
Arenberg Doctoral School of Science, Engineering & Technology
Faculty of Engineering
Department of Computer Science

Efficient Algorithms for Prolog Based
Probabilistic Logic Programming

Theofrastos MANTADELIS

Dissertation presented in partial
fulfillment of the requirements for
the degree of Doctor
in Engineering

November 2012





Efficient Algorithms for Prolog Based Probabilistic
Logic Programming

Theofrastos MANTADELIS

Jury:
Prof. dr. Adhemar Bultheel, chair
Prof. dr. ir. Gerda Janssens, promotor
Prof. dr. ir. Maurice Bruynooghe
Prof. dr. Patrick De Causmaecker
Prof. dr. Luc De Raedt
Prof. dr. Bart Demoen
Prof. dr. Ricardo Rocha
(Universidade do Porto, Portugal)

Dissertation presented in partial
fulfillment of the requirements for
the degree of Doctor
in Engineering

November 2012



© Katholieke Universiteit Leuven – Faculty of Engineering
Celestijnenlaan 200A box 2402, B-3001 Heverlee (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd
en/of openbaar gemaakt worden door middel van druk, fotocopie, microfilm,
elektronisch of op welke andere wijze ook zonder voorafgaande schriftelijke
toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form
by print, photoprint, microfilm or any other means without written permission
from the publisher.

D/2012/7515/128
ISBN 978-94-6018-594-6



Acknowledgements

First of all I would like to thank anyone reading this thesis. Hopefully, parts of
this thesis will be useful to other for using.

I owe sincere thankfulness to my promoter, Gerda Janssens, who supported
and guided me through the whole process of my doctoral research. I specially
thank her for her patience and help through my dissertation writing. I am sure
that this dissertation would not have been possible without her support and
understanding.

I would like to thank the members of my jury Maurice Bruynooghe, Patrick De
Causmaecker, Luc De Raedt, Bart Demoen and Ricardo Rocha for the precious
time they devoted reading my thesis and their constructive comments. I also
want to thank Adhemar Bultheel for chairing the jury and especially for his
optimistic comments at the beginning of one of the most stressful presentations
I ever gave.

Thank you Maurice, without you as a captain of DTAI I would have lost hope
and stope believing that I can make it out of the final storm. I want to thank
Patrick and Luc for remaining on the ship until the end. A special thanks to
Bart, for helping me in the beginning of my doctoral research and coming to
visit me at the hospital. I would also like to show my gratitude to Ricardo for
his enthusiasm for cooperation and his invitation to the university of Porto but
most of all for his kindness.

I want to thank all my colleagues for creating a great group and especially
my closer colleagues Angelika Kimmig, Bernd Gutmann and Daan Fierens for
sharing the same office with me without complaining too much over my noisy
personality. Special thanks to Koosha Paridel for his friendship and working
with me. I wanna thank Nima Taghipour, Gitte Vanwinckelen, Jantobias
Muehlberg and Nick Nikiforakis for being in the department and sharing long
replenishing breaks with me. I owe special gratitude to Dimitar Shterionov for
making me proud as my student, becoming a reliable colleague and a great

i



ii ACKNOWLEDGEMENTS

friend. I also want to show my gratitude to Paulo Moura for helping me, inviting
me to Portugal and accepting my invitation to work together.

My pursue for a doctoral research did not started in the university but when I 
was a little kid. For that I owe my eternal love and gratitude to my family. The 
first  person that gave me the idea for pursuing science was my grandmother 
Irene  Mantadeli, στη  μνήμη  σου  γιαγιά.  My  parents  Aristidis  Mantadelis  and 
Marina Mantadeli, very well know that I was never a good student. I managed to 
reach here by my father's  patience  and insistence for  studying and going to 
university.  Μπαμπά, σε ευχαριστώ για τις επιλογές που μου έδωσες και για την  
επιμονή σου στο να σπουδάσω. I know that my mother always wanted me to 
become a medical doctor, I want to thank her for her unconditional love and 
being  equally  proud  for  me  being  the  other  type  of  doctor.  I  also  want  to 
specially thank her for proofreading parts of my thesis. I also want to thank my 
sister  Irene  Gentili  for  being  close  to me and supporting me in  moments  of 
distress.

Many people helped me one way or another in writing this dissertation. I would
like to thank Maria Errie Phocas for helping me to prepare for TOEFL and
Stephanie Morrison for proofreading my text and supporting my family for
so many years. I owe my gratitude to Helena De Kok for helping me to start
writing the thesis and being a good friend for so long. They say that starting
is the most difficult part, but a task becomes equally difficult when you are
closing to the end of it. The thesis finished by the mere support of my close
friend Vasilis Maragkos. He supported me with his presence at a moment that
I was ready to give up showing me that the end is close and reachable.

Finally, I had a great deal of moral support from my valuable friends in Greece:
Antonis Kariotis, Costas Babos, Nikos Mavromatis, Stefanos Markopoulos and
here: Christos Varsakelis, Naouma Siouta, Alexandros and Michael Spyrantis,
Alice Dillon, Nuria Vendrell Llopis, André Arroyo Ruiz, Leandro Doctors. I
have met and made many friends in my pursue for doctoral research and each
one of them helped me continue.

I gratefully acknowledge the financial support received for the work performed
during my doctoral research by the GOA/08/008 Probabilistic Logic Learning
project.



Abstract

The integration of probabilistic reasoning with logic programming has become
one of the challenges in Artificial Intelligence. Lately, a lot of Probabilistic
Logic Programming (PLP) formalisms have surfaced. Given that PLP is the
combination of logic programming and probabilities which are two very different
fields, it is expected that researchers from several fields come up with different
approaches to tackle the presented challenges. This has resulted in a new
discipline called Probabilistic Logic Learning (PLL) or Statistical Relational
Learning (SRL) and a very active research community.

Within this community, ProbLog a probabilistic extension of Prolog, has
appeared. ProbLog was motivated by the task of mining links in large
probabilistic graphs. The simple but powerful ProbLog formulation was
extended in order to support inference on several different models. Soon
ProbLog evolved into a general purpose probabilistic programming language
that provides infrastructure for many PLL/SRL tasks. The two most critical
aspects of a PLP language are its expression power, and its scalability over
common PLL problems.

