptions.

passify(assert e) = assert e
passify(assume e) = assume e

passify(skip) = skip
passify(csa; c′sa) = passify(csa); passify(c′sa)

passify(csa [] c′sa) = passify(csa) [] passify(c′sa)
passify(x := e) = assume (x = e)

The passification algorithm is rather straightforward. As with the SA-transfor-
mation, preservation of failure is an important property, i.e. if an SA-program
fails, so does its passified form. We prove it formally.

Definition 6.2.2 (EWP.stores_veq). We define store equivalence up to a certain
version map as

µ
≤ν
∼ µ′ ≡ ∀ x,n. n ≤ ν(x) ⇒ µ(xn) = µ′(xn)

64 EFFICIENT WEAKEST PRECONDITIONS

Lemma 6.2.1 (EWP.vmultistep_pmultistep_skip). Let (csa, ν′) = SA(c, ν) and cp =
passify(csa), then

〈csa, µ〉 −→
∗
〈skip, µ′〉 ⇒ µ′

≤ν′
∼ µ′′ ⇒ 〈cp, µ

′′
〉 −→

∗
〈skip, µ′′〉

Proof. By structural induction on c. �

Lemma 6.2.2 (EWP.single_assignment_monotonic_store_fail). Let

(csa, ν
′)=SA(c, ν)

then
〈csa, µ〉 −→

∗ failure µ′ ⇒ µ
≤ν
∼ µ′

Proof. By structural induction on c. �

Theorem 6.2.1 (EWP.vmultistep_pmultistep_fail). Let

(csa, ν
′) = SA(c, ν) cp = passify(csa)

then
〈csa, µ〉 −→

∗ failure µ′ ⇒ 〈cp, µ
′
〉 −→

∗ failure µ′

Proof. By structural induction on c. The sequence case depends on Lemma 6.2.1
and Lemma 6.2.2. �

6.3 Efficient Weakest Preconditions

We are now ready to define a version of the weakest precondition algorithm
optimised for passive programs [52, 77]. As mentioned before, our goal is to
avoid the duplication of Q when dealing with choice commands (see Def. 5.4.1):

wp(c1 [] c2,Q) = λ µ. wp(c1,Q)(µ) ∧wp(c2,Q)(µ)

The first step consists of making use of Theorem 5.4.3:

wp(c,Q)(µ) ⇐⇒ wlp(c,Q)(µ) ∧wp(c, true)(µ)

This results in the following new expression for choice:

wp(c1 [] c2,Q)(µ) = λ µ. wp(c1, true)(µ) ∧wp(c2, true)(µ) ∧wlp(c1 [] c2,Q)(µ)

EFFICIENT WEAKEST PRECONDITIONS 65

However, this merely moves the problem elsewhere, as the weakest liberal
preconditions algorithm also duplicates Q (see Def. 5.3.1):

wlp(c1 [] c2,Q) = λ µ. wlp(c1,Q)(µ) ∧wlp(c2,Q)(µ)

Until now, we have not made use of the fact that our programs are passive. We
know that execution starting in an initial state satisfying wlp(c,Q) will end in a
state satisfying the postcondition Q. Since the state remains unchanged in the
case of passified programs, Q must already have been satisfied by the initial
program state. In simplified words, if we want to end up in Q, we only need to
start in Q. Equating wlp(c,Q) to Q is too strict however: all states for which
execution does not reach the end of the program must also be allowed. For
example, take the program c = assume (x > 0) and Q = (x = 5). While all states
where x = 5 must clearly be admitted by wlp(c,Q), so must all states where
x ≤ 0. We now make use of this information through the following theorem:

Lemma 6.3.1 (EWP.wlp_rewrite). For any passive program cp,

∀ µ. wlp(cp,Q)(µ) ⇐⇒ wlp(cp, false)(µ) ∨Q(µ)

Proof. By structural induction on cp. We rely on Lemma 5.4.4 and the relation
Q(µ)⇒ wlp(cp,Q)(µ) holds for passified programs (proven in EWP.Q_impl_wlpQ).

�

This lemma allows us to reformulate the weakest liberal preconditions as
follows:

wlp(cp [] c′p,Q) = λ µ.
(
wlp(cp, false)(µ) ∧wlp(c′p, false)(µ)

)
∨ Q(µ)

In summary, these are the definitions for the efficient weakest preconditions
and efficient weakest liberal preconditions:

Definition 6.3.1 (EWP.efficient_wlp). The efficient weakest liberal precondition
wlpe(cp,Q) of a passive command cp with respect to a postcondition Q is defined as

wlpe(assert e,Q) = λ µ. e(µ)⇒ Q(µ)
wlpe(assume e,Q) = λ µ. e(µ)⇒ Q(µ)

wlpe(skip,Q) = Q
wlpe(cp; c′p,Q) = λ µ. wlpe(cp,wlpe(c′p,Q))(µ)

wlpe(cp [] c′p,Q) = λ µ. (wlpe(cp, false)(µ) ∧wlpe(c′p, false)(µ)) ∨Q

Definition 6.3.2 (EWP.efficient_wp). The efficient weakest precondition of a
passive command cp with respect to a postcondition Q, denoted wpe(cp,Q), is defined

66 EFFICIENT WEAKEST PRECONDITIONS

as

wpe(assert e,Q) = λ µ. e(µ) ∧Q
wpe(assume e,Q) = λ µ. e(µ)⇒ Q

wpe(skip,Q) = Q
wpe(cp; c′p,Q) = λ µ. wpe(cp,wpe(c′p,Q))(µ)

wpe(cp [] c′p,Q) = λ µ. wpe(cp, true)(µ) ∧wpe(c′p, true)(µ)∧
wlpe(cp [] c′p,Q)(µ)

Theorem 6.3.1 (EWP.soundness_efficient_wp). Soundness of efficient weakest
preconditions: for any passive program cp,

∀ µ. wpe(cp, true)(µ)⇒ 〈cp, µ〉 succeeds

Proof. Follows from Theorem 5.4.3 and Lemma 6.3.1. �

6.4 Soundness and Size

We are now ready to prove the soundness of the approach described in the
previous sections, namely transforming into single assignment form, passifying
and deriving verification conditions using the efficient weakest precondition
algorithm. For our purposes, it is sufficient to prove that given an arbitrary
program c we can verify whether or not execution will encounter failure. If
we are interested in enforcing specific postconditions or interested in allowing
certain preconditions, it is possible to add these as assertions at the end or
assumptions at the beginning of the program, respectively.

Theorem 6.4.1. Given an arbitrary program c, and let cp be its passified SA-form,
then2

∀ µ. wpe(cp, true)(µ)⇒ 〈c, µ〉 succeeds

Proof. By chaining Theorem 6.1.1, Theorem 6.2.1 and Theorem 6.3.1 together.
In sketch form:

2Note Theorem 6.3.1 states executing the passified form will not fail, while this theorem states
that the original command will not fail.

SOUNDNESS AND SIZE 67

original fails ⇒ SA form fails Theorem 6.1.1
+

SA form fails ⇒ passified SA form fails Theorem 6.2.1

⇓

original fails ⇒ passified SA form fails

⇓ modus tollens

passified form succeeds ⇒ original succeeds
+

efficient wp hold ⇒ passified form succeeds Theorem 6.3.1

⇓

efficient wp hold ⇒ original succeeds

�

In order to prove that the efficient weakest preconditions are polynomial in size,
we need to view the store predicates as syntactic entities instead of functions,
on which we can then define a metric.

Definition 6.4.1 (EWP.formula_metric). We define the following metric on state
predicates:

|P ∧ P′| = |P| + |P′| + 1
|P ∨ P′| = |P| + |P′| + 1
|P⇒ P′| = |P| + |P′| + 1
|atom| = 1

Definition 6.4.2 (EWP.command_metric). We define a metric on commands as follows:

|skip| = 1
|assert e| = 2
|assume e| = 2
|c1; c2| = |c1| + |c2| + 1
|c1 [] c2| = |c1| + |c2| + 1

Using these metrics, we can express that the verification condition grows
quartically with respect to the command size. Note that although wpe produces
a formula which grows quadratically, it operates on the passified form of the
command. Only the size of the verification conditions with respect to the
command in its original form is meaningful to us.

68 EFFICIENT WEAKEST PRECONDITIONS

Theorem 6.4.2 (EWP.polynomial_wps). The verification condition generated by the
efficient weakest precondition algorithm produces a formula which is quartic with
respect to the original command size. For any command c and its passified form cp,

|wpe(cp,Q)| = O(|c|4 + |Q|)

Proof. The verification condition generation algorithm occurs in three steps:
SA transformation, passification and verification condition generation. Each
phase influences the size of the end result.

• The SA transformation produces a new command which grows quadrati-
cally with respect to the original command (EWP.quadratic_sa_transfor-
mation):

|SA(c, ν)| = O(|c|2)

• Passification maintains the size (EWP.passify_maintains_size):

|passify(c)| = |c|

• The efficient weakest precondition algorithm generates a condition
which grows quadratically with respect to command size (proved as
EWP.quadratic_wp’):

|wpe(cp,Q)| = O(|c|2 + |Q|)

Taken together, we get O(|c|4 + |Q|). �

6.5 Conclusion

Chapter 5 discussed three verification condition generation algorithms, namely
the strongest postcondition, the weakest liberal precondition and the weakest
precondition generation algorithms. For the purposes of verification, the
weakest precondition algorithm proved the most useful: contrary to the other
two, it can be used to prevent failures. Unfortunately, the verification condition
it generates grows exponentially with respect to program size.

This chapter provided a solution to this problem by reformulating the weakest
preconditions such that they only grow polynomially in size. However, this
alternative form is only valid for passive programs, i.e. programs with no
side effects. Therefore, we have also defined a way to transform an arbitrary
IVL program into passified form. This is accomplished by first transforming

CONCLUSION 69

it into single assignment form, i.e. an equivalently behaving rewrite of the
program where every assignment targets a fresh variable, so that each variable
is only assigned to once. Next comes the passification phase, which replaces all
assignments by assume commands.

Both transformations and the efficient weakest precondition algorithm have
been implemented in Coq as executable functions. Fully mechanised soundness
proofs are also available.

Part II

Symbolic Execution and
Separation Logic

71

Chapter 7

Introduction

In this second part, we take a fundamentally different approach to verification.
Whereas the first part relied on verification condition generation, the following
chapters will instead make use of symbolic execution [75]. In simplified terms,
this consists of executing the program, checking at each step that no errors have
occurred. What consistutes an error is up to us to determine: this can range from
simple divisions by zero mistakes to accessing certain data outside a transaction.
While conceptually simple, many problems arise, such as how to deal with
external input (which is unknown at verification time) or nonterminating
programs. Solutions to these issues will be discussed in detail.

Next to symbolic execution, separation logic [98, 92] will also play a major
role in this part. Separation logic is one of the many attempts to solve the
frame problem [88, 40], a well known research problem in the field of software
verification. Explained briefly, the frame problem is a direct consequence of
shared state and consists of the need to specify which memory locations can be
affected by an algorithm: whenever dealing with mutable data structures, a
change to one object could impact another object due to internal sharing.

For example, a linked list implementation could internally have lists share nodes
in order to preserve memory. Since this is an implementation detail, this fact
remains hidden from clients. However, when verifying client code which deals
with two lists, given only the public specification, how is the verifier to know
that there is definitely no sharing going on behind the scenes? To remain sound,
it needs to take into account the possibility of sharing, meaning that changes to
one list could propagate to the other list.

A linked list implementation generally takes care of keeping lists semantically

73

74 INTRODUCTION

separated, i.e. changes specifically applied to one list do indeed leave other
lists unmodified, even when there is sharing of nodes internally (for example,
using copy-on-write whenever required). Hence, client code rightfully assumes
changes to a list are localised, yet verification will very probably fail as the
verifier insists on also considering situations which do not occur in practice.

To prevent this from happening, it is necessary to define what is generally
named a “frame”, i.e. putting upper bounds on the reach a modification
operation can have, thus explicitly informing the verifier of what objects could
and cannot be impacted. In the case of linked lists, the framing would need
to express the fact that list manipulations, such as sorting or appending an
element to a list, do only affect that specific list.

Many approaches to framing exist: examples are dynamic frames [70, 71, 72],
implicit dynamic frames [104, 106], ownership based methods [30] (such
as Universe Types [91, 41] and Dynamic Ownership [79]), and, of course,
separation logic [92, 98, 94]. In a nutshell, separation logic can be viewed as
Hoare logic [57] extended with spatial connectives, among them the separating
conjunction ? which expresses the fact that its operands hold in disjoint parts
of the heap. For example, List(p) ? List(q) expresses the existence of two
nonoverlapping (i.e. not sharing nodes) lists on the heap. As a consequence,
changes to one list are guaranteed not to affect the other. The separating
conjunction also gives rise to the frame rule. Put intuitively, it allows us to focus
on a chosen part of the heap without having to worry about interferences with
other parts, thereby freeing us from frame problem related troubles. Whereas
most other methods see everything as potentially shared and need proof that
data structures do not overlap, separation logic can be said to be taking the
inverse approach: by default, everything is separated, and extra measures need
to be taken in order to model sharing. A more detailed explanation is given in
Sect. 8.1.

Many verifiers rely on separation logic (e.g. Smallfoot [12], jStar [45], Heap-Hop
[109], . . .). Part two of this thesis will focus on VeriFast [67], a verifier developed
at the KU Leuven. To familiarise readers with this tool, Chapter 8 introduces
the tool’s most important features. It relies on many developments in the
field of verification, such as symbolic execution [75], separation logic [98] and
abstract predicates [94]. While each of its components is sound, we have no
such guarantee about the whole.

This brings us to this part’s first contribution, namely Featherweight VeriFast,
presented in Chapter 9. It is a formalisation of VeriFast’s core together with
a soundness proof. All definitions [110] have also been implemented in Coq
[33, 16], resulting in an executable verifier. Proofs, however, have only been
partially mechanised. This first contribution has not yet been published.

INTRODUCTION 75

Our second contribution in this part focuses on automation (Chapter 10).
VeriFast is not fully automated but requires help from the programmer: all code
to be verified must be annotated. These annotations can take on considerable
proportions. While not forming an insurmountable obstacle, it can make
verification unnecessarily complex. Automation, i.e. automatic generation
of annotations, can alleviate this issue. Chapter 10 discusses a number of
automation techniques and how they can be applied without compromising
verification soundness. This second contribution has been published in the
following paper:

• Frédéric Vogels, Bart Jacobs, Frank Piessens, and Jan Smans. Annotation
inference for separation logic based verifiers. In Roberto Bruni and
Jürgen Dingel, editors, FMOODS/FORTE, volume 6722 of Lecture Notes in
Computer Science, pages 319–333. Springer, 2011.

Lastly, we conclude with Chapter 11, where we discuss related and future
work.

Chapter 8

VeriFast Introduction

VeriFast [67] is a static verification tool, i.e. it can be used to verify correctness
properties (for C and Java) ranging from memory safety and absence of race
conditions to full functional correctness. It supports both single-threaded and
multithreaded [66] code and it has been used in real-world applications [95, 68].

This chapter introduces the reader to VeriFast. The tool has many features, too
many to discuss all in detail. As only a small subset is needed for our purposes,
we will restrict ourselves to explaining a core part.

First Sect. 8.1 briefly presents separation logic upon which VeriFast relies.
Section 8.2 then proceeds to detail the relevant features of VeriFast.

8.1 Separation Logic

An introduction to VeriFast would be incomplete without providing an overview
of the essentials of separation logic [98], which is used by VeriFast to model the
current program state. We first present the rationale behind separation logic
(Sect. 8.1.1), after which, in Sect. 8.1.2, we describe its main features, namely
separating conjunction and the frame rule which follows from it.

77

78 VERIFAST INTRODUCTION

struct list {
int item;
struct list *next;

};

Listing 8.1: A Linked List in C

struct list *reverse(struct list *xs) {
struct list *ys = 0;

while (xs != 0) {
struct list *zs = xs->next;
xs->next = ys;
ys = xs;
xs = zs;

}
return ys;

}

Listing 8.2: List Reversal in C

8.1.1 Rationale

Let us take list reversal in C as working example1: given a mutable singly-linked
list [x1, x2, . . . , xn], we modify it in-place such that it becomes [xn, xn−1, . . . , x1].
The data structure definition and list reversal code are shown in Listing 8.1 and
Listing 8.2, respectively. Since we are working in C, we wish to ensure memory
safety and verify that no memory leaks occur.

We define a predicate List(p) which represents the fact that a 0-terminated
non-cyclic singly-linked list resides on the heap, starting at address p:

List(p) ≡ p = 0 ∨ (p , 0 ∧ ∃ n, q. p→ item = n ∧
p→ next = q ∧
List(q) ∧
p < reach(q))

reach(0) ≡ ∅

reach(p) ≡ {p} ∪ reach(p→ next)

The helper function reach(p) collects all memory addresses reachable through
next pointers starting at p and is required to prevent the list from being cyclic.

1This example is based on [98].

SEPARATION LOGIC 79

struct list* reverse(struct list *xs)
requires List(xs)
ensures List(result)

Listing 8.3: Contract for Linked List Reversal C

The contract for our list reversal function is shown in Listing 8.3: the argument
must point to a list, and since the head node of the list has changed, it is
necessary to return a pointer to the new head, i.e. no guarantees are made about
what xs points to.

In order to verify the while loop, we need a loop invariant for which the
following traditional rules must be upheld:

1. it must hold when execution reaches the loop;

2. executing the loop body in a state satisfying the invariant must lead to a
new state which also satisfies the invariant;

3. the invariant is true when we leave the loop.

From the code, we see that the loop deals with two lists simultaneously: at
each step, ys “steals” a node of xs, making ys grow and xs shrink, until nothing
remains of xs and ys points to the reversed form of the original list. If we
choose the following invariant

List(xs) ∧ List(ys)

the first invariant rule is respected and the third rule results in having the
program state immediately satisfy the postcondition after the loop. However,
proving that the second rule holds is impossible. This is due to the fact the lists
pointed to by xs and ys might share nodes. For example, the loop invariants
admits the memory layout shown on the left side of Fig. 8.1. After one iteration,
we would end up in the situation as depicted on the right side of the figure,
which clearly does not satisfy the invariant as ys points to a cyclic list.

We need to strengthen the invariant by adding the condition that both lists do
not share nodes. The reinforced loop invariant is

List(xs) ∧ List(ys) ∧ reach(xs) ∩ reach(ys) = ∅

which allows us to deal successfully with the loop. Given this, we can prove
that the function does not dereference dangling or wild pointers, and does not
leak memory.

80 VERIFAST INTRODUCTION

→ → . . .

↑ ↑

ys xs

↔ . . .

↑ ↑

ys xs

before after

Figure 8.1: Linked Lists Sharing Nodes

struct list *xs = ...;
struct list *ys = ...;

xs = reverse(xs);

Listing 8.4: Calling the List Reversal Function

Unfortunately, new problems arise when calling the function. Listing 8.4
gives an example: we have two lists xs and ys at our disposition and wish to
reverse the first one. The current program state does not match the function’s
precondition, which only expects one list to be present in memory. We could
extend the contract so that it allows for an extra list (or any number of other
data structures), in which case we also need to express somehow that the list
to be reversed does not share memory with any other data structure, lest the
function modifies these in seemingly arbitrary ways. More specifically, we
wish that the contract for the reverse function expresses that it will only modify
the given list and leaves the rest of the heap untouched.

8.1.2 Separating Conjunction and Frame Rule

Separation logic provides an elegant solution to the problems described in
the previous section. We can model the heap as a partial function mapping
addresses to memory cell contents, for example N ⇀ Z256. For simplicity
however, we will generally takeN as the range of the heap function, but for
our current purposes, this detail does not matter. The domain of the function
corresponds to the allocated parts of the heap. Instead of dealing directly with
one monolithic heap, separation logic chooses to model the heap as composable
subheaps. Let us first define the same notations as used in [98]:

h ⊥ h′ ≡ dom(h) ∩ dom(h′) = ∅
h · h′ ≡ h ∪ h′ with h ⊥ h′

SEPARATION LOGIC 81

That is, h ⊥ h′ states that two heaps are disjoint, and h · h′ merges two disjoint
subheaps together into a larger heap. Separation logic then extends regular
predicate logic with new forms of assertions that aid us in describing the heap
succinctly:

• Separating conjunction P ?Q indicates that the heap can be divided into
two disjoint subheaps which satisfy P and Q, respectively.

h |= P ?Q ⇐⇒ ∃ h1, h2. h1 · h2 = h ∧ h1 |= P ∧ h2 |= Q

• The empty heap assertion emp states the heap is empty.

h |= emp ⇐⇒ dom(h) = ∅

• The singleton heap assertion a 7→ b states that the heap contains only one
allocated cell; it resides at address a and contains the value b.

h |= a 7→ b ⇐⇒ dom(h) = {a} ∧ h(a) = b

We now examine how this helps us solve our problems from the previous
section. One issue concerned the sharing of memory cells between different
data structures, in our example these being the linked list nodes. Separating
conjunction allows us to concisely express that no sharing does occur. We
redefine our List predicate2 as follows:

List(p) ≡ p = 0 ∨ (p , 0 ∧ ∃ n, q. (p→ item) 7→ n ? (p→ next) 7→ q ? List(q))

In this new definition, separating conjunction automatically prevents the list
from being cyclic since the tail of the list is guaranteed to reside in a different
portion of the heap than the head. We modify the loop invariant in a similar
way:

List(xs) ? List(ys)

Using separating conjunction not only leads to syntactically shorter formulae, it
also provides us with a new level of abstraction which considerably simplifies
reasoning about the heap. Another advantage of separation logic comes in the
form of the frame rule:

{P} c {Q}
{P ? R} c {Q ? R}

where no free variable in R is modified by c. This expresses that if a program c
behaves a certain way, it will behave the same way if the heap is extended by
R, from which follows that it will not touch the subheap described by R.

2Technically, we should replace p→ item by p and p→ next by p + 1, i.e. replacing field accesses
by offsets, but for the sake of clarity, we prefer to maintain a certain level of abstraction.

82 VERIFAST INTRODUCTION

The frame rule solves our second problem mentioned in the previous section:
given a function contract, we can always adapt it to our needs using the frame
rule. In our case, this becomes

{List(xs)} ys = reverse(xs) {List(ys)}
{List(xs) ? List(zs)} ys = reverse(xs) {List(ys) ? List(zs)}

Thus, we can now call the function in a context where there is a second list
present on the current heap. Added to this, we are guaranteed that this second
list remains untouched.

In summary, separation logic provides us with tools which considerably simplify
reasoning about shared mutable data structures.

8.2 VeriFast: Hands On

In this section, we give an informal description of how VeriFast operates. Many
details will be deferred until a later chapter; our current goal is to provide
context which will aid the reader in understanding the rationale behind the
formalisation presented in Chapter 9.

Although VeriFast can handle both C and Java programs, we will focus solely
on C programs as using Java merely adds complexity without providing extra
insight.

8.2.1 Basics

In order to verify C code with VeriFast, every function needs to be given a
contract, i.e. a precondition and a postcondition. VeriFast will then consider
every function in turn, checking that it obeys its contract. More specifically,
VeriFast will set up an arbitrary program state which satisfies the precondition,
(symbolically) execute [75] the function body, and verify that the final program
state satisfies the postcondition.

The program state consists of a store (keeping track of the values of local
variables) and a heap3. The heap is abstractly represented by a multiset of
heap chunks, each of which represents the presence of a certain data structure
residing in its own part of the heap. In other words, the heap chunks are
implicitly conjoined using the separating conjunction. In Sect. 8.1.2, we already

3A third component is the path condition, but we will ignore this for now.

VERIFAST: HANDS ON 83

encountered one kind of heap chunk, namely the a 7→ b chunk, which expresses
the existence of an allocated memory cell at address a containing the value b.

Example 8.2.1. Consider the heap with a two allocated memory cells, at location 3
and 7, initialised to 4 and 8, respectively. This heap can be represented as a partial
function h as follows:

dom(h) = {3, 7} h(3) = 4 h(4) = 8

Using a separation logic formula, we can model the same heap with

3 7→ 4 ? 7 7→ 8

This formula unambiguously describes h: h is the only heap which is a model of this
formula:

∀ h′. h′ |= 3 7→ 4 ? 7 7→ 8 ⇒ h = h′

VeriFast expresses the heap as the following multiset:

{ 3 7→ 4, 7 7→ 8 }

If a pointer p points to the first cell, the store would map p to 3. The full program state
would thus be

〈s[p := 3], {3 7→ 4, 7 7→ 8}〉

where s can be an arbitrary store.

Example 8.2.2. In the previous example, separating conjunction does not help much
as it is clear from the addresses that the chunks inhabit different parts of the heap.
If, however, we work with symbols (to be explained in detail later), the separating
conjunction does provide us with extra information:

p 7→ v ? p′ 7→ v′

implies that p , p′. This formula has as models all heaps with exactly two allocated
memory cells:

h |= p 7→ v ? p′ 7→ v′

m

∃ p, p′, v, v′. p , p′ ∧ dom(h) = {p, p′} ∧ h(p) = v ∧ h(p′) = v′

Execution consists of having every statement transform the program state in
a predefined and generally straightforward way: assignments to variables
update the store, dereferencing a pointer looks up the appropriate chunk in the
current heap, etc. Allocation (malloc) is worthy of closer examination, as it is
used ubiquitously and introduces us to both of VeriFasts built-in heap chunks.

84 VERIFAST INTRODUCTION

Example 8.2.3. Consider again the C structure defined in Listing 8.1 on page 78. The
following statement

struct list *p = malloc(sizeof(struct list));

allocates a new data structure on the heap. The memory location is picked at random,
let’s call it `. The store is updated so that ptr is bound to `. VeriFast also generates
three heap chunks:

• (` → item) 7→ a where a is fresh with respect to the current program state.
This chunk expresses that memory has been allocated at address `→ item and
contains some value a of which nothing is known. This accurately models the
way allocation works in C: no guarantees are made about the initial contents of
freshly allocated memory. If, later on, a statement attempts to read from or write
to this memory location, VeriFast requires this chunk to be present on the heap,
otherwise verification fails.

• (`→ next) 7→ b where b is fresh with respect to the current program state. The
same applies as with (`→ item) 7→ a.

• malloc_block_list(`) is more of a “virtual” chunk as its main reason is to keep
track of typing information: in case a pointer is cast to another type, VeriFast
needs to remember its original type, so as to know which cells to deallocate when
the pointer is freed.

Freeing the list node, i.e. free(p); does the converse: it looks up in the store to what
value p is bound and removes the same three chunks as mentioned above. Freeing while
the current heap does not contain all of these chunks is considered an error by VeriFast,
as it (possibly4) corresponds to freeing unallocated memory.

8.2.2 User Defined Predicates

Consider the cell structure shown in Listing 8.5. A function for deallocating
cells is shown in Listing 8.6. Similarly to what we explained before, in order
to free a cell, we need both the malloc_block_cell(p) and p–>contents 7→ v
chunks representing the fact that there actually is a cell structure at the memory
location p points to. Therefore, we must express this requirement in destroy’s
precondition. The precondition in Listing 8.6 is of course written in VeriFast

4At runtime, it is still possible that no error occurs if the necessary chunks were just hidden in
some way at verification time. If VeriFast allows the deallocation, it is certain that it is also allowed
at runtime. The converse is not necessarily true.

VERIFAST: HANDS ON 85

struct cell {
int contents;

};

Listing 8.5: Cell Struct

void destroy(struct cell *p)
//@ requires malloc_block_cell(p) &*& p->contents|->?v;
//@ ensures emp;
{

free(p);
}

Listing 8.6: Cell Destruction

syntax and corresponds to

∃ v. malloc_block_cell(p) ? p–>contents 7→ v

i.e. VeriFast denotes existentials with question marks and separating conjunction
is written &*&. VeriFast annotations are always put inside comments so that
the source remains valid C code.

Note how the postcondition describes the empty heap: this mirrors the fact
that after calling the function, the subheap originally containing the cell has
been reduced to the empty heap, or, in other words, the memory occupied by
the cell has been freed. Conversely, if the cell would have remained in memory,
we would need to explicitly mention this in the postcondition, as shown in
Listing 8.7.

Whenever a function needs to interact with cells, we would need to mention
the appropriate chunks in the precondition and/or postcondition. The situation
is exacerbated if the structures contain multiple fields, thereby increasing the
number of chunks to be explicitly written down in the contracts. To remedy

void donothing(struct cell *p)
//@ requires malloc_block_cell(p) &*& p->contents|->?v;
//@ ensures malloc_block_cell(p) &*& p->contents|->v;
{ /* NOP */ }

Listing 8.7: Elaborately Leaving a Cell Untouched

86 VERIFAST INTRODUCTION

predicate Cell(struct cell *p) =
malloc_block_cell(p) &*& p->contents |-> ?v;

Listing 8.8: A User Defined Predicate for Cells

void destroy(struct cell *p)
//@ requires Cell(p);
//@ ensures emp;

{
free(p);

}

Listing 8.9: Updated Contract for destroy

this, VeriFast provides user defined predicates [94], which allow us to wrap
multiple chunks together in a single chunk. In the case of cells, we could define
the predicate shown in Listing 8.8. This allows us to rewrite destroy’s contract
more abstractly, as shown in Listing 8.9.

However, verification fails when using this new contract. The reason is simple:
the free statement expects to see the malloc_block_cell(p) and p–>contents 7→ v
chunks on the heap, but it can only find a Cell(p) chunk, which originates
from the precondition. While we know that this chunk is just an abstraction
for the two chunks, VeriFast will not automatically “unfold” it into its two
constituents. We need to perform this unfolding manually, and for this VeriFast
provides the open statement. Listing 8.10 illustrates its use. There also exists
its complementary statement close, which does the opposite of open.

void destroy(struct cell *p)
//@ requires Cell(p);
//@ ensures emp;

{
//@ open Cell(p);
free(p);

}

Listing 8.10: Corrected Version of destroy

VERIFAST: HANDS ON 87

void triple(struct cell *p)
//@ requires Cell(p);
//@ ensures Cell(p);

{
//@ open Cell(p);
int contents = p->contents;
p->contents = 3 * contents;
//@ close Cell(p);

}

Listing 8.11: Memory Safe Triple

The open Cell(p) statement requires a Cell chunk on the heap and replaces it
by the predicate’s body, as defined in Listing 8.8:

{Cell(p)} open Cell(p) {malloc_block_cell(p) ? p–>contents 7→ v}

After the open statement has exposed the appropriate chunks, free is able to
perform its duty, i.e. removing both chunks from the heap, resulting in an empty
heap, which matches the postcondition. Thus, destroy has been successfully
verified.

The Cell predicate in its current state throws information away with respect to
its constituents. For example,

{ malloc_block_cell(p) ? p–>contents 7→ 5}
close Cell(p)
{ Cell(p) }

open Cell(p)
{ malloc_block_cell(p) ? p–>contents 7→ v}

The close statement first folds the two chunks together into a single Cell chunk,
after which open unfolds it back. However, the information about the cell’s
contents has been lost: initially it was known to be 5, but the final program
state does not remember this, i.e. it only states the cell contains some unknown
value v.

If we currently wish to define a function which triples the contents of a cell, we
will at best be able to prove it is memory safe and does not deallocate the cell,
as shown in Listing 8.11.

Luckily, it is possible to also prove full functional correctness, either by not
making use of abstraction (which would be an unfortunate concession on our

88 VERIFAST INTRODUCTION

predicate Cell(struct cell *p, int v) =
malloc_block_cell(p) &*& p->contents |-> v;

Listing 8.12: Improved Cell Predicate

void destroy(struct cell *p)
//@ requires Cell(p, ?v);
//@ ensures emp;

{
//@ open Cell(p, v);
free(p);

}

Listing 8.13: destroy with Improved Cell Predicate

part), or update the Cell predicate so that it keeps track of the cell’s value.
We do this by ridding ourselves of the existential ?v and turn it into an extra
argument, as shown in Listing 8.12. An updated version for destroy can be
found in Listing 8.13, but it does not offer any advantages with respect to its
previous version in Listing 8.10.

Listing 8.14 shows an improved version of the triple function. Note how we
can use wildcards arguments (i.e. _), in which case VeriFast will automatically
infer5 the correct values for us.

5The usage of wildmarks can also lead to ambiguities; how these are dealt with will be discussed
later.

void triple(struct cell *p)
//@ requires Cell(p, ?v);
//@ ensures Cell(p, ?w) &*& w == 3 * v;

{
//@ open Cell(p, _);
int contents = p->contents;
p->contents = 3 * contents;
//@ close Cell(p, _);

}

Listing 8.14: triple Proven Fully Functional Correct

VERIFAST: HANDS ON 89

predicate Node(struct list *p, int v, struct list* q) =
malloc_block_list(p) &*&
p->item |-> v &*&
p->next |-> q;

predicate List(struct list *p) =
p == 0 ? emp : Node(p, _, ?next) &*& List(next);

Listing 8.15: List Predicate

8.2.3 Recursive User Defined Predicates

In the previous section, we discussed user defined predicates. From our
explanations, the reader might have the impression that user defined predicates
only add a level of abstraction which merely simplifies interacting with chunks.
In this section, we show how they do actually make VeriFast more expressive.

We will again use singly linked lists as example (see Listing 8.1 on page 78).
The length of linked lists is generally not known at verification time; instead,
programs usually jump from node to node until a null pointer is found, which
indicates the end of the list. If we are to write a function which deallocates
all memory used by a linked list, what would its contract be? Using only the
primitive chunks (malloc_block_xxx(p) and p 7→ v), we cannot describe linked
lists of arbitrary length.

User defined predicates allow us to define a recursive list predicate as shown
in Listing 8.15. We have introduced two layers of abstractions: a Node(p, v,n)
represents a a single linked list node on the heap and keeps track of the values
of both fields, so it consists of three chunks. List(p) builds the actual linked list
chain: either p = 0, and the list is empty, or p , 0, and it has a head (a node)
and a tail (another list).

Let us manually step through the code shown in Listing 8.16. The contract is
straightforward and expresses that it deallocates a linked list pointed to by
xs. The first statement unfolds the List(xs) predicate. Because its definition
contains a conditional, a case split occurs, i.e. execution forks6 into two different
branches where xs = 0 and xs , 0 respectively.

We first consider the case xs = 0. This fact about xs is registered in the program
state’s path condition (a series of conditions putting restrictions on the variables’

6This forking is not related in any way with multithreading.

90 VERIFAST INTRODUCTION

1 void destroy_list(struct list *xs)
2 //@ requires List(xs);
3 //@ ensures emp;
4 {
5 //@ open List(xs);
6 if (xs != 0)
7 {
8 //@ open Node(xs, _, _);
9 destroy_list(xs->next);

10 free(xs);
11 }
12 }

Listing 8.16: Destroying Lists

values). Remembering this fact might prove important later on7: for example
in case the code has another if (xs != 0) appearing later on we do not
want the verifier to take into account both clauses, but remember that xs = 0
and only consider the then clause.

Unfolding List(xs) yields emp, the if-statement (lines 6–11) is skipped, and
the postcondition is satisfied; in other words, this path has been successfully
verified. We now consider the alternative execution path where xs , 0. Again
this fact is registered in the path condition. Opening up the List(xs) predicate
populates the heap with Node(xs, v, q) and List(q) chunks. On line 8, we open
the Node(xs, v, q) node, producing three new chunks malloc_block_list(xs),
xs–>item 7→ v and xs–>next 7→ q.

On line 9, we recursively call destroy_list. Function calls are dealt with not
by executing the function’s body, but instead by transforming the program
state as described by the function’s contract. More specifically, we consume
the precondition and produce the postcondition. Consuming the precondition
consists of checking that it is satisfied by the current program state and removing
all involved heap chunks from the heap. In our case, this means we first check
that a chunk List(q) is present; this being the case, it can be removed from
the heap. Next, producing the postcondition consists of adding all chunks it
mentions to the heap. In our case, no chunks need to be added.

On line 10 we clean up the head node with free(xs), which effectively removes
the remaining chunks malloc_block_list(xs), xs–>item 7→ v and xs–>next 7→ q.

7While the path condition is strictly speaking not important for soundness, it is for completeness.

VERIFAST: HANDS ON 91

We thus end up with the empty heap, which is allowed by the postcondition:
the second execution branch has also been successfully verified.

8.2.4 List Reversal

To come full circle, let us reconsider the list reversal example shown in Listing 8.2
on page 78. First we will show how to verify that the function is memory
safe and does not leak memory. Next, we endeavour to prove full functional
correctness, which requires quite a bit more work.

Memory Safety

Listing 8.17 shows an list reversal function which can be successfully verified
by VeriFast. Assuming VeriFast is sound, the list reversal algorithm has thus
been proven memory safe (i.e. no dereferencing wild or dangling pointers) and
not to be leaking memory.

We clarify the VeriFast-specific annotations:

• The close statement on line 6 adds a List(ys) chunk to the heap, so that it
satisfies the loop invariant.

• The open statements on lines 11–12 expose the chunk required
(xs–>next 7→ q) to manipulate the fields of the structure pointed to
by xs.

• Lines 17–18 fold the chunks back, so that the iteration ends with a heap
containing the two chunks List(xs) and List(ys), which satisfies the loop
invariant.

• When leaving the loop, the heap contains two chunks: List(xs) and
List(ys). Since xs == 0, line 21 has the effect of removing the former. This
leaves us with a solitary List(ys) chunk, which fits the postcondition.

Full Functional Correctness

This section shows how to prove the list reversal algorithm correct, i.e. that it
is memory safe, does not leak memory, and is functionally correct. Compared
to Listing 8.17 (page 92), which only required a Node and List predicate as
supplementary definitions with respect to the C code, we have to rely on

92 VERIFAST INTRODUCTION

1 struct list *reverse(struct list *xs)
2 //@ requires List(xs);
3 //@ ensures List(result);
4 {
5 struct list *ys = 0;
6 //@ close List(ys);
7
8 while (xs != 0)
9 //@ invariant List(xs) &*& List(ys);

10 {
11 //@ open List(xs);
12 //@ open Node(xs, _, _);
13 struct list *zs = xs->next;
14 xs->next = ys;
15 ys = xs;
16 xs = zs;
17 //@ close Node(ys, _, _);
18 //@ close List(ys);
19 }
20
21 //@ open List(xs);
22 return ys;
23 }

Listing 8.17: Verified List Reversal (No Full Functional Crrectness)

more advanced features to obtain a version which has been proven to be fully
functional correct.

List reversal operates on the lists’ contents; therefore, we need an updated List
predicate which keeps track of a list’s content. The situation is similar to the
one encountered in Sect. 8.2.2 where we needed to extend the Cell predicate
with an extra argument (Listing 8.8 on page 86 versus Listing 8.12 on page 88)
so that information about a cell’s content would be preserved.

A cell’s content can be represented by a single integer, which is a built-in
datatype. In the case of lists, however, we need to define an appropriate
data structure ourselves. For this, VeriFast supports inductive data types.
Listing 8.18 shows the definition for an inductively defined integer list: a
list is either empty (Nil), or a node with some integer h (the head of the list)
and a list t (the tail of the list), written Cons(h, t). This definition shows great
similarities to the list struct we defined in C: a list is either the null pointer

VERIFAST: HANDS ON 93

inductive List = Nil
| Cons(int, List);

Listing 8.18: List Inductive Data Type

predicate Node(struct list *p, int v, struct list* q) =
malloc_block_list(p) &*&
p->item |-> v &*&
p->next |-> q;

predicate List(struct list *p, List Xs) =
p == 0 ? Xs == Nil

: Node(p, ?head, ?next) &*&
List(next, ?tail) &*&
Xs == Cons(head, tail);

Listing 8.19: Updated List Predicate

(which corresponds to Nil), or a valid object in memory with two fields item
and next, which correspond to the head and tail of a Cons, respectively.

The list [1, 2, 3] can thus be represented by Cons(1,Cons(2,Cons(3,Nil))). We
need to link this with actual data structures on the heap. This responsibility
lies with the List predicate. An updated version of the List predicate is shown
in Listing 8.19: a List(p, xs) chunk on the heap indicates that p points to a
linked list in memory whose contents is represented by xs. For example,
List(p,Cons(1,Nil)) means p–>value == 1 and p–>next == 0.

We now turn our attention to the function’s contract: the function expects its
argument to point to a list, which contains some elements xs, and returns a new
pointer which points to the same list, but with elements reversed. The contract
is shown in Listing 8.20. The postcondition relies on the function Reverse to
express the fact that the function reverses its argument. Its definition is shown
in Listing 8.21.

struct list *reverse(struct list *xs)
//@ requires List(xs, ?Lst);
//@ ensures List(result, Reverse(Lst));

Listing 8.20: Function Contract

94 VERIFAST INTRODUCTION

fixpoint List Reverse(List xs)
{
switch (xs) {
case Nil:
return Nil;

case Cons(x, xs2):
return Append(Reverse(xs2), Cons(x, Nil));

}
}

Listing 8.21: Reverse Function

Note how, after having defined C lists and a corresponding inductive type List,
we now have a C list reversal function and a corresponding one operating on
List.

VeriFast List List Reverse(List xs)
l l

C struct list* struct list* reverse(struct list* xs)

These corresponding definitions are typical when verifying code with VeriFast.
One could say verification consists of programming the same functionality
twice, and show that both implementations behave exactly the same. The chance
that one makes exactly the same mistake using two vastly different languages
(imperative versus purely functional) is very small. Added to this, VeriFast
allows us to prove theorems about the purely functional implementation,
furthering our confidence about its correctness.

The Reverse function shown in Listing 8.21 depends on another function
Append. While it is certainly possible to avoid this, we need an Append
function to express the loop invariant in the C reverse function anyway. Its
definition is given in Listing 8.22.

Let us take a closer look at the loop invariant. In our previous version
(Listing 8.17 on page 92), the invariant was List(xs) ? List(ys). We now also
need it to express how the lists’ contents are related:

List(xs, ?Xs) ? List(ys, ?Ys) ?Append(Reverse(Ys),Xs) == Lst

where Lst is bound by the precondition (Listing 8.20) to the original list.

Listing 8.23 shows the fully annotated code. We focus solely on the parts
pertinent to proving full functional correctness and take some liberties regarding

VERIFAST: HANDS ON 95

fixpoint List Append(List xs, List ys)
{
switch (xs) {
case Nil:
return ys;

case Cons(x, xs2):
return Cons(x, Append(xs2, ys));

}
}

Listing 8.22: Append Function

the technical details. We also introduce the following shorthand notations:

[x1, x2, . . . , xn] ≡ Cons(x1,Cons(x2, . . . ,Cons(xn,Nil)))
x : xs ≡ Cons(x, xs)

xsR
≡ Reverse(xs)

xs ++ ys ≡ Append(xs, ys)

Line 6 is required to satisfy the invariant, which expects two List chunks on the
heap. Thus, just before reaching the loop, the heap contains

List(xs,Lst) ? List(ys,Nil)

The third conjunct of the loop invariant is proven automatically and hence does
not require any help from our part. Inside the loop, we start with

List(xs,Xs) ? List(ys,Ys)

Since xs , 0, we know that Xs is a Cons, whose components (head and tail) are
of interest to us. Suffice it to say that we bind these to the variables X and Tail
on line 15 and 17 respectively; in other words, after binding them, we can say
that Xs == Cons(X,Tail).

After shuffling around pointers (lines 18–20) and folding predicates (lines 21–22),
the heap becomes

List(xs,Tail) ? List(ys,X : Ys)

In other words, the head of xs has become the head of ys. From the invariant,
we know that

YsR ++ (X : Tail) == Lst

Being at the end of the loop, we need to show that the current heap satisfies the
invariant. In other words, we need to show that

(X : Ys)R ++ Tail == Lst

96 VERIFAST INTRODUCTION

1 struct list *reverse(struct list *xs)
2 //@ requires List(xs, ?Lst);
3 //@ ensures List(result, Reverse(Lst));
4 {
5 struct list *ys = 0;
6 //@ close List(ys, Nil);
7
8 while (xs != 0)
9 /*@ invariant List(xs, ?Xs) &*&

10 List(ys, ?Ys) &*&
11 Append(Reverse(Ys), Xs) == Lst;
12 @*/
13 {
14 //@ open List(xs, Xs);
15 //@ open Node(xs, ?X, _);
16 struct list *zs = xs->next;
17 //@ assert List(zs, ?Tail);
18 xs->next = ys;
19 ys = xs;
20 xs = zs;
21 //@ close Node(ys, _, _);
22 //@ close List(ys, _);
23 //@ AppendAssoc(Reverse(Ys), Cons(X, Nil), Tail);
24 }
25
26 //@ open List(xs, _);
27 //@ AppendNil(Reverse(Ys));
28 //@ RevRev(Ys);
29
30 return ys;
31 }

Listing 8.23: Fully Annotated List Reversal Function

VERIFAST: HANDS ON 97

lemma void AppendAssoc(List Xs, List Ys, List Zs)
requires true;
ensures Append(Xs, Append(Ys, Zs)) ==

Append(Append(Xs, Ys), Zs);
{
switch (Xs) {
case Nil:
return;

case Cons(X, Xs2):
AppendAssoc(Xs2, Ys, Zs);
return;

}
}

Listing 8.24: AppendAssoc Lemma

To prove this, we need to provide VeriFast with a little help. Let us first see
how we might prove this equality:

(X : Ys)R ++ Tail == (YsR ++ [X]) ++ Tail
== YsR ++ ([X] ++ Tail)
== YsR ++ (X : Tail)
== YsR ++ (X : Tail)
== Lst

All these equalities are straightforward and can be shown to hold automatically
by VeriFast, except for one: the associativity of Append. We somehow need
to inform VeriFast that (Xs ++ Ys) ++ Zs == Xs ++ (Ys ++ Zs). To this end,
VeriFast provides lemmas. For example, associativity of Append is proven by
Listing 8.24. The details of the proof are not important; only the contract is of
interest to us.

We can use this lemma to provide VeriFast with the missing link in the proof
that the loop invariant is satisfied. This is done on line 23 of Listing 8.23, which
tells VeriFast that (YsR ++ [X]) ++ Tail == YsR ++ ([X] ++ Tail). This ends the
verification of the loop.

Upon exiting the loop, the heap contains List(xs,Xs) ? List(ys,Ys) which, since
xs == 0 can be simplified (line 26) to just List(ys,Ys). From the invariant, we
also know that YsR ++ Nil == Lst. In order to simplify this to YsR == Lst, we
need another lemma, which is given in Listing 8.25 and applied on line 27.

One last step remains: satisfying the postcondition. We are given a heap with
List(ys,Ys) and YsR == Lst, and we need this to match this with List(ys,LstR).

98 VERIFAST INTRODUCTION

lemma void AppendNil(List Xs)
requires true;
ensures Append(Xs, Nil) == Xs;

{
switch (Xs) {
case Nil:
return;

case Cons(X, Xs2):
AppendNil(Xs2);

}
}

Listing 8.25: AppendNil Lemma

Using the equality, we can rewrite this to List(ys, (YsR)R), which means we need
to prove that (YsR)R == Ys. The lemma is given in Listing 8.26 and invoked on
line 28.

We are now done verifying the reversal function. In conclusion, in order to
prove full functional correctness, we had to made use of multiple VeriFast
features.

• User defined predicates were used to describe data structures on the heap.
For example, we defined a List predicate which we used to indicate the
presence of a linked list on the heap.

• We relied on inductive data types to allow us to abstractly model the
values represented by the data structures residing on the heap. For
example, we defined a List inductive data type.

• Fixpoints let us define functions over these data types. In order to prove
full functional correctness, it will generally be necessary to define a
corresponding fixpoint for every C function to be verified, and show that
both implementations yield equivalent results. For example, we defined
Append and Reverse on lists.

• Lemmas were used to prove equivalences so as to allow us to show that
certain conditions (preconditions, postconditions, loop invariants, etc.)
are indeed met by the current program state. For example, we showed
that Reverse(Reverse(Xs)) == Xs.

VERIFAST: HANDS ON 99

lemma void RevTail(List Xs, int X)
requires true;
ensures Reverse(Append(Xs, Cons(X, Nil))) ==

Cons(X, Reverse(Xs));
{
switch (Xs) {
case Nil:
return;

case Cons(Y, Ys):
RevTail(Ys, X);
return;

}
}

lemma void RevRev(List Xs)
requires true;
ensures Reverse(Reverse(Xs)) == Xs;

{
switch (Xs) {
case Nil:
return;

case Cons(X, Xs2):
RevTail(Reverse(Xs2), X);
RevRev(Xs2);

}
}

Listing 8.26: Reverse Lemmas

8.2.5 Ambiguous Matches

Due to its importance later on, we briefly discuss the possibility of ambiguous
matches in VeriFast. An ambiguous match occurs when VeriFast needs to find
certain chunks on the heap (such as when opening/closing chunks, a function
is called, etc.) but, due to incomplete information, multiple chunks are eligible
for selection. This is similar to spooky disjunctions in [13, 4].

Due to the difficulty of finding a convincing example, we have settled for a
simple yet rather absurd one, as shown in Listing 8.27. The function takes two
pointers to two (different) cells, and destroys the first.

The open statement is ambiguous: because of the wildcard, both Cell(p) and

100 VERIFAST INTRODUCTION

void ambiguous(struct cell *p, struct cell *q)
//@ requires Cell(p) &*& Cell(q);
//@ ensures Cell(q);

{
//@ open Cell(_);
free(p);

}

Listing 8.27: Ambiguous Match

Cell(q) match, and VeriFast is unsure which should be unfolded. In practice,
VeriFast will pick an arbitrary chunk, open it, and proceed. The version8 we
used chose to unfold Cell(q), resulting in an error on the next line. In theory,
VeriFast should backtrack and make a different choice: if it had chosen Cell(p),
the function would have verified successfully.

Fortunately, such ambiguous matches do not appear often in practice. However,
it will have a major impact on our formalisation of VeriFast in a later chapter.

8.3 Related Verification Tools

VeriFast is just one of many available verification tools. The quintessential
example of another symbolic execution and separation logic based verifier is
Smallfoot [12], which has many descendants such as SmallfootRG (adding
rely-guarantee reasoning [69] for dealing with multithreaded code), Space
Invader [11, 116], Abductor [28] and Heap-hop [109]. We will discuss these
and others in more detail in Chapter 11, more specifically Sect. 11.3.

8.4 Conclusion

This chapter introduced the reader to VeriFast. Most importantly, the following
points were discussed in detail and are relevant for the following chapters:

• Separation logic, on which VeriFast relies to describe program states, is
detailed in Sect. 8.1. Its separating conjunction and frame rule considerably
simplify dealing with shared state.

8VeriFast 12.5.23

CONCLUSION 101

• VeriFast verifies program by symbolically executing them. Executing a
statement corresponds to transformating the current program state. Many
statements also demand that the current program state satisfy certain
conditions. Verification fails if those demands are not met.

• VeriFast requires every function or method to have a specification in
the form of a precondition and postcondition. This leads to modular
verification.

• During execution, the heap is represented abstractly by heap chunks. For
example, a single allocated memory cell is represented by a p 7→ v chunk.
User defined predicates make it possible to group chunks together into
one single chunk, thereby making it possible to represent arbitrary data
structures.

• As mentioned above, during symbolic execution, demands are often
made of the program state. However, the same program state can be
represented in many different ways, and VeriFast cannot always make
out if it meets certain requirements. It is then necessary to rewrite the
program state into an equivalent form so as to make it clear that it does
indeed satisfy the conditions. This is done using the open and close
ghost commands.

• Lemmas allow us to define more elaborate program state rewrites.

• To represent the contents of data structures at verification time, VeriFast
provides inductive types. Fixpoint functions allow us to manipulate
values of these types.

We are now ready for the next chapter, which presents a formalisation of a core
part of VeriFast.

Chapter 9

Featherweight VeriFast

In this chapter we present Featherweight VeriFast, the theoretical core of
VeriFast. While VeriFast works directly on C and Java code, we have introduced
an intermediate verification language for Featherweight VeriFast in order to
keep the formalisation as simple as possible. This intermediate verification
language, which is named “Small Imperative Language”, is the subject of
Sect. 9.1 in which we define its syntax and informally describe its semantics.

Following this, we discuss the Result Algebra (Sect. 9.3), operators (Sect. 9.4)
and basic operators (Sect. 9.5), which together form a semantic framework
for the formalisation of the Small Imperative Language’s semantics (Sect. 9.8,
Sect. 9.9 and Sect. 9.10). A more detailed overview is given in Sect. 9.2, at which
time the reader will have been provided with more context and our design
decisions will make more sense.

Featherweight VeriFast has been fully formalised in Coq and can be extracted
to O’Caml, meaning that we have a fully functional usable verifier. However,
not all proofs have been machine checked. Some Coq extracts will appear in
this chapter, but understanding them is not required. We refer the interested
reader unfamiliar with Coq to Appendix C.

9.1 Small Imperative Language

While VeriFast directly supports both C and Java programming languages, our
formalisation of it, Featherweight VeriFast, operates on a core subset of these
languages, which we’ll refer to as the “Small Imperative Language” (SIL). In

103

104 FEATHERWEIGHT VERIFAST

this section, we only formally define SIL’s syntax. Its formal semantics will be
the subject of later sections (Sect. 9.8, Sect. 9.9 and Sect. 9.10).

Our verification algorithm will operate on SIL programs, but verifying SIL
programs on its own is a purely academic endeavour. It only becomes
meaningful if the results we get can somehow be applied on programs written
in other programming languages.

To achieve this, we use SIL as an intermediate verification language (comparable
with BoogiePL[, see Chapter 3). For example, a C program will be translated
into SIL, the resulting code will be verified, and the result of this verification
should mean something about the original C program. The translation need
not be complete: only the information required for verification needs to be
preserved. However, SIL should still be a “full-featured” verification language
in the sense that it needs to provide the necessary facilities to keep track of all
information that does matter to verification. In short, this has led us to design
SIL as a minimalistic imperative language with manual memory management.

Definition 9.1.1 (Expression.t). An expression is defined as

ExprF NatLiteral | Id | Expr +e Expr | Expr −e Expr | Expr ×e Expr

Definition 9.1.2 (BooleanExpression.t). A boolean expression is defined as

BExprF trueb | Expr =b Expr | Expr <b Expr

| Expr ≤b Expr | BExpr ∧b BExpr | ¬bBExpr

The subscripts e and b for operators in expressions and boolean expressions,
respectively, make explicit that we are dealing with syntactic entities, not
mathematical expressions. This distinction will be especially important later
on when we are dealing with mathematical expressions a + b, expressions a +e b
and terms a +t b.

Definition 9.1.3 (SIL.command). A command is defined as

Command F skip no-op
| Id := Expr assignment
| Id := [Expr] reading from heap
| [Expr] := Expr writing to heap
| Command; Command sequencing
| RoutineName(Id) routine invocation
| if BExpr then Command else Command conditional
| x := malloc(NatLiteral) memory allocation
| free(Expr) memory deallocation

SMALL IMPERATIVE LANGUAGE 105

Definition 9.1.4 (SIL.routine_definition). A routine has one parameter and a
body.

RoutineDefinitionF routine RoutineName(Id) = Command

Definition 9.1.5 (SIL.program). A SIL program is a set of routines, one of which is
the main routine and is named main. We require that every routine call refers to a
routine defined in the program.

The semantics of a SIL program hides no surprises. Noteworthy is the behaviour
of malloc: as in C, it returns a pointer to a newly allocated memory block,
which can be located anywhere in memory (as long as it doesn’t overlap with
previously allocated memory). No guarantees are made about the memory
block’s initial contents: these can be arbitrary values.

The heap’s address space coincides with N, i.e. it is infinite in size and any
natural number is a valid pointer. Likewise, values range over N: a single
memory cell can contain an arbitrarily large natural number.

An important aspect of programs is the fact that they generally interact with the
external world: user input, files, network packets, etc. are received and reacted
upon in a variety of ways. For the purposes of verification, it is important to
be able to model this outside source of “arbitrary” data. Instead of extending
the language with an extra command (comparable to a havoc command as
defined in Chapter 4), it is possible to just rely on malloc to supply us with such
nondeterminism. For example, reading a unit of data from a file is equivalent
(for the purposes of verification at least) with allocating a new cell, storing its
value v, deallocating the cell, and returning v.

A SIL program can fail in a number of ways:

• Reads (Id := [Expr]) and writes ([Expr] := Expr) are only allowed on
allocated memory cells, i.e. the relevant memory cell must be part of a
block return by a malloc command and must not have been deallocated
(free) in the meantime.

• One can only free previously allocated memory.

Thus, SIL can be compared to a “checked C”: memory management is in hands
of the programmer and pointer arithmetic is allowed, but derefences of wild
or dangling pointers, out of bounds accesses, etc. are all caught. Verification
then entails making sure that a given program does not encounter any of these
failures during execution.

SIL misses some obvious features when compared to other programming
languages. However, it is possible to simulate them:

106 FEATHERWEIGHT VERIFAST

• If multiple arguments need to be passed to a routine, it is possible to do
so using a temporary memory block. For example, a routine call r(x, y, z)
can be encoded as follows:

temp := malloc(3);
[temp] := x; [temp +e 1] := y; [temp +e 2] := z;
r(temp);
free(temp)

• Return values can be simulated using output parameters: we pass along
an extra argument pointing to a memory cell to which the routine can write
its return value. For example, using the syntactic extension introduced in
the previous bullet point, we can encode rv := r(x, y, z) as follows:

temp := malloc(1);
r(x, y, z, temp);
rv := [temp];
free(temp)

• Loops can be replaced by routine calls. Given a loop

pre; while b do c; post

can be translated to SIL as follows:

pre;
temp := malloc(#locals);
[temp] := local1; [temp +e 1] := local2; . . . ; [temp +e n − 1] := localn;
aux(temp);
local1 := [temp]; local2 := [temp + 1]; . . . ; localn := [temp +e n − 1];
free(temp);
post

with as auxiliary routine definition

routine aux(p) =
if b then (c′; aux(p)) else skip

where c′ is a modified version of the loop body c where references to local
variables are replaced by accesses to the heap through p.

In all these examples, temp and aux must of course be chosen fresh with respect
to the other locals or routine names, respectively.

OVERVIEW 107

9.2 Overview

Our goal is to define a method to verify SIL programs and to prove this
method sound. We first define a straightforward, intuitive way to verify SIL
programs, which consists of just executing the program and see if failure is
encountered along the way. We’ll refer to this as the concrete execution. Its
conceptual simplicity comes at a price: it is not computable, i.e. there is no
upper bound on the time verification takes for nontrivial programs. This
is due to the nondeterminism of malloc, which, as explained before, makes
guarantees neither about where the newly allocated block is located in memory
nor about its initial contents. To deal with this unknown factor, the execution
forks into multiple paths, one for each “choice”. In other words, execution is
nondeterministic. Each such execution path1 must be verified separately, none
of them being allowed to fail. We will refer to this kind of choice as demonic
choice. Since memory space is unbounded and values can be arbitrarily large
natural numbers, there is an infinite number of such execution paths, which
makes the concrete execution uncomputable.

In response to this, we adapt the concrete execution in order to make it usable
in practice. This ultimately leads to the symbolic execution, which, while
computable, is far more complex, making it harder to trust as a verification
tool. Thus, it is necessary to show that the symbolic execution yields the same
results as the concrete execution, i.e. that the symbolic execution is sound for
the purposes of verification.

An important aspect of this symbolic execution is the fact that it introduces a
new kind of nondeterminism: it is possible that symbolic execution encounters
an ambiguous situation where it cannot know beforehand which choice to
make (we hinted at this in Sect. 8.2.5). Again, execution will fork in multiple
paths, but contrary to the previously discussed demonic choice, only one path
needs to succeed. We call this an angelic choice. In short, angelic choice only
requires that there exists some path leading to success, while demonic choice
demands that all paths lead to success.

The transition from concrete to symbolic execution is a large one. To keep
things manageable, we haven chosen to introduce an intermediate step, namely
the semiconcrete execution.

To simplify the task of formalising these three executions, we define a shared
semantic framework, as shown in Fig. 9.1. The result algebra forms a first

1A more intuitive interpretation: imagine that the malloc command is used to simulate user
input, then the program must not fail for whatever input the user decides to enter. One branch
must be created for each possible user input.

108 FEATHERWEIGHT VERIFAST

Concrete Semiconcrete Symbolic
Execution Execution Execution
(Sect. 9.8) (Sect. 9.9) (Sect. 9.10)

Basic Operators
(Sect. 9.5)
Operators
(Sect. 9.4)

Result Algebra
(Sect. 9.3)

Figure 9.1: Overview of the Different Abstraction Layers

abstraction layer. It allows us to express and compare the different executions’
results (dealing with such complexities as demonic and angelic choice), thereby
making it possible to relate the different executions with each other. On top of
the result algebra we define operators, which can be seen as the building blocks
for a monadic domain-specific language such as pioneered by Moggi [89] in
the early nineties. Lastly, the three executions are defined in terms of operators.

9.3 Result Algebra

In this section, we introduce an algebraic structure named the result algebra.
As explained in the previous section, executions exhibit two kinds of
nondeterminism (demonic and angelic), and we need some way to model
this information.

To provide better insight in the problem we attempt to solve with the result
algebra, we start with a few examples in Sect. 9.3.1. Next, Sect. 9.3.2 formally
defines the result algebra. To finish, a small selection of properties are stated
and proved in Sect. 9.3.3.

9.3.1 Examples

In this section, we introduce the result algebra’s central concepts through a
series of examples.

RESULT ALGEBRA 109

Example 9.3.1. This example introduces the concept of a “single result”. We consider
a language consisting of simple mathematical expressions:

e ::= n | e + e | e × e

Evaluation is perfectly deterministic: every expression evaluates to exactly one value.
Let us denote this single value with ~x�, i.e.

evaluate(3 + 5 × 8) = ~43�

Example 9.3.2. We now introduce demonic choice. We generalise the language by
replacing single numbers by sets of numbers:

e ::= {n+
} | e + e | e × e

Evaluating such an expression entails evaluating all expressions obtained by replacing
a set by a value of that set. For example, {1, 2} × {3, 4, 5} yields 3, 4, 5, 6, 8 and 10. We
model this result using the demonic choice operator:

evaluate({1, 2} × {3, 4, 5}) = ~3� ⊗ ~4� ⊗ ~5� ⊗ ~6� ⊗ ~8� ⊗ ~10�

In our context, we view demonic choice as a “bad thing”: we are dealing with a
number of unknowns and would prefer precise answers. For example, knowing
that a mathematical expression evaluates to “some number” (represented by⊗

n∈N ~n�) is less informative than to say it evaluates to 5 (i.e. ~5�).

Example 9.3.3. In the previous examples, we have seen how to build results using the
~−� and ⊗ operations, which in logical terms can be viewed as introduction rules. We
need corresponding elimination rules, i.e. we need a way to extract information from a
result.

Say we want our mathematical expression to evaluate only to values within a certain
range. The standard way to achieve this is by specifying a postcondition. We model a
postcondition as a set of allowable outputs. We can then write

postcondition |= result

to indicate that result satisfies postcondition. For example,

{1} |= ~1�
{1, 2} |= ~1� ⊗ ~2�
{1} 6|= ~1� ⊗ ~2�
{1, 2} |= ~1�
N |= ~1�
X |=

⊗
x∈X ~x�

Note how the postcondition is allowed to be an overapproximation.

110 FEATHERWEIGHT VERIFAST

Example 9.3.4. We now demonstrate angelic choice. Let us again consider
mathematical expressions with unknowns (as in Example 9.3.2). The expression
also contains a number of parameters for which we are allowed to choose the values
ourselves. We wish to know if we can pick values for these parameters such that the
expression evaluates to values within a certain range. For this, we again extend our
language:

e ::= x | pick x ∈ {n+
} in e | {n+

} | e + e | e × e

For example, the validity of

Z+
|= evaluate(pick x ∈ {−1, 1} in x × {3,−5} + {4})

expresses that we can pick an x ∈ {−1, 1} such that both 3x + 4 and −5x + 4 are positive.
To represent the picking of x as a result, we use the ⊕ operator. The evaluation above
thus yields the following result:

evaluate(pick x ∈ {−1, 1} in x × {3,−5} + {4}) =
⊕

x∈{−1,1}

~3x + 4� ⊕ ~−5x + 4�

Admittedly, our description of the exact semantics of an expression are vague at best.
It is clear however that an expression’s result can become quite complex very quickly
when combining the different choices. We defer formally defining the semantics until
Sect. 9.5 (Fig. 9.3), at which point we will have the necessary tools to do this elegantly.

9.3.2 Operations and Axioms

We have discussed the result algebra’s features through examples. This section
defines the algebraic structure formally.

Definition 9.3.1 (result algebra). A result algebra over a set S defines a type of
results, written S?, and the following operations:

~x� : S → S? (RADefinitions.single)⊕
i∈I R(i) : ∀ I, R : I→ S?. S? (RADefinitions.add)⊗
i∈I R(i) : ∀ I, R : I→ S?. S? (RADefinitions.mul)

|= : P(S)→ S? → Prop (RADefinitions.models)

RESULT ALGEBRA 111

Parameter RA : Type -> Type.
Variable S : Type.

Parameters
(single : S -> RA S)
(models : Ensemble S -> RA S -> Prop)
(add : forall {I : Type} (R : I -> RA S), RA S)
(mul : forall {I : Type} (R : I -> RA S), RA S)
(top : RA S)
(bottom : RA S)
(implies : relation (RA S)).

Listing 9.1: Result Algebra Signature in Coq

The following axioms have to hold: for any type I and S ∈ P(S),

Ax-Single (single_axiom)

∀ x ∈ S. S |= ~x� ⇐⇒ x ∈ S

Ax-Angelic (add_axiom)

∀ R : I→ S?. S |=
⊕

i∈I R(i) ⇐⇒ ∃ i ∈ I. S |= R(i)

Ax-Demonic (mul_axiom)

∀ R : I→ S?. S |=
⊗

i∈I R(i) ⇐⇒ ∀ i ∈ I. S |= R(i)

Ax-Monotonicity (monotonic_models_axiom)

∀ R : S?. S′ ⊆ S ⇒ S′ |= R ⇒ S |= R

The Coq formalisations of these operations and axioms are shown2 in Listing 9.1 and
Listing 9.2, respectively.

The monotonicity axiom corresponds to the fact that “negative results” cannot
be expressed: it is impossible to express that the postcondition must not contain
certain outputs. In other words, results express lower bounds. This axiom was
necessary to achieve the normalisation property (Lemma 9.3.10), which we will
discuss shortly.

One could wonder why Ax-Single does not simply take the form {x} |= ~x� and
have Ax-Monotonicity take care of the generalisation to larger sets S ⊇ {x}:

2The reader unfamiliar with Coq might want to read Sect. C.6.1 and Sect. C.6.2 for clarification.

112 FEATHERWEIGHT VERIFAST

Axiom single_axiom :
forall (s : S) (S : Ensemble S),

models S single s <-> In s S.

Axiom top_axiom : forall (R : False -> RA S),
equiv top (mul R).

Axiom bottom_axiom : forall (R : False -> RA S),
equiv bottom (add R).

Axiom add_axiom :
forall I (R : I -> RA S) (S : Ensemble S),

models S (add R) <-> exists i, models S (R i).

Axiom mul_axiom :
forall I (R : I -> RA S) (S : Ensemble S),

models S (mul R) <-> forall i, models S (R i).

Axiom implies_axiom : forall (R R’ : RA S),
implies R R’ <-> forall (S : Ensemble S),

models S R -> models S R’.

Axiom monotonic_models_axiom :
forall (R : RA S) (S S’ : Ensemble S),

Included S’ S -> models S’ R -> models S R.

Listing 9.2: Result Algebra Axioms in Coq

now there seems to be overlap between the two axioms. However, the two
formulations are not equivalent: given only {x} |= ~x� instead of Ax-Single, it
is impossible to prove that S |= ~x� ⇒ x ∈ S. In other words, the alternative
formulation allows S |= ~x� to be true by other means than x ∈ S, i.e. by the
addition of other operations or axioms.

It would also have been possible to define a result as an inductive type; this
would express that the only way to build a result is through one of the operators
~−�, ⊕ or ⊗ (the current treatment allows for extra operations to be added).
The |= relation could be defined as an inductive predicate or a fixpoint. This
approach however would severly limit our freedom when defining models for
the result algebra.

We define the following shorthand notation for binary choice:

RESULT ALGEBRA 113

Definition 9.3.2 (binary choice).

R1 ⊕ R2 ≡
⊕

i∈{1,2} Ri

R1 ⊗ R2 ≡
⊗

i∈{1,2} Ri

where R1,R2 : S?.

Example 9.3.5. Let S =N.

{1} |= ~1�
{1} |= ~1� ⊕ ~2�
{2} |= ~1� ⊕ ~2�
{1} 6|= ~1� ⊗ ~2�
{2} 6|= ~1� ⊗ ~2�

{1, 2, 3} |= ~1� ⊗
(
(~2� ⊗ ~3�) ⊕ (~4� ⊗ ~5�)

)
{1, 4, 5} |= ~1� ⊗

(
(~2� ⊗ ~3�) ⊕ (~4� ⊗ ~5�)

)
{1, 2, 4} 6|= ~1� ⊗

(
(~2� ⊗ ~3�) ⊕ (~4� ⊗ ~5�)

)
We need a means to compare results. For this, we define an order relation on
results. This relation is central in relating the different executions with each
other.

Definition 9.3.3 (RADefinitions.implies, RAAxioms.implies_axiom). A result R
implies another result R′ if all postconditions satisfied by R are also satisfied by R′.

RV R′ ≡ ∀ S ∈ P(S). S |= R ⇒ S |= R′

where R,R′ : S?.

Lemma 9.3.1 (RATheorems.implies_reflexivity, RATheorems.implies_transiti-
vity). S? equipped withV is a partially preordered set.

RV R reflexivity
RV R′ ⇒ R′ V R′′ ⇒ RV R′′ transitivity

where R,R′,R′′ : S?.

Two results are equivalent if they satisfy the same postconditions.

Definition 9.3.4 (RADefinitions.equiv). If two results imply each other, we say they
are equivalent.

R VVR′ ≡ RV R′ ∧ R′ V R

where R,R′ : S?.

Lemma 9.3.2 (RATheorems.equiv_reflexivity, .equiv_symmetric, .equiv_trans-
itivity). The VV relation is an equivalence relation.

R VVR reflexivity
R VVR′ ⇒ R′ VVR symmetry
R VVR′ ⇒ R′ VVR′′ ⇒ R VVR′′ transitivity

where R,R′,R′′ : S?.

114 FEATHERWEIGHT VERIFAST

We also define pointwise variants of the implication and equivalence relations:

Definition 9.3.5 (RATheorems.f_implies). Given functions R,R′ : I → S?, we
define pointwise implication as

R V̇R′ ≡ ∀ i : I. R iV R′ i

Lemma 9.3.3 (RATheorems.f_implies_reflexivity, .f_implies_transitivity).
The V̇ relation is a partial preorder. For any R,R′,R′′ : I→ S?,

R V̇R reflexivity
R V̇R′ ⇒ R′ V̇R′′ ⇒ R V̇R′′ transitivity

Definition 9.3.6 (RATheorems.f_equiv). Given functions R,R′ : I→ S?, we define
pointwise equivalence as

R ˙VV R′ ≡ ∀ i : I. R i VVR′ i

Lemma 9.3.4 (RATheorems.f_equiv_reflexivity, RATheorems.f_equiv_symmetric,
RATheorems.f_equiv_transitivity). The ˙VV relation is an equivalence relation.
For any R,R′,R′′ : I→ S?,

R ˙VV R reflexivity
R ˙VV R′ ⇒ R′ ˙VV R symmetry
R ˙VV R′ ⇒ R′ ˙VV R′′ ⇒ R ˙VV R′′ transitivity

Let us examine the effect of choices over the empty set, i.e. what do
⊗

i∈∅ R(i)
and

⊕
i∈∅ R(i) express?

• S |=
⊗

i∈∅ R(i) requires that every R(i) for i ∈ ∅ satisfies the postcondition
S. This is trivially true. We denote this special result with > (“top”).

• S |=
⊕

i∈∅ R(i) demands that there exists some i ∈ ∅ such that R(i)
satisfies the postcondition S, which is impossible. We denote this with ⊥
(“bottom”).

Definition 9.3.7 (RADefinitions.top, RAAxioms.top_axiom). > is defined as the
demonic choice over the empty set.

> ≡

⊗
i∈∅

R i

where R is the function with type signature ∅ → S?.

RESULT ALGEBRA 115

Definition 9.3.8 (RADefinitions.bottom, RAAxioms.bottom_axiom). ⊥ is defined as
the angelic choice over the empty set.

⊥ ≡

⊕
i∈∅

R i

where R is the function with type signature ∅ → S?.

Top and bottom are closely related to true and false, respectively, as the following
lemmas show.

Lemma 9.3.5 (RATheorems.only_bottom_without_models). Only bottom satisfies no
postconditions.

(∀ S : P(S). S 6|= R) ⇐⇒ R VV⊥

Lemma 9.3.6 (RATheorems.bottom_implies_all). Every result is implied by bottom.

∀ R : S?. ⊥V R

Lemma 9.3.7 (RATheorems.top_models_all). Only top satisfies all postconditions.

(∀ S : P(S). S |= R) ⇐⇒ R VV>

Lemma 9.3.8 (RATheorems.top_model). Every result implies top.

∀ R : S?. RV >

Lemma 9.3.9 (RATheorems.only_bottom_implies_bottom). Only bottom implies
bottom.

∀ R : S?. RV ⊥ ⇐⇒ R VV⊥

In the context of executions, top and bottom have interesting interpretations:

• Bottom corresponds to failing execution, as it will never satisfy any given
postcondition.

• Top corresponds to nonterminating execution.

Thus, failure and nontermination can elegantly be represented using results:
no special extra cases are necessary.

116 FEATHERWEIGHT VERIFAST

9.3.3 Lemmas

In this section we present a selection of lemmas (more have been proven in
Coq). The normalisation property (Lemma 9.3.10) stands out and forms the
basis of many proofs. It states that every result has a canonical form, i.e. every
result can be written as an angelic choice of demonic choices of single results.
This spares us the need for an induction principle for results.

We use the following shorthand notation and similar variations on it in the
future: ⊕

S|=R

R′(S) ≡
⊕

S ∈ { S′ | S′ |=R }

R′(S)

Lemma 9.3.10 (RATheorems.normalization). A result is always equivalent with the
following normalised result:

R VV
⊕
S|=R

⊗
σ∈S

~σ�

Proof. By Def. 9.3.3 and Def. 9.3.4, the proof goal is equivalent with

∀ S. S |= R ⇐⇒ S |=
⊕
S|=R

⊗
σ∈S

~σ�

We take an arbitrary S. Applying Ax-Single, Ax-Demonic and Ax-Angelic

(Def. 9.3.1), we get

S |=
⊕
S|=R

⊗
σ∈S

~σ� ⇐⇒ ∃ S′ |= R. ∀ σ ∈ S′. σ ∈ S

We split the proof goal into two parts:

• The⇒ part has proof goal

S |= R⇒ ∃ S′ |= R. ∀ σ ∈ S′. σ ∈ S

We take S′ = S, the rest is trivially true.

• The⇐ part has proof state

: S′ |= R
H1 : ∀ σ ∈ S′. σ ∈ S

S |= R

From H1 we know that S′ ⊆ S. Combining this with Ax-Monotonicity

gives us the proof goal.

RESULT ALGEBRA 117

�

The following lemma describes how top and bottom interact with choices.

Lemma 9.3.11 (RATheorems.add_top, .add_bottom, .mul_bottom, .mul_top). Given
a function R : I→ S?,

(∃ i : I, R i VV>) ⇒
⊕

i∈I R i VV>

(∀ i : I, R i VV⊥) ⇐⇒
⊕

i∈I R i VV⊥

(∃ i : I, R i VV⊥) ⇒
⊗

i∈I R i VV⊥

(∀ i : I, R i VV>) ⇐⇒
⊗

i∈I R i VV>

Proof. Using Def. 9.3.4 and Def. 9.3.3 we can reformulate the proof goals using
the following equivalence:

X VVY ⇐⇒ ∀ S ∈ P(S). S |= X ⇐⇒ S |= Y

We prove each proposition in turn:

• Proof goal (∃ i : I, R i VV>) ⇒
(
∀ S ∈ P(S). S |=

⊕
i∈I R i ⇐⇒ S |= >

)
.

The ⇒ part follows from Lemma 9.3.7. The ⇐ part follows from Ax-
Angelic and the premise.

• Proof goal (∀ i : I, R i VV⊥) ⇐⇒
⊕

i∈I R i VV⊥. We split the ⇐⇒ in
two:

– Goal: (∀ i : I, R i VV⊥)⇒
(
∀ S ∈ P(S). S |=

⊕
i∈I R i ⇐⇒ S |= ⊥

)
.

The⇒ part: from Ax-Angelic we know that ∃ i ∈ I. S |= R i. We take
this i. Since R i VV⊥we have S |= ⊥, which is impossible according
to Lemma 9.3.5. The⇐ part follows directly from Lemma 9.3.5.

– Proof state:

H1 : ∀ Sx ∈ P(S). (∃ ix ∈ I. Sx |= R ix) ⇐⇒ Sx |= ⊥
S ∈ P(S)
i : I
S |= R i ⇐⇒ S |= ⊥

Proving the⇒ part: if we take Sx = S and ix = i in H1, we get S |= ⊥,
which is absurd (Lemma 9.3.5). Proving the⇐ part: S |= ⊥ is absurd
(Lemma 9.3.5).

118 FEATHERWEIGHT VERIFAST

• Proof goal (∃ i : I, R i VV⊥) ⇒
(
∀ S ∈ P(S). S |=

⊗
i∈I R i ⇐⇒ S |= ⊥

)
.

The⇒ part: from Ax-Demonic follows ∀ i ∈ I. S |= R i. Combined with
the antecedent, we get S |= ⊥, which is impossible (Lemma 9.3.5). The⇐
part follows directly from Lemma 9.3.5.

• Proof goal (∀ i : I, R i VV>) ⇐⇒
⊗

i∈I R i VV>. We split the ⇐⇒ in
two:

– Goal: (∀ i : I, R i VV>) ⇒ ∀ S ∈ P(S). S |=
⊗

i∈I R i ⇐⇒ S |= >.
The ⇒ part follows from Lemma 9.3.7. The ⇐ part follows from
Ax-Demonic and the premise.

– Proof state:

H1 : ∀ Sx ∈ P(S). S |=
⊗

i∈I R i ⇐⇒ S |= >
S ∈ P(S)
i : I
S |= R i ⇐⇒ S |= >

The⇒ part follows from Lemma 9.3.7. The⇐ part: from H1 with
Sx = S we get S |=

⊗
i∈I R i. Ax-Demonic finishes the proof.

�

Lemma 9.3.12 (RATheorems.only_empty_set_models_top). Only top satisfies the
empty postcondition ∅.

∅ |= R ⇐⇒ R VV>

Proof. The ⇒ part: Ax-Monotonicity and ∅ |= R give ∀ S ∈ P(S). S |= R.
According to Lemma 9.3.7, R must be equivalent with>. The⇐ part: according
to Lemma 9.3.7, top satisfies all postconditions, hence ∅ too. �

We can categorise results based on which nondeterminism they represent. This
categorisation will prove important in Sect. 9.5.

Definition 9.3.9 (RATheorems.demonic). A result is demonic if it only involves
demonic choice.

demonic(R) ≡ ∃ K . R VV
⊗
r∈K

~r�

Lemma 9.3.13 (RATheorems.demonic_equiv_iff_same_charset). GivenK andK ′,
being the characteristic sets of demonic results R and R′ respectively, then

R VVR′ ⇐⇒ K = K ′

RESULT ALGEBRA 119

Lemma 9.3.14 (RATheorems.unique_demonic_K). The characteristic set of a demonic
result R is unique. We denote it |R|d.

Definition 9.3.10 (RATheorems.angelic). A result is angelic if it only involves
angelic choice.

angelic(R) ≡ ∃ K . R VV
⊕
r∈K

~r�

The setK is called a characteristic set of R.

Lemma 9.3.15 (RATheorems.angelic_equiv_iff_same_charset). GivenK andK ′,
being the characteristic sets of angelic results R and R′ respectively, then

R VVR′ ⇐⇒ K = K ′

Lemma 9.3.16 (RATheorems.unique_angelic_K). The characteristic set of an angelic
result R is unique. We denote it |R|a.

Definition 9.3.11 (RATheorems.deterministic). A result is deterministic if it
involves neither angelic nor demonic choice.

deterministic(R) ≡ ∃ K . R VV ~K�

Lemma 9.3.17 (RATheorems.deterministic_equiv_iff_same_charset). Given K
andK ′, being the characteristic values of deterministic results R and R′ respectively,
then

R VVR′ ⇐⇒ K = K ′

Lemma 9.3.18 (RATheorems.unique_deterministic_K). The characteristic value of
a deterministic result R is unique. We denote it |R|det.

Lemma 9.3.19 (RATheorems.deterministic_implies_angelic, .deterministic_-

implies_demonic, .demonic_angelic_implies_deterministic). A result is deter-
ministic iff it is both angelic and demonic.

deterministic(R) ⇐⇒ angelic(R) ∧ demonic(R)

Lemma 9.3.20 (RAOperatorTheorems.swap_add, RAOperatorTheorems.swap_mul).
Nondependent choices commute.⊗

i∈I

⊗
j∈J R(i, j) VV

⊗
j∈J

⊗
i∈I R(i, j)⊕

i∈I

⊕
j∈J R(i, j) VV

⊕
j∈J

⊕
i∈I R(i, j)

120 FEATHERWEIGHT VERIFAST

9.4 Operators

In the previous section, we have introduced the result algebra, which allows us
to express results involving demonic and angelic choice. While it is possible to
formalise the semantics of the three executions (as explained in Sect. 9.2) by
directly expressing them in terms of results, readability would suffer.

Our intention is to obtain an executable symbolic execution. Therefore, we wish
the formalisation of the semantics to take the form of an executable program.
For this purpose, we introduce operators, i.e. composable functions which
abstract away details such as state handling and nondeterminism. While the
concrete and semiconcrete execution are inherently uncomputable, we define
their semantics using the same framework, which simplifies the task of relating
the different executions with each other.

Operators are monadic functions. Readers unfamiliar with the concept of
monads may find this section daunting; we refer them to Appendix B for a
quick introduction to monads. The monad we use in this section most resembles
a combination of the State and the List monad.

Definition 9.4.1 (RAOperators.primitive_operator). A primitive operator from
S1 to S2 is defined as

OperatorS1→S2 ≡ S1 → S
?
2

Note that we have deviated from the typical approach such as Haskell’s:

• There is no explicit return value. We can easily solve this problem by
incorporating it into the output type, i.e. by taking S2 = A × S′2.

• The state type varies: a more standard type signature for operators
would be S → S?. We allow the input and output to differ for two
reasons. Firstly, it allows us to include the result type into the output
state (as explained above). Secondly, while the concrete, semiconcrete
and symbolic executions operate on concrete, semiconcrete and symbolic
states, respectively, we also require the possibility of defining cross-
execution operators, e.g. which take a symbolic state as input yet return a
concrete state as output.

Primitive operators can be composed using the binding operation, yielding a
new primitive operator3. This corresponds to sequencing: the output of the

3The name “primitive operator” might be a bit confusing: a primitive operator is a function
with a specific type (Def. 9.4.1); binding two primitive operators yields a new function with a type
that satisfies that of primitive operators, hence it is also a primitive operator.

OPERATORS 121

first operator is applied to the second while taking failure, nontermination and
the different choices into account.

We define binding operation in terms of a lift operation. We do not give a
precise definition for this lift operation, but instead only require that it obeys
certain axioms. This gives us the freedom to give specialised definitions for
different models of the result algebra.

Definition 9.4.2 (RAOperators.lift). The lift operation, denoted −⇑, has the
following type signature:

−
⇑ : OperatorS1→S2 → S1

?
→ S2

?

It must satisfy the following axioms:

Ax-LiftSingle (RAOperators.lift_single_axiom)

op⇑(~x�) VV op(x)

Ax-LiftAngelic (RAOperators.lift_add_axiom)

op⇑
(⊕

i∈I R(i)
)

VV
⊕

i∈I op⇑(R(i))

Ax-LiftDemonic (RAOperators.lift_mul_axiom)

op⇑
(⊗

i∈I R(i)
)

VV
⊗

i∈I op⇑(R(i))

Ax-LiftMonotonic (RAOperators.monotonic_lift_axiom)

op V̇ op′ ⇒ RV R′ ⇒ op⇑(R)V (op′)⇑(R′)

The first three axioms are straightforward. The reader might wonder why
Ax-LiftMonotonic is required: it seems to follow from the other axioms,
especially Ax-Monotonicity (p. 111). We examine this in the following lemma.

