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Abstract. Mining frequent patterns in a single network (graph) poses
a number of challenges. Already only to match one path pattern to a
network (upto subgraph isomorphism) is NP-complete. Matching algo-
rithms that exist, become intractable even for reasonably small patterns,
on networks which are large or have a high average degree. Based on re-
cent advances in parameterized complexity theory, we propose a novel
miner for rooted trees in networks. The miner, for a fixed parameter k
(maximal pattern size), can mine all rooted trees with delay linear in the
size of the network and only mildly exponential in the fixed parameter
k (2'“) This allows us to mine tractably, rooted trees, in large networks
such as the WWW or social networks. We establish the practical appli-
cability of our miner, by presenting an experimental evaluation on both
synthetic and real-world data.

1 Introduction

Mining frequent patterns is one of the fundamental tasks of data mining. Tra-
ditionally, patterns have consisted of simple sets of items. However, since the
last decade interest has been building up in mining more structured forms of
patterns, such as trees and arbitrary graphs. This has especially been the case
due to the phenomenal growth of structured data sources such as the WWW,
and social and citation networks.

There are generally two settings for mining in graphs. A first graph mining
setting is the transactional setting, where we are given a set of graphs and a
threshold ¢, and we want to find patterns that occur in at least ¢ graphs in the
set. The second graph mining setting, which we will consider in this paper, is
the single network setting, where we are given a single graph and a threshold ¢,
and we want to find patterns that have a support of at least ¢ in the given single
graph according to some appropriate frequency measure.

Central to any pattern mining task is the notion of pattern matching. In
graph mining, subgraph isomorphism is usually the matching operator of choice.
Checking for even a simple path in a graph under subgraph isomorphism is well
known to be NP-complete. Indeed, the problem of finding a path in a graph can
be reduced to the Hamiltonian path problem. However, recent advances in the



theory of parameterized complexity have produced algorithms that can tractably
solve several of the computationally hard graph problems, including subgraph
isomorphism, when certain parameters of the problems are bounded. The work
of [20] is particularly relevant in this case. It gives a randomized algorithm
for deciding subgraph isomorphism of a tree in a network with an asymptotic
complexity of O(k?log?(k)m2*), where m is the number of edges in the network
and k the size of the pattern.

In this paper we build on the work of [20]. We present an algorithm to
mine all frequent rooted tree patterns with delay O(k?log®(k)m2¥), i.e. the
time between any two consecutive frequent patterns being output is bounded
by O(k?log?(k)m2*). We present an implementation and experiments on both
synthetic and real-world data. To the best of our knowledge, our work is the first
to tractably mine tree patterns under subgraph isomorphism in single networks.

The rest of the paper is structured as follows. In the next section we give
a brief overview of related work, followed by a section of preliminaries required
for explaining our work. We then proceed to presenting our work by building
on the work of [20], followed by a thorough experimental evaluation to establish
the practical applicability of our mining algorithm. We then conclude with some
final remarks, and future direction of our research.

2 Related Work

Most of the work done so far in graph mining is in the transactional setting. For
example, graph miners AGM [18], FSG [21], FFSM [16], gSpan [30], MoFa/MoSS
[3,4] and Gaston [25], are all designed for the transactional setting. These miners
employ a variety of optimizations to reduce the overall runtime and memory use,
including canonical forms to avoid duplicate generation of candidates and extra-
neous isomorphism tests. The earlier generation of miners, AGM and FSG, work
in an apriori style fashion, whereas the newer generation (FFSM and beyond)
use depth first search (instead of apriori style breadth-first) to further optimize
memory use [29]. Furthermore, as in itemset mining, considerable work has also
been done in pattern summarization, by mining more representative and com-
prehensive graph patterns such as closed graphs [31, 7] and maximal graphs [17,
27].

For mining in single networks, work has so far been limited. To our knowledge,
the only ones that exist are for mining evolution of networks [1,2], node/edge
classification [15, 12], or mining that uses homomorpshism as matching operator
[11]. Even though in [1] the authors mine patterns when mining their evolution
rules, the language of the patterns is specific to time evolving networks, and
excludes more general (unlabeled) patterns like trees or cycles.