This thesis focuses on the extension and implementation of ProbLog. Tabling
is a well known method for avoiding re-computation in logic programming; we
present how tabling can be implemented for ProbLog. Tabling has significant
benefits for performance and also allows ProbLog to handle cyclic programs.
In order for the ProbLog system to perform inference, it manipulates large
Boolean formulae. We present the manipulation of Boolean formulae and several
novel algorithms that improve the performance of this task. Furthermore, we
present patterns, called AND/OR-clusters, that can be used to reduce a Boolean
formula to an equivalent one. Besides performance improvements of the ProbLog
system, we also present several novel extensions to the ProbLog language, such
as: general negation, probabilistic meta calls and ProbLog answers. Finally, we
present two applications of ProbLog that use several of the features we have
contributed to ProbLog.

iii





Contents

Abstract iii

Contents v

List of Figures xi

List of Tables xv

List of Algorithms xvii

1 Introduction 1

2 ProbLog 7

2.1 ProbLog and the Distribution Semantics . . . . . . . . . . . . . 7

2.1.1 Possible Worlds . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Success Probability . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Knowledge Compilation Approaches . . . . . . . . . . . . . . . 10

2.3.1 SLD Resolution . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.2 Tries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.3 Boolean Formulae Preprocessing . . . . . . . . . . . . . 14

2.3.4 Reduced Order Binary Decision Diagrams (ROBDDs) . 16

v



vi CONTENTS

2.3.5 Boolean Formulae Compilation and SimpleCUDD . . . 17

2.3.6 Syntax of the Script Language . . . . . . . . . . . . . . 18

2.3.7 ROBDD Generation and Probability Calculation . . . . 20

2.4 Other Approaches . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.1 Approximate Inference: Program Sampling . . . . . . . 22

2.4.2 Approximate Inference: DNF Sampling . . . . . . . . . 23

2.4.3 Convergence . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.4 Weighted CNF ProbLog . . . . . . . . . . . . . . . . . . 26

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Tabling of Probabilistic Logic Programs 29

3.1 SLG Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 ProbLog & Tabling Preliminaries . . . . . . . . . . . . . . . . . 35

3.2.1 ProbLog Tabling Example . . . . . . . . . . . . . . . . . 35

3.2.2 Ground Goal Assumption . . . . . . . . . . . . . . . . . 36

3.2.3 Nested Tries . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 ProbLog Tabling . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.1 Cycles in a Probabilistic Setting . . . . . . . . . . . . . 39

3.4 Nested Tries to ROBDD Definitions . . . . . . . . . . . . . . . . 41

3.4.1 Handling the Simple Case . . . . . . . . . . . . . . . . . . 41

3.4.2 Handling Cycles and the Ancestor List . . . . . . . . . . 43

3.4.3 Optimization I: Subset . . . . . . . . . . . . . . . . . . . 48

3.4.4 Optimization II: Ancestor List Refine . . . . . . . . . . 49

3.4.5 Optimization III: Pre-process Step . . . . . . . . . . . . . 51

3.4.6 Optimizing the Representation . . . . . . . . . . . . . . 54

3.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5.1 Light Weight Tabling Implementation . . . . . . . . . . 55



CONTENTS vii

3.5.2 Built-in Tabling . . . . . . . . . . . . . . . . . . . . . . 57

3.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.6.1 Benchmark Programs . . . . . . . . . . . . . . . . . . . 60

3.6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Preprocessing I: Boolean Formulae to ROBDD Definitions 71

4.1 Preprocessing Example . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 Naive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3 Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4 Recursive Node Merging . . . . . . . . . . . . . . . . . . . . . . 75

4.5 Depth Breadth Trie . . . . . . . . . . . . . . . . . . . . . . . . 77

4.6 Complexity of Preprocessing Methods . . . . . . . . . . . . . . 83

4.6.1 Naive Method . . . . . . . . . . . . . . . . . . . . . . . . 83

4.6.2 Decomposition Method . . . . . . . . . . . . . . . . . . 83

4.6.3 Recursive Node Merging . . . . . . . . . . . . . . . . . . 85

4.7 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 86

4.8 Nested Tries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.9 Negation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.9.1 Negated Literals . . . . . . . . . . . . . . . . . . . . . . 92

4.9.2 General Negation . . . . . . . . . . . . . . . . . . . . . . 92

4.10 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . 95

5 Preprocessing II: Variable Compression 97

5.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.2 Cluster Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.2.1 Using the Clusters for Variable Compression . . . . . . 103

5.3 Discovering AND-clusters . . . . . . . . . . . . . . . . . . . . . 104



viii CONTENTS

5.3.1 The Book Marking Algorithm for AND-clusters . . . . . 105

5.3.2 An Example of the Book Marking Algorithm for AND-
clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.4 Discovering OR-clusters . . . . . . . . . . . . . . . . . . . . . . 109

5.4.1 The Book Marking Algorithm for OR-clusters . . . . . . 109

5.4.2 An Example of the Book Marking Algorithm for OR-clusters111

5.5 Experiments for AND-clusters . . . . . . . . . . . . . . . . . . . . 111

5.6 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . 116

5.7 Related Work and Conclusions . . . . . . . . . . . . . . . . . . 117

6 A New Implementation: MetaProbLog 119

6.1 Why Probabilistic Meta-calls . . . . . . . . . . . . . . . . . . . . 121

6.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.3 Technical Details . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.3.1 ProbLog Engine . . . . . . . . . . . . . . . . . . . . . . 124

6.3.2 Parameters of the ProbLog Engine . . . . . . . . . . . . 124

6.3.3 Inference Method: Exact . . . . . . . . . . . . . . . . . 125

6.3.4 Inference Method: Program Sampling . . . . . . . . . . 125

6.3.5 ProbLog Memory . . . . . . . . . . . . . . . . . . . . . . 126

6.3.6 Nesting ProbLog Engines . . . . . . . . . . . . . . . . . 128

6.3.7 Calling the ProbLog Engine . . . . . . . . . . . . . . . . 128

6.4 Nested Inference . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.4.1 Nested Inference Returning Success Probability . . . . . 129

6.4.2 Nested Inference Returning Information & ProbLog
Negation . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.4.3 Nested Inference Returning Answers & ProbLog Answers 131

6.5 Modularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135



CONTENTS ix

6.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7 Applications 141

7.1 First Order ProbLog . . . . . . . . . . . . . . . . . . . . . . . . 142

7.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 142

7.1.2 First Order ProbLog and its Semantics . . . . . . . . . 143

7.1.3 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.1.4 A Case Study . . . . . . . . . . . . . . . . . . . . . . . . 150