Lemma 9.4.1 (FakeModel.monotonic_lift_axiom_fails). The monotonicity axiom
Ax-LiftMonotonic does not follow from the other axioms.

Proof. Let us consider a weaker version of Ax-LiftMonotonic:

RV R′ ⇒ op⇑(R)V op⇑(R′) (9.1)

i.e. we take op = op′. If this variant cannot be proven, it is clear that Ax-
LiftMonotonic cannot be proven either. Let us try to prove that (9.1) follows

122 FEATHERWEIGHT VERIFAST

from the other axioms. The proof state becomes

RV R′

op⇑(R)V op⇑(R′)

We could use the normalisation lemma (Lemma 9.3.10 on page 116) to get a
canonical form for R and R′, but it will not be of much use: it would only show
that R and R′ are equivalent (VV) with their respective canonical form, not
equal (=) to it. Thus, it is not possible to rewrite op⇑(R) to op⇑(

⊕
S|=R

⊗
σ∈S ~σ�)

in our proof goal, since it would require the following to hold:

R VVR′ ⇒ op(R) VV op(R′)

This is exactly what Ax-LiftMonotonic can provide us with, and is thus the
reason for its existence.

Admittedly, this line of reasoning does not form a proof; it merely shows
where a straightforward attempt to prove that (9.1) fails. To demonstrate that
it is indeed impossible to prove it, we show we can construct a model which
satisfies all axioms except Ax-LiftMonotonic. It is possible to define a model
with two ~−� constructors, let’s call them red and blue. The |= relation would
behave identically for both, but the lift operation might be defined so that
op⇑(~x�r) = op(x) and op⇑(~x�b) = ⊥. All axioms would be satisfied, except for
Ax-LiftMonotonic. Details of this model can be found in Sect. D.17. �

We prove a few interesting properties of lifting which follow from the axioms.

Lemma 9.4.2 (RAOperatorTheorems.lift_normalized).

op⇑ ˙VV λ R.
⊕
S|=R

⊗
σ∈S

op(σ)

Proof.

By Def. 9.3.6 and taking an arbitrary R, the proof goal becomes

op⇑(R) VV
⊕
S|=R

⊗
σ∈S

op(σ)

Applying Lemma 9.3.10 on R in the lhs gives

op⇑
⊕

S|=R

⊗
σ∈S

~σ�

 VV
⊕
S|=R

⊗
σ∈S

op(σ)

OPERATORS 123

Using Ax-LiftAngelic, Ax-LiftDemonic and Ax-LiftSingle in turn, we get⊕
S|=R

⊗
σ∈S

op(σ) VV
⊕
S|=R

⊗
σ∈S

op(σ)

which is trivially true (reflexivity of VV). �

Lemma 9.4.3 (RAOperatorTheorems.lift_top, .lift_bottom). Applying a lifted
operator on top or bottom yields top or bottom, respectively.

op⇑(>) VV >

op⇑(⊥) VV ⊥

Proof.

op⇑(>) VV op⇑
(⊗

i∈∅ R(i)
)

by Def. 9.3.7
VV

⊗
i∈∅ op⇑(R(i)) by Ax-LiftDemonic

VV > by Def. 9.3.7

Similarly for bottom:

op⇑(⊥) VV op⇑
(⊕

i∈∅ R(i)
)

by Def. 9.3.8
VV

⊕
i∈∅ op⇑(R(i)) by Ax-LiftAngelic

VV ⊥ by Def. 9.3.8

�

We now define primitive operator binding in terms of operator lifting.

Definition 9.4.3 (RAOperatorTheorems.bind). Primitive operator binding, denoted
≫, composes primitive operators as follows:

− ≫ − : OperatorS1→S2 → OperatorS2→S3 → OperatorS1→S3

op1 ≫ op2 ˙VV op2
⇑
◦ op1

Binding inherits important properties from operator lifting.

Lemma 9.4.4 (RAOperatorTheorems.bind_top_left, .bind_bottom_left). Once an
execution path encounters failure (bottom) or nontermination (top), it remains stuck
there: no further computation has any effect.

op(σ) VV⊥ ⇒ (op≫ op′)(σ) VV⊥

op(σ) VV> ⇒ (op≫ op′)(σ) VV>

124 FEATHERWEIGHT VERIFAST

Proof. The ⊥ case:

(op≫ op′)(σ) VV (op′)⇑(op(σ)) by Def. 9.4.3
VV (op′)⇑(⊥) premise
VV ⊥ by Lemma 9.4.3

Idem for the > case. �

Lemma 9.4.5 (RAOperatorTheorems.bind_failure_left, .bind_block_left). The
binding of a failing or nonterminating operator with another operator has no effect.

(λ σ. ⊥)≫ op ˙VV λ σ. ⊥
(λ σ. >)≫ op ˙VV λ σ. >

Proof. Follows from Lemma 9.4.4. �

Lemma 9.4.6 (RAOperatorTheorems.bind_failure_right, .bind_block_right).
Binding with a nonterminating or failing operator on the right yields nontermination
or failure, respectively, on condition that the left operator does not fail or diverge first,
respectively.

op(σ) 6 VV> ⇒ (op≫ (λ σ. ⊥))(σ) VV⊥
op(σ) 6 VV⊥ ⇒ (op≫ (λ σ. >))(σ) VV>

Proof. We focus on the first proposition. From Def. 9.4.3, we know

(op≫ (λ σ. ⊥))(σ) VV
⊕

S|=op(σ)

⊗
σ′∈S

⊥

For this to be equivalent with ⊥, Lemma 9.3.11 (second proposition) tells us
that

⊗
σ′∈S⊥must be equivalent with ⊥ for any S |= op(σ). Lemma 9.3.11 (third

proposition) tells us that in order for this to be the case, there must exist a
σ′ ∈ S. Hence, we must prove S to be inhabited. If S were empty, then ∅ |= op(σ),
and according to Lemma 9.3.12, this means op(σ) VV>, which contradicts the
premise.

We turn our attention to the second proposition. From Def. 9.4.3,

(op≫ (λ σ. >))(σ) VV
⊕

S|=op(σ)

⊗
σ′∈S

>

We need to prove this equivalent with >. Lemma 9.3.11 (first proposition)
tells us there needs to exist some S |= op(σ) such that

⊗
σ′∈S> VV>. If no

such S were to exist, Lemma 9.3.5 tells us that op(σ) VV⊥, which would
contradict the premise. To show that

⊗
σ′∈S> VV>, we are required according

to Lemma 9.3.11 (fourth proposition) to prove that > VV> for any σ′ ∈ S,
which is trivially true. �

OPERATORS 125

We now introduce operators which can return values. We also define a
corresponding binding operation. For operators that do not yield any useful
return values (but instead transforming the state, i.e. exhibit side effects) we
make use of a unit data type.

Definition 9.4.4. The unit set unit has as only element �.

Definition 9.4.5 (RAOperators.operator). An operator from S1 to S2 with result
A is defined as

OperatorS1→S2
A ≡ OperatorS1→(A×S2)?

≡ S1 → (A × S2)?

Definition 9.4.6 (RAOperators.bind). Operator binding�= is defined as

− �= − : OperatorS1→S2
A → (A→ OperatorS2→S3

B)→ OperatorS1→S3
B

op�= f VV op≫ (λ (a, σ). f a σ)

A bind operation which ignores return values is defined as

op1 � op2 ≡ op1 �= (λ x. op2)

with operators returning � ∈ unit.

As with many languages which support monads, we define a special syntax
which will benefit the readability of further formalisations.

Definition 9.4.7 (do notation). We define the do notation, both single line and
multiline:

do x← f ; rest ≡ do x← f
rest

≡ f �= λ x. rest

do f ; rest ≡ do f
rest

≡ f � rest

do f ≡ f

For the sake of completeness, we prove that our monad satisfies the monad
laws [113].

Theorem 9.4.1 (RAOperatorTheorems.monad_theorem_1, .monad_theorem_2, .mo-

nad_theorem_3). The type constructor

T a = (A × S)?

126 FEATHERWEIGHT VERIFAST

the binding �= and unit function

ret ≡ λ r. λ σ. ~(r, σ)�

form a valid Kleisli triple.

ret x �= f ˙VV f x
op �= ret ˙VV op

(op �= f) �= g ˙VV op �= (λ x. f x �= g)

9.5 Basic Operators

In this section, we introduce a last abstraction layer, designed to shield us from
the details of the result algebra. We wish to provide all functionality (demonic
and angelic choice, state, etc.) through a small set of basic operators4. Together
they form a small domain specific language.

Definition 9.5.1 (basic operators). Figure 9.2 gives a list of all basic operators.

We clarify the semantics of these basic operators. pickd(A) represents demonic
choice over a set A. pickd(A) �= f succeeds iff f (a) succeeds for every a ∈ A.
Angelic choice is made available through picka(A): picka(A) �= f succeeds iff
there is some a ∈ A for which f (a) succeeds.

Example 9.5.1. Reading a single byte from a file can be modelled as follows:

read-byte : OperatorS→SZ
read-byte = pickd(Z256)

To “execute” this program, we unfold its type signature (Def. 9.4.5 and Def. 9.4.1):

read-byte : S → (Z × S)?

Since we don’t use state, we can choose S arbitrarily, say unit. Let us verify this
function: we expect read-byte to return some value in the [0, 255] range. Thus,
the result of executing read-byte should satisfy the postcondition {1, 2, . . . , 255}.
However, the types don’t match: the postcondition is a set of integers, while the result
contains pairs of type Z × unit. We can resolve this in two ways. Either we adapt the
postcondition:

{(1,�), (2,�), . . . , (255,�)} |= read-byte(�)
4For the sake of clarity: “primitive operator” and “operator” define function type signatures.

A basic operator is a function with that type, i.e. a basic operator is an instance of a (primitive)
operator.

BASIC OPERATORS 127

return : A→ OperatorS→SA yield

return a = λ σ. ~(a, σ)�

nop : OperatorS→Sunit nop

nop = return �

picka : P(A)→ OperatorS→SA pick_angelically

picka(A) = λ σ.
⊕

a∈A ~(a, σ)�

pickd : P(A)→ OperatorS→SA pick_demonically

pickd(A) = λ σ.
⊗

a∈A ~(a, σ)�

current-state : OperatorS→S
S

current_state

current-state = λ σ. ~(σ, σ)�

set-current-state : S2 → OperatorS1→S2
unit set_current_state

set-current-state σ′ = λ σ. ~(�, σ′)�

block : OperatorS→SA block

block = λ σ. >

fail : OperatorS→SA failure

fail = λ σ. ⊥

assert : bool→ OperatorS→Sunit assert

assert true = nop
assert false = fail

assume : bool→ OperatorS→Sunit assume

assume true = nop
assume false = block

Figure 9.2: Basic Operators (in Coq Module RAOperators)

128 FEATHERWEIGHT VERIFAST

or we can make use of a primitive operator which is able to break out of the A × S mold
which (nonprimitive) operators require.

unpack = λ (n, s). ~n�

We can now check the postcondition as follows:

{1, 2, . . . , 255} |= (read-byte≫ unpack)(�)

block represents nontermination. Its name originates from its use: we rely on it
to block further execution and hence prevent failure from occurring later on.
Formally, this is expressed by the fact that block �= op ˙VV block. It is seldom
used directly; a more useful conditional block is available through assume.

The fail operator leads the current execution path to unrecoverable failure:
fail �= op ˙VV fail. This does not necessarily mean the entire execution must
fail: a previously made angelic choice may provide alternative nonfailing paths.
Like block, it has a conditional variant, namely assert.

Example 9.5.2. This example discusses how we can implement integer factorisation.
Abstractly, we wish to define a function with the following specifications:

factor : Z→ Z ×Z

factor(n) = (k,m) ⇐⇒ k ≥ 2 ∧ k ·m = n

The operator factor-alg(n) is a possible implementation. If no pair (k,m) exists
satisfying the contract (i.e. when n = 1), then the computation does not terminate.

factor-alg(n) = do factor-aux(n, 2)

factor-aux(n, k) = do if n mod k = 0
then return (k,n/k)
else factor-aux(n, k + 1)

We can verify specific cases (using unpack from Example 9.5.1):

{(2, 13), (13, 2)} |= (factor-alg(26)≫ unpack)(�)
{(2, 6), (3, 4), (4, 3), (6, 2), (12, 1)} |= (factor-alg(12)≫ unpack)(�)

Instead of manually enumerating all possible outputs, we can make use of assert to
automatically check the result:

check(n) = do (k,m)← factor-alg(n)
assert k ≥ 2
assert k ×m = n

{�} |= (check(26)≫ unpack)(�)

BASIC OPERATORS 129

assert either fails or returns �, which is why we check for postcondition {�}. To
(theoretically) check all cases at once, we can write

{�} |=

do n← pickd(Z)
(k,m)← factor-alg(n)
assert k ≥ 2
assert k ×m = n

 ≫ unpack

 (�)

These are approximately the same steps taken by Featherweight VeriFast to verify a
function:

• Setting up a precondition (in our example, this consists of picking an arbitrary
n).

• Executing the function under examination (calling factor-alg(n)).

• Asserting the postcondition (the two assertions).

• Ensuring that no failure has occurred (checking that it satisfies postcondition
{�}).

An alternative, more declarative way to factor an integer consists of magically picking
the right results:

factor-dec(n) = do k← pickd(Z)
m← pickd(Z)
assume k ≥ 2
assume k ×m = n

The first two lines fork execution demonically, and the last two ensure that only those
remain that have yielded correct results. In other words, all paths where k < 2 or
k ×m , n have been “blocked” and do not influence further execution. Note how the
behaviour of factor-dec is purely determined by factor’s contract.

This approach of defining the same function in two different ways, once algorithmically,
once declaratively, is key to modular verification: it allows each function to be verified
in isolation, independently of the algorithmic implementation of other functions. We
will elaborate on this in a later section.

Example 9.5.3. Angelic choice allows us to elegantly represent failure and fork
execution into multiple paths while only requiring one of them to succeed. This
example shows how we can take further advantage of angelic choice to simplify the
implementation of certain algorithms.

During the formalisation of Featherweight VeriFast, we will need to find some element
in a set satisfying a certain condition. If no such element can be found, failure must

130 FEATHERWEIGHT VERIFAST

ensue. If multiple such elements can be found, execution has to succeed for one of them.
This clearly fits angelic choice.

find : P(A)→ (A→ bool)→ OperatorS→SA
find(A,P) = do a← picka(A)

assert P(a)
return a

This should not be confused with the approach taken in Example 9.5.2.

• Demonic choice and assumption express universal quantification:

do a← pickd(A); assume P(a); op(a) succeeds ⇐⇒ ∀ a ∈ A. op(a) succeeds

If no such a exists, execution merely blocks, i.e. does not fail.

• Angelic choice and assertion express existential quantification:

do a← picka(A); assert P(a); op(a) succeeds ⇐⇒ ∃ a ∈ A. op(a) succeeds

Execution fails if no such a exists.

Example 9.5.4. Continuing from Example 9.3.4 (page 110), Fig. 9.3 shows how to
formalise the semantics using the basic operators. We always operate on the same state,
i.e. a store keeping track of the angelically chosen values:

S = store = id→ Z

The operators store and set-store get and set the store, respectively. Introducing them
as separate operators (instead of just using state and set-state directly) improves
abstraction: adding extra components to the state would not require changes to be
made to the existing code.

The lookup operator looks up a variable’s binding in the current store. local executes
its second argument op in a local store s: after executing op, the store is restored to its
old state. Lastly, evaluate defines how expressions must be evaluated.

9.6 Result Algebra Models

This section discusses models of the result algebra, i.e. an interpretation for
each operation that obeys the axioms as given in Def. 9.3.1 (page 110). We will
mostly focus on their computability and their implementation in Coq.

RESULT ALGEBRA MODELS 131

store : OperatorS→Sstore
store = do state

set-store : store→ OperatorS→Sunit
set-store(s) = do set-state(s)

lookup : id→ OperatorS→SZ

lookup(x) = do s← store
return s(x)

local : S → OperatorS→SA → OperatorS→SA
local(s, op) = do s′ ← store

set-store(s)
r← op
set-store(s′)
return r

evaluate : expression→ OperatorS→SZ

evaluate(x) = do lookup(x)
evaluate(pick x ∈ X in e) = do n← picka(X)

s← store
local(s[x := n],evaluate(e))

evaluate({A}) = do pickd(A)
evaluate(e1 + e2) = do v1 ← evaluate(e1)

v2 ← evaluate(e2)
return (v1 + v2)

evaluate(e1 × e2) = do v1 ← evaluate(e1)
v2 ← evaluate(e2)
return (v1 × v2)

Figure 9.3: Formalisation for Example 9.5.4

132 FEATHERWEIGHT VERIFAST

Concrete Semiconcrete Symbolic
Infinite sets X X
Computable X

Result Algebra X X X
Effective Result Algebra X

Figure 9.4: Computability Requirements

One main issue is the index set of the ⊕ and ⊗ operations. For the formalisation
of Featherweight VeriFast, both finite and infinite indexing sets are needed.
This causes some complications for the Coq implementation with regards to
the type of the index set.

Using the Coq type Type gives total freedom: any well defined set is acceptable.
But, while it does allow for computable index sets, it does not actually guarantee
computability, which makes writing algorithms impossible in Coq5.

Conversely, using the Coq type Set does promise computability, in which case
infinite sets pose a problem. While coinductive types permit us to define
computable infinite data structures, their use in algorithms is constrained so as
to ensure termination.

Trying to find an ideal solution to these issues would result in a complex
Coq implementation filled with obscure design choices which could only be
motivated by elaborate and theoretical explanations. Instead, we have chosen
for simplicity and split the Coq script in two parts.

The concrete and semiconcrete execution need not be computable and require
infinite sets, while the symbolic execution should be computable and only
operates on finite sets. This makes for a clean division: nowhere do we need
computable infinite data structures. Thus, we can define two result algebras in
Coq: one theoretical (noncomputable, infinite indexing sets) and one effective
(computable, finite indexing sets). An overview is shown in Fig. 9.4.

Definitions and axioms for the noncomputable result algebra are shown in
Listing 9.1 (page 111) and Listing 9.2 (page 112) and those for the effective result
algebra6 in Listing 9.3 and Listing 9.4. Multiple models have been written in
Coq (see Fig. 9.5), two of which we discuss in detail and compare.

5Defining some extra axioms would make it possible, but could put consistency at risk.
6We refer the interested reader to Sect. C.6.2 for more clarification on the Coq code.

RESULT ALGEBRA MODELS 133

Description Coq script Effective
S
? = P(P(S)) SetOfSets.v

Weakest Preconditions WeakestPreconditions.v
Inductive Formulae InductiveFormulae.v
Inductive Formulae EInductiveFormulae.v X

Figure 9.5: Coq Implementations of Result Algebra Models

Parameter RA : Set -> Set.

Variables
(S : Set)
(S_eqdec : forall s s’ : S, { s = s’ } + { s <> s’ }).

Parameters (single : S -> RA S)
(models : Ensemble S -> RA S -> Prop)
(add mul : list (RA S) -> RA S)
(top bottom : RA S)
(implies : relation (RA S)
(is_bottom : RA S -> bool).

Listing 9.3: Effective Result Algebra Signature in Coq

9.6.1 Inductive Formulae

The inductive formulae model (Listing 9.5, found in the InductiveFormulae.v
Coq script) is a rather straightforward model for the result algebra and makes
the link with the boolean algebra more explicit: demonic choice corresponds to
conjunction, angelic choice to disjunction. Top and bottom are modelled by true
and false, respectively. The lack of a negation operator and the monotonicity
axiom constitute the main difference between the result algebra and the boolean
algebra. The result algebra, however, is a complete lattice: the order relation
is V and the join and meet operations are ⊕ and ⊗, respectively. Readers
unfamiliar with Coq can find more explanations in Sect. C.6.4.

134 FEATHERWEIGHT VERIFAST

Variable S : Set.

Axiom single_axiom :
forall (s : S) (S : Ensemble S),

models S (single s) <-> In s S.

Axiom top_axiom :
equiv top (mul (empty_set (RA S))).

Axiom bottom_axiom :
equiv bottom (add (empty_set (RA S))).

Axiom add_axiom :
forall (Rs : list (RA S)) (S : Ensemble S),

models S (add Rs) <-> exists R, set_In R Rs /\
models S R.

Axiom mul_axiom :
forall (Rs : list (RA S)) (S : Ensemble S),

models S (mul Rs) <-> forall R, set_In R Rs ->
models S R.

Axiom implies_axiom :
forall (R R’ : RA S),

implies R R’ <-> forall (S : Ensemble S),
models S R -> models S R’.

Axiom monotonic_models_axiom :
forall (R : RA S) (S S’ : Ensemble S),

Included S’ S -> models S’ R -> models S R.

Listing 9.4: Effective Result Algebra Axioms in Coq

RESULT ALGEBRA MODELS 135

Inductive formula (S : Type) : Type :=
| f_and : forall I (R : I -> formula S), formula S
| f_or : forall I (R : I -> formula S), formula S
| f_lit : S -> formula S.

Definition empty_R (S : Type) : False -> formula S.

Definition f_true (S : Type) : formula S :=
(@f_and S False (empty_R S)).

Definition f_false (S : Type) : formula S :=
(@f_or S False (empty_R S)).

Definition RA (S : Type) : Type := formula S.

Variable S : Type.

Definition single (x : S) : RA S := f_lit x.

Fixpoint models (S : Ensemble S) (R : RA S) : Prop :=
match R with

| f_and J R’ => forall j : J, models S (R’ j)
| f_or J R’ => exists j : J, models S (R’ j)
| f_lit s => In s S

end.

Definition add {I : Type} (R : I -> RA S) : RA S :=
f_or R.

Definition mul {I : Type} (R : I -> RA S) : RA S :=
f_and R.

Definition top : RA S := f_true S.

Definition bottom : RA S := f_false S.

Definition implies (R R’ : RA S) : Prop :=
forall S, models S R -> models S R’.

Listing 9.5: Inductive Formulae Model in Coq

136 FEATHERWEIGHT VERIFAST

9.6.2 Weakest Preconditions

A particularly interesting model is the following7:

S
? = { R | R ∈ P(P(S))) ∧ ∀ Σ,Σ′. Σ ∈ R⇒ Σ ⊆ Σ′ ⇒ Σ′ ∈ R }

~x� = { S ∈ P(S) | x ∈ S }⊕
i∈I

R(i) =
⋃
i∈I

R(i)

⊗
i∈I

R(i) =
⋂
i∈I

R(i)

S |= R = S ∈ R

> = P(P(S))

⊥ = ∅

In this section, we show how this model acts as a bridge between the result
algebra and weakest preconditions (Sect. 5.4, page 49). We show how there is
a correspondence between the manipulation of logical formulae representing
weakest preconditions and the manipulation of results.

A result is an upward closed set of sets of states. Each of these sets S ∈ R
expresses a demonic choice over its elements

⊗
s∈S ~s�. The set of such sets

corresponds to the angelic choice
⊕

S∈R S. Hence, the set of sets representation
is actually a normalised form of the result.

Let us examine its relation to the weakest precondition verification conditions.
As a reminder, the weakest precondition has type signature

wp : Command→ StatePredicate→ StatePredicate

wp(c,Q) represents the precondition which has to be satisfied by an initial state
so that execution will end up in a final state satisfying the postcondition Q. If
we represent StatePredicates by sets of states, the type signature becomes

Command→ P(Spost)→ P(Spre)

7We omitted the Coq script as its cryptic nature fails to provide any extra insights. We refer the
interested reader to the WeakestPreconditions.v script file.

RESULT ALGEBRA MODELS 137

We have added the pre and post subscripts to make the distinction between
preconditions and postconditions clearer. An equivalent form is

Command→ (Spost → Prop)→ Spre → Prop

Flipping the second and third argument gives

Command→ Spre → (Spost → Prop)→ Prop

which can be folded back into sets:

Command→ Spre → P(P(Spost))

In other words, given a command and an initial state, this reorganised wp
function yields a set of sets of states, representing the resulting output states.
This fits the mold of operators, i.e. the type can be written Command →
OperatorS→S. It can act as an evaluation function exec, comparable to the one
defined in Fig. 9.5.4. In short, this can be written

wp(c)] = exec(c) (9.2)

where f]
≡ λ x y. f y x flips arguments.

As of yet, only the types have been shown to match. Let us fleshen out the
link by considering operator binding, which corresponds to sequencing of
commands.

wp (c1; c2) Q = wp c1 (wp c2 Q)

= =

(exec (c1; c2))] Q (exec c1)]((exec c2)] Q)

=

(exec c1≫ exec c2)] Q

The equality on the upper row originates from Def. 5.4.1 on page 49. The
second row is obtained by using the equality from (9.2). Using transitivity and
flipping arguments on both sides gives

exec c1≫ exec c2 = ((exec c1)] ◦ (exec c2)])]

Intuitively, the flipping of arguments is similar to taking the inverse of the
function (in this instance). The wp function works backwards, taking output
states and returning input states, while exec operates in a forward direction,
transforming input into output. Switching between these two modes of
operation is achieved by flipping.

138 FEATHERWEIGHT VERIFAST

9.7 Operator Lemmas

The following sections will contain lemmas and theorems whose proofs we
want to operate on the level of operators, i.e. if possible, we wish to abstract
away underlying details. This section contains some lemmas which are essential
for this.

First we divide operators into categories: one categorisation distinguishes
operators based on which types of nondeterminism they exhibit, the other on
how an operator interacts with state. Then we state some lemmas about how
operators of certain categories interact with each other. An important result is
the possibility of switching operators in bind operations if certain conditions
are met.

Definition 9.7.1 (RAOperatorTheorems.demonic_op, .demonic_op_K). An operator
op is demonic if it always returns demonic results.

demonic(op) ≡ ∀ σ. demonic(op(σ)) ≡ ∃ K . op ˙VV λ σ.
⊗

r∈K (σ)

~r�

The characteristic functionK (σ) returns the characteristic set of op(σ).

Definition 9.7.2 (RAOperatorTheorems.angelic_op, .angelic_op_K). An operator
is angelic if it always returns angelic results.

angelic(op) ≡ ∀ σ. angelic(op(σ)) ≡ ∃ K . op ˙VV λ σ.
⊕

r∈K (σ)

~r�

The characteristic functionK (σ) returns the characteristic set of op(σ).

Definition 9.7.3 (RAOperatorTheorems.deterministic_op, deterministic_op_K).
An operator is deterministic if it always returns deterministic results.

deterministic(op) ≡ ∀ σ. deterministic(op(σ)) ≡ ∃ K . op ˙VV λ σ. ~K (σ)�

The characteristic functionK (σ) returns the characteristic value of op(σ).

Definition 9.7.4 (RAOperatorTheorems.pure_op, .pure_op_K). A pure operator op
leaves the state untouched.

pure(op) ≡ ∃ K . op ˙VV λ σ. (λ r. (r, σ))⇑(K (σ))

K is called the characteristic function of the pure operator.

Definition 9.7.5 (RAOperatorTheorems.independent_op, .independent_op_K). A
state independent operator op is a pure operator whose results do not depend on the
state.

independent(op) ≡ ∃ K . op ˙VV λ σ. (λ r. (r, σ))⇑(K (σ))

K is called the characteristic result of the state independent operator.

OPERATOR LEMMAS 139

Lemma 9.7.1. We can switch operators as follows: do r1 ← op1
r2 ← op2
return (r1, r2)

 ˙VV

 do r2 ← op2
r1 ← op1
return (r1, r2)

on the condition that one of the following combinations is true

• op1 is demonic and op2 is state independent and demonic;

• op1 is angelic and op2 is state independent and angelic;

• op1 is pure and angelic, op2 is pure and angelic;

• op1 is pure and demonic, op2 is pure and demonic;

• op1 is pure and demonic, op2 is pure and demonic;

• . . .

Proof. We only prove the first case. The operators can be normalised as follows:

op1 ˙VV λ σ.
⊗

(r,σ′)∈K1(σ)

~(r, σ′)� (9.3)

op2 ˙VV λ σ.
⊗
r∈K2

~(r, σ)� (9.4)

Starting with the lhs

do r1 ← op1
r2 ← op2
return (r1, r2)

˙VV op1 �=
(
λ r1. op2 �= λ r2. return (r1, r2)

)
˙VV op1 �=

(
λ r1. op2 �= λ r2. λ σ2. ~((r1, r2), σ2)�

)
Let R(r1)(r2, σ) = ~((r1, r2), σ)�

˙VV op1 �=
(
λ r1. op2≫ R(r1)

)
˙VV op1 �=

(
λ r1. R⇑(r1) ◦ op2

)
˙VV op1 �=

(
λ r1. λ σ1. R(r1)⇑(op2(σ1))

)

140 FEATHERWEIGHT VERIFAST

Rewriting op2 using Equation (9.4),

˙VV op1 �=

λ r1. λ σ1. R(r1)⇑
⊗

r2∈K2

~(r2, σ1)�

˙VV op1 �=

λ r1. λ σ1.
⊗
r2∈K2

R(r1)(r2, σ1)

˙VV op1≫

λ (r1, σ1).
⊗
r2∈K2

~((r1, r2), σ1)�

˙VV

λ (r1, σ1).
⊗
r2∈K2

~((r1, r2), σ1)�

⇑

◦ op1

˙VV λ σ0.

λ (r1, σ1).
⊗
r2∈K2

~((r1, r2), σ1)�

⇑

(op1(σ0))

Rewriting op1 using Equation (9.4),

˙VV λ σ0.

λ (r1, σ1).
⊗
r2∈K2

~((r1, r2), σ1)�

⇑
 ⊗

(r1,σ1)∈K1(σ0)

~(r1, σ1)�

˙VV λ σ0.

⊗
(r1,σ1)∈K1(σ0)

⊗
r2∈K2

~((r1, r2), σ1)�

Now similarly for the rhs,

do r2 ← op2
r1 ← op1
return (r1, r2)

˙VV op2 �=
(
λ r2. op1≫ R′(r2)

)
where R′(r2)(r1, σ) = ~((r1, r2), σ2)�

˙VV op2 �=
(
λ r2. op1≫ R′(r2)

)
˙VV op2 �=

(
λ r2. λ σ1. R′(r2)⇑(op1(σ1))

)

OPERATOR LEMMAS 141

Rewriting op1 using Equation (9.3),

˙VV op2 �=

λ r2. λ σ1. R′(r2)⇑
 ⊗

(r1,σ2)∈K1(σ1)

~(r1, σ2)�

˙VV op2≫

λ (r2, σ1).

 ⊗
(r1,σ2)∈K1(σ1)

R′(r2)(r1, σ2)

˙VV λ σ0.

λ (r2, σ1).

 ⊗
(r1,σ2)∈K1(σ1)

R′(r2)(r1, σ2)

⇑

(op2(σ0))

Rewriting op2 using Equation (9.4),

˙VV λ σ0.

λ (r2, σ1).

 ⊗
(r1,σ2)∈K1(σ1)

~((r1, r2), σ2)�

⇑ ⊗

r2∈K2

~(r2, σ0)�

˙VV λ σ0.

⊗
r2∈K2

⊗
(r1,σ2)∈K1(σ0)

~((r1, r2), σ2)�

By Lemma 9.3.20

˙VV λ σ0.
⊗

(r1,σ2)∈K1(σ0)

⊗
r2∈K2

~((r1, r2), σ2)�

�

Lemma 9.7.2 (RAOperatorTheorems.bind_demonic, .bind_angelic, .bind_determi-
nistic, .bind_pure, .bind_independent). Binding preserves an operator’s property
of being demonic, angelic and deterministic. Using the following shorthand notation

P∀(f) = ∀ x. P(f x)

demonic(op) ⇒ demonic∀(f) ⇒ demonic(op�= f)
angelic(op) ⇒ angelic

∀
(f) ⇒ angelic(op�= f)

deterministic(op) ⇒ deterministic∀(f) ⇒ deterministic(op�= f)
pure(op) ⇒ pure

∀
(f) ⇒ pure(op�= f)

independent(op) ⇒ independent
∀
(f) ⇒ independent(op�= f)

where
op : OperatorS1→S2

A
f : A→ OperatorS2→S3

B

142 FEATHERWEIGHT VERIFAST

9.8 Concrete Execution

As explained in Sect. 9.2, we will define three semantics for the Small Imperative
Language defined in Sect. 9.1. This section fully formalises the first, known as
the concrete execution.

9.8.1 Formalisation

We start with posing ourselves the question: Given a SIL program, how do we
ascertain that no failures occur during execution? The most straightforward
approach would be to simply execute the program until it finishes. We remind
the reader of some key properties of the SIL language:

• All heap accesses must be checked: invalid accesses must lead to failure.

• No guarantees are made regarding the location nor contents of newly
allocated memory blocks. Verification should take into account all possible
locations and contents.

Modelling these will pose no problem as we have prepared a semantic
framework specially for this purpose: the concrete semantics will take the form
of an operator, as described in Sect. 9.4.

Operators require us to define a state. In the case of the concrete execution, we
need it to comprise two components:

• A store which keeps track of variable bindings. The only allowed values
are natural numbers. Thus, a store is modelled as a (total) function from
variables toN.

• A heap, represented as a multiset of heap chunks, similar to those that
have already been discussed in Sect. 8.2.1. The concrete execution uses
two kinds of heap chunks:

– p 7→ v expresses that the memory cell at address p contains value v.
Reading and writing to this memory location is only allowed if the
corresponding heap chunk is present on the heap.

– mb(p,n) serves to keep track of memory cells that constitute a
memory block. For example, if a mb(10, 2) chunk is present on
the heap, so will 10 7→ v1 and 11 7→ v2, for some v1, v2 ∈ N. The
command free(10) will rely on the mb(10, 2) chunk to determine
how many 7→ chunks it needs to remove from the heap.

CONCRETE EXECUTION 143

We call this a concrete state.

Definition 9.8.1 (ConcreteExecution.CStore.t). A concrete store s maps variable
identifiers to values.

CStore ≡ Id→N

Definition 9.8.2 (ConcreteExecution.zero_store). The zero concrete store maps
every variable to 0.

s0 ≡ λ x. 0

Definition 9.8.3 (ConcreteExecution.Predicate.t). A concrete predicate p is
either the points-to predicate 7→ or the malloc block predicate mb.

CPredicate ≡ {7→,mb}

Definition 9.8.4 (ConcreteExecution.CChunk.t). A concrete chunk α is the
application of a concrete predicate to two arguments belonging toN.

CChunk ≡ { p(x, y) | p ∈ CPredicate, x, y ∈N }

Definition 9.8.5 (ConcreteExecution.CHeap.t). A concrete heap h is a multiset of
concrete chunks, i.e. total functions from concrete chunks to naturals.

CHeap ≡ CChunk→N

The reader might wonder why the heap is defined as a multiset instead of a
normal set. It is certainly so that in the case of the concrete execution, having
the same chunk appear more than once on the heap makes no sense. However,
the other executions will perform heap abstraction (introduced in Sect. 9.9)
which will make it necessary to be able to have the heap contain the same
chunk multiple times. For reasons of consistency, we have chosen to make the
concrete heap a multiset also.

Definition 9.8.6 (ConcreteExecution.concrete_state). A concrete execution
state σ consists of a concrete store and a concrete heap.

CState ≡ CStore × CHeap

We introduce the following notation for a state consisting of a store s and a heap h:
〈s, h〉c.

SIL supports expressions and boolean expressions. When needed, they are
evaluated in the current store. For completeness, we formalise how to perform
this evaluation.

144 FEATHERWEIGHT VERIFAST

Definition 9.8.7 (Expression.evaluate). Evaluating an expression e in a concrete
store s is defined as

eval-expr : CStore→ Expression→N
eval-expr(s,n) = n
eval-expr(s, x) = s(x)

eval-expr(s, e +e e′) = eval-expr(s, e) + eval-expr(s, e′)
eval-expr(s, e −e e′) = eval-expr(s, e) − eval-expr(s, e′)
eval-expr(s, e ×e e′) = eval-expr(s, e) × eval-expr(s, e′)

Definition 9.8.8 (BooleanExpression.evaluate). Evaluating a boolean expression e
in a concrete store s is defined as

eval-bexpr : CStore→ BExpression→ Bool
eval-bexpr(s, trueb) = true

eval-bexpr(s, e =b e′) = eval-expr(s, e) = eval-expr(s, e′)
eval-bexpr(s, e <b e′) = eval-expr(s, e) < eval-expr(s, e′)
eval-bexpr(s, e ≤b e′) = eval-expr(s, e) ≤ eval-expr(s, e′)
eval-bexpr(s, b ∧b b′) = eval-expr(s, b) ∧ eval-expr(s, b′)

eval-bexpr(s,¬b b) = ¬ eval-bexpr(s, b)

We now proceed with the definition of a number of auxiliary operators. Since
all operate on the same state type CStore and do not modify it, we define a
shorthand notation so as to make the type signatures less cluttered.

Definition 9.8.9 (ConcreteExecution.c_operator). A concrete operator is an
operator operating on concrete states.

COperatorA ≡ OperatorCState→CState
A

The operators current-store and set-current-store serve to get and set the store
in the current state. Similarly, current-heap and set-current-heap are provided
as low level operators to interact with the heap.

Definition 9.8.10 (current store, set_current store). The operator current-store
fetches the store from the current program state.

current-store : COperatorCStore
current-store = do 〈s, h〉c ← current-state

return s

The operator set-current-store(s′) sets s′ as the new store.

set-current-store : CStore→ COperatorunit
set-current-store(s′) = do 〈s, h〉c ← current-state

set-current-state(〈s′, h〉c)

CONCRETE EXECUTION 145

Definition 9.8.11 (current heap, set_current heap). current-heap fetches the heap
from the current program state.

current-heap : COperatorCHeap
current-heap = do 〈s, h〉c ← current-state

return h

The operator set-current-heap(h′) sets h′ as the new heap.

set-current-heap : CHeap→ COperatorunit
set-current-heap(h′) = do 〈s, h〉c ← current-state

set-current-state(〈s, h′〉c)

We build higher level operators on top of current-store and set-current-store:
read-store and update-store look up and modify a variable binding in the store,
respectively. with-store(s, op) executes op locally in the given store s: it is similar
to creating a new stack frame in C.

Definition 9.8.12 (ConcreteExecution.read_store). The operator read-store(x)
looks up the value to which x is bound in the store.

read-store : Var→ COperatorN
read-store(x) = do s← current-store

return s(x)

Definition 9.8.13 (ConcreteExecution.update_store). update-store(x, v) updates
the store so that x is mapped to v, and all other variables’ mappings remain unchanged.
This operator never fails.

update-store : Var→N→ COperatorunit
update-store(x, v) = do s← current-store

set-current-store(s[x := v])

Example 9.8.1. Intuitively, read-store(x) executed in the state σ = 〈s0[x := 4], ∅〉c
leaves the state unchanged and yields 4 as return value. More formally, the actual
result is

read-store(x)(σ) VV ~(4, σ)�

where 4 is the return value and σ the output state. Thus, we also have

{(4, σ)} |= read-store(x)(σ)

Writing the store gives:

update-store(x, 5)(σ) VV ~(�, 〈s0[x := 5], ∅〉sc)�

146 FEATHERWEIGHT VERIFAST

Definition 9.8.14 (ConcreteExecution.with_store). The operator with-store(s, op)
saves the current store, sets s as the new current store, applies op, and restores the
original store.

with-store : CStore→ COperatorA → COperatorA
with-store(s, op) = do s′ ← current-store

set-current-store(s)
r← op
set-current-store(s′)
return r

The evaluate operator acts a wrapper around the function eval-expr.

Definition 9.8.15 (ConcreteExecution.evaluate). evaluate(e) evaluates the expres-
sion e in the current store.

evaluate : Expression→ COperatorN
evaluate(e) = do s← current-store

return eval-expr(s, e)

The assume-bexpr and assert-bexpr evaluate a boolean expression in the
current store. If the boolean expression does not evaluate to true, execution
blocks or fails, respectively.

Definition 9.8.16 (ConcreteExecution.assume_bexpr). The assume-bexpr opera-
tor prunes the program states which do not satisfy a certain condition.

assume-bexpr : BExpression→ COperatorunit
assume-bexpr(b) = do s← current-store

assume(eval-bexpr(s, b) = true)

Definition 9.8.17 (ConcreteExecution.assert_bexpr). The assert-bexpr operator
demands that a certain condition be true. If this is not the case, failure ensues.

assert-bexpr : BExpression→ COperatorunit
assert-bexpr(b) = do s← current-store

assert(eval-bexpr(s, b) = true)

After having defined store related operators, we now turn our attention to the
heap.

Definition 9.8.18 (ConcreteExecution.produce_chunk). produce-chunk(α) adds a
single chunk α to the heap. This operator never fails.

produce-chunk : CChunk→ COperatorunit
produce-chunk(α) = do h← current-heap

set-current-heap(h] {α})

CONCRETE EXECUTION 147

Definition 9.8.19 (ConcreteExecution.consume_chunk). consume-chunk(α) re-
moves a single chunk α from the heap. If the heap does not contain the given
chunk, failure ensues. If the heap contains the given chunk multiple times, one instance
is removed.

consume-chunk : CChunk→ COperatorunit
consume-chunk(α) = do h← current-heap

assert α ∈ h
set-current-heap(h − {α})

Definition 9.8.20 (ConcreteExecution.alloc_set, .allocate). allocate(n) allo-
cates a memory block of size n on the heap.

alloc-set : COperator
P(N)

alloc-set = do h← current-heap
return { ` | ` 7→ v ∈ h }

allocate-at : N→N[∗]
→ COperatorunit

allocate-at ` [] = do nop
allocate-at ` (v :: vs) = do A← alloc-set

assume((` + ||vs||) < A)
produce-chunk((` + ||vs||) 7→ v)
allocate-at ` vs

allocate : N→ COperatorN
allocate(n) = do (` :: vs)← pickd(N[n+1])

allocate-at ` vs
return `

where A[∗] denotes the set of lists of arbitrary length with elements of type A, A[n]

denotes the set of lists of length n with elements of type A and ||xs|| denotes the length
of the list xs.

Memory allocation is the sole source of nondeterminism in the concrete
execution. Allocating a memory block of size n consists of the following
steps:

1. We start with picking8 a random memory location ` and n random values
vs. Whether the memory block can fit at location ` will be determined
later.

2. allocate-at(`, vs) produces ||vs|| consecutive 7→ chunks, starting at `. The
operator assume((` + ||vs||) < A) makes sure the location is not already

8We pregenerate all random values in one step to simplify proofs later.

148 FEATHERWEIGHT VERIFAST

in use. If it is, execution blocks: we are not interested in simulating
overlapping memory blocks. Each memory cell is assigned one of the
random values in the list vs.

3. The memory location ` is returned.

It is sometimes necessary to find a chunk on the heap whose arguments are
not all known. For example, reading from memory location ` requires a chunk
` 7→ v to be present on the heap, where v is unknown. Finding this chunk
must be done angelically: if no matching chunks are found, failure must ensue.
Multiple matches are not possible in the concrete execution, as memory is
always allocated on unused parts of the heap.

Definition 9.8.21 (ConcreteExecution.find_chunk). find-chunk(p, x) returns a
chunk with the specified predicate p and first argument xs.

find-chunk : CPredicate→N→ COperatorCChunk
find-chunk(p, x) = do h← current-heap

p′(x′, y′)← picka(h)
assert(p = p′)
assert(x = x′)
return p(x, y′)

The following operator is allocate-at’s opposite: consume-cell(`,n) removes n
consecutive 7→ chunks from the heap, starting at `.

Definition 9.8.22 (ConcreteExecution.consume_chunk). consume-cells(`,n) re-
moves the following n chunks from the heap: ` + i 7→ v with i = 0, . . . ,n − 1.

consume-cells : N→N→ COperatorunit
consume-cells(`, 0) = do nop

consume-cells(`,n + 1) = do α← find-chunk(7→, ` + n)
consume-chunk(α)
consume-cells(`,n)

Definition 9.8.23 (ConcreteExecution.read_cell). The operator read-cell(`) looks
for a ` 7→ v chunk on the heap and extracts the value v. Failures ensues if no such
chunk can be found.

read-cell : N→ COperatorN
read-cell(`) = do (` 7→ v)← find-chunk(7→, `)

return v

CONCRETE EXECUTION 149

Definition 9.8.24 (ConcreteExecution.write_cell). The operator write-cell(`, v)
replaces a ` 7→ v′ chunk by ` 7→ v. If no such chunk is present on the heap, failure
ensues.

write-cell : N→N→ COperatorunit
write-cell(`, v) = do α← find-chunk(7→, `)

consume-chunk(α)
produce-chunk(` 7→ v)

Definition 9.8.25 (ConcreteExecution.block_size). The operator block-size(`)
looks for a mb(`,n) chunk on the heap and extracts its size n. This operator leads to
failure if no such chunk is present.

block-size : N→ COperatorN
block-size(`) = do mb(`,n)← find-chunk(mb, `)

return n

Definition 9.8.26 (ConcreteExecution.concrete_execution_n, .concrete_execu-
tion). The operator c-execute(c) denotes the concrete execution of the given command
c. We define it by induction on the execution depth. Specifically, we first define the
step-indexed operator c-executen(c) (see Figure 9.6), which denotes the execution of
command c up to depth n. c-executen(c) contains only the execution paths whose
depth is at most n. We can then define c-execute(c):

c-execute(c) =
⊗
n∈N

c-executen(c)

We sometimes use the abbreviation c-exec instead of c-execute.

Definition 9.8.27 (ConcreteExecution.valid_program). A program P is valid if,
for any input argument and empty heap, execution does not end in failure:

verify = do v← pickd(N)
update-store(x, v)
c-execute(c)

valid-programc(P) ≡ verify(〈s0, ∅〉c) 6 VV⊥

where c is the body of the main routine and x its parameter.

9.8.2 Shortcomings

While the concrete execution is conceptually simple, it is not computable. Let
us consider execution trees of a program. Giving an exact description of how to

150 FEATHERWEIGHT VERIFAST

c-exec0(c) = do stop

c-execn+1(x := e) = do v← evaluate(e)
update-store(x, v)

c-execn+1(x := [e]) = do `← evaluate(e)
v← read-cell(`)
update-store(x, v)

c-execn+1([e] := e′) = do `← evaluate(e)
v← evaluate(e′)
write-cell(`, v)

c-execn+1(c; c′) = do c-execn(c)
c-execn(c′)

c-execn+1(if b then c else c′) = do op←pickd

({
A(b)� c-execn(c)
A(¬bb)�c-execn(c′)

})
op

c-execn+1(r(e)) = do v← evaluate(x)
with-store(s0[x := v], c-execn(c))

where routine r(x) = c

c-execn+1(x := malloc(n)) = do `← allocate(n)
produce-chunk(mb(`,n))
update-store(x, `)

c-execn+1(free(e)) = do `← evaluate(e)
n← block-size(`)
consume-chunk(mb(`,n))
consume-cells(`,n)

c-execn+1(skip) = do return �

A = assume-bexpr

Figure 9.6: Concrete Execution

SEMICONCRETE EXECUTION 151

build an execution tree is difficult due to the different kinds of nondeterminism.
Fortunately, for our purposes, only a sketch is necessary. Let us assume that
the execution tree is as deep as there are computational steps and that a node
has as many children as the number of subpaths execution forks into at that
points forks. For example, pickd({1, 2, 3}) leads a node to have three children.

Verification as we described it then consists of building the entire tree and
ensuring that certain conditions are met. For this to be computable, the tree
should be of finite size. In the case of concrete execution, this is not so:

• Allocation forks into an infinite number of paths, due to the location and
contents of each memory cell to be picked nondeterministically fromN.
Thus, the tree’s branching factor is infinite.

• The execution tree could have infinite depth in case execution never ends,
e.g. due to endless recursion.

Thus, the tree is both infinitely wide and deep. In the next section, we define
the semiconcrete execution, which eliminates the infinite depth. In a second
step, the symbolic execution takes care of the infinite breadth.

9.9 Semiconcrete Execution

This section discusses the semiconcrete execution, which partly solves the
shortcomings of the concrete execution, as discussed in Sect. 9.8.2. A full
formalisation is presented in Sect. 9.9.1, after which we relate it to the concrete
execution in Sect. 9.9.2.

9.9.1 Formalisation

To solve the issue of the infinitely deep execution trees, the semiconcrete
execution modularises verification. When a routine invocation is encountered,
the concrete execution (Fig. 9.6) proceeds to execute the routine’s body. The
semiconcrete execution takes a different approach: it will directly transform the
program state based on the routine’s contract. Example 9.5.3 gave a preview
of this: it explained how instead of actually computing a result (such as the
concrete execution does), one can also nondeterministically pick values that
obey the contract.

152 FEATHERWEIGHT VERIFAST

For this approach to work, routines must be equipped with contracts. SIL needs
to be extended in a number of ways, giving rise to SIL++. To express contracts,
we introduce assertions.

Definition 9.9.1 (Assertion.t). An assertion a is defined as

Assertion F BExpr
| Predicate(Expr, ?Id)
| Assertion ? Assertion
| if BExpr then Assertion else Assertion

For simplicity, the language contains only predicate assertions whose first argument
is an expression and whose second argument is a variable pattern, which binds the
value of the corresponding argument in the matched chunk to the specified variable x.

As an exception to the notation for assertions, we will use the special syntax
e 7→?x to denote cells; the reader can imagine it stands for 7→ (e, ?x). An example
of assertions is given shortly, in Example 9.9.1.

Definition 9.9.2 (SILPP.routine_definition). Routine specifications consist of
a precondition and a postcondition, both of which are assertions. We introduce the
following new syntax:

routine r(x) requires Assertion ensures Assertion = Command

Example 9.9.1. The following C code

void isqrt(int *p) { ... }

can be implemented in SIL++ as follows

routine isqrt(p)
requires p 7→?v ? 0 ≤ v
ensures p 7→?w ? w × w ≤ v ? v ≤ (w + 1) × (w + 1)

= . . .

Note how we use variable patterns (?v and ?w) to capture the contents of cells. A
variable’s scope extends until the end of the contract. Variables bound in the precondition
can thus be used in the postcondition so as to relate the results to the inputs.

Verification using the concrete execution entails the building of one execution
tree and just making sure that it only fails where allowed (some failures are
allowed due to angelic choice). Using the semiconcrete execution consists of
building many such trees, one for each routine. Each tree is then checked

SEMICONCRETE EXECUTION 153

separately in turn, not only for failures but also to make sure the contract is
upheld. Modularity is reflected by the fact that changing the body of one
routine does not affect the verification result of other routines, as these only
depend on the routine’s contract.

Technically, this is all that is necessary to eliminate the possibility of endless
recursion and thus reduce the depth of execution trees to finite size. However,
the expressiveness of contracts is severely limited: we can only express the
contracts of trivial routines. This issue has already been discussed in Sect. 8.2.3:
currently, we cannot write down contracts for routines that work on data
structures of arbitrary size. One solution is to introduce heap abstraction in the
form of user defined predicates.

Definition 9.9.3 (SILPP.predicate_definition). A predicate definition associates
a predicate name p with a parameter list (fixed to a length of two, for simplicity), and
an assertion as body:

PredicateDefinition F predicate PredicateName(Id, Id) = Assertion

where PredicateName = {7→,mb} ∪UserDefined.

Definition 9.9.4 (SILPP.program, .wellformed_program). A SIL++ program is a set
of routines, one of which is the main routine and is named main, and a set of predicate
definitions. We require that every routine call refers to a routine defined in the program.
We also require that every predicate mentioned in the code has a definition.

Example 9.9.2. A list predicate can be defined in SIL++ as follows:

predicate List(p,n) =
if p =b 0
then n =b 0
else p 7→?v ? (p +e 1) 7→?q ? mb(p, 2) ? List(q, ?m) ? n =b m +e 1

Like VeriFast, Featherweight VeriFast requires explicit folding and unfolding
of custom chunks (i.e. chunks using user defined predicates). We add two new
commands for this purpose.

Definition 9.9.5 (SILPP.command). SIL++ offers two new commands which allow us
to open (or unfold) and close (or fold) custom chunks:

cF . . . | open PredicateName(Expr, _) | close PredicateName(Expr,Expr)

Note that in the case of the open command, the second argument of the heap
chunk is never given. The semiconcrete execution will look for a chunk on the

154 FEATHERWEIGHT VERIFAST

heap with matching predicate and first argument. If multiple such chunks can
be found, angelic choice takes over.

We do not allow pattern variables (as in assertions) for these commands: open
and close are ghost commands, i.e. commands that aid in verification, but must
not alter the runtime semantics of a program. Allowing them to modify
variables would be contrary to this objective.

Example 9.9.3. This example illustrates the possibility of ambiguous matches
Sect. 8.2.5 alluded to. If we flip the arguments of the List predicate in Example 9.9.2,
we can image encountering a situation where the heap contains the chunks List(5, p)
and List(5, q), i.e. two chunks expressing the presence of lists of size 5, pointed to by p
and q respectively. Modifying the head on the first list (e.g. [p] := 3) necessitates the
manual unfolding of the first chunk: open List(5, _). Two chunks match, an angelic
choice is made, resulting in the following two heaps:

h1 = { p 7→ v, p 7→ p′, mb(p, 2), List(4, p′), List(5, q) }
h2 = { q 7→ v, q 7→ q′, mb(q, 2), List(4, q′), List(5, p) }

for some p, p′, q, q′ ∈N.

Executing [p] := 3 requires the presence of a p 7→ v chunk on the current heap. The
heap h1 satisfies this condition, and execution can proceed in the first execution path.
The second path fails, but since the forking was angelic, it has no consequences with
respect to verification.

To recapitulate: in order to avoid execution trees from attaining infinite depths,
we modularised verification on a per routine basis. For this, we introduced
routine contracts, which in turn required us to introduce assertions, user defined
predicates and the open/close command pair. We are now prepared to fully
formalise the semiconcrete execution.

We start with defining the new state. The only difference between concrete and
semiconcrete states lies in the fact that the latter can contain custom chunks.

Definition 9.9.6 (SemiconcreteExecution.SCStore.t). A semiconcrete store is
defined in the same way as a concrete store (Def. 9.8.1, page 143):

SCStore ≡ Id→N

Definition 9.9.7 (SemiconcreteExecution.SCChunk.t). Semiconcrete chunks are
applications of predicates to integer arguments.

α ∈ SCChunk = { p(v, v′) | p ∈ PredicateName, v, v′ ∈N }

SEMICONCRETE EXECUTION 155

Definition 9.9.8 (SemiconcreteExecution.SCHeap.t). A semiconcrete heap is a
multiset of semiconcrete chunks.

SCHeap = SCChunk→N

Note that the set of semiconcrete heaps is a superset of the concrete heaps.

Definition 9.9.9 (SemiconcreteExecution.semiconcrete_state). A semiconcrete
execution state 〈s, h〉sc consists of a semiconcrete store s and a semiconcrete heap h.

σ ∈ SCState = SCStore × SCHeap

We denote a semiconcrete state consisting of a store s and a heap h with 〈s, h〉sc.

Having defined the state, we can proceed with the operators. The operators
defined for the concrete execution are usable for the semiconcrete execution, so
there is no need to redefine them: we only have to update their type so that
they accept semiconcrete states.

Definition 9.9.10 (SemiconcreteExecution.sc_operator). A semiconcrete operator
is an operator working on semiconcrete states.

SCOperatorA ≡ SCOperatorSCState→SCState
A

Operators to deal with assertions are necessary. consume-assertion(a) checks
that the current state satisfies9 a and removes all involved chunks in the process.
produce-assertion(a) does the opposite: it transforms the current state into one
that satisfies the assertion by producing the necessary chunks and ensuring
that the specified conditions are met.

Definition 9.9.11 (SemiconcreteExecution.consume_assertion). Consuming an
assertion performs the following steps:

• It makes sure the current state satisfies the necessary logical conditions (described
by boolean expressions) in the assertion. If not, failure ensues.

• The current heap must contain chunks that match the assertion’s. If not, failure
ensues. If a match is found, the second argument is bound to the given variable.

• A conditional is dealt with by producing the assertion in the appropriate branch.
The other branch is blocked by the assumption.

9More precisely, satisfaction of an assertion a only requires that there is a part of the heap which
is described by a. For example, both semiconcrete states 〈s0, {1 7→ 1}〉sc and 〈s0[x := 5], {1 7→ 1, 2 7→
2}〉sc satisfy the assertion 1 7→?v, but only the latter satisfies 1 7→?v ? 2 7→?w.

156 FEATHERWEIGHT VERIFAST

consume-assertion : Assertion→ SCOperatorunit
consume-assertion(b) = do assert-bexpr(b)

consume-assertion(p(e, ?x)) = do n1 ← evaluate(e)
p(n1,n2)← find-chunk(p,n1)
consume-chunk(p(n1,n2))
update-store(x,n2)

consume-assertion(a1 ? a2) = do consume-assertion(a1)
consume-assertion(a2)

consume-assertion(if b then a1 else a2) =

do op← pickd

({
assume-bexpr(b)� consume-assertion(a1)

assume-bexpr(¬bb)� consume-assertion(a2)

})
op

Definition 9.9.12 (SemiconcreteExecution.produce_assertion). The following
steps are performed by the produce-assertion operator:

• Conditions are assumed, i.e. if the assertion requires a certain condition to be
met, all execution paths which do not satisfy it are blocked.

• The heap is populated with the chunks mentioned in the assertion. The first
argument is specified by the assertion. The second argument is unspecified and
hence is picked demonically, after which it is bound to the given variable.

• Conditionals are dealt with in a straightforward manner.

produce-assertion : Assertion→ SCOperatorunit
produce-assertion(b) = do assume-bexpr(b)

produce-assertion(p(e, ?x)) = do n1 ← evaluate(e)
n2 ← pickd(N)
produce-chunk(p(n1,n2))
update-store(x,n2)

produce-assertion(a1 ? a2) = do produce-assertion(a1)
produce-assertion(a2)

produce-assertion(if b then a1 else a2) =

do op← pickd

({
assume-bexpr(b) � produce-assertion(a1)

assume-bexpr(¬bb) � produce-assertion(a2)

})
op

SEMICONCRETE EXECUTION 157

Example 9.9.4. Consider the following assertion:

A(x, ?y) ? (if y =b 0 then B(y, ?z) else C(y, ?z)) ? z =b 3

Producing it in the state 〈s0[x := 5], ∅〉sc, we get the following result:

~〈s0[x := 5][y := 0][z := 3], {A(5, 0),B(0, 3)}〉sc� ⊗⊗
v∈N0
~〈s0[x := 5][y := v][z := 3], {A(5, v),C(v, 3)}〉sc�

Notice the equality z =b 3 must come last: if it had appeared before the conditional, z
would still be bound to 0, and production would have blocked.

Definition 9.9.13 (SemiconcreteExecution.semiconcrete_execution). The opera-
tor sc-execute formalises the semiconcrete execution. Fig. 9.7 shows its full definition.

Now that we have fully formalised the semiconcrete execution, we need to
redefine what it means to verify a program using the semiconcrete execution.

Definition 9.9.14 (SemiconcreteExecution.leak_check). leak-check fails if the
heap is not empty.

leak-check = do h← current-heap
assert h = ∅

To define program validity, we first focus on routine validity. Informally, a
routine is valid if when starting in an arbitrary state satisfying the precondition,
execution of the body ends up in a state satisfying the postcondition.

Definition 9.9.15 (SemiconcreteExecution.valid_routine). A routine r with the
following definition

routine r(x) requires a ensures a′ = c

is valid iff

valid-routinesc(r) ≡

do v← pickd(N)
update-store(x, v)
produce-assertion(a)

with-store
(

s0[x := v],
sc-execute(c)

)
consume-assertion(a′)
leak-check

(〈s0, ∅〉sc) 6 VV⊥

In words, checking routine validity consists of the following steps:

158 FEATHERWEIGHT VERIFAST

sc-exec(x := e) = do v← evaluate(e); update-store(x, v)

sc-exec(x := [e]) = do `← evaluate(e); v← read-cell(`)
update-store(x, v)

sc-exec([e] := e′) = do `← evaluate(e); v← evaluate(e′)
write-cell(`, v)

sc-exec(c; c′) = do sc-exec(c); sc-exec(c′)

sc-exec(if b then c else c′) = do op←pickd

({
A(b)� sc-exec(c)
A(¬bb)� sc-exec(c′)

})
; op

sc-exec(r(e)) = do v← evaluate(e)
with-store(s0[x := v],C(a)� P(a′))

with routine r(x) requires a ensures a′

sc-exec(x := malloc(n)) = do `← allocate(n)
produce-chunk(mb(`,n))
update-store(x, `)

sc-exec(free(e)) = do `← evaluate(x); n← block-size(`)
consume-chunk(mb(`,n))
consume-cells(`,n)

sc-exec(open p(e, _)) = do `← evaluate(e)
p(`, v)← find-chunk(p, `)
consume-chunk(p(`, v))
with-store(s0[x := `][y := v],P(a))

where predicate p(x, y) = a

sc-exec(close p(e, e′)) = do `← evaluate(e); v← evaluate(e′)
with-store(s0[x := `][y := v],C(a))
produce-chunk(p(`, v))

where predicate p(x, y) = a

sc-exec(skip) = do return �

P = produce-assertion C = consume-assertion A = assume-bexpr

Figure 9.7: Semiconcrete Execution

SEMICONCRETE EXECUTION 159

1. We demonically pick an arbitrary value for the argument and bind it to
the appropriate variable.

2. We produce the assertion, i.e. we set up a state which conforms to the
precondition.

3. The routine’s body is executed in a separate store: the precondition may
contain variable patterns, leading variables to be bound to values. These
must not be available to the routine body.

4. Consuming the assertion corresponds to checking that the postcondition is
satisfied. Note that this happens in the same store as the one the operator
produce-assertion(a) operated upon, meaning all bindings introduced by
the precondition are available to the postcondition.

5. The postcondition should describe the entire heap. Recall that the
operator consume-assertion(a′) also removes all chunks mentioned in
the assertion. Leftover chunks indicates the presence of a memory leak.

Definition 9.9.16 (SemiconcreteExecution.valid_program). Using the semicon-
crete execution, a program is valid if every routine it contains is valid:

valid-programsc(P) = ∀ r ∈ routines(P). valid-routinesc(r)

9.9.2 Relation with Concrete Execution

In this section we examine how the semiconcrete execution relates to the
concrete execution. Earlier, we explained that verification consists of checking
that the concrete execution of a program does not fail. Our goal is to be able
to find out whether this is the case without actually performing the concrete
execution by instead relying on the semiconcrete execution.

More specifically, we wish that the following relation holds: if the concrete
execution of a program were to fail, the semiconcrete execution of the same
program should also fail. Turned around, successful semiconcrete execution
must imply successful concrete execution. In formal terms, we wish the
following proposition to be true:

∀ P. valid-programsc(P)⇒ valid-programc(P)

If this is the case, we say the semiconcrete execution is sound. Turning the
implication arrow around

∀ P. valid-programc(P)⇒ valid-programsc(P)

160 FEATHERWEIGHT VERIFAST

is known as completeness. Our claim is that the semiconcrete execution is sound,
but we make no guarantees regarding completeness. In other words, we do
not allow false positives (i.e. a faulty program being recognised as correct), but
accept the possibility of false negatives (i.e. rejection of a correct program).

One first hurdle in comparing both executions is that they operate on different
languages, namely the concrete execution uses SIL, while the semiconcrete
uses it extended variant, SIL++. The latter provides extra commands, i.e. open
and close. Fortunately, since these commands have no bearing on the runtime
semantics of a program, we can leave them out for the purposes of concrete
execution.

Definition 9.9.17 (SILPP.translate_command). Given a semiconcrete execution
command, we translate it to a concrete execution command as follows:

bx := e c = x := e
be := [e′] c = e := [e′]
b[e] := e′ c = [e] := e′

bc; c′ c = bcc; bc′c
bif b then c else cc = if b then bcc else bc′c
br(e) c = r(e)
bx := malloc(n) c = x := malloc(n)
bfree(e) c = free(e)
bopen p(e, _) c = skip
bclose p(e, e′) c = skip
bskip c = skip

In order to prove soundness, we prove that the concrete and semiconcrete
execution are synchronised in some way, that the results are “equivalent”. A first
approach would be to expect the following to be true (expressed intuitively):

sc-execute(c) ˙VV c-execute(bcc)

This represents both soundness and completeness. We can weaken our
expectation to only soundness:

sc-execute(c) V̇ c-execute(bcc)

A consequence of this proposition’s validity is that if the semiconcrete execution
succeeds, so must the concrete execution (Lemma 9.3.9), which is exactly what
we need. However, the types don’t match: we cannot directly compare a result
involving semiconcrete states with one involving concrete states.

Semiconcrete and concrete states differ in the fact that the former can contain
custom chunks. A custom chunk can repeatedly be unfolded until it exclusively

SEMICONCRETE EXECUTION 161

contains concrete chunks, i.e. 7→ and mb chunks. Thus, a single semiconcrete
state can be viewed as representing a multitude of concrete states.

Example 9.9.5. This example revisits the List predicate:

predicate List(p,n) = if p =b 0
then n =b 0
else p 7→?v ?

(p +e 1) 7→?q ?
mb(p, 2) ?
List(q, ?m) ?
n =b m +e 1

The single semiconcrete state

〈s0[p := 3], {List(3, 2)}〉sc

represents all states where the variable p points to a list of length 2 whose first node
starts at memory address 3. Repeatedly unfolding the List chunk yields the following
semiconcrete states:

〈s0[p := 3], {3 7→ `, 4 7→ v,mb(3, 2), ` 7→ 0, ` + 1 7→ v′,mb(`, 2)}〉sc

for all `, v, v′ ∈N. Since all these semiconcrete states only contain concrete chunks,
they are also valid concrete states. We will show that semiconcretely executing a
semiconcrete state corresponds to concretely executing its unfolded forms.

Definition 9.9.18. σsc a is valid iff the assertion a fully describes the concrete state
σsc, i.e. the assertion mentions all chunks in the state’s heap.

〈s, h〉sc a ⇔

(
do consume-assertion(a)

leak-check

)
(〈s, h〉sc) 6 VV ⊥

Definition 9.9.19 (heap refinement). The heap refinement relation relates a
concrete heap with a semiconcrete heaps according to the following rules:

h ∈ CHeap
h E h

E-reflexivity

hc E hsc h′c E h′sc

hc] h′c E hsc] h′sc
E-union

hc E hsc predicate p(x, x′) = a 〈s0[x := `][x′ := v], hsc〉sc a
hc E { p(`, v) }

E-predicate

Heap refinement thus embodies the notion of “full unfolding” of a semiconcrete heap.

162 FEATHERWEIGHT VERIFAST

Example 9.9.6. The unfolding from Example 9.9.5 can be reformulated formally as

∀ `, v, v′ ∈N. 〈s0[p := 3],

3 7→ `,
4 7→ v,

mb(3, 2),
` 7→ 0,

` + 1 7→ v′,
mb(`, 2)

〉sc E 〈s0[p := 3], {List(3, 2)}〉sc

The following operator is pivotal in proving the soundness of the semiconcrete
execution.

Definition 9.9.20 (refinement operator). The refinement operator κ is defined as

κ : OperatorSCState→CState
unit

κ = do 〈s, hsc〉sc ← current-state
hc ← pickd(SCHeap)
assume hc E hsc
set-current-state 〈s, hc〉c

This operator crosses execution boundaries: it takes a semiconcrete state as input and
returns a result involving concrete states.

Example 9.9.7. Example 9.9.6 can be rephrased as

κ(〈s0[p := 3], {List(3, 2)}〉sc) VV
⊕
`∈N

⊕
v∈N

⊕
v′∈N

~〈s0[p := 3],

3 7→ `,
4 7→ v,

mb(3, 2),
` 7→ 0,

` + 1 7→ v′,
mb(`, 2)

〉sc�

Using this operator, we can relate semiconcrete with concrete execution in a
well typed manner:

sc-execute(c)� κ V̇ κ� c-execute(bcc)

This expresses the fact that semiconcretely executing a command in a
semiconcrete state σsc is a sound approximation to concretely executing the
translated command in a refinement of that state σc E σsc. Before we are
able to prove this, we need to turn our attention to another modification
introduced by the semiconcrete execution that we have been ignoring until
now: modularisation. We set out to prove its validity.

SEMICONCRETE EXECUTION 163

Definition 9.9.21 (local operator). An operator op is said to be local iff

local(op) ≡

 do r← op
produce-chunk(α)
return r

 V̇
(

do produce-chunk(α)
op

)

The concept of local operators is strongly linked with separation logic. Recall
the frame rule discussed in Sect. 8.1.2 (page 80). Explained briefly, it states
that one can add heap chunks to the state without changing the behaviour of a
command. Note that Def. 9.9.21 uses implication (V̇), not equivalence (˙VV):
this mirrors the fact that moving a produce-chunk upwards can make a failing
operator succeed and potentially increasing the number of ambiguous matches.
We rely on this property for the soundness proof. Hence, we need to prove that
our executions obey this frame rule.

Lemma 9.9.1. Binding two local operators yields a new local operator: given

op : OperatorS1→S2
A

f : A→ OperatorS2→S3
B

local(op)
∀ a : A. local(f (a))

then
local(op�= f)

Proof. The lhs of the proof goal is equivalent with do r← op�= f
produce-chunk(α)
return r

 V̇
(

do produce-chunk(α)
op�= f

)
It is possible to rewrite the lhs as

lhs ˙VV do r′ ← op
r← f (r′)
produce-chunk(α)
return r

Using the locality of f (r′) and op:

. . . V̇ do r′ ← op
produce-chunk(α)
f (r′)

V̇ do produce-chunk(α)
r′ ← op
f (r′)

164 FEATHERWEIGHT VERIFAST

which can be folded back into

. . . V̇ do produce-chunk(α)
op�= f

�

Lemma 9.9.2. The execution operators are local operators.

Proof. From the locality of auxiliary operators follows the locality of the high
level execution operators. Proving the locality of every local operator is
tedious and uninteresting. Locality proofs depend mostly on Lemma 9.9.1 and
Lemma 9.7.1. �

The following lemmas show how assertion consumption and production
complement each other. For example, Lemma 9.9.3 proves that assertion
production followed by consumption (executed locally in the same store)
cannot fail and corresponds to a no-op except for the fact that blocking is
allowed, such as is the case for the assertion “false”.

Lemma 9.9.3 (Produce-consume cancellation law).

nop V̇ do with-store(s,produce-assertion(a))
with-store(s, consume-assertion(a))

Proof. We introduce the following operator:

aux(sin, op) = do sorig ← current-store
set-store(sin)
op
sout ← current-store
set-store(sorig)
return sout

and the following shorthand notation

sin I op I sout ≡ sout ← aux(sin, op)
P(a) ≡ produce-assertion(a)
C(a) ≡ consume-assertion(a)

We generalise our goal to

nop V̇

 do s I P(a) I s1
s I C(a) I s2
assert s1 = s2

SEMICONCRETE EXECUTION 165

This entails that the rhs operator must not fail and must either diverge or
produce a path which amounts to a no-op, or, put formally, ∀ σ. {(�, σ)} |= lhs(σ).
In other words, both store and heap must remain unchanged. It is clear that the
store is preserved, as production and consumption of the assertion is done in a
local store and assert never alters the store in any way. By structural induction
on a:

• a = b

nop V̇

 do s I assume-bexpr(b) I s1
s I assert-bexpr(b) I s2
assert s1 = s2

The rhs will never fail, as all states not satisfying b are filtered away
by the time the assertion takes place. Neither assume-bexpr(b) nor
assert-bexpr(b) modifies the store, meaning that s1 = s2 = s, making the
last assert succeed.

• a = p(e, ?x)

nop V̇

do s I

do n1 ← evaluate(e)

n2 ← pickd(N)
produce-chunk(p(n1,n2))
update-store(x,n2)

 I s1

s I

do n′1 ← evaluate(e)

p(n′1,n
′

2)← find-chunk(p,n′1)
consume-chunk(p(n′1,n

′

2))
update-store(x,n′2)

 I s2

assert s1 = s2

The result of the production phase is

production(〈s0, h0〉sc) VV
⊗
v∈N

~(�, 〈s0, h0] {p(n1, v)}〉sc)�

and s1 is bound to s[x := v] in each path. Continuing with the consumption,
we get: (V but not VV do due possible ambiguous matches)⊗

v∈N

~〈s0, h0〉sc� V
⊗
v∈N

consumption(〈s0, h0] {p(n1, v)}〉sc)

where s2 is bound to s[x := v] in each path. The assertion succeeds since
s1 = s2. We can collapse the demonic choice into a single result:⊗

v∈N

~〈s0, h0〉sc� VV ~〈s0, h0〉sc�

It is now trivial to prove the goal.

166 FEATHERWEIGHT VERIFAST

• a = if b then a1 else a2: the boolean expression b is evaluated twice in
the same store, meaning the same branch will be chosen during both
production and consumption. The induction hypothesis takes care of the
rest.

• a = a1 ? a2

nop V̇

 do s I P(a1)� P(a2) I s1
s I C(a1)� C(a2) I s2
assert s1 = s2

We can split this up in

nop V̇

do s I P(a1) I s′1

s′1 I P(a2) I s1
s I C(a1) I s′2
s′2 I C(a2) I s2
assert s1 = s2

We switch the second and third line:

nop V̇

do s I P(a1) I s′1

s I C(a1) I s′2
s′1 I P(a2) I s1
s′2 I C(a2) I s2
assert s1 = s2

 V̇

do s I P(a1) I s′1
s′1 I P(a2) I s1
s I C(a1) I s′2
s′2 I C(a2) I s2
assert s1 = s2

This switch is permitted and the result is “stricter”: P(a2) exclusively
produces new chunks, making use of the locality property of C(a1) possible.
From the induction hypothesis we know that s′1 = s′2. It also allows us to
replace the first two lines with nop.

nop V̇

 do s′1 I P(a2) I s1
s′1 I C(a2) I s2
assert s1 = s2

We can again apply the induction hypothesis, finishing the proof.

�

The following lemma is a generalised form of Lemma 9.9.5 and Lemma 9.9.6,
provable by induction.

Lemma 9.9.4. For any semiconcrete store s, do s1 ← with-store(s, consume-assertion(a)�= current-store)
s2 ← with-store(s,produce-assertion(a)�= current-store)
assume(s1 = s2)

 V̇nop

SEMICONCRETE EXECUTION 167

Proof. We reuse the notation introduced in the proof of Lemma 9.9.3. The proof
goal is rewritten as do s I C(a) I s1

s I P(a) I s2
assume s1 = s2

 V̇nop

This allows failure and demands that each angelic choice contains a path
equivalent with nop: ∀ σ,S. S |= lhs(σ)⇒ (�, σ) ∈ S. Note that blocking is not
allowed; in other words, we require that s1 = s2. By structural induction on a,

• a = b do s I assert-bexpr(b) I s1
s I assume-bexpr(b) I s2
assume s1 = s2

 V̇nop

Failure is allowed, but not nontermination, hence we must show that
assume-bexpr does not block. This is the case: assert-bexpr takes care
of removing all paths where s does not satisfy b. Neither assert-bexpr
nor assume-bexpr change the store, meaning s1 = s2, preventing the
assumption on the last line to block.

• a = if b then a1 else a2: b is evaluated in the same store s, meaning the
same branch will be picked. Induction hypothesis takes care of the rest.

• a = p(`, v)

do s I

do n1 ← evaluate(e)

p(n1,n2)← find-chunk(p,n1)
consume-chunk(p(n1,n2))
update-store(x,n2)

 I s1

s I

do n1 ← evaluate(e)

n2 ← pickd(N)
produce-chunk(p(n1,n2))
update-store(x,n2)

 I s2

assume s1 = s2

V̇nop

We can disregard cases that fail, meaning that we can assume the heap
contains a chunk p(n1,n2) where n1 is equal to the evaluation of e in
the initial store. In case of ambiguous matches, we can handle each
match analogously. The result of the consumption phase is (assuming
consumption matches p(n1,n2)):

consumptionp(n1,n2)(〈s0, h0] {p(n1,n2)}〉sc) VV ~(�, 〈s0, h0〉sc)�

168 FEATHERWEIGHT VERIFAST

and s1 is bound to s[x := n2]. The production phase results in

production(〈s0, h0〉sc) VV
⊗
v∈N

~(�, 〈s0, h0] {p(n1, v)}〉sc)�

and s2 is bound to s[x := v] on each path. The assume blocks every path
where s1 , s2. We know there is exactly one path that will remain, making
the end result

lhs(〈s0, h0〉sc) VV ~(�, 〈s0, h0] {p(n1,n2)}〉sc)�

Proving the goal is now trivial.

• a = a1 ? a2 do s I C(a1)� C(a2) I s1
s I P(a1)� P(a2) I s2
assume s1 = s2

 V̇nop

We rewrite this as
do s I C(a1) I s′1

s′1 I C(a2) I s1
s I P(a1) I s′2
s′2 I P(a2) I s2
assume s1 = s2

 V̇nop

We switch the second and third lines:
do s I C(a1) I s′1

s′1 I C(a2) I s1
s I P(a1) I s′2
s′2 I P(a2) I s2
assume s1 = s2

 V̇

do s I C(a1) I s′1
s I P(a1) I s′2
s′1 I C(a2) I s1
s′2 I P(a2) I s2
assume s1 = s2

 V̇nop

The induction hypothesis tells us that do s I C(a1) I s′1
s I P(a1) I s′2
assume s′1 = s′2

 V̇nop

meaning that s′1 = s′2.
do s I C(a1) I s′1

s I P(a1) I s′1
s′1 I C(a2) I s1
s′1 I P(a2) I s2
assume s1 = s2

 V̇
 do s′1 I C(a2) I s1

s′1 I P(a2) I s2
assume s1 = s2

Applying the induction hypothesis a second time finishes the proof.

SEMICONCRETE EXECUTION 169

�

Whereas Lemma 9.9.3 described assertion production followed by consumption,
the following lemma deals with the reverse situation. Contrary to the former,
this lemma allows failure but prohibits blocking.

Lemma 9.9.5 (Consume-produce cancellation law). For any semiconcrete store
s, (

do with-store(s, consume-assertion(a))
with-store(s,produce-assertion(a))

)
V̇nop

Proof. Follows from Lemma 9.9.4. �

The following lemma can probably use some extra explanation. Intuitively,
both assertion consumption and production fork execution and thus generate a
number of output stores which the lemma names s1 and s2, respectively. Our
goal is to prove the existence of an execution path for which the consumption and
production generate the same store, i.e. s1 = s2, and where the heap is restored
to its original state, i.e. where production has undone the consumption’s heap
modifications. This allows us to replace the consumption production sequence
by “magically” picking the right store, represented by an angelic choice over
the set of all stores. All other execution paths can be ignored.

Lemma 9.9.6. For the semiconcrete execution

do s1 ← with-store(s, consume-assertion(a)� current-store);
s2 ← with-store(s,produce-assertion(a)� current-store);
return (s1, s2)

V̇

do s← picka(SCStore);
return (s, s)

Proof. Follows from Lemma 9.9.4. �

Next, we prove that a routine contract “neutralises” the effects of executing
its body. This lemma is central in the proving the soundness of verification
modularisation (Lemma 9.9.8), i.e. that replacing the execution of a routine body
by consuming and producing its precondition and postcondition, respectively,
is a valid approximation.

170 FEATHERWEIGHT VERIFAST

Lemma 9.9.7. Given a valid routine routine r(x) requires a ensures a′ = c,

nop V̇with-store(s0[x := v], do produce-assertion(a);
with-store(s0[x := v], sc-execute(c));
consume-assertion(a′))

Proof. Follows from routine validity (Def. 9.9.15) and the locality of with-store,
produce-assertion, consume-assertion and sc-execute. �

Lemma 9.9.8 (Validity of routine call abstraction). In the semiconcrete world,
given a valid routine

routine r(x) requires a ensures a′ = c

then
do v← read-store(x);

with-store(s0[x := v],
do consume-assertion(a);

produce-assertion(a′))

V̇ do v← read-store(x);
with-store(s0[x := v],

sc-execute(c))

Proof. We reuse the same notation as in the proof of Theorem 9.9.3 and
abbreviate produce-assertion, consume-assertion and sc-execute to P, C and
E, respectively. From Lemma 9.9.7 we know

nop V̇

 do si I P(a) I sp
si I E(c) I _
sp I C(a′) I _

 (9.5)

with si = s0[x := v]. We can drop the v← read-store(x) from both sides of the
proof goal. The lhs can be rewritten as

do si I C(a) I s′

s′ I P(a′) I _

We can insert nop in the middle, and from (9.5) we get

. . . V̇

 do si I C(a) I s′

nop
s′ I P(a′) I _

 V̇

do si I C(a) I s′

si I P(a) I sp
si I E(c) I _
sp I C(a′) I _
s′ I P(a′) I _

SEMICONCRETE EXECUTION 171

Using Lemma 9.9.6 on the first two lines gives

. . . V̇

do s← picka(SCStore)

si I E(c) I _
s I C(a′) I _
s I P(a′) I _

Lemma 9.9.5 rids us of the last two lines:

. . . V̇

(
do s← picka(SCStore)

si I E(c) I _

)
The angelic picking of a semiconcrete store can be dropped, and what remains
corresponds to the rhs of the proof goal. �

The following lemma expresses the fact that, after heap refinement, there is no
difference between producing a custom chunk or producing its components.

Lemma 9.9.9. do with-store
(

s0[x := `, y := v],
produce-assertion(a)

)
κ

 ˙VV
(

do produce-chunk(p(`, v))
κ

)
where

predicate p(x, y) = a

Proof. We introduce the following shorthand notations:

P(a[`, v]) ≡ with-store(s0[x := `, y := v],produce-assertion(a))
P(p(`, v)) ≡ produce-chunk(p(`, v))

First we consider only empty initial heaps. We need to show that the same
concrete stores are produced at both sides.

• V: we must prove that every concrete heap generated by P(p(`, v))� κ
is also generated by P(a[`, v]) � κ. According to E-predicate, this
follows from the fact that P(a[`, v]) generates all heaps hsc such that
〈s0[x := `][x′ := v], hsc〉sc a, which in turns follows from Def. 9.9.18 and
Lemma 9.9.3.

• V: follows from E-predicate.

We can generalise to nonempty heaps by using E-union and noting that the
behaviour of produce-assertion is entirely independent of the heap in which it
is executed. �

172 FEATHERWEIGHT VERIFAST

We are now finally ready to prove the semiconcrete execution’s soundness.
The following theorem expresses that the semiconcrete execution is stricter, or
harder to satisfy, than the concrete execution.

Theorem 9.9.1. For any valid program, the semiconcrete execution is a sound
approximation to the concrete execution.

sc-execute(c)� κ V̇ κ� c-execute(bcc)

Proof. We unfold c-execute:

sc-execute(c)� κ V̇ κ�
⊗
n∈N

c-executen(bcc)

This follows from (forall_iff_mul)

∀ n ∈N. sc-execute(c)� κ V̇ κ� c-executen(bcc)

We prove this by induction on n and considering every case for c. Most cases
are trivial due to the fact that both executions share the same definitions. Only
routine call, open and close require our attention.

The case for routine invocation follows from Lemma 9.9.8. Execution of open
and close must be shown to have no discernable effect if followed by κ. For
open, we must show that

do `← evaluate(e)
p(`, v)← find-chunk(p, `)
consume-chunk(p(`, v))
with-store(s0[x := `][y := v],produce-assertion(a))
κ

 V̇κ

where predicate p(x, y) = a. Using Lemma 9.9.9, we can rewrite this as
do `← evaluate(e)

p(`, v)← find-chunk(p, `)
consume-chunk(p(`, v))
produce-chunk(p(`, v))
κ

 V̇κ

It is easy to show that(
do consume-chunk(p(`, v))

produce-chunk(p(`, v))

)
V̇nop

The close case follows similarly from Lemma 9.9.9 and Lemma 9.9.5. �

SYMBOLIC EXECUTION 173

9.10 Symbolic Execution

The semiconcrete execution produces execution trees with finite depth but
infinite breadth. The symbolic execution eliminates this last hurdle on our way
to a computable verification algorithm.

This execution has two Coq implementations: the scripts are named Symbolic-
Execution.v and ESymbolicExecution.v, the difference being that the latter
makes use of the effective result algebra, and is thus fully executable.

9.10.1 Formalisation

The infinite breadth of semiconcrete execution trees are the consequence of
demonic choices over N, which occur at several places: memory allocation
makes two such choices per memory cell, producing predicate assertions
assigns demonically picked values to variables, etc.

Such as a semiconcrete state can be viewed as an abstracted set of a possibly
infinite set of concrete states (i.e. heap refinement), a symbolic state will stand
for a potentially infinite number of semiconcrete states. We achieve this by
introducing symbols [75]: a single symbol represents a demonic choice overN.