For pattern matching, with (sub)graph isomorphism as the matching op-
erator, usually the miners use one of a number of base matching algorithms.
For general arbitrary graphs, Ullman|[28] and VF2[8] are often popular choices,
whereas Nauty[22] is also sometimes used if the matching operator is restricted
graph isomorphism. Ullman and VF2 are both branch-and-bound based algo-



rithms that employ backtracking and pruning strategies to eliminate large parts
of the search space. Nauty on the other hand, uses results from group theory
to create unique canonical labelings for (automorphic) graphs that are then
compared for equivalency. Note that graph isomorphism is just a special case of
subgraph isomorphism, and any method for subgraph isomorphism can generally
also be used for graph isomorphism.

VF2 is newer and in comparison provides mostly better runtime than Ullman,
whereas in comparison to Nauty (on graph isomorphism) it is usually better on
real-world structured graphs [9].

An alternative to subgraph isomorphism is to use homomorphism. Homomor-
phism, as used in [11], has a lower computational cost (only polynomial in the
pattern size), but has other disadvantages. One of the major reasons why interest
in mining conjunctive queries has been declining is that candidate generation is
problematic, as illustrated by the fact that no optimal refinement operator ex-
ists [23, 24]. Moreover, depending on the application requiring pattern vertices to
map to different network vertices (as in isomorphism) may be the most natural
choice.

3 Preliminaries

3.1 Graphs

We recall basic graph theoretic notions used in this paper. For more background
in this area, see also [10]. A graph is a pair G = (Vg, Eg), where Vg # ) is
a finite set of vertices/nodes, and E¢ C {{z,y} | =,y € Vg} a set of edges
connecting those vertices. For any graph G its vertex and edge set will also be
referred to as V(G) and E(G) respectively. If {u,v} € E(G), we say u and v are
adjacent vertices and the edge {u,v} is incident with the vertex v. In this paper,
we call |V(G)| the size of G. A pathin a graph G is a sequence {v1, va, ..., v,} of
pairwise distinct vertices of G such that {v;,v;31} € E(G) for all 1 <i <n. A
tree is a graph such that there is a unique path between any pair of its vertices.
A rooted tree is a tree T in which a single vertex r € V(T'), denoted by root(T),
is distinguished and is called the root.

A labeled graph is a quadruple G = (Vg, Eq, Xa, Ag), where (Vg, Eg) is a
graph, Yo # 0 a set of labels, and \g : Vg U Eg — Xg a function assigning
labels to vertices and edges.

A graph H = (Vg, Eg) is called a subgraph of G = (Vg, Eg), if Vg C Vg and
Ep C Eg. It is an induced subgraph if for all Vv € Vi, (v,v) € Eg < (v,v') €
FEq, otherwise it is a non-induced subgraph.

A graph H = (Vi, Eg) is said to be isomorphic to G = (Vg, Eg) (denoted
by H = @), if there exists an edge-preserving bijective mapping of H onto G.
For labeled graphs the mapping, in addition to edge-preserving, also has to be
label-preserving. Formally, H = G if there exists a function ¢ : Vg — Vg such
that Yu,v € Vi, (u,v) € Eg < (o(u),p(v)) € Eg, and for the labeled case
additionally, Yu € Vi, Ag(u) = Ag(p(w)). If H is isomorphic to a subgraph of



G, then we call H subgraph isomorphic to G and write H < G. In that case,
the mapping is called an embedding of H in G.

If a mapping from H to G is edge-preserving but not bijective (and hence
not one-to-one), then it defines a homomorphism between H and G.

We denote with Emb(H, G), the set of all isomorphic embeddings of H in G.
Note, that (i) the number of embeddings |Emb(H, G)| can be exponential, and
(ii) that in this paper we consider normal subgraph isomorphism rather than the
more restrictive induced subgraph isomorphism.