7.1.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . 153

7.1.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.1.7 Related Work and Conclusion . . . . . . . . . . . . . . . 156

7.2 Analysing a Publish/Subscribe System for MANETs with ProbLog157

7.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 157

7.2.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . 158

7.2.3 ProbLog . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.2.4 Fadip Model in ProbLog . . . . . . . . . . . . . . . . . . 158

7.2.5 Analysing the Model . . . . . . . . . . . . . . . . . . . . 159

7.2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 160

7.3 Appendix of: Analysing a Publish/Subscribe System for
MANETs with ProbLog . . . . . . . . . . . . . . . . . . . . . . 160

7.3.1 Example Network . . . . . . . . . . . . . . . . . . . . . 160

7.3.2 Fadip Model in Problog . . . . . . . . . . . . . . . . . . . 161

7.3.3 Options Used for Optimization . . . . . . . . . . . . . . 162

7.3.4 Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.3.5 Analysis Results . . . . . . . . . . . . . . . . . . . . . . 163

8 Conclusion 167

8.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169



x CONTENTS

Bibliography 171

List of Publications 181



List of Figures

2.1 A ProbLog program. . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 The diagram of the three steps of ProbLog knowledge compilation
methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 The complete Prolog SLD tree when proving the query:
path(1,3) of the ProbLog program. . . . . . . . . . . . . . . . 13

2.4 Collected proofs and generated trie for the ProbLog program. . 14

2.5 The graph together with the Boolean formula in DNF form and
the collected trie by the query: path(1,5), used as an example. 15

2.6 The ROBDD representing the Boolean formula. . . . . . . . . . 16

2.7 The diagram for the program sampling inference method. . . . 23

2.8 The diagram for the DNF sampling inference method. . . . . . 25

2.9 The diagram of the three steps for the weighted CNF ProbLog. 27

2.10 The equivalent sd-DNNF for the ROBDD representing the
Boolean formula. . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 The diagram of the three steps of ProbLog with tabling. . . . . 32

3.2 The complete Prolog SLG forest when proving the query:
path(1,E) of the ProbLog program. . . . . . . . . . . . . . . . 34

3.3 Non-tabled & tabled path/2 predicate. . . . . . . . . . . . . . . 35

3.4 A probabilistic graph without cycles. . . . . . . . . . . . . . . . 36

3.5 An undirected probabilistic graph introducing cycles. . . . . . . 36

xi



xii LIST OF FIGURES

3.6 The collected trie for the graph by the query: path(1,5). . . . 38

3.7 The collected nested tries for the graph by the query: path(1,5). 39

3.8 The collected nested tries for the undirected graph by the query:
path(1,5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.9 A probabilistic graph with cycles which is used as a counter
example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.10 The collected nested tries for the counter example graph by query:
path(1,4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.11 Tabling benchmarks for the weather program. . . . . . . . . . . 62

3.12 Graph benchmark results. . . . . . . . . . . . . . . . . . . . . . 63

4.1 The diagram of the three steps of ProbLog with the preprocessing
additions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2 The graph together with the Boolean formula in DNF form and
the collected trie by the query: path(1,5), used as an example. 73

4.3 Execution of the recursive node merging algorithm for the
example trie. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4 The ROBDD definitions generated by using recursive node
merging collected in a depth breadth trie. . . . . . . . . . . . . 80

4.5 Examples that trigger the depth breadth trie optimizations. . . . 81

4.6 The ROBDD definitions generated by using recursive node
merging with multiple depth node reduction collected in a depth
breadth trie. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.1 The diagram of the three steps of ProbLog with the variable
compression additions. . . . . . . . . . . . . . . . . . . . . . . . 99

5.2 ProbLog example program. . . . . . . . . . . . . . . . . . . . . 100

5.3 The probabilistic graph of the example ProbLog program and
collected trie for the query: path(1,3). . . . . . . . . . . . . . . 101

5.4 ROBDD for the query: path(1, 3) of the example ProbLog
program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.5 Compressing ROBDD for the query: path(1,3) . . . . . . . . 104



LIST OF FIGURES xiii

6.1 A ProbLog program. . . . . . . . . . . . . . . . . . . . . . . . . 123

6.2 Modifying the SLD resolution for exact, program sampling
inference methods. . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.3 An example of inference within inference. . . . . . . . . . . . . 130

6.4 Negation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.5 Example uses of ProbLog negation . . . . . . . . . . . . . . . . 132

6.6 Simplified ProbLog Answers . . . . . . . . . . . . . . . . . . . . 133

6.7 Example uses of ProbLog answers . . . . . . . . . . . . . . . . 134

6.8 A ProbLog program using the module system to separate the
background, two different data sets and the experiments. . . . . 136

7.1 A key part of the logical theory. . . . . . . . . . . . . . . . . . . . 151

7.2 Key clauses in ProbLog. . . . . . . . . . . . . . . . . . . . . . . 152

7.3 Friends experiments. . . . . . . . . . . . . . . . . . . . . . . . . 153

7.4 Bibliography experiments. . . . . . . . . . . . . . . . . . . . . . 154





List of Tables

2.1 All possible worlds for the ProbLog program. . . . . . . . . . . 9

2.2 ROBDD definitions generated by the naive approach. . . . . . 20

2.3 ROBDD definitions generated by performing Boolean formulae
pre-preprocessing. . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 The ROBDD definitions for the Boolean formula of the nested
tries generated by the naive approach. . . . . . . . . . . . . . . 42

3.2 ROBDD definitions for the Boolean formula of the nested tries
generated through memoization. . . . . . . . . . . . . . . . . . 43

3.3 ROBDD definitions for the Boolean formula of the counter
example nested tries generated through memoization. . . . . . 47

3.4 ROBDD definitions for the Boolean formula of the nested tries
generated through memoization and ancestor list check. . . . . 48

3.5 ROBDD definitions for the Boolean formula of the nested tries
generated through memoization and ancestor list subset check. 50

3.6 ROBDD definitions for the Boolean formula of the nested tries
generated through memoization, ancestor list subset check and
ancestor list refinement. . . . . . . . . . . . . . . . . . . . . . . 52