Example 9.10.1. The following semiconcrete result⊗
`∈N

⊗
v∈N

〈s0[x := `], {` 7→ v}〉sc

can be represented by a single symbolic state

~〈s0[x := â], {â 7→ b̂}〉s�

where â and b̂ are symbols.

Example 9.10.2. When allocating a new memory cell, the semiconcrete execution
demonically picks a value from N as the initial contents for this cell. As explained
before, this consists of forking execution into an infinite number of paths, one for each
n ∈N. The symbolic execution avoids this by introducing a fresh symbol.

Let us say we wish to bind the variables x and y to demonically picked values. The
semiconcrete execution would model this as

do v1 ← pickd(N)
update-store(x, v1)
v2 ← pickd(N)
update-store(y, v2)

174 FEATHERWEIGHT VERIFAST

Executing this starting in 〈s0, ∅〉sc leads to⊗
v1∈N

⊗
v2∈N

~〈s0[x := v1][y := v2], ∅〉sc�

The symbolic execution adopts a different approach:

do v1 ← fresh-symbol
update-store(x, v2)
v2 ← fresh-symbol
update-store(y, v2)

It generates a new symbol which embodies the demonic choice. The result thus becomes

~〈s0[x := â][y := b̂], ∅〉s�

Note that symbols cannot be used as a substitute for angelic choices overN.

While using this approach is sound, it is too coarse to be useful. During
semiconcrete execution, entire ranges may be blocked using assumption. We
would like to be able to refine the range of values a symbol can represent. For
this, we add a third component to the state, namely the path condition, which
is a logical formula constraining the symbols’ values.

Example 9.10.3. The following semiconcrete result⊗
0<`

⊗
v<256

~〈s0[p := `], ` 7→ v〉sc�

represents states where a nonzero variable p points to a memory cell containing a byte.
All these states can be expressed by a single symbolic state:

~〈s0[p := â], â 7→ b̂, 0 < â ∧ b̂ < 256〉s�

We now proceed to the formalisation of the symbolic execution. As before, we
begin by defining the state the symbolic execution will operate upon, along
with all concepts it depends on.

Definition 9.10.1 (Symbol.t). The set Symbol is the set of all symbols, of which there
are infinitely many. Symbols will be hatted, i.e. â, b̂, . . . , as will metavariables involving
symbols.

Expressions cannot be fully evaluated anymore as they may contain symbols;
for this reason we introduce terms, which can be viewed as unevaluated
expressions where variables are replaced with symbols. Definition 9.10.10
shows how to transform an expression into a term.

SYMBOLIC EXECUTION 175

Definition 9.10.2 (Term.t). We define terms as

TermF NatLiteral | Symbol | Term +t Term | Term −t Term | Term ×t Term

Example 9.10.4. In semiconcrete execution,

do v← pickd(N)
update-store(x, v + 1)

this leads to an infinite number of states, but since the actual value of v is known, we
can increment it and bind the result to the variable x. The equivalent symbolic operator
is

do v̂← fresh-symbol
update-store(x, v̂ +t 1)

Since v̂ holds a symbol, we cannot evaluate v̂+1. Instead, we must store this information
as a term.

Definition 9.10.3 (Formula.t). We define formulae as

Formula F Term =f Term
| Term <f Term
| Term ≤f Term
| Formula ∧f Formula
| ¬f Formula

Formulae are related to boolean expressions in the same way terms are related
to expressions: they allow us to embed symbols. Definition 9.10.11 describes
the translation from boolean expressions to formulae.

Definition 9.10.4 (SymbolicExecution.SChunk.t). A symbolic chunk takes two terms
as arguments.

SChunk = {p(t̂, t̂′) | p ∈ Predicate, t̂, t̂′ ∈ Term}

Definition 9.10.5 (path condition). A path condition Φ is represented by a formula.

PathCondition = Formula

Definition 9.10.6 (SymbolicExecution.SStore.t). A symbolic store ŝ maps
variable names to terms.

SStore = Id −→ Term

Definition 9.10.7 (SymbolicExecution.zero_store). The symbolic zero store ŝ0
maps every variable to the term 0.

ŝ0 = λ x. 0

176 FEATHERWEIGHT VERIFAST

Definition 9.10.8 (SymbolicExecution.SHeap.t). A symbolic heap ĥ is a multiset
of symbolic chunks.

SHeap = SChunk→N

Definition 9.10.9 (SymbolicExecution.symbolic_state). A symbolic execution
state σ̂ consists of three components:

SState = PathCondition × SStore × SHeap

A symbolic state with path condition Φ, symbolic store ŝ and symbolic heap ĥ is denoted
〈Φ, ŝ, ĥ〉s.

The following two functions translate expressions and boolean expressions into
terms and formulae, respectively and correspond to eval-expr (Def. 9.8.7 on
page 144) and eval-bexpr (Def. 9.8.8 on page 144).

Definition 9.10.10 (Term.of_expression). expr-to-term(s, e) converts e into a term,
looking up variables in the store s.

expr-to-term(ŝ,n) = n
expr-to-term(ŝ, x) = ŝ(x)

expr-to-term(ŝ, e +e e′) = expr-to-term(ŝ, e) +t expr-to-term(ŝ, e′)
expr-to-term(ŝ, e −e e′) = expr-to-term(ŝ, e) −t expr-to-term(ŝ, e′)
expr-to-term(ŝ, e ×e e′) = expr-to-term(ŝ, e) ×t expr-to-term(ŝ, e′)

Definition 9.10.11 (Formula.of_boolean_expression). bexpr-to-term(s, b) con-
verts b into a formula, looking up variables in the store s.

bexpr-to-formula(ŝ, e =b e′) = expr-to-term(ŝ, e) =f expr-to-term(ŝ, e′)
bexpr-to-formula(ŝ, e <b e′) = expr-to-term(ŝ, e) <f expr-to-term(ŝ, e′)
bexpr-to-formula(ŝ, e ≤b e′) = expr-to-term(ŝ, e) ≤f expr-to-term(ŝ, e′)
bexpr-to-formula(ŝ, b ∧b b′) = bexpr-to-formula(ŝ, b) ∧f

bexpr-to-formula(ŝ, b′)
bexpr-to-formula(ŝ,¬bb) = ¬f bexpr-to-formula(ŝ, b)

We now proceed with the definitions of the operators. Although the symbolic
execution seems to have only introduced a minor change, most operators need
to be redefined. For the sake of clarity, we will reuse the same names. The
basic operators introduced in Sect. 9.5 will remain unchanged, as they are
execution-agnostic.

Definition 9.10.12 (SymbolicExecution.s_operator). We define the following
shorter notation for operators involving symbolic state:

SOperatorA ≡ OperatorSState→SState
A

SYMBOLIC EXECUTION 177

Purely for the sake of completeness as they hide no surprises, we give full
definitions for the current-X and set-current-X operators for each of the three
symbolic state components.

Definition 9.10.13 (current store, set_current store). The current-store and
set-current-store operators get and set the current store, respectively.

current-store : SOperatorSStore
current-store = do 〈Φ, ŝ, ĥ〉s ← current-state

return ŝ

set-current-store : SStore→ SOperatorunit
set-current-store(ŝ′) = do 〈Φ, ŝ, ĥ〉s ← current-state

set-current-state(〈Φ, ŝ′, ĥ〉s)

Definition 9.10.14 (current heap, set_current heap). The operators current-heap
and set-current-heap get and set the current heap, respectively.

current-heap : SOperatorSHeap

current-heap = do 〈Φ, ŝ, ĥ〉s ← current-state
return ĥ

set-current-heap : SHeap→ SOperatorunit
set-current-heap(ĥ′) = do 〈Φ, ŝ, ĥ〉s ← current-state

set-current-state(〈Φ, ŝ, ĥ′〉s)

Definition 9.10.15 (current path_condition, set_current path_condition). The
operators current-path-condition and set-current-path-condition get and set the
current path condition, respectively.

current-path-condition : SOperatorFormula
current-path-condition = do 〈Φ, ŝ, ĥ〉s ← current-state

return Φ

set-current-path-condition : Formula→ SOperatorunit
set-current-path-condition(Φ′) = do 〈Φ, ŝ, ĥ〉s ← current-state

set-current-state(〈Φ′, ŝ, ĥ〉s)

The following operators deal with the store. They are identical to their
(semi)concrete counterparts except for the fact they deal with terms instead of
natural numbers.

178 FEATHERWEIGHT VERIFAST

Definition 9.10.16 (SymbolicExecution.read_store). The operator read-store(x)
looks up the term to which x is bound to by the current store.

read-store : Id→ SOperatorTerm
read-store(x) = do ŝ← current-store

return ŝ(x)

Definition 9.10.17 (SymbolicExecution.update_store). update-store(x, t̂) binds
x to t̂ in the current store

update-store : Id→ Term→ SOperatorunit
update-store(x, t̂) = do ŝ← current-store

set-current-store(ŝ[x := t̂])

Definition 9.10.18 (SymbolicExecution.evaluate). evaluate(e) converts the given
expression e to an equivalent term.

evaluate : Expr→ SOperatorTerm
evaluate(e) = do ŝ← current-store

return expr-to-term(ŝ, e)

Definition 9.10.19 (SymbolicExecution.to_formula). The operator to-formula
converts a boolean expression to a formula.

to-formula : BExpr→ SOperatorFormula
to-formula(b) = do ŝ← current-store

return bexpr-to-formula(ŝ, b)

Definition 9.10.20 (SymbolicExecution.with_store). The with-store(s, op) opera-
tor computes op locally in the given store s.

with-store : SStore→ SOperatorA → SOperatorA
with-store(s, op) = do s′ ← current-store

set-current-store(s)
r← op
set-current-store(s′)
return r

We turn our attention to operators involving the path condition. Assumption
and assertion are simple concepts in the concrete and semiconcrete executions:
one only needs to evaluate certain expressions and compare results. In the case
of the symbolic execution however, things are more complex as we need to
deal with symbols as path conditions.

We expect assumptions and assertions to be able to find out whether a certain
condition is satisfied. Since the symbolic execution is meant to be computable,

SYMBOLIC EXECUTION 179

this expectation may be unrealistic. As a precaution, we investigate what kind
of concession we may make without compromising soundness.

There are two ways to deviate from the expected behaviour of an assume
operator: either it can block too little, or too much. Pruning too little constitutes
no problem: more failures will happen, but verification soundness is preserved,
only completeness suffers. Conversely, pruning too much must be avoided at
all cost. For example, an extreme case would be that an assumption decides to
prune all paths, making verification “succeed” immediately.

The opposite rules apply to assertion. We can allow it to be overzealous, failing
nondiscriminately, but it must not let pass a state which does not satisfy the
given condition.

These concessions make it possible for us to rely on an imperfect algorithm
to decide whether or not a condition is satisfied or not. We make use of an
external SMT solver: given a set of constraints with unknown variables we
ask it to determine whether it can find a model, i.e. if it is possible to assign
values to these variables in such a way that all constraints are satisfied. We
expect it to return one of three values: SAT means a model exists, UNSAT that
is impossible to find a model, and UNKNOWN if the solver has been able to
prove neither the possibility nor the impossibility of a model. For our purposes,
it is important that, assuming the solver is sound, verification remains sound
even if the solver returns UNKNOWN every time it is queried.

Assumptions extend the path condition. If the path condition becomes
unsatisfiable, we know the symbolic state does not represent any semiconcrete
states and we can get rid of it. Thus, assumption will feed the path condition
to the SMT solver, and if it returns UNSAT, execution blocks.

Asserting a condition P consists of checking that P is implied by the current
path condition. We can translate this to a satisfiability problem as follows:

Φ⇒ P ⇐⇒ ¬Φ ∨ P ⇐⇒ ¬(Φ ∧ ¬P)

Asserting P is thus equivalent with expecting the SMT solver to return UNSAT
when given Φ ∧ ¬P. If this is not the case, execution fails.

We model the SMT solver as an operator.

Definition 9.10.21 (SymbolicExecution.smt). An SMT solver is available through
the following operator:

smt : Formula→ SOperator
{SAT,UNSAT,UNKNOWN}

Definition 9.10.22 (SymbolicExecution.assume_formula). assume-formula(φ)
adds the formula φ to the current state’s path condition. States with unsatisfiable path

180 FEATHERWEIGHT VERIFAST

conditions are filtered out.

assume-formula : Formula→ SOperatorunit
assume-formula(φ) = do Φ← current-path-condition

r← smt(Φ ∧ φ)
assume r , UNSAT
set-current-path-condition(Φ ∧ φ)

Definition 9.10.23 (SymbolicExecution.assume_bexpr). assume-bexpr(b) con-
verts the boolean expression b to a formula, and adds it to the path condition. It
blocks executions with provably unsatisfiable path conditions.

assume-bexpr : BExpr→ SOperatorunit
assume-bexpr(b) = do φ← to-formula(b)

assume-formula(φ)

Definition 9.10.24 (SymbolicExecution.assert_formula). assert-formula(φ) fails
if the current path condition does not imply the given formula φ.

assert-formula : Formula→ SOperatorunit
assert-formula(b) = do Φ← current-path-condition

r← smt(Φ ∧f ¬fφ)
assert r = UNSAT

Definition 9.10.25 (SymbolicExecution.assert_bexpr). The assert-bexpr(b) oper-
ator takes a boolean expression b, converts it to a formula, and checks that it follows
from the path condition. If not, execution fails.

assert-bexpr : BExpr→ SOperatorunit
assert-bexpr(b) = do φ← to-formula(b)

assert-formula(φ)

We focus on heap related operators. produce-chunk and consume-chunk
remain unchanged with respect to the concrete execution, but we redefine them
for the sake of completeness.

Definition 9.10.26 (SymbolicExecution.produce_chunk). produce-chunk(α̂) adds
the chunk α̂ to the current heap.

produce-chunk : SChunk→ SOperatorunit
produce-chunk(α̂) = do ĥ← current-heap

set-current-heap(ĥ] {α̂})

SYMBOLIC EXECUTION 181

Definition 9.10.27 (SymbolicExecution.consume_chunk). This operator removes the
chunk α̂ from the heap. If the heap does not contain this chunk, failure ensues.

consume-chunk : SChunk→ SOperatorunit
consume-chunk(α̂) = do ĥ← current-heap

assert α̂ ∈ ĥ
set-current-heap(ĥ − {α̂})

Finding a chunk on the heap is often necessary, which is the responsibility of
find-chunk. Since we are using terms, find-chunk cannot just look for a chunk
on the heap for which the first argument matches verbatim with the given term.
Instead, it must rely on the SMT solver to determine if two terms are equal.

Definition 9.10.28 (SymbolicExecution.find_chunk). The find-chunk(p, x̂) opera-
tor finds a heap chunk on the current heap, given a predicate p and a first argument
â.

find-chunk : Predicate→ Term→ SOperatorSChunk
find-chunk(p, t̂1) = do ĥ← current-heap

p′(t̂′1, t̂
′

2)← picka(ĥ)
assert(p = p′)
assert-formula(t̂1 =f t̂′1)
return p(t̂′1, t̂

′

2)

As discussed earlier, the symbolic execution must avoid demonic picks overN.
The following operator, fresh-symbol, takes its place.

Definition 9.10.29 (SymbolicExecution.fresh_symbol,.fresh_symbol_n,.fresh_-
symbol_1). The operator fresh-symbol X generates a fresh symbol with respect to the
(finite) symbol set X. The operator fresh-symbol generates a fresh symbol with respect
to the current state. The operator fresh-symbol-n n X generates n fresh symbols with
respect to the (finite) symbol set X. The operator fresh-symbol-n n generates n fresh

182 FEATHERWEIGHT VERIFAST

symbols with respect to the current state.

fresh-symbol : Pf(Symbol)→ SOperatorSymbol
fresh-symbol X = do let ς = generate-fresh(X)

assume-formula (ς =f ς)
return ς

fresh-symbol : SOperatorSymbol
fresh-symbol = do [ς]← fresh-symbol-n 1

return ς

fresh-symbol-n : N→ Pf(Symbol)→ SOperatorSymbol[∗]

fresh-symbol-n 0 X = do return []
fresh-symbol-n (S n) X = do ς← fresh-symbol X

ςs← fresh-symbol-n n (X ∪ {ς})
return (ς :: ςs)

fresh-symbol-n : N→ SOperatorSymbol[∗]

fresh-symbol-n n = do σ← current-state
let ςs = symbols(σ) in
fresh-symbol-n n ςs

We left out the definitions for generate-fresh and symbols as they are particularly
tedious and unsurprising. Suffice it to say that the former generates a fresh symbol
with respect to its argument and the latter collects all symbols from a given state.
We refer the interested reader to the Coq script for full definitions (Term.symbols,
Formula.symbols, SymbolicExecution.symbols, Fresh.fresh, . . .).

The reason we add a ς =f ς formula to the path condition for every fresh
symbol symb is simple: we use the path condition to keep track of all generated
symbols so that we are certain that fresh-symbol does indeed return a fresh
symbol. The following example illustrates how things might go wrong if we
omit the assume-formula step.

Example 9.10.5. We show why we need to use the path condition as a means to keep
track of all generated symbols. Consider the following operator:

do â← fresh-symbol
b̂← fresh-symbol
update-store(x, â)
update-store(y, b̂)

Clearly, we expect x and y to be bound to different symbols, but in reality, it is possible
(even certain if generate-fresh is deterministic) that they are bound to the same symbol,

SYMBOLIC EXECUTION 183

since â has never been added to the state. However, this problem can be easily solved by
using fresh-symbol-n instead.

A more insidious example goes as follows:

do â← fresh-symbol
update-store(x, â)
with-store(ŝ0, op)

Here, the symbol â is indeed added to the state, more specifically, to the store. However,
the store is temporarily replaced by ŝ0 while executing op. If op needs to generate a
fresh symbol, it is possible the same symbol â will be generated again as nowhere in the
current state does â appear.

On a high level, reading and writing to cells happen in the same way as with
the (semi)concrete execution. The main difference between the execution is
abstracted away by find-chunk.

Definition 9.10.30 (SymbolicExecution.read_cell). The operator read-cell(ˆ̀)
looks for a chunk ˆ̀′ 7→ v̂ on the current heap such that ˆ̀ is provably equal to ˆ̀′

and returns v̂. This corresponds to reading the value located at memory address ˆ̀.

read-cell : Term→ SOperatorTerm
read-cell(ˆ̀) = do (ˆ̀′ 7→ v̂)← find-chunk(7→, ˆ̀)

return v̂

Definition 9.10.31 (SymbolicExecution.write_cell). write-cell(ˆ̀, v̂) looks for a
chunk ˆ̀′ 7→ v̂′ on the current heap such that ˆ̀ is provably equal to ˆ̀′. It then removes
this chunk and replaces it by ˆ̀′ 7→ v̂. This corresponds to overwriting the value at
memory location ˆ̀ with v̂.

write-cell : Term→ Term→ SOperatorunit
write-cell(ˆ̀, v̂′) = do α̂← find-chunk(7→, ˆ̀)

consume-chunk(α̂)
produce-chunk(ˆ̀ 7→ v̂′)

The following operators aid in defining memory allocation and deallocation.
The following operator, allocate, differs with its (semi)concrete counterpart in
that it uses symbols and terms to represent the memory locations where the
heap cells are allocated: instead of demonically picking an address ` fromN
(which leads to infinite branching) and allocating the cells at `, ` + 1, ` + 2, . . . ,
`+n−1, the symbolic execution just generates a fresh symbol ˆ̀ (hence no infinite
branching) and places the newly allocated cells at ˆ̀+t 0, ˆ̀+t 1, ˆ̀+t 2, . . . , ˆ̀+t (n−1).

184 FEATHERWEIGHT VERIFAST

Take note of the difference between + and +t: 5 + 3 coincides with natural
number 8, whereas 5 +t 3 is a term, i.e. an unevaluated mathematical expression
represented by an abstract syntax tree data structure.

Definition 9.10.32 (SymbolicExecution.allocate). The operator allocate-at(ˆ̀,n)
produces the heap chunks (ˆ̀ +t i) 7→ v̂i for i = 0 . . . n − 1 and all vi are fresh symbols.
The allocate(n) picks a random memory location ˆ̀ using a fresh symbol, generates the
7→ chunks by relying on allocate-at and returns ˆ̀.

allocate-at : Symbol→ Symbol[∗] → SOperatorunit
allocate-at(ˆ̀, []) = do nop

allocate-at(ˆ̀, v̂ :: v̂s) = do produce-chunk(ˆ̀ +t ||v̂s|| 7→ v̂)
allocate-at(ˆ̀, v̂s)

allocate : N→ SOperatorTerm
allocate(n) = do (ˆ̀ :: v̂s)← fresh-symbol-n(n + 1)

allocate-at(ˆ̀, v̂s)
return ˆ̀

The differences between the (semi)concrete and symbolic versions of the
operator consume-cells and opblocksize are fully abstracted away by the other
lower level operators, i.e. the definitions do not differ from its (semi)concrete
variants.

Definition 9.10.33 (SymbolicExecution.consume_cells). The consume-cells(ˆ̀,n)
operator does the opposite of allocate-at: it removes one ˆ̀′

i 7→ v̂′ chunk from the heap
for i = 0 . . . n − 1, where ˆ̀′

i is provably equal to ˆ̀ +t i.

consume-cells : Term→N→ SOperatorunit
consume-cells(ˆ̀, 0) = do return �

consume-cells(ˆ̀,n + 1) = do (ˆ̀′ 7→ v̂)← find-chunk(7→, ˆ̀ +t n)
consume-chunk(ˆ̀′ 7→ v̂)
consume-cells(ˆ̀,n)

Definition 9.10.34 (SymbolicExecution.block_size). The operator block-size(ˆ̀)
returns the size of the memory block allocated at memory location ` by looking for an
mb(`′,n) chunk on the heap, where ` is provably equal to `′.

block-size : Term→ SOperatorN
block-size(ˆ̀, 0) = do mb(ˆ̀′,n)← find-chunk(mb, ˆ̀)

return n

SYMBOLIC EXECUTION 185

The symbolic equivalents of consume-assertion and produce-assertion are also
needed. They behave exactly the same as their semiconcrete variants.

Definition 9.10.35 (SymbolicExecution.consume_assertion). The auxiliary opera-
tor consume-assertion(a) checks that the current state satisfies the given assertion a
and removes all involved chunks. It operates similarly to it semiconcrete variant from
Def. 9.9.11 (page 155).

consume-assertion : Assertion→ SOperatorunit
consume-assertion(b) = do assert-bexpr(b)

consume-assertion(p(e, ?x)) = do t̂1 ← evaluate(e)
p(t̂′1, t̂

′

2)← find-chunk(p, t̂1)
consume-chunk p(t̂′1, t̂

′

2)
update-store(x, t̂′2)

consume-assertion(a1 ? a2) = do consume-assertion(a1)
consume-assertion(a2)

consume-assertion(if b then a1 else a2) =

do op← pickd

({
assume-bexpr(b)� consume-assertion(a1)

assume-bexpr(¬bb)� consume-assertion(a2)

})
op

Definition 9.10.36 (SymbolicExecution.produce_assertion). The auxiliary op-
erator produce-assertion(a) transforms the state such that it satisfies the given
assertion a. It operates similarly to it semiconcrete variant from Def. 9.9.12 (page
156).

produce-assertion : Assertion→ SOperatorunit
produce-assertion(b) = do assume-bexpr(b)

produce-assertion(p(e, ?x)) = do t̂1 ← evaluate(e)
t̂2 ← fresh-symbol
produce-chunk(p(t̂1, t̂2))
update-store(x, t̂2)

produce-assertion(a1 ? a2) = do produce-assertion(a1)
produce-assertion(a2)

produce-assertion(if b then a1 else a2) =

do op← pickd

({
assume-bexpr(b) � produce-assertion(a1)

assume-bexpr(¬bb) � produce-assertion(a2)

})
op

186 FEATHERWEIGHT VERIFAST

We can now define the actual symbolic execution. Apart from the fact it
manipulates symbols and terms instead of natural numbers, it is equivalent to
the semiconcrete execution (Fig. 9.7 on page 158).

Definition 9.10.37 (SymbolicExecution.symbolic_execution). s-execute(c) re-
turns the result of the symbolic execution of the given command c. The full definition
is given in Fig. 9.8.

As with semiconcrete execution, the symbolic execution needs to consider every
routine separately. The validity of each routine implies the validity of the entire
program.

Definition 9.10.38 (SymbolicExecution.leak_check). The operator leak-check fails
if the heap is not empty.

leak-check : SOperatorunit
leak-check = do h← current-heap

assert h = ∅

Definition 9.10.39 (SymbolicExecution.valid_routine). A routine r with the
following definition

routine r(x) requires a ensures a′ = c

is valid iff

valid-routines(r) ≡

do v̂← fresh-symbol
update-store(x, v̂)
produce-assertion(a)
with-store(s0[x := v̂], sc-execute(c))
consume-assertion(a′)
leak-check

(〈ŝ0, ∅〉sc) 6 VV⊥

Definition 9.10.40 (SymbolicExecution.valid_program). Using the symbolic
execution, a program is valid if every routine it contains is valid:

valid-programs(P) = ∀ r ∈ routines(P). valid-routines(r)

9.10.2 Relation with Semiconcrete Execution

Now that all three executions have been formalised, we can briefly compare
them. Figure 9.9 shows a summary of each execution’s properties.

Section 9.9.2 discussed how the semiconcrete execution relates to the concrete
execution: a single semiconcrete state actually represents a possibly infinite

SYMBOLIC EXECUTION 187

s-exec(x := e) = do v̂← evaluate(e); update-store(x, v̂)

s-exec(x := [e′]) = do ˆ̀← evaluate(e′); v̂← read-cell(ˆ̀)
update-store(x, v̂)

s-exec([e] := e′) = do ˆ̀← evaluate(x); v̂← evaluate(x′)
write-cell(ˆ̀, v̂)

s-exec(c; c′) = do s-exec(c); s-exec(c′)

s-exec(if b then c else c′) = do op←pickd

({
A(b)� s-exec(c)
A(¬bb)� s-exec(c′)

})
; op

s-exec(r(e)) = do v̂← evaluate(e)
with-store (ŝ0[x := v],C(a)� P(a′))

with routine r(x) requires a ensures a′

s-exec(x := malloc(n)) = do ˆ̀← allocate(n)
produce-chunk(mb(ˆ̀,n))
update-store(x, ˆ̀)

s-exec(free(e)) = do ˆ̀← evaluate(x); n← block-size(ˆ̀)
consume-chunk(mb(ˆ̀,n))
consume-cells(ˆ̀,n)

s-exec(open p(e, _)) = do ˆ̀← evaluate(e)
p(ˆ̀′, v̂′)← find-chunk(7→, ˆ̀)
consume-chunk(p(ˆ̀′, v̂′))
with-store(ŝ0[x := ˆ̀′][y := v̂′],P(a))

where predicate p(x, y) = a

s-exec(close p(e, e′)) = do t̂← evaluate(e); t̂′ ← evaluate(e′)
with-store(ŝ0[x := t̂][y := t̂′],C(a))
produce-chunk(p(t̂, t̂′))

where predicate p(x, y) = a

s-exec(skip) = do return �

P = produce-assertion C = consume-assertion A = assume-bexpr

Figure 9.8: Symbolic Execution

188 FEATHERWEIGHT VERIFAST

concrete semiconcrete symbolic
execution execution execution

routine contracts X X
user defined predicates X X
assertions X X
ghost commands X X
symbols X
computable X

execution tree count 1 1+ 1+
execution tree depth ∞ n n
execution tree branching factor ∞ ∞ n

Figure 9.9: Execution Comparison

number of concrete states. Execution of a semiconcrete state corresponds to
performing an equivalent execution all concrete states it represents. Similarly,
a symbolic state stands for a possibly infinite amount of semiconcrete states.

The semiconcrete execution’s purpose is to detect failure during concrete
execution, which is reflected in the soundness theorem (Theorem 9.9.1 on
page 172):

sc-execute(c)� κ V̇κ� c-execute(bcc)

A similar soundness theorem needs to be proven about symbolic execution.
To state this theorem, it is necessary to first define a “state-unfolding” operator.
Just as the refinement operator κ translates a semiconcrete state to a demonic
pick over concrete states, the concretisation operator ρ transforms a symbolic
state into a demonic pick over semiconcrete states.

SState
ρ

−−−−−→ SCState κ
−−−−−→ CState

As explained before, a symbolic state uses symbols, each of which represents a
demonic pick overN, which can then be fine-tuned using the path condition.
The translation from a symbolic state to one specific semiconcrete state can
be represented by an interpretation function mapping symbols to N, which
expresses which symbol is assigned which value.

Definition 9.10.41 (interpretation). An interpretation I is a total function with
type signature Symbol→N. The set of all interpretations is denoted I.

An interpretation can be applied to terms, formulae, stores, . . . We define each
in turn.

SYMBOLIC EXECUTION 189

Definition 9.10.42. The interpretation of a term t is defined as

~n�I = n
~a�I = I(a)

~t1 +t t2�I = ~t1�I + ~t2�I
~t1 −t t2�I = ~t1�I − ~t2�I
~t1 ×t t2�I = ~t1�I × ~t2�I

Definition 9.10.43. The interpretation of a formula φ is defined as

~t1 =f t2�I = ~t1�I = ~t2�I
~t1 <f t2�I = ~t1�I < ~t2�I
~t1 ≤f t2�I = ~t1�I ≤ ~t2�I
~φ1 ∧f φ2�I = ~φ1�I ∧ ~φ2�I
~¬fφ�I = ¬~φ�I

Definition 9.10.44. The interpretation of a store s is defined as

~s�I = λ x. ~s(x)�I

Definition 9.10.45. The interpretation of a chunk α is defined as

~p(t1, t2)�I = p(~t1�I, ~t2�I)

Definition 9.10.46. The interpretation of a heap h is defined as

~h�I = { ~α�I | α ∈ h }

Definition 9.10.47. The interpretation of a symbolic state is defined as

~〈Φ, s, h〉s�I = 〈~s�I, ~h�I〉sc

Given these definitions, it is now possible to define concretisation operators.
The operator ρI(I) transforms the current symbolic state into a semiconcrete state
using the translation defined by I. Note this operator blocks if the interpretation
does not satisfy the path condition. The ρ operator demonically picks an
interpretation, uses it to translate the current state and returns it.

Definition 9.10.48 (concretisation operators). The concretisation operators ρI
and ρ are defined as

ρI : I → OperatorSState→SCState
�

ρI(I) =

 do 〈Φ, ŝ, ĥ〉s ← current-state
assume I |= Φ

set-current-state(~〈Φ, ŝ, ĥ〉s�I)

ρ : OperatorSState→SCState

I

ρ =

 do I← pickd(I)
ρI(I)
return I

190 FEATHERWEIGHT VERIFAST

In order to prove the symbolic execution’s soundness, a few lemmas are needed.
The following lemma shows how concretisation gets rid of the need for a fresh
symbol and is used by Lemma 9.10.2, which shows how introducing a fresh
symbol corresponds to a demonic choice overN.

Lemma 9.10.1. For any I ∈ I and v ∈N[n],

do ςs← fresh-symbol-n(n);ρI(I[ςs := vs]) ˙VV ρI(I)

Proof. Unfolding ρI gives

. . . ˙VV do ςs← fresh-symbol-n(n);
〈Φ, ŝ, ĥ〉s ← current-state
assume (I[ςs := vs] |= Φ)
set-current-state(〈~ŝ�I[ςs:=vs], ~ĥ�I[ςs:=vs]〉sc)

Since ςs are fresh with respect to Φ, it follows that

I[ςs := vs] |= Φ ⇐⇒ I |= Φ
~ŝ�I[ςs:=vs] = ~ŝ�I

~ĥ�I[ςs:=vs] = ~ĥ�I

Applying these simplifications results in

. . . ˙VV do ςs← fresh-symbol-n(n);
〈Φ, ŝ, ĥ〉s ← current-state
assume (I |= Φ)
set-current-state(〈~ŝ�I, ~ĥ�I〉sc)

The fresh symbols have become useless. Removing them and folding gives

. . . ˙VV do ρI(I)

�

Lemma 9.10.2. do ςs← fresh-symbol-n(n)
I← ρ
return ~ςs�I

 V̇
(

do ρ
pickd(N[n])

)

Proof. Starting from the lhs, we make use of transitivity by building a V̇ chain
ending in the rhs.

do ςs← fresh-symbol-n(n); I← ρ; return ~ςs�I

SYMBOLIC EXECUTION 191

Unfolding ρ gives

. . . V̇ do ςs← fresh-symbol-n(n); I← pickd(I);ρI(I); return ~ςs�I

For any symbols ςs,

pickd(I) ˙VV do I← pickd(I); vs← pickd(N[n]); return I[ςs := vs]

Using this equivalence, we get

. . . V̇ do ςs← fresh-symbol-n(n);
I← pickd(I);
vs← pickd(N[n]);
ρI(I[ςs := vs]);
return vs

Shifting the two demonic picks up is possible as they don’t depend on ςs:

. . . V̇ do I← pickd(I);
vs← pickd(N[n]);
ςs← fresh-symbol-n(n);
ρI(I[ςs := vs]);
return vs

Applying Lemma 9.10.1 transforms this into

. . . V̇ do I← pickd(I); vs← pickd(N[n]);ρI(I); return vs

Shifting the demonic pick for vs back to the right:

. . . V̇ do I← pickd(I);ρI(I); vs← pickd(N[n]); return vs

Folding and simplifying results in

. . . V̇ do ρ; pickd(N[n])

�

We have been overloading certain operator names, i.e. some operators have
concrete, semiconcrete and symbolic variants. To clearly distinguish between
these different versions, we will add prefixes (c-, sc- and s-) where necessary.

Lemma 9.10.3. The symbolic assertion production implies the semiconcrete assertion
production under concretisation.

s-produce-assertion(a)�= ρ V̇ ρ�= sc-produce-assertion(a)

192 FEATHERWEIGHT VERIFAST

Proof. By structural induction on a. �

Lemma 9.10.4. The symbolic assertion consumption implies the semiconcrete assertion
consumption under concretisation.

s-consume-assertion(a)�= ρ V̇ ρ�= sc-consume-assertion(a)

Proof. By structural induction on a. �

Lemma 9.10.5. The symbolic and semiconcrete versions of assume-bexpr (see
Def. 9.10.23 on page 180 and Def. 9.8.16 on page 146, respectively10) are related as
follows: (

do s-assume-bexpr(b)
ρ

)
V̇

(
do ρ

sc-assume-bexpr(b)

)

Proof. Unfolding, applying both sides to the symbolic state 〈Φ, ŝ, ĥ〉s and
rearranging yields

let r = smt(Φ ∧ φ) in

S |=

do I← pickd(I)

set-current-state(〈~ŝ�I, ~ĥ�I〉sc)
assume r , UNSAT
assume I |= Φ ∧ φ

 (�)

⇒

S |=

do I← pickd(I)

set-current-state(〈~ŝ�I, ~ĥ�I〉sc)
assume I |= Φ
assume(ψ(I) = true)

 (�)

where φ = bexpr-to-formula(ŝ, b) and ψ(I) = eval-bexpr(~ŝ�I, b). The only
differences between both sides are the assume conditions. We need to show
that the lhs does not block if the rhs does not either. In other words, the proof
goal becomes

¬

(
smt(Φ ∧ φ) , UNSAT ∧ (I |= Φ ∧ φ)

)

⇒

¬(I |= Φ ∧ ψ(I) = true)

10We remind the reader that the concrete and semiconcrete execution share these definitions.

SYMBOLIC EXECUTION 193

Rewriting gives

smt(Φ ∧ φ) = UNSAT ∨ I 6|= Φ ∨ I 6|= φ

⇒

I 6|= Φ ∨ ψ(I) = false

Note that I 6|= φ⇒ ψ(I) = false (by structural induction on b). We split this into
three subproofs:

• First subgoal

smt(Φ ∧ φ) = UNSAT⇒ I 6|= Φ ∨ ψ(I) = false

Assuming the soundness of the SMT solver, we know

smt(Φ ∧ φ) = UNSAT⇒ ∀ I. (I 6|= Φ) ∨ (I 6|= φ)

A case split on which disjunct holds leads to two trivial subgoals.

• Second subgoal
I 6|= Φ⇒ I 6|= Φ ∨ ψ(I) = false

We pick the left disjunct.

• Third subgoal
I 6|= φ⇒ I 6|= Φ ∨ ψ(I) = false

We pick the right conjunct.

�

Lemma 9.10.6. The symbolic and semiconcrete versions of assert-bexpr (see
Def. 9.10.25 on page 180 and Def. 9.8.17 on page 146, respectively) are related
as follows: (

do s-assert-bexpr(b)
ρ

)
V̇

(
do ρ

sc-assert-bexpr(b)

)
Proof. Similar to the proof of Lemma 9.10.5. �

Given these lemmas, we are prepared to show how the symbolic execution is
related to the semiconcrete execution.

Theorem 9.10.1. The symbolic execution is sound with respect to the semiconcrete
execution.

s-execute(c)� ρ V̇ ρ� sc-execute(c)

194 FEATHERWEIGHT VERIFAST

Proof. By structural induction on c. Most proofs consist of shifting the ρI(I)
operator gradually to the left, translating the symbolic operator into an
equivalent semiconcrete one at each jump:

s-op1 � s-op2 � . . .� s-opn−1 � s-opn � ρ

V̇ s-op1 � s-op2 � . . .� s-opn−1 � ρ� sc-opn

...

V̇ρ� sc-op1 � sc-op2 � . . .� sc-opn

We demonstrate this scheme by applying it on memory allocation, more
specifically the operator allocate, used by c = malloc(n). allocate has a symbolic
variant (Def. 9.10.32, page 184) which we will refer to as s-allocate and a
semiconcrete version which is identical to the concrete variant (Def. 9.8.20,
page 147), which we rename to sc-allocate.

We first show that, for any ˆ̀ ∈ Symbol, v̂s ∈ Symbol[∗] and I ∈ I,

s-allocate-at(ˆ̀, v̂s)� ρI(I) V̇ρI(I)� sc-allocate-at(~ ˆ̀�I, ~v̂s�I) (9.6)

We prove this by structural induction on v̂s. The base case v̂s = [] is trivial:
nop V̇nop. The proof state for the induction step is

IH : s-allocate-at(ˆ̀, v̂s)� ρI(I) V̇ρI(I)� sc-allocate-at(~ ˆ̀�I, ~v̂s�I)
s-allocate-at(ˆ̀, v̂ :: v̂s)� ρI(I) V̇ρI(I)� sc-allocate-at(~ ˆ̀�I, ~v̂ :: v̂s�I)

Unfolding s-allocate-at and sc-allocate-at in the goal results in the new goal do s-produce-chunk(ˆ̀ +t ||v̂s|| 7→ v̂)
s-allocate-at(ˆ̀, v̂s)
ρI(I)

V̇

do ρI(I)

A← sc-alloc-set
assume((~ ˆ̀�I + ||~v̂s�I ||) < A)
sc-produce-chunk((~ ˆ̀�I + ||~v̂s�I ||) 7→ v̂)
sc-allocate-at(ˆ̀, v̂s)

We can safely drop the second and third line in the do-block of the rhs: leaving
them out makes the results stricter (i.e. op V̇assume(b) � op). Applying the

SYMBOLIC EXECUTION 195

induction hypothesis IH on the lhs results in do s-produce-chunk(ˆ̀ +t ||v̂s|| 7→ v̂)
ρI(I)
sc-allocate-at(~ ˆ̀�I, ~v̂s�I)

V̇

do ρI(I)

sc-produce-chunk((~ ˆ̀�I + ||~v̂s�I ||) 7→ v̂)
sc-allocate-at(ˆ̀, v̂s)

Shifting the ρI(I) another step up finishes the proof. Proving this last step is
trivial.

We take a step back and look at the allocate operators. Our proof goal is do ˆ̀← s-allocate(n)
I← ρ
return ~ ˆ̀�I

 V̇
 do ρ

`← sc-allocate(n)
return `

Unfolding yields

do (ˆ̀ :: v̂s)← s-fresh-symbol-n(n + 1)
s-allocate-at(ˆ̀, v̂s)
I← ρ
return ~ ˆ̀�I

 V̇

do ρ
(` :: vs)← pickd(N[n+1])
sc-allocate-at(`, vs)
return `

We start with the lhs and gradually transform it into the rhs creating a V̇ chain.
We unfold ρ:

. . . V̇

do (ˆ̀ :: v̂s)← s-fresh-symbol-n(n + 1)

s-allocate-at(ˆ̀, v̂s)
I← pickd(I)
ρI(I)
return ~ ˆ̀�I

pickd(I) is a state independent demonic operator and s-allocate-at is demonic,
meaning we can move the former above the latter (Lemma 9.7.1). We can apply
(9.6) to also shift ρI(I) up:

. . . V̇

do (ˆ̀ :: v̂s)← s-fresh-symbol-n(n + 1)

I← pickd(I)
ρI(I)
sc-allocate-at(~ ˆ̀�I, ~v̂s�I)
return ~ ˆ̀�I

196 FEATHERWEIGHT VERIFAST

We fold pickd(I)�= ρI back into I← ρ and rearrange:

. . . V̇

do (` :: vs)←

 do ςs← s-fresh-symbol-n(n + 1)
I← ρ
return ~ςs�I

sc-allocate-at(`, vs)
return `

Lemma 9.10.2 transforms this into

. . . V̇

do (` :: vs)←

(
do ρ

pickd(N[n+1])

)
sc-allocate-at(`, vs)
return `

which can be rewritten as

. . . V̇

do ρ

(` :: vs)← pickd(N[n+1])
sc-allocate-at(`, vs)
return `

which coincides with the rhs of the proof goal. Proofs for the other commands
rely on Lemma 9.10.3, Lemma 9.10.4, Lemma 9.10.5 and Lemma 9.10.6.. �

9.10.3 Relation with Concrete Execution

The final step of the soundness proof consists of showing that the symbolic
execution is a sound approximation of the concrete execution. A full visual
overview is shown in Fig. 9.10.

Theorem 9.10.2. Given a valid program,

s-execute(c)� ρ� κ V̇ ρ� κ� c-execute(c)

Proof.

s-execute(c)� ρ� κ

V̇ (s-execute(c)� ρ)� κ

Using Theorem 9.10.1,

V̇ (ρ� sc-execute(c))� κ

V̇ρ� (sc-execute(c)� κ)

CONCLUSION 197

Figure 9.10: Visualisation of the Relation Between the Different Executions

By Lemma 9.9.1,

V̇ρ� κ� c-execute(c)

�

Theorem 9.10.3 (main soundness theorem). Given a valid SIL++ program p (see
Def. 9.10.40, p. 186) with main routine

routine main(x) requires true ensures true = c

then the concrete execution of bpc’s main routine will not fail.

∀ v ∈N. c-execute(bcc)(〈s0[x := v], ∅〉c) 6 VV⊥

Proof. Follows from Theorem 9.10.2. �

9.11 Conclusion

In this chapter, we introduced the reader to Featherweight VeriFast, the
theoretical underpinnings of VeriFast. Featherweight VeriFast makes use
of an intermediate verification language called Small Imperative Language and
is the subject of Sect. 9.1.

A straightforward approach to verifying a SIL program consists of simply
executing the program to check that no failures are encountered and is
represented by the concrete execution, defined in Sect. 9.8. However, due

198 FEATHERWEIGHT VERIFAST

to the fact that one has to be able to deal with external inputs (demonic
choice over an infinite value domain) and nonterminating programs makes
this approach computationally infeasible.

To solve this problem, we introduced the symbolic execution (Sect. 9.10) which
is a computable approximation to the concrete execution. One of its interesting
properties is its reliance on angelic choice to deal with ambiguities during
execution, meaning there are now two levels of nondeterminism.

A third execution called the semiconcrete execution (Sect. 9.9) was also defined.
It has no other purpose than to serve as a bridge between the concrete and
symbolic execution, simplifying the formalisation process.

After having formalised these three executions, we showed how they were
related to each other. More specifically, we proved that the symbolic execution
can be trusted for the purposes of verification.

These three executions are built on top of a common semantic framework. A
first level of abstraction called the result algebra was defined in Sect. 9.3. It
offers multiple advantages:

• it allows us to succinctly represent and reason about demonic and angelic
choice;

• bottom and top allow us to represent failure and nontermination elegantly:
nowhere does the formalisation need to deal with special cases;

• the correspondence between demonic and angelic choice, and universal
and existential quantification, respectively, simplifies proofs as it makes
it possible to reason abstractly about quantifications;

• it allows us to choose between different models, each having its own pros
and cons.

Next, a second, monadic abstraction layer introduces operators which are
composable functions returning results (i.e. values from the result algebra).
Section 9.5 defined a series of basic operators which serve as building blocks
for the formalisation of the semantics of the three executions. They completely
abstract away the details of the result algebra.

Many result algebra and operator related lemmas were proven in Coq. The
three executions were formalised in Coq, of which the symbolic execution has
been defined as an executable function. This means it can be extracted and
serve as a core for VeriFast.

Chapter 10

Automation

VeriFast is a powerful static verification tool, which can be used to check a
wide range of correctness properties such as memory safety, thread safety, full
functional correctness, or even platform specific demands such as JavaCard’s
transaction system. However, VeriFast requires the programmer to provide
annotations, which can amount to a considerable amount of work. Chapter 8
has introduced the reader to most of these annotations. To reiterate:

• Inductive data types allow us to define purely functional data structures.
They are used to abstractly represent the contents of C/Java data structures.

• Fixpoint functions are purely functional algorithms operating on inductive
data types. Both are often indispensible for proving full functional
correctness.

• User defined predicates make it possible to perform heap abstraction, i.e.
representing data structures of arbitrary size using a single chunk.

• Lemmas are algorithms necessary to rewrite the symbolic program state.

• The C/Java code often needs to be interspersed with ghost statements,
such as open, close and lemma invocations.

Figure 10.1 contains some statistics. The first column contains the number
of lines of C/Java code. The second column shows the annotation line count.
Between parenthesis are the number of open and close statements, respectively.
The last column gives the number of annotation lines per line of code.

199

200 AUTOMATION

Lines of Lines of Ratio
Code Annotations (Ann/Code)

stack (C) 88 198 (18/16) 2.3
sorted binary tree (C) 125 267 (16/23) 2.1
bank example program (C) 405 127 (10/22) 0.31
chat server (C) 130 114 (20/26) 0.88
chat server (Java) 138 144 (19/28) 1.0
game server (Java) 318 225 (47/63) 0.71

Figure 10.1: Annotation Statistics

This chapter discusses ways of reducing the amount of annotations a
programmer needs to add to perform verification. Section 10.1 starts with
describing our general approach to automation and what benefits follow from
it. Next, to be able to demonstrate our automation techniques, we introduce a
working example in Sect. 10.2. Three automation techniques are then explained
in Sect. 10.3, Sect. 10.4 and Sect. 10.5. We compare them in Sect. 10.6 and
conclude in Sect. 10.7.

10.1 General Approach And Rationale

There are many different approaches possible to automation. Some verifiers
[12, 45, 28, 116, 27] choose to be fully automated, thus requiring no help from
the programmer. However, these verifiers are inherently limited to a small set
of verification properties: memory safety is generally within their reach, but
achieving full functional correctness is impossible.

An alternative consists of requiring part of the annotations (such as only the
function contracts), providing all necessary information about the expected
program behaviour, and let the verifier fill in the gaps. Contracts can become
very intricate, and it may be a bit naive to expect a verifier to be able to deal with
programs of arbitrary complexity. The impossibility of providing the verifier
with extra help in cases it fails to verify a piece of code is a major disadvantage.

Our suggested approach consists of strictly separating verification from
automation. The verifier should operate on fully annotated code and never
make any attempt at inferring annotations. Automation is being taken care
of by a separate tool, akin to a preprocessor, which receives code for which it
generates as many annotations as possible. The result can then be passed on to
the verifier. This technique has several advantages:

WORKING EXAMPLE 201

• The verifier determines whether a program satisfies certain correctness
properties or not. To make it as trustworthy as possible, it should be
kept as simple as possible. By strictly limiting it to performing the actual
verification, we keep its complexity to a minimum. It thus forms a trusted
core, which is small and simple enough to make it feasible to implement
it in Coq (or any other proof assistant).

• The separation between verification and automation makes it safe to
add new automation techniques without endangering soundness: the
generated annotations will always be checked by the verifier in a final
step.

• Code given to the automation tool can be partially annotated. This enables
programmers to provide extra aid where needed. For example, in case
the automation tool has some trouble inferring some loop invariant, the
programmer can intervene, specify it himself, and give the code back
to the automation tool. Thus, this allows for an iterative (or interactive)
approach to verification.

10.2 Working Example

To illustrate the different automation techniques, a working example is necessary.
Our object of study will again involve singly linked lists of integer values.
Listing 10.1 shows basic definitions:

• A straightforward list struct definition which requires no explanation.

• The inductive type List is used to represent the contents of lists.

• The Node predicate models a single linked list node on the heap. The
heap chunk Node(p, q) expresses the fact that a node resides in memory
at location p. The node’s next pointer equals q but nothing is said about
the node’s associated integer value.

• An LSeg(p, q) heap chunk reflects the existence of a list segment in memory,
i.e. part of a linked list. The first node is pointed to by p, while q points
to the node one past the end. For example, LSeg(p, 0) represents a null
terminated linked list and LSeg(p, q) and LSeg(q, r) can be merged together
to LSeg(p, r).

• The function create_node() creates a new node on the heap.

202 AUTOMATION

struct list {
struct list* next;
int value;

};

/*@

inductive List = Nil
| Cons(int, List);

predicate Node(struct list* P, struct list* Q) =
P != 0 &*& malloc_block_list(P) &*&
P->next |-> Q &*& P->value |-> ?v;

predicate LSeg(struct list* P, struct list* Q) =
P == Q ? emp : Node(P, ?R) &*& LSeg(R, Q);

@*/

struct list* create_node();
//@ requires emp;
//@ ensures Node(result, 0);

Listing 10.1: Basic Definitions for Integer Carrying Singly Linked Lists

The subject of verification is a list copying algorithm, shown in Listing 10.3. As
the reader can see, the code requires a relatively large number of allocations:
there are approximately twice as many lines of annotations than there are lines
of code. Five lemmas were needed to verify1 the function, whose contracts are
shown in Listing 10.2. The meaning of each lemma will be explained while
discussing the algorithm.

While understanding the code in Listing 10.3 is no prerequisite for the following
sections, we discuss it in detail for the sake of completeness. The function’s
contract (lines 2–3) only partially describes its copying behaviour: given one
linked list, it produces a second list. No guarantees are made that the original
list remains unchanged, nor that the new list contains the same elements. While
it is possible to prove the function fully functional correct in VeriFast, we have
refrained from doing so as it would prevent us to demonstrate the third shape

1While this might seem an exorbitant amount of extra work, keep in mind that these lemmas
can be reused for verification of functions.

WORKING EXAMPLE 203

lemma void NotNull(struct list* P);
requires Node(P, ?PN);
ensures Node(P, PN) &*& P != 0;

lemma void NoCycle(struct list* P, struct list* Q);
requires Node(P, Q) &*& LSeg(Q, 0);
ensures Node(P, Q) &*& LSeg(Q, 0) &*& P != Q;

lemma void AppendLSeg(struct list* P, struct list* Q);
requires LSeg(P, Q) &*& Node(Q, ?R) &*&

Q != R &*& LSeg(R, 0);
ensures LSeg(P, R) &*& LSeg(R, 0);

lemma void AppendNode(struct list* P, struct list* Q);
requires LSeg(P, Q) &*& Node(Q, ?R) &*& Node(R, ?S);
ensures LSeg(P, R) &*& Node(R, S);

Listing 10.2: Linked List Lemmas

analysis automation technique (Sect. 10.5).

Lines 5–7 deal with empty lists in a straightforward manner. The close on line
6 is needed to make the exit state conform with the postcondition. The rest of
the function body deals with nonempty lists. The loop forms the heart of the
algorithm. The loop invariant can be visualised as follows:

xs p
↓ ↓

� −−−−−−−−−−−−−−−−−−→
∗ � −−−−→

∗
×

� −−−−−−−−−→
∗ � → ×

↑ ↑

ys q

A→∗ arrow represents an LSeg, i.e. zero or more nodes, while→ represents a
single node. The upper list corresponds to the original list to be copied, while
the lower list is the copy under construction. The variables xs and ys at all
times point to the first node in the original and copy, respectively. p and q move
one step to the right every loop iteration, until p reaches the end of the list. q
lags one node behind p.

Lines 8–13 create the copy’s first node. Lines 14–19 rewrite the program state
so that it matches the loop invariant. The application of the NoCyle lemma

204 AUTOMATION

1 s t r u c t l i s t * copy (s t r u c t l i s t * xs)
2 / /@ requires LSeg (xs , 0) ;
3 / /@ ensures LSeg (xs , 0) &*& LSeg (r e s u l t , 0) ;
4 {
5 i f (xs == 0) {
6 / /@ c lose LSeg (0 , 0) ; / / a
7 return 0 ; } e lse {
8 s t r u c t l i s t * ys = create_node () ;
9 / /@ open LSeg (xs , 0) ;

10 / /@ open Node(xs , _) ; / / a
11 / /@ open Node(ys , 0) ; / / a
12 ys−>value = xs−>value ;
13 s t r u c t l i s t *p = xs−>next , * q = ys ;
14 / /@ c lose Node(ys , 0) ; / / a
15 / /@ c lose Node(xs , p) ; / / a
16 / /@ NoCycle (xs , p) ;
17 / /@ c lose LSeg (p , p) ; / / a
18 / /@ c lose LSeg (xs , p) ; / / a
19 / /@ c lose LSeg (ys , q) ; / / a
20 while (p != 0)
21 / *@ invar iant LSeg (xs , p) &*& LSeg (p , 0) &*&
22 LSeg (ys , q) &*& Node(q , 0) ; @* / {
23 / /@ s t r u c t l i s t * oldp = p , * oldq = q ;
24 s t r u c t l i s t * next = create_node () ;
25 / /@ open Node(q , 0) ; / / a
26 q−>next = next ; q = q−>next ;
27 / /@ c lose Node(oldq , q) ; / / a
28 / /@ open LSeg (p , 0) ;
29 / /@ a s s e r t Node(p , ?pn) ;
30 / /@ NoCycle (p , pn) ;
31 / /@ open Node(p , _) ; / / a
32 / /@ open Node(q , 0) ; / / a
33 q−>value = p−>value ; p = p−>next ;
34 / /@ c lose Node(q , 0) ; / / a
35 / /@ c lose Node(oldp , p) ; / / a
36 / /@ AppendLSeg (xs , oldp) ; AppendNode(ys , oldq) ;
37 }
38 / /@ open LSeg (p , 0) ; / / a
39 / /@ c lose LSeg (0 , 0) ; / / a
40 / /@ NotNull (q) ; / / b
41 / /@ AppendLSeg (ys , q) ;
42 / /@ open LSeg (0 , 0) ; / / a
43 return ys ;
44 }
45 }

Listing 10.3: A VeriFast-Verified List-Copying Algorithm

WORKING EXAMPLE 205

on line 16 may need more explanation. Applying the lemma informs VeriFast
that xs , p. Without it, the close on line 18 would not work correctly. When
symbolic execution reaches line 18, the heap can be described by

Node(xs,p) ? LSeg(p,p) ? LSeg(p, 0) ?Node(ys, 0)

The close on line 18 means to fold the first two chunks together in a single
chunk LSeg(xs,p). However, the LSeg predicate (see Listing 10.1) contains a
conditional, leading VeriFast to also consider the possibility where its arguments
are equal, i.e. where xs = p, in which case the heap becomes

Node(xs,p) ? LSeg(p,p) ? LSeg(xs,p) ? LSeg(p, 0) ?Node(ys, 0)

In other words, the heap has been extended with the chunk LSeg(xs,p),
representing an empty list. To prevent VeriFast from considering this path, it is
necessary to inform the tool that xs and p cannot be equal. This is achieved by
the lemma application on line 16.

Inside the loop, lines 24–35 create a new node and attach it to the end of the
copy. When reaching line 36, the heap can be described by

LSeg(xs, oldp) ?Node(oldp,pn) ? LSeg(pn, 0)?
LSeg(ys, oldq) ?Node(oldq,q) ?Node(q, 0)

The lemmas on line 36 thus fold the first two chunks on the both lines into a
single chunk LSeg(xs,pn) and LSeg(ys,q), respectively:

LSeg(xs,pn) ? LSeg(pn, 0) ? LSeg(ys,q) ?Node(q, 0)

The reader might wonder the reason behind two different lemmas which
perform the same task. Looking at the lemma’s contract in Listing 10.2, we
notice the precondition requires an extra Node or LSeg chunk, depending on
the lemma, which seems to remain unused.

Consider the chunks LSeg(p,q) and Node(q, r). It is not always sound to fold
these into LSeg(p, r); more specifically, p must not be equal to r. If they were to
be equal, we would be dealing with a cyclic list, which cannot be represented
by the LSeg predicate. The extra chunk in the precondition provides the lemma
with an important piece of information: the separating conjunction guarantees
that no node in the list segment pointed to by P is located at memory location
R, thus preventing cycles from occurring.

Finally, lines 38–42 take care of transforming the program state left by the loop
invariant into one which satisfies the postcondition. The NotNull(q) lemma
application informs VeriFast that q cannot be null, due to the fact that it points to

206 AUTOMATION

a node in memory. This knowledge is required in order to apply AppendLSeg
on line 41: at that point, the heap is

LSeg(xs,p) ? LSeg(ys,q) ?Node(q, 0) ? LSeg(0, 0)

If it were possible that q equals 0, AppendLSeg would produce a list with a
cyclic node.

10.3 Auto-open and Auto-close

A first automation technique targets the open and close ghost commands. As
can be seen from Fig. 10.1 and Listing 10.3, these comprise a relatively large
part of the annotations, which make them ideal candidates for automation.

The idea is simple: whenever symbolic execution fails due to missing heap
chunks, attempts are made to find chunks in the current heap which, when
opened or folded, produce the missing heap chunks. For example, executing
the statement in Listing 10.4 requires a Node(p) chunk on the heap. If it is
missing, two possible solutions present themselves:

• The Node(p) chunk might be hidden inside a LSeg(p, q) list segment.
Opening up the latter then produces the necessary chunk.

• Conversely, the Node(p)’s component chunks could be present on the
heap. Folding them together would also solve the problem.

Instead of randomly opening and closing chunks, the automation tool builds a
graph from the predicate definitions which keeps track of the relations between
them. Each node corresponds to a predicate and arrows relates a predicate
with its constituents. In the case of the predicates defined in Listing 10.1, the
graph contains the following nodes and arrows:

a , b
a = p p = x

LSeg(a, b) −→ Node(p, q) −→ x→ next 7→ y

The arcs are labelled with conditions which the arguments need to satisfy. For
example, to rectify a missing Node(p, q) chunk, the heap is searched for an
LSeg(a, b) chunk for which the first argument equals the node’s (a = p). Added
to this, the list segment must not be empty (a , b). If no such LSeg can be
found, an x→ next 7→ y chunk is looked for, and so on.

AUTOLEMMAS 207

1 void destroy_node(struct list* p)
2 //@ requires Node(p, ?q);
3 //@ ensures emp;
4
5 destroy_node(p);

Listing 10.4: Destroying a Node

For reasons of efficiency, VeriFast restricts its searches to one step deep. For
example, a p->next = 0; statement, which requires a x → next 7→ y chunk,
will succeed if a Node(p, q) node is present, VeriFast will auto-open it. However,
an LSeg(p, 0) chunk does not come into consideration.

Using this technique can considerably decrease the amount of necessary
annotations. In Listing 10.3, all annotations tagged with “// a” are generated
automatically: this amounts to 17 out of 31 annotation statements, which is a
reduction of than 50%.

10.4 Autolemmas

We now turn our attention to another part of the annotations, namely the
lemmas. On the one hand, we have the lemma definitions. For the moment, no
efforts have been made to automate this aspect as lemmas need only be defined
once, meaning that automatic generation would only yield a limited reduction
in annotations.

On the other hand we have the lemma applications, which is where our focus
lies. Currently, VeriFast’s ability to automatically generate lemma applications
is quite specific and admittedly somewhat limited. While automatic opening
and closing of predicates is only done when the need arises, VeriFast tries to
apply all lemmas regarding a predicate P each time a P chunk is produced, in an
attempt to accumulate as much extra information as possible. This immediately
gives rise to some obvious limitations:

• It can become quite inefficient: there could be many lemmas to try out and
many matches are possible. For example, imagine a lemma operates on a
single Node. It can be applied to every Node on the heap, so it is linear
with the number of Nodes on the heap. If however it operates on two
Nodes, matching becomes quadratic. For this reason, two limitations are

208 AUTOMATION

imposed: lemmas need to be explicitly declared to qualify for automatic
application, and they may only depend on one heap fragment.

• Applying lemmas can modify the execution state so that it becomes
unusable. For example, if the AppendLSeg lemma were applied
indiscriminately, Nodes would be absorbed by LSegs, effectively throwing
away potentially crucial information. In our case, we “forget” that the
list segment has length 1. To prevent this, autolemmas are not allowed
to modify the symbolic state, but instead may only extend it with extra
information.

Given these limitations, in the case of Listing 10.3, only one lemma qualifies for
automation: NotNull. Thus, every time a Node(p,q) heap fragment is added to
the heap, be it by closing a Node or opening an LSeg or any other way, VeriFast
will immediately infer that p , 0. Since we only needed to apply this lemma
once, we decrease the number of annotations by just one line (indicated by
“// b” in Listing 10.3).

10.5 Shape Analysis

Ideally, we would like the automation tool to generate all annotations. However,
it cannot just guess what behaviour a piece of code is meant to exhibit, meaning
that it can only check for program independent bugs, such as data races,
dangling pointers, etc.

Our third approach for reducing annotations focuses solely on shape analysis
[44], i.e. it is limited to checking for memory leaks and invalid pointers
dereferences. Fortunately, this limitation is counterbalanced by the fact that
it is potentially able to automatically generate all necessary annotations for
certain functions. This includes the postcondition, loop invariants, lemma
applications, etc.

In order to verify a function by applying shape analysis, we need to determine
the initial program state. The simplest way to achieve this is to require the
programmer to make his intentions clear by providing preconditions. Even
though it appears to be a concession, it has its advantages. Consider the
following: the function length requires a list, but last requires a non-empty list.
How does the verifier make this distinction? If length contains a bug which
makes it fail to verify on empty lists, should the verifier just deduce it is not
meant to work on empty lists?

SHAPE ANALYSIS 209

We could have the verifier assume that the buggy length function is in fact
correct but not supposed to work on empty lists. The verification is still
sound: no memory-related errors will occur. A downside to this approach
is that the length function will probably be used elsewhere in the program,
and the unnecessary condition of non-emptiness will propagate. At some
point, verification will probably fail, but far from the actual location of the bug.
Requiring contracts thus puts barriers on how far a bug’s influence can reach.

One could make a similar case for the postconditions: shape analysis performs
symbolic execution and hence ends up with the final program state. If the
programmer provides a postcondition, it can be matched against this final state.
This too will prevent a bug’s influence from spreading.

Our implementation of shape analysis is based on the approach proposed by
Distefano et al. [44]. The idea is simple and very similar to what has been
explained earlier in Sect. 10.3: during the symbolic execution of a function,
it will open and close the predicates as necessary to satisfy the precondition
of the operations it encounters. However, the analysis has a more thorough
understanding of the lemmas: it will know in what circumstances they need to
be applied. A good example of this is the inference of the loop invariant where
shape analysis uses the lemmas to perform state abstraction, which is necessary
to prevent the symbolic heap from growing indefinitely while looking for a
fixpoint. To clarify, consider the following pseudocode:

p′ := p; while p , 0 do p := p→next end

Initially, the symbolic heap contains LSeg(p, 0). To enter the loop, p needs to
be non-null, hence it is a non-empty list and can be unfolded to Node(p′,q) ?
LSeg(q, 0). During the next iteration, q can be null (the loop ends) or non-null
(a second node). Thus, every iteration adds the possibility of an extra node.
This way, we’ll never find a fixed point.

Performing abstraction will fold nodes back into LSegs, as shown in Fig. 10.2.
One might wonder why the abstraction doesn’t also merge both LSegs into a
single LSeg. The reason for this is that the local variable p points to the start of
the second LSeg: folding would throw away information deemed important.

For our purposes, we need to extend the algorithms defined in [44] so that apart
from the verification results of a piece of code and final program states which
determine the postcondition, they also generate the necessary annotations to
be added to the verified code. For example, when performing heap abstraction,
i.e. grouping Node and LSeg chunks into a single LSeg, the necessary close
commands are automatically generated.

Using this approach, the results can be checked by VeriFast, keeping our trusted
core to a minimum size (i.e. we do not need to trust the implementation of the

210 AUTOMATION

without abstraction with abstraction
Node(p′,q) ? LSeg(q, 0) LSeg(p′,q) ? LSeg(q, 0)

Node(p′,q) ?Node(q,q′) ? LSeg(q′, 0)) LSeg(p′,q) ? LSeg(q, 0)

Figure 10.2: Finding a Fixed Point

shape analysis tool), and extra annotations can be added later on if we wish to
prove properties other than memory safety.

In the case of the copy algorithm from Listing 10.3, shape analysis is able
to deduce all open and close annotations, the lemma applications, the loop
invariant and the postcondition (in our implementation, we chose to require
only the precondition and we manually check that the generated postcondition
is as intended). Hence, the number of necessary annotations is reduced to 1,
namely the precondition.

10.6 Comparison

In order to get a better idea of by how much we managed to decrease the
number of annotations, we wrote a number of list manipulation functions.
There are four versions of the code:

(A) A version with all annotations present.

(B) An adaptation of (A) where we enabled auto-open and auto-close
(Sect. 10.3).

(C) A version where we take (B) and make NotNull an autolemma (Sect. 10.4).

(D) Finally, a minimal version with only the required annotations to make
our shape analysis implementation (Sect. 10.5) able to verify the code.

Fig. 10.3 shows how the annotation line counts relate to each other. The
left side of the table shows how many annotations were required for the C
functions, while the right side considers VeriFast lemmas such as those shown
in Listing 10.2. We have omitted their full definitions, but suffice it to say that
lemmas also require open and close statements and can take advantage of
autolemma automation as well. There is no (D) column for lemmas as shape
analysis has not been adapted to operate on them, although it should not be
difficult to achieve this.

CONCLUSION 211

Function li
ne

s
of

C
co

de

(A
)n

o
au

to
m

at
io

n

(B
)a

ut
o-

op
en
/c

lo
se

(C
)a

ut
o-

op
en
/c

lo
se
/l

em
m

a

(D
)s

ha
pe

an
al

ys
is

Lemma (A
)n

o
au

to
m

at
io

n

(B
)a

ut
o-

op
en
/c

lo
se

(C
)a

ut
o-

op
en
/c

lo
se
/l

em
m

a

length 10 12 9 9 1 Distinct 9 7 7
sum 11 11 7 7 1 NotNull 7 6 6
destroy 9 6 4 4 1 AppendNode 19 16 16
copy 23 32 15 14 1 AppendLSeg 27 19 18
reverse 12 9 5 5 1 AppendNil 9 7 6
drop_last 28 28 13 13 1 NoCycle 11 10 9
prepend 7 5 3 3 1
append 13 20 11 11 1
total 113 205 132 128 8

Figure 10.3: Annotation Line Count Comparison

The annotation line counts for shape analysis are impressive: the number of
required lines of annotations dropped to just 1 (i.e. the precondition). However,
this comes at a price: the shape analysis algorithms need to be specialised on
a per data structure basis, while auto-open/close and lemmas are universally
applicable.

10.7 Conclusion

We can divide verifiers in two categories.

• Fully automatic verifiers which are able to determine whether code
satisfies certain conditions without any help of the programmer.
Unfortunately, this ease of use comes with a downside: these tools can
only check certain properties for certain patterns of code. More ambitious
verifications such as ensuring full functional correctness remains out
of the scope of these automatic verifiers, since correctness only makes

212 AUTOMATION

sense with respect to a specification, which needs to be provided by the
programmer.

• Non-automatic tools are able to perform more thorough verifications
(such as full functional correctness), but these require help from the
programmer.

In practice, given a large body of code, it is often sufficient to check only
automatically provable properties except for a small section of critical code,
where a proof of full functional correctness is necessary. Neither of the above
two options is then ideal. Our proposed solution is to combine the best of
both worlds by using the following verification framework: at the base lies the
non-automatic “core” verifier (in our case VeriFast), which will be responsible
for performing the actual verification. To achieve this, it requires code to
be fully annotated, but in return, it has the potential of checking for a wide
variety of properties. On this base we build an automation layer, consisting
of specialised tools able to automatically verify code for specific properties.
Instead of just trusting the results of these tools, we require them to produce
annotations understood by the core verifier.

A first advantage is that only the core verifier needs to be trusted. Indeed, in
the end, all automatically produced annotations are fed back to the core verifier,
so that unsoundnesses introduced by buggy automation tools will be caught.

A second advantage is that it allows us to choose which properties are checked
for which parts of the code. For example, in order to verify a given program,
we would start with unannotated code, on which we would apply an automatic
verification tool, such as the shape analysis tool discussed in Sect. 10.5. This
produces a number of annotations, which are fed to the core verifier. If
verification succeeds, we know the application contains no memory-related
errors.

Now consider the case where a certain function foo appears to be troublesome
and shape analysis fails to verify it, which could mean that all other parts of
the code which call this function also remain unverified. In order to deal with
this problem the programmer can manually add the necessary annotations for
foo, let the core verifier check them, and then re-apply the shape analysis tool,
so that it can proceed with the rest of the code.

After the whole program has been proven memory-safe, one can proceed with
the critical parts of the code where a proof of full functional correctness is
required. Thus, it makes an iterative incremental approach to verification
possible where manually added annotations aid the automatic tools at
performing their task.

Chapter 11

Conclusion and Future Work

In this final chapter, we summarise our work (Sect. 11.1), compare the
approaches taken by part I and part II (Sect. 11.2), give a short overview
of related work (Sect. 11.3) and discuss possible future work (Sect. 11.4).

11.1 Summary

The growing complexity of software (counting millions of lines of code,
multithreaded, distributed over multiple machines, fault tolerant, etc.) and our
increasing dependence on it (transportation systems, medical devices, power
plants, financial institutions, . . .) has made software verification more relevant
than ever. In this two part thesis we discussed some existing approaches to
software verification, formalised them and proved them sound. A large part of
the proofs [110] has also been machine checked with Coq [33, 16].

The first part focused on verification condition generation [42], i.e. given a
program’s source code, this approach consists of deriving a logic formula
from the source code whose validity implies the correctness of the program
with respect to its specifications. Three algorithms have been considered: the
strongest postcondition (Sect. 5.2), the weakest liberal precondition (Sect. 5.3)
and finally the weakest precondition (Sect. 5.4). To prove their soundness, we
first formally defined an intermediate verification language (Sect. 4.1) and its
semantics (Sect. 4.1.1). Both the semantics and verification condition generation
algorithms describe the behaviour of a program. To show the algorithms’
soundness, we showed that they are in agreement with the semantics. This has

213

214 CONCLUSION AND FUTURE WORK

been fully mechanized in Coq: a full implementation and proofs are available
at [110].

The weakest preconditions, being the one verifiers (e.g. those built on Boogie [7]
or Why3 [49]) generally rely on, enjoyed further development in Chapter 6. The
standard algorithm produces verification conditions that grow exponentially
with respect to the program size. A more efficient version [52, 77] generates
polynomially growing formulae, but only works on passive programs, meaning
that the program to be verified needs to be passified prior to the generation of
the weakest precondition. We fully formalised this program transformation
(Sect. 6.1 and Sect. 6.2) as well as the efficient weakest precondition algorithm
(Sect. 6.3). We then proved the soundness of the approach and showed that
the generated verification conditions grow polynomially (Sect. 6.4). A full Coq
treatment is available at [110].

In part two of this thesis we turned our attention to symbolic execution [75]
and separation logic [98]. This approach consists of executing the program and
performing the necessary checks at each step, such as ensuring that one has
permission to dereference a certain pointer at that moment, etc. Verification
succeeds if execution ends without encountering errors. Separation logic was
relied upon to deal elegantly with the frame problem.

We defined Featherweight VeriFast (Chapter 9), a minimal verifier named after
VeriFast [67], a full-fledged verifier based on symbolic execution and separation
logic, of which Featherweight VeriFast is a core part. First, we defined a small
intermediate verification language named the “Small Imperative Language”
(SIL). To formalise its semantics we used a multilayered semantics framework.
The result algebra (Sect. 9.3) constitutes the first abstraction layer, which is
used to express the result of a symbolic execution, which involves two kinds
of nondeterminism, named angelic and demonic choice. The result algebra
allows us to model failure and nontermination elegantly and simplifies the
proving process.

As a second abstraction layer we defined operators (Sect. 9.4), i.e. monadic
functions returning results (as defined by the result algebra). They are
reminiscent of a combination of the well known State and List monads. The
binding operation allows us to easily compose operators, automatically taking
care of state threading and two kinds of nondeterminism.

Next, we defined a small set of operators, called the basic operators (Sect. 9.5),
which form a small domain specific language, abstracting away the details
of the result algebra. It is used to formalise the Small Imperative Language’s
semantics.

We defined the semantics for SIL in three different ways, named the concrete

VERIFICATION CONDITION GENERATION VS SYMBOLIC EXECUTION 215

execution (Sect. 9.8), the semiconcrete execution (Sect. 9.9) and the symbolic
execution (Sect. 9.10). The concrete execution is straightforward, but cannot
be used for verification as its reliance on infinite sets makes it uncomputable.
The symbolic execution is computable thanks to the introduction of symbols,
heap abstraction and routine abstraction, but these additions make it more
complex. The semiconcrete execution serves as a bridge between the concrete
and symbolic execution to simplify the formalisation.

After having defined these three executions, we showed that they were sound
approximations of each other for the purposes of verification. In short, if
the concrete execution of a program fails, so will the symbolic execution.
Thus, the computable symbolic execution can be used to detect failures in the
uncomputable concrete execution.

The result algebra, operators, basic operators and three executions were all
implemented in Coq [110]. Many low level lemmas were proved in Coq,
but due time constraints no fully mechanised version exists of the top level
soundness proof. An overview of the sizes of the Coq treatments is shown in
Fig. 11.1.

Lastly, we discussed automation for separation logic based verifiers with
VeriFast as test subject. VeriFast requires code to be annotated to guide its
verification process. We presented and compared three automation techniques.
We also proposed a framework which allows us to add new automation methods
without putting the soundness of the verification at risk.

11.2 Verification Condition Generation vs Symbolic
Execution

In this text, we have presented verification condition generation and symbolic
execution as two fundamentally different approaches to software verification,
focusing on their dissimilarities. In Sect. 11.2.1, we focus on their similarities.
Kassios, Müller and Schwerhoff [73] have also compared how the two
approaches perform; we summarise their results in Sect. 11.2.2.

11.2.1 Similarities

Given a procedure to be verified, the symbolic execution approach consists of
stepping through it, statement by statement. Each statement makes demands of
the current program state, i.e. it has a precondition. If the program state cannot

216 CONCLUSION AND FUTURE WORK

Li
ne

s
of

C
od

e
(a

pp
ro

x)

#D
efi

ni
ti

on
s

#L
em

m
as
/T

he
or

em
s(

Fu
ll

y
Pr

ov
en

)

Verification Condition Generation
Verification Condition Generation (Chapter 5) 1,100 19 36
Efficient Weakest Preconditions (Chapter 6) 7,800 95 202

Symbolic Execution and Separation Logic
General Purpose 700 25 36
Result Algebra (Sect. 9.3, Sect. 9.4) 3,600 80 130
Result Algebra Models (Sect. 9.6) 900 85 37
Effective Result Algebra 350 50 0
Effective Result Algebra Models 900 80 35
Execution Auxiliary (Sect. 9.1) 1,300 84 12
Executions (Sect. 9.8, Sect. 9.9, Sect. 9.10) 1,400 123 0

Total 18,000 641 488

Figure 11.1: Overview of Coq Formalisation (approximate numbers)

VERIFICATION CONDITION GENERATION VS SYMBOLIC EXECUTION 217

be shown to satisfy this precondition, verification fails. If the precondition
is met, the statement transforms the program state in a specific way (i.e. the
statement’s postcondition). Thus, every statement forms a proof obligation to
show that the program state produced by the previous statement satisfies the
current statement’s precondition.

In other words, each pair of consecutive statements can be seen as generating a
verification condition, i.e. an entailment between two separation logic formulae.
The verification condition of the entire procedure then becomes the conjunction
of all these “local” verification conditions. In practice, symbolic execution
cannot proceed after the first failure, forcing us to prove each conjunct in
turn instead of all at once. We will come back to this in Sect. 11.2.2, as it has
implications for performance.

Stepping back to the level of entire procedures, symbolic execution can be seen
as similar to computing the strongest postcondition. Whether it is actually the
strongest postcondition depends on the symbolic execution’s completeness.

A direct correspondence between weakest preconditions and symbolic
execution was discussed in Sect. 9.6.2, where we showed that state predicates
encoded as sets of sets of states (corresponding to a disjunction of conjunction
of states, i.e. a normalised form of the logic formula) forms a model of the result
algebra. Operator binding was then shown to be equivalent to the weakest
precondition rule for sequencing, and other cases (assume, assert, etc. as in
Sect. 4) can be shown to also correspond.

11.2.2 Performance

In a recent paper [73], Kassios et al. compared the performance of verification
condition generation and symbolic execution. For their testing, they used the
Chalice language [81] in combination with the verification condition generation
based verifier Chalice [80] and the symbolic execution based verifier Syxc [102].
Z3 was used as theorem prover. The metrics used were a) time needed to
perform verification, b) the number of quantifier instantiations that Z3 had to
perform and c) the number of conflicts Z3 encountered during the verification.
Their results show that symbolic execution performed on average twice as
fast, required 20 times less quantifier instantiations and 5 times less conflicts
occurred.

Branching formed a major performance weakness for symbolic execution, a
problem we also witnessed with VeriFast. For example, symbolically executing
an if-statement leads to a fork in execution, one path for each branch. A series
of if-statements then leads to an exponential explosion of branches. This can

218 CONCLUSION AND FUTURE WORK

x≥0
• −→

x≥0∧y=x
• −→ . . .

↗

•

↘

x<0
• −→

x<0∧y=−x
• −→ . . .

x≥0
• −→

x≥0∧y=x
•

↗ ↘

•
(x≥0⇒y=x)∧(x<0⇒y=−x)

• → . . .
↘ ↗

x<0
• −→

x<0∧y=−x
•

Figure 11.2: Merging Execution Paths

be remedied by merging the two execution paths back together and adding
the path-distinguishing information to the path condition, letting the theorem
prover (such as Z3) deal with the conditionals. While Kassios et al. found that
the theorem prover can deal with conditionals more efficiently, this solution is
only applicable whenever the path condition is able to express the difference
between the paths.

For example, if the if-branches merely assign different values to variables, such
as in

if x ≥ 0 then y = x else y = −x

then the two branches can be merged together by adding (x ≥ 0⇒ y = x)∧ (x <
0⇒ y = −x) to the path condition (see Fig. 11.2). However, were the if-branches
to apply different changes to the heap (e.g. allocate different data structures),
then the path condition would not be able to express this.

Another important metric is completeness: are both approaches equally able to
recognize correct programs? As explained in the previous section, symbolic
execution can be seen as a series of verification conditions, demanding that
the current program state implies the precondition of the statement to be
executed. Since each conjunct is dealt with separately, not all information is
shared between them: only what is expressed by the current symbolic state is
known.

For example, consider again singly linked lists (Listing 10.1, page 202). Say the
current heap contains the necessary chunks for a list segment, then we can group

RELATED WORK 219

them into an LSeg using the close ghost statement and immediately reopen it
with open. However, this leads to loss of information as the LSeg predicate
forgets about the list segment’s size. This in turn may cause verification to fail,
even though the code might be correct. Verification condition generation does
not suffer from this problem as the verification condition gives the theorem
solver a complete view of the situation, not local snapshots.

Related to this issue is the possibility that a symbolic execution based verifier
does not feed the theorem prover all information encoded in the symbolic heap.
For example, from a heap described by p 7→ 0 ? q 7→ 0 we can deduce that
p , 0, q , 0 and p , q. While in this case this implicit information is trivial, the
problem is exacerbated when dealing with fractional permissions [25]. In short,
a chunk p(x, y) can be split up into fractions, e.g. [0.75]p(x, y) and [0.25]p(x, y).
Adding up all fractions of the same chunk cannot go higher than 1. Thus, a
heap described by [0.60]LSeg(p, 0) ? [0.30]LSeg(q, 0) ? [0.80]LSeg(r, 0) implies
that p , r and q , r, but p might be equal to q. Thus, a verifier needs to be
careful to maximize the amount of information it can deduce from the heap
configuration and pass it along to the theorem prover. For example, at the
moment of writing, VeriFast1 fails to take into account fractions.

However, these cases of incompleteness are not inherent to symbolic execution.
The LSeg problem discussed first can be solved by defining a new LSeg
predicate which keeps track of the list segment size (or even its contents). A
more complete set of rules to extract information about the heap will solve the
second issue.

Similarly to Chalice and Syxc, VeriCool [104] can be used to compare verification
condition generation with symbolic execution as the two approaches are
supported by the same tool. The authors also report [103, 105] a performance
advantage for symbolic execution. They also found that performance is more
predictable (i.e. small changes to specifications generally lead to small changes
in performance, contrary to verification condition generation) and simplifies
debugging: It can be hard to deduce from information regarding the invalidity
of the verification condition where the bug is located, a problem which symbolic
execution does not have.

11.3 Related Work

In the following sections, we discuss work related to verification condition
generation and symbolic execution.

1VeriFast 12.5.23

220 CONCLUSION AND FUTURE WORK

11.3.1 Verification Condition Generation

Many verifiers rely on verification condition generation. Boogie [7, 18] is
a platform upon which several other verifiers have been built. Dafny [78]
is an imperative object-based programming language targetting the .NET
framework. The language has built-in specification constructs (preconditions,
postconditions, loop invariants) which are statically checked using Boogie.

Like Dafny, Chalice [80] defines its own programming language, but specialises
in concurrent programs. Chalice programs are verified using verification
condition generation, but the same programs can be verified using another
verification tool named Syxc [102], which instead uses symbolic execution.

The structure of this thesis might seem to imply that separation logic and
verification condition generation are two incompatible approaches. This is
certainly not the case, as the VerCors project [2] shows. The VerCors project
focuses on the verification of concurrent data structures, checking for data
races and functional correctness. For this, it relies on permission based [25, 56]
separation logic [98]. For the generation of verification conditions, it uses
Chalice [80] and Boogie [7] with plans to also support VeriFast as back end in
the future. Currently, two input languages are supported, namely Java and
PVL (a small educational language).

HAVOC [76] and VCC [100, 34] check the correctness of annotated C programs.
Both have been used in large real world projects: large modules of the Windows
operating system have been verified with HAVOC [6] and VCC assisted in the
development of Microsoft’s hypervisor Hyper-V [31].

Spec][9] is an extension of the C] programming language, adding support
for non-null types, checked exceptions and method contracts. In a first step,
compiling a Spec] program adds all specifications to the produced assembly
in the form of runtime checks. Metadata facilities provided by the .NET CLR
[24] are used to tag this extra code so as to make it easy for other tools to
distinguish between program and specification. In a second step, a Boogie
program is generated from the CIL code [47] from which a verification condition
is generated.

Another verification platform is Why [50, 17]. It hosts Jessie [90] (a plugin for
the Frama-C environment [53], a framework for static analysis of C programs
and is the successor of Caduceus) and Krakatoa, a verifier for Java. Other
examples of Java verifiers are JACK [10], ESC/Java [51, 32] and Jahob [23].

Regarding the mechanised verification of verification condition generation
algorithms, Homeier and Martin have done similar work to ours. Using the

RELATED WORK 221

HOL theorem prover, they also mechanically proved the soundness of the
weakest precondition algorithm. In their first work, they focused on partial
correctness of an imperative language without support for procedures [61, 62].
In follow up work, they also deal with procedures and mutual recursion [63].
In a third paper [64], they target total correctness, i.e. guaranteed program
termination. For this, each procedure is associated with a “variant” expression.
They then demand that each cycle in the procedure call graph makes progress,
i.e. decreases the value of this variant expression. Note that this allows other
procedures in between recursive calls to temporarily undo the progress. Their
work resulted in a verified verification condition generator named Sunrise [60].