3.2 Group Theory

A group G is a set of elements endowed with an arbitrary binary operation (),
such that it satisfies the following four properties, known as the group axioms:

— Closure. If a,b € G, then so does a - b.

— Associativity. (a-b)-c=a-(b-¢).

— Identity. There exists an element i € G, such that for every a € G: a -i =
i-a=a.

Inverse. For every a € G, there exists an element ¢!, such that a-a=! =i

A ring is a set of elements with two specified binary operations, addition (+)
and multiplication (x). It must satisfy all the group axioms for (4), all but the
inverse axiom for (x), and the following additional axioms:

— Commutativity of (+). For all a,b € G, a+b="b+a.
— Distributivity of (x) over (+). Forall a,b,c € G, ax (b+¢) = axb+axc
and (a+b)xc=axc+bxec

If in addition to the above if it also satisfies commutativity of (x), then it is
called a commutative ring, otherwise a non-commutative ring.
A field is a commutative ring for which also the inverse axiom for x holds.
For a ring R, an integer n and ¢ € R, n.a = Z?zl a is called the scalar
multiplication between n and a. For any finite field F', it is necessarily the case
that there exists an integer n > 0, such that for every a € F, na = 0. The
smallest such n for a field is called its characteristic.

4 Problem Statement

Let G be the language of all graphs, let Lp C G be a language of patterns,
let M(Lp,G) be some measure of interestingness, let ¢ be a given threshold of
interestingness and G € G be the network we want to mine patterns in. Then,
we would like to compute the set F(., g) of interesting patterns defined by:

Fiepo =1T € Lp : M(T,G) > t}

In our case, our pattern language is the class of rooted trees.



Several frequency measures have been proposed, as measures of interesting-
ness, in the literature for single graph mining [5, 6]. This paper primarily focuses
on the matching of patterns, and though our methods are general, for simplicity
we restrict ourselves to the frequency measure obtained by counting the number
of possible images of the root of a rooted tree pattern. This support measure is
defined as follows.

Definition 1 (root image). The root image of a rooted tree T in G is the set of
all vertices v € G to which root(T) can be mapped under subgraph isomorphism,
i.e.,

RI(T,G) = {p(root(T)) | ¢ € Emb(T,G)},

Definition 2 (support). Let T be a rooted tree and G be a graph. Then, we
define the support of T in G as the size of its root image, i.e.,

supp(T, G) = |[RZ(T, G)|.

This support measure is anti-monotone w.r.t. increasing pattern size.

For the remainder of the paper, we will consider a network GG and for brevity
we will use n = |V(G)| and m = |E(G)|. Moreover, the symbol T will be used to
refer to rooted tree patterns and denote its size with k = |V(T)|. We will abuse
terminology and use ’tree’ for 'rooted tree’ if it is clear from the context.

5 Mining Frequent Rooted Trees

In order to realise a pattern miner for rooted trees in single networks, the two
most important ingredients are efficient generation of candidate trees and fre-
quency counting of candidates in the network (using subgraph isomorphism). We
proceed by first outlining our candidate generation method, and then reviewing
the subgraph isomorphism method of [20] and showing how it can be employed
to compute the above defined frequency measure. Finally we give complexity
bounds for our complete miner.

5.1 Candidate Generation

In our miner, we use the same technique for generating rooted trees as in [25,
26]. It generates rooted ordered candidate trees that are left heavy, i.e. children
of a node are ordered and each left sub-tree is larger than the right sub-tree
according to their canonical form. The left heavy property avoids generating
trees that are isomorphically equivalent.

The method works by adding nodes only to the right most path, and ensuring
that the condition of left heavy subtree is met with each new added node. The
method thus produces a new tree for each added node, and can do so with delay
O(k) for size k trees. The left heavy subtree condition is met by maintaining a
canonical form for the trees, which for unlabeled case is just the depth sequence
of nodes in pre-order traversal. If the trees are labeled, then vertex and edge
labels are inserted. Figure 1 gives some example trees with their corresponding
depth sequence to illustrate the technique.