3.7 ROBDD definitions generated from the pre-process step for the
nested tries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

xv



xvi LIST OF TABLES

3.8 ROBDD definitions for the Boolean formula of the nested
tries generated through memoization, ancestor list subset
check, ancestor list refinement and using pre-processed ROBDD
definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.9 Results for the weather program. Times are in milliseconds. . . . 61

3.10 Results for the bloodtype program. Times are in milliseconds. . 64

3.11 Results for the graph program. Times are in milliseconds. . . . 66

3.12 Results for the graph program by the use of different optimization
options. Times are in milliseconds. . . . . . . . . . . . . . . . . 68

4.1 ROBDD Definitions generated from each preprocessing method. 74

4.2 Average runtimes for preprocessing and ROBDD compilation on
three-state Markov model, for sequence length N . . . . . . . . . 87

4.3 ROBDDs for exact inference over the graph domain. . . . . . . 88

4.4 ROBDDs for upper bounds at threshold 0.05. . . . . . . . . . . 89

4.5 Upper bound ROBDDs: number of queries where method leads
to fastest ROBDD compilation, for various sets of methods. . . 90

5.1 An example of the Book Marking algorithm for AND-clusters. . 108

5.2 An example of the Book Marking algorithm for OR-clusters. . . 112

5.3 AND-cluster experimental results for the first set of benchmarks. 114

5.4 AND-cluster experimental results for the second set of benchmarks.115

6.1 Experimental results. . . . . . . . . . . . . . . . . . . . . . . . . 138

7.1 Results from nodes of 4 to 6 hop distance (1). . . . . . . . . . . 164

7.2 Results from nodes of 4 to 6 hop distance (2). . . . . . . . . . . 165

7.3 Results from nodes of 8 to 10 hop distance. . . . . . . . . . . . 166



List of Algorithms

2.1 A recursive dynamic programming depth first algorithm to
traverse and calculate in linear time the probability of an
annotated ROBDD. . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 ProbLog tabling transformation for only ground goals without
using built-in tabling support. . . . . . . . . . . . . . . . . . . . 56

3.2 ProbLog tabling transformation that uses Prolog built-in tabling
support. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1 Decomposition method. . . . . . . . . . . . . . . . . . . . . . . 76
4.2 Recursive node merging. . . . . . . . . . . . . . . . . . . . . . . 77
4.3 Depth breadth trie optimizations. . . . . . . . . . . . . . . . . . 84
4.4 The generalized nested trie to ROBDD definitions approach that

uses all presented preprocessing methods and optimizations. . . 93
4.5 The algorithm that performs the pre-process optimization in all

Tries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.1 The Book Marking algorithm for AND-clusters. . . . . . . . . . 106
5.2 The Book Marking algorithm for OR-clusters. . . . . . . . . . . 110

xvii





Chapter 1

Introduction

Probabilistic Logic Programming

We start by briefly describing the field of Probabilistic Logic Programming
(PLP). Lately, we have seen rapid growth in this field which is also known under
the names statistical relational learning [21], probabilistic logic learning [14]
and probabilistic inductive logic programming [15]. Several frameworks have
appeared in order to provide tools for assist in performing these tasks. Over
time the generalization of these tools has driven several researchers to develop
specialized programming languages [16,17,23,57–59,67,73].

The birth of the PLP field actually started when, in parallel, researchers from the
inductive logic programming community (ILP) incorporated stochastic aspects
in their methodologies and when researchers from traditional machine learning
(ML) community incorporated relational information in their methodologies.
Soon these two communities combined their specialities in order for the field
to appear. Thereafter, the field has bloomed and the new methodologies have
been applied in several applications [22].

To address the needs of the new field, several research groups developed
frameworks or extended general programming languages in order to provide
the infrastructure required for the development of the combined methodologies.
In the logic society where ILP originated, the research focused on adding
stochastic elements to propositional logic and other logics. Several formulations
based on logic programming appeared such as PRISM [73], ICL [63, 64] and,
ProbLog [16]. Even formulations based on first order logic emerged such as
MLNs [67], FOProbLog [8]. Also similar frameworks came forth from the

1



2 INTRODUCTION

functional programming point of view, such as IBAL [57], Church [23] and
Figaro [59].

Probabilistic logic programming aims at extending logic programming with
probabilistic information. Logic programming is based on using logical
statements in order to represent the problem the program aims to solve. These
programs have both a declarative and a procedural meaning. Usually, logic
programming uses a set of clauses in order to deduce new clauses that are asked
from the user.

Typical probabilistic extensions will introduce probability in these rules in the
following ways, (a) by introducing the probability that an “event” causes with
some probability an other “event” which leads to Causal Probabilistic Logic
(CP-Logic) [87] or (b) by introducing probabilistic independent choices [63], or
(c) by attaching probability as the existence of a rule like in the Distribution
Semantics [72]. Finally, the user can query the probabilistic theory in order to
deduce more probabilistic rules.

Related Work

ProbLog is closely related to other probabilistic logic systems such as PHA [60,
61], ICL [62], PRISM [73], and PITA [69]. All these systems either take
assumptions that reduce their usability in modelling or are forced to tackle
computational expensive problems. The motivation behind developing these
systems is to use them for machine learning and data mining tasks for which, in
both cases, big amounts of data need to be processed. Scalability under these
tasks is very important.

PHA, which stands for Probabilistic Horn Abduction, is one of the first Prolog
based frameworks that can perform probabilistic inference. The system was
inspired by Bayesian Networks and was designed with the aim of modelling
Bayesian Networks. To that end PHA defines “disjoints” which are assumed
mutually independent. PHA’s disjoints can be defined both for facts and rules.
Furthermore, it takes several other assumptions of which the two most important
are: PHA programs must be acyclic and all rules of an atom must be mutual
exclusive.

Programming in Statistical Modelling (PRISM) is very similar to PHA. Its aim
is to also model (Hidden) Markov Models. To that end it uses “multi value
switches” which are assumed to be independent of each other. PRISM’s multi
value switches are a separate entity of the language and are used similarly as
facts. Furthermore, it takes the same two important assumptions that PHA



INTRODUCTION 3

also has. A significant difference from PHA is that PRISM uses tabling to
significantly boost the system performance.