11.3.2 Symbolic Execution and Separation Logic

Smallfoot [12] is an experimental verifier relying on symbolic execution and
separation logic. It operates on a simple imperative programming language
and requires annotations in the form of preconditions, postconditions and
loop invariants, after which it is able to fully automatically verify the program.
This full automation comes at a price: it is restricted to shallow verification
properties (i.e. shape analysis, but no full functional correctness) and it only
supports a small set of hardcoded predicates (singly-, doubly-, xor-linked
lists and trees) meaning it can only deal with a limited set of data structures.
Smallfoot can also deal with concurrency, allowing the programmer to call two
procedures in parallel and use conditial critical regions [58] as synchronisation
primitive.

Smallfoot has been at the center of much further research and has many
descendants. A first example is SmallfootRG, which features rely/guarantee
reasoning [69], a compositional way of reasoning about concurrent programs.
The basic principle is simple: the effects of other threads are abstracted away
as possible background interference. R,G ` {P} c {Q} means that program c
transforms a program state satisfying P into one satisfying Q, where R describes
all possible interferences from other threads and G the interferences c itself
provokes. Two such “R/G-extended Hoare triples” can then be combined into
one parallel program if their effects are compatible: R1,G1 ` {P1} c1 {Q1} and
R2,G2 ` {P2} c2 {Q2} lead to R1 ∩ R2,G1 ∪ G2 ` {P1 ∧ P2} c1 || c2 {Q1 ∧ Q2} on
condition that G1 = R2 and G2 = R1, i.e. if c2 is impervious to c1’s interferences
and vice versa. The condition can of course be weakened to G1 ⊆ R2 and
G2 ⊆ R1.

Heap-hop [109] is another Smallfoot descendant. It is a verifier for concurrent
programs based on Hoare monitors and copyless message passing (i.e. message
ownership is lost when sending and this is statically enforced). The tool checks

222 CONCLUSION AND FUTURE WORK

for memory safety, memory leaks, race freedom and deadlock freedom. To
achieve this, message channels are given a contract in the form of a finite state
machine which describes the protocol to be obeyed.

Smallfoot has (at least) two verified implementations: Tuerk [108] developed
Holfoot using the HOL4 [59] theorem prover. It can verify most Smallfoot
programs automatically, i.e. it performs shape analysis without programmer
help. Contrary to Smallfoot, Holfoot also supports checking for full functional
correctness, in which case it produces a series of proof obligations which can
then be proved interactively within HOL4 or automatically using an SMT
solver.

Appel’s VeriSmall [4] is a verified implementation of Smallfoot in Coq [33, 16].
Whereas Holfoot is an extension of Smallfoot (as it also allows to check for full
functional correctness), VeriSmall is less ambitious and settles for a subset of
Smallfoot’s capabilities: it can perform shape analysis (like Smallfoot), but
limited to singly linked lists.

Unlike Holfoot, which is implemented as a set of inference rules, VeriSmall is
written as an algorithm, meaning it can be extracted to a compilable O’Caml
program. The verifier finds its application in the Verified Software Toolchain
[3], so that it can be used in conjunction with CompCert [83], a certified C
compiler.

As mentioned earlier, Smallfoot operates on a small custom programming
language, making it unsuitable for use in the real world. Other tools deriving
from Smallfoot operate on more pragmatic languages.

SpaceInvader [11, 116], a descendant of Smallfoot, targets C programs.
Compared to Smallfoot, it can deal with a wider range of data structures
thanks to its use of higher order inductive predicates [11]. In short, the list
predicate has been generalised in what type of nodes it has. For example,
Listing 8.15 (page 89) shows a List predicate describing a singly linked list,
where nodes are described by the Node predicate. Instead of hardcoding the
type of the node, we can let List accept a predicate as argument which describes
each node. A single List predicate can then be used to represent linked data
structures where each node is represented by an arbitrary type of node. The list
from Listing 8.15 could then be written List<Node>(p). Further generalisation
allows the List predicate to also describe doubly linked lists, cyclic lists or a
combination thereof.

Abductor, SpaceInvader’s successor, introduced bi-abduction [28]. It allows
the tool to also infer preconditions and postconditions. An attempt to explain
the basics: since no precondition is known, symbolic execution starts with an
empty heap. Execution of a statement makes demands on the current state.

RELATED WORK 223

On the one hand, it can lack certain required chunks, and on the other hand,
it can contain chunks not needed for the execution of the statement. Written
mathematically: hcurrent ? antiframe ` hrequired ? frame, where antiframe and
frame represent the missing and superfluous chunks, respectively. Biabduction
attempts to derive both. This is repeated for every statement in turn. Missing
chunks make up the precondition and the final execution state corresponds to
the postcondition.

One procedure’s contract can depend on those of other procedures. Therefore,
it is important to derive the contracts in a stratified manner. To deal with
mutually recursive procedures, a fixed point approach is used. Distefano
discusses how biabduction performs in the real world in [43]. A more recent
biabduction-based tool is Infer [27].

Predator [46] (an open source gcc plugin) and SLAyer [14, 54] are still other
verifiers specialised in checking for memory safety and memory leaks in C
programs. They are also fully automatic and can deal with complex composite
data structures. SLAyer has successfully been applied on real world projects
[14] such as device driver verification.

coreStar [20] is a verification framework (similar to Boogie [7] and Why [50, 17])
based on separation logic. It supports two types of symbolic executions:
symbolic execution with frame inference (which basically corresponds to
standard symbolic execution, i.e. checking that {P} c {Q} holds) and a
biabductive [28] symbolic execution which, in simplified terms, finds the
missing chunks as execution proceeds (i.e. finding a P′ such that {P ? P′} c {Q}
holds). Together these missing chunks form a candidate precondition, which is
checked in a second phase by using the frame inferring symbolic execution.

coreStar provides an intermediate verification language named coreStarIL.
Compared to other intermediate verification languages, it is quite minimal:
a label l and matching demonic nondeterministic goto l1, . . . , ln command
take care of control flow, and a single “specification assignment command”
x := {P}{Q} (similar to generic commands [101]) is used for other statements.
A fourth and last command, abs, triggers abstraction of the current program
state, necessary to make symbolic execution converge.

coreStar has no built-in predicates (e.g. there is no 7→ spatial predicate). Instead,
users can provide their own proof rules, rewrite rules and abstraction rules. This
is somewhat similar to VeriFast’s user defined predicates and (auto)lemmas.
Although powerful, a potential problem of this approach is that unsoundnesses
can easily be introduced. The authors propose for future versions to either
require proofs or to design a specially tailored language which only allows to
express rules whose correctness (i.e. confluence and termination) is decidable.

224 CONCLUSION AND FUTURE WORK

The coreStar platform has been used as backend for multiple verifiers. jStar [45]
verifies Java programs (technically, jStar came first and coreStar is a distillation
of its core features), MultiStar targets Eiffel and asyncStar [21, 22] specialises in
verifying multicore C programs with asynchronous memory operations.

Another example of a symbolic execution and separation logic based verifier is
THOR [87], a C verifier which trades in scalability for precision and attempts
to combine shape analysis with arithmetic reasoning. In case standard shape
analysis fails to prove correctness, a second phase is entered: the heap-
manipulating code is translated into arithmetic stack-based code [86] containing
“error positions” which during any execution must not be reachable in order
for the original code to be correct.

11.4 Future Work

We discuss how the ideas laid out in this thesis can be developed further.
Section 11.4.1, Sect. 11.4.2 and Sect. 11.4.3 propose very ad-hoc possibilities for
future work, while Sect. 11.4.4 takes a step back and looks at the bigger picture.

11.4.1 Further Formalisation of Verification Condition Gener-
ation

Further mechanised formalisation of verification condition generation is
possible by also considering unstructured programs and add support for
exceptions.

Weakest preconditions for unstructured programs (i.e. programs with gotos)
are described in [8]. The verification condition generation happens in several
phases, as shown in Fig. 11.3. Intuitively, a program has an irreducible control-
flow graph if it contains jumps into loop bodies [1], such as is the case with
Duff’s device. In a first step, the program must be rewritten into an equivalent
form where statements within a loop body can only be reached by paths which
pass through the loop’s header, i.e. the loop’s entry point. In a second step,
the back edges (i.e. the jump back from the end of the loop to the loop’s entry
point) are removed and each loop body is turned in a single “generalized loop
iteration” by havocing all loop targets (i.e variables modified in the loop’s body)
and adding loop invariants. This results in an acyclic control-flow graph, at
which point we reach a situation for which the algorithm described in Sect. 6
can take over.

FUTURE WORK 225

irreducible control-flow graph
↓

reducible control-flow graph
↓

acyclic control-flow graph
↓

dynamic single-assignment form
↓

passified form
↓

weakest precondition

Figure 11.3: Steps for Weakest Preconditions of Unstructured Programs

Providing support for exceptions [52] is another possible addition. This
consists of extending the intermediate verification language with raise and
catch statements. The weakest precondition algorithm as discussed in Sect. 5
takes a single target postcondition and returns a weakest precondition. This can
be generalized by providing two target postconditions Q and R, which express
the conditions that should hold in case of normal and exceptional termination,
respectively.

11.4.2 Featherweight VeriFast

The Coq implementation of Featherweight VeriFast is one obvious candidate
for further work. As of yet, many proofs about the lower abstraction layers,
i.e. the result algebra and operators, have been mechanized (see Fig. 11.1), but
much work remains to be done to mechanically prove the soundness of the
different executions.

A rather trivial change from a theoretical standpoint, but with large pragmatic
consequences, is to extend Featherweight VeriFast with support for predicates
and routines with variable number of arguments and return values for the latter.
Using SIL++ in its current form requires needlessly complicated translations
from the source language (e.g. C, Java), whose correctness can then be
questioned. A different approach to solve this problem consists of defining
yet another intermediate language (SIL]) for which we define a translation
to SIL++and prove it sound. This both keeps the core language small and
simplifies the translation from source language to intermediate verification
language.

226 CONCLUSION AND FUTURE WORK

Some of VeriFast’s features such as ghost variables, concurrency and fractional
permissions [25] are missing in Featherweight VeriFast. These features add to
the verifier’s completeness and need to be added to Featherweight VeriFast
if it is our intention to be used as VeriFast’s certified core without negatively
impacting its current verification abilities.

Adding concurrency seems like a particularly interesting problem. The result
of the concrete execution would not be a result over states, but over all possible
traces. Keeping track of the “execution history” (i.e. a possibly infinite list
of program states) should not form a major obstacle: the binding operation
should be the only definition that needs modification and the existing operators
describing the different execution’s semantics should remain unchanged.

However, keeping a single trace does not suffice if we are to model concurrency.
The execution of a command c must be seen as the execution in a multithreaded
environment where other threads can randomly influence the program state,
or at least the heap. Thus, we need to define which execution steps are atomic
and consider every possible heap between every such step. A trace would
then be a list of functions mapping heaps to states τi : Heap → Store × Heap.
Extracting an actual execution without external interference (required at the
top level) then consists of finding a chain where the heaps match at every step:
(si+1, hi+1) = τi(hi). Most of the changes needed to incorporate this would again
take place on the level of operators, with some modifications in the semantics
definitions in order to identify atomic steps.

The symbolic execution would need to model each thread separately, the
same way every routine is handled in isolation. Rely/Guarantee reasoning
in conjunction with separation logic can be used to elegantly restrict the
interference from other threads in an abstract manner. We will not delve into
this any further as discussing it in detail would probably amount to a whole
new chapter.

11.4.3 VeriFast

In its current state, VeriFast does not conform to the framework proposed in
Chapter 10: a minimal machine checked core on which other layers are built,
but whose results are in a last step always checked by the core, thereby ensuring
soundness is preserved.

VeriFast does not make use of a small intermediate verification language,
making its core unnecessarily large. The verifier now more or less operates
directly on an abstract syntax tree of a hybrid C/Java language. In our opinion,

FUTURE WORK 227

adding an extra indirection in the form of an intermediate verification language
constitutes an important step in turning VeriFast into a certified verifier.

As discussed in Chapter 10, VeriFast has some automation techniques built
in, such as auto-open/close and autolemmas. However, these are currently
implemented within VeriFast’s core and leave no trace of their activity. This
means a single mistake in their implementation endangers the soundness of
the whole verifier.

To improve our confidence in VeriFast’s soundness, we would perform the
following changes:

• We would refactor VeriFast so that it uses the verifier developed in
Chapter 9 as its core.

• The automation techniques mentioned above would be rewritten so as to
be restricted to annotation generation instead of directly influencing the
symbolic execution. The shape analysis described in Sect. 10.5 already
fits this model.

• VeriFast can currently verify C and Java programs. With Featherweight
VeriFast as its new core, these would need be translated into SIL++ first.
The translation algorithm is nontrivial and should itself also be the subject
of thorough checking. This can only be done in a meaningful way if there
exists a a formal definition of the source language’s semantics, so that
the original program and its translation can be proven equivalent for
the purposes of verification. Ideally, a compiler for the source language
should also exist which conforms to this formalised semantics. Examples
are the Coq-verified C compiler CompCert [83] and Strecker’s [107] work
on a verified Java compiler in Isabelle.

Automation can also be improved. For example, the implementation of bi-
abduction [28] extended with annotation generation would considerably lighten
the programmer’s burden as routine contracts and loop invariants could be
inferred automatically.

11.4.4 Reflection

We discussed verification condition generation and symbolic execution as
general means to perform verification, and Sect. 11.3 presented an (incomplete)
list of techniques built on top of these. An obvious question one can ask oneself
is, which one is better? It will come as no surprise that no definite answer will

228 CONCLUSION AND FUTURE WORK

be given, for the simple reason that there does not exist a definite answer, and
neither should there be one.

To be able to designate which approach to verification is superior to any other,
some metric is needed. Many sensible candidates can be found:

• Scalability and efficiency: can the verifier be applied to large programs
and give us an answer in reasonable time?

• Difficulty of use: is verification fully automatic, and if not, how much does
it impact programmer productivity to verify code? Does the programmer
need extra training? Are results easy to understand, i.e. do error messages
clearly point out where the bugs hide?

• Correctness guarantees: what type of errors can be caught by the static
analysis? Is it limited to type safety or can it prove up to full functional
correctness?

• Completeness: dealing with false alarms is time consuming, which
negatively affects productivity.

• Applicability: which programming languages does the verifier support?
Does it rely on certain programming style to be used?

Unless we manage to develop a verifier scoring high on all these metrics
simultaneously, choices need to be made, and just as important, choices need
to exist.

How relevant each metric is depends on the situation. If one has an existing
codebase written in C, the verifier obviously needs to be able to target C
code (directly or indirectly, through translation phases) and probably to detect
memory safety and memory leaks at the very least. If one is dealing with a new
project which does not need the efficiency of a low level language such as C, it
is probably simpler to use a language with garbage collection than to choose
one without and rely on a verifier for memory-related correctness properties.

How much verification will break through is an interesting question. Critical
pieces of software such as operating systems, drivers and applications involving
human life (aircrafts, power plants, . . .) will probably want to make use of
the state of art of verification techniques as the costs of failure are great. How
much mainstream programs will want to use verification is another matter.

Type systems are already widely in use. Memory safety and memory leaks
are no issue in many languages, as most do not allow pointer arithmetic
and provide automatic garbage collection. Writing multithreaded code is

FUTURE WORK 229

notoriously hard to do correctly and seems an ideal candidate for verification to
prove its usefulness to “everyday programmers”. However, it may be simpler
to enforce a certain programming model, such as the actor model, so that fragile
parts are taken care of by the language (e.g. Erlang [48], Oz [93, 99]) or by a
library (e.g. Scala Actors) and code built on top automatically enjoys certain
correctness properties (e.g. data race freedom).

Other possible verification targets are security and privacy related properties.
Application distribution systems (e.g. Appstore for iPhone and iPad, Windows
Store for Windows 8, app stores for Android) come to mind as they are becoming
increasingly popular. Some companies care more than others about the quality
and trustworthiness of the available applications and regulate their stores. In
the future, they might demand of app developers that their software pass
certain tests. At this time, though, it seems that most rules (e.g. regulating
access to personal data such as contacts or current location, permission to run
in the background, etc.) can be enforced by simple and efficient runtime checks.

The evolution of programming language usage will also influence verifiers. It
seems a gradual shift towards a more functional programming style is taking
place. Many examples exist: C] has recently been extended with many Haskell-
like features, such as LINQ and anonymous functions. Java 8 will (finally)
also feature lambda functions, as does C++ in its latest incarnation. F], closely
related to O’Caml, has become a standard part of Visual Studio.

The greater the shift towards the functional paradigm, the more the focus of
verification will have to change. For example, functional style often makes use
of higher order functions and closures, meaning that objects captured by the
closure must be shared or have their ownership rights transferred. Verifiers
will need to be able to deal with this elegantly.

Functional style also makes frequent use of immutable objects and data is
consequently often shared between different data structures. The immutability
could make verification easier, as it makes the framing problem disappear, but
is this information used optimally by verifiers [36]? For example, modelling
immutable linked lists with node sharing is quite challenging using VeriFast.

With this in mind, one could say we are now contradicting our claims from
the introduction where we said that imperative programs are just functional
programs with added state, meaning that verification algorithms for imperative
languages will just as well be able to operate on functional programs. While this
is technically true, such an algorithm does not make use of guarantees implicitly
made by functional languages, thus hampering verification somewhat.

Things could also turn out to evolve the other way, away from functional
style: research focuses on verification on imperative languages, significant

230 CONCLUSION AND FUTURE WORK

progress is made, the industry starts relying on these tools, with as result
that we remain stuck with the same old languages. However, the functional
style has gained an advantage the last decade: multithreading has become far
more relevant recently, and, in our opinion, the functional style considerably
simplifies dealing with multiple threads.

We wondered whether it would be an interesting concept to separate
specification from algorithm. Different verifiers use different algorithms,
but also require different kinds of annotations. Using a more standard
language for specifications could allow multiple verification algorithms to
be applied on the same program. For example, Chalice [80] and Syxc [102] use
verification condition generation and symbolic execution, respectively, on the
same annotated code. Thor [87] views the same program in two different ways:
first it looks at it as a heap manipulating program, and in a second phase it
abstracts away many details, leaving only a stack based number manipulating
program to be verified.

We realised however that this might not turn out to be feasible. The annotation
language actually constitutes the main part of a specific technique, as it consists
in finding the most common patterns and default values so that, in most
cases, specifications remain short and simple while still conveying all necessary
information for all different verifications. The different verification algorithms
must then make optimal use of this information.

We can more or less define a dependency relation on correctness properties. For
example, to prove full functional correctness, many other correctness properties
need to be shown to hold, such as the absence of races and deadlocks. This
in turns requires us to prove memory safety first. This implies that applying
multiple verifiers may not be that useful, as the most advanced verifier will
need to prove the same properties as the other less advanced verifiers. This
issue can be resolved by letting the verifiers communicate with each other: one
verifier could rely on the proof of memory safety, but this information exchange
then also needs to be standardised.

Lastly, we discuss the use of proof assistants. During our research, we
endeavoured to mechanise as many proofs as possible. One could wonder
whether such rigor is actually necessary and if it will occupy a major place in
the future.

It is our opinion that the use of proof assistants will certainly grow. Although it
is incredibly time consuming, it gives a considerable increase in confidence in
the correctness of our definitions and proofs. Some believe a machine checked
proof is still not completely trustworthy, as it relies on the soundness of the
proof assistant and the correct functioning of the hardware it is running on.

FUTURE WORK 231

While true, in our eyes, it is still safer than trusting a human expert to check
all proofs. Perhaps it is not as trustworthy as a proof checked by a thousand
experts, but some pragmatism is required. Also, in our case, not trusting the
hardware is not an option as the verified software will end up running on it.

Of course, one has to be careful not to be overconfident: while the proofs are
machine checked, the theorems themselves are not. It is possible (and would
not be the first time. . .) that one spends hours proving the wrong thing. Hence,
human checking is still necessary, but requires far less effort.

Worthy of mention is the POPLmark challenge [5, 97]. It is a set of programming
language metatheory problems destined to be mechanised which are meant
to stimulate the use of proof assistants. Although it seems interest in it has
subsided, we are still confident that mechanisation will keep growing in
importance the coming years.

Appendix A

Notations

A.1 Notation definitions

Definition A.1.1 (proof state notation). During some proofs, we adopt the same
proof state notation as Coq.

Hypothesis 1
Hypothesis 2
...
Hypothesis n
Goal

Notation Short description Definition Page
λ x. e Lambda function
≡ Defined as

f [a := b] Function update Def. A.1.2 233
Prop Type of propositions
A[∗] Type of lists of items A

A[∗]n Type of A-lists of length n
||xs|| Length of list xs

Figure A.1: General Notations

233

234 NOTATIONS

Notation Short description
∧ Conjunction
∨ Disjunction
¬ Negation
⇒ Logically implies
⇐ Logically implied by
⇐⇒ If and only if
∀ Universal quantification
∃ Existential quantification

Figure A.2: Logical Notations

Notation Short description
∅ Empty set
P Power set
Pf Set of all finite subsets
∈ Set membership
⊂ Strict subset
⊆ Subset
∪ Union
] Multiset union
∩ Intersection
− Set difference
N Set of natural numbers, including 0
N0 Set of natural numbers, excluding 0
Z Set of integers

unit Unit set
� Unit value

Figure A.3: Set Related Notations

NOTATION DEFINITIONS 235

Notation Short description Definition Page
∆P

c Class set Def. 3.2.3 p. 18
∆P

m Method table Def. 3.2.4 p. 18
∆P

f Field table Def. 3.2.5 p. 18
∆P Program data Def. 3.2.8 p. 19
{ Single step relation arrow Def. 3.2.11 p. 22
{∗ Multiple step relation arrow Def. 3.2.12 p. 25
y Step over relation arrow Def. 3.2.14 p. 26
y∗ Multistep-over relation Def. 3.2.15 p. 26

Figure A.4: Source Language Notations (Chapter 3)

Notation Short description Definition Page
[] Nondeterministic choice Def. 4.1.1 p. 31
〈c, s〉 Program state Def. 4.2.4 p. 33
−→ Single step relation arrow Def. 4.2.5 p. 35
−→

∗ Multiple step relation arrow Def. 4.2.7 p. 36
↓f Big step relation arrow Def. 5.4.3 p. 50

Figure A.5: Intermediate Verification Language Notations

Notation Short description Definition Page
{P} c {Q} Hoare triple Def. 5.1.2 p. 42
|P| c |Q| Soft Hoare triple Def. 5.1.3 p. 42

Figure A.6: Hoare Triples

Notation Short description Definition Page
~e�ν Expression versioning Def. 6.1.2 p. 60
∼
ν Synchronised stores Def. 6.1.7 p. 61
≤ν
∼ Store equivalence up to ν Def. 6.2.2 p. 63

Figure A.7: Efficient Weakest Precondition Auxiliary Notations

236 NOTATIONS

Notation Short description Definition Page
−
? Result Def. 9.3.1 p. 110
⊕ Angelic choice Def. 9.3.1 p. 110
⊗ Demonic choice Def. 9.3.1 p. 110
|= Model Def. 9.3.1 p. 110
~−� Result injection Def. 9.3.1 p. 110
V Result implication Def. 9.3.3 p. 113
V̇ Pointwise result implication Def. 9.3.5 p. 114
VV Result equivalence Def. 9.3.4 p. 113
˙VV Pointwise result equivalence Def. 9.3.6 p. 114
> Top Def. 9.3.7 p. 114
⊥ Bottom Def. 9.3.8 p. 115
|−|d Characteristic set of demonic result Def. 9.3.9 p. 118
|−|a Characteristic set of angelic result Def. 9.3.10 p. 119
|−|det Char. value of deterministic result Def. 9.3.11 p. 119
−
⇑ Lifting Def. 9.4.2 p. 121
≫ Primitive operator binding Def. 9.4.3 p. 123
�= Operator binding Def. 9.4.6 p. 125
� Operator binding (unit result) Def. 9.4.6 p. 125

do . . . Do notation Def. 9.4.7 p. 125

Figure A.8: Result Algebra Notations

Notation Short description Definition Page
+e −e ×e Expression operators Def. 9.1.1 p. 104

trueb =b <b ≤b ∧b ¬b Boolean expr. operators Def. 9.1.2 p. 104
? Separating conjunction Def. 9.9.1 p. 152

+t −t ×t Term operators Def. 9.10.2 p. 175
=f <f ≤b ∧f ¬f Formula operators Def. 9.10.3 p. 175

7→ Pointer chunk Def. 9.8.3 p. 143

Figure A.9: SIL/SIL++ Notations

NOTATION DEFINITIONS 237

Notation Short description Definition Page
〈s, h〉c Concrete state Def. 9.8.6 p. 143
〈s, h〉sc Semiconcrete state Def. 9.9.9 p. 155
〈ŝ, ĥ,Φ〉s Symbolic state Def. 9.10.9 p. 176
− − Entailment Def. 9.9.18 p. 161
~t̂�I Interpretation of a term Def. 9.10.42 p. 189
~φ�I Interpretation of a formula Def. 9.10.43 p. 189
~ŝ�I Interpretation of a store Def. 9.10.44 p. 189
~α̂�I Interpretation of a chunk Def. 9.10.45 p. 189
~ĥ�I Interpretation of a heap Def. 9.10.46 p. 189
~σ̂�I Interpretation of a symbolic state Def. 9.10.47 p. 189
κ Refinement operator Def. 9.9.20 p. 162
ρI Concretisation operator for I Def. 9.10.48 p. 189
ρ Demonic concretisation operator Def. 9.10.48 p. 189

Figure A.10: Execution Notations

Definition A.1.2 (function update).

f [a := b] ≡ λ x. if x = a then b else f (x)

Appendix B

Monads

This chapter takes on the arduous task of attempting to explain monads to
the unsuspecting1 reader. Monads have been the subject of many tutorials,
essays, videos, articles and blogs. This chapter’s explanation is based on Brian
Beckman’s video2. Although monads originate from category theory, this
introduction does not venture into this highly abstract branch of mathematics
but instead focuses on how it is applied in programming languages.

B.1 Basics

If nature were to develop our software, it would randomly generate billions of
programs and coldheartedly kill off those that don’t perform well. Assuming
we had a few eons to spare, we would end up with what would probably be
the spaghettiest of code, but it would work. . . most of the time.

We cannot afford to approach software development in the same manner.
Instead, we would prefer a more structured method. Abstraction and
composability are key ingredients to software engineering: given a limited set
of building blocks, we need to be able to compose them, resulting in new larger
building blocks, which will themselves serve to build even larger ones.

Composability is paramount. For example, synchronisation (in the context
of multithreading) is known to be quite complex. This is partly due to the

1The suspecting reader has of course chosen not to read this chapter.
2http://channel9.msdn.com/Shows/Going+Deep/Brian-Beckman-Dont-fear-the-Monads

239

http://channel9.msdn.com/Shows/Going+Deep/Brian-Beckman-Dont-fear-the-Monads

240 MONADS

fact that locking is still the technique most in use, although it does not offer
composability: given two thread safe objects, we cannot just join them together
in order to obtain a new thread safe object. It comes at no surprise that
transactional memory, an alternative synchronisation method, is receiving
much attention recently, as it provides us with a composable way to perform
concurrency control.

Functions are probably the most well-known abstraction in programming
languages. An important feature is their composability: given two functions f
and g, both with type signature int → int, we can compose them into a new
function h = g ◦ f , whose signature is again int → int. We can generalise
this: f and g don’t need to specifically operate on integers. In other words,
two functions a→ a can be combined into a new function with the same type
signature a→ a, for any type a. Generalizing even further, the input and output
types don’t need to be the same:

f : a→ b g : b→ c g ◦ f : a→ b

We now wish to generalise one step further. We achieve this by introducing a
type constructor T and considering functions with type signature a→ T b. A
type constructor can be seen as a “function on types”, comparable to generics
(C], Eiffel, Java, . . .) or templates (C++).

Composing two functions with signatures

f : a→ T b g : b→ T c

is not as straightforward anymore, as f ’s output type does not fit g’s input type.
For this reason, we need to manually define a monadic composition, which we
denote ◦m.

◦m : (b→ T c)→ (a→ T b)→ (a→ T c)

The monadic composition’s responsibility is to take the output of the a→ T b
function and somehow apply it on the b → T c function. The behaviour of
monadic composition depends on T: we’ll need to define a new monadic
composition operation for each different T. In the next section, we’ll take a look
at different type constructors and how to define their corresponding monadic
composition.

B.2 The List Monad

In this section, we take a closer look at the list type constructor. In other words,
we wish to compose functions with type signature

f : a→ [b] g : b→ [c]

THE LIST MONAD 241

where [b] stands for “list of bs”. The result of composing f and g should have
the type

g ◦m f : a→ [c]

The function f returns many bs, while g only accepts a single b. This reminds
us of the map function:

map : (a→ b)→ [a]→ [b]

The expression map ψ xs applies the function ψ on every element of xs and
collects the results in a new list. If we use map directly to compose our functions
f and g, i.e.

g ◦m f ?
= map g ◦ f

we get the wrong result type: a → [[c]] instead of a → [c]. We solve this by
adding an extra call to concat, which joins all lists together.

g ◦m f = concat ◦ map g ◦ f

Example B.2.1. Consider the following functions:

double(n) = [n, 2n]
clamp(n) = [n mod 5]

remove-odd(n) = if n is odd then [] else [n]

Composing double with clamp amounts to applying clamp to every value returned
by double:

(clamp ◦m double)(3) = [3, 1]
(clamp ◦m double)(4) = [4, 3]
(clamp ◦m double)(n) = [n mod 5, 2n mod 5]

We can chain multiple doubles together:

(double ◦m double)(1) = [1, 2, 2, 4]
(double ◦m double)(n) = [n, 2n, 2n, 4n]

(double ◦m double ◦m double)(1) = [1, 2, 2, 4, 2, 4, 4, 8]
(double ◦m double ◦m double)(n) = [n, 2n, 2n, 4n, 2n, 4n, 4n, 8n]

(double ◦m f)(n) = [f (n)1, f (n)2, . . . , f (n)| f (n)|,
2 f (n)1, 2 f (n)2, . . . , 2 f (n)| f (n)|]

where f (n)i denotes the ith element in the list returned by f (n) and | f (n)| denotes its
length. A function which returns the empty list can be used to “swallow” values:

(remove-odd ◦m double)(3) = [6]
(remove-odd ◦m double)(4) = [4, 8]

(remove-odd ◦m clamp ◦m double)(4) = [4]

242 MONADS

var coprimes = from x in Enumerable.Range(1, n)
where GCD(x, y) == 1
select x;

Listing B.1: Linq

Example B.2.2. List comprehensions (Haskell, Python, C]’s LINQ, . . .) are actually
list monads in disguise. Listing B.1 can be written as

pack(x) = [x]
filter(x) = if gcd(x, y) = 1 then [x] else []

range(n) = [1, 2, . . . ,n]
coprimes = pack ◦m filter ◦m range

The list monad can also be interpreted as nondeterministic computing: every
step generates multiple results, and further computation continues on each
of these values. The list monad is extensively used in the formalisation of
Featherweight VeriFast as a means to model nondeterminism.

B.3 The Maybe Monad

Null pointers (or references) are the bane of many programmers. While it is
true that allowing pointers to be null gives us a simple means to express failure
or a “lack of result”, we generally do not wish to make use of this possibility.
Exceptions are a more robust way of signaling failures and null objects are
a cleaner way to represent “nonexistence”. Unfortunately, many languages
force us to deal with these edge cases where pointers are null, requiring special
handling. It is generally not possible to express through the type system that a
pointer is definitely not null, thus deferring the check at runtime: good practice
dictates that we always check for null before accessing objects through pointers.

Many functional languages such as Haskell, O’Caml and Coq take the opposite
approach: types normally do not allow null by default, except if explicitly
asked. For this purpose, the Maybe type constructor is offered (also known as
“option”). For example, in Haskell, a value of type [Int] is guaranteed to be a
list, whereas in Java, it could also be null. If we wish to allow a special value
indicating “no list”, we can use Maybe [Int]. A list [1, 2, 3] is then be written
“Just [1, 2, 3]”, and a lack of list is denoted “Nothing”, which corresponds to
null.

KLEISLI TRIPLES 243

We now examine how we can compose functions with type signature

f : a→Maybe b g : a→Maybe b

We can interpret the result type as expressing the possibility of failure. If f
returns a success value “Just x”, we can just apply it to g. If, however, f fails, i.e.
if it returns “Nothing”, then the composition g ◦m f should also fail. One can
view the Maybe monad as a (very simple) exception system, where execution
automatically short-circuits after the first failure. Given this insight, it is easy
to define the monadic composition:

g ◦m f = λ x. match f (x) with
Just x → g(x)
Nothing → Nothing

B.4 Kleisli Triples

As explained before, the monadic composition combines a a → T b and a
b→ T c function into a a→ T c function. The most interesting aspect of this
monadic composition is how it applies the second function on the results of
the first, i.e. how to apply something of type T b on a function with signature
b→ T c. We can extract this core part:

− �= − : T a→ (a→ T b)→ T b

The monadic composition can then defined as

g ◦m f = λ x. f x �= g

Another alternative is to define a lifting operator:

−
⇑ : (a→ T b)→ (T a→ T b)

We can express binding in terms of lifting:

x �= f = f ⇑ x

A monad’s full definition consists of three components, called the Kleisli triple3:

• The type constructor T. The previous sections have examined the cases
where T a = [a] and T a = Maybe a.

3In order to form a valid Kleisli triple, the components also need to obey certain laws, but this
falls out of the scope of this chapter.

244 MONADS

• A way to compose functions of type a→ T b. Whether it takes the form
of monadic composition, binding of lifting does not matter. For example,
Haskell’s monad type class requires a definition for binding.

• A unit function with type signature a → T a. It defines a way to inject
a value of an arbitrary type into a “monadic box”. Following Haskell
terminology, we will name this function return.

In the case of the List monad, the return function is defined as

return x = [x]

For the Maybe monad, it is

return x = Just x

B.5 Do Notation

While it is possible to implement monads in any language, it can quickly
become a syntactic mess, undermining the monad’s usefulness. To prevent this,
languages can provide syntactic sugar to keep the code readable. Listing B.1
gives an example of C]’s syntax for monads.

During the formalisation of Featherweight VeriFast, we adopt the following
notation which is heavily inspired on Haskell’s do notation:

do x← f
rest

≡ f �= λ x. rest

do f
rest

≡ f �= λ _. rest

do f ≡ f

We can rewrite Listing B.1 as follows

do x← range n
check (gcd x y = 1)
return x

where
check b = λ x. if b then [x] else []

THE STATE MONAD 245

The first line picks a x in the given range; the rest of the computation will be
performed for every x in [1, 2, . . . ,n]. The second line filters out cases where x
and y are not coprime. The last line states that x is the result of the computation.
Thus, the end result will be a list of all x between 1 and 10 which are coprime
with y. If y = 12, the result would be [1, 5, 7].

Used with the Maybe monad, we get:

do a← f
b← g a
c← h a b
return (a, b, c)

If f succeeds, a will be bound to its value. We then compute g a and save its
value in b, etc. Only if all three functions f , g and h succeed do we reach the
final line, which returns the three results in a tuple. Note that the do notation
has the advantage of considerably simplifying access to the values of a, b and c.
Expressing the same computation without do notation requires more explicit
handling of these values, leading to poorly readable code.

B.6 The State Monad

Haskell is a purely functional language: it does not allow destructive
modifications, thus being completely stateless. A consequence is that functions
will always return the same result, given the same arguments. This is not
always desirable: for example, performing IO inherently depends on something
external. A pseudorandom number generator (PRNG) would also be useless
if it always returned the same value; it needs some own “private local state”
in order to function correctly. In this section, we examine a way to solve this
problem.

Let us consider some stateful function f with type signature a → b. Its
statefulness means it is allowed to read from and write to the current state (e.g.
the heap). State can be viewed as an implicit argument and secundary return
value: we can turn f into a stateless function by making state explicit:

f : (a × state)→ (b × state)

Thus, the function receives the current state as argument and returns an updated
version of it. Even though we can use regular function composition to chain
such functions together, it does not help us much in practice, as it is seldom
the case that our code perfectly fits this “relay race mold”: for example, the

246 MONADS

result of one function could need to be applied to more than one function.
While it is certainly possible to accomplish this, it quickly becomes syntactically
burdensome.

We can take advantage of the do notation if we can formulate state as a
monad. We will show that we can make state implicit again, having built an
abstraction layer which effectively builds a stateful domain specific language
on a stateless foundation. Assuming S is the state type, we can define the State
type constructor as

T a = S→ a × S

The bind operation then becomes

− �= − :

T a︷ ︸︸ ︷
(S→ a × S)→

a→T b︷ ︸︸ ︷
(a→ S→ b × S)→

T b︷ ︸︸ ︷
(S→ S × b)

f �= g = λ s0. let (a, s1) = f s0 in g a s1

With some deciphering, it can be seen that f first transforms the state into s1,
which is then fed as the “current state” to g. Also, f ’s return value is passed to
g along with the state, as one would expect from regular function composition.

We have define the type constructor and the binding operation, only the unit
function remains:

return x = λ s. (x, s)

We now define two helper functions:

get-state = λ s. (s, s)
set-state s′ = λ s. (�, s′)

The function get-state returns the current state (first item of the returned pair),
and keeps the state unchanged (second item of the returned pair). To modify
the current state to a new state s′, we use set-state(s′). The return value is �,
similar to void in other languages.

The State monad is relied upon for the formalisation of Featherweight VeriFast
to model the execution of SIL. In a similar vein, we apply the State monad in
defining an RPN calculator as an illustration.

Example B.6.1. Reverse Polish notation (RPN) is a postfix mathematical notation:
a + b is written a b +, etc. We view the code as a list of tokens which are either numbers
of operators. Evaluation consists of having a stack and “execute” each token in turn,
i.e. let it affect the stack in some way. For example, evaluating 5 3 + 2 × in a stepwise
manner gives

[] 5
→ [5] 3

→ [3, 5] +
→ [8] 2

→ [2, 8] ×
→ [16]

THE STATE MONAD 247

push(n) = do s← get-state
set-state (n : s)

pop = do s← get-state
let top = head s in
set-state (tail s)
return top

step(n) = do push n
step(+) = do x← pop

y← pop
push (x + y)

...

execute [] = do return �
execute (t : ts) = do step t

execute ts

Figure B.1: RPN Calculator

Let us formalise this execution using the State monad. The state has type [int], i.e. a
list of integers. We can then define an execution function as shown in Fig. B.1.

The functions push and pop build an abstraction layer upon get-state and set-state:
push(n) adds n to the stack, pop removes the top of the stack and returns it. The step
function handles two cases:

• Numbers are simply pushed on the stack.

• Evaluating the + operator pops two values from the stack and pushes their sum
back on.

Lastly, the execute function executes all tokens in turn. Notice how the code looks
imperative, even though we work in a purely functional setting.

In this example, we have conveniently ignored what happens when the stack
does not contain enough values, e.g. what happens we evaluate “1 +”? When
such a situation arises, execution should fail and further tokens should be
ignored. This strongly reminds us of the Maybe monad discussed in Sect. B.3.

248 MONADS

B.7 Combining the State and Maybe Monads

The previous section ended with a climax which needs to be resolved. On the
one hand, we have the State monad which allows us to elegantly deal with
state, while on the other hand we can use the Maybe monad to automatically
take care of failure. In this section, we show how to combine both monads.

To support failure, we revise the Kleisli triple:

T a = S→Maybe (a × S)

f �= g = λ s0. match f (s0) with
Just (a, s1) → g(a, s1)
Nothing → Nothing

return(x) = λ s. Just (�, s)

The type constructor has been extended with a Maybe, allowing us to use
Just(a, s) and Nothing to represent successful execution and failure, respectively.
Binding needs to deal appropriately with failure: if the first result yields
Nothing, the entire operation fails. In case of success, we proceed in the same
way as defined in the previous section.

The helper functions get-state and set-state require a small update. We also
add a third helper function:

get-state = λ s. Just (s, s)
set-state s′ = λ s. Just (�, s′)

fail = λ s. Nothing

The lower abstraction level has now been adapted to accommodate failure. The
only RPN specific function (Fig. B.1) which requires an update is pop:

pop = do s← get-state
match s with

[] → do fail
n : ns → do set-state ns

return n

i.e. pop fetches the current stack and checks if it is empty. If so, pop fails. If not,
it removes the top item and returns it.

COMBINING THE STATE AND LIST MONADS 249

B.8 Combining the State and List monads

As a last example, we show how to combine the State and List monad.
We use this to simulate nondeterministic execution in our formalisation of
Featherweight VeriFast.

Instead of working with single integers, we generalise our language to work
with ranges, from which the nondeterminism arises. For example, we want
the program [1 . . . 4] [4 . . . 5]+ to compute x + y for all x ranging from 1 to 4
and y ranging from 4 to 5. Thus, the expected result is [5, 6, 6, 7, 7, 8, 8, 9]. Since
we work we lists, duplicate values can appear. We can interpret this extra
information as probabilities. If we are only interested in the actual values, we
could either work with sets instead of lists, or let the binding operation remove
duplicates from the list.

The Kleisli triple becomes

T a = S→ [a × S]

f �= g = concat ◦map g′ ◦ f
where g′(a, s) = g a s

return x = λ s. [(�, s)]

We modify the helper functions accordingly:

get-state = λ s. [(s, s)]
set-state s′ = λ s. [(�, s′)]

fail = λ s. []
choice xs = λ s. map (λ x. (x, s)) xs

The choice function is the primitive to be used to fork execution into multiple
forks: for every x in xs a new path will be generated. The function returns
a different value x for each path. We also still provide some sort of failure,
represented by the empty list. For example, executing [1 . . . 4] + yields []. An
updated version of the RPN calculator is shown in Fig. B.2.

250 MONADS

push(n) = do s← get-state
set-state (n : s)

pop = do s← get-state
match s with

[] → do fail
n : ns → do set-state ns

return n

step(xs) = do n← choice xs
push n

step(+) = do x← pop
y← pop
push (x + y)

step(−) = do x← pop
y← pop
push (x − y)

step(×) = do x← pop
y← pop
push (x × y)

...

execute [] = do return �
execute (t : ts) = do step t

execute ts

Figure B.2: Nondeterministic RPN Calculator

Appendix C

(An Attempt At) A Short
Introduction to Coq

In this chapter, we introduce the user to the basics of Coq. Some sections
discuss specific parts of the thesis. It is not our intention to be either complete
or a hundred percent accurate: given the complexity of Coq it would take too
many pages to achieve this. Our intention is only to give the reader who is
unfamiliar with Coq an intuitive understanding of the Coq scripts included in
this text. For more complete (and exact) information, we refer the reader to
Coq’Art [16], Chlipala’s Certified Programming with Dependent Types [29], or
Pierce’s Software Foundations [96].

C.1 The Curry-Howard Isomorphism

At the heart of Coq lies the Curry-Howard isomorphism. In short, the Curry-
Howard isomorphism [65] states there is a correspondence between values and
proofs, and between types and propositions.

types ⇐⇒ propositions

values ⇐⇒ proofs

251

252 (AN ATTEMPT AT) A SHORT INTRODUCTION TO COQ

Let us agree on the definitions1 of the following four words we used in this
definition:

Value A value is a piece of data. The integer 5 is an example, as is true. Objects
in object oriented languages are all values too.

Type A value always has a certain type. The type of a value is the set of values
to which it belongs. For example, int is the type of the value 5 and bool
is the type of true. In object oriented languages, the type of an object is
its class.

Proposition A proposition is a logical formula which can be either true or false.
For example, 3 ≤ 5 is a proposition, and so is 5 ≤ 3.

Proof A proposition is true if it is possible to construct a proof for it. While we
already know that 3 ≤ 5, we must technically construct a proof for it to be
sure. We also know that 5 ≤ 3 is false, which means that is is impossible
to prove it2.

Admittedly, to most readers, this is a rather unhelpful explanation. To illustrate
the concept, we will show in the following sections how we can we can create a
list class in C++ for which we statically check that the indexing operation never
goes out of bounds, i.e. the program will not compile if we cannot prove the
index is valid. In a next step, we will relate this to Coq.

C.2 Curry-Howard in C++

In this section, we illustrate the Curry-Howard isomorphism by means of
examples in C++. This code relies heavily on templates, which the reader
might be unfamiliar with. With this in mind, we have attempted to explain all
examples as best we could.

C.2.1 Objects as Witnesses

In object oriented languages, we often use class invariants to define what
states an object is allowed to be in. For example, a file name must obey
some OS specific rules: Windows does not allow file names to contain any of

1Warning: the expert reader might bawl at the sight of some of these definitions.
2To make sure 5 ≤ 3 is indeed false, we should construct a proof that shows that 5 ≤ 3 leads to a

contradiction.

CURRY-HOWARD IN C++ 253

the following characters: / \ : * ? " < > |. It is possible to define a class
FileName that enforces these rules, i.e. only FileName objects that represent a
valid file name are allowed to exist. This can easily be achieved by performing
the necessary checks in the constructor, as is shown in Listing C.1.

A little clarification for readers unfamiliar with C++: the ValidatedFileName
class (lines 3–16) takes a compile-time argument VALIDATOR which is used
to determine the validity of a file name. In other words, VALIDATOR
essentially represents a predicate. An example of such a validator is the
class WindowsValidator (lines 18–26). Line 10 is responsible for checking the
file name: a VALIDATOR object is created on the stack meaning its constructor is
called with the file name to be checked. The VALIDATOR constructor is expected
to throw an exception if the given file name is invalid, so that the construction of
the ValidatedFileName object gets aborted. Line 28 defines the type FileName
which is merely ValidatedFileName parameterized with WindowsValidator.
When executing the program, the construction of fn1 on line 31 will succeed,
but an exception will be thrown while executing line 32.

The ValidatedFileName example is an illustration of how the existence of an
object can have a meaning: if one gets their hands on a FileName object, one
knows for certain that the file name it holds is valid. In other words, the mere
existence of the FileName object implies the validity of its contents.

C.2.2 Moving it to Compile-Time

In the example shown in Listing C.1, the validity checks are done at runtime.
Say we have a program making use of a large number of such hard coded file
names. In order to make sure all these file names are correct, we would have
to run the program and make sure all paths on which FileName objects are
created are visited at least once. If no exception is thrown during this execution,
we know all of these hard coded file names are valid.

This is a rather clumsy approach; we feel a better solution should be possible.
The compiler has access to all hard coded file names, i.e. it has all necessary
information on hand, so we should be able to ask it to check all of them while
it compiles the source. While it is technically possible to implement this in
C++, the result would be hard to understand and thus make for a very poor
illustration of the concept we are trying to explain.

For this reason, we switch to a much more lightweight but more academic
example: whereas our previous example used FileName objects as witnesses to
the validity of their contents, we now introduce the class LEQ with two fields X
and Y whose objects are only allowed to exist if the X-field contains a value less

254 (AN ATTEMPT AT) A SHORT INTRODUCTION TO COQ

1 #include <string>
2
3 template <class VALIDATOR > class ValidatedFileName {
4 private:
5 std::string _filename;
6
7 public:
8 ValidatedFileName(const std::string& filename)
9 : _filename(filename) {

10 VALIDATOR validator(filename);
11 }
12
13 std::string as_string() const {
14 return _filename;
15 }
16 };
17
18 class WindowsValidator {
19 public:
20 WindowsValidator(const std::string& filename) {
21 if (filename.find_first_of("/\\:*?\"<>|") !=
22 std::string::npos) {
23 throw "invalid-filename";
24 }
25 }
26 };
27
28 typedef ValidatedFileName <WindowsValidator > FileName;
29
30 int main() {
31 FileName fn1("abc.txt"); // ok
32 FileName fn2("ab:c.txt"); // fails
33 }

Listing C.1: File Names in C++

CURRY-HOWARD IN C++ 255

1 class LEQ {
2 private:
3 int _x;
4 int _y;
5
6 public:
7 LEQ(int x, int y) : _x(x), _y(y) {
8 if (x > y)
9 throw "invalid-arguments";

10 }
11 };

Listing C.2: LEQ in C++

than or equal than the value stored in the Y-field. A possible implementation is
shown in Listing C.2.

In order to determine whether 3 ≤ 5, we can now write a program containing
LEQ(3, 5) and see if it crashes, i.e. the actual checking occurs at runtime. We
can improve on this by moving the check up to compile-time. In other words,
we want to write a program which only compiles on condition that 3 ≤ 5.

To achieve this, we rewrite our LEQ class. In a first step, we must upgrade
the fields x and y to compile-time variables, i.e. we introduce two template
parameters X and Y. We now want LEQ<X, Y> objects only to exist if X <= Y.
One way of doing this is, like before, throwing an exception in the constructor
if X > Y, but this would be a runtime check instead of a compile-time one.

Before we define the LEQ<X, Y> class, we first have to define what ≤means3.
We define the relation ≤ inductively by means of the following two rules:

x ≤ x ≤-refl
x ≤ y

x ≤ y + 1
≤-succ

For example, the following derivation tree shows that 3 ≤ 5:

3 ≤ 3 ≤-refl

3 ≤ 4
≤-succ

3 ≤ 5 ≤-succ

It is clear that this definition of ≤ yields the same results as our intuitive notion
of the order relation: to prove x ≤ y where x is indeed less than or equal to y,

3While it is possible to just use C++’s built-in <= operator, we prefer to define our own as a proof
of concept that we can define our own custom relations.

256 (AN ATTEMPT AT) A SHORT INTRODUCTION TO COQ

1 template <unsigned X, unsigned Y>
2 class LEQ;
3
4 template <unsigned X>
5 class LEQ<X, X> { };
6
7 template <unsigned X, unsigned Y>
8 class LEQ {
9 public:

10 LEQ(LEQ<X, Y-1> proof) { }
11 };

Listing C.3: LEQ<X, Y> in C++

we start with x ≤ x (using ≤-refl) and then increment the right hand side until
it reaches y using ≤-succ.

The fact that there are two rules (≤-refl and ≤-succ) means there should be two
ways to create a LEQ<X, Y> object, i.e. there should be two ways to construct
LEQ<X, Y> objects. The C++ code is shown in Listing C.3.

A little bit of clarification may be in order:

• Lines 1–2 declare the LEQ<X, Y> class: the two compile-time variables
X and Y are (unsigned) integers. Note the absence of a class body: this
means the class is only declared but not yet defined. This declaration alone
does not allow us to instantiate any LEQ<X, Y> objects.

• Lines 4–5 define the first “constructor”: it allows any object LEQ<X, X> to
be constructed, i.e. it corresponds to the≤-refl rule. Notice the class body:
it is present but empty. In such a situation, similarly to Java and C], C++

automatically provides us with a default constructor, i.e. a parameterless
one.

• Lines 7–11 define the second “constructor” and thus corresponds to the
≤-succ rule. The constructor on line 10 is of particular interest: in order
to build a LEQ<X, Y> object, the programmer is required to provide a
LEQ<X, Y-1> object (referred to as proof in the code) first.

Listing C.4 shows how to proceed to prove that 3 ≤ 5, or, in other words, how
to construct a LEQ<3, 5> object. The three lines of code correspond exactly to
the three steps in the derivation tree shown on page 255:

CURRY-HOWARD IN C++ 257

1 LEQ<3, 3> leq33;
2 LEQ<3, 4> leq34(leq33);
3 LEQ<3, 5> leq35(leq34);

Listing C.4: Proving that 3 ≤ 5 in C++

• On line 1, we first use ≤-refl to prove that 3 ≤ 3.

• On line 2, we rely on ≤-succ to prove that 3 ≤ 4. Note how we pass along
the proof object leq33 to the constructor so that it may build an object of
type LEQ<3, 4>, which we name leq34.

• The construction of leq35 is similar. Its type is LEQ<3, 5>, which means
we have just proved that 3 ≤ 5.

Given the definition in Listing C.3, we are now able to let the compiler check
our proof trees. Listing C.4 actually builds a proof that 3 ≤ 5 and it is fully
checked at compile time, meaning there is no need to execute the program.

C.2.3 Compile-time Checked Indexing

We are now ready to create a list data structure for which the indices are checked
at compile time. The code is shown in Listing C.5. We clarify:

• Line 1 states that a list has two compile-time arguments: T is type of the
list items and is comparable to the type parameter in generics in Java
and C]. The LEN template parameter represents the length of the list. For
example, list<int, 3> is the type of lists containing three integers.

• Line 4 declares the _items fields, i.e. an array of LEN items of type T.

• Lines 7–10 defines the at method and allows us to fetch the element
with index I. This index I is declared as a compile-time variable (line 7)
and is used on line 9 to index the array _items. Note that at takes one
parameter of type LEQ<I, LEN-1>. This effectively means that it first
requires a proof that I is a valid index before it will attempt to reach into
the array _items. Also note that we haven’t even named this parameter
as we do not need to manipulate the actual proof object: we only demand
that it exists.

258 (AN ATTEMPT AT) A SHORT INTRODUCTION TO COQ

1 template <class T, unsigned LEN>
2 class list {
3 private:
4 T _items[LEN];
5
6 public:
7 template <unsigned I>
8 T& at(LEQ<I, LEN-1>) {
9 return _items[I];

10 }
11 };

Listing C.5: A List with Compile-Time Index Checking

1 int main() {
2 LEQ<3, 3> leq33;
3 LEQ<3, 4> leq34(leq33);
4 LEQ<3, 5> leq35(leq34);
5
6 list<int, 6> lst;
7 lst.at<3>(leq35) = 2;
8 int x = lst.at<3>(leq35);
9 }

Listing C.6: Example Usage of a Compile-Time Checked List

Listing C.6 shows how we can make use of this list class. On line 6 we create an
integer list of length 6, after which (line 7) we assign4 2 to the item with index 3.
In order to do this, we pass along the proof that 3 is a valid index for a list of
length 6, i.e. that 3 ≤ 5. On line 8, we retrieve this value again and store it in x.
Again a proof object representing the validity of 3 as an index is required.

C.2.4 Disadvantages

We have shown how we could introduce compile-time checks against index out
of bounds errors in C++. However, there are multiple serious disadvantages:

4We can use at for this purpose as this method returns a reference to the item.

CURRY-HOWARD IN COQ 259

• All indices must be compile-time variables, meaning that their value must
not depend on any data collected at runtime. For example, we cannot
have a list of items from which the user can pick one during program
execution, as his or her choice is not available at compile time. Similarly,
the length of a list must be fixed at compile time.

• If we need a list which supports indexing with a runtime index, we need
to reimplement it separately. This new version will at best have runtime
index checking. We would have two version of each class: one with and
one without compile-time checking.

• Related to the previous point is the need to reinvent many basic things,
such as conditionals and loops, to make them compatible with compile-
time variables. Listing C.7 demonstrates how a compile-time loop can be
implemented in C++.

• It is possible to create arbitrary proof objects. Listing C.8 shows how we
can abuse casts to circumvent the type system: C++ does not allow us to
cast directly to an arbitrary LEQ<X, Y>, but through the use of pointers
it is possible to pretend one has proven arbitrary propositions. This
more or less corresponds to axiomatically stating new facts, which can
compromise the soundness of the whole system.

• In order to work with compile-time variables, one needs to make extensive
use of templates, which were originally not intended to be used for
such advanced purposes. All kinds of trickery are necessary, especially
when considering the limitations C++ imposes (e.g. no partial template
specialisation).

We have shown how proofs can be encoded as objects in C++, thereby illustrating
the Curry-Howard isomorphism: LEQ<X, Y> is a type, but it also corresponds
to the proposition x ≤ y. An object of type LEQ<X, Y> represents a proof of
x ≤ y. Next, we will show how we can implement the same in Coq without
having to deal with all these shortcomings.

C.3 Curry-Howard in Coq

We revisit the examples from the previous sections, but implement them in
Coq.

260 (AN ATTEMPT AT) A SHORT INTRODUCTION TO COQ

template <unsigned N,
template <unsigned A> class F,
unsigned K = 0,
unsigned STEP = 1>

struct Repeat
{

Repeat()
{

F<K>();
Repeat<N, F, K + STEP, STEP >();

}
};

template <template <unsigned A> class F,
unsigned K,
unsigned STEP>

struct Repeat<K, F, K, STEP>
{

Repeat() { }
};

template <unsigned N>
struct Print
{

Print()
{

std::cout << N << std::endl;
}

};

int main()
{

Repeat <10, Print >();
}

Listing C.7: A Loop Using Templates

CURRY-HOWARD IN COQ 261

template <unsigned X, unsigned Y>
LEQ<X, Y> cheat() {

LEQ<0, 0> leq;
LEQ<0, 0>* p = ≤
LEQ<X, Y>* pxy = reinterpret_cast <LEQ<X, Y>*>(p);
LEQ<X, Y> lxy = *pxy;

return lxy;
}

Listing C.8: Circumventing C++’s Type System

C.3.1 Implementing ≤

We now define ≤ in Coq. As a reminder, we repeat the two derivation rules:

x ≤ x ≤-refl
x ≤ y

x ≤ y + 1
≤-succ

Listing C.9 shows how to implement this in Coq. We clarify:

• leq is our new type that corresponds to ≤. The type is parameterized in
two natural numbers (nat), meaning that the type leq 3 5 corresponds
to the proposition 3 ≤ 5. Prop is short for proposition; we will discuss
Prop in more detail later.

• leq is an inductive type with two constructors, which define the only two
building blocks to construct a proof of x ≤ y.

• leq_refl can be seen as a function taking one argument n of type nat
and returning a proof of n ≤ n.

• leq_succ takes three arguments: two natural numbers n and m, and a
proof that n ≤ m. Given these, it returns a proof that n ≤ m + 1.

Notice how the two constructors correspond to the two definitions for LEQ in
Listing C.3.

Listing C.10 shows how to proceed to prove that 3 ≤ 5: leq_33 is a value of
type leq 3 3 and thus also a proof of 3 ≤ 3. It is built using the leq_refl
constructor. In the next steps, we build proofs of 3 ≤ 4 and 3 ≤ 5 using the
leq_succ constructor.

262 (AN ATTEMPT AT) A SHORT INTRODUCTION TO COQ

Inductive leq : nat -> nat -> Prop :=
| leq_refl : forall n : nat, leq n n
| leq_succ : forall n m : nat, leq n m -> leq n (S m).

Listing C.9: ≤ in Coq

Definition leq_33 : leq 3 3 :=
leq_refl 3.

Definition leq_34 : leq 3 4 :=
leq_succ 3 3 leq_33.

Definition leq_35 : leq 3 5 :=
leq_succ 3 4 leq_34.

Listing C.10: 3 ≤ 5 in Coq

C.3.2 Implementing Lists

We now turn our attention to lists. Whereas we used arrays to represent lists
in C++, we will now implement them as linked lists. Listing C.11 shows the
Coq code.

• Lists are defined as an inductive data type. Note how the structure of a list
is similar to that of leq which we defined in the previous section.

• The List type takes two arguments: the first one (explicitly named A) is
the type of the items. The second (nameless) parameter has type nat and
represents the length of the list. For example, list nat 8 is the type of
lists containing eight natural numbers.

• The first constructor, cons, represents a “cons cell”, which is a building
block of (linked) lists. Each cons cell contains one value (the head of the
list) and a link to another, smaller list (the tail of the list). cons takes four
arguments:

– An item type A. This parameter comes from the first line (A : Set).

– A natural number n which denotes the length of the tail.

– The head of type A.

– The tail of type list A n.

CURRY-HOWARD IN COQ 263

Inductive list (A : Set) : nat -> Set :=
| cons : forall (n : nat),

A -> list A n -> list A (S n)
| nil : list A O.

Listing C.11: List in Coq

These four together form a new list of type list A (S n).

• The second constructor, nil, takes a single argument: the list item type A.
nil A represents the empty list and has type list A 0.

For example, the list [1, 2, 3] is written as follows:

cons nat 2 1 (cons nat 1 2 (cons nat 0 3 (nil nat)))

C.3.3 Implementing List Indexing

Defining the actual indexing operation is much more complex; we will limit
ourselves to a very brief explanation. Listing C.12 shows how it can be
implemented in Coq. We left out some definitions as they do not offer any extra
insights.

• Lines 1–4 contain a first auxiliary definition. list_head takes a list lst
of length S n (meaning it is at least one item long) and returns its head.

• Lines 6–9 define list_tail, which returns the tail of the given list lst.

• Lines 11–12 prove that n + 1 ≤ m⇒ n ≤ m.

• Lines 14–24 define the actual list indexing operation list_at which takes
five arguments:

– A denotes the type of the list items.

– n must be introduced to be able to denote the length of the list in the
following argument.

– lst is a list of length S n as indexing on a zero length list is not
allowed.

– i is the index.

– valid is a proof that i is a valid index.

264 (AN ATTEMPT AT) A SHORT INTRODUCTION TO COQ

• The actual definition on lines 19–23 shows an example of the tactic
language in Coq. It allows us to input definitions in an interactive way.

– Line 19 tells Coq we wish to take a look at the index i, considering
the cases where i = 0 and i = S i’ separately.

– First, Coq asks us to deal with the case i = 0. Line 20 responds that
we just take the head of the list.

– Now Coq presents us with the case i = S i’, i.e. i′ = i − 1. Dealing
with this requires multiple steps (lines 21–23).

– First, on line 21, we tell Coq to take the tail of the list and call it tail.

– We want to call list_at recursively: we know that xs[i] = tail(xs)[i′].
To be able to make this recursive call, we need a proof that i is a valid
index. We already know that leq (S i) n (this is automatically
provided by Coq, it follows from the induction hypothesis), so using
leq_Sn_m we can derive leq i n from it. We do this on line 22 and
name the proof valid_i’.

– Line 23 makes the recursive call using this proof.

Without making use of the tactic language, the code for list_at would
look like Listing C.13. Explaining it falls far outside the scope of this
introduction.

C.4 Type Hierarchy

In the previous sections, we have discussed the Curry-Howard isomorphism,
which states that we can represent proofs by objects. Thus, we have two kinds
of objects: those that represent regular data structures (e.g. natural numbers,
lists, . . .), and those that represent proofs (e.g. a proof of 3 ≤ 5).

Coq’s type system makes the distinction between the two by assigning different
metatypes to data and proof objects. Figure C.1 gives an overview. As shown,
the values 0, 1, 2, etc. have type nat. nat itself is also a first class citizen in
Coq (i.e. it can be passed along as argument or returned as a result) and its
type is Set. Set is also a first class citizen, and its type is Type(0). This goes on
forever: Type(0) has type Type(1), etc.

On the same metalevel as Set resides Prop, which is the type of all propositions.
Examples are leq 3 5 and leq 5 3. One metalevel below propositions we
find proof objects. For example, leq_35 (see Listing C.10) has type leq 3 5
and thus represents a proof of 3 ≤ 5. Since 5 ≤ 3 is false, the type leq 5 3

TYPE HIERARCHY 265

1 Definition list_head {A : Set}
2 {n : nat}
3 (lst : list A (S n)) : A.
4 (* ... *) Defined.
5
6 Definition list_tail {A : Set}
7 {n : nat}
8 (lst : list A (S n)) : list A n.
9 (* ... *) Defined.

10
11 Lemma leq_Sn_m :
12 forall n m : nat, leq (S n) m -> leq n m.
13 Proof. (* ... *) Qed.
14
15 Definition list_at {A : Set}
16 {n : nat}
17 (lst : list A (S n))
18 (i : nat)
19 (valid : leq i n) : A.
20 induction i as [| n’ rec].
21 apply (list_head lst).
22 assert (tail := list_tail lst).
23 assert (valid_i’ := leq_Sn_m _ _ valid).
24 apply (rec valid_i ’).
25 Defined.

Listing C.12: List indexing in Coq (Ltac)

list_at =
fun (A : Set) (n : nat) (lst : list A (S n))

(i : nat) (valid : leq i n) =>
let H := nat_rec

(fun i0 : nat => leq i0 n -> A)
(fun _ : leq 0 n => list_head lst)
(fun (i’ : nat) (rec : leq i’ n -> A)

(valid0 : leq (S i’) n) =>
let tail := list_tail lst in
let valid_i’ := leq_Sn_m i’ n valid0 in
rec valid_i ’) i

in H valid

Listing C.13: List indexing in Coq (Gallina)

266 (AN ATTEMPT AT) A SHORT INTRODUCTION TO COQ

...
Type(2)
Type(1)
Type(0)

Set Prop
nat bool . . . leq 3 5 leq 5 3 . . .
0 1 2 true false data leq_35 - proofs

Figure C.1: Coq Metatype Hierarchy

Axiom proof_irrelevance :
forall (P : Prop) (p1 p2 : P), p1 = p2.

Listing C.14: List indexing in Coq (Gallina)

is uninhabited, meaning there exist no proofs of that proposition. Note how
propositions and types reside on the same level, as do values and proofs. This
is a result of the Curry-Howard isomorphism.

An interesting concept is that of proof irrelevance. A proposition can be proven
in different ways, yielding different proof objects. Since it is not important how
a certain proposition has been proven, all proof objects of the same type can be
considered equal. This is exactly what the proof_irrelevance axiom in the
Coq standard library states (see Listing C.14).

C.5 Extraction

Coq provides us with a purely functional programming language with a
powerful type system, enabling us to express a wide variety of propositions.
This allows us to write programs and prove full functional correctness. For
example, Listing C.15 shows what the type of a sorting function (aptly named
sorting_function) would look like in Coq.

• Lines 1–8 define what it means for a function f : A→ B to be surjective,
injective and bijective.

• For the sake of readability, we model lists with item type A as functions
with signatureN→ A, i.e. we only support infinite lists. Working with

EXTRACTION 267

1 Definition surjection {A B : Type}
2 (f : A -> B) : Prop :=
3 forall b : B, exists a : A, f a = b.
4
5 Definition injection {A B : Type}
6 (f : A -> B) : Prop :=
7 forall a a’ : A, f a = f a’ -> a = a’.
8
9 Definition bijection {A B : Type}

10 (f : A -> B) : Prop :=
11 surjection f /\ injection f.
12
13 Definition permutation {A : Set}
14 (f g : nat -> A) : Prop :=
15 exists p : nat -> nat,
16 bijection p /\ forall n : nat, f n = g (p n).
17
18 Definition in_order {A : Set}
19 (before : A -> A -> bool)
20 (f : nat -> A) : Prop :=
21 forall n : nat, before (f n) (f (S n)) = true.
22
23 Definition sorting_function
24 {A : Set}
25 (before : A -> A -> bool)
26 (f : nat -> A) : { g : nat -> A | permutation f g /\
27 in_order before g }.

Listing C.15: Type of Sorting Function

finite lists is certainly possible but would require much more elaborate
syntax and explanations.

• On lines 10–12 we define the concept of a permutation on lists: we say
that f and g are permutations of each other if there exists a bijection
p :N→N such that f (n) = g(p(n)).

• Lines 14–17 define the in_order predicate, which expresses that elements
in the list f are ordered according to the complete order described by
before.

• The type of sorting functions is defined on lines 19-24. A sorting function
is a function that given a type A of items, a complete order before and a

268 (AN ATTEMPT AT) A SHORT INTRODUCTION TO COQ

1 Definition sorting_function
2 {A : Set}
3 (before : A -> A -> bool)
4 (f : list A) : { g : list A | permutation f g /\
5 in_order before g }.

Listing C.16: Type of Sorting Function (Finite Lists)

list f returns a new list g for which is guaranteed that it is a permutation
of f (permutation f g) and that it is in order (in_order before g). The
type { a : A | P a } expresses that some value a of type ’A’ is returned,
together some guarantees P a in the form of proof objects.

Any function we define that has this type is a sorting function. In other
words, Coq allows us to check that a certain function implements some sorting
algorithm correctly. An unfortunate consequence of our concession of making
use of infinite lists for the sake of readability is that it is impossible to define a
function which has this type signature, as function have to be computable and
merely finding the smallest element in an infinite list is impossible to do in finite
time. We remedy this by giving a slightly adapted version of the definition for
sorting_function in Listing C.16. We have left out the auxiliary definitions
as they are rather complex.

Let us say now that we implement a function of the type sorting_function.
We would have a sorting function which has been proven correct in our hands,
but there are serious restrictions regarding its use: it can only run within the
Coq environment, and it is far from efficient.

For this reason, Coq allows us to extract code, which in essence consists of
translating it into another language (O’Caml or Haskell). During this process,
only what influences the behaviour at runtime is preserved, meaning all proofs
can be discarded. In our case, an extracted sort function would only return g,
as the extra proofs are only needed to prove the correctness of the program, not
for its succesful execution.

How does Coq know what it can safely leave out during extraction? In simple
terms, Coq makes use of the distinction between Prop and Set: values that fall
under Prop are not allowed to have any influence on the runtime semantics of
a program. This is enforced by Coq’s type system.

A simple example of this is disjunction. Say we have an algorithm which
depends on the primality of its argument, which means we need to be able to
determine whether some number is prime or not. The proposition

EXTRACTION 269

Theorem sumbool_impl_or :
forall (P Q : Prop), {P} + {Q} -> P \/ Q.

Proof.
intros P Q H; destruct H; [left | right]; trivial.

Qed.

Theorem or_impl_sumbool :
forall (P Q : Prop), P \/ Q -> {P} + {Q}.

Proof.
(* Impossible to prove *)

Listing C.17: or vs sumbool Type

forall n : nat, prime n \/ ~ prime n

states a natural number n is either prime or not prime, but a proof of this fact
does not describe how one determines which case holds.

Coq provides second kind of disjunction, written

forall n : nat, { prime n } + { ~ prime n }

which resides in the Set world, thus blurring the division between Prop and
Set, as proof object can also exist as Set objects. The difference with the Prop
variant is that objects of this type also contain the algorithm to decide in a finite
number of steps whether a number is prime or not. Thus, in an algorithm, one
is permitted to use the Set disjunction { }+{ } in a conditional statement, but
not the Prop variant.

This might give the reader the impression that duplication is necessary: we
would have to prove P \/ Q and if computable also { P }+{ Q }. Fortunately,
the former can easily be proven from the latter, as the latter is “strictly more
powerful”, as illustrated in Listing C.17. Thus, using sumbool_impl_or allows
us to directly translate the Set variant into its Prop twin.

We can relate this to the distinction made between compile-time and runtime
variables in C++: Prop more or less corresponds to compile-time proof objects,
while the runtime world coincides with Set. While C++ requires the use of two
different “sublanguages” (i.e. regular C++ such as if and for for runtime code,
and template metaprogramming for compile-time code), Coq makes use of its
type system.

270 (AN ATTEMPT AT) A SHORT INTRODUCTION TO COQ

1 Parameter RA : Type -> Type.
2 Variable S : Type.
3
4 Parameters
5 (single : S -> RA S)
6 (models : Ensemble S -> RA S -> Prop)
7 (add : forall {I : Type} (R : I -> RA S), RA S)
8 (mul : forall {I : Type} (R : I -> RA S), RA S)
9 (top : RA S)

10 (bottom : RA S)
11 (implies : relation (RA S)).

Listing C.18: Result Algebra Signature in Coq

C.6 Clarifications

In this section, we take a closer look at some Coq fragments presented in the
text.

C.6.1 Result Algebra Definitions

Section 9.3.2 discusses the result algebra. Listing 9.1 (p. 111), repeated here in
Listing C.18 for convenience, shows the Coq definitions of the result algebra
operations. We discuss their definitions in turn.

• RA on line 1 corresponds to −?. For example, the type of a result involving
natural numbers, written mathematically as N?, is written RA nat in
Coq.

• Line 2 locally introduces a type S. It can be seen as implicitly introducing
an extra agument to all following definitions which refer to S. For example,
the “true” type of single is forall S : Type, S -> RA S.

• Line 5 defines single which corresponds to ~−�. For example, the result
~5� is written single nat 5 in Coq.

• − |= − is represented by models in Coq. Ensemble A is defined as
A -> Prop in Coq’s standard library, i.e. it is a characteristic function for
a set of items with type A.

CLARIFICATIONS 271

• Lines 7 and 8 define ⊕ and ⊗, respectively. R is a function representing
the expression over which the angelic or demonic choice is taken.
Definition 9.3.1 makes use of an indexing set, which is seemingly nowhere
to be found in the Coq definitions. The indexing set is actually represented
by the domain of R. For example, consider the result

⊗
n∈{1,2,3} ~n�: it can

be rewritten as⊗
n∈{1,2,3}

~n� =
⊗

n∈{1,2,3}

(λ k :N. ~k�) n =
⊗

n∈{1,2,3}

R n

where R (k :N) = ~k�. Currently, R’s domain isN. Since we only apply
it to 1, 2 and 3, we can restrict its domain: let R′ = R|{1,2,3}, then⊗

n∈{1,2,3}

R n =
⊗

n∈{1,2,3}

R′ n =
⊗

n∈dom R′
R′ n

The indexer and indexing variable now have become redundant. We can
define a shorthand notation as follows:⊗

R ≡
⊗

x∈dom R

R x

This is exactly how ⊗ has been implemented in Coq. This approach does
not impose any limitations: R’s domain type is Type, which allows us the
describe any domain we wish. For example, we can write

⊗
n∈{1,2,3} ~n�

as

mul (fun x : { x | In x [1;2;3] } => RAsingle (proj1_sig x))

where { x | P x } means “an x for which P holds” and proj1_sig
extracts the x from a { x | P x } object, since it is actually a pair of x
and a proof object showing that P x holds.

• Lines 9–10 are straightforward: they define the existence of > and ⊥.

• Line 11 defines a binary relation implies between results, i.e.V.

C.6.2 Result Algebra Axioms

In this section, we take a closer look at the Coq implementation of the result
algebra axioms (Def. 9.3.1) as shown in Listing 9.2, repeated in Listing C.19.
Most of the Coq definitions should be easily understandable.

• Lines 1–3 define Ax-Single.

272 (AN ATTEMPT AT) A SHORT INTRODUCTION TO COQ

1 Axiom single_axiom :
2 forall (s : S) (S : Ensemble S),
3 models S single s <-> In s S.
4
5 Axiom top_axiom : forall (R : False -> RA S),
6 equiv top (mul R).
7
8 Axiom bottom_axiom : forall (R : False -> RA S),
9 equiv bottom (add R).

10
11 Axiom add_axiom :
12 forall I (R : I -> RA S) (S : Ensemble S),
13 models S (add R) <-> exists i, models S (R i).
14
15 Axiom mul_axiom :
16 forall I (R : I -> RA S) (S : Ensemble S),
17 models S (mul R) <-> forall i, models S (R i).
18
19 Axiom implies_axiom : forall (R R’ : RA S),
20 implies R R’ <-> forall (S : Ensemble S),
21 models S R -> models S R’.
22
23 Axiom monotonic_models_axiom :
24 forall (R : RA S) (S S’ : Ensemble S),
25 Included S’ S -> models S’ R -> models S R.

Listing C.19: Result Algebra Axioms in Coq

• Lines 5–9 correspond to Def. 9.3.7 (p. 114) and Def. 9.3.8 (p. 115) for >
and ⊥, respectively. Notice how the domain of R is False: this type is
uninhabited (since it cannot be proven) and thus corresponds to an empty
domain.

• Lines 11–17 correspond to axioms Ax-Angelic and Ax-Demonic,
respectively.

• Lines 19–21 state Def. 9.3.3 as an axiom.

• Lines 23–25 correspond to axiom Ax-Monotonicity.

CLARIFICATIONS 273

1 Parameter RA : Set -> Set.
2
3 Variables
4 (S : Set)
5 (S_eqdec : forall s s’ : S, { s = s’ } + { s <> s’ }).
6
7 Parameters (single : S -> RA S)
8 (models : Ensemble S -> RA S -> Prop)
9 (add mul : list (RA S) -> RA S)

10 (top bottom : RA S)
11 (implies : relation (RA S)
12 (is_bottom : RA S -> bool).

Listing C.20: Effective Result Algebra Signature in Coq

C.6.3 Effective Result Algebra

In Sect. 9.6 (p. 130), we discussed the effective result algebra, a computable
variant of the result algebra. For convenience, we repeat the Coq definitions
in Listing C.20 and Listing C.21. We explain the differences between the Coq
definitions for the noneffective (Listing C.18) and effective result algebras
(Listing C.20).

• RA is defined on line 1 as Set -> Set instead of Type -> Type. This
ensures that results can only operate on computable data structures.

• S_eqdec (line 5) expresses the requirement that equality between elements
of S should be decidable, i.e. that there exists an algorithm that determines
(in finite time) whether two elements are equal or not.

• models on line 8 still makes use of Ensemble (which is not a computable
data structure) and Prop. This is allowed as the |= relation is not needed
for executing the symbolic execution. We do need to be able, though, to
determine at runtime whether a result is equivalent with ⊥ or not. For
this, we introduced is_bottom (line 12).

• add and mul (line 9) are defined in terms of lists, i.e. finite cycleless
linked lists. This corresponds to having a finite indexing set:

mul [R1;R2;R3] =
⊗

i∈Z3
Ri

The axioms differ only slightly between the noneffective (Listing C.19) and
effective result algebra (Listing C.21).

274 (AN ATTEMPT AT) A SHORT INTRODUCTION TO COQ

• The effective Coq implementation for Ax-Single has remained unchanged.

• The axioms for> and⊥ have to be adapted (lines 7–11) to operate on lists.
We used ListSet from Coq’s standard library, meaning that empty_set
is actually just the empty list.

• Instead of being given a function R : A → B? and universally or
existentially quantifying over A, lines 13–21 rely on Set_in to express the
equivalent with lists.

• Lines 23–30, containing the Coq implementations of the axioms forV
and monotonicity, are identical to their noneffective counterparts.

C.6.4 Inductive Formulae Model

In Sect. 9.6.1 (p. 133), we discussed a specific result algebra model. Listing 9.5
(repeated in Listing C.22 for convenience). We explain the code in more detail
here.

• Lines 1–4 define a formula as an inductive type. f_and and f_or
correspond to ⊗ and ⊕, respectively, and these links are defined on
lines 27–31. f_lit corresponds to ~−�, which is expressed on line 18. For
example,

⊗
n∈N ~n� can be written as f_and nat nat (f_lit nat).

• Line 6 defines empty_R, where empty_R A is the (unique) function with
empty domain and range A.

• Lines 8–12 define f_true and f_false by taking the demonic and angelic
choice, respectively, over an empty index set. There are linked with >
and ⊥, respectively, on lines 33-35.

• Lines 20–25 define the |= relation as a fixpoint, i.e. a recursive function
which is guaranteed to terminate.

• Lines 37–38 define theV relation.

This definition of formulae allows us to build trees with infinite branching
factor (by taking I to be an infinite set) but only of finite depth. However, we
claimed that the concrete execution potentially produces trees of infinite depth.
How can we reconcile these contradicting facts?

CLARIFICATIONS 275

1 Variable S : Set.
2
3 Axiom single_axiom :
4 forall (s : S) (S : Ensemble S),
5 models S (single s) <-> In s S.
6
7 Axiom top_axiom :
8 equiv top (mul (empty_set (RA S))).
9

10 Axiom bottom_axiom :
11 equiv bottom (add (empty_set (RA S))).
12
13 Axiom add_axiom :
14 forall (Rs : list (RA S)) (S : Ensemble S),
15 models S (add Rs) <-> exists R, set_In R Rs /\
16 models S R.
17
18 Axiom mul_axiom :
19 forall (Rs : list (RA S)) (S : Ensemble S),
20 models S (mul Rs) <-> forall R, set_In R Rs ->
21 models S R.
22
23 Axiom implies_axiom :
24 forall (R R’ : RA S),
25 implies R R’ <-> forall (S : Ensemble S),
26 models S R -> models S R’.
27
28 Axiom monotonic_models_axiom :
29 forall (R : RA S) (S S’ : Ensemble S),
30 Included S’ S -> models S’ R -> models S R.

Listing C.21: Effective Result Algebra Axioms in Coq

276 (AN ATTEMPT AT) A SHORT INTRODUCTION TO COQ

1 Inductive formula (S : Type) : Type :=
2 | f_and : forall I (R : I -> formula S), formula S
3 | f_or : forall I (R : I -> formula S), formula S
4 | f_lit : S -> formula S.
5
6 Definition empty_R (S : Type) : False -> formula S.
7
8 Definition f_true (S : Type) : formula S :=
9 (@f_and S False (empty_R S)).

10
11 Definition f_false (S : Type) : formula S :=
12 (@f_or S False (empty_R S)).
13
14 Definition RA (S : Type) : Type := formula S.
15
16 Variable S : Type.
17
18 Definition single (x : S) : RA S := f_lit x.
19
20 Fixpoint models (S : Ensemble S) (R : RA S) : Prop :=
21 match R with
22 | f_and J R’ => forall j : J, models S (R’ j)
23 | f_or J R’ => exists j : J, models S (R’ j)
24 | f_lit s => In s S
25 end.
26
27 Definition add {I : Type} (R : I -> RA S) : RA S :=
28 f_or R.
29
30 Definition mul {I : Type} (R : I -> RA S) : RA S :=
31 f_and R.
32
33 Definition top : RA S := f_true S.
34
35 Definition bottom : RA S := f_false S.
36
37 Definition implies (R R’ : RA S) : Prop :=
38 forall S, models S R -> models S R’.

Listing C.22: Inductive Formulae Model in Coq

CLARIFICATIONS 277

The explanation is simple: the concrete execution actually only yields trees
with finite depth, which is a consequence of Def. 9.8.26 (p. 149). It states

c-execute(c) =
⊗
n∈N

c-executen(c)

In other words, c-execute returns only “prefix trees” with finite depth of the
actual potentially infinitely deep execution tree.

Appendix D

Coq Scripts

This chapter contains the all Coq scripts. While the proofs themselves are all
machine checked by Coq, it is still possible we proved the wrong theorems.
The reason for the inclusion of the scripts in this thesis is to give the reader a
chance to check the right theorems were proven.

The proofs have been left out for multiple reasons:

• As mentioned above, they are machine checked.

• All proofs are written in Coq’s tactic language, which has not been
designed with readability in mind.

• The most interesting proofs are included in the main body of this thesis.

• Full Coq scripts (i.e. with proofs) are available online [110].

279

280 COQ SCRIPTS

D.1 Assertion

Require Import Notations.
Require Import ListExt.
Require Import Identifier.
Require Expression.
Require BooleanExpression.
Require Predicate.

Import BooleanExpression.Notations.

Inductive t : Set :=
| bexpr : BooleanExpression.t → t
| sepand : t → t → t
| cond : BooleanExpression.t → t → t → t
| pred : Predicate.t → Expression.t → Id.t → t.

Definition true : t := bexpr BooleanExpression.true.

Inductive assertion_predicate_reference : t → Predicate.t → Prop :=
| apr_pred : forall p e x,

assertion_predicate_reference (pred p e x) p
| apr_sepand_left : forall p a1 a2,

assertion_predicate_reference a1 p →
assertion_predicate_reference (sepand a1 a2) p

| apr_sepand_right : forall p a1 a2,
assertion_predicate_reference a2 p →
assertion_predicate_reference (sepand a1 a2) p

| apr_cond_then : forall p b a1 a2,
assertion_predicate_reference a1 p →
assertion_predicate_reference (cond b a1 a2) p

| apr_cond_else : forall p b a1 a2,
assertion_predicate_reference a2 p →
assertion_predicate_reference (cond b a1 a2) p.

Module Notations.
Delimit Scope assertion_scope with assertion.
Bind Scope assertion_scope with t.

Coercion bexpr : BooleanExpression.t >-> t.

Notation "a ? a’" :=
(sepand a a’) (at level 75) : assertion_scope.

Notation "’If’ b ’Then’ a1 ’Else’ a2" :=
(cond b a1 a2) (at level 80) : assertion_scope.

Notation "p [e ; ? y]" :=
(pred p e y) (at level 50, e at level 0, y ident) : assertion_scope.

Notation "p 7→ ? q" :=
(pred Predicate.ptr p q) (at level 50, q ident) : assertion_scope.

Arguments Scope cond [bexpr_scope assertion_scope assertion_scope].
Arguments Scope sepand [assertion_scope assertion_scope].
Open Scope assertion_scope.

End Notations.

ASSOCLIST 281

D.2 AssocList

Require Import Notations.
Require Import List.

Set Implicit Arguments.

Module Type EQ_DEC.
Parameters
(t : Set)
(eq_dec : forall x y : t, { x = y } + { x , y }).

End EQ_DEC.

Module Make (M : EQ_DEC).
Definition key := M.t.

Section Value.
Variable value : Set.

Definition t : Set := list (key * value).

Definition empty := @nil (key * value).

Definition add (xs : t) (x : key) (y : value) : t := (x, y) :: xs.

Fixpoint lookup (xs : t) (k : key) (v : value) : value :=
match xs with
| (x, y)::xs => if M.eq_dec x k then y else lookup xs k v
| nil => v

end.

Fixpoint lookup_option (xs : t) (k : key) : option value :=
match xs with
| (x, y)::xs => if M.eq_dec x k then Some y else lookup_option xs k
| nil => None

end.