Crn

(0,1,2,3,2,1,2,3) (0,1,2,3,1,2,3,2) {(0,A)(1,A)(2,B)(3,A)(2,A)(1,A)(2,B)(3,A)}
(a) (b) (c)

Fig. 1: The (rooted) unlabeled trees (a) and (b) are isomorphic to each other,
but (a) is left-heavy compared to (b). We can treat as canonical form, the lexico-
graphically heaviest string of pre-order traversal of depth sequence (given below
each tree), and generate only trees that are like (a). Figure (c) shows an example
of a left-heavy labeled tree with its corresponding canonical string.

5.2 Subgraph isomorphism and frequency counting

Let us first briefly outline the subgraph isomorphism method of [20], which from
here on we will call the Koutis&William’s method. The method exploits the fact
that for trees, subgraph homomorphisms can be computed in polynomial time.
The method essentially consists of two core parts. In the first part, it constructs
an arithmetic circuit computing a polynomial P representing all possible homo-
morphisms of a tree in a network. In particular, with every network vertex v a
variable x, is associated, and every homomorphism 7 from the pattern 7" to the
network G corresponds to a term (monomial) HveV(T) Tr(y) in the polynomial,
i.e. the product of the variables corresponding to the images of the vertices of the
pattern. A multilinear term is a term where every variable occurs with degree
at most 1. Isomorphisms are injective, and therefore the terms in P correspond-
ing to isomorphisms will be exactly the multi-linear terms of P. In the second
part, the method then evaluates the polynomial on an appropriate commutative
group algebra, that ensures squares evaluate to 0. Hence, all terms which are not
multi-linear (i.e. all homomorphisms which are not isomorphisms) vanish. The
randomization of the values for which the variables xz, are substituted is such
that multi-linear terms evaluate to non-zero with probability at least 1/4 and
the randomization of the coefficients of the polynomial P is such that the sum-
mation of non-zero monomials evaluates to non-zero with probability at least
7/8.

In particular, [20] evaluates the polynomial P over GF(2!)Z5. Z& contains all
bitvectors of length k. For z,y € Z%, the multiplication is defined by component-
wise addition of the elements of the bit vectors. The neutral element, the vector
containing k zeros, is denoted Wy. Then, GF(2!)Z% is the ring of linear combi-



nations of elements of Z& with coefficients from GF(2!), the unique field with 2!
elements. GF(2!) has characteristic 2, i.e. z + x = 0 holds for any x.

The polynomial is evaluated by assigning to each variable x, a value Wy + 1y,
where y,, is a random value from Z% (i.e. a random k-bit vector). The result of
[20] is based on the following observations:

— For a set S C V(G) and variables z, = Wy + y, with y, € Z5, it holds
that [[,cg v # 0 iff the multiset {y,|v € S} is a set of linearly independent
vectors. Non-multilinear terms therefore evaluate to 0.

— A set of k randomly chosen bitvectors of length k is independent with prob-
ability at least 1/4.

— For any set of element b; € GF(2')Z% and randomly chosen coefficients a; €
GF(2'), if any of the b; is non-zero, then _, a;b; is nonzero with probability
1/2%.

Figure 2 gives an illustration of the above concept. It shows the mapping of
a rooted tree to a network, and the corresponding polynomial for this mapping.
The two multi-linear terms xjxsx3 in the polynomial represent isomorphisms,
while the rest represent homomorphisms.

In Algorithm 1, we outline the subgraph isomorphism method of [20]. The
occur method in Algorithm 1 defines an arithmetic circuit of a polynomial for
all homomorphic mappings starting from the mapping of root » € T to some
v’ € G. The creation and evaluation of such circuits for all v € G, in method
countFreq, gives us our above defined support measure of root images, for our
root r € 7T.

The a,; and z;, in the occur method, are chosen randomly from 7k and
GF(2'), and the arithmetic on the elements of array C; ; is performed based on
their defined group algebra. In our implementation we use the representation-
theoretic technique similar to [19] for doing the evaluations is memory linear in
k (rather than linear in 2%).