ICL stands for Independent Choice Logic and is a natural successor of PHA.
PHA’s assumption about mutual exclusiveness implies it cannot model several
relevant problems. ICL addressed exactly that issue by lifting that assumption.
By lifting that assumption ICL inference now requires to solve the disjoint sum
problem. Unfortunately, the ICL implementation AILog2 that uses conditioning
to assess the probability of a sum of products1 does not scale to larger problems.
Finally, ICL retains the assumption that ICL programs must be acyclic.

ProbLog’s initial implementation target is to overcome the expression limitations
of PRISM and the performance limitations of ICL. Instead of using independent
disjunctions ProbLog uses “probabilistic facts” which again are assumed to be
independent. The initial ProbLog implementation still assumes that the ProbLog
program is acyclic. The most significant difference was the introduction of
Reduced Ordered Binary Decision Diagrams (ROBDDs) for solving the disjoint
sum problem. This approach, for inference, scales much better than ICL’s
implementation. The ProbLog system was motivated in order to perform data
mining over large probabilistic networks, such as Sevon’s Biomine network [77],
which contains relationships among genes, proteins, enzymes etc. Mining these
type of networks has been considered an important and challenging task [56].

Finally, PITA is not a full PLP framework but a specific tabled inference
approach that very much resembles the tabling used by ProbLog. A limitation
of PITA is that it does not support cycle handling and thus is again limited to
acyclic programs.

Contributions

In this thesis we focus on implementation issues triggered from the probabilistic
extension of Prolog: ProbLog. ProbLog’s semantics are briefly presented in
Chapter 2. We discuss efficiency and implementation issues related to ProbLog
and, more generally, with extending Prolog with probabilistic information. For
what concerns efficiency, the initial ProbLog implementation used ROBDDs in
a rather naive way, did not have tabling and, used a single Boolean formula
preprocessing method. Throughout the thesis we present how we improved all
these. Furthermore, the initial ProbLog implementation had limited modelling
expressiveness, it did not support general negation, did not handle acyclic

1To assess the probability of a sum of products we need, to solve the disjoint sum problem;
see [66] for more details.



4 INTRODUCTION

programs and did not supported probabilistic inference nesting. Again, through
the thesis, we are going to present how we added these features in the system.

We make a clear distinction between three steps that ProbLog takes in order to
calculate the probability of a query: the first step is the SLD resolution, the
second step is Boolean formulae preprocessing and the third step is Boolean
formulae compilation. In ProbLog we compile Boolean formulae in ROBDDs in
order to solve the disjoint sum problem. Inference in many probabilistic logic
systems is based on representing the proofs of a query as a Boolean formula in
disjunctive normal form (DNF). Assessing the probability of such a formula is
known as a #P-hard task. In practice for ProbLog, a large DNF is given to a
ROBDD software package to construct the corresponding ROBDD. The DNF
has to be transformed into the input format of the package. This procedure is
called the preprocessing step.

The work presented in this thesis, aims to improve the performance of ProbLog
in several different aspects. The main performance contributions of this
thesis are tabling which improves the first step of inference, several Boolean
formulae preprocessing methods that target to improve the second and
third step of inference and, variable compression an approach for reducing
Boolean formulae before compiling them in order to improve the performance
of the ROBDD generation. Besides performance related contributions, we
also extended the expressive power of the ProbLog language and added new
functionality such as: general negation, support for cyclic programs, and
nested inference. Finally, we also implemented two ProbLog applications
that were only feasible because of the system extensions we have made.

Our contributions in more detail include a script language that we developed
in order to describe Boolean formulae for ROBDD generation. This script
language was our first contribution to the ProbLog system and it allowed it to
handle ROBDDs in a structured and efficient way. We introduced tabling in the
system and managed a significant performance improvement over several types
of ProbLog programs. Furthermore, by extending our tabling support to handle
probabilistic cycles, we achieved in removing the acyclic program assumption.
In the thesis we present how we achieved tabling for ProbLog programs and
explain how the approach can be extended for probabilistic logic programs
in general. Tabling proved to be an indispensable feature for ProbLog, both
allowing harder queries to be proven and simplifying the modelling of several
problems. Finally, through tabling, a design for implementing general negation
for ProbLog was made. In the preprocessing step we investigate and compare
different preprocessing methods and add a novel data structure to further
improve the preprocessing. Furthermore, we present a generalized preprocessing
algorithm that can handle Boolean formulae that have nested parts such as
the ones generated from tabling. The nested preprocessing algorithm could be



INTRODUCTION 5

combined with any of the presented preprocessing algorithms that ProbLog
uses. Up to a point, we identify which method performs better depending
on the Boolean formula structure and present several different optimisations.
Our next important contribution is the identification of patterns formed by
Boolean variables that occur in DNF Boolean formulae, namely AND-clusters
and OR-clusters. Our method compresses the variables in these clusters and
thus reduces the size of ROBDDs without affecting the probability. We give
two polynomial time algorithms that detect AND-clusters and OR-clusters
respectively in DNF Boolean formulae. While the algorithms presented are
only applicable to Boolean formulae in DNF form, we still achieved significant
improvements to the generation of ROBDDs. Our approach makes it feasible
to deal with ProbLog queries that give rise to larger DNFs. While our methods
for Boolean formulae manipulation are motivated and applied in the ProbLog
context, our results and concepts could be applied in any discipline that works
with DNF Boolean formulae.

Moreover, we contributed a new ProbLog implementation namely ProbLog20112

where we address several challenges that were discovered over time. The
most important contribution in that implementation is the abstraction of
ProbLog’s inference in what we call a ProbLog engine. A ProbLog engine is
parametrized in such a way that it allows us to implement different inference
methods in a similar way. Through the use of ProbLog engine we are able
to implement tabling and general negation in a much better way than what
in the ProbLog2010 implementation was implemented. Both the new tabling
and the new general negation lift several preconditions that the ProbLog2010
implementation required. Furthermore, the ProbLog engine approach allows
us to perform nested probabilistic inference. Nesting becomes possible by
suspending and resuming instances of ProbLog engines. With our approach we
realise several extensions of ProbLog such as meta-calls, negation, and answers
of probabilistic goals.

Finally, part of our contributions are two ProbLog applications. The goal of
those applications is to demonstrate the usability of ProbLog features and
generally the usability of ProbLog in modelling. The first application uses the
ProbLog machinery to realise a probabilistic extension of first order logic. The
second application is an analyser for a network protocol designed to be used in
Mobile Ad hoc networks (MANETs). This work shows how ProbLog can be
useful in a field different from data mining or machine learning.