Definition keys (xs : t) : list key :=
map (@fst _ _) xs.

Definition values (xs : t) : list value :=
map (@snd _ _) xs.

Theorem lookup_add :
forall xs k v v’, lookup (add xs k v) k v’ = v.

Proof. (* 4 lines *) Qed.

Theorem lookup_other :
forall xs k k’ v v’, k , k’ → lookup (add xs k v) k’ v’ = lookup xs k’ v’.

Proof. (* 4 lines *) Qed.

Theorem lookup_default :
forall xs k v,
forallb (fun p => if M.eq_dec (fst p) k then false else true) xs = true →
lookup xs k v = v.

Proof. (* 11 lines *) Qed.
End Value.

End Make.

282 COQ SCRIPTS

D.3 BooleanExpression

Require Import Notations.
Require Import Arith.
Require Import Sumbool.
Require Import Identifier.
Require Expression.

Inductive t : Set :=
| eq : Expression.t → Expression.t → t
| lt : Expression.t → Expression.t → t
| le : Expression.t → Expression.t → t
| and : t → t → t
| not : t → t
| true : t.

Fixpoint evaluate (b : t) (s : Id.t → nat) : bool :=
let aux : Expression.t → nat :=
fun e : Expression.t => Expression.evaluate e s in
match b with
| eq e e’ => proj1_sig (bool_of_sumbool (eq_nat_dec (aux e)

(aux e’)))
| lt e e’ => proj1_sig (bool_of_sumbool (lt_dec (aux e)

(aux e’)))
| le e e’ => proj1_sig (bool_of_sumbool (le_dec (aux e)

(aux e’)))
| and b b’ => andb (evaluate b s) (evaluate b’ s)
| not b => negb (evaluate b s)
| true => Datatypes.true

end.

Definition eq_dec : forall b b’ : t, {b = b’} + {b , b’} .
induction b as [e e0 | e e0 | e e0 | b rec b0 rec’ | b |];

destruct b’ as [e1 e2 | e1 e2 | e1 e2 | b1 b2 | b’ |];
try (right; discriminate; fail).

(* eq *)
destruct (Expression.eq_dec e e1); destruct (Expression.eq_dec e0 e2); subst;

try (left; reflexivity; fail); right; intro; elim n; injection H; trivial.

(* lt *)
destruct (Expression.eq_dec e e1); destruct (Expression.eq_dec e0 e2); subst;

try (left; reflexivity; fail); right; intro; elim n; injection H; trivial.

(* le *)
destruct (Expression.eq_dec e e1); destruct (Expression.eq_dec e0 e2); subst;

try (left; reflexivity; fail); right; intro; elim n; injection H; trivial.

(* and *)
destruct (rec b1) as [eql | neql];

destruct (rec’ b2) as [eql’ | neql’]; subst;
try (left; reflexivity; fail);
right; intro X; try (elim neql);

try (elim neql’); injection X; trivial.

BOOLEANEXPRESSION 283

(* not *)
destruct (IHb b’);
[left; subst; trivial | right; intro; elim n; injection H; trivial].

(* true *)
left; trivial.

Defined.

Definition beq (b b’ : t) : bool.
destruct (eq_dec b b’).
exact Datatypes.true.
exact false.

Defined.

Module Notations.

Delimit Scope bexpr_scope with bexpr.
Bind Scope bexpr_scope with t.

Infix "==" := eq (at level 70) : bexpr_scope.
Infix "<" := lt : bexpr_scope.
Notation "¬ e" := (not e) : bexpr_scope.

Open Scope bexpr_scope.

End Notations.

284 COQ SCRIPTS

D.4 Chunk

Require Import Notations.

Require Import EqDec.
Require Import List.
Require Term.
Require Predicate.

Module Make (Arg : EQDEC).

Inductive t’ : Set :=
| Chunk : Predicate.t → Arg.t → Arg.t → t’.

Definition t := t’.

Theorem eq_dec (c c’ : t) : { c = c’ } + { c , c’ } .
Proof. (* 10 lines *) Qed.

Definition beq (c c’ : t) : bool :=
if eq_dec c c’ then true else false.

Definition args (c : t) : list Arg.t :=
match c with

| Chunk _ x y => x :: y :: nil
end.

Module Notations.

Delimit Scope chunk_scope with chunk.
Bind Scope chunk_scope with t.

Notation "’mb’ [t ; n]" := (Chunk Predicate.mb t n)
(t at level 0, n at level 0) : chunk_scope.

Notation "x 7→ y" :=
(Chunk Predicate.ptr x y) (at level 40) : chunk_scope.

End Notations.

End Make.

CONCRETEEXECUTION 285

D.5 ConcreteExecution

Require Import Notations.
Require Import Basics.
Require Import EnsembleExt.
Require Import Arith.
Require Import String.
Require Import ListExt.
Require Import ListSet.
Require Import Sumbool.
Require RADefinitions.
Require RAAxioms.
Require RAOperators.

Require Nat.
Require Import Identifier.
Require Expression.
Require BooleanExpression.
Require Routine.
Require Store.
Require Heap.
Require Predicate.
Require Chunk.
Require SIL.

Open Scope program_scope.
Open Scope bool_scope.

Module Make
(Import RAD : RADefinitions.DEFINITIONS)
(Import RAA : RAAxioms.AXIOMS RAD)
(Import RAO : RAOperators.AXIOMS RAD RAA).

Module RAN := RANotations.Make(RAD).
Include RAN.

Module RAOPS := RAOperators.Make RAD RAA RAO.

Import RAOPS.
Import RAOPS.DoNotation.
Import RAOPS.Util.

Module RName := Routine.DefaultName.
Module CStore := Store.AssocListStore Nat.
Module CChunk := Chunk.Make Nat.
Module CHeap := Heap.Default CChunk.

Module StoreNotations := Store.Notations Nat CStore.

Import BooleanExpression.Notations.
Import StoreNotations.
Import CChunk.Notations.
Import SIL.Notations.

Definition zero_store := CStore.constant_store O.
Notation "’s_0’" := zero_store : store_scope.

286 COQ SCRIPTS

(*
Concrete state

*)

Inductive concrete_state : Set :=
ConcreteState : CStore.t → CHeap.t → concrete_state.

Notation "〈 s , h 〉" := (ConcreteState s h) (at level 0).

Definition store : field concrete_state CStore.t :=
(fun σ => match σ with

| 〈s, _〉 => s
end,

fun σ s => match σ with
| 〈_, h〉 => 〈s, h〉

end).

Definition heap : field concrete_state CHeap.t :=
(fun σ => match σ with

| 〈_, h〉 => h
end,

fun σ h => match σ with
| 〈s, _〉 => 〈s, h〉

end).

Definition state : field concrete_state concrete_state :=
((fun σ => σ), (fun σ σ’ => σ’)).

Open Scope op_scope.

Definition c_operator := operator concrete_state concrete_state.

Definition read_store (id : Id.t) : c_operator nat :=
with_current store (CStore.lookup id).

Definition update_store (id : Id.t) (n : nat) : c_operator unit :=
update_current store (CStore.bind id n).

Definition evaluate (e : Expression.t) : c_operator nat :=
with_current store (Expression.evaluate e ◦ flip CStore.lookup).

Definition with_store
{A : Set} (s : CStore.t) (op : c_operator A) : c_operator A :=
s’ ← current store;
_ ← set_current store s;
r ← op;
_ ← set_current store s’;
yield r.

Definition assume_bexpr (b : BooleanExpression.t) : c_operator unit :=
r ← with_current store (BooleanExpression.evaluate b ◦ flip CStore.lookup);
assume r.

Definition assert_bexpr (b : BooleanExpression.t) : c_operator unit :=
r ← with_current store (BooleanExpression.evaluate b ◦ flip CStore.lookup);
assert r.

Definition produce_chunk (α : CChunk.t) : c_operator unit :=
update_current heap (CHeap.produce α).

CONCRETEEXECUTION 287

Definition consume_chunk (α : CChunk.t) : c_operator unit :=
r ← with_current heap (CHeap.consume α);
match r with
| Some h’ => set_current heap h’
| None => failure

end.

Definition pick_chunk_angelically : c_operator CChunk.t :=
αs ← with_current heap CHeap.enum;
α ← pick_angelically (FromList αs);
yield (proj1_sig α).

Definition find_chunk (pred : Predicate.t) (` : nat) : c_operator CChunk.t :=
α ← pick_chunk_angelically;
match α with

| CChunk.Chunk p x y => assert (Predicate.beq p pred);
assert (beq_nat x `);
yield (CChunk.Chunk p x y)

end.

Definition read_cell (` : nat) : c_operator nat :=
α ← find_chunk Predicate.ptr `;
match α with

| CChunk.Chunk _ _ v => yield v
end.

Definition write_cell (` v : nat) : c_operator unit :=
α ← find_chunk Predicate.ptr `;
consume_chunk α;
produce_chunk (` 7→ v).

Definition clear_heap : c_operator unit :=
set_current heap CHeap.empty.

Definition leak_check : c_operator unit :=
r ← with_current heap CHeap.is_empty; assert r.

Definition alloc_set : c_operator (list nat) :=
let get_loc :=
fun α => match α with

| CChunk.Chunk p ` _ =>
if Predicate.beq p Predicate.ptr
then ` :: nil
else nil

end
in
h ← current heap;
yield (concat_map get_loc h).

Fixpoint pick_demonically_n (n : nat) (A : Type) : c_operator (list A) :=
match n with

| O => yield nil
| S n => v ← pick_demonically A;

vs ← pick_demonically_n n A;
yield (v :: vs)

end.

288 COQ SCRIPTS

Definition allocate (n : nat) : c_operator nat :=
let allocate_at :=

fix aux (` : nat) (vs : list nat) : c_operator unit :=
match vs with
| nil => nop
| v::vs =>
let k := length vs in
A ← alloc_set;
assume (proj1_sig (bool_of_sumbool (in_dec eq_nat_dec (` + k) A)));
produce_chunk ((` + k) 7→ v)%chunk;
aux ` vs

end
in
ns ← pick_demonically_n (S n) nat;
match ns with

| `::vs => allocate_at ` vs;
produce_chunk (mb [`; n])%chunk;
yield `

| nil => failure
end.

Fixpoint consume_cells (` : nat) (n : nat) : c_operator unit :=
match n with
| O => nop
| S n => α ← find_chunk Predicate.ptr (` + n);

consume_chunk α;
consume_cells ` n

end.

Definition block_size (` : nat) : c_operator nat :=
α ← find_chunk Predicate.mb `;
match α with

| CChunk.Chunk _ _ n => yield n
end.

Section WithProgram.
Variable (Π : SIL.program).

Hypothesis (wellformed : SIL.wellformed_program Π).

Open Scope command_scope.

Fixpoint concrete_execution_n
(c : SIL.command) (n : nat) : c_operator unit :=
match n with
| O => block
| S n =>
match c with
| skip => yield �
| x := e =>

v ← evaluate e;
update_store x v

| c; c’ =>
concrete_execution_n c n;
concrete_execution_n c’ n

| x := malloc n =>

CONCRETEEXECUTION 289

` ← allocate n;
update_store x `

| free e => ` ← evaluate e;
n ← block_size `;
consume_cells ` n;
consume_chunk (mb [`; n])

| ~e� := e’ =>
` ← evaluate e;
v ← evaluate e’;
write_cell ` v

| x := ~e� =>
` ← evaluate e;
v ← read_cell `;
update_store x v

| If b Then c Else c’ =>
let then_clause :=
assume_bexpr b;
concrete_execution_n c n in

let else_clause :=
assume_bexpr (¬ b)%bexpr;
concrete_execution_n c’ n in

let clauses := then_clause :: else_clause :: nil in
op ← pick_demonically (FromList clauses);
proj1_sig op

| r[e] => v ← evaluate e;
rdef ← from_some (SIL.routines Π r);
let x := SIL.argument rdef in
let body := SIL.routine_body rdef in
with_store (s_0~x := v�)%store

(concrete_execution_n body n)
end

end.

Definition concrete_execution (c : SIL.command) : c_operator unit :=
n ← pick_demonically nat;
concrete_execution_n c n.

Close Scope command_scope.

Definition verify : c_operator unit :=
v ← pick_demonically nat;
r ← from_some (SIL.routines Π (SIL.main_routine Π));
update_store (SIL.argument r) v;
concrete_execution (SIL.routine_body r).

Definition valid_program : Prop :=
not (verify 〈s_0, CHeap.empty〉 VV ⊥).

End WithProgram.
Close Scope op_scope.

End Make.

290 COQ SCRIPTS

D.6 DependentProduct

Require Import EnsembleExt.
Require Import Notations.
Require Export Classical.
Require Import Decidable.
Require Export Logic.ClassicalChoice.
Require Import Misc.

Inductive dependent_product {A B} (R : A → Ensemble B) : Ensemble (A → B) :=
In_dependent_product : ∀ f : A → B,
(∀ i, f i ∈ R i) → f ∈ dependent_product R.

Notation "’Π’ i, R" :=
(dependent_product (fun i => R)) (at level 65, i ident).

Notation "’Π’ i : A , R" :=
(@dependent_product A _ (fun i => R)) (at level 65, i ident).

Theorem dependent_product_empty_A :
forall A B (R : A → Ensemble B) (H : ¬ inhabited A),
Same_set _ (dependent_product R) (Singleton (function_with_empty_domain A B

H)).
Proof. (* 20 lines *) Qed.

Theorem dependent_product_empty_result :
forall A B (R : A → Ensemble B),
Same_set _ (dependent_product R) ∅ ↔ exists a, Same_set _ (R a) ∅.

Proof. (* 38 lines *) Qed.

Theorem dependent_product_Included :
forall A B (R R’ : A → Ensemble B),
(∀ a, R a ⊆ R’ a) → dependent_product R ⊆ dependent_product R’.

Proof. (* 7 lines *) Qed.

Theorem dependent_product_singleton_Rx :
forall A B (f : A -> B),
Same_set _ (dependent_product (fun (x : A) => Singleton (f x)))

(Singleton f).
Proof. (* 22 lines *) Qed.

EINDUCTIVEFORMULAE 291

D.7 EInductiveFormulae

Require Import Notations.
Require Import EnsembleExt.
Require Import Misc.
Require Import ListExt.
Require Import Permutation.
Require Import Relations.
Require Import ListSetExt.
Require ERADefinitions.
Require ERANotations.
Require ERAAxioms.
Require ERAOperators.
Require Import ChoiceFacts.

Set Implicit Arguments.

Module MakeDefinitions <: ERADefinitions.DEFINITIONS.

Inductive formula {Σ : Set} : Set :=
| f_and : list (@formula Σ) → @formula Σ
| f_or : list (@formula Σ) → @formula Σ
| f_single : Σ → @formula Σ.

Section InductionHypothesis.
Variable Σ : Set.

Variable P : @formula Σ → Prop.

Hypothesis H_single : forall σ : Σ, P (f_single σ).

Hypothesis H_or : forall xs : list formula, Forall P xs → P (f_or xs).

Hypothesis H_and : forall xs : list formula, Forall P xs → P (f_and xs).

Fixpoint formula_ind’ (f : formula) : P f :=
match f with
| f_single x => H_single x
| f_or xs =>

@H_or xs ((fix aux (xs : list formula) : Forall P xs :=
match xs with
| nil =>
@Forall_nil _ P

| x::xs =>
@Forall_cons _ P x xs (formula_ind’ x) (aux xs)

end) xs)
| f_and xs =>

@H_and xs ((fix aux (xs : list formula) : Forall P xs :=
match xs with
| nil =>

@Forall_nil _ P
| x::xs =>

@Forall_cons _ P x xs (formula_ind’ x) (aux xs)
end) xs)

end.
End InductionHypothesis.

292 COQ SCRIPTS

Section Recursive.
Variable Σ : Set.

Variable R : Type.

Variable F : @formula Σ → R.

Variable F_single : Σ → R.

Hypothesis F_or : list R → R.

Hypothesis F_and : list R → R.

Fixpoint formula_rec’ (f : formula) : R :=
match f with
| f_single x => F_single x
| f_or xs => F_or (map formula_rec’ xs)
| f_and xs => F_and (map formula_rec’ xs)

end.
End Recursive.

Definition sum (ns : list nat) : nat :=
@fold_left nat nat plus ns O.

Definition formula_metric {Σ : Set} (f : @formula Σ) : nat :=
@formula_rec’ Σ nat (fun _ => 1) sum sum f.

Definition R := @formula.

Section StateSection.
Variables

(Σ : Set)
(Σ_eqdec : forall σ σ’ : Σ, { σ = σ’ } + { σ , σ’ }).

Definition single := @f_single Σ.

Definition add := @f_or Σ.

Definition mul := @f_and Σ.

Definition top := @f_and Σ (empty_set (R Σ)).

Definition bottom := @f_or Σ (empty_set (R Σ)).

Fixpoint is_bottom (R : R Σ) : bool :=
match R with
| f_single σ => false
| f_or Rs =>

(fix rec (Rs : list (R Σ)) :=
match Rs with
| R :: Rs => if is_bottom R then rec Rs else false
| nil => true

end) Rs
| f_and Rs =>

(fix rec (Rs : list (R Σ)) :=
match Rs with

| R :: Rs => if is_bottom R then true else rec Rs
| nil => false

end) Rs
end.

EINDUCTIVEFORMULAE 293

Definition models (S : Ensemble Σ) (R : R Σ) : Prop :=
@formula_rec’ Σ Prop (fun σ => σ ∈ S)

(Exists id)
(Forall id) R.

Definition implies (R R’ : R Σ) : Prop :=
forall S, models S R → models S R’.

Definition equiv : relation (R Σ) :=
fun R R’ => implies R R’ ∧ implies R’ R.

End StateSection.
End MakeDefinitions.

Module MakeAxioms <: ERAAxioms.AXIOMS (MakeDefinitions).

Include MakeDefinitions.

Module RAN := ERANotations.Make(MakeDefinitions).

Include RAN.

Section StateSection.

Variable Σ : Set.

Theorem single_axiom :
forall (s : Σ) (S : Ensemble Σ), S |= single s ↔ s ∈ S.

Proof. (* 3 lines *) Qed.

Theorem top_axiom : > VV ⊗ (empty_set (R Σ)).
Proof. (* 1 lines *) Qed.

Theorem bottom_axiom :
⊥ VV ⊕ (empty_set (R Σ)).

Proof. (* 1 lines *) Qed.

Lemma add_models_hd :
forall (R : R Σ) (Rs : list (R Σ)) (S : Ensemble Σ),
S |= R → S |= ⊕(R::Rs).

Proof. (* 4 lines *) Qed.

Lemma add_models_tl :
forall (R : R Σ) (Rs : list (R Σ)) (S : Ensemble Σ),
S |= ⊕ Rs → S |= ⊕(R::Rs).

Proof. (* 4 lines *) Qed.

Theorem add_axiom :
forall (Rs : list (R Σ)) (S : Ensemble Σ),
S |= ⊕ Rs ↔ ∃ R, set_In R Rs ∧ S |= R.

Proof. (* 39 lines *) Qed.

Lemma mul_models_cons :
forall (R : R Σ) (Rs : list (R Σ)) (S : Ensemble Σ),
S |= R ∧ S |= ⊗ Rs ↔ S |= ⊗ (R::Rs).

Proof. (* 13 lines *) Qed.

Theorem mul_axiom :
forall (Rs : list (R Σ)) (S : Ensemble Σ),
S |= ⊗ Rs ↔ ∀ R, set_In R Rs → S |= R.

Proof. (* 29 lines *) Qed.

294 COQ SCRIPTS

Theorem implies_axiom :
forall (R R’ : R Σ),
R V R’ ↔ forall (S : Ensemble Σ), S |= R → S |= R’.

Proof. (* 2 lines *) Qed.

Theorem monotonic_models_axiom :
forall (R : R Σ) (S S’ : Ensemble Σ),
S’ ⊆ S → S’ |= R → S |= R.

Proof. (* 27 lines *) Qed.

End StateSection.

End MakeAxioms.

Module MakeOperatorAxioms
<: ERAOperators.AXIOMS(MakeDefinitions)(MakeAxioms).

Import MakeDefinitions.
Import MakeAxioms.

Module RAN := ERANotations.Make(MakeDefinitions).
Include RAN.

Section StateSection.

Variable Σ Σ’ : Set.

Fixpoint lift (f : Σ → R Σ’) (R : R Σ) : R Σ’ :=
match R with
| f_single x => f x
| f_and Rs => f_and (map (lift f) Rs)
| f_or Rs => f_or (map (lift f) Rs)

end.

Theorem lift_models :
forall R S S’ (f : Σ → R Σ’),
S |= R → (forall σ, σ ∈ S → S’ |= f σ) →
S’ |= lift f R.

Proof. (* 67 lines *) Qed.

Theorem lift_models’ :
forall R S’ (f : Σ → R Σ’),
S’ |= lift f R →
exists S, S |= R ∧ (forall σ, σ ∈ S → S’ |= f σ).

Proof. (* 111 lines *) Qed.

Theorem monotonic_lift_axiom :
forall (f g : Σ → R Σ’) (R R’ : R Σ),

(forall Σ, f Σ V g Σ) → R V R’ → lift f R V lift g R’.
Proof. (* 16 lines *) Qed.

Theorem implies_reflexivity :
forall R : R Σ, R V R.

Proof. (* 4 lines *) Qed.

Theorem equiv_reflexivity :
forall R : R Σ, R VV R.

Proof. (* 3 lines *) Qed.

EINDUCTIVEFORMULAE 295

Theorem lift_add_axiom :
forall (f : Σ → R Σ’) (Rs : list (R Σ)),
lift f (add Rs) VV add (List.map (lift f) Rs).

Proof. (* 12 lines *) Qed.

Theorem lift_mul_axiom :
forall (f : Σ → R Σ’) (Rs : list (R Σ)),
lift f (mul Rs) VV mul (List.map (lift f) Rs).

Proof. (* 12 lines *) Qed.

Theorem lift_single_axiom :
forall (f : Σ → R Σ’) (s : Σ),
lift f (single s) VV f s.

Proof. (* 11 lines *) Qed.

End StateSection.

End MakeOperatorAxioms.

296 COQ SCRIPTS

D.8 ERAAxioms

Require Import Notations.
Require Import Ensembles.
Require Import ListExt.
Require Import Permutation.
Require Import Relations.
Require Import ListSetExt.
Require ERADefinitions.
Require ERANotations.

Set Implicit Arguments.

Module Type AXIOMS
(Import Definitions : ERADefinitions.DEFINITIONS).

Module RAN := ERANotations.Make (Definitions).
Include RAN.

Section StateSection.

Variable Σ : Set.

Axiom single_axiom :
forall (s : Σ) (S : Ensemble Σ),
S |= single s ↔ s ∈ S.

Axiom top_axiom :
> VV ⊗ (empty_set (R Σ)).

Axiom bottom_axiom :
⊥ VV ⊕ (empty_set (R Σ)).

Axiom add_axiom :
forall (Rs : list (R Σ)) (S : Ensemble Σ),
S |= ⊕ Rs ↔ ∃ R, set_In R Rs ∧ S |= R.

Axiom mul_axiom :
forall (Rs : list (R Σ)) (S : Ensemble Σ),
S |= ⊗ Rs ↔ ∀ R, set_In R Rs → S |= R.

Axiom implies_axiom :
forall (R R’ : R Σ),
R V R’ ↔ forall (S : Ensemble Σ), S |= R → S |= R’.

Axiom monotonic_models_axiom :
forall (R : R Σ) (S S’ : Ensemble Σ), S’ ⊆ S → S’ |= R → S |= R.

End StateSection.

Ltac ra_axiom :=
match goal with
| |- models _ (add _) => apply add_axiom
| |- models _ (mul _) => apply mul_axiom
| |- models _ (single _) => apply single_axiom
| |- implies _ _ => apply implies_axiom

end.

ERAAXIOMS 297

Ltac ra_axiom_in H :=
match goal with

| [H’ : models _ (add _) |- _] => match H’ with
| H => rewrite add_axiom in H

end
| [H’ : models _ (mul _) |- _] => match H’ with

| H => rewrite mul_axiom in H
end

| [H’ : models _ (single _) |- _] => match H’ with
| H => rewrite single_axiom in H

end
| [H’ : implies _ _ |- _] => match H’ with

| H => rewrite implies_axiom in H
end

end.

Ltac ra_axioms :=
match goal with

| [H : _ |- _] => ra_axiom_in H; ra_axioms
| _ => (ra_axiom; ra_axioms) || idtac

end.

End AXIOMS.

298 COQ SCRIPTS

D.9 ERADefinitions

Require Import Notations.
Require Import Ensembles.
Require Import List.
Require Import Relations.
Require Import ListSet.

Set Implicit Arguments.

Module Type DEFINITIONS.

Parameter R : Set → Set.

Section StateSection.

Variables
(Σ : Set)
(Σ_eqdec : forall σ σ’ : Σ, { σ = σ’ } + { σ , σ’ }).

Parameters
(single : Σ → R Σ)
(models : Ensemble Σ → R Σ → Prop)
(add mul : list (R Σ) → R Σ)
(top bottom : R Σ)
(implies : relation (R Σ))
(is_bottom : R Σ → bool).

Definition equiv : relation (R Σ) :=
fun R R’ => implies R R’ ∧ implies R’ R.

End StateSection.

Implicit Arguments top [Σ].
Implicit Arguments bottom [Σ].

End DEFINITIONS.

ERANOTATIONS 299

D.10 ERANotations

Require Import Notations.
Require Import Ensembles.
Require Import ListExt.
Require Import Permutation.
Require Import Relations.
Require Import ListSetExt.
Require ERADefinitions.

Set Implicit Arguments.

Module Make (Import D : ERADefinitions.DEFINITIONS).

Notation "⊕ Rs" := (@add _ Rs) (at level 0).

Notation "⊗ Rs" := (@mul _ Rs) (at level 0).

Notation ">" := (@top _).

Notation "⊥" := (@bottom _).

Notation "R V R’" := (implies R R’) (at level 70).

Notation "S |= R" := (models S R) (at level 75).

Notation "R VV R’" := (equiv R R’) (at level 70).

End Make.

300 COQ SCRIPTS

D.11 ERAOperators

Require Import Notations.
Require Import Ensembles.
Require Import List.
Require Import Basics.
Require ERADefinitions.
Require ERANotations.
Require ERAAxioms.

Set Implicit Arguments.

Module Type AXIOMS
(Import Definitions : ERADefinitions.DEFINITIONS)
(Import Axioms : ERAAxioms.AXIOMS Definitions).

Module RAN := ERANotations.Make(Definitions).
Include RAN.

Section StateSection.
Variable Σ Σ’ : Set.

Parameter lift : (Σ → R Σ’) → R Σ → R Σ’.

Axiom monotonic_lift_axiom :
forall (f g : Σ → R Σ’) (R R’ : R Σ),
(forall Σ, f Σ V g Σ) → R V R’ → lift f R V lift g R’.

Axiom lift_add_axiom :
forall (f : Σ → R Σ’) (Rs : list (R Σ)),

lift f (add Rs) VV add (List.map (lift f) Rs).

Axiom lift_mul_axiom :
forall (f : Σ → R Σ’) (Rs : list (R Σ)),
lift f (mul Rs) VV mul (List.map (lift f) Rs).

Axiom lift_single_axiom :
forall (f : Σ → R Σ’) (s : Σ),
lift f (single s) VV f s.

End StateSection.
End AXIOMS.

Module Make
(Import Definitions : ERADefinitions.DEFINITIONS)
(Import Axioms : ERAAxioms.AXIOMS Definitions)
(Import Operators : AXIOMS Definitions Axioms).

Module RAN := ERANotations.Make(Definitions).
Include RAN.

Definition primitive_operator {Σ Σ’ : Set} := Σ → R Σ’.

Definition primitive_bind {Σ Σ’ Σ” : Set}
(op : @primitive_operator Σ Σ’)
(op’ : @primitive_operator Σ’ Σ”) : @primitive_operator Σ Σ” :=
compose (lift op’) op.

Notation "op ≫ op’" := (primitive_bind op op’) (at level 40).

ERAOPERATORS 301

Definition operator {Σ Σ’ A : Set} :=
@primitive_operator Σ (A * Σ’).

Definition bind {Σ Σ’ Σ” A B : Set}
(op : @operator Σ Σ’ A)
(f : A → @operator Σ’ Σ” B) :=

primitive_bind op (prod_curry f).

Definition failure {Σ Σ’ : Set} : @primitive_operator Σ Σ’ :=
fun σ : Σ => @bottom Σ’.

Definition block {Σ Σ’ : Set} : @primitive_operator Σ Σ’ :=
fun σ : Σ => @top Σ’.

Definition pick_angelically {Σ A : Set} (xs : list A) : @operator Σ Σ A :=
fun σ : Σ => add (map (compose (@single (A * Σ)) (flip (@pair A Σ) σ)) xs).

Definition pick_demonically {Σ A : Set} (xs : list A) : @operator Σ Σ A :=
fun σ : Σ => mul (map (compose (@single (A * Σ)) (flip (@pair A Σ) σ)) xs).

Definition nop {Σ : Set} : @operator Σ Σ unit :=
fun σ : Σ => single (�, σ).

Definition assert {Σ : Set} (b : bool) : @operator Σ Σ unit :=
match b with

| true => nop
| false => failure

end.

Definition assume {Σ : Set} (b : bool) : @operator Σ Σ unit :=
match b with

| true => nop
| false => block

end.

Definition yield {Σ A : Set} (x : A) : @operator Σ Σ A :=
fun σ : Σ => single (x, σ).

Definition current_state {Σ : Set} : @operator Σ Σ Σ :=
fun σ : Σ => single (σ, σ).

Definition set_current_state {Σ : Set} (σ’ : Σ) : @operator Σ Σ unit :=
fun σ : Σ => single (�, σ’).

Module DoNotation.
Delimit Scope op_scope with op.
Bind Scope op_scope with operator.

Notation "x ← op ; rest" :=
(bind op (fun x => rest))
(at level 100,
op at level 99,
rest at level 100,
right associativity) : op_scope.

Notation "op ; rest" :=
(bind op (fun (_ : unit) => rest))
(at level 100) : op_scope.

End DoNotation.

302 COQ SCRIPTS

Module Util.

Open Scope program_scope.

Import DoNotation.

Definition field A B := ((A → B) * (A → B → A))%type.

Definition get {A B} (f : field A B) := fst f.

Definition set {A B} (f : field A B) := snd f.

Definition with_ {A B C} (f : field A B) (g : B → C) := g ◦ get f.

Definition update {A B} (f : field A B) (g : B → B) :=
fun (s : A) => set f s (g (get f s)).

Section StateSection.

Variable (Σ : Set).

Open Scope op_scope.

Definition current {Σ A : Set}
(f : field Σ A) : @operator Σ Σ A :=

σ ← current_state;
yield (get f σ).

Definition set_current {A : Set}
(f : field Σ A)
(x : A) : @operator Σ Σ unit :=

σ ← current_state;
set_current_state (set f σ x).

Definition with_current {A B : Set}
(f : field Σ A)
(g : A → B) : @operator Σ Σ B :=

x ← current f;
yield (g x).

Definition update_current {A : Set}
(f : field Σ A)
(g : A → A) : @operator Σ Σ unit :=

x ← current f;
set_current f (g x).

Definition from_some {A : Set}
(x : option A) : @operator Σ Σ A :=

match x with
| Some x => yield x
| None => failure

end.

Close Scope op_scope.
End StateSection.

End Util.
End Make.

ESYMBOLICEXECUTION 303

D.12 ESymbolicExecution

Require Import Notations.
Require Import Basics.
Require Import ListExt.
Require Import ListSet.
Require Import Arith.
Require Import String.
Require Import Bool.
Require AssocList.
Require ERADefinitions.
Require ERAAxioms.
Require ERAOperators.

Require Import Identifier.
Require Expression.
Require BooleanExpression.
Require Symbol.
Require Routine.
Require Term.
Require Formula.
Require SMT.
Require Store.
Require Heap.
Require Predicate.
Require Chunk.
Require SILPP.
Require Assertion.

Open Scope program_scope.
Open Scope bool_scope.

Module Make
(Import RAD : ERADefinitions.DEFINITIONS)
(Import RAA : ERAAxioms.AXIOMS RAD)
(Import RAO : ERAOperators.AXIOMS RAD RAA).

Module RAN := ERANotations.Make(RAD).
Include RAN.

Module RAOPS := ERAOperators.Make RAD RAA RAO.

Import RAOPS.
Import RAOPS.DoNotation.
Import RAOPS.Util.

Module Symb := Symbol.Default.
Module RName := Routine.DefaultName.
Module SStore := Store.AssocListStore Term.
Module SChunk := Chunk.Make Term.
Module SHeap := Heap.Default SChunk.

Module StoreNotations := Store.Notations Term SStore.

Import BooleanExpression.Notations.
Import Term.Notations.

304 COQ SCRIPTS

Import Formula.Notations.
Import StoreNotations.
Import SChunk.Notations.
Import SILPP.Notations.

Definition zero_store := SStore.constant_store O.

Notation "’s_0’" := zero_store : store_scope.

(*
Symbolic state

*)

Inductive symbolic_state : Set :=
SymbolicState : SStore.t → SHeap.t → Formula.t → symbolic_state.

Notation "〈 s , h , φ 〉" := (SymbolicState s h φ) (at level 0).

Definition state : field symbolic_state symbolic_state :=
((fun σ => σ), (fun σ σ’ => σ’)).

Definition store : field symbolic_state SStore.t :=
(fun σ => match σ with

| 〈s, _, _〉 => s
end,

fun σ s => match σ with
| 〈_, h, φ〉 => 〈s, h, φ〉

end).

Definition heap : field symbolic_state SHeap.t :=
(fun σ => match σ with

| 〈_, h, _〉 => h
end,

fun σ h => match σ with
| 〈s, _, φ〉 => 〈s, h, φ〉

end).

Definition path_condition : field symbolic_state Formula.t :=
(fun σ => match σ with

| 〈_, _, φ〉 => φ
end,

fun σ φ => match σ with
| 〈s, h, _〉 => 〈s, h, φ〉

end).

Definition symbols (σ : symbolic_state) : list Symb.t :=
match σ with

| 〈s, h, Φ〉 =>
concat_map Term.symbols (SStore.values s) ++
concat_map Term.symbols (concat_map SChunk.args (SHeap.enum h)) ++
Formula.symbols Φ

end.

Module SMTImpl := SMT.MakeClueful.

Definition smt_result := SMT.result.

Definition decide_sat := SMTImpl.decide.

ESYMBOLICEXECUTION 305

Definition derive_value := SMTImpl.get_value.

Definition smt_result_beq := SMT.result_beq.

Definition Unsat := SMT.Unsat.

Open Scope op_scope.

Definition s_operator := @operator symbolic_state symbolic_state.

Definition read_store (id : Id.t) : s_operator Term.t :=
with_current store (SStore.lookup id).

Definition update_store (id : Id.t) (t : Term.t) : s_operator unit :=
update_current store (SStore.bind id t).

Definition evaluate (e : Expression.t) : s_operator Term.t :=
with_current store (Term.of_expression e ◦ flip SStore.lookup).

Definition to_formula (b : BooleanExpression.t) : s_operator Formula.t :=
with_current store (Formula.of_boolean_expression b ◦ flip SStore.lookup).

Definition with_store
{A : Set} (s : SStore.t) (op : s_operator A) : s_operator A :=
s’ ← current store;
_ ← set_current store s;
r ← op;
_ ← set_current store s’;
yield r.

Definition smt (f : Formula.t) : s_operator smt_result := yield (decide_sat f).

Definition assume_formula (φ : Formula.t) : s_operator unit :=
Φ ← current path_condition;
r ← smt (φ && Φ)%fla;
assume (negb (smt_result_beq r Unsat));
set_current path_condition (φ && Φ)%fla.

Definition assume_bexpr (b : BooleanExpression.t) : s_operator unit :=
φ ← with_current store

(Formula.of_boolean_expression b ◦ flip SStore.lookup);
assume_formula φ.

Definition assert_formula (φ : Formula.t) : s_operator unit :=
Φ ← current path_condition;
r ← smt (Formula.fla_not (Formula.implies Φ φ));
assert (smt_result_beq r Unsat).

Definition assert_bexpr (b : BooleanExpression.t) : s_operator unit :=
φ ← to_formula b; assert_formula φ.

Definition produce_chunk (α : SChunk.t) : s_operator unit :=
update_current heap (SHeap.produce α).

Definition consume_chunk (α : SChunk.t) : s_operator unit :=
r ← with_current heap (SHeap.consume α);
match r with
| Some h’ => set_current heap h’
| None => failure

end.

306 COQ SCRIPTS

Definition pick_chunk_angelically : s_operator SChunk.t :=
αs ← with_current heap SHeap.enum;
pick_angelically αs.

Definition find_chunk
(pred : Predicate.t) (t : Term.t) : s_operator SChunk.t :=
α ← pick_chunk_angelically;
match α with

| SChunk.Chunk p x y => assert (Predicate.beq p pred);
assert_formula (x == t)%fla;
yield (SChunk.Chunk p x y)

end.

Definition read_cell (` : Term.t) : s_operator Term.t :=
α ← find_chunk Predicate.ptr `;
match α with

| SChunk.Chunk _ _ v => yield v
end.

Definition write_cell (` v : Term.t) : s_operator unit :=
α ← find_chunk Predicate.ptr `;
consume_chunk α;
produce_chunk (` 7→ v).

Definition clear_heap : s_operator unit :=
set_current heap SHeap.empty.

Definition leak_check : s_operator unit :=
r ← with_current heap SHeap.is_empty; assert r.

Definition fresh_symbol (exclude : list Symb.t) : s_operator Symb.t :=
let ξ := (proj1_sig (Symb.fresh exclude))
in
assume_formula (Formula.fla_eq (Term.term_sym ξ) (Term.term_sym ξ));
yield ξ.

Definition fresh_symbol_n (n : nat) : s_operator (list Symb.t) :=
let aux :=

fix rec (n : nat) (exclude : list Symb.t) : s_operator (list Symb.t) :=
match n with
| O => yield nil
| S n => ξ ← fresh_symbol exclude;

ξs ← rec n (ξ :: exclude);
yield (ξ :: ξs)

end
in
σ ← current state;
let exclude := symbols σ
in
aux n exclude.

Definition fresh_symbol_1 : s_operator Symb.t :=
ξs ← fresh_symbol_n 1;
match ξs with

| ξ :: nil => yield ξ
| _ => failure

end.

ESYMBOLICEXECUTION 307

Definition allocate (n : nat) : s_operator Term.t :=
let allocate_at :=

fix aux (` : Symb.t) (vs : list Symb.t) : s_operator unit :=
match vs with
| nil => nop
| v::vs =>
let k := List.length vs
in
let α := ((Term.term_sym ` + k)%term 7→ (Term.term_sym v))%chunk
in
produce_chunk α;
aux ` vs

end
in
ξs ← fresh_symbol_n (S n);
match ξs with

| `::vs => allocate_at ` vs;
produce_chunk (mb [(Term.term_sym `); n])%chunk;
yield (Term.term_sym `)

| nil => failure
end.

Fixpoint consume_cells (` : Term.t) (n : nat) : s_operator unit :=
match n with

| O =>
nop

| S n =>
α ← find_chunk Predicate.ptr (` + n);
consume_chunk α;
consume_cells ` n

end.

Definition block_size (` : Term.t) : s_operator nat :=
α ← find_chunk Predicate.mb `;
match α with

| SChunk.Chunk _ _ t =>
Φ ← current path_condition;
match derive_value Φ t with

| Some n => yield n
| None => failure

end
end.

Definition consume_mb (` : Term.t) : s_operator nat :=
α ← find_chunk Predicate.mb `;
consume_chunk α;
match α with

| SChunk.Chunk _ _ t =>
Φ ← current path_condition;
match derive_value Φ t with

| Some n => yield n
| None => failure

end
end.

308 COQ SCRIPTS

Fixpoint consume_assertion (a : Assertion.t) : s_operator unit :=
match a with

| Assertion.bexpr b =>
assert_bexpr b

| Assertion.sepand a1 a2 =>
consume_assertion a1;
consume_assertion a2

| Assertion.cond b a1 a2 =>
let then_op := assume_bexpr b; consume_assertion a1 in
let else_op := assume_bexpr (¬ b)%bexpr; consume_assertion a2 in

op ← pick_demonically (then_op :: else_op :: nil);
op

| Assertion.pred p e x =>
t ← evaluate e;
α ← find_chunk p t;
consume_chunk α;
match α with

| SChunk.Chunk p t1 t2 => update_store x t2
end

end.

Fixpoint produce_assertion (a : Assertion.t) : s_operator unit :=
match a with

| Assertion.bexpr b =>
assume_bexpr b

| Assertion.sepand a1 a2 =>
produce_assertion a1;
produce_assertion a2

| Assertion.cond b a1 a2 =>
let then_op := assume_bexpr b; produce_assertion a1 in
let else_op := assume_bexpr (¬ b)%bexpr; produce_assertion a2 in

op ← pick_demonically (then_op :: else_op :: nil);
op

| Assertion.pred p e x =>
t1 ← evaluate e;
ξ ← fresh_symbol_1;
let t2 := Term.term_sym ξ in
produce_chunk (SChunk.Chunk p t1 t2);
update_store x t2

end.

Section WithProgram.
Variable (Π : SILPP.program).

Open Scope command_scope.

Fixpoint symbolic_execution (c : SILPP.command) : s_operator unit :=
match c with
| skip => yield �
| x := e =>

v ← evaluate e;
update_store x v

| c; c’ =>
symbolic_execution c;
symbolic_execution c’

ESYMBOLICEXECUTION 309

| x := malloc n =>
` ← allocate n;
update_store x `

| free e =>
` ← evaluate e;
n ← consume_mb `;
consume_cells ` n

| ~e� := e’ =>
` ← evaluate e;
v ← evaluate e’;
write_cell ` v

| x := ~e� =>
` ← evaluate e;
v ← read_cell `;
update_store x v

| If b Then c Else c’ =>
let then_clause :=
assume_bexpr b;
symbolic_execution c

in
let else_clause :=

assume_bexpr (¬ b)%bexpr;
symbolic_execution c’

in
let clauses := then_clause :: else_clause :: nil
in
op ← pick_demonically clauses;
op

| open p[e; ?] =>
` ← evaluate e;
α ← find_chunk p `;
_ ← consume_chunk α;
preddef ← from_some (SILPP.predicates Π p);
let x := SILPP.argument_a preddef
in
let y := SILPP.argument_b preddef
in
let body := SILPP.predicate_body preddef in
match α with
| SChunk.Chunk _ `’ v’ =>

with_store (s_0~x := `’�~y := v’�)%store
(produce_assertion body)

end
| close p[e; e’] =>
` ← evaluate e;
v ← evaluate e’;
preddef ← from_some (SILPP.predicates Π p);
let x := SILPP.argument_a preddef in
let y := SILPP.argument_b preddef in
let body := SILPP.predicate_body preddef in
with_store (s_0~x := `�~y := v�)%store

(consume_assertion body);
produce_chunk (SChunk.Chunk p ` v)

310 COQ SCRIPTS

| r[e] =>
rdef ← from_some (SILPP.routines Π r);
let x := SILPP.argument rdef in
t ← evaluate e;
with_store (s_0~x := t�)%store

(consume_assertion (SILPP.precondition rdef);
produce_assertion (SILPP.postcondition rdef))

end.

Close Scope command_scope.

Definition valid_routine (rdef : SILPP.routine_definition) : bool :=
let validation_op :=
ξ ← fresh_symbol_1;
let v := Term.term_sym ξ in
update_store (SILPP.argument rdef) v;
produce_assertion (SILPP.precondition rdef);
with_store (s_0~(SILPP.argument rdef) := v�)%store

(symbolic_execution (SILPP.routine_body rdef));
consume_assertion (SILPP.postcondition rdef);
leak_check

in
let pc := Formula.fla_eq (Term.term_lit O) (Term.term_lit O)
in
let σ := 〈s_0, SHeap.empty, pc 〉
in
negb (is_bottom (validation_op σ)).

End WithProgram.

Close Scope op_scope.

End Make.

EWP 311

D.13 EWP

(**

IMPORTANT: This proof script was developed with Coq 8.1.
It will NOT work with Coq 8.2 or later
(due to differences in the standard library).

The script contains four Coq axioms (search for "Axiom").
One is borrowed from Coq 8.2’s standard library, namely
[functional_extensionality_dep]. The others are directly
related to the paper and are trivial (but necessary).
All proofs are complete, none has been ended
with "Admitted" (which would tell Coq to just
accept them as axioms).

The validity of the entire Coq script depends on a small
core of definitions. An error here could make
the entire proof worthless. We identify these
"Achilles heel spots" with a clear message. Fortunately,
many of these "fragile definitions" are trivial.

*)

(*

TOC
-�
1. CUSTOM TACTICS
2. GENERAL DEFINITIONS
3. PAPER SPECIFIC
3.1. LANGUAGE DEFINITIONS AND THEOREMS
3.2. SINGLE ASSIGNMENT
3.3. PASSIFICATION
3.4. WEAKEST PRECONDITIONS SOUNDNESS
3.5. WEAKEST PRECONDITIONS SIZE

*)

Require Import Arith.
Require Import Omega.
Require Import FSets.
Require Import Max.
Require Import List.
Require Import Relations.
Require Import Setoid.
Require Import ProofIrrelevance.

Set Printing Width 200.

312 COQ SCRIPTS

(** * Custom Tactics *)

(**
This tactic introduces a new identifier [id], which is equal to [term].

«

======================
Goal

introduce x (3 + 5)

x : nat
H : x = 3 + 5
======================
Goal

»

Generally useful to simplify expressions by substituting entire
subexpressions with a single identifier (using [rewrite]), or to
apply the [induction] tactic which sometimes tends to throw some
information away.

*)
Ltac introduce_eq id term :=
(set (id := term);

assert (id = term);
[trivial | clearbody id]).

(**
New tactic notation: instead of [introduce_eq x t]
we can write [introduce new identifier x for t].

*)
Tactic Notation "introduce" "new" "identifier" ident(x) "for" constr(t) :=

introduce_eq x t.

(**
Same as [introduce_eq], but also performs a rewrite in [H].

«
x : nat
y : nat
z : nat
H : x = (3 + y) * z
============================
Goal

introduce_eq_in a (3 + y) H.

x : nat
y : nat
z : nat
a : nat
H0 : a = 3 + y
H : x = a * z
============================
Goal

» *)

EWP 313

Ltac introduce_eq_in id term H :=
(let H’ := fresh in

set (id := term);
assert (H’ : id = term);
[trivial | clearbody id];
rewrite <- H’ in H).

(**
Adds a new hypothesis, whose proof is given by [term].

«
a : nat
b : nat
c : nat
H : a < b
H0 : b < c
============================
Goal

state_fresh (lt_trans _ _ _ H H0).

a : nat
b : nat
c : nat
H : a < b
H0 : b < c
H1 : a < c
============================
Goal

» *)
Ltac state_fresh term :=
let id := fresh in
(assert (id := term)).

(**
Same as [state_fresh], but instead of using a fresh id, it uses [H].

«
a : nat
b : nat
c : nat
H : a < b
H0 : b < c
============================
Goal

state_as Foo (lt_trans _ _ _ H H0).

a : nat
b : nat
c : nat
H : a < b
H0 : b < c
Foo : a < c
============================
Goal

» *)

314 COQ SCRIPTS

Ltac state_as H term :=
(assert (H := term)).

(**
Introduces a new tactic notation:
[state_fresh term] can now be written [state term].

*)
Tactic Notation "state" constr(x) :=

state_fresh x.

(**
Introduces a new tactic notation:
[state_as H term] can now be written [state term as H].

*)
Tactic Notation "state" constr(x) "as" ident(H) :=

state_as H x.

(**
Applies [x] to [H].

«
a : nat
b : nat
c : nat
H : a < b
H0 : b < c
============================
Goal

state lt_trans.

a : nat
b : nat
c : nat
H : a < b
H0 : b < c
H1 : forall n m p : nat, n < m -> m < p -> n < p
============================
Goal

specify_single H1 a.

a : nat
b : nat
c : nat
H : a < b
H0 : b < c
H1 : forall m p : nat, a < m -> m < p -> a < p
============================
Goal

EWP 315

specify_single H1 b.

a : nat
b : nat
c : nat
H : a < b
H0 : b < c
H1 : forall p : nat, a < b -> b < p -> a < p
============================
Goal

specify_single H1 c.

a : nat
b : nat
c : nat
H : a < b
H0 : b < c
H1 : a < b -> b < c -> a < c
============================
Goal

specify_single H1 H.

a : nat
b : nat
c : nat
H : a < b
H0 : b < c
H1 : b < c -> a < c
============================
Goal

specify_single H1 H0.

a : nat
b : nat
c : nat
H : a < b
H0 : b < c
H1 : a < c
============================
Goal

»

Useful in keeping hypotheses "up-to-date" with the proof developments.
Also simplifies things a bit when the terms applied are large.

*)
Ltac specify_single H x :=
(let H’ := fresh in
state (H x) as H’;
clear H;
rename H’ into H).

316 COQ SCRIPTS

Tactic Notation "specify" hyp(H) constr(x1) :=
specify_single H x1.

Tactic Notation "specify" hyp(H) constr(x1)
constr(x2) :=

specify_single H x1;
specify_single H x2.

Tactic Notation "specify" hyp(H) constr(x1)
constr(x2)
constr(x3) :=

specify_single H x1;
specify_single H x2;
specify_single H x3.

Tactic Notation "specify" hyp(H) constr(x1)
constr(x2)
constr(x3)
constr(x4) :=

specify_single H x1;
specify_single H x2;
specify_single H x3;
specify_single H x4.

Tactic Notation "specify" hyp(H) constr(x1)
constr(x2)
constr(x3)
constr(x4)
constr(x5) :=

specify_single H x1;
specify_single H x2;
specify_single H x3;
specify_single H x4;
specify_single H x5.

Tactic Notation "specify" hyp(H) constr(x1)
constr(x2)
constr(x3)
constr(x4)
constr(x5)
constr(x6) :=

specify_single H x1;
specify_single H x2;
specify_single H x3;
specify_single H x4;
specify_single H x5;
specify_single H x6.

Tactic Notation "specify" hyp(H) constr(x1)
constr(x2)
constr(x3)
constr(x4)
constr(x5)
constr(x6)
constr(x7) :=

specify_single H x1;

EWP 317

specify_single H x2;
specify_single H x3;
specify_single H x4;
specify_single H x5;
specify_single H x6;
specify_single H x7.

Tactic Notation "specify" hyp(H) constr(x1)
constr(x2)
constr(x3)
constr(x4)
constr(x5)
constr(x6)
constr(x7)
constr(x8) :=

specify_single H x1;
specify_single H x2;
specify_single H x3;
specify_single H x4;
specify_single H x5;
specify_single H x6;
specify_single H x7;
specify_single H x8.

Tactic Notation "specify" hyp(H) constr(x1)
constr(x2)
constr(x3)
constr(x4)
constr(x5)
constr(x6)
constr(x7)
constr(x8)
constr(x9) :=

specify_single H x1;
specify_single H x2;
specify_single H x3;
specify_single H x4;
specify_single H x5;
specify_single H x6;
specify_single H x7;
specify_single H x8;
specify_single H x9.

Tactic Notation "specify" hyp(H) constr(x1)
constr(x2)
constr(x3)
constr(x4)
constr(x5)
constr(x6)
constr(x7)
constr(x8)
constr(x9)
constr(x10) :=

specify_single H x1;
specify_single H x2;

318 COQ SCRIPTS

specify_single H x3;
specify_single H x4;
specify_single H x5;
specify_single H x6;
specify_single H x7;
specify_single H x8;
specify_single H x9;
specify_single H x10.

(**
Fancy [injection] tactic, which also introduces the equalities
produced by [injection] as hypotheses and performs substitutions.

«
a : nat
b : nat
c : nat
H : S a = S b
H0 : a = c
============================
b = c

strip H.

b : nat
c : nat
H : c = b
============================
b = c

»*)
Ltac strip h :=
(injection h; clear h; intros; subst).

(**
Breaks open a pair [p] and names the components [x] and [y].
Used to call a function returning two values as pair and binding
both values to identifiers in one step.

*)
Ltac introduce_pair p x y :=
(let z := fresh in introduce_eq z p;

destruct z as [x y]).

(**
New tactic notation: [introduce_pair p x y] can be
written as [introduce pair p as x y].

*)
Tactic Notation "introduce" "pair" constr(p) "as" ident(x) ident(y) :=

(introduce_pair p x y).

EWP 319

(**
Deals with an existential in a hypothesis.

«
H : exists n : nat, forall k : nat, n > k
============================
False

elim_ex H x.

x : nat
H : forall k : nat, x > k
============================
False

»*)
Ltac elim_ex H n :=
let H’ := fresh in elim H;

intros n H’;
clear H;
rename H’ into H.

(**
New tactic notation: [elim_ex H x] can be written
[eliminate existential x in H].
We also define notations to get rid of multiple existentials in one step.

*)
Tactic Notation "eliminate" "existential" ident(x) "in" hyp(H) :=

elim_ex H x.

Tactic Notation "eliminate" "existentials" ident(x) ident(y) "in" hyp(H) :=
elim_ex H x; elim_ex H y.

Tactic Notation "eliminate" "existentials" ident(x) ident(y) ident(z)
"in" hyp(H) :=

elim_ex H x; elim_ex H y; elim_ex H z.

Tactic Notation "eliminate" "existential" ident(x) "in" hyp(H) "as" ident(H’) :=
elim_ex H x; rename H into H’.

Tactic Notation "eliminate" "existentials" ident(x) ident(y) "in"
hyp(H) "as" ident(H’) :=

elim_ex H x; elim_ex H y; rename H into H’.

Tactic Notation
"eliminate" "existentials" ident(x) ident(y) ident(z)
"in" hyp(H) "as" ident(H’) :=
elim_ex H x; elim_ex H y; elim_ex H z; rename H into H’.

(**

Used where an inequality needs to be proved.
Can refine both left and right bound.

320 COQ SCRIPTS

Refining the left bound:

«
X <= Y

X <= Y Y <= Z
------ ==> ------ /\ ------
X <= Z Y <= Z X <= Z

»
where the right goal is proved automatically using the omega tactic.

Refining the right bound:
«

X <= Y
Y <= Z Y <= Z
------ ==> ------ /\ ------
X <= Z X <= Y X <= Z

»
where the right goal is proved automatically using the omega tactic.

*)
Ltac refine_le H :=
match goal with
| [H : le ?X ?Y |- le ?X ?Z] => cut (Y <= Z); [intros; omega | idtac]
| [H : le ?Y ?Z |- le ?X ?Z] => cut (X <= Y); [intros; omega | idtac]

end.

(**
A tactic to perform an algebraic manipulation. [algebraic_rewrite x y] first
needs to prove that [x] and [y] are equivalent,
which it tries to do automatically
(if this fails, a message is printed and the proof is left to the user).
Next, it also rewrites [x] as [y] in all hypotheses and the goal.

«
a : nat
b : nat
============================
(a + b) * (a + b) >= a * a

algebraic_rewrite ((a + b) * (a + b)) (a * a + 2 * a * b + b * b).

a : nat
b : nat
============================
a * a + 2 * a * b + b * b >= a * a

» *)
Ltac algebraic_rewrite x y :=
let H := fresh in
assert (H : x = y);

[try ring;
idtac "Failed to automatically prove rewrite (not an error)"
| rewrite H in * |- *;
clear H].

EWP 321

(** New tactic notation: [algebraic_rewrite x y] can be
written as [algebraically rewrite x as y]. *)

Tactic Notation "algebraically" "rewrite" constr(x) "as" constr(y) :=
algebraic_rewrite x y.

(**
All-in-one tactic to solve nat-related goals.

*)
Ltac solveq :=
simpl in * |- *; solve [auto with arith | ring | omega].

(**
A tactic which helps with proving inequalities.
Used to bring the lower bound closer to the upper bound.

«
a : nat
b : nat
============================
a - b <= a + 5

refine_le_left a.

a : nat
b : nat
============================
a <= a + 5

» *)
Ltac refine_le_left Y :=
match goal with
| |- le ?X ?Z =>
let H := fresh in
assert (H : X <= Y);
[try solveq; idtac "Failed to refine automatically (not an error)"
| refine_le H; clear H]

end.

(**
A tactic which helps with proving inequalities.
Used to bring the upper bound closer to the lower bound.

«
a : nat
b : nat
============================
a - b <= a + 5

refine_le_right a.

a : nat
b : nat
============================
a - b <= a

» *)

322 COQ SCRIPTS

Ltac refine_le_right Y :=
match goal with
| |- le ?X ?Z =>
let H := fresh in
assert (H : Y <= Z);
[try solveq; idtac "Failed to refine automatically (not an error)"
| refine_le H; clear H]

end.

(**
New tactic notation: [refine_le_left x]
can be written [refine left bound with x].

*)
Tactic Notation "refine" "left" "bound" "with" constr(x) :=

refine_le_left x.

(**
New tactic notation: [refine_le_right x]
can be written [refine right bound with x].

*)
Tactic Notation "refine" "right" "bound" "with" constr(x) :=

refine_le_right x.

(** * General definitions *)

(** ** Decidability *)

(**
We define decidability as a Set, so that we can use it in algorithms.

*)
Definition decidable (P : Prop) := {P} + {˜P}.

(**
[decidable_eq A] means that we can decide whether
two values of type [A] are equal or not.

*)
Definition decidable_eq (A : Set) :=
forall x y : A, decidable (x = y).

(** ** Equivalent functions *)

(**
We say two functions [f] and [g] with domain [A]
are equivalent when [f x = g x], forall [x] in [A].
Function equivalence is an equivalence relation,
as will be proved in later theorems.

#Needs manual checking#
%{Needs manual checking}%

*)
Definition function (A B : Type) :=
A -> B.

(**
#Needs manual checking#
%{Needs manual checking}%

*)

EWP 323

Definition equivalent_functions (A B : Type) (f g : function A B) :=
forall (x : A), f x = g x.

Implicit Arguments equivalent_functions [A B].

(**
We show a function is equivalent with itself (reflexivity).

*)
Theorem equivalent_functions_refl : forall A B f,

(@equivalent_functions A B f f).
Proof. (* 1 lines *) Qed.

(**
We show that if [f] is equivalent with [g] and
[g] is equivalent with [h],
then [f] is equivalent with [h] (transitivity).

*)
Theorem equivalent_functions_trans : forall A B f g h,

(@equivalent_functions A B f g) ->
(@equivalent_functions A B g h) ->
(@equivalent_functions A B f h).

Proof. (* 2 lines *) Qed.

(**
We show that if [f] is equivalent with [g],
then [g] is equivalent with [f] (symmetricity).

*)
Theorem equivalent_functions_symm : forall A B f g,

(@equivalent_functions A B f g) ->
(@equivalent_functions A B g f).

Proof. (* 2 lines *) Qed.

Implicit Arguments equivalent_functions_refl [A B].

Implicit Arguments equivalent_functions_trans [A B].

Implicit Arguments equivalent_functions_trans [A B].

(**
We put these theorems in the hint database so
that we can use the [auto] tactic to easily prove
goals that rely on these properties.

*)
Hint Resolve equivalent_functions_refl.

Hint Resolve equivalent_functions_symm.

Add Relation function equivalent_functions
reflexivity proved by equivalent_functions_refl
symmetry proved by equivalent_functions_symm
transitivity proved by equivalent_functions_trans

as equivalent_functions_rel.

(**
Functional extensionality. Taken from Coq 8.2’s standard library.

*)
Axiom functional_extensionality_dep : forall A (B : A -> Type),
forall (f g : forall x : A, B x), (forall x, f x = g x) -> f = g.

324 COQ SCRIPTS

Lemma functional_extensionality A B (f g : A -> B) :
(forall x, f x = g x) -> f = g.

Proof. (* 3 lines *) Qed.

Lemma equal_f :
forall (A B : Type) (f g : A -> B),
f = g -> forall x, f x = g x.

Proof. (* 3 lines *) Qed.

Lemma eta_expansion_dep A (B : A -> Type) (f : forall x : A, B x) :
f = fun x => f x.

Proof. (* 3 lines *) Qed.

Lemma eta_expansion A B (f : A -> B) : f = fun x => f x.
Proof. (* 2 lines *) Qed.

(** * Paper specific *)

(** ** Language definitions and theorems *)

(**
We define identifiers as natural numbers ([nat]).
We don’t rely on this internal representation
(we make [id] opaque a bit later)
except for the [id]-set definitions, for which
we need an ordered type; for this reason, [nat]
seemed like a natural choice.

#Needs manual checking#
%{Needs manual checking}%

*)
Definition id := nat.

(**
A vid (versioned id) is an id with a version number.
The [%type] suffix tells Coq it has to
evaluate [(id * nat)] in the type scope,
otherwise it will interpret [*] as [nat]-multiplication.

#Needs manual checking#
%{Needs manual checking}%

*)
Definition vid := (id * nat)%type.

(**
We define id as an ordered type (will be used
later to define identifier-sets).

*)
Module Identifier_OT <: OrderedType.

Definition t := id.

Definition eq (x y : t) := x = y.

Definition lt (x y : t) := x < y.

Theorem eq_refl : forall x, eq x x.
Proof. (* 1 lines *) Qed.

EWP 325

Theorem eq_sym : forall x y : t, eq x y -> eq y x.
unfold eq; auto.

Qed.

Theorem eq_trans : forall x y z, eq x y -> eq y z -> eq x z.
Proof. (* 1 lines *) Qed.

Definition lt_trans := lt_trans.

Theorem lt_not_eq : forall x y, lt x y -> ˜ eq x y.
Proof. (* 6 lines *) Qed.

Definition compare : forall x y, Compare lt eq x y.
Proof. (* 5 lines *) Qed.

End Identifier_OT.

(** We define sets of identifiers *)
Module IdSet := FSetList.Make(Identifier_OT).

(**
As promised earlier, we make id opaque, making sure we don’t make use
of its internal implementation.

*)
Opaque id.

(** Generate a few extra theorems for IdSets. *)
Module IdSetProperties := Properties (IdSet).

(**
If #(X ∪ Y) ⊆ Z#, then #X ⊆ Z# and #Y ⊆ Z#.

*)
Lemma union_subset :
forall x y z,
IdSet.Subset (IdSet.union x y) z ->
IdSet.Subset x z /\ IdSet.Subset y z.

Proof. (* 4 lines *) Qed.

(**
Decidability theorems stated as a definition
to make it transparent (needed for the single
assignment algorithm to be "fully evaluateable").

This theorem states that we can decide whether two [id]s are equal or not.

#Needs manual checking#
%{Needs manual checking}%

*)
Definition decidable_eq_id : decidable_eq id.
unfold decidable_eq; unfold decidable; intros.
apply (eq_nat_dec x y).

Defined.

(**
States that we can decide whether two [vid]s are equal or not.

#Needs manual checking#
%{Needs manual checking}%

*)

326 COQ SCRIPTS

Definition decidable_eq_vid : decidable_eq vid.
unfold decidable_eq; unfold decidable; unfold vid; intros.
destruct x; destruct y.
rename i0 into j; rename n0 into m.
destruct (decidable_eq_id i j);
destruct (eq_nat_dec n m);

try (left; subst; trivial; fail);
right; red; intros; injection H; intros; contradiction.

Defined.

(**
We define the set of values as well
as two elements: T (true) and
"some other value" F which is not equal to true.

#Needs manual checking#
%{Needs manual checking}%

*)
Parameters
(value : Set)
(T : value)
(F : value).

(**
We state we can check whether two [value]s are equal.

#Needs manual checking#
%{Needs manual checking}%

*)
Axiom decidable_eq_value : decidable_eq value.

(**
We have defined the existence of two [value]s,
[T] and [F]. We define them to be unequal.

#Needs manual checking#
%{Needs manual checking}%

*)
Axiom T_neq_F : T <> F.

(**
A [store] is a total mapping from [id]s to [value]s.

#Needs manual checking#
%{Needs manual checking}%

*)
Definition store := id -> value.

(**
A [vstore] is a total mapping from [id]s to [value]s.

#Needs manual checking#
%{Needs manual checking}%

*)
Definition vstore := vid -> value.

EWP 327

(**
A [vmap] (short for version map) maps non-versioned
identifiers ([vid]s) to a version number ([nat]).

#Needs manual checking#
%{Needs manual checking}%

*)
Definition vmap := id -> nat.

(**
An expression is a total mapping from [store]s to [value]s.

#Needs manual checking#
%{Needs manual checking}%

*)
Definition expr := store -> value.
Definition vexpr := vstore -> value.

(**
The original set of commands.

#Needs manual checking#
%{Needs manual checking}%

*)
Inductive command : Set :=
| cAssert : expr -> command
| cAssume : expr -> command
| cAssign : id -> expr -> command
| cSequence : command -> command -> command
| cSkip : command
| cChoice : command -> command -> command.

(**
The versioned set of commands.
Will be produced by the [transform_sa] algorithm.

#Needs manual checking#
%{Needs manual checking}%

*)
Inductive vcommand : Set :=
| vcAssert : vexpr -> vcommand
| vcAssume : vexpr -> vcommand
| vcAssign : vid -> vexpr -> vcommand
| vcSequence : vcommand -> vcommand -> vcommand
| vcSkip : vcommand
| vcChoice : vcommand -> vcommand -> vcommand.

(**
The versioned set of commands, without assignment
Will be produced by the [passify] algorithm.

#Needs manual checking#
%{Needs manual checking}%

*)

328 COQ SCRIPTS

Inductive pcommand : Set :=
| pcAssert : vexpr -> pcommand
| pcAssume : vexpr -> pcommand
| pcSequence : pcommand -> pcommand -> pcommand
| pcSkip : pcommand
| pcChoice : pcommand -> pcommand -> pcommand.

(**
Metric on commands.

#Needs manual checking#
%{Needs manual checking}%

*)
Fixpoint command_metric (c : command) : nat :=
match c with
| cAssert _ => 2
| cAssume _ => 2
| cAssign _ _ => 2
| cSequence x y => S (command_metric x + command_metric y)
| cSkip => 1
| cChoice x y => S (command_metric x + command_metric y)

end.

(**
Metric on vcommands.

#Needs manual checking#
%{Needs manual checking}%

*)
Fixpoint vcommand_metric (c : vcommand) : nat :=
match c with
| vcAssert _ => 2
| vcAssume _ => 2
| vcAssign _ _ => 2
| vcSequence x y => S (vcommand_metric x + vcommand_metric y)
| vcSkip => 1
| vcChoice x y => S (vcommand_metric x + vcommand_metric y)

end.

(**
Metric on pcommands.

#Needs manual checking#
%{Needs manual checking}%

*)
Fixpoint pcommand_metric (c : pcommand) : nat :=
match c with
| pcAssert _ => 2
| pcAssume _ => 2
| pcSequence x y => S (pcommand_metric x + pcommand_metric y)
| pcSkip => 1
| pcChoice x y => S (pcommand_metric x + pcommand_metric y)

end.

EWP 329

(**
Create a versioned expression of a command.
E.g. the expression "x == y + 1" will be transformed to
"x_5 == y_3 + 1" under the version map { x -> 5, y -> 3 }.

*)
Definition version_expr (e : expr) (v : vmap) : vexpr :=
fun (vmu : vstore) => e (fun x => vmu (x, v x)).

(**
Modifies a single mapping of a total function.

«
(rebind f x y) x = y
(rebind f x y) x’ = f x’ with x <> x’

»

#Needs manual checking#
%{Needs manual checking}%

*)
Definition rebind (A B : Set)

(eq_dec : decidable_eq A)
(f : A -> B)
(x : A)
(y : B) :=

fun a => if eq_dec a x then y else f a.

Implicit Arguments rebind [A B].

(**
Increment the version of an identifier.

E.g.
«

inc { x -> 5, y -> 3, ... } x = { x -> 6, y -> 3, ... }
» *)
Definition inc (v : vmap) (x : id) :=
rebind decidable_eq_id v x (S (v x)).

(**
Updates a store binding.

#Needs manual checking#
%{Needs manual checking}%

*)
Definition update_store (mu : store) (x : id) (v : value) :=
rebind decidable_eq_id mu x v.

(**
Update a versioned store binding.

#Needs manual checking#
%{Needs manual checking}%

*)
Definition update_vstore (mu : vstore) (x : vid) (v : value) :=
rebind decidable_eq_vid mu x v.

330 COQ SCRIPTS

(**
Checks if a regular store and a versioned store
are equivalent under a certain version map.

E.g. the regular store
{ x -> 12, y -> 44 }
is equivalent with the versioned store
{ x_0 -> -5, x_1 -> 2, x_2 -> 12, y_0 -> 44 }
under the version map { x -> 2, y -> 0 }

*)
Definition store_sync_vstore (mu : store) (v : vmap) (vmu : vstore) :=
equivalent_functions mu (fun x => vmu (x, v x)).

(**
Two expression evaluate to the same value
under equivalent stores.

#Needs manual checking#
%{Needs manual checking}%

*)
Axiom expression_evaluation : forall (e : expr) mu mu’,

equivalent_functions mu mu’ -> e mu = e mu’.

Theorem sync_stores : forall mu v vmu (e : expr),
store_sync_vstore mu v vmu -> e mu = ((version_expr e v) vmu).

Proof. (* 5 lines *) Qed.

(**
States for the original command language.

#Needs manual checking#
%{Needs manual checking}%

*)
Inductive state : Set :=
| ip : command -> store -> state
| failure : store -> state.

(**
States for the single assignment phase.

#Needs manual checking#
%{Needs manual checking}%

*)
Inductive vstate : Set :=
| vip : vcommand -> vstore -> vstate
| vfailure : vstore -> vstate.

(**
States for the passification phase.

#Needs manual checking#
%{Needs manual checking}%

*)
Inductive pstate : Set :=
| pip : pcommand -> pstate
| pfailure : pstate.

EWP 331

(**
Metric on states

*)
Definition state_metric (s : state) : nat :=
match s with
| ip c _ => command_metric c
| failure _ => O

end.

(**
Metric on vstates

*)
Definition vstate_metric (s : vstate) : nat :=
match s with

| vip c _ => vcommand_metric c
| vfailure _ => O

end.

(**
Metric on pstates

*)
Definition pstate_metric (s : pstate) : nat :=
match s with

| pip c => pcommand_metric c
| pfailure => O

end.

(**
Regular single step operational semantics.

#Needs manual checking#
%{Needs manual checking}%

*)
Inductive step : state -> state -> Prop :=
| stepAssertT : forall e mu,

e mu = T ->
step (ip (cAssert e) mu) (ip cSkip mu)

| stepAssertF : forall e mu,
e mu <> T ->
step (ip (cAssert e) mu) (failure mu)

| stepAssume : forall e mu,
e mu = T ->
step (ip (cAssume e) mu) (ip cSkip mu)

| stepSeq : forall c1 c1’ c2 mu mu’,
step (ip c1 mu) (ip c1’ mu’) ->
step (ip (cSequence c1 c2) mu)

(ip (cSequence c1’ c2) mu’)

| stepSeqSkip : forall c2 mu,
step (ip (cSequence cSkip c2) mu) (ip c2 mu)

| stepSeqFail : forall c1 c2 mu mu’,
step (ip c1 mu) (failure mu’) ->
step (ip (cSequence c1 c2) mu) (failure mu’)

332 COQ SCRIPTS

| stepAssign : forall x e mu,
step (ip (cAssign x e) mu)

(ip cSkip (update_store mu x (e mu)))

| stepChoiceL : forall c1 c2 mu,
step (ip (cChoice c1 c2) mu)

(ip c1 mu)

| stepChoiceR : forall c1 c2 mu,
step (ip (cChoice c1 c2) mu)

(ip c2 mu).

(**
Versioned single step operational semantics.

#Needs manual checking#
%{Needs manual checking}%

*)
Inductive vstep : vstate -> vstate -> Prop :=
| vstepAssertT : forall e vmu,

e vmu = T ->
vstep (vip (vcAssert e) vmu) (vip vcSkip vmu)

| vstepAssertF : forall e vmu,
e vmu <> T ->
vstep (vip (vcAssert e) vmu) (vfailure vmu)

| vstepAssume : forall e vmu, e vmu = T ->
vstep (vip (vcAssume e) vmu) (vip vcSkip vmu)

| vstepSeq : forall c1 c1’ c2 vmu vmu’,
vstep (vip c1 vmu) (vip c1’ vmu’) ->
vstep (vip (vcSequence c1 c2) vmu)

(vip (vcSequence c1’ c2) vmu’)

| vstepSeqSkip : forall c2 vmu,
vstep (vip (vcSequence vcSkip c2) vmu) (vip c2 vmu)

| vstepSeqFail : forall c1 c2 vmu vmu’,
vstep (vip c1 vmu) (vfailure vmu’) ->
vstep (vip (vcSequence c1 c2) vmu) (vfailure vmu’)

| vstepAssign : forall x e vmu,
vstep (vip (vcAssign x e) vmu)

(vip vcSkip (update_vstore vmu x (e vmu)))

| vstepChoiceL : forall c1 c2 vmu,
vstep (vip (vcChoice c1 c2) vmu) (vip c1 vmu)

| vstepChoiceR : forall c1 c2 vmu,
vstep (vip (vcChoice c1 c2) vmu) (vip c2 vmu).

(**
Versioned stateless single step operational semantics.

#Needs manual checking#
%{Needs manual checking}%

*)

EWP 333

Inductive pstep (vmu : vstore) : pstate -> pstate -> Prop :=
| pstepAssertT : forall e,

e vmu = T ->
pstep vmu (pip (pcAssert e)) (pip pcSkip)

| pstepAssertF : forall e,
e vmu <> T ->
pstep vmu (pip (pcAssert e)) pfailure

| pstepAssume : forall e,
e vmu = T ->
pstep vmu (pip (pcAssume e)) (pip pcSkip)

| pstepSeq : forall c1 c1’ c2,
pstep vmu (pip c1) (pip c1’) ->
pstep vmu (pip (pcSequence c1 c2)) (pip (pcSequence c1’ c2))

| pstepSeqSkip : forall c2,
pstep vmu (pip (pcSequence pcSkip c2))

(pip c2)

| pstepSeqFail : forall c1 c2,
pstep vmu (pip c1) pfailure ->
pstep vmu (pip (pcSequence c1 c2)) pfailure

| pstepChoiceL : forall c1 c2,
pstep vmu (pip (pcChoice c1 c2)) (pip c1)

| pstepChoiceR : forall c1 c2,
pstep vmu (pip (pcChoice c1 c2)) (pip c2).

(**
Regular multistep.

#Needs manual checking#
%{Needs manual checking}%

*)
Inductive multistep : state -> state -> Prop :=
| multiReflexivity : forall s, multistep s s
| multiStep : forall s1 s2 s3,

step s1 s2 ->
multistep s2 s3 ->
multistep s1 s3.

(**
Versioned multistep.

#Needs manual checking#
%{Needs manual checking}%

*)
Inductive vmultistep : vstate -> vstate -> Prop :=
| vmultiReflexivity : forall s, vmultistep s s
| vmultiStep : forall s1 s2 s3,

vstep s1 s2 ->
vmultistep s2 s3 ->
vmultistep s1 s3.

334 COQ SCRIPTS

(**
Versioned stateless multistep.

#Needs manual checking#
%{Needs manual checking}%

*)
Inductive pmultistep (vmu : vstore) : pstate -> pstate -> Prop :=
| pmultiReflexivity : forall s, pmultistep vmu s s
| pmultiStep : forall s1 s2 s3,

pstep vmu s1 s2 ->
pmultistep vmu s2 s3 ->
pmultistep vmu s1 s3.

(**
Helper tactic to perform induction on [step]/[multistep]/[vstep]/[vmultistep].
Using the [induction] tactic sometimes throws important information away.

For example, if we don’t use [introduce_step_states], we get
«

c : command
c’ : command
mu : store
mu’ : store
H : multistep (ip c mu) (ip c’ mu’)
============================
command_metric c’ <= command_metric c

induction H.

subgoal 1 is:

c : command
c’ : command
mu : store
mu’ : store
s : state
============================
command_metric c’ <= command_metric c

subgoal 2 is:

c : command
c’ : command
mu : store
mu’ : store
s1 : state
s2 : state
s3 : state
H : step s1 s2
H0 : multistep s2 s3
IHmultistep : command_metric c’ <= command_metric c
============================
command_metric c’ <= command_metric c

»

EWP 335

As you can see, there is no way of solving subgoal 1:
the hypotheses do not provide any kind of information
about either [c] or [c’]. We can use
[introduce_step_states] to preserve this information:

«
c : command
c’ : command
mu : store
mu’ : store
H : multistep (ip c mu) (ip c’ mu’)
============================
command_metric c’ <= command_metric c

introduce_step_states H s s’.

c : command
c’ : command
mu : store
mu’ : store
s : state
H0 : s = ip c mu
s’ : state
H1 : s’ = ip c’ mu’
H : multistep s s’
============================
command_metric c’ <= command_metric c

revert c c’ mu mu’ H0 H1.

s : state
s’ : state
H : multistep s s’
============================
forall (c c’ : command) (mu mu’ : store),

s = ip c mu -> s’ = ip c’ mu’ -> command_metric c’ <= command_metric c

subgoal 1 is:

c : command
c’ : command
mu : store
mu’ : store
H1 : ip c mu = ip c’ mu’
============================
command_metric c’ <= command_metric c

subgoal 2 is:

s2 : state
c : command
c’ : command
mu : store
mu’ : store
H0 : multistep s2 (ip c’ mu’)
IHmultistep : forall (c c’0 : command) (mu mu’0 : store),
s2 = ip c mu -> ip c’ mu’ = ip c’0 mu’0 ->

336 COQ SCRIPTS

command_metric c’0 <= command_metric c
H : step (ip c mu) s2
============================
command_metric c’ <= command_metric c

» *)
Ltac introduce_step_states H s s’ :=
match goal with
| [H : step ?X ?Y |- _] =>

introduce_eq_in s X H; introduce_eq_in s’ Y H
| [H : multistep ?X ?Y |- _] =>

introduce_eq_in s X H; introduce_eq_in s’ Y H
| [H : vstep ?X ?Y |- _] =>

introduce_eq_in s X H; introduce_eq_in s’ Y H
| [H : vmultistep ?X ?Y |- _] =>

introduce_eq_in s X H; introduce_eq_in s’ Y H
| _ => idtac "No step hypothesis found"

end.

(**
Same as [introduce_step_states], but adapted to [pstep] and [pmultistep].

*)
Ltac introduce_step_states_p H vmu s s’ :=
match goal with
| [H : pstep ?S ?X ?Y |- _] =>

introduce_eq_in vmu S H;
introduce_eq_in s X H;
introduce_eq_in s’ Y H

| [H : pmultistep ?S ?X ?Y |- _] =>
introduce_eq_in vmu S H;
introduce_eq_in s X H;
introduce_eq_in s’ Y H

| _ => idtac "No step hypothesis found"
end.

(**
New tactic notation: [introduce_step_states H s s’] can
be written [introduce states s s’ in H].

*)
Tactic Notation "introduce" "states" ident(s) ident(s’) "in" hyp(H) :=

introduce_step_states H s s’.

(**
New tactic notation: [introduce_step_states_p H vmu s s’] can
be written [introduce states vmu s s’ in H].

*)
Tactic Notation "introduce" "states" ident(vmu) ident(s) ident(s’) "in" hyp(H) :=

introduce_step_states_p H vmu s s’.

(**
Splits up a goal [multistep s1 s2] to [step s1 Y]
and [step Y s2], and similarly for [vmultistep] and [pmultistep].
This tactic just makes it unnecessary
to copy-paste s1 and s2 when applying the
[multiStep]/[vmultistep]/[pmultistep] theorem.

*)

EWP 337

Ltac split_step_in_goal Y :=
match goal with
| |- multistep ?X ?Z => apply (multiStep X Y Z)
| |- vmultistep ?X ?Z => apply (vmultiStep X Y Z)
| |- pmultistep ?S ?X ?Z => apply (pmultiStep S X Y Z)
| _ => fail

end.

(**
New tactic notation: [split_step_in_goal X] can we written [step X].

*)
Tactic Notation "step" constr(X) := split_step_in_goal X.

(**
Builds up a (finite) set of identifiers which
are assigned to in the given command

*)
Fixpoint targets (c : command) : IdSet.t :=
match c with
| cAssert _ => IdSet.empty
| cAssume _ => IdSet.empty
| cAssign x _ => IdSet.singleton x
| cSequence c1 c2 => IdSet.union (targets c1) (targets c2)
| cChoice c1 c2 => IdSet.union (targets c1) (targets c2)
| cSkip => IdSet.empty

end.

(**
When needing to prove [multistep (ip (cChoice c1 c2) mu)],
takes the left path and thus changes the goal to [multistep (ip c1 mu)].
Similarly for [vmultistep] and [pmultistep].

*)
Ltac step_choice_left :=
match goal with
| |- multistep (ip (cChoice ?C1 ?C2) ?MU) ?S =>

step (ip C1 MU); [constructor | idtac]
| |- vmultistep (vip (vcChoice ?C1 ?C2) ?VMU) ?S =>

step (vip C1 VMU); [constructor | idtac]
| |- pmultistep ?VMU (pip (pcChoice ?C1 ?C2)) ?S =>

step (pip C1); [constructor | idtac]
end.

(**
When needing to prove [multistep (ip (cChoice c1 c2) mu)],
takes the right path and thus changes the goal to [multistep (ip c2 mu)].
Similarly for [vmultistep] and [pmultistep].

*)
Ltac step_choice_right := match goal with
| |- multistep (ip (cChoice ?C1 ?C2) ?MU) ?S =>

step (ip C2 MU); [constructor | idtac]
| |- vmultistep (vip (vcChoice ?C1 ?C2) ?VMU) ?S =>

step (vip C2 VMU); [constructor | idtac]
| |- pmultistep ?VMU (pip (pcChoice ?C1 ?C2)) ?S =>

step (pip C2); [constructor | idtac]
end.

338 COQ SCRIPTS

(**
New tactic notation: [step_choice_left] can be written [step choice left].

*)
Tactic Notation "step" "choice" "left" := step_choice_left.

(**
New tactic notation: [step_choice_right] can be written [step choice right].

*)
Tactic Notation "step" "choice" "right" := step_choice_right.

(**
A few theorems about the steps and multisteps relations.

*)
Lemma multistep_ip_ip :
forall s c’ mu’,
multistep s (ip c’ mu’) -> exists c, exists mu, s = ip c mu.

Proof. (* 5 lines *) Qed.

Lemma vmultistep_vip_vip :
forall s c’ vmu’,
vmultistep s (vip c’ vmu’) -> exists c, exists vmu, s = vip c vmu.

Proof. (* 5 lines *) Qed.

Lemma pmultistep_pip_pip :
forall s c’ vmu,

pmultistep vmu s (pip c’) -> exists c, s = pip c.
Proof. (* 5 lines *) Qed.

(**
If a sequence c1; c2 goes to skip, both c1 and c2 go to skip separately.

*)
Theorem multistep_seq_skip :
forall c1 c2 mu mu”,
multistep (ip (cSequence c1 c2) mu) (ip cSkip mu”) ->
exists mu’, multistep (ip c1 mu) (ip cSkip mu’) /\

multistep (ip c2 mu’) (ip cSkip mu”).
Proof. (* 18 lines *) Qed.

(**
If a sequence c1; c2 goes to skip, both c1 and c2 go to skip separately.

*)
Theorem vmultistep_seq_skip :
forall c1 c2 vmu vmu”,
vmultistep (vip (vcSequence c1 c2) vmu) (vip vcSkip vmu”) ->
exists vmu’, vmultistep (vip c1 vmu) (vip vcSkip vmu’) /\

vmultistep (vip c2 vmu’) (vip vcSkip vmu”).
Proof. (* 18 lines *) Qed.

(**
A lemma to turn a proof of [multistep s1 s2] into one of [step s1 s2].

*)
Lemma multistep_step_to_multi :
forall s1 s2, step s1 s2 -> multistep s1 s2.

Proof. (* 2 lines *) Qed.

EWP 339

(**
A lemma to turn a proof of [vmultistep s1 s2] into one of [vstep s1 s2].

*)
Lemma vmultistep_step_to_multi :
forall s1 s2, vstep s1 s2 -> vmultistep s1 s2.

Proof. (* 2 lines *) Qed.

(**
A lemma to turn a proof of [pmultistep vmu s1 s2] into one of [pstep vmu s1

s2].
*)
Lemma pmultistep_step_to_multi :
forall vmu s1 s2, pstep vmu s1 s2 -> pmultistep vmu s1 s2.

Proof. (* 2 lines *) Qed.

(**
If a sequence c1; c2 fails, either c1 fails, or c1 skips and c2 fails.