As per [20], the theoretical space complexity of occur method is O(km)
and its time complexity is O(k?m2F1%)!. By extension the time complexity of
countFreq method would be O(k?mn2¥I?). However, we note that it is possi-
ble with only a single evaluation of the arithmetic circuit to obtain the values
occur(T,G,r,j) for all j, and hence the time complexity is only O(k?m2*1?).

Remark 1. The occur method’s success probability p > 1/5 can be increased to
an arbitrary p’, by repeating the method [log(1 — p')/log(1 — p)] times (thereby
decreasing the probability of failure) .

5.3 Complete miner and complexity bounds

Algorithm 2 gives pseudo-code for our complete pattern miner. It brings together
all the core components to make an apriori style miner.

We now proceed to prove its theoretical bounds. Note, the space complexity
of our miner is bounded by our main datastructure C; ;, and is O(kn).

L O(km) being the size of the circuit and O(k2*1?) to do arithmetic over GF(2")[Z5]



polynomial: x1x22+ x1x2x3 + x1x2x3 + x1x3°

Fig. 2: All homomorphisms of T' unto GG, when mapping of t1 — 1 is fixed. Solid
lines represent mappings that are also isomorphic.

Theorem 1. Given a network G with n nodes and m edges labeled by label set
Y, and a frequency threshold t we can mine all frequent tree patterns of size
< k with time O(|X¢g|log?(k)k*>m2*)

Proof. As mentioned earlier, the countFreq method takes O(log?(k)km2*) time
for each candidate tested. At each call made at level i > 2 the generateCandi-
dates function in algorithm 2 produces at most O(|X¢|) candidates per frequent
pattern in S;_;. For each such candidate, countFreq is called, taking time
O(log?(k)k*m2F). Therefore, for each new solution output, the algorithm will
need O(|X¢|log?(k)k?>m2*) more time to finish. The theorem follows by noting
that we can delay the printing of the solutions (frequent patterns) in such a
way that between the printing of each pair of consecutive solutions the time is
bounded by O(| Z¢|log? (k)k*m2¥).

5.4 Further Optimizations

A number of optimizations are still possible with algorithm 2. Below we mention
some of the more high level optimizations we implemented in our miner.

— Sharing common subtrees. Note that for each C; for ¢ > 2, the candidate

trees may share a number of subtrees common among them. We do not need
to test each candidate tree in isolation. Instead we can reuse the previously
computed results of the common subparts.
In our implementation we made a directed acyclic graph structure to repre-
sent all T € C}, i.e. a tree is represented by a node of the directed acyclic
graph (the root) and all nodes below it. Several nodes can be parents of
the same node and hence the corresponding trees can share subtrees. This
method shares computation at the expense of additional memory.



Algorithm 1 Count frequency of tree T in a network G

11:
12:

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

let C; ; be an array containing the result of mapping each v; € Vr to each v; € Vg

function occur(T, G, r, j):
if Cy; is filled then
return C,
else if Ar(v;) # Ag(v;) then
let CT’]' =0.
else
let Cy; := arj.x; {where z; is a randomly chosen k-bit vector and a, ; a random
scalar}
if |V(T)| > 1 then
let Sy := {subtrees after removing v, from T'}

Cr; = Ch ;. HT,EST/ (Zj/:(vj’ijeEG occur(T’, G, r’,j’)) .
end if
end if
return C,;

function countFreq(T, G):
let: v, € Vr be the root of T’
freq:=0
for j =1 to |Vg| do

if occur(7T,G,r,j) then

freq = freq+1
end if
end for
return freq

6

Checking for homomorphisms. As mentioned earlier, homomorphisms
for trees in networks can be found in polynomial time. In fact in our case
all we have to do is evaluate our circuit over the infinite field of integers,
instead of the group algebra GF(2')[Z5], thereby avoiding all the expensive
arithmetic. Evaluation is linear in the size of the circuit and is only O(km).
We can store and use results of these inexpensive tests, and avoid the more
expensive isomorphism tests for any part of network and common subtrees
that are not homomorphic. In case of labeled networks especially, this can
offer considerable speedup.