The work related to the script language was presented at a Poster reception [41].
Our contributions for tabling where reported in [42, 43]. The work related

2Within the thesis we have two different ProbLog implementations. The original one which
we will refer as ProbLog2010 and an alternative which we call MetaProbLog and we refer to
it as ProbLog2011.



6 INTRODUCTION

to the different preprocessing methods was published in [47]. The AND/OR-
clusters where stated in [44]. The new implementation and inference nesting
was presented in [45]. The applications FOProbLog and Analysing FADIP
appeared in [8, 88], [46] respectively.

The rest of the thesis has the following structure. First, we present the basis
of ProbLog semantics and implementation in Chapter 2. Chapter 3 gives a
thorough description of ProbLog tabling. In Chapter 4 we present several
different preprocessing algorithms and a generalized algorithm that manipulates
nested Boolean formulae. Chapter 5 presents the AND/OR-clusters and how
they can be used to reduce the size of DNF Boolean formulae. Chapter 6
describes the ProbLog2011 implementation and how we achieve nested inference.
At Chapter 7 we show two different applications of ProbLog that use several of
the contributions presented in this thesis. Finally, we conclude with Chapter 8.



Chapter 2

ProbLog

In this chapter we give a brief introduction and description of ProbLog, a
probabilistic extension of Prolog. We explain the distribution semantics which
ProbLog uses in Section 2.1, and define the success probability of logic programs
in Section 2.2. Then we describe some of the inference algorithms used in
ProbLog. We make the distinction between knowledge compilation approaches
and the rest of the approaches. We describe in greater detail the knowledge
compilation approaches in Section 2.3 making distinct separation of the steps
that are involved in their computation. Finally, we briefly mention the other
inference approaches in Section 2.4.

2.1 ProbLog and the Distribution Semantics

A ProbLog program T [16, 35, 37] consists of a set of facts annotated with
probabilities pi :: pf i – called probabilistic facts – together with a set of standard
definite clauses h : −b1, . . . , bn. that can have positive and negative probabilistic
literals in their body. A probabilistic fact pf i is true with probability pi.
These facts correspond to random variables, which are assumed to be mutually
independent. Together, they thus define a distribution over subsets of LT =
{pf1, . . . , pfn}. The definite clauses add arbitrary background knowledge (BK)
to those sets of logical facts. To keep a natural interpretation of a ProbLog
program we assume that probabilistic facts cannot unify with other probabilistic
facts or with the background knowledge rule heads.

Definition 1. ProbLog Program: Formally, a ProbLog program is of the form
T = {pf1, . . . , pfn} ∪BK.

7



8 PROBLOG

Probabilistic Facts:

0 . 3 : : edge (1 , 2 ) .
0 . 7 : : edge (1 , 3 ) .
0 . 4 : : edge (2 , 3 ) .

Background Knowledge:

path (X, Y):−
edge (X, Y) .

path (X, Y):−
edge (X, Z) ,
Y \== Z ,
path (Z , Y) .

1

2
0.3

30.7

0.4

Figure 2.1: A ProbLog program: the probabilistic facts represent the
probabilistic graph; the background theory a naive approach to check for
reachability.

Given the one-to-one mapping between ground definite clause programs and
Herbrand interpretations, a ProbLog program defines a distribution over its
Herbrand interpretations.

The distribution semantics are defined by generalising the least Herbrand
models of the clauses by including subsets of the probabilistic facts. If fact
pfi is annotated with pi, pfi is included in a generalised least Herband model
with probability pi and left out with probability 1− pi. The different facts are
assumed to be probabilistically independent, however, negative probabilistic
facts in clause bodies allow the user to enforce a choice between two clauses.

As such, a ProbLog program specifies a probability distribution over all its
possible non-probabilistic subprograms. The success probability of a query is
defined as the probability that the query succeeds in such a random subprogram.
ProbLog follows the distribution semantics [72].

For a better explanation of the probability distribution defined by a ProbLog
program we use the example program of Figure 2.1.

2.1.1 Possible Worlds

As we previously mentioned ProbLog defines a probability distribution for all
the possible non-probabilistic programs it contains. Each single possible set of



SUCCESS PROBABILITY 9

Possible Worlds
edge(1,2) edge(1,3) edge(2,3) Probability

false false false (1 − 0.3) · (1 − 0.7) · (1 − 0.4) = 0.126
false false true (1 − 0.3) · (1 − 0.7) · 0.4 = 0.084
false true false (1 − 0.3) · 0.7 · (1 − 0.4) = 0.294
false true true (1 − 0.3) · 0.7 · 0.4 = 0.196
true false false 0.3 · (1 − 0.7) · (1 − 0.4) = 0.054
true false true 0.3 · (1 − 0.7) · 0.4 = 0.036
true true false 0.3 · 0.7 · (1 − 0.4) = 0.126
true true true 0.3 · 0.7 · 0.4 = 0.084

N∑
i=1

pworldi
= 1.000

Table 2.1: All possible worlds for the ProbLog program of Figure 2.1. The
possible worlds that satisfy the query: path(1,3) are highlighted.

probabilistic facts of the ProbLog program is called a possible world. The
Table 2.1 presents all possible worlds for the ProbLog program of Figure 2.1.
One can notice that having only three different probabilistic facts generates
eight possible worlds. Actually the possible worlds of a ProbLog program are
exponential in the number of probabilistic facts (2N where N the number of
probabilistic facts).

Definition 2. Probability of Possible World: The probability of a possible world
equals to the product of the probability of all probabilistic facts in Ltrue ⊆ LT
that are true in the possible world and 1-probability of all probabilistic fact in
Lfalse ⊆ LT that are false in the possible world.

Pworld =
∏

pfi∈Ltrue

pi ·
∏

pfj∈Lfalse

(1− pj) (2.1)

where Ltrue ∩ Lfalse = LT and Ltrue ∪ Lfalse = ∅.

Lemma 1. Sum of all Possible Worlds: The sum of the probabilities of all
possible worlds equals to

∑
wi∈Worlds

Pwi
= 1.0.

2.2 Success Probability

One of the most important tasks for ProbLog is to calculate the success
probability of a query. In ProbLog, inquiring the success probability of a
query means asking for the probability that a randomly selected possible world



10 PROBLOG

satisfies that query. Such worlds contain the probabilistic facts needed to satisfy
the query, but can also contain many more probabilistic facts.