*)
Theorem multistep_seq_fail :
forall c1 c2 mu mu”,
multistep (ip (cSequence c1 c2) mu) (failure mu”) ->
multistep (ip c1 mu) (failure mu”) \/
(exists mu’, multistep (ip c1 mu) (ip cSkip mu’) /\ multistep (ip c2 mu’)

(failure mu”)).
Proof. (* 26 lines *) Qed.

(**
If a sequence c1; c2 fails, either c1 fails, or c1 skips and c2 fails.

*)
Theorem vmultistep_seq_fail :
forall c1 c2 vmu vmu”,
vmultistep (vip (vcSequence c1 c2) vmu) (vfailure vmu”) ->
vmultistep (vip c1 vmu) (vfailure vmu”) \/
(exists vmu’, vmultistep (vip c1 vmu) (vip vcSkip vmu’) /\

vmultistep (vip c2 vmu’) (vfailure vmu”)).
Proof. (* 26 lines *) Qed.

(**
If a choice c1 [] c2 skips, then c1 skips or c2 skips.

*)
Theorem multistep_choice_skip :
forall c1 c2 mu mu’,
multistep (ip (cChoice c1 c2) mu) (ip cSkip mu’) ->
multistep (ip c1 mu) (ip cSkip mu’) \/ multistep (ip c2 mu) (ip cSkip mu’).

Proof. (* 3 lines *) Qed.

(**
If a choice c1 [] c2 fails, then either c1 of c2 fails.

*)
Theorem multistep_choice_fail :
forall c1 c2 mu mu’,
multistep (ip (cChoice c1 c2) mu) (failure mu’) ->
multistep (ip c1 mu) (failure mu’) \/ multistep (ip c2 mu) (failure mu’).

Proof. (* 3 lines *) Qed.

340 COQ SCRIPTS

(**
If a choice c1 [] c2 skips, then c1 skips or c2 skips.

*)
Theorem vmultistep_choice_skip :
forall c1 c2 vmu vmu’,
vmultistep (vip (vcChoice c1 c2) vmu) (vip vcSkip vmu’) ->
vmultistep (vip c1 vmu) (vip vcSkip vmu’) \/
vmultistep (vip c2 vmu) (vip vcSkip vmu’).

Proof. (* 3 lines *) Qed.

(**
If a choice c1 [] c2 fails, then either c1 of c2 fails.

*)
Theorem vmultistep_choice_fail :
forall c1 c2 vmu vmu’,
vmultistep (vip (vcChoice c1 c2) vmu) (vfailure vmu’) ->
vmultistep (vip c1 vmu) (vfailure vmu’) \/
vmultistep (vip c2 vmu) (vfailure vmu’).

Proof. (* 3 lines *) Qed.

(**
Transitivity of multistep

*)
Theorem multistep_trans :
forall s1 s2 s3, multistep s1 s2 -> multistep s2 s3 -> multistep s1 s3.

Proof. (* 9 lines *) Qed.

(**
Transitivity of vmultistep

*)
Theorem vmultistep_trans :
forall s1 s2 s3, vmultistep s1 s2 -> vmultistep s2 s3 -> vmultistep s1 s3.

Proof. (* 9 lines *) Qed.

(**
Transitivity of pmultistep

*)
Theorem pmultistep_trans : forall vmu s1 s2 s3,

pmultistep vmu s1 s2 -> pmultistep vmu s2 s3 -> pmultistep vmu s1 s3.
Proof. (* 9 lines *) Qed.

(**
[command]s are at least 1 big.

*)
Lemma command_metric_min_size :
forall c, 1 <= command_metric c.

Proof. (* 1 lines *) Qed.

Hint Resolve command_metric_min_size.

(**
[vcommand]s are at least 1 big.

*)
Lemma vcommand_metric_min_size :
forall c, 1 <= vcommand_metric c.

Proof. (* 1 lines *) Qed.

EWP 341

Hint Resolve vcommand_metric_min_size.

(**
[pcommand]s are at least 1 big.

*)
Lemma pcommand_metric_min_size :
forall c, 1 <= pcommand_metric c.

Proof. (* 1 lines *) Qed.

Hint Resolve pcommand_metric_min_size.

(**
Shows that the [step] relation reduces the command’s size, i.e. evaluation
of a program is guaranteed to end.

*)
Theorem step_monotonic_commands :
forall c c’ mu mu’,
step (ip c mu) (ip c’ mu’) -> command_metric c’ < command_metric c.

Proof. (* 28 lines *) Qed.

(**
Shows that the [vstep] relation reduces the command’s size, i.e. evaluation
of a program is guaranteed to end.

*)
Theorem vstep_monotonic_commands :
forall c c’ vmu vmu’,
vstep (vip c vmu) (vip c’ vmu’) -> vcommand_metric c’ < vcommand_metric c.

Proof. (* 28 lines *) Qed.

(**
Shows that the [pstep] relation reduces the command’s size, i.e. evaluation
of a program is guaranteed to end.

*)
Theorem pstep_monotonic_commands :
forall c c’ vmu,
pstep vmu (pip c) (pip c’) -> pcommand_metric c’ < pcommand_metric c.

Proof. (* 24 lines *) Qed.

Theorem step_monotonic_states :
forall s s’,
step s s’ -> state_metric s’ < state_metric s.

Proof. (* 6 lines *) Qed.

Theorem vstep_monotonic_states :
forall s s’,
vstep s s’ -> vstate_metric s’ < vstate_metric s.

Proof. (* 6 lines *) Qed.

Theorem pstep_monotonic_states :
forall s s’ vmu,
pstep vmu s s’ -> pstate_metric s’ < pstate_metric s.

Proof. (* 6 lines *) Qed.

Theorem multistep_monotonic_commands :
forall c c’ mu mu’,
multistep (ip c mu) (ip c’ mu’) -> command_metric c’ <= command_metric c.

Proof. (* 13 lines *) Qed.

342 COQ SCRIPTS

Theorem vmultistep_monotonic_commands :
forall c c’ vmu vmu’,
vmultistep (vip c vmu) (vip c’ vmu’) ->
vcommand_metric c’ <= vcommand_metric c.

Proof. (* 13 lines *) Qed.

Theorem pmultistep_monotonic_commands :
forall c c’ vmu,
pmultistep vmu (pip c) (pip c’) -> pcommand_metric c’ <= pcommand_metric c.

Proof. (* 12 lines *) Qed.

Theorem multistep_monotonic_states :
forall s s’,
multistep s s’ -> state_metric s’ <= state_metric s.

Proof. (* 7 lines *) Qed.

Theorem vmultistep_monotonic_states :
forall s s’,
vmultistep s s’ -> vstate_metric s’ <= vstate_metric s.

Proof. (* 7 lines *) Qed.

Theorem pmultistep_monotonic_states :
forall s s’ vmu,
pmultistep vmu s s’ -> pstate_metric s’ <= pstate_metric s.

Proof. (* 7 lines *) Qed.

Theorem step_asymmetric :
forall s s’,
step s s’ -> ˜ step s’ s.

Proof. (* 4 lines *) Qed.

Theorem vstep_asymmetric :
forall s s’,
vstep s s’ -> ˜ vstep s’ s.

Proof. (* 4 lines *) Qed.

Theorem pstep_asymmetric :
forall vmu s s’,
pstep vmu s s’ -> ˜ pstep vmu s’ s.

Proof. (* 4 lines *) Qed.

Theorem multistep_antisymmetric :
forall s s’,
multistep s s’ -> multistep s’ s -> s = s’.

Proof. (* 11 lines *) Qed.

Theorem vmultistep_antisymmetric :
forall s s’,

vmultistep s s’ -> vmultistep s’ s -> s = s’.
Proof. (* 11 lines *) Qed.

Theorem pmultistep_antisymmetric :
forall s s’ vmu,

pmultistep vmu s s’ -> pmultistep vmu s’ s -> s = s’.
Proof. (* 11 lines *) Qed.

EWP 343

(**
Converts an [id] to a [vid], using a version map [v].

*)
Definition id_to_vid (id : id) (v : vmap) : vid := (id, v id).

(**
Converts a [vstore] to a [store], using a version map [v].

*)
Definition vstore_to_store (vmu : vstore) (v : vmap) : store :=
fun id => vmu (id_to_vid id v).

(**
Converts an [expr] to a [vexpr], using a version map [v].

*)
Definition expr_to_vexpr (e : expr) (v : vmap) : vexpr :=
fun vmu => e (vstore_to_store vmu v).

(**
Converts a [command] to a [vcommand], using a version map [v].

*)
Fixpoint command_to_vcommand (c : command) (v : vmap) : vcommand :=
match c with
| cAssert e => vcAssert (expr_to_vexpr e v)
| cAssume e => vcAssume (expr_to_vexpr e v)
| cAssign x e => vcAssign (id_to_vid x v) (expr_to_vexpr e v)
| cSequence c1 c2 => vcSequence (command_to_vcommand c1 v)

(command_to_vcommand c2 v)
| cSkip => vcSkip
| cChoice c1 c2 => vcChoice (command_to_vcommand c1 v)

(command_to_vcommand c2 v)
end.

Theorem vstore_to_store_surjective :
forall v mu,
exists vmu, mu = vstore_to_store vmu v.

Proof. (* 6 lines *) Qed.

Theorem expr_to_vexpr_injective : forall e e’ v,
expr_to_vexpr e v = expr_to_vexpr e’ v -> e = e’.

Proof. (* 11 lines *) Qed.

Theorem command_to_vcommand_injective : forall c c’ v,
command_to_vcommand c v = command_to_vcommand c’ v -> c = c’.

Proof. (* 33 lines *) Qed.

(**
Shows that [step] and [vstep] behave the same when not ending up in failure.

*)
Theorem step_sim_vstep : forall c c’ mu mu’ vmu v,
let vc := command_to_vcommand c v in
let vc’ := command_to_vcommand c’ v in
step (ip c mu) (ip c’ mu’) ->
store_sync_vstore mu v vmu ->
exists vmu’, vstep (vip vc vmu) (vip vc’ vmu’) /\ store_sync_vstore mu’ v

vmu’.
Proof. (* 92 lines *) Qed.

344 COQ SCRIPTS

(**
Shows that [step] and [vstep] behave the same when ending up in failure.

*)
Theorem step_sim_vstep_fail : forall c mu mu’ vmu v,
let vc := command_to_vcommand c v in
step (ip c mu) (failure mu’) ->
store_sync_vstore mu v vmu ->
exists vmu’, vstep (vip vc vmu) (vfailure vmu’) /\ store_sync_vstore mu’ v

vmu’.
Proof. (* 42 lines *) Qed.

(**
Shows that [multistep] and [vmultistep] behave similarly
when not ending up in failure.

*)
Theorem multistep_sim_vmultistep : forall c c’ mu mu’ vmu v,
let vc := command_to_vcommand c v in
let vc’ := command_to_vcommand c’ v in
multistep (ip c mu) (ip c’ mu’) ->
store_sync_vstore mu v vmu ->
exists vmu’, vmultistep (vip vc vmu) (vip vc’ vmu’) /\

store_sync_vstore mu’ v vmu’.
Proof. (* 33 lines *) Qed.

(**
Shows that [multistep] can’t hop from one failure state to
another one with a different store.

*)
Lemma multistep_fail_fail_equal_stores :
forall mu mu’,
multistep (failure mu) (failure mu’) -> mu = mu’.

Proof. (* 11 lines *) Qed.

(**
Shows that [vmultistep] can’t hop from one failure state
to another one with a different store.

*)
Lemma vmultistep_fail_fail_equal_stores :
forall vmu vmu’,
vmultistep (vfailure vmu) (vfailure vmu’) -> vmu = vmu’.

Proof. (* 11 lines *) Qed.

(**
Shows that [multistep] and [vmultistep] behave similarly
when ending up in failure.

*)
Theorem multistep_sim_vmultistep_fail : forall c mu mu’ vmu v,
let vc := command_to_vcommand c v in
multistep (ip c mu) (failure mu’) ->
store_sync_vstore mu v vmu ->
exists vmu’, vmultistep (vip vc vmu) (vfailure vmu’) /\

store_sync_vstore mu’ v vmu’.
Proof. (* 43 lines *) Qed.

EWP 345

(**
If we start of in a [vcommand] which is the
result of the translation of a [command],
the [step] relation will lead us only to
[vcommand]s which themselves are also
translations of some [command].

In other words, the [command_to_vcommand] function
is invertible, with some strings attached.

*)
Lemma vcommand_to_command :
forall c vc’ vmu vmu’ v,
vstep (vip (command_to_vcommand c v) vmu) (vip vc’ vmu’) ->
exists c’, vc’ = command_to_vcommand c’ v.

Proof. (* 59 lines *) Qed.

(**
[vstep] and [step] behave similarly when not leading to a failure state.

*)
Theorem vstep_sim_step : forall v c c’ mu vmu vmu’,
let vc := command_to_vcommand c v
in
let vc’ := command_to_vcommand c’ v
in
store_sync_vstore mu v vmu ->
vstep (vip vc vmu) (vip vc’ vmu’) ->
exists mu’, step (ip c mu) (ip c’ mu’) /\

store_sync_vstore mu’ v vmu’.
Proof. (* 119 lines *) Qed.

(**
[vstep] and [step] behave similarly when leading to a failure state.

*)
Theorem vstep_sim_step_fail : forall v c mu vmu vmu’,
let vc := command_to_vcommand c v
in
store_sync_vstore mu v vmu ->
vstep (vip vc vmu) (vfailure vmu’) ->
exists mu’, step (ip c mu) (failure mu’) /\

store_sync_vstore mu’ v vmu’.
Proof. (* 41 lines *) Qed.

(**
[vmultistep] and [multistep] behave similarly when not ending in failure.

*)
Theorem vmultistep_sim_multistep : forall c c’ mu vmu vmu’ v,
let vc := command_to_vcommand c v in
let vc’ := command_to_vcommand c’ v in
store_sync_vstore mu v vmu ->
vmultistep (vip vc vmu) (vip vc’ vmu’) ->
exists mu’, multistep (ip c mu) (ip c’ mu’) /\

store_sync_vstore mu’ v vmu’.
Proof. (* 40 lines *) Qed.

346 COQ SCRIPTS

(**
[vmultistep] and [multistep] behave similarly when ending in failure.

*)
Theorem vmultistep_sim_multistep_fail : forall c mu vmu vmu’ v,
let vc := command_to_vcommand c v in
store_sync_vstore mu v vmu ->
vmultistep (vip vc vmu) (vfailure vmu’) ->
exists mu’, multistep (ip c mu) (failure mu’) /\

store_sync_vstore mu’ v vmu’.
Proof. (* 50 lines *) Qed.

(**
Our goal is to verify that [vstep] and [pstep] behave similarly.
In order to do this, we need to translate [vcommand]s to [pcommand]s
(this translation must not be confused with the passification step later on).
The problem is that [vcommand]s can contain assignments, while
[pcommand]s cannot. Thus, we can only compare assignment-less programs.
This function determines whether a [vcommand] contains no assignments.

*)
Fixpoint no_assignments (c : vcommand) : Prop :=
match c with
| vcAssert _ => True
| vcAssume _ => True
| vcAssign _ _ => False
| vcSequence c1 c2 => no_assignments c1 /\ no_assignments c2
| vcSkip => True
| vcChoice c1 c2 => no_assignments c1 /\ no_assignments c2

end.

(**
Using [vstep], if a program does not contain assignments,
the store remains unchanged.

*)
Theorem no_assignments_preserves_store :
forall c c’ mu mu’,
no_assignments c -> vstep (vip c mu) (vip c’ mu’) -> mu = mu’.

Proof. (* 8 lines *) Qed.

(**
Using [vstep], if a program does not contain assignments,
the store remains unchanged.

*)
Theorem no_assignments_preserves_store_fail :
forall c mu mu’,
no_assignments c -> vstep (vip c mu) (vfailure mu’) -> mu = mu’.

Proof. (* 7 lines *) Qed.

(**
[vstep] reduces commands without assignments to commands
which also do not contain assignments. In other words,
the [vstep] reduction rules do not introduce assignemnts.

*)
Theorem vstep_preserves_no_assignments : forall c c’ mu mu’,

no_assignments c -> vstep (vip c mu) (vip c’ mu’) -> no_assignments c’.
Proof. (* 44 lines *) Qed.

EWP 347

(**
Transform a [vcommand] into an equivalent [pcommand],
on the condition that the [vcommand]
does not contain assignments.

*)
Definition vcommand_to_pcommand (vc : vcommand) (H : no_assignments vc) :
pcommand.

induction vc; intros.
exact (pcAssert v).
exact (pcAssume v).
simpl in H.
contradiction.
simpl in H.
destruct H.
exact (pcSequence (IHvc1 H) (IHvc2 H0)).
exact pcSkip.
simpl in H; destruct H.
exact (pcChoice (IHvc1 H) (IHvc2 H0)).

Defined.

(**
[vstep] behaves similarly to [pstep] for assignmentless programs.

*)
Theorem vstep_sim_pstep :
forall vc vc’ H vmu vmu’ (H0 : vstep (vip vc vmu) (vip vc’ vmu’)),
let pc := vcommand_to_pcommand vc H
in
let pc’ :=
vcommand_to_pcommand vc’

(vstep_preserves_no_assignments _ _ _ _ H H0)
in
pstep vmu (pip pc) (pip pc’).

Proof. (* 62 lines *) Qed.

(**
[vstep] behaves similarly to [pstep] for assignmentless programs.

*)
Theorem vstep_sim_pstep_fail :
forall vc H vmu vmu’ (H0 : vstep (vip vc vmu) (vfailure vmu’)),
let pc := vcommand_to_pcommand vc H
in

pstep vmu (pip pc) pfailure.
Proof. (* 22 lines *) Qed.

(**
If one starts with an assignmentless command,
one will always end up in an assignmentless command using [vmultistep].

*)
Theorem vmultistep_preserves_no_assignments :
forall c c’ vmu vmu’,
no_assignments c ->
vmultistep (vip c vmu) (vip c’ vmu’) ->
no_assignments c’.

Proof. (* 20 lines *) Qed.

348 COQ SCRIPTS

(**
Translates a [pcommand] to an equivalent [vcommand].

*)
Fixpoint pcommand_to_vcommand (pc : pcommand) : vcommand :=
match pc with
| pcAssert e => vcAssert e
| pcAssume e => vcAssume e
| pcSkip => vcSkip
| pcSequence c1 c2 =>

vcSequence (pcommand_to_vcommand c1) (pcommand_to_vcommand c2)
| pcChoice c1 c2 =>

vcChoice (pcommand_to_vcommand c1) (pcommand_to_vcommand c2)
end.

(**
Shows that [pstep] behaves similarly to [vstep].

*)
Theorem pstep_sim_vstep :
forall pc pc’ vmu,
let vc := pcommand_to_vcommand pc in
let vc’ := pcommand_to_vcommand pc’ in
pstep vmu (pip pc) (pip pc’) -> vstep (vip vc vmu) (vip vc’ vmu).

Proof. (* 35 lines *) Qed.

(**
Shows that [pstep] behaves similarly to [vstep].

*)
Theorem pstep_sim_vstep_fail :
forall pc vmu,
let vc := pcommand_to_vcommand pc in

pstep vmu (pip pc) pfailure -> vstep (vip vc vmu) (vfailure vmu).
Proof. (* 15 lines *) Qed.

(**
Shows that [pmultistep] behaves similarly to [vmultistep].

*)
Theorem pmultistep_sim_vmultistep :
forall pc pc’ vmu,
let vc := pcommand_to_vcommand pc
in
let vc’ := pcommand_to_vcommand pc’
in
pmultistep vmu (pip pc) (pip pc’) ->
vmultistep (vip vc vmu) (vip vc’ vmu).

Proof. (* 24 lines *) Qed.

(**
Shows that [pmultistep] behaves similarly to [vmultistep].

*)
Theorem pmultistep_sim_vmultistep_fail :
forall pc vmu,
let vc := pcommand_to_vcommand pc in

pmultistep vmu (pip pc) pfailure ->
vmultistep (vip vc vmu) (vfailure vmu).

Proof. (* 22 lines *) Qed.

EWP 349

(**
We wish to show that execution only gets stuck on
a) a "failing" assume,
b) a failure state,
c) skip.
Of these, only the former is hard (relatively to b and c)
to recognize, as the assume may be hidden deep in a tree structure.

[nested_assume] describes commands where execution will
need to deal with an assume-command first.
[nested_assume e c] states that [c] is a command
where [cAssert e] is the next command to be executed.

*)
Inductive nested_assume (e : expr) : command -> Prop :=
| naAssume : nested_assume e (cAssume e)
| naSequence : forall c1 c2,

nested_assume e c1 -> nested_assume e (cSequence c1 c2).

(**
Defines the general form of a stuck state. Our intention
is to prove that no reduction rule applies on a command for
which [stuck_state] is true, and conversely, that
if a state [s] cannot be reduced any further, [stuck_state] must be true.

*)
Inductive stuck_state : state -> Prop :=
| ssAssume : forall c (e : expr) mu,

e mu <> T -> nested_assume e c -> stuck_state (ip c mu)
| ssSkip : forall mu, stuck_state (ip cSkip mu)
| ssFail : forall mu, stuck_state (failure mu).

(**
A state [s] is [decidable_reducible] if either there exists a state [s’]
for which [step s s’] is true (i.e. it is reducible), or,
[s] is a stuck state.

*)
Definition decidable_reducible (s : state) :=
{ s’ : state | step s s’ } + { stuck_state s }.

(**
States that we can determine in finite time whether
a command [c] is the skip command or not.

*)
Lemma decidable_skip : forall c, {c = cSkip} + {c <> cSkip}.
Proof. (* 2 lines *) Qed.

(**
States that every state [s] is [decidable_reducible], i.e.
that either it there exists a state [s’] for which [state s s’] is
true, or that [stuck_state s] holds.

*)
Theorem decidable_reducible_states : forall s, decidable_reducible s.
Proof. (* 46 lines *) Qed.

350 COQ SCRIPTS

(**
We show the soundness of [stuck_state], i.e.
that if [stuck_state] claims a state s is false,
that there indeed is no applicable reduction step.

*)
Theorem soundness_stuck_state :
forall s, stuck_state s ->
˜ exists s’, step s s’.

Proof. (* 57 lines *) Qed.

(**
We show the completeness of [stuck_state]:
if there is no reduction step starting from s,
s is indeed recognized by [stuck_state] as being stuck.

*)
Theorem completeness_stuck_state :
forall s, (˜ exists s’, step s s’) -> stuck_state s.

Proof. (* 7 lines *) Qed.

(**
[apply_multistep_transitivity T] splits a goal [multistep S S’] into
two subgoals [multistep S T] and [multistep T S’].
Works similarly for [vmultistep] and [pmultistep].

«
s : state
s’ : state
s” : state
============================
multistep s s”

apply_multistep_transitivity s’.

subgoal 1 is:

s : state
s’ : state
s” : state
============================
multistep s s’

subgoal 2 is:

s : state
s’ : state
s” : state
============================
multistep s’ s”

» *)
Ltac apply_multistep_transitivity t :=
match goal with
| |- multistep ?X ?Y =>

first [apply (multistep_trans X t Y)
| idtac "Failed to apply transitivity"]

| |- vmultistep ?X ?Y =>
first [apply (vmultistep_trans X t Y)

| idtac "Failed to apply transitivity"]

EWP 351

| |- pmultistep ?S ?X ?Y =>
first [apply (pmultistep_trans S X t Y)

| idtac "Failed to apply transitivity"]
end.

(**
New tactic notation: [apply_multistep_transitivity t] can
be written as [step transitivity with t].

*)
Tactic Notation "step" "transitivity" "with" constr(t) :=

apply_multistep_transitivity t.

(**
Lifts [c1 --*> c1’] into a sequence: [c1; c2 --*> c1’; c2]

*)
Theorem multistep_lift_seq :
forall c c’ c2 mu mu’,
multistep (ip c mu) (ip c’ mu’) ->
multistep (ip (cSequence c c2) mu) (ip (cSequence c’ c2) mu’).

Proof. (* 12 lines *) Qed.

(**
Lifts [c1 --*> c1’] into a sequence: [c1; c2 --*> c1’; c2]

*)
Theorem vmultistep_lift_seq :
forall c c’ c2 vmu vmu’,
vmultistep (vip c vmu) (vip c’ vmu’) ->
vmultistep (vip (vcSequence c c2) vmu) (vip (vcSequence c’ c2) vmu’).

Proof. (* 12 lines *) Qed.

(**
Lifts [c1 --*> c1’] into a sequence: [c1; c2 --*> c1’; c2]

*)
Theorem pmultistep_lift_seq :
forall c c’ c2 vmu,
pmultistep vmu (pip c) (pip c’) ->
pmultistep vmu (pip (pcSequence c c2)) (pip (pcSequence c’ c2)).

Proof. (* 17 lines *) Qed.

(**
Lifts [c --*> fail] into a sequence: [c; c’ --*> fail]

*)
Lemma multistep_lift_seq_fail :
forall c c’ mu mu’,
multistep (ip c mu) (failure mu’) ->
multistep (ip (cSequence c c’) mu) (failure mu’).

Proof. (* 18 lines *) Qed.

(**
Lifts [c --*> fail] into a sequence: [c; c’ --*> fail]

*)
Lemma vmultistep_lift_seq_fail :
forall c c’ vmu vmu’,
vmultistep (vip c vmu) (vfailure vmu’) ->
vmultistep (vip (vcSequence c c’) vmu) (vfailure vmu’).

Proof. (* 18 lines *) Qed.

352 COQ SCRIPTS

(**
Lifts [c --*> fail] into a sequence: [c; c’ --*> fail]

*)
Lemma pmultistep_lift_seq_fail :
forall c1 c2 vmu,
pmultistep vmu (pip c1) pfailure ->
pmultistep vmu (pip (pcSequence c1 c2)) pfailure.

Proof. (* 16 lines *) Qed.

(**
** Single Assignment

*)

(**
[delta_id A f g d] expresses that forall all [id]s [x], [f x = g x], except
possibly for the [id]s contained in the set [d], where [f] and [g]
are total functions with domain [id] and range [A].

*)
Definition delta_id (A : Set) (f g : id -> A) (d : IdSet.t) :=
forall x : id, f x = g x \/ IdSet.In x d.

(**
A few theorems about delta_id.

*)

Lemma delta_id_x_x :
forall A x d, delta_id A x x d.

Proof. (* 2 lines *) Qed.

Hint Resolve delta_id_x_x.

Lemma delta_id_unionl :
forall A f g d1 d2,
delta_id A f g d1 -> delta_id A f g (IdSet.union d1 d2).

Proof. (* 5 lines *) Qed.

Lemma delta_id_unionr :
forall A f g d1 d2,
delta_id A f g d2 -> delta_id A f g (IdSet.union d1 d2).

Proof. (* 6 lines *) Qed.

Lemma delta_id_combine :
forall A f g h d1 d2,
delta_id A f g d1 ->
delta_id A g h d2 ->
delta_id A f h (IdSet.union d1 d2).

Proof. (* 3 lines *) Qed.

Lemma delta_id_extend :
forall A f g d1 d2,
delta_id A f g d1 -> IdSet.Subset d1 d2 -> delta_id A f g d2.

Proof. (* 4 lines *) Qed.

(**
We specialize [delta_id] for [store]s.

*)
Definition store_delta := delta_id value.

EWP 353

(**
We specialize delta_id for [vmap]s.

*)
Definition vmap_delta := delta_id nat.

Definition vmap_delta_combine := delta_id_combine nat.

Theorem store_delta_mu_mu :
forall (mu : store) (d : IdSet.t),
store_delta mu mu d.

Proof. (* 2 lines *) Qed.

Theorem vmap_delta_v_v :
forall (v : vmap) (d : IdSet.t),
vmap_delta v v d.

Proof. (* 2 lines *) Qed.

Theorem vmap_delta_extend : forall v1 v2 d1 d2,
vmap_delta v1 v2 d1 -> IdSet.Subset d1 d2 -> vmap_delta v1 v2 d2.

Proof. (* 2 lines *) Qed.

Hint Resolve store_delta_mu_mu.
Hint Resolve vmap_delta_v_v.

Definition store_delta_unionl := delta_id_unionl value.
Definition vmap_delta_unionl := delta_id_unionl nat.
Definition store_delta_unionr := delta_id_unionr value.
Definition vmap_delta_unionr := delta_id_unionr nat.

(**
We prove that the [step] relation keeps the store unchanged, except for
the command’s targets (the set of identifiers appearing on the left side
of assignments).

*)
Theorem step_store_delta : forall c c’ mu mu’ d,

IdSet.Subset (targets c) d ->
step (ip c mu) (ip c’ mu’) ->
store_delta mu mu’ d.

Proof. (* 22 lines *) Qed.

(**
The targets set of a command will not grow through the [step] relation.

*)
Theorem step_targets_subset : forall c c’ mu mu’,

step (ip c mu) (ip c’ mu’) -> IdSet.Subset (targets c’) (targets c).
Proof. (* 12 lines *) Qed.

(**
Given the [store]s [mu], [mu’] and [mu”], and
[mu x = mu’ x] for all [x] except for those in some set [d],
and [mu’ x = mu” x] for all [x] except for those in that same set [d],
then [mu x = mu” x] for all [x] except for those in [d].

*)
Theorem store_delta_trans :
forall mu mu’ mu” d,
store_delta mu mu’ d -> store_delta mu’ mu” d -> store_delta mu mu” d.

Proof. (* 3 lines *) Qed.

354 COQ SCRIPTS

(**
step_store_delta adapted to the multistep relation.

*)
Theorem multistep_store_delta : forall c c” mu mu” d,

IdSet.Subset (targets c) d ->
multistep (ip c mu) (ip c” mu”) ->
store_delta mu mu” d.

Proof. (* 14 lines *) Qed.

(**
Checks if two versioned stores under a certain vmap are equivalent.

*)
Definition vstore_sync_vstore (mu : vstore) (v v’ : vmap) (mu’ : vstore) :=
forall x : id, mu (x, v x) = mu’ (x, v’ x).

(**
Generates a command which copies across versions:

«
copy_vcmd x n m === x_m := x_n

»*)
Definition copy_vcmd (x : id) (n m : nat) :=
vcAssign (x, m) (fun (vmu : vstore) => vmu (x, n)).

(**
Shows that [copy_vcmd_works] as expected: execution of [copy_vcmd x n m]
in a store [vmu] will lead to a new store [vmu’]
where [vmu’ (x, m) = vmu (x, n)] (i.e. [x_m] is now equal to [x_n]),
while all other store bindings remain unchanged.

*)
Theorem copy_vcmd_works :
forall x n m vmu, exists vmu’,
vstep (vip (copy_vcmd x n m) vmu) (vip vcSkip vmu’) /\
vmu’ (x, m) = vmu (x, n) /\
forall y k, (x <> y \/ k <> m) -> vmu (y, k) = vmu’ (y, k).

Proof. (* 17 lines *) Qed.

(**
Right fold on lists of [id]s.

*)
Fixpoint foldr (B : Set) (f : id -> B -> B) (s : list id) : B -> B :=
fun i => match s with

| nil => i
| x :: l => f x (foldr B f l i)

end.

(**
Right fold on finite [id]-sets

*)
Definition fset_foldr (B : Set) (f : id -> B -> B) (s : IdSet.t) (init : B) : B.
intros.
unfold IdSet.t in s.
destruct s.
unfold IdSet.Raw.t in this.
apply (foldr B f this init).

Defined.

EWP 355

(**
If the [id] [x] is in need of a synchronisation (i.e. the version
map [v] and [v’] assign differing versions to [x]) this function
generates an assignment command. c is a "continuation" so as to make
it possible to create a chain of multiple assignments.

Thus, if [v x = v’ x], then [insert_copy_vcmd v v’ x c] doesn’t need to
produce a synchronizing assignment command and just returns [c].
Conversely, if [v x <> v’ x], the sequence [copy_vcmd x (v x) (v’ x); c]
will be returned.

*)
Definition insert_copy_vcmd v v’ x c :=
if decidable_eq_id (v x) (v’ x)
then c
else (vcSequence (copy_vcmd x (v x) (v’ x)) c).

(**
Given two version maps v and v’ and a set of identifiers,
sync_vcommand generates a command which
perform a "store synchronization" from v to v’.

Example:
«

mu = { x_4 -> 8, y_3 -> 14, z_5 -> 2, ... }
v = { x -> 4, y -> 3, z -> 5, ... }
v’ = { x -> 7, y -> 4, z -> 5, ... }

»
x and y are assigned different versions by v and v’ (4 vs 7, 3 vs 4),
meaning they need synchronization. sync_vcommand thus generates

«
x_7 := x_4;
y_4 := y_3;
skip

»*)
Definition sync_vcommand (ids : IdSet.t) (v v’ : vmap) : vcommand :=
(fset_foldr vcommand (insert_copy_vcmd v v’) ids vcSkip).

(**
Shows that synchronization commands evaluate to skip.

*)
Theorem sync_vcommand_goes_to_skip : forall ids v v’ vmu, exists vmu’,

vmultistep (vip (sync_vcommand ids v v’) vmu) (vip vcSkip vmu’).
Proof. (* 32 lines *) Qed.

(**
Shows execution of a synchronization commands always
ends up in the same state.

*)
Theorem sync_vcommand_determinism :
forall ids v v’ vmu vmu1’ vmu2’,
let c := sync_vcommand ids v v’ in
vmultistep (vip c vmu) (vip vcSkip vmu1’) ->
vmultistep (vip c vmu) (vip vcSkip vmu2’) ->
vmu1’ = vmu2’.

Proof. (* 53 lines *) Qed.

356 COQ SCRIPTS

Lemma sync_vcommand_empty_delta :
forall ids v v’ vmu vmu’,
equivalent_functions v v’ ->
vmultistep (vip (sync_vcommand ids v v’) vmu) (vip vcSkip vmu’) ->
vstore_sync_vstore vmu v v’ vmu’.

Proof. (* 26 lines *) Qed.

(**
A localized version of [vstore_sync_vstore]:
it need only apply for the [id]s contained in [D].

*)
Definition vstore_sync_vstore_local (mu : vstore)

(v v’ : vmap)
(mu’ : vstore)
(D : IdSet.t) :=

forall x : id, IdSet.In x D -> mu (x, v x) = mu’ (x, v’ x).

(**
Store bindings for all versions of
identifiers not in [D] remain untouched.

*)
Lemma sync_vcommand_preservation :
forall D a v v’ vmu vmu’ n,
˜ IdSet.In a D ->
vmultistep (vip (sync_vcommand D v v’) vmu)

(vip vcSkip vmu’) ->
vmu (a, n) = vmu’ (a, n).

Proof. (* 54 lines *) Qed.

Opaque decidable_eq_vid.

(**
Auxiliary for sync_vcommand_works.

*)
Lemma sync_vcommand_works_aux :
forall D v v’ vmu vmu’,
vmultistep (vip (sync_vcommand D v v’) vmu)

(vip vcSkip vmu’) ->
vstore_sync_vstore_local vmu v v’ vmu’ D.

Proof. (* 88 lines *) Qed.

(**
Given two [vmap]s [v] and [v’] whose mappings are the same except
for the identifiers contained in [ids], then stepping through
[sync_vcommand] starting with store [mu] results
in a new store [mu’] which is synchronized with [mu] with
respect to [v] and [v’].

*)
Theorem sync_vcommand_works :
forall ids v v’ vmu vmu’,
vmap_delta v v’ ids ->
vmultistep (vip (sync_vcommand ids v v’) vmu)

(vip vcSkip vmu’) ->
vstore_sync_vstore vmu v v’ vmu’.

Proof. (* 17 lines *) Qed.

EWP 357

(**
A kind of transitivity.

*)
Theorem combine_vmaps :
forall mu vmu vmu’ v v’,
store_sync_vstore mu v vmu ->
vstore_sync_vstore vmu v v’ vmu’ ->
store_sync_vstore mu v’ vmu’.

Proof. (* 5 lines *) Qed.

Transparent decidable_eq_vid.

(**
Joins two [vmap]s together by taking the maximum version of each [id].

*)
Definition join (v1 v2 : vmap) :=
fun x => max (v1 x) (v2 x).

(**
Transforms the [command] [c] to an equivalent [vcommand].

*)
Fixpoint transform_sa (c : command) (v : vmap) : (vcommand * vmap) :=
match c with
| cAssert e => (vcAssert (version_expr e v), v)
| cAssume e => (vcAssume (version_expr e v), v)
| cAssign x e => (vcAssign (x, S (v x)) (version_expr e v), inc v x)
| cSequence c1 c2 => let (c1’, v’) := transform_sa c1 v in

let (c2’, v”) := transform_sa c2 v’ in
(vcSequence c1’ c2’, v”)

| cSkip => (vcSkip, v)
| cChoice c1 c2 => let (c1’, v1’) := transform_sa c1 v in

let (c2’, v2’) := transform_sa c2 v in
let t1 := targets c1 in
let t2 := targets c2 in
let v’ := join v1’ v2’ in
let t := IdSet.union t1 t2 in
let d1 := sync_vcommand t v1’ v’ in
let d2 := sync_vcommand t v2’ v’ in
(vcChoice (vcSequence c1’ d1) (vcSequence c2’ d2), v’)

end.

Theorem sync_vcommand_size : forall D v v’,
let c := sync_vcommand D v v’ in
vcommand_metric c <= 3 * IdSet.cardinal D + 1.

Proof. (* 66 lines *) Qed.

Theorem targets_cardinality_le :
forall c : command, IdSet.cardinal (targets c) <= command_metric c.

Proof. (* 10 lines *) Qed.

Theorem linear_sync_vcommand :
forall c v v’,
let vc := sync_vcommand (targets c) v v’ in
vcommand_metric vc <= 3 * command_metric c + 1.

Proof. (* 6 lines *) Qed.

358 COQ SCRIPTS

(**
We show that the SA transformation is quadratic in size.

*)
Theorem quadratic_sa_transformation : forall c v,
let (c’, _) := transform_sa c v in
let x := command_metric c in
vcommand_metric c’ <= 5 * x * x + 5 * x.

Proof. (* 165 lines *) Qed.

(**
Some tests to make sure the algorithms work as expected.
Of course, this does not count as proof of correctness.

*)
Module Tests.

Import IdSet.

(**
We temporarily break open the id abstraction, so that
we can define programs, stores, etc.
id is made opaque again at the end of the module.

*)
Transparent id.

Section tests.
Definition x1 : id := 1.
Definition x2 : id := 2.
Definition x3 : id := 3.
Definition x4 : id := 4.
Definition x5 : id := 5.

Variables e1 e2 e3 e4 : expr.

Definition c1 : command := cAssert e1.
Definition c2 : command := cAssign x1 e2.
Definition c3 : command := cSequence (cAssign x2 e3) (cAssert e3).
Definition c4 : command := cSequence (cAssign x1 e1) (cAssign x2 e2).
Definition c5 : command := cSequence (cAssign x1 e3) (cAssign x3 e4).
Definition c6 : command := cChoice c4 c5.
Definition c7 : command := cSequence (cAssign x1 e1) (cAssign x1 e2).

Definition targets_c1 := Empty.
Definition targets_c2 := singleton x1.
Definition targets_c3 := singleton x2.
Definition targets_c4 := union (singleton x1) (singleton x2).
Definition targets_c5 := union (singleton x1) (singleton x3).
Definition targets_c6 := union (union (singleton x1) (singleton x2))

(union (singleton x1) (singleton x3)).

Theorem test_targets_c1 : Equal (targets c1) empty.
Proof. (* 1 lines *) Qed.

Theorem test_targets_c2 : Equal (targets c2) targets_c2.
Proof. (* 1 lines *) Qed.

Theorem test_targets_c3 : Equal (targets c3) targets_c3.
Proof. (* 6 lines *) Qed.

EWP 359

Theorem test_targets_c4 : Equal (targets c4) targets_c4.
Proof. (* 1 lines *) Qed.

Theorem test_targets_c5 : Equal (targets c5) targets_c5.
Proof. (* 1 lines *) Qed.

Theorem test_targets_c6 : Equal (targets c6) targets_c6.
Proof. (* 1 lines *) Qed.

Theorem test_fset_foldr_1 :
forall n, fset_foldr nat (fun x y => 1) empty n = n.

Proof. (* 1 lines *) Qed.

Theorem test_fset_foldr_2 :
forall n m, fset_foldr nat (fun x y => m) (singleton x1) n = m.

Proof. (* 1 lines *) Qed.

Theorem test_fset_foldr_3 :
forall n, fset_foldr nat (fun x y => x + y) (singleton x1) n = S n.

Proof. (* 1 lines *) Qed.

Theorem test_fset_foldr_4 :
forall n,

fset_foldr nat (fun x y => x + y) targets_c6 n = x1 + x2 + x3 + n.
Proof. (* 1 lines *) Qed.

Definition v1 : vmap := fun _ => 0.

Definition v2 : vmap := fun _ => 5.

Definition v3 : vmap := fun x =>
match x with

| 1 => 5
| 2 => 8
| 3 => 1
| 4 => 6
| 5 => 3
| _ => 0

end.

Theorem test_insert_copy_vcmd_1 :
forall c, insert_copy_vcmd v1 v1 x1 c = c.

Proof. (* 2 lines *) Qed.

Theorem test_insert_copy_vcmd_2 :
forall c, insert_copy_vcmd v1 v2 x1 c = vcSequence (copy_vcmd x1 0 5) c.

Proof. (* 1 lines *) Qed.

Theorem test_insert_copy_vcmd_3 :
forall c, insert_copy_vcmd v1 v3 x2 c = vcSequence (copy_vcmd x2 0 8) c.

Proof. (* 1 lines *) Qed.

Theorem test_insert_copy_vcmd_4 :
forall c, insert_copy_vcmd v2 v3 x4 c = vcSequence (copy_vcmd x4 5 6) c.

Proof. (* 1 lines *) Qed.

Theorem test_sync_vcommand_1 :
forall v v’, sync_vcommand empty v v’ = vcSkip.

Proof. (* 1 lines *) Qed.

360 COQ SCRIPTS

Theorem test_sync_vcommand_2 :
sync_vcommand (singleton x1) v1 v2 =

vcSequence (copy_vcmd x1 0 5) vcSkip.
Proof. (* 1 lines *) Qed.

Theorem test_sync_vcommand_3 :
sync_vcommand targets_c6 v1 v3 =

vcSequence (copy_vcmd x1 0 5)
(vcSequence (copy_vcmd x2 0 8)

(vcSequence (copy_vcmd x3 0 1)
vcSkip)).

Proof. (* 1 lines *) Qed.

Theorem test_sa_transformation_c1_c :
let (c, v) := transform_sa c1 v1 in c = vcAssert (version_expr e1 v1).

Proof. (* 1 lines *) Qed.

Theorem test_sa_transformation_c1_v :
let (c, v) := transform_sa c1 v1 in equivalent_functions v1 v.

Proof. (* 1 lines *) Qed.

Theorem test_sa_transformation_c2_c :
let (c, v) := transform_sa c2 v1 in

c = vcAssign (x1, 1) (version_expr e2 v1).
Proof. (* 1 lines *) Qed.

Theorem test_sa_transformation_c2_v :
let (c, v) := transform_sa c2 v1 in

equivalent_functions v (fun x => match x with 1 => 1 | _ => 0 end).
Proof. (* 13 lines *) Qed.

Theorem test_sa_transformation_c7_c :
let (c, v) := transform_sa c7 v1 in
c = vcSequence (vcAssign (x1, 1) (version_expr e1 v1))

(vcAssign (x1, 2) (version_expr e2 (inc v1 x1))).
Proof. (* 3 lines *) Qed.

Theorem test_sa_transformation_c7_v :
let (c, v) := transform_sa c7 v1 in

equivalent_functions v (fun x => match x with 1 => 2 | _ => 0 end).
Proof. (* 10 lines *) Qed.

Theorem test_sa_transformation_c6_c :
let (c6’, v) := transform_sa c6 v1 in
let c4’ := vcSequence (vcAssign (x1, 1) (version_expr e1 v1))

(vcAssign (x2, 1) (version_expr e2 (inc v1 x1))) in
let d4 := vcSequence (copy_vcmd x3 0 1) vcSkip in
let c5’ := vcSequence (vcAssign (x1, 1) (version_expr e3 v1))

(vcAssign (x3, 1) (version_expr e4 (inc v1 x1))) in
let d5 := vcSequence (copy_vcmd x2 0 1) vcSkip in
c6’ = vcChoice (vcSequence c4’ d4) (vcSequence c5’ d5).

Proof. (* 2 lines *) Qed.
End tests.

Opaque id.
End Tests.

EWP 361

Lemma max_x_x :
forall x, max x x = x.

Proof. (* 2 lines *) Qed.

(**
[transform_sa] only updates the versions of those
identifiers that are targets of [c]. This fact is
important as it indicates the [vmap]s differ on
a finite number of bindings. If this were not
the case, it would be rather difficult to
generate synchronization commands.

*)
Theorem transform_sa_vmap_delta :
forall c c’ v v’,
(c’, v’) = transform_sa c v -> vmap_delta v v’ (targets c).

Proof. (* 36 lines *) Qed.

(**
If mu and vmu are synchronized with respect to vmap v,
then we can update x’s binding in both mu and vmu so tha
they are again synchronized, this time with
respect to v’, which is equivalent with v except
that v’ x = v x + 1 (i.e. x’s version is incremented by one).

Example:
«

mu = { x -> 5, y -> 3 }
v = { x -> 1, y -> 4 }
mu’ = { x_1 -> 5, y_4 -> 3 }

updated mu = { x -> 9, y -> 3 }
updated v = { x -> 2, y -> 4}
updated mu’ = { x_1 -> 5, x_2 -> 9, y_4 -> 3 }

» *)
Lemma store_sync_vstore_assignment :
forall mu vmu v e x,
store_sync_vstore mu v vmu ->
store_sync_vstore (update_store mu x (e mu))

(inc v x)
(update_vstore vmu (x, S (v x)) (version_expr e v vmu)).

Proof. (* 13 lines *) Qed.

Theorem vmap_delta_join_v_join :
forall v v1 v2 D1 D2,
vmap_delta v v1 D1 ->
vmap_delta v v2 D2 ->
vmap_delta v (join v1 v2) (IdSet.union D1 D2).

Proof. (* 5 lines *) Qed.

Theorem vmap_delta_join_v1_join :
forall v v1 v2 D1 D2,
vmap_delta v v1 D1 ->
vmap_delta v v2 D2 ->
vmap_delta v1 (join v1 v2) (IdSet.union D1 D2).

Proof. (* 4 lines *) Qed.

362 COQ SCRIPTS

Theorem vmap_delta_join_v2_join :
forall v v1 v2 D1 D2,
vmap_delta v v1 D1 ->
vmap_delta v v2 D2 ->
vmap_delta v2 (join v1 v2) (IdSet.union D1 D2).

Proof. (* 4 lines *) Qed.

(**
Given that [c’] is the single assignment form of [c],
if [c] skips, so will [c’] (assuming the initial
stores are synchronized).
Also, both executions will end up in synchronized stores.

*)
Theorem sa_transformation_skip :
forall c mu mu’ vmu v,
let (c’, v’) := transform_sa c v in
multistep (ip c mu) (ip cSkip mu’) ->
store_sync_vstore mu v vmu ->
exists vmu’, vmultistep (vip c’ vmu) (vip vcSkip vmu’) /\

store_sync_vstore mu’ v’ vmu’.
Proof. (* 190 lines *) Qed.

(**
If a command leads to failure, so will its single assignment form,
if both are starting in synchronized stores.

*)
Theorem sa_transformation_fail :
forall c mu mu’ vmu v,
let (c’, v’) := transform_sa c v in

multistep (ip c mu) (failure mu’) ->
store_sync_vstore mu v vmu ->
exists vmu’, vmultistep (vip c’ vmu) (vfailure vmu’).

Proof. (* 97 lines *) Qed.

Inductive assigns (x : vid) : vcommand -> Prop :=
| assignsAssign : forall e , assigns x (vcAssign x e)
| assignsSequenceL : forall c1 c2, assigns x c1 -> assigns x (vcSequence c1 c2)
| assignsSequenceR : forall c1 c2, assigns x c2 -> assigns x (vcSequence c1 c2)
| assignsChoiceL : forall c1 c2, assigns x c1 -> assigns x (vcChoice c1 c2)
| assignsChoiceR : forall c1 c2, assigns x c2 -> assigns x (vcChoice c1 c2).

Theorem assigns_dec :
forall c x,
decidable (assigns x c).

Proof. (* 24 lines *) Qed.

Inductive single_assignment_vid (x : vid) : vcommand -> Prop :=
| saidAssert : forall e, single_assignment_vid x (vcAssert e)
| saidAssume : forall e, single_assignment_vid x (vcAssume e)
| saidAssign : forall y e, single_assignment_vid x (vcAssign y e)
| saidSequenceL : forall c1 c2,

˜ assigns x c1 -> single_assignment_vid x (vcSequence c1 c2)
| saidSequenceR : forall c1 c2,

˜ assigns x c2 -> single_assignment_vid x (vcSequence c1 c2)
| saidSkip : single_assignment_vid x vcSkip

EWP 363

| saidChoice : forall c1 c2,
single_assignment_vid x c1 ->
single_assignment_vid x c2 ->
single_assignment_vid x (vcChoice c1 c2).

Theorem single_assignment_vid_dec :
forall c x, decidable (single_assignment_vid x c).

Proof. (* 14 lines *) Qed.

Inductive vmap_bound (v v’ : vmap) : vcommand -> Prop :=
| vbAssert : forall e, vmap_bound v v’ (vcAssert e)
| vbAssume : forall e, vmap_bound v v’ (vcAssume e)
| vbAssign : forall x n e,

v x < n ->
n <= v’ x ->
vmap_bound v v’ (vcAssign (x, n) e)

| vbSequence : forall c1 c2,
vmap_bound v v’ c1 ->
vmap_bound v v’ c2 ->
vmap_bound v v’ (vcSequence c1 c2)

| vbSkip : vmap_bound v v’ vcSkip
| vbChoice : forall c1 c2,

vmap_bound v v’ c1 ->
vmap_bound v v’ c2 ->
vmap_bound v v’ (vcChoice c1 c2).

Definition vmap_le (v v’ : vmap) := forall x, v x <= v’ x.

Lemma vmap_le_refl :
forall v, vmap_le v v.

Proof. (* 1 lines *) Qed.

Hint Resolve vmap_le_refl.

Theorem sa_transformation_monotonic_vmap :
forall c v,
let (c’, v’) :=
transform_sa c v in vmap_le v v’.

Proof. (* 35 lines *) Qed.

Lemma vmap_bound_le_upper :
forall c v1 v2 v3,
vmap_bound v1 v2 c ->
vmap_le v2 v3 ->
vmap_bound v1 v3 c.

Proof. (* 23 lines *) Qed.

Lemma vmap_bound_le_lower :
forall c v1 v2 v3,
vmap_le v1 v2 ->
vmap_bound v2 v3 c ->
vmap_bound v1 v3 c.

Proof. (* 19 lines *) Qed.

Lemma vmap_le_join_l :
forall v1 v2, vmap_le v1 (join v1 v2).

Proof. (* 4 lines *) Qed.

364 COQ SCRIPTS

Lemma vmap_le_join_r :
forall v1 v2, vmap_le v2 (join v1 v2).

Proof. (* 5 lines *) Qed.

Lemma vmap_le_trans :
forall v1 v2 v3, vmap_le v1 v2 -> vmap_le v2 v3 -> vmap_le v1 v3.

Proof. (* 2 lines *) Qed.

Theorem sync_vcommand_vmap_bound_l :
forall D v1 v2,
let joined := join v1 v2 in

vmap_bound v1 joined (sync_vcommand D v1 joined).
Proof. (* 31 lines *) Qed.

Theorem sync_vcommand_vmap_bound_r :
forall D v1 v2,
let joined := join v1 v2 in

vmap_bound v2 joined (sync_vcommand D v2 joined).
Proof. (* 31 lines *) Qed.

Theorem sa_transformation_vmap_bound :
forall c v,
let (c’, v’) := transform_sa c v in

vmap_bound v v’ c’.
Proof. (* 61 lines *) Qed.

Theorem assigns_vmap_bound :
forall c x n v v’,
assigns (x, n) c ->
vmap_bound v v’ c ->
v x < n /\ n <= v’ x.

Proof. (* 20 lines *) Qed.

Theorem sa_transformation_is_single_assignment :
forall c v x,
let (c’, _) := transform_sa c v in
single_assignment_vid x c’.

Proof. (* 52 lines *) Qed.

(**
** Passification

*)

Definition assume_from_assign x e :=
pcAssume (fun vmu => if decidable_eq_value (vmu x) (e vmu)

then T
else F).

Fixpoint passify (c : vcommand) : pcommand :=
match c with
| vcAssert e => pcAssert e
| vcAssume e => pcAssume e
| vcSkip => pcSkip
| vcSequence c1 c2 => pcSequence (passify c1) (passify c2)
| vcChoice c1 c2 => pcChoice (passify c1) (passify c2)
| vcAssign x e => assume_from_assign x e

end.

EWP 365

Definition stores_veq (vmu : vstore) (v : vmap) (vmu’ : vstore) :=
forall x n, n <= v x -> vmu (x, n) = vmu’ (x, n).

Theorem vexpr_stores_veq :
forall e v vmu vmu’,
stores_veq vmu v vmu’ ->
let ve := version_expr e v in
ve vmu = ve vmu’.

Proof. (* 9 lines *) Qed.

Theorem stores_veq_refl :
forall vmu v, stores_veq vmu v vmu.

Proof. (* 1 lines *) Qed.

Hint Resolve stores_veq_refl.

Theorem stores_veq_symm :
forall vmu vmu’ v, stores_veq vmu v vmu’ -> stores_veq vmu’ v vmu.

Proof. (* 2 lines *) Qed.

Hint Resolve stores_veq_symm.

Theorem stores_veq_trans :
forall vmu vmu’ vmu” v,
stores_veq vmu v vmu’ -> stores_veq vmu’ v vmu” -> stores_veq vmu v vmu”.

Proof. (* 4 lines *) Qed.

Theorem stores_veq_vmap_le :
forall vmu vmu’ v v’,
stores_veq vmu v vmu’ -> vmap_le v’ v -> stores_veq vmu v’ vmu’.

Proof. (* 5 lines *) Qed.

Lemma stores_veq_sync_vcommand :
forall D v1 v2 vmu vmu’,
vmap_le v1 v2 ->
vmultistep (vip (sync_vcommand D v1 v2) vmu) (vip vcSkip vmu’) ->
stores_veq vmu v1 vmu’.

Proof. (* 48 lines *) Qed.

Theorem single_assignment_monotonic_store : forall c v vmu vmu’,
let (c’, v’) := transform_sa c v in
vmultistep (vip c’ vmu) (vip vcSkip vmu’) -> stores_veq vmu v vmu’.

Proof. (* 91 lines *) Qed.

Theorem sync_vcommand_does_not_fail : forall D v v’ vmu vmu’,
˜ vmultistep (vip (sync_vcommand D v v’) vmu) (vfailure vmu’).

Proof. (* 31 lines *) Qed.

Theorem single_assignment_monotonic_store_fail : forall c v vmu vmu’,
let (c’, v’) := transform_sa c v in
vmultistep (vip c’ vmu) (vfailure vmu’) -> stores_veq vmu v vmu’.

Proof. (* 88 lines *) Qed.

Lemma sorted_list_x_lt_elts :
forall (x : id) (xs : list id)
(sorted_x_xs : sort (fun x y : id => x < y) (x :: xs)) (y : id),
InA (fun x y : id => x = y) y xs -> x < y.

Proof. (* 28 lines *) Qed.

366 COQ SCRIPTS

Lemma sorted_list_unique_elements :
forall (x : id)

(xs : list id)
(sorted_x_xs : sort (fun x y : id => x < y) (x :: xs))
(H : InA (fun x y : id => x = y) x xs), False.

Proof. (* 3 lines *) Qed.

Theorem vmultistep_pmultistep_sync_vcommand :
forall D v v’ vmu vmu’ vmu”,
let c := sync_vcommand D v v’ in

vmap_le v v’ ->
vmultistep (vip c vmu) (vip vcSkip vmu’) ->
stores_veq vmu’ v’ vmu” ->
pmultistep vmu” (pip (passify c)) (pip pcSkip).

Proof. (* 144 lines *) Qed.

Theorem vmultistep_pmultistep_skip : forall c v vmu vmu’ vmu”,
let (c’, v’) := transform_sa c v in
vmultistep (vip c’ vmu) (vip vcSkip vmu’) ->
stores_veq vmu’ v’ vmu” ->
pmultistep vmu” (pip (passify c’)) (pip pcSkip).

Proof. (* 285 lines *) Qed.

(**
Main theorem regarding passification:
if the original program in its SA-form fails, so
does its passification.

*)
Theorem vmultistep_pmultistep_fail :
forall c v vmu vmu’,
let (c’, v’) := transform_sa c v in

vmultistep (vip c’ vmu) (vfailure vmu’) ->
pmultistep vmu’ (pip (passify c’)) pfailure.

Proof. (* 117 lines *) Qed.

(**
** Weakest Preconditions Soundness

*)
Fixpoint wp (vmu : vstore) (c : pcommand) (Q : Prop) : Prop :=
match c with
| pcAssert e => e vmu = T /\ Q
| pcAssume e => e vmu = T -> Q
| pcChoice c1 c2 => wp vmu c1 Q /\ wp vmu c2 Q
| pcSequence c1 c2 => wp vmu c1 (wp vmu c2 Q)
| pcSkip => Q

end.

(**
We show that if the weakest precondition holds,
no single pstep will fail.

*)
Theorem pstep_wp_prevents_failure :
forall (vmu : vstore) (c : pcommand) (Q : Prop),
wp vmu c Q -> ˜ pstep vmu (pip c) pfailure.

Proof. (* 17 lines *) Qed.

EWP 367

(**
We prove that the weakest precondition is "preserved"
along the pstep relation.

*)
Theorem pstep_wp_preservation :
forall vmu c c’ Q,
wp vmu c Q -> pstep vmu (pip c) (pip c’) -> wp vmu c’ Q.

Proof. (* 40 lines *) Qed.

Theorem pmultistep_split_last :
forall vmu s1 s3,
pmultistep vmu s1 s3 ->
s1 = s3 \/ exists s2, pmultistep vmu s1 s2 /\

pstep vmu s2 s3.
Proof. (* 13 lines *) Qed.

Theorem pmultistep_append :
forall vmu s1 s2 s3,
pmultistep vmu s1 s2 ->
pstep vmu s2 s3 ->
pmultistep vmu s1 s3.

Proof. (* 7 lines *) Qed.

Theorem pmultistep_forward_induction_scheme_aux
(P : pstate -> pstate -> Prop)
(vmu : vstore)
(Hrefl : forall s, P s s)
(Hstep : forall s1 s2 s3,

pmultistep vmu s1 s2 -> pstep vmu s2 s3 -> P s1 s2 -> P s1 s3)
(s1 s2 s3 : pstate)
(H : P s1 s2)
(H0 : pmultistep vmu s1 s2)
(H1 : pmultistep vmu s2 s3) : P s1 s3.

Proof. (* 10 lines *) Qed.

Theorem pmultistep_forward_induction_scheme :
forall
(P : pstate -> pstate -> Prop)
(vmu : vstore)
(Hrefl : forall s, P s s)
(Hstep : forall s1 s2 s3, pmultistep vmu s1 s2 ->

pstep vmu s2 s3 ->
P s1 s2 ->
P s1 s3),

forall s1 s2, pmultistep vmu s1 s2 -> P s1 s2.
Proof. (* 3 lines *) Qed.

Theorem pmultistep_wp_preservation : forall vmu c1 c2 Q,
wp vmu c1 Q -> pmultistep vmu (pip c1) (pip c2) -> wp vmu c2 Q.

Proof. (* 16 lines *) Qed.

Theorem pmultistep_wp_prevents_failure :
forall vmu c Q,
wp vmu c Q -> ˜ pmultistep vmu (pip c) pfailure.

Proof. (* 17 lines *) Qed.

368 COQ SCRIPTS

Fixpoint wlp (vmu : vstore) (c : pcommand) (Q : Prop) : Prop :=
match c with
| pcAssert e => e vmu = T -> Q
| pcAssume e => e vmu = T -> Q
| pcChoice c1 c2 => wlp vmu c1 Q /\ wlp vmu c2 Q
| pcSequence c1 c2 => wlp vmu c1 (wlp vmu c2 Q)
| pcSkip => Q

end.

Theorem pstep_wlp_preservation :
forall vmu c c’ Q,
wlp vmu c Q -> pstep vmu (pip c) (pip c’) -> wlp vmu c’ Q.

Proof. (* 40 lines *) Qed.

Theorem monotonic_wp :
forall vmu c (Q R : Prop), (Q -> R) -> wp vmu c Q -> wp vmu c R.

Proof. (* 7 lines *) Qed.

Theorem monotonic_wlp :
forall vmu c (Q R : Prop), (Q -> R) -> wlp vmu c Q -> wlp vmu c R.

Proof. (* 6 lines *) Qed.

Theorem wp_true :
forall vmu c Q,
wp vmu c Q -> wp vmu c True.

Proof. (* 1 lines *) Qed.

Theorem conjunctive_wp :
forall vmu c Q R,
wp vmu c Q /\ wp vmu c R <-> wp vmu c (Q /\ R).

Proof. (* 55 lines *) Qed.

Theorem conjunctive_wlp :
forall vmu c Q R,
wlp vmu c Q /\ wlp vmu c R <-> wlp vmu c (Q /\ R).

Proof. (* 58 lines *) Qed.

Theorem Q_impl_wlpQ :
forall vmu c (Q : Prop), Q -> wlp vmu c Q.

Proof. (* 7 lines *) Qed.

Theorem wlp_true :
forall vmu c, wlp vmu c True.

Proof. (* 1 lines *) Qed.

Theorem wlp_rewrite :
forall vmu c Q, wlp vmu c Q <-> wlp vmu c False \/ Q.

Proof. (* 74 lines *) Qed.

Theorem wp_impl_wlp :
forall vmu c Q, wp vmu c Q -> wlp vmu c Q.

Proof. (* 18 lines *) Qed.

Theorem wp_rewrite :
forall vmu c Q,

wp vmu c Q <-> wp vmu c True /\ wlp vmu c Q.
Proof. (* 37 lines *) Qed.

EWP 369

Fixpoint efficient_wlp (vmu : vstore) (c : pcommand) (Q : Prop) : Prop :=
match c with
| pcAssert e => e vmu = T -> Q
| pcAssume e => e vmu = T -> Q
| pcSequence c1 c2 => efficient_wlp vmu c1 (efficient_wlp vmu c2 Q)
| pcSkip => Q
| pcChoice c1 c2 => (efficient_wlp vmu c1 False /\

efficient_wlp vmu c2 False) \/ Q
end.

Fixpoint efficient_wp (vmu : vstore) (c : pcommand) (Q : Prop) : Prop :=
match c with
| pcAssert e => e vmu = T /\ Q
| pcAssume e => e vmu = T -> Q
| pcSequence c1 c2 => efficient_wp vmu c1 (efficient_wp vmu c2 Q)
| pcSkip => Q
| pcChoice c1 c2 => efficient_wp vmu c1 True /\

efficient_wp vmu c2 True /\
efficient_wlp vmu (pcChoice c1 c2) Q

end.

Theorem efficient_wlp_equivalence :
forall vmu c Q, wlp vmu c Q <-> efficient_wlp vmu c Q.

Proof. (* 36 lines *) Qed.

Theorem efficient_wp_equivalence :
forall vmu c Q, wp vmu c Q <-> efficient_wp vmu c Q.

Proof. (* 65 lines *) Qed.

(**
Initial version map, where each identifier’s version equals 0.

*)
Definition init_vmap (x : id) := O.

(**
Auxiliary definition to perform SA transformation and
passification in one step.

*)
Definition passified (c : command) :=
let (c’, _) := transform_sa c init_vmap in
passify c’.

(**
Proves that for any store mu and
version map v, there is a
synchronized versioned store.

*)
Lemma versioned_store_exists :
forall mu v, exists vmu, store_sync_vstore mu v vmu.

Proof. (* 6 lines *) Qed.

(**
Proves the soundness of the efficient
(conservative) weakest preconditions:
If the weakest preconditions are true,
execution will not encounter failure.

370 COQ SCRIPTS

#Needs manual checking
(The theorem itself, not the proof)#

*)
Theorem soundness_efficient_wp :
forall c,
(forall vmu, efficient_wp vmu (passified c) True) ->
forall mu, ˜ exists mu’, multistep (ip c mu) (failure mu’).

Proof. (* 23 lines *) Qed.

(** ** Weakest Preconditions Size *)

(**
We can’t measure the size of Props, so we define our own.

#Needs manual checking#
%{Needs manual checking}%

*)
Inductive formula : Set :=
| fConjunction : formula -> formula -> formula
| fDisjunction : formula -> formula -> formula
| fImplication : formula -> formula -> formula
| fAtom : formula.

(**
We define a metric on formulae.

#Needs manual checking#
%{Needs manual checking}%

*)
Fixpoint formula_metric (f : formula) : nat :=
match f with
| fConjunction x y => S (formula_metric x + formula_metric y)
| fDisjunction x y => S (formula_metric x + formula_metric y)
| fImplication x y => S (formula_metric x + formula_metric y)
| fAtom => 1

end.

(**
We define weakest liberal preconditions making use formula.

#Needs manual checking#
%{Needs manual checking}%

*)
Fixpoint wlp’ (c : pcommand) (Q : formula) {struct c} : formula :=
match c with
| pcAssert _ => fImplication fAtom Q
| pcAssume _ => fImplication fAtom Q
| pcSequence c1 c2 => wlp’ c1 (wlp’ c2 Q)
| pcSkip => fAtom
| pcChoice c1 c2 => fDisjunction (fConjunction (wlp’ c1 fAtom)

(wlp’ c2 fAtom))
Q

end.

EWP 371

(**
We define weakest preconditions making use formula.

#Needs manual checking#
%{Needs manual checking}%

*)
Fixpoint wp’ (c : pcommand) (Q : formula) {struct c} : formula :=
match c with
| pcAssert _ => fConjunction fAtom Q
| pcAssume _ => fImplication fAtom Q
| pcSequence c1 c2 => wp’ c1 (wp’ c2 Q)
| pcSkip => fAtom
| pcChoice c1 c2 => fConjunction (fConjunction (wp’ c1 fAtom)

(wp’ c2 fAtom))
(wlp’ c Q)

end.

(**
Quick lemma showing that formulas are at least 1 big.

*)
Lemma formula_metric_ge_1 : forall Q, 1 <= formula_metric Q.
Proof. (* 1 lines *) Qed.

Hint Resolve formula_metric_ge_1.

(**
Shows the linearity of the
efficient weakest liberal preconditions
with respect to the size of passified commands.

*)
Theorem linear_wlp’ :
exists a, forall c Q,

formula_metric (wlp’ c Q) <= a * pcommand_metric c + formula_metric Q.
Proof. (* 60 lines *) Qed.

(**
Shows the quadracity of the
efficient weakest preconditions with
respect to passified commands

*)
Theorem quadratic_wp’ :
exists a, exists b, forall c Q,
formula_metric (wp’ c Q) <=
a * pcommand_metric c * pcommand_metric c +
b * pcommand_metric c + formula_metric Q.

Proof. (* 248 lines *) Qed.

(**
A quick proof showing that passification results in a command
which is the exact same size as its input.

*)
Theorem passify_maintains_size :
forall c,
vcommand_metric c = pcommand_metric (passify c).

Proof. (* 1 lines *) Qed.

372 COQ SCRIPTS

(**
A lemma showing that if x <= y, then xˆ2 <= yˆ2.

*)
Lemma monotonic_sqr :
forall x y, x <= y -> x * x <= y * y.

Proof. (* 12 lines *) Qed.

(**
Shows that the weakest preconditions are O(|c|ˆ4 + |Q|).

#Needs manual checking
(The theorem itself, not the proof)#

*)
Theorem polynomial_wps :
exists N4, exists N3, exists N2, exists N1, forall c Q,
let cp := passified c in
let x := command_metric c in
let wp := wp’ cp Q in
formula_metric wp <= N4 * x * x * x * x +

N3 * x * x * x +
N2 * x * x +
N1 * x +
formula_metric Q.

Proof. (* 67 lines *) Qed.

ENSEMBLEEXT 373

D.14 EnsembleExt

Require Export Ensembles.
Require Import Notations.
Require Import Utf8.
Require Import Misc.

Theorem Included_reflexivity : forall A (S : Ensemble A), S ⊆ S.
Proof. (* 4 lines *) Qed.

Theorem Included_transitivity :
forall A (S S’ S” : Ensemble A), S ⊆ S’ → S’ ⊆ S” → S ⊆ S”.

Proof. (* 6 lines *) Qed.

Theorem Included_antisymmetric :
forall A (S S’ : Ensemble A), S ⊆ S’ → S’ ⊆ S → Same_set _ S S’.

Proof. (* 3 lines *) Qed.

Theorem Same_set_reflexivity :
forall A (B : Ensemble A), Same_set A B B.

Proof. (* 1 lines *) Qed.

Theorem Same_set_transitivity :
forall (A : Type) (B C D : Ensemble A),
Same_set _ B C → Same_set _ C D → Same_set _ B D.

Proof. (* 5 lines *) Qed.

Theorem Same_set_symmetry :
forall (A : Type) (B C : Ensemble A),
Same_set _ B C → Same_set _ C B.

Proof. (* 2 lines *) Qed.

Theorem empty_set_subseteq :
forall (A : Type) (S : Ensemble A), ∅ ⊆ S.

Proof. (* 2 lines *) Qed.

Hint Immediate empty_set_subseteq.

Theorem Singleton_element :
forall A (x y : A), x ∈ Singleton y ↔ x = y.

Proof. (* 3 lines *) Qed.

Theorem empty_empty_set :
forall U (A : Ensemble U), (forall x, ˜ x ∈ A) ↔ Same_set _ A ∅.

Proof. (* 12 lines *) Qed.

Theorem union_A_A :
forall U (A : Ensemble U), Same_set _ A (Union _ A A).

Proof. (* 4 lines *) Qed.

Theorem Union_commutative :
forall U (A B : Ensemble U), Same_set _ (Union U A B) (Union U B A).

Proof. (* 12 lines *) Qed.

Inductive IndexedUnion {U I} (R : I → Ensemble U) : Ensemble U :=
| IndexedUnion_intro :

forall (i : I) (x : U) (H : x ∈ R i), x ∈ IndexedUnion R.

374 COQ SCRIPTS

Theorem IndexedUnion_subsets :
forall U I (R : I → Ensemble U) (i : I), R i ⊆ IndexedUnion R.

Proof. (* 2 lines *) Qed.

Theorem Union_with_subset :
forall U (A A’ : Ensemble U), A’ ⊆ A -> Same_set U A (A ∪ A’).

Proof. (* 11 lines *) Qed.

Definition IndexedIntersection {U I} (R : I → Ensemble U) : Ensemble U :=
fun x => forall i : I, x ∈ R i.

Theorem IndexedIntersection_subset : forall U I (R : I → Ensemble U),
forall i : I, IndexedIntersection R ⊆ R i.

Proof. (* 4 lines *) Qed.

Definition closed {U} (R : Ensemble (Ensemble U)) :=
forall Σ Σ’, Σ’ ∈ R → Σ’ ⊆ Σ → Σ ∈ R.

Theorem closed_IndexedUnion :
forall {A I} (R : I → Ensemble (Ensemble A)),
(forall i, closed (R i)) → closed (IndexedUnion R).

Proof. (* 4 lines *) Qed.

Theorem closed_IndexedIntersection :
forall {A I} (R : I → Ensemble (Ensemble A)),
(forall i, closed (R i)) → closed (IndexedIntersection R).

Proof. (* 2 lines *) Qed.

Theorem closed_empty_set : forall A, closed (@Empty_set (Ensemble A)).
Proof. (* 2 lines *) Qed.

Theorem IndexedUnion_in_closed :
forall Σ I (f : I → Ensemble Σ) (R : Ensemble (Ensemble Σ)),
inhabited I → closed R → (forall i : I, f i ∈ R) → IndexedUnion f ∈ R.

Proof. (* 5 lines *) Qed.

Definition Map {A B} (f : A → B) (S : Ensemble A) : Ensemble B :=
fun b => exists a : From S, f (proj1_sig a) = b.

EQDEC 375

D.15 EqDec

Require Import Notations.

Module Type EQDEC.

Parameters
(t : Set)
(eq_dec : forall x y : t, { x = y } + { x , y }).

End EQDEC.

376 COQ SCRIPTS

D.16 Expression

Require Import Notations.
Require Import Arith.
Require Import Identifier.

Inductive t’ : Set :=
| lit : nat → t’
| var : Id.t → t’
| add : t’ → t’ → t’
| min : t’ → t’ → t’
| mul : t’ → t’ → t’.

Definition t := t’.

Fixpoint evaluate (expr : t) (s : Id.t → nat) : nat :=
match expr with
| lit n => n
| var x => s x
| add e e’ => evaluate e s + evaluate e’ s
| min e e’ => evaluate e s - evaluate e’ s
| mul e e’ => evaluate e s * evaluate e’ s

end.

Definition eq_dec : forall e e’ : t, {e = e’} + {e , e’} .
induction e; destruct e’; try (right; discriminate).

(* lit *)
destruct (eq_nat_dec n n0); [subst; left; trivial | right].
intro; elim n1.
injection H; trivial.

(* var *)
destruct (Id.eq_dec t0 t1); [subst; left; trivial | right].
intro; elim n.
injection H; trivial.

(* add *)
destruct (IHe1 e’1); destruct (IHe2 e’2);
try (subst; left; trivial; fail); right; subst.

intro.
injection H; intros; subst.
elim n; trivial.
intro H; injection H; intros; subst.
elim n; trivial.
intro H; injection H; intros; subst.
elim n; trivial.

(* min *)
destruct (IHe1 e’1); destruct (IHe2 e’2);
try (subst; left; trivial; fail); right; subst.

intro.
injection H; intros; subst.
elim n; trivial.
intro H; injection H; intros; subst.
elim n; trivial.

EXPRESSION 377

intro H; injection H; intros; subst.
elim n; trivial.

(* mul *)
destruct (IHe1 e’1); destruct (IHe2 e’2);
try (subst; left; trivial; fail); right; subst.

intro.
injection H; intros; subst.
elim n; trivial.
intro H; injection H; intros; subst.
elim n; trivial.
intro H; injection H; intros; subst.
elim n; trivial.
Defined.

Definition beq (e e’ : t) : bool.
destruct (eq_dec e e’).
exact true.
exact false.

Defined.

Module Notations.

Coercion lit : nat >-> t’.
Coercion var : Id.t >-> t’.

Delimit Scope expr_scope with expr.
Bind Scope expr_scope with t.

Infix "+" := add : expr_scope.
Infix "-" := min : expr_scope.

Open Scope expr_scope.

End Notations.

378 COQ SCRIPTS

D.17 FakeModel

Require Import Notations.
Require Import Relations.
Require Import Misc.
Require Import EnsembleExt.
Require RADefinitions.
Require RANotations.
Require RAAxioms.
Require Import Classical.

Section State.

Variable (Σ : Type).

Inductive result : Type :=
| singler (σ : Σ) : result
| singleb (σ : Σ) : result
| mul (I : Type) (R : I → result) : result
| add (I : Type) (R : I → result) : result.

Definition single := singler.

Fixpoint models (S : Ensemble Σ) (R : result) : Prop :=
match R with

| mul J R => forall i, models S (R i)
| add J R => exists i, models S (R i)
| singler σ => σ ∈ S
| singleb σ => σ ∈ S

end.

Definition impl (R R’ : result) : Prop :=
forall S, models S R → models S R’.

Definition eqv (R R’ : result) : Prop :=
impl R R’ ∧ impl R’ R.

Definition top : result.
refine (mul False _).
intro H; elim H.

Defined.

Definition bottom : result.
refine (add False _).
intro H; elim H.

Defined.

Theorem single_axiom : forall (s : Σ) (S : Ensemble Σ),
models S (single s) ↔ s ∈ S.

Proof. (* 1 lines *) Qed.

Theorem top_axiom : forall (R : False → result),
eqv top (mul False R).

Proof. (* 1 lines *) Qed.

Theorem bottom_axiom : forall (R : False → result),
eqv bottom (add False R).

FAKEMODEL 379

Proof. (* 1 lines *) Qed.

Theorem add_axiom : forall I (R : I → result) (S : Ensemble Σ),
models S (add _ R) ↔ ∃ i, models S (R i).

Proof. (* 1 lines *) Qed.

Theorem mul_axiom : forall I (R : I → result) (S : Ensemble Σ),
models S (mul _ R) ↔ ∀ i, models S (R i).

Proof. (* 1 lines *) Qed.

Theorem implies_axiom : forall (R R’ : result),
impl R R’ ↔ forall (S : Ensemble Σ), models S R → models S R’.

Proof. (* 1 lines *) Qed.

Theorem monotonic_models_axiom :
forall (R : result) (S S’ : Ensemble Σ),

S’ ⊆ S → models S’ R → models S R.
Proof. (* 6 lines *) Qed.

Fixpoint lift (op : Σ → result) (R : result) : result :=
match R with

| singler σ => op σ
| singleb σ => bottom
| add _ R => add _ (fun i => lift op (R i))
| mul _ R => mul _ (fun i => lift op (R i))

end.

Theorem lift_add_axiom : forall (f : Σ → result) I (R : I → result),
eqv (lift f (add _ R)) (add _ (fun i => lift f (R i))).

Proof. (* 1 lines *) Qed.

Theorem lift_mul_axiom : forall (f : Σ → result) I (R : I → result),
eqv (lift f (mul _ R)) (mul _ (fun i => lift f (R i))).

Proof. (* 1 lines *) Qed.

Theorem lift_single_axiom :
forall (f : Σ → result) (s : Σ),

eqv (lift f (single s)) (f s).
Proof. (* 1 lines *) Qed.

End State.

Ltac prove_antecedent_in H :=
match goal with

| [X : ?Antecedent → _ |- _] =>
match H with
| X =>
let A := fresh in
assert (A : Antecedent); [idtac | specialize (H A); clear A]

end
end.

Theorem monotonic_lift_axiom_fails :
¬ forall (f g : nat → result nat) (R R’ : result nat),

(forall σ, impl _ (f σ) (g σ)) →
impl _ R R’ → impl _ (lift _ f R) (lift _ g R’).

Proof. (* 15 lines *) Qed.

380 COQ SCRIPTS

D.18 Formula

Require Import List.
Require Import Arith.
Require Import Notations.
Require Import Identifier.
Require Symbol.
Require Term.
Require BooleanExpression.

Module Symb := Symbol.Default.

Inductive t’ : Set :=
| fla_eq : Term.t’ → Term.t → t’
| fla_lt : Term.t’ → Term.t → t’
| fla_and : t’ → t’ → t’
| fla_not : t’ → t’.

Definition t := t’.

Definition eq_dec : forall f f’ : t, { f = f’ } + { f , f’ } .
induction f; destruct f’; try (right; discriminate; fail).
destruct (Term.eq_dec t0 t2); destruct (Term.eq_dec t1 t3); subst;

try (left; reflexivity; fail); right; intro; elim n; injection H; trivial.
destruct (Term.eq_dec t0 t2); destruct (Term.eq_dec t1 t3); subst;

try (left; reflexivity; fail); right; intro; elim n; injection H; trivial.
destruct (IHf1 f’1); destruct (IHf2 f’2); subst; try (left; reflexivity; fail);

right; intro; elim n; injection H; trivial.
destruct (IHf f’);

[left; subst; reflexivity | right; intro; elim n; injection H; trivial].
Defined.

Definition beq (f f’ : t) : bool.
destruct (eq_dec f f’); [exact true | exact false].

Defined.

Fixpoint symbols (f : t) : list Symb.t :=
match f with
| fla_eq t1 t2 => Term.symbols t1 ++ Term.symbols t2
| fla_lt t1 t2 => Term.symbols t1 ++ Term.symbols t2
| fla_and f f’ => symbols f ++ symbols f’
| fla_not f => symbols f

end.

Definition fla_or (p q : t) : t :=
fla_not (fla_and (fla_not p) (fla_not q)).

Definition implies (φ φ’ : t) : t :=
fla_or (fla_not φ) φ’.

Definition fla_true : t :=
fla_eq (Term.term_lit 0)

(Term.term_lit 0).

Definition fla_false : t :=
fla_not fla_true.

FORMULA 381

Fixpoint of_boolean_expression
(b : BooleanExpression.t) (s : Id.t → Term.t) : t :=
match b with
| BooleanExpression.eq e e’ =>

fla_eq (Term.of_expression e s) (Term.of_expression e’ s)
| BooleanExpression.lt e e’ =>

fla_lt (Term.of_expression e s) (Term.of_expression e’ s)
| BooleanExpression.le e e’ =>

fla_not (fla_lt (Term.of_expression e’ s) (Term.of_expression e s))
| BooleanExpression.and b b’ =>

fla_and (of_boolean_expression b s) (of_boolean_expression b’ s)
| BooleanExpression.not b =>

fla_not (of_boolean_expression b s)
| BooleanExpression.true =>

fla_true
end.

Fixpoint evaluate (φ : t) (s : Symb.t → nat) : bool :=
match φ with
| fla_eq t t’ => if eq_nat_dec (Term.evaluate t s) (Term.evaluate t’ s)

then true
else false

| fla_lt t t’ => if lt_dec (Term.evaluate t s) (Term.evaluate t’ s)
then true
else false

| fla_and φ φ’ => andb (evaluate φ s) (evaluate φ’ s)
| fla_not φ => negb (evaluate φ s)

end.

Fixpoint metric (φ : t) : nat :=
match φ with
| fla_eq t t’ => S (Term.metric t + Term.metric t’)
| fla_lt t t’ => S (Term.metric t + Term.metric t’)
| fla_and φ φ’ => S (metric φ + metric φ’)
| fla_not φ => S (metric φ)

end.

(*
New induction scheme, i.e. on formula size

*)
Section InductionScheme.

Variable (P : t → Prop).

Hypothesis H :
forall φ : t,

(forall φ’ : t, metric φ’ < metric φ → P φ’) → P φ.

Definition Pn (n : nat) :=
forall φ : t, metric φ <= n → P φ.

Lemma P0 : Pn O.
Proof. (* 6 lines *) Qed.

Lemma induction_step : forall n, Pn n → Pn (S n).
Proof. (* 22 lines *) Qed.

382 COQ SCRIPTS

Theorem all_Pn : forall n : nat, Pn n.
Proof. (* 3 lines *) Qed.

Theorem induction_on_size : forall φ : t, P φ.
Proof. (* 5 lines *) Qed.

End InductionScheme.

Module Notations.

Infix "==" := fla_eq (at level 70) : formula_scope.
Infix "<" := fla_lt : formula_scope.
Notation "¬ e" := (fla_not e) : formula_scope.
Notation "f && f’" := (fla_and f f’) : formula_scope.

Delimit Scope formula_scope with fla.
Bind Scope formula_scope with t.

End Notations.

FRESH 383

D.19 Fresh

Require Import Notations.
Require Import List.

Module Type FRESH.

Parameter t : Type.

Parameter fresh : forall (xs : list t), { x : t | ¬ In x xs } .

End FRESH.

384 COQ SCRIPTS

D.20 Heap

Require Import Notations.
Require Import ListExt.
Require Import Bool.
Require Import EqDec.
Require Import SetHolder.
Require Import Basics.

Module Type HEAP (Chunk : SET).

Parameters
(t : Set)
(empty : t)
(is_empty : t → bool)
(produce : Chunk.t → t → t)
(consume : Chunk.t → t → option t)
(contains : Chunk.t → t → bool)
(count : Chunk.t → t → nat)
(enum : t → list Chunk.t)
(union : t → t → t).

Axiom is_empty_empty : is_empty empty = true.

Axiom contains_empty : forall c, contains c empty = false.

Axiom enum_empty : enum empty = nil.

Axiom empty_counts :
forall h, is_empty h = true ↔ forall c, count c h = 0.

End HEAP.

Module ListHeap (Chunk : EQDEC) <: HEAP Chunk.

Definition t : Set := list Chunk.t.

Definition empty : t :=
nil.

Definition is_empty (heap : t) : bool :=
match heap with
| nil => true
| _ => false

end.

Definition produce (chunk : Chunk.t) (heap : t) : t :=
chunk :: heap.

Definition contains (chunk : Chunk.t) (heap : t) : bool :=
if in_dec Chunk.eq_dec chunk heap then true else false.

Definition consume (chunk : Chunk.t) (heap : t) : option t :=
if contains chunk heap

then
Some (remove Chunk.eq_dec chunk heap)

else
None.