Experimental Evaluation

6.1 Experimental setup

In our experimental evaluation, we are interested in the following experimental
questions:

Q1 What size of patterns and networks can our algorithm handle within reason-

able time?



Algorithm 2 Find all patterns of size upto k

1: function findPatterns(G, k, t, X):

2: T := 0 {set of all frequent trees}

3: S1..k := 0 {frequent trees of size 1...k}
4: Ci..1 := 0 {candidate trees of size 1...k}
5 fori=1to k do
6
7
8

if i =1 then
C1 := {single vertex graphs labeled with a label in X'}
: else
9: C; := generateCandidates(S;_1, X))
10: end if

11: Si:={c¢j : ¢; € CiA countFreq(c;, G) > t}
12: T:=TUS,

13: end for

14: return T

Q2 How does our pattern matching strategy compare to state of the art strate-
gies, in particular with VF2[8]?

Q3 Does our implementation scale as well as Koutis-William’s theoretical algo-
rithm?

Q4 What is the influence of pattern mining parameters and optimizations?

To perform our experiments, we implemented a system which we will call MINT
(MIning Networks for Trees), containing a breadth-first pattern mining algo-
rithm using the candidate generation method outlined in Section 5.1. We imple-
mented the frequency counting based Koutis&William’s algorithm as described
in Section 5.2, and a baseline MINT-VF2 using frequency counting based on
the VF2 algorithm[8]. We consider several versions of our new algorithm: First,
MINT-STD implements a vanilla version of Koutis& William’s algorithm. Second,
MiINT-HOMO implements Koutis&William’s with homomorphism checking op-
timization, and third, MINT-BATCH which includes homomorphism checking as
well as sharing common subtrees among the candidates. We call the last one
MINT-BATCH, as we share subtrees only among batchsize number candidates in
each pass; otherwise the memory requirements get intractably large due to the
exponential number of frequent patterns.

In order to be able to compare the randomized algorithm to the determin-
istic VF2, the subgraph isomorphism tests were repeated a sufficient number of
times to achieve a very high probability of success (1 — 107°¢). The result was
that in all cases except one, the randomized algorithm found the same set of
frequent patterns as the deterministic one (the only exception was MINT-STD
which classified one out of 124, 687 frequent patterns of size 7 as infrequent for
the 10% network in Table 2).

6.2 Data sets

We present results on both synthetic as well as real-world data.



Table 1: Real datasets’ summary

Dataset # #* # vertex|# edge| Avg.
vertices | edges labels |labels |degree
Facebook-uniform| 984,830| 185,508 17 1 0.38
Facebook-mhrw 957,359 1,792,188 16 1 3.74
Dblp-9202 129,073| 277,081 1 11 4.29
Dblp-0305 109,044 233,961 1 3 4.29
Dblp-0507 135,116] 290,363 1 3 4.28
IMDB 30,835,467|53,686,381 144 1 1.74

For synthetic data we generated power-law graphs with degree distribution
P(d) oc d=*. Such graphs show significant clustering, as is often seen in real-
world data. We generated networks of size n = {102, 10, 10%,10°,105,107}, and
then randomly assigned 1 of 4 labels to each of the vertices.

For real-world data, we used the DBLP citation network?, the Facebook
social network?®, and the IMDB movie database*. The DBLP data is a snapshot
of their citation network from 1992-2007. It is the same data as was used in [1].
The Facebook data is the Facebook social network obtained through random
sampling (one through uniform sampling, and the other through independent
Metropolis-Hastings random walks [13]). For IMDB, we extracted the movie-
actor network from the raw database. Our extracted network consists of movie,
year, role and actor nodes. Movie and role nodes were labeled by movie and role
type, whereas year nodes were labeled by the year the movie was released in.
Actor nodes are left with a default label. Also, Table 1 gives basic statistics of
our real-world networks.