Definition 3. Success Probability: The success probability Ps(q|T ) of a query
q is the summation of the probabilities of all possible worlds for which there
exists a substitution θ such that qθ is entailed by T , i.e.,

Ps(q|T ) =
∑

wi∈Worlds

P (q|wi) · Pwi
(2.2)

where P (q|wi) = 1.0 if there exists a substitution θ such that wi ∪ BK |= qθ
and P (q|wi) = 0.0 otherwise.

Equation (2.2) states that we are able to calculate the success probability of
a query by summing the probabilities of all worlds that satisfy the query. As
the number of subprograms to be considered is exponential in the number of
probabilistic facts, this approach quickly becomes infeasible with increasing
problem size.

For example, using the graph of Figure 2.1 the success probability of the query
path(1, 3) can be calculated by summing all the possible worlds where the
query is satisfied. Observing Table 2.1 we find the five highlighted worlds to
satisfy the query path(1, 3). Summing the probabilities of each world gives us
the success probability of the query path(1, 3), in this case: 0.294 + 0.196 +
0.036 + 0.126 + 0.084 = 0.736.

2.3 Knowledge Compilation Approaches

In ProbLog one calculates the success probability using several differ-
ent inference methods. We can separate all inference methods in two
big different types. The first type compiles Boolean formulae to a
structure that the probability calculation is easy. Inference methods
like these are problog_exact [35], problog_kbest [34], problog_low [34],
problog_delta [16], problog_threshold [34]. All these methods follow the
following steps to prove a query and calculate the probability of its success.

1. SLD resolution is used to prove the query and collect Boolean formulae
that represent the possible worlds.

2. Boolean formulae preprocessing is used to optimize the collected
Boolean formulae.



KNOWLEDGE COMPILATION APPROACHES 11

3. ROBDD compilation is used to compile all collected Boolean formulae
in Reduced Order Binary Decision Diagram (ROBDD).

The second type of inference methods do not compile any Boolean formulae in
a structure. There are several such approaches which we present in Section 2.4.
Also there are knowledge compilation approaches that use different structures
than ROBDD for compilation, those approaches follow a similar structure for
inference like the three step one we present here. Figure 2.2 shows visually the
three steps. We later use the same diagram to illustrate where our contributions
affect ProbLog.

2.3.1 SLD Resolution

As previously mentioned the number of possible worlds is exponential to the
number of probabilistic facts. The naive approach of enumerating all possible
worlds and then summing the ones that satisfy the query quickly becomes
computationally intractable. For that reason ProbLog uses different strategies
to calculate the success probability of a query.

Instead of collecting possible worlds, one can collect partial worlds, called proofs,
that contain the minimally needed probabilistic facts to prove the success of
a query. For example instead of collecting all the possible worlds that have
edge(1,3)=true, one can collect the proof edge(1,3) representing four possible
worlds in one proof. Similarly, for the other explanation of query satisfaction
one can collect the proof edge(1,2),edge(2,3) to represent the two possible
worlds.

To collect proofs ProbLog takes advantage of the proving mechanism of Prolog.
Through SLD resolution Prolog enumerates all proofs for a query. For our
example the generated SLD tree of proving the query path(1,3) can be seen
at Figure 2.3. Then ProbLog employs a reduction to propositional formula
in disjunctive normal form (DNF) for the collected proofs. As stated earlier,
probabilistic facts can be seen as random variables, implying that we are able to
represent a proof as a conjunction of such facts. The set of all proofs then are
represented as a disjunction, producing a DNF formula. The success probability
then corresponds to the probability of this formula being true.

Still, the number of proofs a query might have in the worst case scenario is
exponential. Efficiently collecting those proofs and being able to represent them
and as a consequence represent the DNF formula in a compact data structure
is crucial.



12 PROBLOG

P
ro

b
L
o
g
 In

fe
re

n
ce

 M
e
th

o
d
s: e

x
a
ct, k

-b
e
st, lo

w
, d

e
lta

, th
re

sh
o
ld

S
te

p
 3

: R
O

B
D

D
 C

o
m

p
ila

tio
n

S
te

p
 2

: B
o
o
le

a
n

 fo
rm

u
la

e
 p

re
p
ro

ce
ssin

g

S
te

p
 1

: S
L
D

 R
e
so

lu
tio

n

R
O

B
D

D
D

e
fi
n

itio
n

s
S

im
p
le

C
U

D
D

R
O

B
D

D
P

ro
b
a
b
ility

C
a
lcu

la
tio

n
P

Trie
(D

N
F
)

L
ist B

a
se

d
R

e
cu

rsiv
e
 N

o
d
e
 M

e
rg

in
g

R
O

B
D

D
D

e
fi
n

itio
n

s

P
ro

b
L
o
g

P
ro

g
ra

m
P

ro
lo

g
S

L
D

 re
so

lu
tio

n
Trie

(D
N

F
)

Figure
2.2:

T
he

diagram
ofthe

three
steps

ofProbLog
know

ledge
com

pilation
m
ethods.



KNOWLEDGE COMPILATION APPROACHES 13

?-path(1,3)

?-edge(1,3) ?-edge(1,Z), 3\==Z, path(Z,3)

□ ?-3\==2, path(2,3)

Z = 2

?-3\==3, path(3,3)

Z = 3

?-path(2,3)

?-edge(2,3) ?-edge(2,Z'), 3\==Z', path(Z',3)

failure

□ ?-3\==3, path(3,3)

Z' = 3

failure

Figure 2.3: The complete Prolog SLD tree when proving the query: path(1,3)
of the ProbLog program of Figure 2.1. The squares represent success.

2.3.2 Tries

To address the issue of representing the proofs efficiently, ProbLog uses tries.
Tries are a data structure used for compact dictionary representation and fast
word finding. Further, in the logic programming society tries are widely used
for indexing terms for tabling. ProbLog uses tries to compactly store terms
that represent proofs. Taking advantage of the depth first nature of SLD
resolution, the proofs are constructed with having common prefix part. Tries, as
a prefix sharing structure, compacts the common parts of proofs saving memory
resources.

Back to our example, we present the collected proofs stored in a trie in Figure 2.4.