HEAP 385

Definition enum (heap : t) : list Chunk.t :=
heap.

Definition union (h h’ : t) : t :=
app h h’.

Fixpoint count (chunk : Chunk.t) (heap : t) : nat :=
match heap with
| nil => O
| c::cs => if Chunk.eq_dec chunk c

then S (count chunk cs)
else count chunk cs

end.

Theorem is_empty_empty : is_empty empty = true.
Proof. (* 1 lines *) Qed.

Theorem contains_empty : forall c, contains c empty = false.
Proof. (* 1 lines *) Qed.

Theorem enum_empty : enum empty = nil.
Proof. (* 1 lines *) Qed.

Theorem empty_counts :
forall h, is_empty h = true ↔ forall c, count c h = 0.

Proof. (* 11 lines *) Qed.

End ListHeap.

Module Default (Chunk : EQDEC) := ListHeap Chunk.

386 COQ SCRIPTS

D.21 Identifier

Require Import Notations.
Require Import Arith.

Module Type IDENTIFIER.
Parameters
(t : Set)
(eq_dec : forall x y : t, {x = y} + {x , y}).

End IDENTIFIER.

Module Nat <: IDENTIFIER.

Inductive t’ : Set :=
| Id : nat → t’.

Definition t := t’.

Definition eq_dec : forall x y : t, {x = y} + {x , y} .
intros x y; destruct x; destruct y.
destruct (eq_nat_dec n n0); [left; subst; trivial | right].
intro; elim n1.
injection H; trivial.

Defined.

Definition beq (x y : t) : bool.
destruct (eq_dec x y).
exact true.
exact false.

Defined.

End Nat.

Module Id := Nat.

INDUCTIVEFORMULAE 387

D.22 InductiveFormulae

Require Import Notations.
Require Import Relations.
Require Import Misc.
Require Import EnsembleExt.
Require RADefinitions.
Require RANotations.
Require RAAxioms.

Set Implicit Arguments.

Module InductiveFormulaeDefinitions
<: RADefinitions.DEFINITIONS.

Inductive formula (Σ : Type) : Type :=
| f_and : forall I (R : I → formula Σ), formula Σ
| f_or : forall I (R : I → formula Σ), formula Σ
| f_lit : Σ → formula Σ.

Definition empty_R (Σ : Type) : False → formula Σ.
intro H; destruct H.
Defined.

Definition f_true (Σ : Type) : formula Σ :=
(@f_and Σ False (empty_R Σ)).

Definition f_false (Σ : Type) : formula Σ :=
(@f_or Σ False (empty_R Σ)).

Definition R (Σ : Type) : Type := formula Σ.

Section StateSection.
Variable Σ : Type.

Definition single (x : Σ) : R Σ := f_lit x.

Fixpoint models (S : Ensemble Σ) (R : R Σ) : Prop :=
match R with
| f_and J R’ => forall j : J, models S (R’ j)
| f_or J R’ => exists j : J, models S (R’ j)
| f_lit s => s ∈ S

end.

Definition add {I : Type} (R : I → R Σ) : R Σ := f_or R.

Definition mul {I : Type} (R : I → R Σ) : R Σ := f_and R.

Definition top : R Σ := f_true Σ.

Definition bottom : R Σ := f_false Σ.

Definition implies (R R’ : R Σ) : Prop :=
forall S, models S R → models S R’.

Definition equiv : relation (R Σ) :=
fun R R’ => implies R R’ ∧ implies R’ R.

End StateSection.
End InductiveFormulaeDefinitions.

388 COQ SCRIPTS

Module InductiveFormulaeAxioms
<: RAAxioms.AXIOMS InductiveFormulaeDefinitions.

Import InductiveFormulaeDefinitions.

Module RAN := RANotations.Make(InductiveFormulaeDefinitions).
Include RAN.

Section StateSection.

Variable Σ : Type.

Theorem top_axiom :
forall (R : False → R Σ),
> VV ⊗ R.

Proof. (* 8 lines *) Qed.

Theorem bottom_axiom :
forall (R : False → R Σ),
⊥ VV ⊕ R.

Proof. (* 9 lines *) Qed.

Theorem single_axiom :
forall (s : Σ) (S : Ensemble Σ),
S |= single s ↔ s ∈ S.

Proof. (* 3 lines *) Qed.

Theorem add_axiom :
forall I (R : I → R Σ) (S : Ensemble Σ),
S |= ⊕ R ↔ ∃ i, S |= R i.

Proof. (* 8 lines *) Qed.

Theorem mul_axiom :
forall I (R : I → R Σ) (S : Ensemble Σ),
S |= ⊗ R ↔ ∀ i, S |= R i.

Proof. (* 5 lines *) Qed.

Theorem implies_axiom :
forall (R R’ : R Σ),
R V R’ ↔ forall (S : Ensemble Σ), S |= R → S |= R’.

Proof. (* 5 lines *) Qed.

Theorem monotonic_models_axiom :
forall (R : R Σ) S S’,
S’ ⊆ S → S’ |= R → S |= R.

Proof. (* 8 lines *) Qed.

End StateSection.

End InductiveFormulaeAxioms.

LISTEXT 389

D.23 ListExt

Require Import Notations.
Require Import Basics.
Require Export List.

Open Scope program_scope.

Fixpoint concatenate {A : Set} (xs : list (list A)) : list A :=
match xs with
| x::xs => x ++ concatenate xs
| nil => nil

end.

Definition concat_map {A B : Set} (f : A -> list B) : list A -> list B :=
concatenate ◦ map f.

Fixpoint distribute {A : Set} (xs : list (list (list A))) : list (list A) :=
let aux :=
fun xs ys => concat_map (fun x => map (fun y => x ++ y) ys) xs
in
fold_left aux xs (nil :: nil).

Definition FromList {A : Type} (xs : list A) : Type :=
{ x : A | In x xs } .

390 COQ SCRIPTS

D.24 ListSetExt

Require Import Notations.
Require Import ListExt.
Require Export ListSet.

Definition set_existsb {A : Type} (pred : A → bool) (xs : set A) :=
@existsb A pred xs.

Definition set_forallb {A : Type} (pred : A → bool) (xs : set A) :=
@forallb A pred xs.

Definition set_exists {A : Type} (pred : A → Prop) (xs : set A) :=
@Exists A pred xs.

Definition set_forall {A : Type} (pred : A → Prop) (xs : set A) :=
@Forall A pred xs.

MISC 391

D.25 Misc

Require Import Notations.
Require Export FunctionalExtensionality.
Require Import Ensembles.
Require Import Relations.

Definition singleton (A : Type) := inhabited A ∧ forall a a’ : A, a = a’.

Definition function_restriction {A B}
(f : A → B)
(P : A → Prop)
(x : { x | P x }) : B :=

f (proj1_sig x).

Notation "f ↓ P" := (function_restriction f P) (at level 100).

Definition function_with_empty_domain A B (H : ¬ inhabited A) : A → B.
intro a.
elim H.
constructor.
exact a.

Qed.

Theorem unique_function_with_empty_domain :
forall A B (H : ¬ inhabited A) (f : A → B),
f = function_with_empty_domain A B H.

Proof. (* 6 lines *) Qed.

Definition From {U} (A : Ensemble U) : Type := { x | x ∈ A } .

Theorem function_restriction_union_l :
forall U R (A B : Ensemble U) (f : U → R) (a : From A),
let a_value : U := proj1_sig a
in
let a_in_A := proj2_sig a
in

(f ↓ A ∪ B) (exist _ a_value (Union_introl U A B a_value a_in_A)) =
(f ↓ A) a.

Proof. (* 1 lines *) Qed.

Theorem function_restriction_union_r :
forall U R (A B : Ensemble U) (f : U → R) (a : From B),
let a_value : U := proj1_sig a in
let a_in_B := proj2_sig a in

(f ↓ A ∪ B) (exist _ a_value (Union_intror U A B a_value a_in_B)) =
(f ↓ B) a.

Proof. (* 1 lines *) Qed.

Section BinaryRelation.

Set Implicit Arguments.

Variables (A B : Type) (P : relation B).

Definition pointwise (f f’ : A → B) : Prop :=
forall a : A, P (f a) (f’ a).

392 COQ SCRIPTS

Theorem pointwise_reflexivity :
forall (H : reflexive _ P), reflexive _ pointwise.

Proof. (* 2 lines *) Qed.

Theorem pointwise_symmetry :
forall (H : symmetric _ P), symmetric _ pointwise.

Proof. (* 2 lines *) Qed.

Theorem pointwise_transitivity :
forall (H : transitive _ P), transitive _ pointwise.

Proof. (* 2 lines *) Qed.

Unset Implicit Arguments.

End BinaryRelation.

NAT 393

D.26 Nat

Require Import Notations.
Require Import Arith.
Require Import List.
Require Import MinMax.
Require Import Omega.

Definition t := nat.

Definition eq_dec := eq_nat_dec.

Definition max_list (xs : list t) : t :=
fold_left max xs O.

Theorem x_leq_fold_max :
forall x y xs, x ≤ y → x ≤ fold_left max xs y.

Proof. (* 7 lines *) Qed.

Theorem xs_leq_fold_max :
forall x y xs, In x xs → x ≤ fold_left max xs y.

Proof. (* 9 lines *) Qed.

Theorem xs_leq_max_list :
forall x xs, In x xs → x ≤ max_list xs.

Proof. (* 1 lines *) Qed.

Theorem fold_max_in_xs :
forall x xs,
{ fold_left max xs x = x } + { In (fold_left max xs x) xs } .

Proof. (* 15 lines *) Qed.

Theorem max_xs_in_xs :
forall x xs, In (max_list (x::xs)) (x::xs).

Proof. (* 6 lines *) Qed.

Definition fresh (xs : list t) : { x : t | ¬ In x xs } .
exists (S (max_list xs)).
intro.
induction xs.
inversion H.
assert (H0 := max_xs_in_xs a xs).
assert (H1 := xs_leq_max_list (S (max_list (a::xs))) (a::xs) H).
omega.

Defined.

394 COQ SCRIPTS

D.27 Notations

Require Import Ensembles.
Require Import Basics.
Require Export Utf8.

(* Ensemble notations *)
Implicit Arguments Empty_set [U].
Implicit Arguments Singleton [U].
Implicit Arguments In [U].

Notation "∅" := (@Empty_set _).

Notation "x ∈ X" := (In X x) (at level 40).

Notation "A ⊆ B" := (Included _ A B) (at level 40).

Notation "A ∪ B" := (Union _ A B) (at level 50).

Notation "A ∩ B" := (Intersection _ A B) (at level 50).

Notation "�" := tt.

PREDICATE 395

D.28 Predicate

Require Import Notations.
Require Import String.

Definition t := string.

Definition eq_dec := string_dec.

Definition beq (x y : t) :=
if eq_dec x y then true else false.

Definition ptr := ("ptr")%string.

Definition mb := ("mb")%string.

396 COQ SCRIPTS

D.29 RAAxioms

Require Import Notations.
Require Import Ensembles.
Require RADefinitions.
Require RANotations.

Set Implicit Arguments.

Module Type AXIOMS
(Import Definitions : RADefinitions.DEFINITIONS).

Module RAN := RANotations.Make (Definitions).
Include RAN.

Section StateSection.

Variable Σ : Type.

Axiom single_axiom :
forall (s : Σ) (S : Ensemble Σ),
S |= single s ↔ s ∈ S.

Axiom top_axiom :
forall (R : False → R Σ),
> VV ⊗ R.

Axiom bottom_axiom :
forall (R : False → R Σ),
⊥ VV ⊕ R.

Axiom add_axiom :
forall I (R : I → R Σ) (S : Ensemble Σ),
S |= ⊕ R ↔ ∃ i, S |= R i.

Axiom mul_axiom :
forall I (R : I → R Σ) (S : Ensemble Σ),
S |= ⊗ R ↔ ∀ i, S |= R i.

Axiom implies_axiom :
forall (R R’ : R Σ),
R V R’ ↔ forall (S : Ensemble Σ),

S |= R → S |= R’.

Axiom monotonic_models_axiom :
forall (R : R Σ) (S S’ : Ensemble Σ),
S’ ⊆ S → S’ |= R → S |= R.

End StateSection.

Ltac ra_axiom :=
match goal with
| |- models _ (add _) => apply add_axiom
| |- models _ (mul _) => apply mul_axiom
| |- models _ (single _) => apply single_axiom
| |- implies _ _ => apply implies_axiom

end.

RAAXIOMS 397

Ltac ra_axiom_in H :=
match goal with

| [H’ : models _ (add _) |- _] =>
match H’ with

| H => rewrite add_axiom in H
end

| [H’ : models _ (mul _) |- _] =>
match H’ with

| H => rewrite mul_axiom in H
end

| [H’ : models _ (single _) |- _] =>
match H’ with

| H => rewrite single_axiom in H
end

| [H’ : implies _ _ |- _] =>
match H’ with

| H => rewrite implies_axiom in H
end

end.

Ltac ra_axioms :=
match goal with
| [H : _ |- _] => ra_axiom_in H; ra_axioms
| _ => (ra_axiom; ra_axioms) || idtac

end.

End AXIOMS.

398 COQ SCRIPTS

D.30 RADefaultOperators

Require Import Notations.
Require Import Misc.
Require Import EnsembleExt.
Require Import ClassicalChoice.
Require RADefinitions.
Require RANotations.
Require RAAxioms.
Require RATheorems.
Require RAOperators.

Set Implicit Arguments.

Module Make
(Import Definitions : RADefinitions.DEFINITIONS)
(Import Axioms : RAAxioms.AXIOMS Definitions)
<: RAOperators.AXIOMS Definitions Axioms.

Module RAN := RANotations.Make(Definitions).
Include RAN.

Module RAT := RATheorems.Make(Definitions)(Axioms).
Import RAT.

Section StateSection.

Variable Σ Σ’ : Type.

Definition lift (f : Σ → R Σ’) (R : R Σ) : R Σ’ :=
⊕ (fun S : { S | S |= R } =>
⊗ (fun σ : From (proj1_sig S) =>
f (proj1_sig σ))).

Theorem monotonic_lift_axiom :
forall (f g : Σ → R Σ’) (R R’ : R Σ),
(forall Σ, f Σ V g Σ) → R V R’ → lift f R V lift g R’.

Proof. (* 20 lines *) Qed.

Theorem lift_add_axiom :
forall (f : Σ → R Σ’) I (R : I → R Σ),

lift f (add R) VV add (fun i, lift f (R i)).
Proof. (* 38 lines *) Qed.

Theorem lift_single_axiom :
forall (f : Σ → R Σ’) (s : Σ),
lift f (single s) VV f s.

Proof. (* 25 lines *) Qed.

Theorem lift_mul_axiom :
forall (f : Σ → R Σ’) I (R : I → R Σ),
lift f (mul R) VV mul (fun i, lift f (R i)).

Proof. (* 53 lines *) Qed.

End StateSection.

End Make.

RADEFINITIONS 399

D.31 RADefinitions

Require Import Notations.
Require Import Relations.
Require Import Ensembles.

Set Implicit Arguments.

Module Type DEFINITIONS.

Parameter R : Type → Type.

Section StateSection.

Variable Σ : Type.

Parameters
(single : Σ → R Σ)
(models : Ensemble Σ → R Σ → Prop)
(add : forall {I : Type} (R : I → R Σ), R Σ)
(mul : forall {I : Type} (R : I → R Σ), R Σ)
(top : R Σ)
(bottom : R Σ)
(implies : relation (R Σ)).

Definition equiv : relation (R Σ) :=
fun R R’ => implies R R’ ∧ implies R’ R.

End StateSection.

Implicit Arguments top [Σ].
Implicit Arguments bottom [Σ].

End DEFINITIONS.

400 COQ SCRIPTS

D.32 RANotations

Require RADefinitions.

Module Make (D : RADefinitions.DEFINITIONS).

Import D.

Notation "⊕" := add.

Notation "⊗" := mul.

Notation ">" := (@top _).

Notation "⊥" := (@bottom _).

Notation "R V R’" := (implies R R’) (at level 70).

Notation "S |= R" := (models S R) (at level 75).

Notation "R VV R’" := (equiv R R’) (at level 70).

End Make.

RAOPERATORTHEOREMS 401

D.33 RAOperatorTheorems

Require Import Notations.
Require Import Misc.
Require Import EnsembleExt.
Require Import Classical.
Require Import ClassicalChoice.
Require Import Setoid.
Require Import Basics.
Require Import FunctionalExtensionality.
Require RADefinitions.
Require RANotations.
Require RAAxioms.
Require RATheorems.
Require RAOperators.

Set Implicit Arguments.

Module Make
(Import Definitions : RADefinitions.DEFINITIONS)
(Import Axioms : RAAxioms.AXIOMS Definitions)
(Import Operators : RAOperators.AXIOMS Definitions Axioms).

Module RAN := RANotations.Make(Definitions).
Import RAN.

Module RAT := RATheorems.Make(Definitions)(Axioms).
Import RAT.

Module RAOP := RAOperators.Make(Definitions)(Axioms)(Operators).
Import RAOP.

Import RAOP.DoNotation.

Theorem invariant_lift :
forall Σ Σ’ (f g : Σ → R Σ’) (R R’ : R Σ),
(forall Σ, f Σ VV g Σ) → R VV R’ → lift f R VV lift g R’.

Proof. (* 3 lines *) Qed.

(* For some reason, we need to copy it here *)

Add Parametric Relation Σ : (R Σ) (@implies Σ)
reflexivity proved by (@implies_reflexivity Σ)
transitivity proved by (@implies_transitivity Σ)

as implies_relation’.

Add Parametric Relation Σ : (R Σ) (@equiv Σ)
reflexivity proved by (@equiv_reflexivity Σ)
symmetry proved by (@equiv_symmetric Σ)
transitivity proved by (@equiv_transitivity Σ)

as equiv_relation’.

Add Parametric Relation I Σ : (I → R Σ) (@f_implies Σ I)
reflexivity proved by (@f_implies_reflexivity Σ I)
transitivity proved by (@f_implies_transitivity Σ I)

as f_implies_relation’.

402 COQ SCRIPTS

Add Parametric Relation I Σ : (I → R Σ) (@f_equiv Σ I)
reflexivity proved by (@f_equiv_reflexivity Σ I)
symmetry proved by (@f_equiv_symmetric Σ I)
transitivity proved by (@f_equiv_transitivity Σ I)

as f_equiv_relation’.

Add Parametric Morphism Σ (S : Ensemble Σ) : (models S) with
signature (@equiv Σ) ==> impl

as models_morphism_equiv’.
Proof. (* 2 lines *) Qed.

Add Parametric Morphism Σ : (@models Σ) with
signature (Included Σ) ++> (@implies Σ) ==> impl

as models_morphism’.
Proof. (* 5 lines *) Qed.

Add Parametric Morphism Σ I : (@add Σ I) with
signature (@f_implies Σ I) ++> (@implies Σ)

as add_morphism_implies’.
Proof. (* 2 lines *) Qed.

Add Parametric Morphism Σ I : (@mul Σ I) with
signature (@f_implies Σ I) ++> (@implies Σ)

as mul_morphism_implies’.
Proof. (* 2 lines *) Qed.

Add Parametric Morphism Σ I : (@add Σ I) with
signature (@f_equiv Σ I) ++> (@equiv Σ)

as add_morphism_equiv’.
Proof. (* 2 lines *) Qed.

Add Parametric Morphism Σ I : (@mul Σ I) with
signature (@f_equiv Σ I) ++> (@equiv Σ)

as mul_morphism_equiv’.
Proof. (* 2 lines *) Qed.

Add Parametric Morphism Σ Σ’ : (@lift Σ Σ’) with
signature (@f_implies Σ’ Σ) ==> (@implies Σ) ==> (@implies Σ’)

as lift_morphism_implies’.
Proof. (* 2 lines *) Qed.

Add Parametric Morphism Σ Σ’ : (@lift Σ Σ’) with
signature (@f_equiv Σ’ Σ) ==> (@equiv Σ) ==> (@equiv Σ’)

as lift_morphism_equiv’.
Proof. (* 2 lines *) Qed.

Add Parametric Morphism Σ : (@demonic Σ) with
signature (@equiv Σ) ==> iff

as demonic_morphism_equiv’.
Proof. (* 5 lines *) Qed.

Add Parametric Morphism Σ : (@angelic Σ) with
signature (@equiv Σ) ==> iff

as angelic_morphism_equiv’.
Proof. (* 5 lines *) Qed.

RAOPERATORTHEOREMS 403

Theorem invariant_bind : forall {A B C : Type}
(f f’ : @primitive_operator A B) (g g’ : @primitive_operator B C),
f_equiv f f’ → f_equiv g g’ → f_equiv (f ≫ g) (f’ ≫ g’).

Proof. (* 2 lines *) Qed.

Add Parametric Morphism Σ Σ’ Σ” : (@primitive_bind Σ Σ’ Σ”) with
signature (@f_equiv Σ’ Σ) ==> (@f_equiv Σ” Σ’) ==> (@f_equiv Σ” Σ)

as bind_morphism_f_equiv.
Proof. (* 2 lines *) Qed.

Ltac lhs_equiv_rhs id id’ :=
match goal with
| [|- ?X VV ?Y] => set (id := X); set (id’ := Y)

end.

Ltac lift_axiom :=
first

[rewrite lift_single_axiom
| rewrite lift_add_axiom
| rewrite lift_mul_axiom].

Ltac lift_axiom_in H :=
first

[rewrite lift_single_axiom in H
| rewrite lift_add_axiom in H
| rewrite lift_mul_axiom in H].

Ltac lift_axioms :=
match goal with
| [H : _ |- _] => lift_axiom_in H; lift_axioms
| _ => (lift_axiom; lift_axioms) || idtac

end.

Theorem bind_associative :
forall {A B C D : Type}

(f : @primitive_operator A B)
(g : @primitive_operator B C)
(h : @primitive_operator C D),
f_equiv (f ≫ (g ≫ h)) ((f ≫ g) ≫ h).

Proof. (* 20 lines *) Qed.

Theorem lift_bottom :
forall {A B : Type} (op : @primitive_operator A B),

lift op ⊥ VV ⊥.
Proof. (* 8 lines *) Qed.

Theorem lift_top :
forall {A B : Type} (op : @primitive_operator A B),

lift op > VV >.
Proof. (* 8 lines *) Qed.

Theorem lift_normalized :
forall {A B : Type} (f : @primitive_operator A B) (R : R A),
lift f R VV ⊕ (fun S : { S | S |= R } =>

⊗ (fun σ : From (proj1_sig S) =>
f (proj1_sig σ))).

Proof. (* 10 lines *) Qed.

404 COQ SCRIPTS

Theorem lift_failure :
forall A B R,
¬ R VV > → lift (@failure A B) R VV ⊥.

Proof. (* 37 lines *) Qed.

Theorem lifted_single :
forall {A} (R : R A),
lift (@single A) R VV R.

Proof. (* 15 lines *) Qed.

Theorem bind_top_left :
forall {A B C : Type}

(op : @primitive_operator A B)
(op’ : @primitive_operator B C)
(a : A),

op a VV > → (op ≫ op’) a VV >.
Proof. (* 3 lines *) Qed.

Theorem bind_bottom_left :
forall {A B C : Type}

(op : @primitive_operator A B)
(op’ : @primitive_operator B C)
(a : A),

op a VV ⊥ → (op ≫ op’) a VV ⊥.
Proof. (* 3 lines *) Qed.

Theorem bind_failure_left :
forall {A B C : Type} (op : @primitive_operator B C),

f_equiv ((@failure A B) ≫ op) (@failure A C).
Proof. (* 2 lines *) Qed.

Theorem bind_failure_right :
forall {A B C : Type} (op : @primitive_operator A B)

(a : A), ¬ (op a VV >) → (op ≫ (@failure B C)) a VV ⊥.
Proof. (* 30 lines *) Qed.

Theorem bind_block_right :
forall {A B C : Type} (op : @primitive_operator A B)

(a : A), ¬ (op a VV ⊥) → (op ≫ (@block B C)) a VV >.
Proof. (* 22 lines *) Qed.

Theorem bind_block_left :
forall {A B C : Type} (op : @primitive_operator B C),

f_equiv ((@block A B) ≫ op) (@block A C).
Proof. (* 2 lines *) Qed.

Theorem bind_nop_left :
forall {A B C : Type} (op : @operator A B C),

f_equiv (nop »= fun _ => op) op.
Proof. (* 3 lines *) Qed.

Theorem bind_id_left :
forall {A B : Type}

(op : @primitive_operator A B),
f_equiv (primitive_bind id op) (lift op).

Proof. (* 2 lines *) Qed.

RAOPERATORTHEOREMS 405

Definition pure_op_K {A Σ : Type} (op : @operator Σ Σ A) (R : Σ → R A) :=
f_equiv (fun σ : Σ => lift (fun a : A => single (a, σ)) (R σ)) op.

Definition pure_op {A Σ : Type} (op : @operator Σ Σ A) :=
exists R : Σ → R A, pure_op_K op R.

Theorem normalisation_pure_op :
forall (A Σ : Type) (op : @operator Σ Σ A),

pure_op op ↔
forall σ, op σ VV
⊕ (fun S : { S : Ensemble (A * Σ) | S |= op σ } =>
⊗ (fun π : { π | π ∈ (proj1_sig S) } =>

single (fst (proj1_sig π), σ))).
Proof. (* 66 lines *) Qed.

Theorem bind_pure : forall (A B Σ : Type)
(op : @operator Σ Σ A) (f : A → @operator Σ Σ B),
pure_op op → (forall a, pure_op (f a)) →
pure_op (op »= f).

Proof. (* 24 lines *) Qed.

Definition independent_op_K
{A Σ : Type}
(op : @operator Σ Σ A) (R : R A) :=
f_equiv (fun σ : Σ => lift (fun a : A => single (a, σ)) R) op.

Definition independent_op {A Σ : Type} (op : @operator Σ Σ A) :=
exists R : R A, independent_op_K op R.

Theorem independent_implies_pure :
forall (A Σ : Type) (op : @operator Σ Σ A),

independent_op op → pure_op op.
Proof. (* 4 lines *) Qed.

Theorem normalisation_independent_op :
forall (A Σ : Type) (op : @operator Σ Σ A),

independent_op op ↔ exists R : R A,
forall σ, op σ VV
⊕ (fun S : { S : Ensemble A | S |= R } =>
⊗ (fun a : { a | a ∈ proj1_sig S } =>
single (proj1_sig a, σ))).

Proof. (* 55 lines *) Qed.

Theorem bind_independent :
forall (A B Σ : Type)

(op : @operator Σ Σ A)
(f : A → @operator Σ Σ B),

independent_op op →
(forall a, independent_op (f a)) →
independent_op (op »= f).

Proof. (* 23 lines *) Qed.

Definition angelic_op {A B : Type} (op : @primitive_operator A B) : Prop :=
forall a : A, angelic (op a).

Definition demonic_op {A B : Type} (op : @primitive_operator A B) : Prop :=
forall a : A, demonic (op a).

406 COQ SCRIPTS

Definition deterministic_op {A B : Type}
(op : @primitive_operator A B) : Prop :=

forall a : A, deterministic (op a).

Definition angelic_op_K
{A B : Type}
(op : @primitive_operator A B)
(K : A → Ensemble B) : Prop :=
forall σ : A, angelic_K (op σ) (K σ).

Definition demonic_op_K
{A B : Type}
(op : @primitive_operator A B)
(K : A → Ensemble B) : Prop :=
forall σ : A, demonic_K (op σ) (K σ).

Definition deterministic_op_K
{A B : Type} (op : @primitive_operator A B)
(K : A → B) : Prop :=
forall σ : A, deterministic_K (op σ) (K σ).

Theorem bind_angelic_primitive :
forall

(Σ Σ’ Σ” : Type)
(op : @primitive_operator Σ Σ’)
(op’ : @primitive_operator Σ’ Σ”),
angelic_op op → angelic_op op’ → angelic_op (op ≫ op’).

Proof. (* 53 lines *) Qed.

Theorem bind_angelic :
forall

(Σ Σ’ Σ” A B : Type)
(op : @operator Σ Σ’ A)
(f : A → @operator Σ’ Σ” B),
angelic_op op → (forall a : A, angelic_op (f a)) → angelic_op (op »= f).

Proof. (* 6 lines *) Qed.

Theorem bind_demonic_primitive :
forall

(Σ Σ’ Σ” : Type)
(op : @primitive_operator Σ Σ’)
(op’ : @primitive_operator Σ’ Σ”),
demonic_op op → demonic_op op’ → demonic_op (op ≫ op’).

Proof. (* 57 lines *) Qed.

Theorem bind_demonic :
forall

(Σ Σ’ Σ” A B : Type)
(op : @operator Σ Σ’ A)
(f : A → @operator Σ’ Σ” B),
demonic_op op → (forall a : A, demonic_op (f a)) → demonic_op (op »= f).

Proof. (* 6 lines *) Qed.

Theorem det_iff_demang_op :
forall (Σ Σ’ : Type) (op : @primitive_operator Σ Σ’),
deterministic_op op ↔ angelic_op op ∧ demonic_op op.

Proof. (* 6 lines *) Qed.

RAOPERATORTHEOREMS 407

Theorem bind_deterministic_primitive :
forall

(Σ Σ’ Σ” : Type)
(op : @primitive_operator Σ Σ’)
(op’ : @primitive_operator Σ’ Σ”),
deterministic_op op →
deterministic_op op’ →
deterministic_op (op ≫ op’).

Proof. (* 5 lines *) Qed.

Theorem bind_deterministic :
forall

(Σ Σ’ Σ” A B : Type)
(op : @operator Σ Σ’ A)
(f : A → @operator Σ’ Σ” B),
deterministic_op op →
(forall a : A, deterministic_op (f a)) →
deterministic_op (op »= f).

Proof. (* 6 lines *) Qed.

Theorem deterministic_single :
forall Σ : Type,
deterministic_op (@single Σ).

Proof. (* 2 lines *) Qed.

Theorem demonic_op_compat_f_equiv :
forall (Σ Σ’ : Type) (op op’ : @primitive_operator Σ Σ’),
demonic_op op → f_equiv op op’ → demonic_op op’.

Proof. (* 4 lines *) Qed.

Add Parametric Morphism Σ Σ’ : demonic_op with
signature (@f_equiv Σ Σ’) ==> iff
as demonic_op_morphism_f_equiv.

Proof. (* 7 lines *) Qed.

Theorem angelic_op_compat_f_equiv :
forall (Σ Σ’ : Type) (op op’ : @primitive_operator Σ Σ’),
angelic_op op → f_equiv op op’ → angelic_op op’.

Proof. (* 4 lines *) Qed.

Add Parametric Morphism Σ Σ’ : angelic_op with
signature (@f_equiv Σ Σ’) ==> iff
as angelic_op_morphism_f_equiv.

Proof. (* 7 lines *) Qed.

Theorem deterministic_op_compat_f_equiv :
forall (Σ Σ’ : Type) (op op’ : @primitive_operator Σ Σ’),

deterministic_op op → f_equiv op op’ → deterministic_op op’.
Proof. (* 3 lines *) Qed.

Add Parametric Morphism Σ Σ’ : deterministic_op with
signature (@f_equiv Σ Σ’) ==> iff
as deterministic_op_morphism_f_equiv.

Proof. (* 7 lines *) Qed.

Open Scope op_scope.

408 COQ SCRIPTS

Open Scope program_scope.

Definition ra_map {A B} (f : A → B) (R : R A) : R B :=
lift ((@single _) ◦ f) R.

Theorem mapped_models :
forall {A B} (R : R A) (f : A → B) (S : Ensemble A),

S |= R → (Map f S) |= (ra_map f R).
Proof. (* 8 lines *) Qed.

Close Scope program_scope.

Close Scope op_scope.

(* Monad laws *)

Section MonadLaws.

Variables (Σ Σ’ Σ” Σ”’ A B C : Type).

Theorem monad_theorem_1 :
forall (x : A) (f : A → @operator Σ Σ B),
f_equiv (yield x »= f) (f x).

Proof. (* 3 lines *) Qed.

Theorem monad_theorem_2 :
forall (op : @operator Σ Σ’ A),
f_equiv (op »= yield) op.

Proof. (* 6 lines *) Qed.

Theorem monad_theorem_3 :
forall (m : @operator Σ Σ’ A)

(f : A → @operator Σ’ Σ” B)
(g : B → @operator Σ” Σ”’ C),

f_equiv ((m »= f) »= g) (m »= (fun x => (f x »= g))).
Proof. (* 12 lines *) Qed.

End MonadLaws.

End Make.

RAOPERATORS 409

D.34 RAOperators

Require Import Notations.
Require Import Ensembles.
Require Import Basics.
Require Import Classical.
Require RADefinitions.
Require RANotations.
Require RAAxioms.

Set Implicit Arguments.

Module Type AXIOMS
(Import D : RADefinitions.DEFINITIONS)
(Import A : RAAxioms.AXIOMS D).

Module RAN := RANotations.Make(D).
Include RAN.

Section StateSection.
Variables (Σ Σ’ : Type).

Parameter lift : (Σ → R Σ’) → R Σ → R Σ’.

Axiom monotonic_lift_axiom :
forall (f g : Σ → R Σ’) (R R’ : R Σ),
(forall σ, f σ V g σ) → R V R’ → lift f R V lift g R’.

Axiom lift_add_axiom : forall (f : Σ → R Σ’) I (R : I → R Σ),
lift f (add R) VV add (fun i => lift f (R i)).

Axiom lift_mul_axiom : forall (f : Σ → R Σ’) I (R : I → R Σ),
lift f (mul R) VV mul (fun i => lift f (R i)).

Axiom lift_single_axiom : forall (f : Σ → R Σ’) (s : Σ),
lift f (single s) VV f s.

End StateSection.
End AXIOMS.

Module Make
(Import Definitions : RADefinitions.DEFINITIONS)
(Import Axioms : RAAxioms.AXIOMS Definitions)
(Import Operators : AXIOMS Definitions Axioms).

Module RAN := RANotations.Make(Definitions). Include RAN.

Definition primitive_operator (Σ Σ’ : Type) := Σ → R Σ’.

Definition primitive_bind {Σ Σ’ Σ” : Type}
(op : primitive_operator Σ Σ’)
(op’ : primitive_operator Σ’ Σ”) : primitive_operator Σ Σ” :=
compose (lift op’) op.

Definition operator (Σ Σ’ A : Type) := primitive_operator Σ (A * Σ’).

Definition bind {Σ Σ’ Σ” A B : Type}
(op : operator Σ Σ’ A) (f : A → operator Σ’ Σ” B) :=
primitive_bind op (prod_curry f).

410 COQ SCRIPTS

Definition failure {Σ Σ’ : Type} : primitive_operator Σ Σ’ :=
fun σ : Σ => @bottom Σ’.

Definition block {Σ Σ’ : Type} : primitive_operator Σ Σ’ :=
fun σ : Σ => @top Σ’.

Definition pick_angelically {Σ : Type}
(A : Type) : operator Σ Σ A :=

fun σ : Σ => add (fun a : A => single (a, σ)).

Definition pick_demonically {Σ : Type}
(A : Type) : operator Σ Σ A :=

fun σ : Σ => mul (fun a : A => single (a, σ)).

Definition nop {Σ : Type} : operator Σ Σ unit :=
fun σ : Σ => single (�, σ).

Definition assert {Σ : Type} (b : bool) : operator Σ Σ unit :=
match b with

| true => nop
| false => failure

end.

Definition assume {Σ : Type} (b : bool) : operator Σ Σ unit :=
match b with

| true => nop
| false => block

end.

Definition yield {Σ A : Type} (x : A) : operator Σ Σ A :=
fun σ : Σ => single (x, σ).

Definition current_state {Σ : Type} : operator Σ Σ Σ :=
fun σ : Σ => single (σ, σ).

Definition set_current_state {Σ Σ’ : Type}
(σ’ : Σ’) : operator Σ Σ’ unit :=

fun σ : Σ => single (�, σ’).

Module DoNotation.
Delimit Scope op_scope with op.
Bind Scope op_scope with operator.

Notation "op ≫ op’" :=
(primitive_bind op op’) (at level 40).

Notation "op »= op’" :=
(bind op op’) (at level 40).

Notation "x ← op ; rest" := (bind op (fun x => rest))
(at level 100,
op at level 99,
rest at level 100,
right associativity) : op_scope.

Notation "op ; rest" :=
(bind op (fun (_ : unit) => rest))
(at level 100) : op_scope.

End DoNotation.

RAOPERATORS 411

Module Util.
Open Scope program_scope.

Import DoNotation.

Section TypesSection.
Variables (A B C : Type).

Definition field := ((A → B) * (A → B → A))%type.

Definition get (f : field) := fst f.

Definition set (f : field) := snd f.

Definition with_ (f : field) (g : B → C) := g ◦ get f.

Definition update (f : field) (g : B → B) :=
fun (s : A) => set f s (g (get f s)).

End TypesSection.

Section StateSection.
Variable (Σ A B: Type).

Open Scope op_scope.

Definition current
(f : field Σ A) : operator Σ Σ A :=
σ ← current_state; yield (get f σ).

Definition set_current
(f : field Σ A) (x : A) : operator Σ Σ unit :=
σ ← current_state;
set_current_state (set f σ x).

Definition with_current
(f : field Σ A) (g : A → B) : operator Σ Σ B :=
x ← current f; yield (g x).

Definition update_current
(f : field Σ A) (g : A → A) : operator Σ Σ unit :=
x ← current f;
set_current f (g x).

Definition from_some (x : option A) : operator Σ Σ A :=
match x with

| Some x => yield x
| None => failure

end.

Close Scope op_scope.
End StateSection.

End Util.
End Make.

412 COQ SCRIPTS

D.35 RATheorems

Require Import Notations.
Require Import Relations.
Require Import Ensembles.
Require Import Basics.
Require Import Setoid.
Require Import EnsembleExt.
Require Import Misc.
Require Import Classical.
Require Import ClassicalChoice.
Require RAAxioms.
Require RADefinitions.
Require RANotations.

Set Implicit Arguments.

Module Make
(Import Definitions : RADefinitions.DEFINITIONS)
(Import Axioms : RAAxioms.AXIOMS Definitions).

Import Definitions.
Import Axioms.

Module RAN := RANotations.Make (Definitions).
Include RAN.

Definition valid {Σ} (R : R Σ) :=
(fun _ => True) |= R.

Section StateSection.
Variable Σ : Type.

Definition f_implies {I} : relation (I → R Σ) :=
fun (R R’ : I → R Σ) =>
∀ i : I, implies (R i) (R’ i).

Definition f_equiv {I} : relation (I → R Σ) :=
fun (R R’ : I → R Σ) =>
∀ i : I, equiv (R i) (R’ i).

Definition invariant_function (f : R Σ → R Σ) :=
∀ R R’ : R Σ, R VV R’ → f R VV f R’.

Theorem implies_reflexivity :
reflexive (R Σ) (@implies Σ).

Proof. (* 3 lines *) Qed.

Hint Immediate implies_reflexivity : radb.

Theorem implies_transitivity :
transitive (R Σ) (@implies Σ).

Proof. (* 3 lines *) Qed.

Add Parametric Relation : (R Σ) (@implies Σ)
reflexivity proved by implies_reflexivity
transitivity proved by implies_transitivity

as implies_relation.

RATHEOREMS 413

Theorem f_implies_reflexivity :
forall I,
reflexive (I → R Σ) (@f_implies I).

Proof. (* 1 lines *) Qed.

Theorem f_implies_transitivity :
forall I,
transitive (I → R Σ) (@f_implies I).

Proof. (* 3 lines *) Qed.

Add Parametric Relation I : (I → R Σ) (@f_implies I)
reflexivity proved by (@f_implies_reflexivity I)
transitivity proved by (@f_implies_transitivity I)

as f_implies_relation.

Theorem equiv_reflexivity : reflexive (R Σ) (@equiv Σ).
Proof. (* 1 lines *) Qed.

Hint Immediate equiv_reflexivity : radb.

Hint Extern 1 =>
unfold equiv in * |- * : radb.

Hint Extern 1 =>
repeat match goal with

| [H : _ ∧ _ |- _] => destruct H
| |- _ ∧ _ => split

end : radb.

Theorem equiv_symmetric :
symmetric (R Σ) (@equiv Σ).

Proof. (* 1 lines *) Qed.

Theorem equiv_transitivity :
transitive (R Σ) (@equiv Σ).

Proof. (* 5 lines *) Qed.

Add Parametric Relation : (R Σ) (@equiv Σ)
reflexivity proved by equiv_reflexivity
symmetry proved by equiv_symmetric
transitivity proved by equiv_transitivity

as equiv_relation.

Theorem f_equiv_reflexivity :
forall I,

reflexive (I → R Σ) (@f_equiv I).
Proof. (* 1 lines *) Qed.

Hint Immediate f_equiv_reflexivity : radb.

Theorem f_equiv_symmetric :
forall I,

symmetric (I → R Σ) (@f_equiv I).
Proof. (* 3 lines *) Qed.

Theorem f_equiv_transitivity :
forall I,

transitive (I → R Σ) (@f_equiv I).
Proof. (* 3 lines *) Qed.

414 COQ SCRIPTS

Add Parametric Relation I : (I → R Σ) (@f_equiv I)
reflexivity proved by (@f_equiv_reflexivity I)
symmetry proved by (@f_equiv_symmetric I)
transitivity proved by (@f_equiv_transitivity I)

as f_equiv_relation.

Theorem implies_compat_implies :
forall (R1 R1’ : R Σ), R1’ V R1 →
forall (R2 R2’ : R Σ), R2 V R2’ →

R1 V R2 → R1’ V R2’.
Proof. (* 3 lines *) Qed.

Theorem implies_compat_equiv :
forall (R1 R1’ : R Σ), R1 VV R1’ →
forall (R2 R2’ : R Σ), R2 VV R2’ →

R1 V R2 → R1’ V R2’.
Proof. (* 4 lines *) Qed.

Theorem models_compat_equiv :
forall (R R’ : R Σ),
R VV R’ ↔ (forall (S : Ensemble Σ), S |= R ↔ S |= R’).

Proof. (* 13 lines *) Qed.

Theorem invariant_models :
forall (R R’ : R Σ) S,
R VV R’ → S |= R → S |= R’.

Proof. (* 2 lines *) Qed.

Add Parametric Morphism (S : Ensemble Σ) : (models S) with
signature (@equiv Σ) ==> impl

as models_morphism_equiv.
Proof. (* 2 lines *) Qed.

Theorem normalization : forall (R : R Σ),
R VV ⊕ (fun S : { S | S |= R } =>

⊗ (fun σ : From (proj1_sig S) =>
single (proj1_sig σ))).

Proof. (* 26 lines *) Qed.

Add Parametric Morphism : (@models Σ) with
signature (Included Σ) ++> (@implies Σ) ==> impl

as models_morphism.
Proof. (* 5 lines *) Qed.

Theorem top_model : ∀ S : Ensemble Σ, S |= >.
Proof. (* 7 lines *) Qed.

Theorem bottom_model : ∀ S : Ensemble Σ, ¬(S |= ⊥).
Proof. (* 7 lines *) Qed.

Theorem top_models_all : ∀ R : R Σ, (∀ S, S |= R) ↔ R VV >.
Proof. (* 4 lines *) Qed.

Theorem only_empty_set_models_top : ∀ R : R Σ, ∅ |= R ↔ R VV >.
Proof. (* 8 lines *) Qed.

Theorem bottom_implies_all : ∀ R : R Σ, ⊥ V R.
Proof. (* 5 lines *) Qed.

RATHEOREMS 415

Theorem only_bottom_without_models :
∀ R : R Σ, (¬ ∃ S, S |= R) ↔ R VV ⊥.

Proof. (* 12 lines *) Qed.

Theorem all_implies_top :
∀ R : R Σ, R V >.

Proof. (* 3 lines *) Qed.

Theorem only_bottom_implies_bottom :
∀ R : R Σ, R V ⊥ → R VV ⊥.

Proof. (* 5 lines *) Qed.

Theorem top_implies_none :
∀ R : R Σ, > V R → R VV >.

Proof. (* 5 lines *) Qed.

Theorem implies_single :
forall (x : Σ) (R : R Σ),
R V single x ↔ (∀ S, S |= R → x ∈ S).

Proof. (* 9 lines *) Qed.

Theorem add_singleton_index :
forall I (R : I → R Σ),
singleton I → ∀ i : I, ⊕ R VV R i.

Proof. (* 14 lines *) Qed.

Theorem mul_singleton_index :
forall I (R : I → R Σ),
singleton I → ∀ i : I, ⊗ R VV R i.

Proof. (* 11 lines *) Qed.

Theorem add_top :
forall I (R : I → R Σ),
(∃ i : I, R i VV >) → ⊕ R VV >.

Proof. (* 11 lines *) Qed.

Theorem add_bottom : forall I (R : I → R Σ),
(∀ i : I, R i VV ⊥) ↔ ⊕ R VV ⊥.

Proof. (* 13 lines *) Qed.

Theorem mul_bottom : forall I (R : I → R Σ),
(∃ i : I, R i VV ⊥) → ⊗ R VV ⊥.

Proof. (* 13 lines *) Qed.

Theorem mul_top :
forall I (R : I → R Σ),
(∀ i : I, R i VV >) ↔ ⊗ R VV >.

Proof. (* 13 lines *) Qed.

Theorem add_compat_implies :
forall I (R R’ : I → R Σ),
f_implies R R’ → ⊕ R V ⊕ R’.

Proof. (* 8 lines *) Qed.

Add Parametric Morphism I : (@add Σ I) with
signature f_implies ++> (@implies Σ)

as add_morphism_implies.
Proof. (* 2 lines *) Qed.

416 COQ SCRIPTS

Theorem mul_compat_implies :
forall I (R R’ : I → R Σ),
f_implies R R’ → ⊗ R V ⊗ R’.

Proof. (* 6 lines *) Qed.

Add Parametric Morphism I : (@mul Σ I) with
signature f_implies ++> (@implies Σ)

as mul_morphism_implies.
Proof. (* 2 lines *) Qed.

Lemma f_equiv_to_f_impl :
forall I (R R’ : I → R Σ),
f_equiv R R’ ↔ f_implies R R’ ∧ f_implies R’ R.

Proof. (* 7 lines *) Qed.

Theorem add_compat_equiv :
forall I (R R’ : I → R Σ),
f_equiv R R’ → ⊕ R VV ⊕ R’.

Proof. (* 9 lines *) Qed.

Add Parametric Morphism I : (@add Σ I) with
signature f_equiv ++> (@equiv Σ)

as add_morphism_equiv.
Proof. (* 2 lines *) Qed.

Theorem mul_compat_equiv :
forall I (R R’ : I → R Σ),
f_equiv R R’ → ⊗ R VV ⊗ R’.

Proof. (* 8 lines *) Qed.

Add Parametric Morphism I : (@mul Σ I) with
signature f_equiv ++> (@equiv Σ)

as mul_morphism_equiv.
Proof. (* 2 lines *) Qed.

Theorem R_implies_add :
forall I (R : I → R Σ) (i : I),
R i V ⊕ R.

Proof. (* 5 lines *) Qed.

Theorem mul_implies_R :
forall I (R : I → R Σ) (i : I),
⊗ R V R i.

Proof. (* 5 lines *) Qed.

Theorem add_constant_R :
forall I (R : I → R Σ) (i : I),
(∀ j, R i = R j) → ⊕ R VV R i.

Proof. (* 13 lines *) Qed.

Theorem mul_constant_R :
forall I (R : I → R Σ) (i : I),
(∀ j, R i = R j) → ⊗ R VV R i.

Proof. (* 9 lines *) Qed.

Theorem forall_iff_mul : forall I (R : R Σ) (R’ : I → R Σ),
(forall i : I, R V R’ i) ↔ R V ⊗ R’.

Proof. (* 17 lines *) Qed.

RATHEOREMS 417

Theorem models_add_union : forall U (A B : Ensemble U) (R : U → R Σ) S,
S |= ⊕ (R ↓ A ∪ B) ↔ S |= ⊕ (R ↓ A) ∨ S |= ⊕ (R ↓ B).

Proof. (* 39 lines *) Qed.

Theorem models_add_subset : forall U (A A’ : Ensemble U) (R : U → R Σ) S,
A’ ⊆ A → S |= ⊕ (R ↓ A’) → S |= ⊕ (R ↓ A).

Proof. (* 7 lines *) Qed.

Theorem implies_add_unionl : forall U (A B : Ensemble U) (R : U → R Σ),
⊕ (R ↓ A) V ⊕ (R ↓ A ∪ B).

Proof. (* 5 lines *) Qed.

Theorem implies_add_unionr : forall U (A B : Ensemble U) (R : U → R Σ),
⊕ (R ↓ B) V ⊕ (R ↓ A ∪ B).

Proof. (* 4 lines *) Qed.

Theorem implies_add_subset : forall U (A A’ : Ensemble U) (R : U → R Σ),
A’ ⊆ A -> ⊕ (R ↓ A’) V ⊕ (R ↓ A).

Proof. (* 5 lines *) Qed.

Theorem models_mul_union : forall U (A B : Ensemble U) (R : U → R Σ) S,
S |= ⊗ (R ↓ A ∪ B) ↔ S |= ⊗ (R ↓ A) ∧ S |= ⊗ (R ↓ B).

Proof. (* 34 lines *) Qed.

Theorem models_mul_subset : forall U (A A’ : Ensemble U) (R : U → R Σ) S,
A’ ⊆ A → S |= ⊗ (R ↓ A) → S |= ⊗ (R ↓ A’).

Proof. (* 7 lines *) Qed.

Theorem implies_mul_unionl : forall U (A B : Ensemble U) (R : U → R Σ),
⊗ (R ↓ A ∪ B) V ⊗ (R ↓ A).

Proof. (* 5 lines *) Qed.

Theorem implies_mul_unionr : forall U (A B : Ensemble U) (R : U → R Σ),
⊗ (R ↓ A ∪ B) V ⊗ (R ↓ B).

Proof. (* 4 lines *) Qed.

Theorem implies_mul_subset : forall U (A A’ : Ensemble U) (R : U → R Σ),
A’ ⊆ A -> ⊗ (R ↓ A) V ⊗ (R ↓ A’).

Proof. (* 5 lines *) Qed.

Theorem add_bottoml : forall U (A B : Ensemble U) (R : U → R Σ),
(forall (a : From A), (R ↓ A) a VV ⊥) →
⊕ (R ↓ A ∪ B) VV ⊕ (R ↓ B).

Proof. (* 27 lines *) Qed.

Theorem add_bottomr : forall U (A B : Ensemble U) (R : U → R Σ),
(forall (b : From B), (R ↓ B) b VV ⊥) →
⊕ (R ↓ A ∪ B) VV ⊕ (R ↓ A).

Proof. (* 5 lines *) Qed.

Theorem mul_topl : forall U (A B : Ensemble U) (R : U → R Σ),
(forall (a : From A), (R ↓ A) a VV >) →
⊗ (R ↓ A ∪ B) VV ⊗ (R ↓ B).

Proof. (* 30 lines *) Qed.

Theorem mul_topr : forall U (A B : Ensemble U) (R : U → R Σ),
(forall (b : From B), (R ↓ B) b VV >) →
⊗ (R ↓ A ∪ B) VV ⊗ (R ↓ A).

Proof. (* 5 lines *) Qed.

418 COQ SCRIPTS

Theorem add_flatten :
forall I J (R : I -> J -> R Σ),
⊕ (fun i, ⊕ (R i)) VV ⊕ (fun p => R (fst p) (snd p)).

Proof. (* 22 lines *) Qed.

Theorem add_flatten_dep :
forall A I (J : I → Ensemble A) (R : A → R Σ),
⊕ (fun i : I => ⊕ (R ↓ J i)) VV
⊕ (R ↓ IndexedUnion J).

Proof. (* 27 lines *) Qed.

Theorem mul_flatten :
forall I J (R : I -> J -> R Σ),
⊗ (fun i, ⊗ (R i)) VV ⊗ (fun p => R (fst p) (snd p)).

Proof. (* 20 lines *) Qed.

Theorem mul_flatten_dep :
forall A I (J : I → Ensemble A) (R : A → R Σ),
⊗ (fun i : I => ⊗ (R ↓ J i)) VV
⊗ (R ↓ IndexedUnion J).

Proof. (* 29 lines *) Qed.

Theorem add_mul : forall I J (R : I → J → R Σ),
⊕ (fun i, ⊗ (R i)) VV
⊗ (fun f, ⊕ (fun i, R i (f i))).

Proof. (* 60 lines *) Qed.

Theorem mul_add : forall I J (R : I → J → R Σ),
⊗ (fun i, ⊕ (R i)) VV
⊕ (fun f : I → J => ⊗ (fun i, R i (f i))).

Proof. (* 42 lines *) Qed.

Theorem add_make_undep :
forall (I J : Type) (R : J → R Σ) (ι : I → Ensemble J) (i : I),
⊕ (fun j : From (ι i) => R (proj1_sig j)) VV
⊕ (fun j : J =>
⊕ (fun j’ : From (Intersection _ (Singleton j) (ι i)) =>
R (proj1_sig j’))).

Proof. (* 24 lines *) Qed.

Theorem swap_add :
forall (I J : Type) (R : I → J → R Σ),
⊕ (fun i : I => ⊕ (R i)) VV
⊕ (fun j : J => ⊕ (fun i : I => R i j)).

Proof. (* 10 lines *) Qed.

Theorem swap_mul :
forall (I J : Type) (R : I → J → R Σ),
⊗ (fun i : I => ⊗ (R i)) VV
⊗ (fun j : J => ⊗ (fun i : I => R i j)).

Proof. (* 5 lines *) Qed.

Theorem models_define_result :
forall (R R’ : R Σ),
(forall S : Ensemble Σ, S |= R ↔ S |= R’) ↔ R VV R’.

Proof. (* 3 lines *) Qed.

RATHEOREMS 419

Definition angelic_K (R : R Σ) (K : Ensemble Σ) : Prop :=
R VV ⊕ (fun s : From K => single (proj1_sig s)).

Definition demonic_K (R : R Σ) (K : Ensemble Σ) : Prop :=
R VV ⊗ (fun s : From K => single (proj1_sig s)).

Definition deterministic_K (R : R Σ) (K : Σ) : Prop :=
R VV single K.

Definition angelic (R : R Σ) := exists S : Ensemble Σ, angelic_K R S.

Definition demonic (R : R Σ) := exists S : Ensemble Σ, demonic_K R S.

Definition deterministic (R : R Σ) := exists s : Σ, deterministic_K R s.

Theorem singleton_model_of_single :
forall (s : Σ), Singleton s |= single s.

Proof. (* 3 lines *) Qed.

Theorem deterministic_implies_angelic :
forall (R : R Σ), deterministic R → angelic R.

Proof. (* 21 lines *) Qed.

Theorem deterministic_implies_demonic :
forall (R : R Σ), deterministic R → demonic R.

Proof. (* 14 lines *) Qed.

Theorem angelic_singleton_models :
forall (R : R Σ), angelic R ↔
forall S, S |= R → exists s : Σ, s ∈ S ∧ Singleton s |= R.

Proof. (* 30 lines *) Qed.

Theorem demonic_core_model :
forall (R : R Σ) (S : Ensemble Σ),
demonic_K R S ↔ S |= R ∧ ∀ S’, S’ |= R → S ⊆ S’.

Proof. (* 33 lines *) Qed.

Theorem demonic_angelic_implies_deterministic :
forall (R : R Σ),
angelic R → demonic R → deterministic R.

Proof. (* 21 lines *) Qed.

Add Parametric Morphism : (@implies Σ) with
signature (@equiv Σ) ==> (@equiv Σ) ==> iff

as implies_morphism_equiv_equiv.
Proof. (* 5 lines *) Qed.

Theorem angelic_compat_equiv :
forall R R’ : R Σ, angelic R → R VV R’ → angelic R’.

Proof. (* 6 lines *) Qed.

Theorem demonic_compat_equiv :
forall R R’ : R Σ, demonic R → R VV R’ → demonic R’.

Proof. (* 4 lines *) Qed.

Add Parametric Morphism : demonic with
signature (@equiv Σ) ==> iff

as demonic_morphism_equiv.
Proof. (* 5 lines *) Qed.

420 COQ SCRIPTS

Add Parametric Morphism : angelic with
signature (@equiv Σ) ==> iff

as angelic_morphism_equiv.
Proof. (* 5 lines *) Qed.

Theorem deterministic_compat_equiv :
forall R R’ : R Σ,
deterministic R → R VV R’ → deterministic R’.

Proof. (* 4 lines *) Qed.

Add Parametric Morphism : deterministic with
signature (@equiv Σ) ==> iff

as deterministic_morphism_equiv.
Proof. (* 5 lines *) Qed.

Theorem angelic_K_compat_equiv :
forall (R R’ : R Σ) (K : Ensemble Σ),
R VV R’ → angelic_K R K → angelic_K R’ K.

Proof. (* 3 lines *) Qed.

Theorem unique_angelic_K : forall (R : R Σ) (K K’ : Ensemble Σ),
angelic_K R K → angelic_K R K’ → Same_set _ K K’.

Proof. (* 35 lines *) Qed.

Theorem angelic_equiv_iff_same_charset :
forall (R R’ : R Σ) (K K’ : Ensemble Σ),
angelic_K R K → angelic_K R’ K’ → (R VV R’ ↔ Same_set _ K K’).

Proof. (* 10 lines *) Qed.

Add Parametric Morphism : angelic_K with
signature (@equiv Σ) ==> (@Same_set Σ) ==> iff

as angelic_K_morphism.
Proof. (* 5 lines *) Qed.

Theorem demonic_K_compat_equiv :
forall (R R’ : R Σ) (K : Ensemble Σ),
R VV R’ → demonic_K R K → demonic_K R’ K.

Proof. (* 3 lines *) Qed.

Theorem unique_demonic_K :
forall (R : R Σ) (K K’ : Ensemble Σ),
demonic_K R K → demonic_K R K’ → Same_set _ K K’.

Proof. (* 32 lines *) Qed.

Theorem demonic_equiv_iff_same_charset :
forall (R R’ : R Σ) (K K’ : Ensemble Σ),
demonic_K R K → demonic_K R’ K’ → (R VV R’ ↔ Same_set _ K K’).

Proof. (* 10 lines *) Qed.

Add Parametric Morphism : demonic_K with
signature (@equiv Σ) ==> (@Same_set Σ) ==> iff

as demonic_K_morphism.
Proof. (* 5 lines *) Qed.

Theorem deterministic_K_compat_equiv :
forall (R R’ : R Σ) (K : Σ),
R VV R’ → deterministic_K R K → deterministic_K R’ K.

Proof. (* 3 lines *) Qed.

RATHEOREMS 421

Theorem unique_deterministic_K :
forall (R : R Σ) (K K’ : Σ),
deterministic_K R K → deterministic_K R K’ → K = K’.

Proof. (* 21 lines *) Qed.

Theorem deterministic_equiv_iff_same_charset :
forall (R R’ : R Σ) (K K’ : Σ),
deterministic_K R K → deterministic_K R’ K’ → (R VV R’ ↔ K = K’).

Proof. (* 10 lines *) Qed.

Add Parametric Morphism : deterministic_K with
signature (@equiv Σ) ==> eq ==> iff

as deterministic_K_morphism.
Proof. (* 5 lines *) Qed.

End StateSection.

Section PsiPhiSection.

Variables
(A B : Type)
(φ : A → Ensemble B)
(ψ : B → Ensemble A).

Hypothesis inv : forall (a : A) (b : B), b ∈ φ a ↔ a ∈ ψ b.

Theorem single_implies_mul_add_inv :
forall a : A,
single a V
⊗ (fun b : From (φ a) =>
⊕ (fun a’ : From (ψ (proj1_sig b)) =>
single (proj1_sig a’))).

Proof. (* 6 lines *) Qed.

Theorem add_mul_inv_implies_single :
forall b : B,
⊕ (fun a : From (ψ b) =>
⊗ (fun b’ : From (φ (proj1_sig a)) =>
single (proj1_sig b’))) V single b.

Proof. (* 6 lines *) Qed.

End PsiPhiSection.

End Make.

422 COQ SCRIPTS

D.36 Routine

Require Import Notations.
Require Import String.

Module Type NAME.
Parameters
(t : Set)
(eq_dec : forall x y : t, {x = y} + {x , y}).

End NAME.

Module Name.

Module String <: NAME.

Definition t := string.

Definition eq_dec := string_dec.

End String.

End Name.

Module DefaultName := Name.String.

SIL 423

D.37 SIL

Require Import Notations.
Require Import Ensembles.
Require Import ListExt.
Require Import Bool.

Require Import Identifier.
Require Expression.
Require BooleanExpression.
Require Routine.
Require Predicate.

Module RName := Routine.DefaultName.

Inductive command : Set :=
| cmd_skip
| cmd_assign (_ : Id.t) (_ : Expression.t)
| cmd_read_heap (_ : Id.t) (_ : Expression.t)
| cmd_write_heap (_ : Expression.t) (_ : Expression.t)
| cmd_sequence (_ : command) (_ : command)
| cmd_malloc (_ : Id.t) (_ : nat)
| cmd_free (_ : Expression.t)
| cmd_if (_ : BooleanExpression.t) (_ : command) (_ : command)
| cmd_routine_call (_ : RName.t) (_ : Expression.t).

Record routine_definition : Set :=
RoutineDefinition {
argument : Id.t;
routine_body : command

} .

Record program : Set :=
Program {
routines : RName.t → option routine_definition;
main_routine : RName.t

} .

Inductive cmd_routine_reference : command → RName.t → Prop :=
| crr_routine_call : forall r e,

cmd_routine_reference (cmd_routine_call r e) r
| crr_if_then :
forall r b c1 c2, cmd_routine_reference c1 r →

cmd_routine_reference (cmd_if b c1 c2) r
| crr_if_else : forall r b c1 c2,

cmd_routine_reference c2 r →
cmd_routine_reference (cmd_if b c1 c2) r

| crr_seq_left :
forall r c1 c2,

cmd_routine_reference c1 r →
cmd_routine_reference (cmd_sequence c1 c2) r

| crr_seq_right :
forall r c1 c2,

cmd_routine_reference c2 r →
cmd_routine_reference (cmd_sequence c1 c2) r.

424 COQ SCRIPTS

Definition defined_routines (p : program) : Ensemble RName.t :=
fun rname => exists rdef, routines p rname = Some rdef.

Inductive program_routine_reference : program → RName.t → Prop :=
| prr_intro : forall p r rname arg c,
routines p r = Some (RoutineDefinition arg c) →
cmd_routine_reference c rname →
program_routine_reference p rname.

Definition routine_complete (p : program) : Prop :=
forall r : RName.t, program_routine_reference p r → r ∈ defined_routines p.

Definition wellformed_program (p : program) : Prop :=
routine_complete p.

Module Notations.

Delimit Scope command_scope with command.

Notation "’skip’" :=
(cmd_skip) : command_scope.

Notation "x := e" :=
(cmd_assign x e) (at level 50) : command_scope.

Notation "x := ~ y �" :=
(cmd_read_heap x y) (at level 50) : command_scope.

Notation "~ x � := y" :=
(cmd_write_heap x y) (at level 50, x ident, y ident) : command_scope.

Notation "c ; d" :=
(cmd_sequence c d) (at level 85) : command_scope.

Notation "x := ’malloc’ n" :=
(cmd_malloc x n) (at level 50) : command_scope.

Notation "’free’ x" :=
(cmd_free x) (at level 50) : command_scope.

Notation "’If’ b ’Then’ c1 ’Else’ c2" :=
(cmd_if b c1 c2) (at level 80) : command_scope.

Notation "r [x]" :=
(cmd_routine_call r x) (at level 50, x at level 0) : command_scope.

End Notations.

SILPP 425

D.38 SILPP

Require Import Notations.
Require Import Ensembles.
Require Import ListExt.

Require Import Identifier.
Require Expression.
Require BooleanExpression.
Require Routine.
Require Predicate.
Require Assertion.
Require SIL.

Import Assertion.Notations.

Module RName := Routine.DefaultName.

Inductive command : Set :=
| cmd_skip
| cmd_assign (_ : Id.t) (_ : Expression.t)
| cmd_read_heap (_ : Id.t) (_ : Expression.t)
| cmd_write_heap (_ : Expression.t) (_ : Expression.t)
| cmd_sequence (_ : command) (_ : command)
| cmd_malloc (_ : Id.t) (_ : nat)
| cmd_free (_ : Expression.t)
| cmd_if (_ : BooleanExpression.t) (_ : command) (_ : command)
| cmd_routine_call (_ : RName.t) (_ : Expression.t)
| cmd_open (_ : Predicate.t) (_ : Expression.t)
| cmd_close (_ : Predicate.t) (_ : Expression.t) (_ : Expression.t).

Fixpoint translate_command (c : command) : SIL.command :=
match c with
| cmd_skip => SIL.cmd_skip
| cmd_assign x e => SIL.cmd_assign x e
| cmd_read_heap x y => SIL.cmd_read_heap x y
| cmd_write_heap x y => SIL.cmd_write_heap x y
| cmd_malloc x n => SIL.cmd_malloc x n
| cmd_free x => SIL.cmd_free x
| cmd_routine_call r x => SIL.cmd_routine_call r x
| cmd_open _ _ => SIL.cmd_skip
| cmd_close _ _ _ => SIL.cmd_skip
| cmd_if b c1 c2 =>

SIL.cmd_if b (translate_command c1)
(translate_command c2)

| cmd_sequence c1 c2 =>
SIL.cmd_sequence (translate_command c1) (translate_command c2)

end.

Record predicate_definition : Set :=
PredicateDefinition {
argument_a : Id.t;
argument_b : Id.t;
predicate_body : Assertion.t

} .

426 COQ SCRIPTS

Record routine_definition : Set :=
RoutineDefinition {
argument : Id.t;
precondition : Assertion.t;
postcondition : Assertion.t;
routine_body : command

} .

Record program : Set :=
Program {

predicates : Predicate.t → option predicate_definition;
routines : RName.t → option routine_definition;
main_routine : RName.t

} .

Inductive cmd_routine_reference : command → RName.t → Prop :=
| crr_routine_call :
forall r e,

cmd_routine_reference (cmd_routine_call r e) r
| crr_if_then :
forall r b c1 c2,

cmd_routine_reference c1 r →
cmd_routine_reference (cmd_if b c1 c2) r

| crr_if_else :
forall r b c1 c2,

cmd_routine_reference c2 r →
cmd_routine_reference (cmd_if b c1 c2) r

| crr_seq_left :
forall r c1 c2,

cmd_routine_reference c1 r →
cmd_routine_reference (cmd_sequence c1 c2) r

| crr_seq_right :
forall r c1 c2,

cmd_routine_reference c2 r →
cmd_routine_reference (cmd_sequence c1 c2) r.

Inductive cmd_predicate_reference : command → Predicate.t → Prop :=
| cpr_open :
forall p e,

cmd_predicate_reference (cmd_open p e) p
| cpr_close :
forall p e e’,

cmd_predicate_reference (cmd_close p e e’) p
| cpr_if_then :
forall p b c1 c2,

cmd_predicate_reference c1 p →
cmd_predicate_reference (cmd_if b c1 c2) p

| cpr_if_else :
forall p b c1 c2,

cmd_predicate_reference c2 p →
cmd_predicate_reference (cmd_if b c1 c2) p

| cpr_seq_left :
forall p c1 c2,

cmd_predicate_reference c1 p →
cmd_predicate_reference (cmd_sequence c1 c2) p

SILPP 427

| cpr_seq_right :
forall p c1 c2,
cmd_predicate_reference c2 p →
cmd_predicate_reference (cmd_sequence c1 c2) p.

Inductive routine_assertion_reference : routine_definition →
Predicate.t →
Prop :=

| rar_pre :
forall p arg pre post body,
Assertion.assertion_predicate_reference pre p →
routine_assertion_reference (RoutineDefinition arg pre post body) p

| rar_post :
forall p arg pre post body,
Assertion.assertion_predicate_reference post p →
routine_assertion_reference (RoutineDefinition arg pre post body) p

| rar_body :
forall p arg pre post body,
cmd_predicate_reference body p →
routine_assertion_reference (RoutineDefinition arg pre post body) p.

Definition defined_routines (p : program) : Ensemble RName.t :=
fun rname => exists rdef, routines p rname = Some rdef.

Definition defined_predicates (p : program) : Ensemble Predicate.t :=
fun pred => exists pdef, predicates p pred = Some pdef.

Inductive program_routine_reference : program → RName.t → Prop :=
| prr_intro :
forall p r rname arg pre post c,

routines p r = Some (RoutineDefinition arg pre post c) →
cmd_routine_reference c rname →
program_routine_reference p rname.

Inductive program_assertion_reference : program → Predicate.t → Prop :=
| par_routine :
forall p rname rdef pred,

routines p rname = Some rdef →
routine_assertion_reference rdef pred →
program_assertion_reference p pred

| par_preddef :
forall p pname x y body,

predicates p pname = Some (PredicateDefinition x y body) →
Assertion.assertion_predicate_reference body pname →
program_assertion_reference p pname.

Definition routine_complete (p : program) : Prop :=
forall r : RName.t,
program_routine_reference p r → r ∈ defined_routines p.

Definition predicate_complete (p : program) : Prop :=
forall pred : Predicate.t,
program_assertion_reference p pred → pred ∈ defined_predicates p.

Definition wellformed_program (p : program) : Prop :=
routine_complete p ∧ predicate_complete p.

428 COQ SCRIPTS

Definition translate_program (p : program) : SIL.program :=
let aux :=
fun r => match routines p r with

| Some (RoutineDefinition arg _ _ body) =>
Some (SIL.RoutineDefinition arg (translate_command body))

| None =>
None

end
in
SIL.Program aux (main_routine p).

Module Notations.

Delimit Scope command_scope with command.

Notation "’skip’" :=
(cmd_skip) : command_scope.

Notation "x := e" :=
(cmd_assign x e) (at level 50) : command_scope.

Notation "x := ~ e �" :=
(cmd_read_heap x e) (at level 50) : command_scope.

Notation "~ e � := e’" :=
(cmd_write_heap e e’) (at level 50) : command_scope.

Notation "c ; d" :=
(cmd_sequence c d) (at level 85) : command_scope.

Notation "x := ’malloc’ n" :=
(cmd_malloc x n) (at level 50) : command_scope.

Notation "’free’ x" :=
(cmd_free x) (at level 50) : command_scope.

Notation "’If’ b ’Then’ c1 ’Else’ c2" :=
(cmd_if b c1 c2) (at level 80) : command_scope.

Notation "r [x]" :=
(cmd_routine_call r x) (at level 50, x at level 0) : command_scope.

Notation "’open’ x [e ; ?]" :=
(cmd_open x e) (x at level 10, e at level 0) : command_scope.

Notation "’close’ x [e1 ; e2]" :=
(cmd_close x e1 e2) (x at level 20, e1 at level 0, e2 at level 0) :

command_scope.

Open Scope command_scope.

End Notations.

SMT 429

D.39 SMT

Require Import List.
Require Import Arith.
Require Import Notations.
Require Formula.
Require Symbol.
Require Term.

Ltac prove_antecedent H :=
match goal with
| [H’ : ?X → _ |- _] =>
match H with
H’ => let aux := fresh in

assert (aux : X);
[idtac | specialize (H aux); clear aux]

end
end.

Module Symb := Symbol.Default.

Inductive result : Set :=
| Unsat
| Sat
| NoClue
| Valid.

Theorem result_dec_eq : forall r r’ : result, { r = r’ } + { r , r’ } .
Proof. (* 2 lines *) Qed.

Definition result_beq (r r’ : result) : bool :=
if result_dec_eq r r’ then true else false.

Definition models (I : Symb.t → nat) (φ : Formula.t) : Prop :=
Formula.evaluate φ I = true.

Definition has_model (φ : Formula.t) : Prop :=
exists I : Symb.t → nat, models I φ.

Definition valid (φ : Formula.t) : Prop := forall I : Symb.t → nat, models I φ.

Theorem valid_implies_has_model : forall φ, valid φ → has_model φ.
Proof. (* 4 lines *) Qed.

Theorem valid_implies_model : forall φ I, valid φ → models I φ.
Proof. (* 1 lines *) Qed.

Theorem conjunction_models :
forall I φ φ’,
models I (Formula.fla_and φ φ’) ↔ models I φ ∧ models I φ’.

Proof. (* 12 lines *) Qed.

Theorem negconj_models :
forall I φ φ’,
models I (Formula.fla_not (Formula.fla_and φ φ’)) ↔
models I (Formula.fla_not φ) ∨ models I (Formula.fla_not φ’).

Proof. (* 15 lines *) Qed.

430 COQ SCRIPTS

Theorem negneg_models :
forall I φ,
models I φ ↔ models I (Formula.fla_not (Formula.fla_not φ)).

Proof. (* 8 lines *) Qed.

Module Type SOLVER.
Parameter decide : Formula.t → result.

Parameter get_value : Formula.t → Term.t → option nat.

Axiom decide_soundness_sat : forall φ : Formula.t,
decide φ = Sat → has_model φ.

Axiom decide_soundness_unsat : forall φ : Formula.t,
decide φ = Unsat → ¬ has_model φ.

Axiom decide_soundness_valid : forall φ : Formula.t,
decide φ = Valid → valid φ.

End SOLVER.

Module MakeClueless <: SOLVER.
Definition decide (φ : Formula.t) : result :=
NoClue.

Definition get_value (φ : Formula.t) (t : Term.t) : option nat :=
None.

Theorem decide_soundness_sat :
forall φ : Formula.t,

decide φ = Sat → has_model φ.
Proof. (* 1 lines *) Qed.

Theorem decide_soundness_unsat : forall φ : Formula.t,
decide φ = Unsat → ¬ has_model φ.

Proof. (* 1 lines *) Qed.

Theorem decide_soundness_valid : forall φ : Formula.t,
decide φ = Valid → valid φ.

Proof. (* 1 lines *) Qed.

End MakeClueless.

Module MakeClueful.
Import Formula.

Definition context := list Formula.t.

Definition operator A := context → list (A * context).

Definition bind {A B : Type}
(op : operator A)
(f : A → operator B) : operator B :=

fun ctx =>
let results := op ctx in
flat_map (fun pair : A * context =>

let (r, ctx) := pair in f r ctx)
results.

Definition get_context : operator context :=
fun s => (s, s) :: nil.

SMT 431

Definition set_context (ctx : context) : operator unit :=
fun _ => (tt, ctx) :: nil.

Notation "op ≫ f" :=
(bind op f) (at level 40).

Notation "x ← op ; f" :=
(bind op (fun x => f)) (at level 40).

Definition yield {A : Type} (r : A) : operator A :=
fun ctx => (r, ctx) :: nil.

Definition in_context (φ : Formula.t) : operator bool :=
ctx ← get_context;
yield (if in_dec Formula.eq_dec φ ctx then true else false).

Definition fail {A : Type} : operator A :=
fun _ => nil.

Definition add_to_context (φ : Formula.t) : operator unit :=
ctx ← get_context;
set_context (φ :: ctx).

Definition split {A : Type} (op op’ : operator A) :=
fun ctx => op ctx ++ op’ ctx.

Notation "op � op’" := (split op op’) (at level 80).

Fixpoint assume (φ : Formula.t) : operator unit :=
match φ with
| fla_eq t t’ => r ← in_context φ;

if r
then yield tt
else r’ ← in_context (fla_not φ);

if r
then fail
else if Term.eq_dec t t’

then yield tt
else add_to_context φ

| fla_lt t t’ => r ← in_context φ;
if r

then yield tt
else r’ ← in_context (fla_not φ);

if r
then fail
else if Term.eq_dec t t’

then fail
else add_to_context φ

| fla_and φ φ’ => _ ← assume φ;
assume φ’

| fla_not φ => assume_false φ
end
with assume_false (φ : Formula.t) : operator unit :=
match φ with
| fla_not φ => assume φ
| fla_and φ φ’ => assume_false φ � assume_false φ’
| fla_eq t t’ => r ← in_context φ;

432 COQ SCRIPTS

if r
then fail
else r’ ← in_context (fla_not φ);

if r
then yield tt
else if Term.eq_dec t t’

then fail
else add_to_context (fla_not φ)

| fla_lt t t’ => r ← in_context φ;
if r

then fail
else r’ ← in_context (fla_not φ);

if r
then yield tt
else if Term.eq_dec t t’

then yield tt
else add_to_context (fla_not φ)

end.

Definition decide (φ : Formula.t) : result :=
match assume φ nil with

| nil => Unsat
| _ => NoClue

end.

Fixpoint get_value_aux (φs : list Formula.t) (t : Term.t) : option nat :=
match φs with

| nil => None
| φ::φs => match φ with

| fla_eq t’ (Term.term_lit n) => if Term.eq_dec t t’
then Some n
else get_value_aux φs t

| fla_eq (Term.term_lit n) t’ => if Term.eq_dec t t’
then Some n
else get_value_aux φs t

| _ => get_value_aux φs t
end

end.

Definition get_value (φ : Formula.t) (t : Term.t) : option nat :=
match t with
| Term.term_lit n => Some n
| _ => match assume φ nil with

| ctx :: nil => get_value_aux (snd ctx) t
| _ => None

end
end.

Theorem decide_soundness_sat :
forall φ : Formula.t,
decide φ = Sat → has_model φ.

Proof. (* 5 lines *) Qed.

Definition models_context I (ctx : context) : Prop :=
Forall (models I) ctx.

SMT 433

Definition metacontext := list context.

Definition models_metacontext I := Exists (models_context I).

Definition snds {A B : Type} (xs : list (A * B)) :=
map (@snd A B) xs.

Definition sound I (op : operator unit) : Prop := forall ctx,
models_context I ctx →
models_metacontext I (snds (op ctx)).

Lemma sound_bind : forall I op op’,
sound I op → sound I op’ → sound I (_ ← op; op’).

Proof. (* 45 lines *) Qed.

Lemma sound_split_left :
forall I op op’,

sound I op → sound I (op � op’).
Proof. (* 24 lines *) Qed.

Lemma sound_split_right :
forall I op op’,

sound I op’ → sound I (op � op’).
Proof. (* 24 lines *) Qed.

Ltac destruct_if_condition H :=
match goal with
[H’ : context[if ?X then _ else _] |- _] =>
match H’ with
H => destruct X

end
end.

Ltac destruct_if_condition_r H :=
match goal with
[H’ : context[if ?X then _ else _] |- _] =>
match H’ with
H => let R := fresh in remember X as R; destruct R

end
end.

Ltac destruct_if_condition_in_goal :=
match goal with
[|- context[if ?X then _ else _]] => destruct X

end.

Ltac destruct_if_condition_in_goal_r :=
match goal with
[|- context[if ?X then _ else _]] =>
let R := fresh in remember X as R; destruct R

end.

Lemma assumes_sound :
forall (φ : Formula.t) I,

(models I φ → sound I (assume φ))
∧

(models I (fla_not φ) → sound I (assume_false φ)).
Proof. (* 177 lines *) Qed.

434 COQ SCRIPTS

Theorem decide_soundness_unsat :
forall φ : Formula.t,

decide φ = Unsat → ¬ has_model φ.
Proof. (* 21 lines *) Qed.

Theorem decide_soundness_valid :
forall φ : Formula.t,
decide φ = Valid → valid φ.

Proof. (* 5 lines *) Qed.
End MakeClueful.

SEMICONCRETEEXECUTION 435

D.40 SemiconcreteExecution

Require Import Notations.
Require Import Basics.
Require Import EnsembleExt.
Require Import Arith.
Require Import String.
Require Import ListExt.
Require Import ListSet.
Require Import Sumbool.
Require RADefinitions.
Require RAAxioms.
Require RAOperators.

Require Nat.
Require Import Identifier.
Require Expression.
Require BooleanExpression.
Require Routine.
Require Store.
Require Heap.
Require Predicate.
Require Chunk.
Require Assertion.
Require SILPP.

Open Scope program_scope.
Open Scope bool_scope.

Module Make
(Import RAD : RADefinitions.DEFINITIONS)
(Import RAA : RAAxioms.AXIOMS RAD)
(Import RAO : RAOperators.AXIOMS RAD RAA).

Module RAN := RANotations.Make(RAD).
Include RAN.

Module RAOPS := RAOperators.Make RAD RAA RAO.

Import RAOPS.
Import RAOPS.DoNotation.
Import RAOPS.Util.

Module RName := Routine.DefaultName.
Module SCStore := Store.AssocListStore Nat.
Module SCChunk := Chunk.Make Nat.
Module SCHeap := Heap.Default SCChunk.

Module StoreNotations := Store.Notations Nat SCStore.

Import BooleanExpression.Notations.
Import StoreNotations.
Import SCChunk.Notations.
Import SILPP.Notations.

Definition zero_store := SCStore.constant_store O.

436 COQ SCRIPTS

Notation "’s_0’" := zero_store : store_scope.

Inductive semiconcrete_state : Set :=
SemiconcreteState : SCStore.t → SCHeap.t → semiconcrete_state.

Notation "〈 s , h 〉" := (SemiconcreteState s h) (at level 0).

Definition store : field semiconcrete_state SCStore.t :=
(fun σ => match σ with

| 〈s, _〉 => s
end,

fun σ s => match σ with
| 〈_, h〉 => 〈s, h〉

end).

Definition heap : field semiconcrete_state SCHeap.t :=
(fun σ => match σ with

| 〈_, h〉 => h
end,

fun σ h => match σ with
| 〈s, _〉 => 〈s, h〉

end).

Definition state : field semiconcrete_state semiconcrete_state :=
((fun σ => σ), (fun σ σ’ => σ’)).

Open Scope op_scope.

Definition sc_operator :=
operator semiconcrete_state semiconcrete_state.

Definition read_store (id : Id.t) : sc_operator nat :=
with_current store (SCStore.lookup id).

Definition update_store (id : Id.t) (n : nat) : sc_operator unit :=
update_current store (SCStore.bind id n).

Definition evaluate (e : Expression.t) : sc_operator nat :=
with_current store (Expression.evaluate e ◦ flip SCStore.lookup).

Definition with_store
{A : Set} (s : SCStore.t) (op : sc_operator A) : sc_operator A :=
s’ ← current store;
_ ← set_current store s;
r ← op;
_ ← set_current store s’;
yield r.

Definition assume_bexpr (b : BooleanExpression.t) : sc_operator unit :=
r ← with_current store (BooleanExpression.evaluate b ◦ flip SCStore.lookup);
assume r.

Definition assert_bexpr (b : BooleanExpression.t) : sc_operator unit :=
r ← with_current store (BooleanExpression.evaluate b ◦ flip SCStore.lookup);
assert r.

Definition produce_chunk (α : SCChunk.t) : sc_operator unit :=
update_current heap (SCHeap.produce α).

SEMICONCRETEEXECUTION 437

Definition consume_chunk (α : SCChunk.t) : sc_operator unit :=
r ← with_current heap (SCHeap.consume α);
match r with
| Some h’ => set_current heap h’
| None => failure

end.

Definition pick_chunk_angelically : sc_operator SCChunk.t :=
αs ← with_current heap SCHeap.enum;
α ← pick_angelically { α | In α αs };
yield (proj1_sig α).

Definition find_chunk
(pred : Predicate.t) (` : nat) : sc_operator SCChunk.t :=
α ← pick_chunk_angelically;
match α with

| SCChunk.Chunk p x y => assert (Predicate.beq p pred);
assert (beq_nat x `);
yield (SCChunk.Chunk p x y)

end.

Definition read_cell (` : nat) : sc_operator nat :=
α ← find_chunk Predicate.ptr `;
match α with

| SCChunk.Chunk _ _ v => yield v
end.

Definition write_cell (` v : nat) : sc_operator unit :=
α ← find_chunk Predicate.ptr `;
consume_chunk α;
produce_chunk (` 7→ v).

Definition clear_heap : sc_operator unit :=
set_current heap SCHeap.empty.

Definition leak_check : sc_operator unit :=
r ← with_current heap SCHeap.is_empty;
assert r.

Definition alloc_set : sc_operator (list nat) :=
let get_loc :=
fun α => match α with

| SCChunk.Chunk p ` _ =>
if Predicate.beq p Predicate.ptr
then ` :: nil
else nil

end
in
h ← current heap;
yield (concat_map get_loc h).

438 COQ SCRIPTS

Fixpoint pick_demonically_n (n : nat) (A : Type) : sc_operator (list A) :=
match n with

| O => yield nil
| S n => v ← pick_demonically A;

vs ← pick_demonically_n n A;
yield (v :: vs)

end.