6.3 Results

Complete mining of synthetic data We ran the algorithms on synthetic datasets,
and mined for as large patterns as we could in 10 hours. Table 2 gives the number
of frequent patterns found in that time period for frequency threshold 0.1, as
a function of the network size and pattern size. It is noteworthy that as the
network size grows, due to the asymptotic properties of the powerlaw graphs
the number of frequent patterns of a given size converges. Figure 3 plots for
each network size the total time used against the pattern size, for each of the
considered algorithms. Note, that we could not run the MINT-BATCH for larger
networks, due to its large memory requirements.

Sampled frequent patterns of synthetic data The number of patterns grows ex-
ponentially. Nevertheless, large patterns may be of interest. A strategy which
gained popularity recently [14] is to not mine all frequent patterns but only gen-
erate a sample of them. Here, we adopt a simple sampling strategy of randomly

2 http://www-kdd.isti.cnr.it/GERM/
3 http://odysseas.calit2.uci.edu/doku.php/public:online_social _networks
* http://www.imdb.com /interfaces



Table 2: Number of frequent patterns for synthetic data

network size /| 10*  10° 10* 10° 10° 107
pattern size
1 3 2 2 2 2 2
2 10 4 4 4 4 4
3 48 22 22 22 22 22
4 295 144 142 142 142 142
5 2077 1076 1066 1066 1066
6 15,698 8605 8534 8534
7 124,687 72084
8 1,024,557

Table 3: Number of frequent patterns for real data

network / |FB-uniform FB-mhrw Dblp0305 Dblp0507 Dblp9202 IMDB

pattern size
1 2 1 1 1 1 6
2 1 2 3 3 8 10
3 2 5 12 13 10 38
4 3 11 51 57 10 149
5 4 30 189 277 6 692
6 5 88 648 1099 1
7 10 0
8 15

selecting only 100 frequent patterns at each level (denoted pattern size in our
breadth-first mining) of the mining process, to make extensions for the next
level. This experiment allows us to study more closely the delay (time used per
pattern found) of our miner.

Figure 4 plots for each network the delay (time used per pattern) as a function
of the size of the patterns, and also as a function of the size of the network for
patterns of size 4, for each of the considered algorithms.

Real-world datasets Here we followed essentially the same procedure as for syn-
thetic data, the only differences being that a smaller frequency threshold of 0.05
for FB-uniform and IMDB was used to allow for larger patterns to be mined,
and that a higher cut-off point for runtime was used (we allowed 16 hours for
DBLP, 24 hours for Facebook, and 48 hours of runtime for IMDB data). Table
3 lists the number of frequent patterns found for each network. Figure 5 plots
for each network the total time used against the pattern size, for each of the
considered algorithms.

6.4 Discussion

Based on the results reported above, we can answer the experimental questions
as follows:
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Fig. 3: log-runtime as a function of pattern size

Using the new pattern matching method, it is computationally feasible to
match patterns up to size 15 (see figure 4). The main bottleneck when min-
ing all patterns is the number of frequent patterns found. As this number
increases exponentially, in many settings we don’t get further than size 5
patterns. One can observe however, that for real-world pattern mining tasks
one often has prior domain knowledge allowing for pruning the search space
towards the type of patterns one is interested in.

It is clear from all experiments that the new pattern method is orders of
magnitude better than the VF2 algorithm, especially for larger patterns.
From figure 4 one can see that the pattern matching algorithm scales at
least as well as the theoretical upper bound. In particular, in contrast to
VF2, our new method scales linearly in the network size and scales indeed
as O(k?log?(k)2¥) in the pattern size.

The homomorphism check prunes away a significant amount of subgraph
isomorphism tests for patterns which are clearly infrequent. This especially
holds for the real-world dataset.

Conclusion and Future Work

We present a novel algorithm for mining trees in single networks. It scales well
with respect to network size, and is only mildly exponential in pattern size, which
makes it tractable for moderately sized patterns. We show the effectiveness of
the method in practice, on real as well as synthetic data.

As for future work, we expect that several heuristic optimizations are possible

which can improve performance on real-world datasets. Furthermore, we would
also like to extend our method to graph classes other than trees.
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