Definition allocate (n : nat) : sc_operator nat :=
let allocate_at :=
fix aux (` : nat) (vs : list nat) : sc_operator unit :=
match vs with
| nil => nop
| v::vs =>
let k := length vs in
A ← alloc_set;
assume (proj1_sig (bool_of_sumbool (in_dec eq_nat_dec (` + k) A)));
produce_chunk ((` + k) 7→ v)%chunk;
aux ` vs

end
in
ns ← pick_demonically_n (S n) nat;
match ns with

| `::vs => allocate_at ` vs;
produce_chunk (mb [`; n])%chunk;
yield `

| nil => failure
end.

Fixpoint consume_cells (` : nat) (n : nat) : sc_operator unit :=
match n with

| O => nop
| S n => α ← find_chunk Predicate.ptr (` + n);

consume_chunk α;
consume_cells ` n

end.

Definition block_size (` : nat) : sc_operator nat :=
α ← find_chunk Predicate.mb `;
match α with

| SCChunk.Chunk _ _ n => yield n
end.

Fixpoint consume_assertion (a : Assertion.t) : sc_operator unit :=
match a with

| Assertion.bexpr b =>
assert_bexpr b

| Assertion.sepand a1 a2 =>
consume_assertion a1;
consume_assertion a2

| Assertion.cond b a1 a2 =>
let then_op := assume_bexpr b; consume_assertion a1 in
let else_op := assume_bexpr (¬ b)%bexpr; consume_assertion a2 in

op ← pick_demonically (FromList (then_op :: else_op :: nil));
proj1_sig op

SEMICONCRETEEXECUTION 439

| Assertion.pred p e x =>
n ← evaluate e;
α ← find_chunk p n;
consume_chunk α;
match α with

| SCChunk.Chunk p n1 n2 => update_store x n2
end

end.

Fixpoint produce_assertion (a : Assertion.t) : sc_operator unit :=
match a with

| Assertion.bexpr b =>
assume_bexpr b

| Assertion.sepand a1 a2 =>
produce_assertion a1;
produce_assertion a2

| Assertion.cond b a1 a2 =>
let then_op := assume_bexpr b; produce_assertion a1
in
let else_op := assume_bexpr (¬ b)%bexpr; produce_assertion a2
in

op ← pick_demonically (FromList (then_op :: else_op :: nil));
proj1_sig op

| Assertion.pred p e x =>
n1 ← evaluate e;
n2 ← pick_demonically nat;
produce_chunk (SCChunk.Chunk p n1 n2);
update_store x n2

end.

Section WithProgram.
Variable (Π : SILPP.program).

Hypothesis (wellformed : SILPP.wellformed_program Π).

Open Scope command_scope.

Fixpoint semiconcrete_execution (c : SILPP.command) : sc_operator unit :=
match c with
| skip =>

yield �
| x := e =>

v ← evaluate e;
update_store x v

| c; c’ =>
semiconcrete_execution c;
semiconcrete_execution c’

| x := malloc n =>
` ← allocate n;
update_store x `

| free e =>
` ← evaluate e;
n ← block_size `;
consume_cells ` n;
consume_chunk (mb [`; n])

440 COQ SCRIPTS

| ~e� := e’ =>
` ← evaluate e;
v ← evaluate e’;
write_cell ` v

| x := ~e� =>
` ← evaluate e;
v ← read_cell `;
update_store x v

| If b Then c Else c’ =>
let then_clause :=
assume_bexpr b;
semiconcrete_execution c in

let else_clause :=
assume_bexpr (¬ b)%bexpr;
semiconcrete_execution c’ in

let clauses := then_clause :: else_clause :: nil
in
op ← pick_demonically (FromList clauses);
proj1_sig op

| r[e] =>
v ← evaluate e;
rdef ← from_some (SILPP.routines Π r);
let x := SILPP.argument rdef in
with_store (s_0~x := v�)%store
(consume_assertion (SILPP.precondition rdef);
produce_assertion (SILPP.postcondition rdef))

| open p[e; ?] =>
` ← evaluate e;
α ← find_chunk p `;
_ ← consume_chunk α;
preddef ← from_some (SILPP.predicates Π p);
let x := SILPP.argument_a preddef in
let y := SILPP.argument_b preddef in
let body := SILPP.predicate_body preddef
in
match α with
| SCChunk.Chunk _ `’ v’ =>
with_store (s_0~x := `’�~y := v’�)%store

(produce_assertion body)
end

| close p[e; e’] =>
` ← evaluate e;
v ← evaluate e’;
preddef ← from_some (SILPP.predicates Π p);
let x := SILPP.argument_a preddef in
let y := SILPP.argument_b preddef in
let body := SILPP.predicate_body preddef in
with_store (s_0~x := `�~y := v�)%store

(consume_assertion body);
produce_chunk (SCChunk.Chunk p ` v)

end.

SEMICONCRETEEXECUTION 441

Definition valid_routine (rdef : SILPP.routine_definition) : Prop :=
let validation_op :=
v ← pick_demonically nat;
update_store (SILPP.argument rdef) v;
produce_assertion (SILPP.precondition rdef);
with_store (s_0~(SILPP.argument rdef) := v�)%store

(semiconcrete_execution (SILPP.routine_body rdef));
consume_assertion (SILPP.postcondition rdef);
leak_check

in
not (validation_op 〈s_0, SCHeap.empty〉 VV ⊥).

Definition valid_program : Prop :=
forall rname : RName.t,
match SILPP.routines Π rname with
| Some rdef => valid_routine rdef
| _ => True

end.

Close Scope command_scope.

End WithProgram.

Close Scope op_scope.

End Make.

442 COQ SCRIPTS

D.41 SetHolder

Module Type SET.

Parameters t : Set.

End SET.

SETOFSETS 443

D.42 SetOfSets

Require Import EnsembleExt.
Require Import Notations.
Require Import DependentProduct.
Require Import Relations.
Require RADefinitions.
Require RANotations.
Require RAAxioms.

Set Implicit Arguments.

Module SetOfSetDefinitions <: RADefinitions.DEFINITIONS.

Definition R (Σ : Type) := Ensemble (Ensemble Σ).

Section StateSection.

Variable State : Type.

Definition single (x : State) : R State :=
Singleton (Singleton x).

Definition models (S : Ensemble State) (R : R State) : Prop :=
exists Σ, Σ ∈ R ∧ Σ ⊆ S.

Definition add {I : Type} (R : I → R State) : R State :=
IndexedUnion R.

Definition mul {I : Type} (R : I → R State) : R State :=
fun (Σ : Ensemble State) =>
exists f : I → Ensemble State,

f ∈ dependent_product R ∧ Same_set _ Σ (IndexedUnion f).

Definition top : R State := Singleton ∅.

Definition bottom : R State := ∅.

Definition implies (R R’ : R State) : Prop :=
∀ Σ, Σ ∈ R -> ∃ Σ’, Σ’ ∈ R’ ∧ Σ’ ⊆ Σ.

Definition equiv : relation (R State) :=
fun R R’ => implies R R’ ∧ implies R’ R.

End StateSection.

End SetOfSetDefinitions.

Module SetOfSetAxioms <: RAAxioms.AXIOMS SetOfSetDefinitions.

Import SetOfSetDefinitions.

Module RAN := RANotations.Make(SetOfSetDefinitions).
Include RAN.

Section StateSection.

Variable State : Type.

Theorem top_axiom : forall (R : False → R State), > VV ⊗ R.
Proof. (* 23 lines *) Qed.

444 COQ SCRIPTS

Theorem bottom_axiom :
forall (R : False → R State),
⊥ VV ⊕ R.

Proof. (* 5 lines *) Qed.

Theorem single_axiom :
forall (s : State) (S : Ensemble State),
S |= single s ↔ s ∈ S.

Proof. (* 16 lines *) Qed.

Theorem add_axiom :
forall I (R : I → R State) (S : Ensemble State),
S |= ⊕ R ↔ ∃ i, S |= R i.

Proof. (* 23 lines *) Qed.

Theorem mul_axiom :
forall I (R : I → R State) (S : Ensemble State),
S |= ⊗ R ↔ ∀ i, S |= R i.

Proof. (* 39 lines *) Qed.

Theorem implies_axiom :
forall (R R’ : R State),
R V R’ ↔ forall (S : Ensemble State), S |= R → S |= R’.

Proof. (* 28 lines *) Qed.

Theorem monotonic_models_axiom :
forall (R : R State) S S’,
S’ ⊆ S → S’ |= R → S |= R.

Proof. (* 7 lines *) Qed.

End StateSection.

End SetOfSetAxioms.

STORE 445

D.43 Store

Require Import Notations.
Require Import ListExt.
Require Import SetHolder.
Require AssocList.

Require Import Identifier.
Require Term.

Module Type STORE (T : SET).

Parameters
(t : Set)
(lookup : Id.t → t → T.t)
(bind : Id.t → T.t → t → t)
(bound : t → list Id.t)
(constant_store : T.t → t).

Axiom lookup_bound : forall id v s, lookup id (bind id v s) = v.

Axiom lookup_other_than_bound :
forall id id’ v s, id , id’ → lookup id (bind id’ v s) = lookup id s.

Axiom lookup_constant_store :
forall id v, lookup id (constant_store v) = v.

End STORE.

Module AssocListStore (T : SET) <: STORE T.
Module AL := AssocList.Make(Id).

Definition t := (T.t * AL.t T.t)%type.

Definition constant_store (x : T.t) := (x, AL.empty T.t).

Definition lookup (x : Id.t) (s : t) : T.t :=
match s with

| pair default lst => AL.lookup lst x default
end.

Definition bind (x : Id.t) (v : T.t) (s : t) : t :=
match s with

| pair default lst => (default, AL.add lst x v)
end.

Definition bound (s : t) : list Id.t :=
AL.keys (snd s).

Definition values (s : t) : list T.t :=
AL.values (snd s).

Theorem lookup_bound :
forall id v s, lookup id (bind id v s) = v.

Proof. (* 5 lines *) Qed.

Theorem lookup_other_than_bound :
forall id id’ v s, id , id’ → lookup id (bind id’ v s) = lookup id s.

Proof. (* 6 lines *) Qed.

446 COQ SCRIPTS

Theorem lookup_constant_store :
forall id v, lookup id (constant_store v) = v.

Proof. (* 6 lines *) Qed.
End AssocListStore.

Module Notations (T : SET) (S : STORE T).
Delimit Scope store_scope with store.
Bind Scope store_scope with S.t.

Notation "s ~ x := t �" := (S.bind x t s)
(at level 40, x at level 0, t at level 0) : store_scope.

End Notations.

SYMBOL 447

D.44 Symbol

Require Import Notations.
Require Import List.
Require Import Arith.
Require Import Fresh.
Require Nat.

Module Type SYMBOL.
Parameters
(t : Set)
(eq_dec : forall x y : t, {x = y} + {x , y})
(beq : t → t → bool)
(fresh : forall ξs : list t, { ξ : t | ¬ In ξ ξs }).

End SYMBOL.

Module NatSymbol <: SYMBOL.
(* Needed because of Coq8.3 limitation *)
Inductive t’ : Set :=
Symbol : nat → t’.

Definition t := t’.

Definition eq_dec : forall x y : t, { x = y } + { x , y } .
intros x y; destruct x as [n]; destruct y as [n’].
destruct (eq_nat_dec n n’).
left; subst; trivial.
right; intro; elim n0.
injection H; trivial.

Defined.

Definition beq (s s’ : t) : bool.
destruct (eq_dec s s’); [exact true | exact false].

Defined.

Definition symbol_n (s : t) : nat :=
match s with

| Symbol n => n
end.

Definition fresh (xs : list t) : { s : t | ¬ In s xs } .
remember (Nat.fresh (map symbol_n xs)) as n.
destruct n as [n H].
exists (Symbol n).
intro.
elim H.
clear Heqn H.
revert n H0; induction xs; intros.
inversion H0.
simpl in *; destruct H0.
subst; left; simpl; reflexivity.
right; apply IHxs; trivial.

Defined.
End NatSymbol.

Module Default := NatSymbol.

448 COQ SCRIPTS

D.45 SymbolicExecution

Require Import Notations.
Require Import Basics.
Require Import ListExt.
Require Import ListSet.
Require Import Arith.
Require Import String.
Require Import Bool.
Require AssocList.
Require RADefinitions.
Require RAAxioms.
Require RAOperators.

Require Import Identifier.
Require Expression.
Require BooleanExpression.
Require Symbol.
Require Routine.
Require Term.
Require Formula.
Require Store.
Require Heap.
Require Predicate.
Require Chunk.
Require SILPP.
Require Assertion.
Require SMT.

Open Scope program_scope.
Open Scope bool_scope.

Module Make
(Import RAD : RADefinitions.DEFINITIONS)
(Import RAA : RAAxioms.AXIOMS RAD)
(Import RAO : RAOperators.AXIOMS RAD RAA).

Module RAN := RANotations.Make(RAD).
Include RAN.

Module RAOPS := RAOperators.Make RAD RAA RAO.

Import RAOPS.
Import RAOPS.DoNotation.
Import RAOPS.Util.

Module Symb := Symbol.Default.
Module RName := Routine.DefaultName.
Module SStore := Store.AssocListStore Term.
Module SChunk := Chunk.Make Term.
Module SHeap := Heap.Default SChunk.

Module StoreNotations := Store.Notations Term SStore.

Import BooleanExpression.Notations.
Import Term.Notations.

SYMBOLICEXECUTION 449

Import Formula.Notations.
Import StoreNotations.
Import SChunk.Notations.
Import SILPP.Notations.

Definition zero_store := SStore.constant_store O.

Notation "’s_0’" := zero_store : store_scope.

(*
Symbolic state

*)

Inductive symbolic_state : Set :=
SymbolicState : SStore.t → SHeap.t → Formula.t → symbolic_state.

Notation "〈 s , h , φ 〉" := (SymbolicState s h φ) (at level 0).

Definition state : field symbolic_state symbolic_state :=
((fun σ => σ), (fun σ σ’ => σ’)).

Definition store : field symbolic_state SStore.t :=
(fun σ => match σ with

| 〈s, _, _〉 => s
end,

fun σ s => match σ with
| 〈_, h, φ〉 => 〈s, h, φ〉

end).

Definition heap : field symbolic_state SHeap.t :=
(fun σ => match σ with

| 〈_, h, _〉 => h
end,

fun σ h => match σ with
| 〈s, _, φ〉 => 〈s, h, φ〉

end).

Definition path_condition : field symbolic_state Formula.t :=
(fun σ => match σ with

| 〈_, _, φ〉 => φ
end,

fun σ φ => match σ with
| 〈s, h, _〉 => 〈s, h, φ〉

end).

Definition symbols (σ : symbolic_state) : list Symb.t :=
match σ with

| 〈s, h, Φ〉 =>
concat_map Term.symbols (SStore.values s) ++
concat_map Term.symbols (concat_map SChunk.args (SHeap.enum h)) ++
Formula.symbols Φ

end.

Module SMTImpl := SMT.MakeClueful.

Definition smt_result := SMT.result.

Definition decide_sat := SMTImpl.decide.

450 COQ SCRIPTS

Definition smt_result_beq := SMT.result_beq.

Definition Unsat := SMT.Unsat.

Open Scope op_scope.

Definition s_operator := operator symbolic_state symbolic_state.

Definition read_store (id : Id.t) : s_operator Term.t :=
with_current store (SStore.lookup id).

Definition update_store (id : Id.t) (t : Term.t) : s_operator unit :=
update_current store (SStore.bind id t).

Definition evaluate (e : Expression.t) : s_operator Term.t :=
with_current store (Term.of_expression e ◦ flip SStore.lookup).

Definition to_formula (b : BooleanExpression.t) : s_operator Formula.t :=
with_current store (Formula.of_boolean_expression b ◦ flip SStore.lookup).

Definition with_store
{A : Set} (s : SStore.t) (op : s_operator A) : s_operator A :=
s’ ← current store;
_ ← set_current store s;
r ← op;
_ ← set_current store s’;
yield r.

Definition smt (f : Formula.t) : s_operator smt_result :=
yield (decide_sat f).

Definition assume_formula (φ : Formula.t) : s_operator unit :=
Φ ← current path_condition;
r ← smt (φ && Φ)%fla;
assume (negb (smt_result_beq r Unsat));
set_current path_condition (φ && Φ)%fla.

Definition assume_bexpr (b : BooleanExpression.t) : s_operator unit :=
φ ← with_current store

(Formula.of_boolean_expression b ◦ flip SStore.lookup);
assume_formula φ.

Definition assert_formula (φ : Formula.t) : s_operator unit :=
Φ ← current path_condition;
r ← smt (Formula.implies Φ φ);
assert (smt_result_beq r Unsat).

Definition assert_bexpr (b : BooleanExpression.t) : s_operator unit :=
φ ← to_formula b; assert_formula φ.

Definition produce_chunk (α : SChunk.t) : s_operator unit :=
update_current heap (SHeap.produce α).

Definition consume_chunk (α : SChunk.t) : s_operator unit :=
r ← with_current heap (SHeap.consume α);
match r with
| Some h’ => set_current heap h’
| None => failure

end.

SYMBOLICEXECUTION 451

Definition pick_chunk_angelically : s_operator SChunk.t :=
αs ← with_current heap SHeap.enum;
α ← pick_angelically (FromList αs);
yield (proj1_sig α).

Definition find_chunk (p : Predicate.t) (t : Term.t) : s_operator SChunk.t :=
α ← pick_chunk_angelically;
match α with

| SChunk.Chunk p x y => assert (Predicate.beq p p);
assert_formula (x == t)%fla;
yield (SChunk.Chunk p x y)

end.

Definition read_cell (` : Term.t) : s_operator Term.t :=
α ← find_chunk Predicate.ptr `;
match α with

| SChunk.Chunk _ _ v => yield v
end.

Definition write_cell (` v : Term.t) : s_operator unit :=
α ← find_chunk Predicate.ptr `;
consume_chunk α;
produce_chunk (` 7→ v).

Definition clear_heap : s_operator unit :=
set_current heap SHeap.empty.

Definition leak_check : s_operator unit :=
r ← with_current heap SHeap.is_empty; assert r.

Definition fresh_symbol (exclude : list Symb.t) : s_operator Symb.t :=
let ξ := (proj1_sig (Symb.fresh exclude))
in
assume_formula (Formula.fla_eq (Term.term_sym ξ) (Term.term_sym ξ));
yield ξ.

Definition fresh_symbol_n (n : nat) : s_operator (list Symb.t) :=
let aux :=

fix rec (n : nat) (exclude : list Symb.t) : s_operator (list Symb.t) :=
match n with
| O => yield nil
| S n => ξ ← fresh_symbol exclude;

ξs ← rec n (ξ :: exclude);
yield (ξ :: ξs)

end
in
σ ← current state;
let exclude := symbols σ
in
aux n exclude.

Definition fresh_symbol_1 : s_operator Symb.t :=
ξs ← fresh_symbol_n 1;
match ξs with

| ξ :: nil => yield ξ
| _ => failure

end.

452 COQ SCRIPTS

Definition allocate (n : nat) : s_operator Term.t :=
let allocate_at :=

fix aux (` : Symb.t) (vs : list Symb.t) : s_operator unit :=
match vs with
| nil => nop
| v::vs =>
let k := List.length vs in
let α := ((Term.term_sym ` + k)%term 7→ (Term.term_sym v))%chunk in
produce_chunk α;
aux ` vs

end
in
ξs ← fresh_symbol_n (S n);
match ξs with

| `::vs => allocate_at ` vs;
produce_chunk (mb [(Term.term_sym `); n])%chunk;
yield (Term.term_sym `)

| nil => failure
end.

Fixpoint consume_cells (` : Term.t) (n : nat) : s_operator unit :=
match n with

| O => nop
| S n => α ← find_chunk Predicate.ptr (` + n);

consume_chunk α;
consume_cells ` n

end.

Definition block_size (` : Term.t) : s_operator nat :=
α ← find_chunk Predicate.mb `;
match α with

| SChunk.Chunk _ _ (Term.term_lit n) => yield n
| _ => failure

end.

Fixpoint consume_assertion (a : Assertion.t) : s_operator unit :=
match a with

| Assertion.bexpr b =>
assert_bexpr b

| Assertion.sepand a1 a2 =>
consume_assertion a1;
consume_assertion a2

| Assertion.cond b a1 a2 =>
let then_op := assume_bexpr b; consume_assertion a1 in
let else_op := assume_bexpr (¬ b)%bexpr; consume_assertion a2 in

op ← pick_demonically (FromList (then_op :: else_op :: nil));
proj1_sig op

| Assertion.pred p e x =>
t ← evaluate e;
α ← find_chunk p t;
consume_chunk α;
match α with

| SChunk.Chunk p t1 t2 => update_store x t2
end

end.

SYMBOLICEXECUTION 453

Fixpoint produce_assertion (a : Assertion.t) : s_operator unit :=
match a with

| Assertion.bexpr b =>
assume_bexpr b

| Assertion.sepand a1 a2 =>
produce_assertion a1;
produce_assertion a2

| Assertion.cond b a1 a2 =>
let then_op := assume_bexpr b; produce_assertion a1 in
let else_op := assume_bexpr (¬ b)%bexpr; produce_assertion a2
in

op ← pick_demonically (FromList (then_op :: else_op :: nil));
proj1_sig op

| Assertion.pred p e x =>
t1 ← evaluate e;
ξ ← fresh_symbol_1;
let t2 := Term.term_sym ξ in
produce_chunk (SChunk.Chunk p t1 t2);
update_store x t2

end.

Section WithProgram.

Variable (Π : SILPP.program).

Hypothesis (wellformed : SILPP.wellformed_program Π).

Open Scope command_scope.

Fixpoint symbolic_execution (c : SILPP.command) : s_operator unit :=
match c with
| skip =>

yield �
| x := e =>

v ← evaluate e;
update_store x v

| c; c’ =>
symbolic_execution c;
symbolic_execution c’

| x := malloc n =>
` ← allocate n;
update_store x `

| free e =>
` ← evaluate e;
n ← block_size `;
consume_cells ` n;
consume_chunk (mb [`; n])

| ~e� := e’ =>
` ← evaluate e;
v ← evaluate e’;
write_cell ` v

| x := ~e� =>
` ← evaluate e;
v ← read_cell `;
update_store x v

454 COQ SCRIPTS

| If b Then c Else c’ =>
let then_clause :=

assume_bexpr b; symbolic_execution c in
let else_clause :=

assume_bexpr (¬ b)%bexpr; symbolic_execution c’ in
let clauses := then_clause :: else_clause :: nil in
op ← pick_demonically (FromList clauses);
proj1_sig op

| open p[e; ?] =>
` ← evaluate e;
α ← find_chunk p `;
_ ← consume_chunk α;
preddef ← from_some (SILPP.predicates Π p);
let x := SILPP.argument_a preddef in
let y := SILPP.argument_b preddef in
let body := SILPP.predicate_body preddef in
match α with
| SChunk.Chunk _ `’ v’ =>

with_store (s_0~x := `’�~y := v’�)%store
(produce_assertion body)

end
| close p[e; e’] =>
` ← evaluate e; v ← evaluate e’;
preddef ← from_some (SILPP.predicates Π p);
let x := SILPP.argument_a preddef in
let y := SILPP.argument_b preddef in
let body := SILPP.predicate_body preddef in
with_store (s_0~x := `�~y := v�)%store

(consume_assertion body);
produce_chunk (SChunk.Chunk p ` v)

| r[e] =>
rdef ← from_some (SILPP.routines Π r);
let x := SILPP.argument rdef in
t ← evaluate e;
with_store (s_0~x := t�)%store
(consume_assertion (SILPP.precondition rdef);
produce_assertion (SILPP.postcondition rdef))

end.

Definition valid_routine (rdef : SILPP.routine_definition) : Prop :=
let validation_op :=
ξ ← fresh_symbol_1;
let v := Term.term_sym ξ in
update_store (SILPP.argument rdef) v;
produce_assertion (SILPP.precondition rdef);
with_store (s_0~(SILPP.argument rdef) := v�)%store

(symbolic_execution (SILPP.routine_body rdef));
consume_assertion (SILPP.postcondition rdef);
leak_check

in
let pc := Formula.fla_eq (Term.term_lit O) (Term.term_lit O) in
let σ := 〈s_0, SHeap.empty, pc 〉 in
not (validation_op σ VV ⊥).

SYMBOLICEXECUTION 455

Definition valid_program : Prop :=
forall rname : RName.t,
match SILPP.routines Π rname with

| Some rdef => valid_routine rdef
| _ => True

end.

Close Scope command_scope.

End WithProgram.

Close Scope op_scope.

End Make.

456 COQ SCRIPTS

D.46 Term

Require Import Notations.
Require Import List.
Require Import Arith.
Require Import Identifier.
Require Symbol.
Require Expression.

Module Symb := Symbol.Default.

Inductive t’ : Set :=
| term_lit : nat → t’
| term_sym : Symb.t → t’
| term_add : t’ → t’ → t’
| term_sub : t’ → t’ → t’
| term_mul : t’ → t’ → t’.

Definition t := t’.

Definition add (t1 t2 : t) :=
match t1, t2 with
| term_lit O, _ => t2
| _, term_lit O => t1
| _, _ => term_add t1 t2

end.

Definition eq_dec : forall t1 t2 : t, {t1 = t2} + {t1 , t2} .
induction t1; destruct t2; try (right; discriminate; fail).

(* term_lit *)
destruct (eq_nat_dec n n0).
left; subst; reflexivity.
right; intro; elim n1.
injection H; trivial.

(* term_sym *)
rename t0 into ξ1; rename t1 into ξ2.
destruct (Symb.eq_dec ξ1 ξ2).
left; subst; reflexivity.
right; intro; elim n.
injection H.
trivial.

(* term_add *)
destruct (IHt1_1 t2_1); destruct (IHt1_2 t2_2); clear IHt1_1 IHt1_2; subst;
try (left; reflexivity; fail); right; intro; elim n; injection H; trivial.

(* term_sub *)
destruct (IHt1_1 t2_1); destruct (IHt1_2 t2_2); clear IHt1_1 IHt1_2; subst;
try (left; reflexivity; fail); right; intro; elim n; injection H; trivial.

(* term_mul *)
destruct (IHt1_1 t2_1); destruct (IHt1_2 t2_2); clear IHt1_1 IHt1_2; subst;
try (left; reflexivity; fail); right; intro; elim n; injection H; trivial.

Defined.

TERM 457

Definition beq (t1 t2 : t) : bool.
destruct (eq_dec t1 t2); [exact true | exact false].

Defined.

Fixpoint symbols (term : t) : list Symb.t :=
match term with
| term_lit _ => nil
| term_sym ξ => ξ :: nil
| term_add t1 t2 => symbols t1 ++ symbols t2
| term_sub t1 t2 => symbols t1 ++ symbols t2
| term_mul t1 t2 => symbols t1 ++ symbols t2

end.

Fixpoint of_expression (e : Expression.t) (s : Id.t → t) : t :=
match e with
| Expression.lit n => term_lit n
| Expression.var x => s x
| Expression.add e e’ => term_add (of_expression e s) (of_expression e’ s)
| Expression.min e e’ => term_sub (of_expression e s) (of_expression e’ s)
| Expression.mul e e’ => term_mul (of_expression e s) (of_expression e’ s)

end.

Definition nat_to_term (n : nat) : t := term_lit n.
Definition sym_to_term (x : Symb.t) : t := term_sym x.

Fixpoint evaluate (term : t) (s : Symb.t → nat) : nat :=
match term with
| term_lit n => n
| term_sym a => s a
| term_add t t’ => evaluate t s + evaluate t’ s
| term_sub t t’ => evaluate t s - evaluate t’ s
| term_mul t t’ => evaluate t s * evaluate t’ s

end.

Fixpoint metric (term : t) : nat :=
match term with

| term_lit _ => 1
| term_sym _ => 1
| term_add t t’ => S (metric t + metric t’)
| term_sub t t’ => S (metric t + metric t’)
| term_mul t t’ => S (metric t + metric t’)

end.

Module Notations.
Coercion term_lit : nat >-> t’.
Coercion term_sym : Symb.t >-> t’.
Coercion nat_to_term : nat >-> t.
Coercion sym_to_term : Symb.t >-> t.

Delimit Scope term_scope with term.
Bind Scope term_scope with t.

Infix "+" := add : term_scope.
Infix "-" := term_sub : term_scope.
Infix "*" := term_mul : term_scope.

End Notations.

458 COQ SCRIPTS

D.47 VCG

Require Import Notations.
Require Import Classical.
Require Import FunctionalExtensionality.

(*
Language definition

*)
Parameters
(identifier : Set)
(value : Set)
(t : value).

Definition store := identifier → value.

Definition expression := store → value.

Axiom identifier_eq_dec :
forall x y : identifier, {x = y} + {x , y} .

Axiom value_eq_dec :
forall v v’ : value, {v = v’} + {v , v’} .

Inductive command : Set :=
| cAssert : expression → command
| cAssume : expression → command
| cHavoc : identifier → command
| cAssign : identifier → expression → command
| cChoice : command → command → command
| cSeq : command → command → command
| cSkip : command.

Inductive state : Set :=
| in_progress : command → store → state
| failure : store → state.

Notation "〈 c ; s 〉" := (in_progress c s).

Definition fupd {A B}
(eq_dec : forall x x’ : A, {x = x’}+{x , x’})
(f : A → B) (x : A) (y : B) : A → B :=
fun x’ => if eq_dec x x’ then y else f x’.

Definition rebind := @fupd identifier value identifier_eq_dec.

Reserved Notation "x --> y" (at level 50).

Inductive step : state → state → Prop :=
| stepAssertTrue : forall (e : expression) (µ : store),

e µ = t → 〈cAssert e; µ〉 --> 〈cSkip; µ〉
| stepAssertFalse : forall (e : expression) (µ : store),
e µ <> t → 〈cAssert e; µ〉 --> (failure µ)

| stepAssumeTrue : forall (e : expression) (µ : store),
e µ = t → 〈cAssume e; µ〉 --> 〈cSkip; µ〉

| stepHavoc : forall (x : identifier) (v : value) (µ : store),
〈cHavoc x; µ〉 --> 〈cSkip; rebind µ x v〉

VCG 459

| stepAssign : forall (x : identifier) (e : expression) (µ : store),
〈cAssign x e; µ〉 --> 〈cSkip; rebind µ x (e µ)〉

| stepChoiceLeft : forall (c c’ : command) (µ : store),
〈cChoice c c’; µ〉 --> 〈c; µ〉

| stepChoiceRight : forall (c c’ : command) (µ : store),
〈cChoice c c’; µ〉 --> 〈c’; µ〉

| stepSeq : forall (c1 c1’ c2 : command) (µ µ’ : store),
〈c1; µ〉 --> 〈c1’; µ’〉 →
〈cSeq c1 c2; µ〉 --> 〈cSeq c1’ c2; µ’〉

| stepSeqSkip : forall (c : command) (µ : store),
〈cSeq cSkip c; µ〉 --> 〈c; µ〉

| stepSeqFail : forall (c1 c2 : command) (µ µ’ : store),
〈c1; µ〉 --> (failure µ’) →
〈cSeq c1 c2; µ〉 --> (failure µ’)

where "x --> y" := (step x y).

Reserved Notation "x -->* y" (at level 50).

Inductive steps : state → state → Prop :=
| stepsReflexivity : forall σ : state, σ -->* σ
| stepsStep : forall σ σ’ σ” : state, σ --> σ’ → σ’ -->* σ” → σ -->* σ”
where "x -->* y" := (steps x y).

Definition reducible (σ : state) := exists σ’ : state, σ --> σ’.

Definition irreducible (σ : state) := ¬ reducible σ.

Lemma irreducible_steps :
forall σ σ’ : state,
irreducible σ → σ -->* σ’ → σ = σ’.

Proof. (* 5 lines *) Qed.

Fixpoint final_state (σ : state) : Prop :=
match σ with
| failure _ => True
| 〈cSkip; _〉 => True
| _ => False

end.

Fixpoint leftmost_assume (c : command) : option expression :=
match c with
| cSeq c _ => leftmost_assume c
| cAssume e => Some e
| _ => None

end.

Definition stuck_assume (σ : state) : Prop :=
match σ with

| 〈c; µ〉 => exists e, leftmost_assume c = Some e ∧ e µ , t
| _ => False

end.

Theorem irreducible_stuck_assume :
forall σ : state,

stuck_assume σ → irreducible σ.
Proof. (* 14 lines *) Qed.

460 COQ SCRIPTS

Inductive is_irred : state → Set :=
| is_irred_assume : forall σ : state, stuck_assume σ → is_irred σ
| is_irred_failure : forall µ : store, is_irred (failure µ)
| is_irred_skip : forall µ : store, is_irred 〈cSkip; µ〉.

Theorem is_irred_impl_irreducible :
forall σ : state, is_irred σ → irreducible σ.

Proof. (* 4 lines *) Qed.

Theorem irreducible_impl_is_irred :
forall σ : state, irreducible σ → is_irred σ.

Proof. (* 54 lines *) Qed.

Theorem irreducible_states :
forall σ : state,
irreducible σ ↔ stuck_assume σ ∨ exists µ, σ = failure µ ∨ σ = 〈cSkip; µ〉.

Proof. (* 10 lines *) Qed.

Definition bigstep (σ σ’ : state) : Prop :=
steps σ σ’ ∧ final_state σ’.

Notation "x -->| y" := (bigstep x y) (at level 50).

Definition store_predicate := store → Prop.

Lemma lift_step :
forall σ σ’ : state, σ --> σ’ → σ -->* σ’.

Proof. (* 2 lines *) Qed.

Lemma irreducible_final_state :
forall (σ : state), final_state σ → irreducible σ.

Proof. (* 3 lines *) Qed.

Lemma final_state_steps :
forall (σ σ’ : state), final_state σ → σ -->* σ’ → σ = σ’.

Proof. (* 5 lines *) Qed.

Ltac assert_final_state_as H σ :=
assert (H : final_state σ);

[try (trivial; compute; trivial; fail)
| idtac].

Ltac assert_final_state σ :=
let id := fresh in assert_final_state_as id σ.

Ltac to_bigstep H :=
match goal with
| [H’ : ?X -->* ?Y |- _] =>
match H with

| H’ => let id := fresh in
let id’ := fresh
in
assert_final_state_as id Y;
assert (id’ : X -->| Y); [red; split; trivial; fail | idtac];
clear id H’;
rename id’ into H’

end
end.

VCG 461

Ltac reflexive_steps H :=
match goal with
| [H’ : ?X -->* ?Y |- _] =>
match H with
| H’ => let id := fresh in

assert_final_state_as id X;
apply (final_state_steps _ _ id) in H;
clear id

end
end.

Lemma skip_steps_skip : forall σ µ, 〈cSkip; µ〉 -->* σ → σ = 〈cSkip; µ〉.
Proof. (* 3 lines *) Qed.

Lemma failure_steps_failure : forall σ µ, failure µ -->* σ → σ = failure µ.
Proof. (* 3 lines *) Qed.

Ltac remember_states H x y :=
match goal with

| [H’ : ?X --> ?Y |- _] => match H with
H’ => remember X as x; remember Y as y

end
| [H’ : ?X -->* ?Y |- _] => match H with

H’ => remember X as x; remember Y as y
end

| [H’ : ?X -->| ?Y |- _] => match H with
H’ => remember X as x; remember Y as y

end
end.

Lemma seq_skips : forall (c1 c2 : command) (µ µ’ : store),
〈cSeq c1 c2; µ〉 -->* 〈cSkip; µ’〉 →
exists µ” : store,
〈c1; µ〉 -->* 〈cSkip; µ”〉 ∧
〈c2; µ”〉 -->* 〈cSkip; µ’〉.

Proof. (* 14 lines *) Qed.

Lemma seq_fails : forall (c1 c2 : command) (µ µ’ : store),
〈cSeq c1 c2; µ〉 -->* (failure µ’) →
〈c1; µ〉 -->* (failure µ’) ∨
exists µ”, 〈c1; µ〉 -->* 〈cSkip; µ”〉 ∧

〈c2; µ”〉 -->* failure µ’.
Proof. (* 20 lines *) Qed.

Definition fails (σ : state) := exists µ, σ -->* failure µ.

Definition succeeds (σ : state) := ¬ fails σ.

Ltac step s :=
match goal with
| [|- ?X -->* ?Y] => apply (stepsStep X s Y)

end.

Ltac single_step :=
match goal with
| [|- ?X -->* ?Y] => refine (stepsStep X Y Y _ (stepsReflexivity _))

end.

462 COQ SCRIPTS

Ltac destruct_conjunctions :=
match goal with
| [H : _ ∧ _ |- _] => destruct H; destruct_conjunctions
| _ => idtac

end.

Theorem append_steps :
forall (σ σ’ σ” : state),
σ -->* σ’ → σ’ -->* σ” → σ -->* σ”.

Proof. (* 7 lines *) Qed.

Theorem steps_seq :
forall (c1 c1’ c2 : command) (µ µ’ : store),
〈c1; µ〉 -->* 〈c1’; µ’〉 → 〈cSeq c1 c2; µ〉 -->* 〈cSeq c1’ c2; µ’〉.

Proof. (* 12 lines *) Qed.

Theorem steps_seq_skip :
forall (c1 c2 : command) (µ µ’ : store),
〈c1; µ〉 -->* 〈cSkip; µ’〉 → 〈cSeq c1 c2; µ〉 -->* 〈c2; µ’〉.

Proof. (* 5 lines *) Qed.

Ltac goal_big_to_single :=
red; split;
[single_step | compute; trivial; fail].

Theorem reducible_dec :
forall (σ : state),
{ reducible σ } + { irreducible σ } .

Proof. (* 44 lines *) Qed.

Theorem final_dec : forall σ : state, { final_state σ } + { ¬ final_state σ } .
Proof. (* 3 lines *) Qed.

(*
Weakest preconditions

*)

Fixpoint weakest_precondition
(c : command)
(Q : store_predicate) : store_predicate :=
match c with
| cAssert e =>

(fun µ => (e µ = t ∧ Q µ))
| cAssume e =>

(fun µ => (e µ = t → Q µ))
| cHavoc x =>

(fun µ => forall v, Q (rebind µ x v))
| cSkip =>

Q
| cChoice c c’ =>

(fun µ => weakest_precondition c Q µ ∧ weakest_precondition c’ Q µ)
| cSeq c c’ =>

(fun µ => weakest_precondition c (weakest_precondition c’ Q) µ)
| cAssign x e =>

(fun µ => Q (rebind µ x (e µ)))
end.

VCG 463

Lemma wp_skip :
forall (c : command) (σ : state) (µ : store) (Q : store_predicate),
weakest_precondition c Q µ → 〈c; µ〉 -->| σ →
exists µ’, σ = 〈cSkip; µ’〉 ∧ Q µ’.

Proof. (* 97 lines *) Qed.

Definition nofail (c : command) := weakest_precondition c (fun _ => True).

Theorem wp_nofail : forall (c : command) (µ : store),
weakest_precondition c (fun _ => True) µ → succeeds 〈c; µ〉.

Proof. (* 7 lines *) Qed.

Theorem wp_postcondition :
forall (c : command) (µ µ’ : store) (Q : store_predicate),
weakest_precondition c Q µ → 〈c; µ〉 -->* 〈cSkip; µ’〉 → Q µ’.

Proof. (* 5 lines *) Qed.

(*
Strongest postcondition

*)

Fixpoint strongest_postcondition
(c : command)
(P : store_predicate) : store_predicate :=
match c with

| cAssert e =>
(fun µ => e µ = t ∧ P µ)

| cAssume e =>
(fun µ => e µ = t ∧ P µ)

| cHavoc x =>
(fun µ => exists v : value, P (rebind µ x v))

| cSkip =>
P

| cChoice c c’ =>
(fun µ => strongest_postcondition c P µ ∨ strongest_postcondition c’ P µ)

| cSeq c c’ =>
(fun µ => strongest_postcondition c’ (strongest_postcondition c P) µ)

| cAssign x e =>
(fun µ => exists v, P (rebind µ x v) ∧ µ x = e (rebind µ x v))

end.

Theorem sp_soundness :
forall (c : command) (µ µ’ : store) (P : store_predicate),
P µ → 〈c; µ〉 -->* 〈cSkip; µ’〉 → strongest_postcondition c P µ’.

Proof. (* 86 lines *) Qed.

Theorem sp_strongest_aux : forall (c : command) (µ’ : store) (P :
store_predicate),
strongest_postcondition c P µ’ → exists µ : store, P µ ∧ 〈c; µ〉 -->* 〈cSkip;

µ’〉.
Proof. (* 57 lines *) Qed.

Theorem sp_strongest : forall (c : command) (P Q : store_predicate),
(forall µ µ’, P µ → 〈c; µ〉 -->* 〈cSkip; µ’〉 → Q µ’) →
(forall µ’, strongest_postcondition c P µ’ → Q µ’).

Proof. (* 3 lines *) Qed.

464 COQ SCRIPTS

(*
Weakest Liberal Preconditions

*)

Fixpoint weakest_liberal_precondition (c : command)
(Q : store_predicate) : store_predicate :=

match c with
| cAssert e => (fun µ => (e µ = t → Q µ))
| cAssume e => (fun µ => (e µ = t → Q µ))
| cHavoc x => (fun µ => forall v, Q (rebind µ x v))
| cSkip => Q
| cChoice c c’ => (fun µ => weakest_liberal_precondition c Q µ ∧

weakest_liberal_precondition c’ Q µ)
| cSeq c c’ => (fun µ => weakest_liberal_precondition c

(weakest_liberal_precondition c’ Q) µ)
| cAssign x e => (fun µ => Q (rebind µ x (e µ)))

end.

Theorem wlp_soundness :
forall (c : command) (µ µ’ : store) (Q : store_predicate),
weakest_liberal_precondition c Q µ → 〈c; µ〉 -->* 〈cSkip; µ’〉 → Q µ’.

Proof. (* 42 lines *) Qed.

Theorem wlp_sp :
forall (c : command) (µ : store) (P Q : store_predicate),

(forall µ, strongest_postcondition c P µ → Q µ) →
P µ → weakest_liberal_precondition c Q µ.

Proof. (* 64 lines *) Qed.

Theorem sp_wlp :
forall (c : command) (µ : store) (P Q : store_predicate),

(forall µ, P µ → weakest_liberal_precondition c Q µ) →
strongest_postcondition c P µ → Q µ.

Proof. (* 47 lines *) Qed.

Theorem wlp_sp’ :
forall (c : command) (P : store_predicate) (µ : store),
P µ -> weakest_liberal_precondition c (strongest_postcondition c P) µ.

Proof. (* 3 lines *) Qed.

Theorem sp_wlp’ :
forall (c : command) (Q : store_predicate) (µ : store),
strongest_postcondition c (weakest_liberal_precondition c Q) µ -> Q µ.

Proof. (* 3 lines *) Qed.

Theorem wlp_weakest :
forall (c : command) (P Q : store_predicate),

(forall µ µ’, P µ → 〈c; µ〉 -->* 〈cSkip; µ’〉 → Q µ’) →
(forall µ, P µ → weakest_liberal_precondition c Q µ).

Proof. (* 4 lines *) Qed.

Theorem wlp_monotonic :
forall (c : command) (Q Q’ : store_predicate) (µ : store),
(forall µ, Q µ → Q’ µ) → weakest_liberal_precondition c Q µ →
weakest_liberal_precondition c Q’ µ.

Proof. (* 9 lines *) Qed.

VCG 465

Theorem wp_monotonic :
forall (c : command) (Q Q’ : store_predicate) (µ : store),
(forall µ, Q µ → Q’ µ) → weakest_precondition c Q µ →
weakest_precondition c Q’ µ.

Proof. (* 12 lines *) Qed.

Theorem wp_impl_wlp :
forall (c : command) (Q : store_predicate) (µ : store),
weakest_precondition c Q µ → weakest_liberal_precondition c Q µ.

Proof. (* 12 lines *) Qed.

Theorem wp_impl_nofail :
forall (c : command) (Q : store_predicate) (µ : store),
weakest_precondition c Q µ → nofail c µ.

Proof. (* 3 lines *) Qed.

Theorem wlp_conj :
forall (c : command) (Q Q’ : store_predicate) (µ : store),
weakest_liberal_precondition c Q µ →
weakest_liberal_precondition c Q’ µ →
weakest_liberal_precondition c (fun µ => Q µ ∧ Q’ µ) µ.

Proof. (* 8 lines *) Qed.

Theorem wp_as_wlp_and_nf :
forall (c : command) (Q : store_predicate) (µ : store),
weakest_precondition c Q µ ↔

weakest_liberal_precondition c Q µ ∧ nofail c µ.
Proof. (* 22 lines *) Qed.

466 COQ SCRIPTS

D.48 WeakestPreconditions

Require Import EnsembleExt.
Require Import Notations.
Require Import Classical.
Require Import Relations.
Require Import Setoid.
Require Import Basics.
Require Import Misc.
Require Import ClassicalChoice.
Require Import DependentProduct.
Require RADefinitions.
Require RANotations.
Require RAAxioms.
Require RATheorems.
Require RAOperators.
Require RAOperatorTheorems.

Set Implicit Arguments.

Module WeakestPreconditionDefinitions
<: RADefinitions.DEFINITIONS.

Definition R_raw (Σ : Type) := Ensemble (Ensemble Σ).

Definition R (Σ : Type) := { R : R_raw Σ | closed R } .

Definition unpack {Σ} (R : R Σ) : R_raw Σ :=
proj1_sig R.

Definition f_unpack {Σ I} (R : I → R Σ) : I → R_raw Σ :=
compose (@unpack Σ) R.

Theorem closed_unpack :
forall {Σ} (R : R Σ),

closed (unpack R).
Proof. (* 2 lines *) Qed.

Theorem closed_f_unpack :
forall {Σ I} (R : I → R Σ) i,
closed ((f_unpack R) i).

Proof. (* 3 lines *) Qed.

Section StateSection.

Variable State : Type.

Definition single_raw (x : State) : R_raw State :=
fun Σ => x ∈ Σ.

Definition single (x : State) : R State.
exists (single_raw x).
compute; intros.
apply (H0 x H).
Defined.

Definition models_raw (S : Ensemble State) (R : R_raw State) : Prop :=
exists Σ, Σ ∈ R ∧ Same_set _ Σ S.

WEAKESTPRECONDITIONS 467

Definition models (S : Ensemble State) (R : R State) : Prop :=
models_raw S (unpack R).

Definition add_raw {I} (R : I → R_raw State) : R_raw State :=
IndexedUnion R.

Definition add {I} (R : I → R State) : R State.
exists (add_raw (f_unpack R)).
apply closed_IndexedUnion.
apply closed_f_unpack.
Defined.

Definition mul_raw {I} (R : I → R_raw State) : R_raw State :=
IndexedIntersection R.

Definition mul {I} (R : I → R State) : R State.
exists (mul_raw (f_unpack R)).
apply closed_IndexedIntersection.
apply closed_f_unpack.
Defined.

Definition top_raw : R_raw State :=
fun _ => True.

Definition top : R State.
exists (top_raw).
compute; trivial.
Defined.

Definition bottom_raw : R_raw State := ∅.

Definition bottom : R State.
exists bottom_raw.
apply closed_empty_set.
Defined.

Definition implies_raw (R R’ : R_raw State) : Prop :=
R ⊆ R’.

Definition implies (R R’ : R State) : Prop :=
implies_raw (unpack R) (unpack R’).

Definition equiv_raw : relation (R_raw State) :=
fun R R’ => implies_raw R R’ ∧ implies_raw R’ R.

Definition equiv : relation (R State) :=
fun R R’ => implies R R’ ∧ implies R’ R.

End StateSection.

End WeakestPreconditionDefinitions.

Module WeakestPreconditionAxioms
<: RAAxioms.AXIOMS WeakestPreconditionDefinitions.

Import WeakestPreconditionDefinitions.

Module RAN :=
RANotations.Make(WeakestPreconditionDefinitions).

Include RAN.

468 COQ SCRIPTS

Section StateSection.

Variable State : Type.

Theorem top_axiom : forall (R : False → R State),
> VV ⊗ R.

Proof. (* 2 lines *) Qed.

Theorem bottom_axiom : forall (R : False → R State),
⊥ VV ⊕ R.

Proof. (* 4 lines *) Qed.

Theorem single_axiom :
forall (s : State) (S : Ensemble State),
S |= single s ↔ s ∈ S.

Proof. (* 7 lines *) Qed.

Theorem add_axiom :
forall I (R : I → R State) (S : Ensemble State),
S |= ⊕ R ↔ ∃ i, S |= R i.

Proof. (* 11 lines *) Qed.

Theorem mul_axiom :
forall I (R : I → R State) (S : Ensemble State),
S |= ⊗ R ↔ ∀ i, S |= R i.

Proof. (* 16 lines *) Qed.

Theorem implies_axiom :
forall (R R’ : R State),
R V R’ ↔ forall (S : Ensemble State), S |= R → S |= R’.

Proof. (* 10 lines *) Qed.

Theorem monotonic_models_axiom :
forall (R : R State) S S’,
S’ ⊆ S → S’ |= R → S |= R.

Proof. (* 7 lines *) Qed.

End StateSection.

End WeakestPreconditionAxioms.

Module WeakestPreconditionOperators.

Import WeakestPreconditionDefinitions WeakestPreconditionAxioms.

Module RAN :=
RANotations.Make (WeakestPreconditionDefinitions).

Include RAN.

Module RAT :=
RATheorems.Make

(WeakestPreconditionDefinitions)
(WeakestPreconditionAxioms).

Import RAT.

Definition bind_raw {Σ Σ’ Σ”}
(f : Σ → R_raw Σ’)
(g : Σ’ → R_raw Σ”) : Σ → R_raw Σ” :=

flip (compose (flip f) (flip g)).

WEAKESTPRECONDITIONS 469

Definition bind {Σ Σ’ Σ”} (f : Σ → R Σ’) (g : Σ’ → R Σ”) : Σ → R Σ”.
remember (f_unpack f) as f’; remember (f_unpack g) as g’.
assert (forall x, closed (f’ x)).
intro; subst; apply closed_f_unpack.
assert (forall x, closed (g’ x)).
intro; subst; apply closed_f_unpack.
intro x.
exists ((bind_raw f’ g’) x).
unfold bind_raw.
generalize H H0; clear; intros.
rename x into S.
compute [flip compose closed In]; intros.
specialize (H S); red in H.
apply (H _ _ H1).
compute [Included In]; intros.
specialize (H0 x); red in H0.
apply (H0 _ _ H3).
exact H2.

Defined.

Theorem f_unpack_bind :
forall {Σ Σ’ Σ”} (f : Σ → R Σ’) (g : Σ’ → R Σ”),

f_unpack (bind f g) = bind_raw (f_unpack f) (f_unpack g).
Proof. (* 1 lines *) Qed.

Theorem unpack_bind :
forall {Σ Σ’ Σ”} (f : Σ → R Σ’) (g : Σ’ → R Σ”) x,

unpack (bind f g x) = bind_raw (f_unpack f) (f_unpack g) x.
Proof. (* 1 lines *) Qed.

Theorem bind_associative :
forall {Σ Σ’ Σ” Σ”’}

(f : Σ → R Σ’)
(g : Σ’ → R Σ”)
(h : Σ” → R Σ”’),

f_equiv (bind (bind f g) h) (bind f (bind g h)).
Proof. (* 9 lines *) Qed.

Definition lift_raw {Σ Σ’} (f : Σ → R_raw Σ’) : R_raw Σ → R_raw Σ’ :=
bind_raw id f.

Definition lift {Σ Σ’} (f : Σ → R Σ’) : R Σ → R Σ’ :=
bind id f.

Section StateSection.

Variables (Σ Σ’ : Type).

Theorem monotonic_lift_axiom :
forall (f g : Σ → R Σ’) (R R’ : R Σ),
f_implies f g → R V R’ → lift f R V lift g R’.

Proof. (* 18 lines *) Qed.

Theorem lift_add_axiom :
forall (f : Σ → R Σ’) I (R : I → R Σ),

lift f (add R) VV add (fun i, lift f (R i)).
Proof. (* 21 lines *) Qed.

470 COQ SCRIPTS

Theorem lift_single_axiom :
forall (f : Σ → R Σ’) (s : Σ),
lift f (single s) VV f s.

Proof. (* 19 lines *) Qed.

Theorem lift_mul_axiom :
forall (f : Σ → R Σ’) I (R : I → R Σ),
lift f (mul R) VV mul (fun i, lift f (R i)).

Proof. (* 15 lines *) Qed.

End StateSection.

End WeakestPreconditionOperators.

Module WeakestPreconditionExtra.

Import WeakestPreconditionDefinitions
WeakestPreconditionAxioms
WeakestPreconditionOperators.

Module RAT :=
RATheorems.Make

(WeakestPreconditionDefinitions)
(WeakestPreconditionAxioms).

Import RAT.

Module RAOP :=
RAOperators.Make

(WeakestPreconditionDefinitions)
(WeakestPreconditionAxioms)
(WeakestPreconditionOperators).

Module RAOT :=
RAOperatorTheorems.Make

(WeakestPreconditionDefinitions)
(WeakestPreconditionAxioms)
(WeakestPreconditionOperators).

Module RAN := RANotations.Make(WeakestPreconditionDefinitions).
Import RAN.

Theorem lift_equiv_default : forall {Σ Σ’} (f : Σ → R Σ’) (R : R Σ),
lift f R VV
⊕ (fun S : { S | S |= R } =>
⊗ (fun σ : From (proj1_sig S) =>
f (proj1_sig σ))).

Proof. (* 4 lines *) Qed.

Theorem bind_equiv_default :
forall {Σ Σ’ Σ”} (f : Σ → R Σ’) (g : Σ’ → R Σ”),

f_equiv (bind f g) (RAOP.primitive_bind f g).
Proof. (* 9 lines *) Qed.

End WeakestPreconditionExtra.

Bibliography

[1] Aho, A. V., Sethi, R., and Ullman, J. D. Compilers: Princiles, Techniques,
and Tools. Addison-Wesley, 1986.

[2] Amighi, A., Blom, S., Huisman, M., and Zaharieva-Stojanovski, M. The
VerCors project: Setting up Basecamp. In PLPV (2012), K. Claessen and
N. Swamy, Eds., ACM, pp. 71–82.

[3] Appel, A. W. Verified Software Toolchain - (Invited Talk). In ESOP (2011),
G. Barthe, Ed., vol. 6602 of Lecture Notes in Computer Science, Springer,
pp. 1–17.

[4] Appel, A. W. VeriSmall: Verified Smallfoot Shape Analysis. In CPP (2011),
J.-P. Jouannaud and Z. Shao, Eds., vol. 7086 of Lecture Notes in Computer
Science, Springer, pp. 231–246.

[5] Aydemir, B. E., Bohannon, A., Fairbairn, M., Foster, J. N., Pierce, B. C.,
Sewell, P., Vytiniotis, D., Washburn, G., Weirich, S., and Zdancewic, S.
Mechanized Metatheory for the Masses: The PoplMark Challenge. In
TPHOLs (2005), J. Hurd and T. F. Melham, Eds., vol. 3603 of Lecture Notes
in Computer Science, Springer, pp. 50–65.

[6] Ball, T., Hackett, B., Lahiri, S. K., Qadeer, S., and Vanegue, J. Towards
Scalable Modular Checking of User-Defined Properties. In VSTTE (2010),
G. T. Leavens, P. W. O’Hearn, and S. K. Rajamani, Eds., vol. 6217 of Lecture
Notes in Computer Science, Springer, pp. 1–24.

[7] Barnett, M., Chang, B.-Y. E., DeLine, R., Jacobs, B., and Leino, K. R. M.
Boogie: A Modular Reusable Verifier for Object-oriented Programs. In
FMCO 2005, volume 4111 of LNCS (2006), Springer, pp. 364–387.

[8] Barnett, M., and Leino, K. R. M. Weakest-precondition of unstructured
programs. In PASTE (2005), M. D. Ernst and T. P. Jensen, Eds., ACM,
pp. 82–87.

471

472 BIBLIOGRAPHY

[9] Barnett, M., Leino, K. R. M., and Schulte, W. The Spec# programming
system: An overview. In Proceedings of CASSIS 04 (2004), Springer,
pp. 49–69.

[10] Barthe, G., Burdy, L., Charles, J., Grégoire, B., Huisman, M., Lanet, J.-L.,
Pavlova, M., and Requet, A. JACK - A Tool for Validation of Security
and Behaviour of Java Applications. In FMCO (2006), F. S. de Boer, M. M.
Bonsangue, S. Graf, and W. P. de Roever, Eds., vol. 4709 of Lecture Notes
in Computer Science, Springer, pp. 152–174.

[11] Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P. W., Wies,
T., and Yang, H. Shape Analysis for Composite Data Structures. In
Damm and Hermanns [35], pp. 178–192.

[12] Berdine, J., Calcagno, C., and O’Hearn, P. W. Smallfoot: Modular
Automatic Assertion Checking with Separation Logic. In FMCO (2005),
F. S. de Boer, M. M. Bonsangue, S. Graf, and W. P. de Roever, Eds., vol. 4111
of Lecture Notes in Computer Science, Springer, pp. 115–137.

[13] Berdine, J., Calcagno, C., and O’Hearn, P. W. Symbolic Execution with
Separation Logic. In APLAS (2005), K. Yi, Ed., vol. 3780 of Lecture Notes
in Computer Science, Springer, pp. 52–68.

[14] Berdine, J., Cook, B., and Ishtiaq, S. SLAyer: Memory Safety for Systems-
Level Code. In CAV (2011), G. Gopalakrishnan and S. Qadeer, Eds.,
vol. 6806 of Lecture Notes in Computer Science, Springer, pp. 178–183.

[15] Berghofer, S., Nipkow, T., Urban, C., and Wenzel, M., Eds. Theorem
Proving in Higher Order Logics, 22nd International Conference, TPHOLs 2009,
Munich, Germany, August 17-20, 2009. Proceedings (2009), vol. 5674 of
Lecture Notes in Computer Science, Springer.

[16] Bertot, Y., and Castéran, P. Interactive Theorem Proving and Program
Development. Coq’Art: The Calculus of Inductive Constructions. Texts in
Theoretical Computer Science. Springer Verlag, 2004.

[17] Bobot, F., Filliâtre, J.-C., Marché, C., and Paskevich, A. Why3: Shepherd
Your Herd of Provers. In Boogie 2011: First International Workshop on
Intermediate Verification Languages (Wrocław, Poland, August 2011).

[18] Boogie: An intermediate verification language. http://research.
microsoft.com/en-us/projects/boogie/.

[19] Borras, and Cari. Overexposure of radiation therapy patients in panama:
problem recognition and follow-up measures. Revista Panamericana de
Salud Pública/Pan American Journal of Public Health 20, 2-3 (Sept. 2006),
173–187.

http://research.microsoft.com/en-us/projects/boogie/
http://research.microsoft.com/en-us/projects/boogie/

BIBLIOGRAPHY 473

[20] Botincan, M., Distefano, D., Dodds, M., Grigore, R., and Parkinson,
M. J. coreStar: The Core of jStar. In Boogie (2011), pp. 65–77.

[21] Botincan, M., Dodds, M., Donaldson, A. F., and Parkinson, M. J.
Automatic Safety Proofs for Asynchronous Memory Operations. In
PPOPP (2011), C. Cascaval and P.-C. Yew, Eds., ACM, pp. 313–314.

[22] Botincan, M., Dodds, M., Donaldson, A. F., and Parkinson, M. J. Safe
Asynchronous Multicore Memory Operations. In ASE (2011), P. Alexander,
C. S. Pasareanu, and J. G. Hosking, Eds., IEEE, pp. 153–162.

[23] Bouillaguet, C., Kuncak, V., Wies, T., Zee, K., and Rinard, M. Using First-
Order Theorem Provers in the Jahob data structure verification system.
In Verification, Model Checking and Abstract Interpretation (November 2007),
vol. 4349 of LNCS.

[24] Box, D. Essential .NET, Volume I: The Common Language Runtime. Addison-
Wesley, 2002.

[25] Boyland, J. Checking Interference with Fractional Permissions. In SAS
(2003), R. Cousot, Ed., vol. 2694 of Lecture Notes in Computer Science,
Springer, pp. 55–72.

[26] Bozdag, E. Therac-25 and the security of the computer controlled
equipment Ethics of Science and Technology.

[27] Calcagno, C., and Distefano, D. Infer: An Automatic Program Verifier
for Memory Safety of C Programs. In NASA Formal Methods (2011), M. G.
Bobaru, K. Havelund, G. J. Holzmann, and R. Joshi, Eds., vol. 6617 of
Lecture Notes in Computer Science, Springer, pp. 459–465.

[28] Calcagno, C., Distefano, D., O’Hearn, P. W., and Yang, H.
Compositional Shape Analysis by Means of Bi-abduction. In POPL
(2009), Z. Shao and B. C. Pierce, Eds., ACM, pp. 289–300.

[29] Chlipala, A. Certified programming with dependent types. http:
//adam.chlipala.net/cpdt/.

[30] Clarke, D. G., Potter, J., and Noble, J. Ownership Types for Flexible Alias
Protection. In OOPSLA (1998), B. N. Freeman-Benson and C. Chambers,
Eds., ACM, pp. 48–64.

[31] Cohen, E., Dahlweid, M., Hillebrand, M. A., Leinenbach, D., Moskal,
M., Santen, T., Schulte, W., and Tobies, S. VCC: A Practical System for
Verifying Concurrent C. In Berghofer et al. [15], pp. 23–42.

http://adam.chlipala.net/cpdt/
http://adam.chlipala.net/cpdt/

474 BIBLIOGRAPHY

[32] Cok, D. R., and Kiniry, J. ESC/Java2: Uniting ESC/Java and JML.
In CASSIS (2004), G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet, and
T. Muntean, Eds., vol. 3362 of Lecture Notes in Computer Science, Springer,
pp. 108–128.

[33] The Coq Proof Assistant. http://coq.inria.fr/.

[34] Dahlweid, M., Moskal, M., Santen, T., Tobies, S., and Schulte, W. VCC:
Contract-based Modular Verification of Concurrent C. In ICSE Companion
(2009), IEEE, pp. 429–430.

[35] Damm, W., and Hermanns, H., Eds. Computer Aided Verification, 19th
International Conference, CAV 2007, Berlin, Germany, July 3-7, 2007,
Proceedings (2007), vol. 4590 of Lecture Notes in Computer Science, Springer.

[36] David, C., and Chin, W.-N. Immutable Specifications for more Concise
and Precise Verification. In OOPSLA (2011), C. V. Lopes and K. Fisher,
Eds., ACM, pp. 359–374.

[37] de Moura, L. M., and Bjørner, N. Z3: An Efficient SMT Solver. In
TACAS (2008), C. R. Ramakrishnan and J. Rehof, Eds., vol. 4963 of Lecture
Notes in Computer Science, Springer, pp. 337–340.

[38] DeLine, R., and Leino, K. R. M. Boogiepl: A typed procedural language
for checking object-oriented programs. Tech. Rep. MSR-TR-2005-70,
Microsoft Research, Mar. 2005.

[39] Detlefs, D., Nelson, G., and Saxe, J. B. Simplify: a Theorem Prover for
Program Checking. J. ACM 52, 3 (2005), 365–473.

[40] Detlefs, D. L., Rustan, and Nelson, G. Wrestling with rep exposure.
Tech. rep., 1998.

[41] Dietl, W. Universe Types: Topology, Encapsulation, Genericity, and Tools.
Ph.D., Department of Computer Science, ETH Zurich, Dec. 2009. Doctoral
Thesis ETH No. 18522.

[42] Dijkstra, E. W. A Discipline of Programming. Prentice-Hall, 1976.

[43] Distefano, D. Attacking Large Industrial Code with Bi-abductive
Inference. In FMICS (2009), M. Alpuente, B. Cook, and C. Joubert,
Eds., vol. 5825 of Lecture Notes in Computer Science, Springer, pp. 1–8.

[44] Distefano, D., O’Hearn, P. W., and Yang, H. A Local Shape Analysis
Based on Separation Logic. In TACAS (2006), H. Hermanns and J. Palsberg,
Eds., vol. 3920 of Lecture Notes in Computer Science, Springer, pp. 287–302.

http://coq.inria.fr/

BIBLIOGRAPHY 475

[45] Distefano, D., and Parkinson, M. J. jStar: Towards Practical Verification
for java. In OOPSLA (2008), G. E. Harris, Ed., ACM, pp. 213–226.

[46] Dudka, K., Müller, P., Peringer, P., and Vojnar, T. Predator: A
Verification Tool for Programs with Dynamic Linked Data Structures -
(Competition Contribution). In TACAS (2012), C. Flanagan and B. König,
Eds., vol. 7214 of Lecture Notes in Computer Science, Springer, pp. 545–548.

[47] ECMA International. Standard ECMA-335 - Common Language
Infrastructure (CLI), 6 ed. June 2012.

[48] Erlang programming language. http://www.erlang.org/.

[49] Filliâtre, J.-C. Verifying two lines of C with Why3: an exercise in
program verification. In Verified Software: Theories, Tools and Experiments
(VSTTE) (Philadelphia, USA, January 2012).

[50] Filliâtre, J.-C., and Marché, C. The Why/Krakatoa/Caduceus Platform
for Deductive Program Verification. In Damm and Hermanns [35],
pp. 173–177.

[51] Flanagan, C., Leino, K. R. M., Lillibridge, M., Nelson, G., Saxe, J. B.,
and Stata, R. Extended Static Checking for Java. In PLDI (2002), J. Knoop
and L. J. Hendren, Eds., ACM, pp. 234–245.

[52] Flanagan, C., and Saxe, J. B. Avoiding exponential explosion: Generating
compact verification conditions. In POPL (2001), C. Hankin and
D. Schmidt, Eds., ACM, pp. 193–205.

[53] Frama-c. http://frama-c.com/index.html.

[54] Gotsman, A., Berdine, J., and Cook, B. Interprocedural Shape Analysis
with Separated Heap Abstractions. In SAS (2006), K. Yi, Ed., vol. 4134 of
Lecture Notes in Computer Science, Springer, pp. 240–260.

[55] Gupta, A., and Malik, S., Eds. Computer Aided Verification, 20th
International Conference, CAV 2008, Princeton, NJ, USA, July 7-14, 2008,
Proceedings (2008), vol. 5123 of Lecture Notes in Computer Science, Springer.

[56] Haack, C., Huisman, M., and Hurlin, C. Permission-Based Separation
Logic for Multithreaded Java Programs. Nieuwsbrief van de Nederlandse
Vereniging voor Theoretische Informatica 15 (2011), 13–23.

[57] Hoare, C. A. R. An Axiomatic Basis for Computer Programming. Commun.
ACM 12, 10 (1969), 576–580.

http://www.erlang.org/
http://frama-c.com/index.html

476 BIBLIOGRAPHY

[58] Hoare, C. A. R. Towards a theory of parallel programming. In Operating
Systems Techniques (1972), vol. 9 of A.P.I.C. Studies in Data Processing,
Academic Press, pp. 61–71.

[59] Hol4. http://hol.sourceforge.net/.

[60] Homeier, P., Gunter, C. A., and Gunter, E. L. Sunrise homepage.
http://www.cis.upenn.edu/~hol/sunrise/.

[61] Homeier, P. V., and Martin, D. F. Trustworthy Tools for Trustworthy
Programs: A Verified Verification Condition Generator. In TPHOLs
(1994), T. F. Melham and J. Camilleri, Eds., vol. 859 of Lecture Notes in
Computer Science, Springer, pp. 269–284.

[62] Homeier, P. V., and Martin, D. F. A Mechanically Verified Verification
Condition Generator. Comput. J. 38, 2 (1995), 131–141.

[63] Homeier, P. V., and Martin, D. F. Mechanical Verification of Mutually
Recursive Procedures. In CADE (1996), M. A. McRobbie and J. K. Slaney,
Eds., vol. 1104 of Lecture Notes in Computer Science, Springer, pp. 201–215.

[64] Homeier, P. V., and Martin, D. F. Mechanical Verification of Total
Correctness through Diversion Verification Conditions. In TPHOLs
(1998), J. Grundy and M. C. Newey, Eds., vol. 1479 of Lecture Notes in
Computer Science, Springer, pp. 189–206.

[65] Howard, W. A. The formulae-as-types notion of construction. Academic
Press, London-New York, 1980, pp. 480–490.

[66] Jacobs, B., and Piessens, F. Expressive Modular Fine-grained Concurrency
Specification. In POPL (2011), T. Ball and M. Sagiv, Eds., ACM, pp. 271–
282.

[67] Jacobs, B., Smans, J., and Piessens, F. A Quick Tour of the VeriFast
Program Verifier. In APLAS (2010), K. Ueda, Ed., vol. 6461 of Lecture
Notes in Computer Science, Springer, pp. 304–311.

[68] Jacobs, B., Smans, J., and Piessens, F. Verification of Unloadable Modules.
In FM (2011), M. Butler and W. Schulte, Eds., vol. 6664 of Lecture Notes in
Computer Science, Springer, pp. 402–416.

[69] Jones, C. B. Specification and Design of (Parallel) Programs. In IFIP
Congress (1983), pp. 321–332.

[70] Kassios, I. T. Dynamic Frames: Support for Framing, Dependencies and
Sharing Without Restrictions. In FM (2006), J. Misra, T. Nipkow, and
E. Sekerinski, Eds., vol. 4085 of Lecture Notes in Computer Science, Springer,
pp. 268–283.

http://hol.sourceforge.net/
http://www.cis.upenn.edu/~hol/sunrise/

BIBLIOGRAPHY 477

[71] Kassios, I. T. A theory of object oriented refinement. PhD thesis, University
of Toronto, Toronto, Ont., Canada, Canada, 2006.

[72] Kassios, I. T. The Dynamic Frames Theory. Formal Aspects of Computing
23, 3 (2011), 267–289.

[73] Kassios, I. T., Müller, P., and Schwerhoff, M. Comparing Verification
Condition Generation with Symbolic Execution: An Experience Report.
In VSTTE (2012), R. Joshi, P. Müller, and A. Podelski, Eds., vol. 7152 of
Lecture Notes in Computer Science, Springer, pp. 196–208.

[74] Abstract on Korean Air Flight 801 Conclusions, Probable Cause, and
Safety Recommendations. NTSB/AAR-99/02, August 1997.

[75] King, J. C. Symbolic Execution and Program Testing. Commun. ACM 19,
7 (1976), 385–394.

[76] Lahiri, S. K., and Qadeer, S. Verifying properties of well-founded linked
lists. In POPL (2006), J. G. Morrisett and S. L. P. Jones, Eds., ACM,
pp. 115–126.

[77] Leino, K. R. M. Efficient Weakest Preconditions. Inf. Process. Lett. 93, 6
(2005), 281–288.

[78] Leino, K. R. M. Dafny: An Automatic Program Verifier for Functional
Correctness. In LPAR (Dakar) (2010), E. M. Clarke and A. Voronkov, Eds.,
vol. 6355 of Lecture Notes in Computer Science, Springer, pp. 348–370.

[79] Leino, K. R. M., and Müller, P. Object Invariants in Dynamic Contexts.
In ECOOP (2004), M. Odersky, Ed., vol. 3086 of Lecture Notes in Computer
Science, Springer, pp. 491–516.

[80] Leino, K. R. M., and Müller, P. A Basis for Verifying Multi-threaded
Programs. In ESOP (2009), G. Castagna, Ed., vol. 5502 of Lecture Notes in
Computer Science, Springer, pp. 378–393.

[81] Leino, K. R. M., Müller, P., and Smans, J. Verification of Concurrent
Programs with Chalice. In FOSAD (2009), A. Aldini, G. Barthe, and
R. Gorrieri, Eds., vol. 5705 of Lecture Notes in Computer Science, Springer,
pp. 195–222.

[82] Leino, R., and Schulte, W. A Verifying Compiler for a Multi-threaded
Object-oriented Language. Marktoberdorf lecture notes, 2007. In Manfred
Broy, Johannes Grünbauer, Tony Hoare (eds.). Software System Reliability
and Security. IOS Press, 2007.

478 BIBLIOGRAPHY

[83] Leroy, X. Formal Verification of a Realistic Compiler. Communications of
the ACM 52, 7 (2009), 107–115.

[84] Leveson, N. G. An Investigation of the Therac-25 Accidents. IEEE
Computer 26 (1993), 18–41.

[85] M., N. Crash of American Airlines Boeing, December 1995.

[86] Magill, S., Berdine, J., Clarke, E. M., and Cook, B. Arithmetic
Strengthening for Shape Analysis. In SAS (2007), H. R. Nielson and
G. Filé, Eds., vol. 4634 of Lecture Notes in Computer Science, Springer,
pp. 419–436.

[87] Magill, S., Tsai, M.-H., Lee, P., and Tsay, Y.-K. THOR: A Tool for
Reasoning about Shape and Arithmetic. In Gupta and Malik [55], pp. 428–
432.

[88] McCarthy, J., and Hayes, P. J. Readings in nonmonotonic reasoning.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1987,
ch. Some philosophical problems from the standpoint of artificial
intelligence, pp. 26–45.

[89] Moggi, E. Notions of Computation and Monads. Inf. Comput. 93, 1 (1991),
55–92.

[90] Moy, Y. Automatic Modular Static Safety Checking for C Programs. PhD
thesis, Université Paris-Sud, Jan. 2009.

[91] Müller, P. Modular Specification and Verification of Object-oriented Programs.
Springer-Verlag, Berlin, Heidelberg, 2002.

[92] O’Hearn, P. W., Reynolds, J. C., and Yang, H. Local Reasoning about
Programs that Alter Data Structures. In CSL (2001), L. Fribourg, Ed.,
vol. 2142 of Lecture Notes in Computer Science, Springer, pp. 1–19.

[93] The Mozart Programming System. http://www.mozart-oz.org/.

[94] Parkinson, M. J., and Bierman, G. M. Separation Logic and Abstraction.
In POPL (2005), J. Palsberg and M. Abadi, Eds., ACM, pp. 247–258.

[95] Philippaerts, P., Vogels, F., Smans, J., Jacobs, B., and Piessens, F. The
Belgian Electronic Identity Card: a Verification Case Study. ECEASST 46
(2011).

[96] Pierce, B. C., Casinghino, C., Greenberg, M., Hriţcu, C., Sjöberg, V.,
and Yorgey, B. Software foundations. http://www.cis.upenn.edu/
~bcpierce/sf/, July 2012.

http://www.mozart-oz.org/
http://www.cis.upenn.edu/~bcpierce/sf/
http://www.cis.upenn.edu/~bcpierce/sf/

BIBLIOGRAPHY 479

[97] Poplmark. http://www.seas.upenn.edu/~plclub/poplmark/.

[98] Reynolds, J. C. Separation Logic: A Logic for Shared Mutable Data
Structures. In LICS (2002), IEEE Computer Society, pp. 55–74.

[99] Roy, P. V., and Haridi, S. Concepts, Techniques, and Models of Computer
Programming. MIT Press, 2004.

[100] Schulte, W., Xia, S., Smans, J., and Piessens, F. A Glimpse of a Verifying
C Compiler Extended Abstract, 2007.

[101] Schwarz, J. Generic Commands - A Tool for Partial Correctness
Formalisms. Comput. J. 20, 2 (1977), 151–155.

[102] Schwerhoff, M. Symbolic Execution for Chalice. Master’s thesis, ETH
Zurich, 2011.

[103] Smans, J., Jacobs, B., and Piessens, F. Symbolic Execution for
Implicit Dynamic Frames. http://people.cs.kuleuven.be/~jan.
smans/oopsla09.pdf.

[104] Smans, J., Jacobs, B., and Piessens, F. Implicit Dynamic Frames:
Combining Dynamic Frames and Separation Logic. In ECOOP (2009),
S. Drossopoulou, Ed., vol. 5653 of Lecture Notes in Computer Science,
Springer, pp. 148–172.

[105] Smans, J., Jacobs, B., and Piessens, F. Heap-Dependent Expressions in
Separation Logic. In FMOODS/FORTE (2010), J. Hatcliff and E. Zucca,
Eds., vol. 6117 of Lecture Notes in Computer Science, Springer, pp. 170–185.

[106] Smans, J., Jacobs, B., and Piessens, F. Implicit Dynamic Frames. ACM
Transactions on Programming Languages and Systems 34, 1 (May 2012),
2:1–2:58.

[107] Strecker, M. Formal Verification of a Java Compiler in Isabelle. In CADE
(2002), A. Voronkov, Ed., vol. 2392 of Lecture Notes in Computer Science,
Springer, pp. 63–77.

[108] Tuerk, T. A Formalisation of Smallfoot in HOL. In Berghofer et al. [15],
pp. 469–484.

[109] Villard, J., Lozes, É., and Calcagno, C. Tracking Heaps That Hop with
Heap-Hop. In TACAS (2010), J. Esparza and R. Majumdar, Eds., vol. 6015
of Lecture Notes in Computer Science, Springer, pp. 275–279.

[110] Vogels, F. Companion Coq Scripts. http://people.cs.kuleuven.be/
~frederic.vogels/coq-scripts.zip.

http://www.seas.upenn.edu/~plclub/poplmark/
http://people.cs.kuleuven.be/~jan.smans/oopsla09.pdf
http://people.cs.kuleuven.be/~jan.smans/oopsla09.pdf
http://people.cs.kuleuven.be/~frederic.vogels/coq-scripts.zip
http://people.cs.kuleuven.be/~frederic.vogels/coq-scripts.zip

480 BIBLIOGRAPHY

[111] Vogels, F., Jacobs, B., and Piessens, F. A machine checked soundness
proof for an intermediate verification language: extended version. CW
Reports CW526, Department of Computer Science, K.U.Leuven, Oct.
2008.

[112] Vogels, F., Jacobs, B., and Piessens, F. A Machine-checked Soundness
Proof for an Efficient Verification Condition Generator. In SAC (2010),
S. Y. Shin, S. Ossowski, M. Schumacher, M. J. Palakal, and C.-C. Hung,
Eds., ACM, pp. 2517–2522.

[113] Wadler, P. The Essence of Functional Programming. In POPL (1992),
R. Sethi, Ed., ACM Press, pp. 1–14.

[114] Wong, W., Debroy, V., and A., R. The role of software in recent catastrophic
accidents. IEEE Transactions on Reliability 59, 3 (September 2010), 469–473.

[115] Wong, W. E., Debroy, V., Surampudi, A., Kim, H., and Siok, M. F. Recent
catastrophic accidents: Investigating how software was responsible. In
Secure Software Integration and Reliability Improvement (SSIRI), 2010 Fourth
International Conference on (June 2010), IEEE, pp. 14–22.

[116] Yang, H., Lee, O., Berdine, J., Calcagno, C., Cook, B., Distefano, D., and

O’Hearn, P. W. Scalable Shape Analysis for Systems Code. In Gupta and
Malik [55], pp. 385–398.

Appendix E

Publications

E.1 Papers at international conferences and sym-
posia, published in full in proceedings

• Frédéric Vogels, Bart Jacobs, and Frank Piessens. A machine checked
soundness proof for an intermediate verification language. In Mogens
Nielsen, Antonín Kucera, Peter Bro Miltersen, Catuscia Palamidessi, Petr
Tuma, and Frank D. Valencia, editors, SOFSEM, volume 5404 of Lecture
Notes in Computer Science, pages 570–581. Springer, 2009.

• Frédéric Vogels, Bart Jacobs, and Frank Piessens. A machine-checked
soundness proof for an efficient verification condition generator. In
Sung Y. Shin, Sascha Ossowski, Michael Schumacher, Mathew J. Palakal,
and Chih-Cheng Hung, editors, SAC, pages 2517–2522. ACM, 2010.

• Frédéric Vogels, Bart Jacobs, Frank Piessens, and Jan Smans. Annotation
inference for separation logic based verifiers. In Roberto Bruni and
Jürgen Dingel, editors, FMOODS/FORTE, volume 6722 of Lecture Notes in
Computer Science, pages 319–333. Springer, 2011.

• Pieter Philippaerts, Frédéric Vogels, Jan Smans, Bart Jacobs, and Frank
Piessens. The Belgian Electronic Identity Card: a Verification Case Study.
ECEASST, 46, 2011.

• Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem
Penninckx, and Frank Piessens. VeriFast: A powerful, sound, predictable,
fast verifier for C and Java. In NASA Formal Methods,, pages 41–55.
Springer, 2011.

481

482 PUBLICATIONS

E.2 Internal reports

• Frédéric Vogels, Bart Jacobs, and Frank Piessens. A machine checked
soundness proof for an intermediate verification language: extended
version. CW Reports CW526, Department of Computer Science,
K.U.Leuven, October 2008.

• Frédéric Vogels, Bart Jacobs, and Frank Piessens. A machine-checked
soundness proof for an efficient verification condition generator: technical
report. CW Reports CW568, Department of Computer Science,
K.U.Leuven, April 2010.

• Frédéric Vogels, Bart Jacobs, and Frank Piessens. Featherweight VeriFast:
Extended version. CW Reports CW614, Department of Computer Science,
KU Leuven, January 2012.

Arenberg Doctoral School of Science, Engineering & Technology
Faculty of Engineering

Department of Computer Science
DistriNet

Celestijnenlaan 200A box 2402
B-3001 Heverlee

	Contents
	List of Figures
	Introduction
	Static Verification Of Imperative Programs
	Overview of Contributions
	Summary

	I Verification Condition Generation
	Overview
	Phase I: From Source to Intermediate Language
	BoogieFlat
	Source Language
	Syntax
	Typing
	Operational semantics
	Modularisation

	Translation
	Logical Part
	Procedural Part

	Formal Semantics of the Intermediate Verification Language
	Syntax
	Operational Semantics
	Conclusion

	Phase II: Generating Verification Conditions
	Hoare Logic
	Strongest Postcondition
	Weakest Liberal Precondition
	Weakest Precondition
	Conclusion

	Efficient Weakest Preconditions
	Single Assignment Form
	Passification
	Efficient Weakest Preconditions
	Soundness and Size
	Conclusion

	II Symbolic Execution and Separation Logic
	Introduction
	VeriFast Introduction
	Separation Logic
	Rationale
	Separating Conjunction and Frame Rule

	VeriFast: Hands On
	Basics
	User Defined Predicates
	Recursive User Defined Predicates
	List Reversal
	Ambiguous Matches

	Related Verification Tools
	Conclusion

	Featherweight VeriFast
	Small Imperative Language
	Overview
	Result Algebra
	Examples
	Operations and Axioms
	Lemmas

	Operators
	Basic Operators
	Result Algebra Models
	Inductive Formulae
	Weakest Preconditions

	Operator Lemmas
	Concrete Execution
	Formalisation
	Shortcomings

	Semiconcrete Execution
	Formalisation
	Relation with Concrete Execution

	Symbolic Execution
	Formalisation
	Relation with Semiconcrete Execution
	Relation with Concrete Execution

	Conclusion

	Automation
	General Approach And Rationale
	Working Example
	Auto-open and Auto-close
	Autolemmas
	Shape Analysis
	Comparison
	Conclusion

	Conclusion and Future Work
	Summary
	Verification Condition Generation vs Symbolic Execution
	Similarities
	Performance

	Related Work
	Verification Condition Generation
	Symbolic Execution and Separation Logic

	Future Work
	Further Formalisation of Verification Condition Generation
	Featherweight VeriFast
	VeriFast
	Reflection

	Notations
	Notation definitions

	Monads
	Basics
	The List Monad
	The Maybe Monad
	Kleisli Triples
	Do Notation
	The State Monad
	Combining the State and Maybe Monads
	Combining the State and List monads

	(An Attempt At) A Short Introduction to Coq
	The Curry-Howard Isomorphism
	Curry-Howard in C++
	Objects as Witnesses
	Moving it to Compile-Time
	Compile-time Checked Indexing
	Disadvantages

	Curry-Howard in Coq
	Implementing <=
	Implementing Lists
	Implementing List Indexing

	Type Hierarchy
	Extraction
	Clarifications
	Result Algebra Definitions
	Result Algebra Axioms
	Effective Result Algebra
	Inductive Formulae Model

	Coq Scripts
	Assertion
	AssocList
	BooleanExpression
	Chunk
	ConcreteExecution
	DependentProduct
	EInductiveFormulae
	ERAAxioms
	ERADefinitions
	ERANotations
	ERAOperators
	ESymbolicExecution
	EWP
	EnsembleExt
	EqDec
	Expression
	FakeModel
	Formula
	Fresh
	Heap
	Identifier
	InductiveFormulae
	ListExt
	ListSetExt
	Misc
	Nat
	Notations
	Predicate
	RAAxioms
	RADefaultOperators
	RADefinitions
	RANotations
	RAOperatorTheorems
	RAOperators
	RATheorems
	Routine
	SIL
	SILPP
	SMT
	SemiconcreteExecution
	SetHolder
	SetOfSets
	Store
	Symbol
	SymbolicExecution
	Term
	VCG
	WeakestPreconditions

	Bibliography
	Publications
	Papers at international conferences and symposia, published in full in proceedings
	Internal reports