14 PROBLOG

Collected proofs: e(1, 3) ∨
e(1, 2) ∧ e(2, 3)

t(/)

e(1,2) e(1,3)

e(2,3)

Figure 2.4: Collected proofs and generated trie for the ProbLog program of
Figure 2.1. We abbreviate the probabilistic facts edge/2 as e/2.

To further illustrate the benefits of tries for collecting the proofs we use
the slightly bigger graph of Figure 2.5(a). For this graph the query
problog_exact(path(1, 5), P), collects four proofs that represent the DNF
Boolean formulae shown at Figure 2.5(b), we will abbreviate the query as
path(1,5). Using a trie to store these proofs results in the trie shown at
Figure 2.5(c). In this trie we can see that some nodes are re-used instead
of appearing twice. Nodes e(1,2), e(2,3) and e(1,3) are a common prefix
among the proofs. Instead of storing them twice the trie structure discovers this
commonalities and saves space. Later we present how ProbLog takes further
advantage of these commonalities to improve the efficiency.

2.3.3 Boolean Formulae Preprocessing

Up to here we have described how ProbLog has collected the set of proofs in
a trie structure that represents a DNF Boolean formulae. The next step in
ProbLog execution is the preprocessing of the Boolean formulae to an ‘optimal’
form that will contain less redundant operations. For example the Boolean
formulae of Figure 2.5(b) could be written like: ((e(1, 2) ∧ e(2, 3)) ∨ e(1, 3)) ∧
((e(3, 4) ∧ e(4, 5)) ∨ e(3, 5)) to save six operations.

In order to discover possibly redundant operations ProbLog takes advantage
of the trie prefix sharing. The algorithm Recursive Node Merging which
is presented in detail in Chapter 4 takes advantage of some suffix sharing.
ProbLog implements three more algorithms namely Naive, Decomposition
and Depth Breadth Trie.



KNOWLEDGE COMPILATION APPROACHES 15

1

2
0.3

30.7

0.4
4

0.8

50.6

0.2

0.3::edge(1, 2).
0.7::edge(1, 3).
0.4::edge(2, 3).
0.8::edge(3, 4).
0.6::edge(3, 5).
0.2::edge(4, 5).

(a) A probabilistic graph without cycles.

e(1, 2) ∧ e(2, 3) ∧ e(3, 4) ∧ e(4, 5) ∨
e(1, 2) ∧ e(2, 3) ∧ e(3, 5) ∨
e(1, 3) ∧ e(3, 4) ∧ e(4, 5) ∨
e(1, 3) ∧ e(3, 5)

(b) The collected proofs for the graph by the
query: path(1,5) in their DNF Boolean formula
form.

t(/)

e(1,2) e(1,3)

e(2,3) e(3,4) e(3,5)

e(3,4) e(3,5)

e(4,5)

e(4,5)

(c) The collected trie for the graph by the query: path(1,5).

Figure 2.5: The graph together with the Boolean formula in DNF form and the
collected trie by the query: path(1,5), used as an example.



16 PROBLOG

 e(4,5) 

 e(3,4) 

 e(3,5) 

 e(2,3) 

 e(1,2) 

 e(1,3) 

root

n0

n0

n0

n0

false

n0

n0

true

Figure 2.6: The ROBDD representing the Boolean formula of Figure 2.5(b).

2.3.4 Reduced Order Binary Decision Diagrams (ROBDDs)

Reduced Order Binary Decision Diagrams (ROBDDs) are a very widely used
data structure in computer science. ROBDDs provide a compact way to
represent Boolean formulae. Also ROBDDs maintain some important properties
which are required for our usage. A ROBDD is an acyclic rooted graph. A
ROBDD might consist of nodes that represent Boolean variables; two different
types of outgoing edges from each node represent the two possible assignments
of the Boolean variables; and finally, up to two leaf nodes that represent the
constants true and false.

Figure 2.6 presents the ROBDD of the Boolean formula of Figure 2.5(b). Each
layer of nodes represent a Boolean variable, a layer can have more than one
node annotated n0, n1, etc.; the Boolean variable the nodes belong to can be
seen on the left side. Every node has two outgoing edges: one continues which
represents the true assignment of the Boolean variable and one dashed that
represents the false assignment of the Boolean variable. Finally, the two leaf
nodes are shown in rectangle shape stating the state of the formula for each
distinct assignment of variables. More formally:

Definition 4 (ROBBD). A Reduced Order Binary Decision Diagram (ROBBD)
is a rooted, directed acyclic graph with:

• One or two terminal nodes of out-degree zero labelled false (0) or true (1).



KNOWLEDGE COMPILATION APPROACHES 17

• A set of variable nodes u of out-degree two. The two outgoing edges
are given by two functions low(u) and high(u). Each variable node u is
associated with a variable var(u).

• All paths through the graph respect a given linear variable ordering x1 <
x2 < · · · < xn.

• No two distinct nodes u and v have the same variable name and low-
and high-successor, i.e., var(u) = var(v) ∧ low(u) = low(v) ∧ high(u) =
high(v)→ u = v.

• No variable node u has identical low- and high-successor, i.e., low(u) 6=
high(u).

For further details on ROBDDs, we refer to [1, 3, 9].

2.3.5 Boolean Formulae Compilation and SimpleCUDD

In order to compile Boolean Formulae in ROBDDs, ProbLog uses the Colorado
University Decision Diagrams (CUDD)1 [80] framework. CUDD was chosen
because of its efficiency and completeness as a library for generating successfully
ROBDDs. The main difficulty in using CUDD is that both the ROBDD
generation and the traversing operations need to be encoded in a C2 program
and thereafter compile it. For that reason one is forced to coding a different
program for each separate ROBDD that one wants to generate and traverse.
For ProbLog that boils down to a new C program for each single query needed
to be calculated.

In order to address the above problem we developed an application in C named
SimpleCUDD3 [40, 41], that interfaces CUDD to the user, in our case ProbLog.
SimpleCUDD focuses on providing a simple interface and minimizing the
resource cost for communicating the user’s instructions to CUDD. SimpleCUDD
uses a scripting language to describe Boolean formulae to be compiled in
ROBDDs. Also, it has a collection of extra features that are useful for ProbLog
and any similar application that needs to add extra information to ROBDD
nodes. It is not in the scope of this document to describe SimpleCUDD in
depth. Through the rest of the document we present SimpleCUDD ROBDD
scripts and for that reason we briefly explain some of the syntax here.

1http://vlsi.colorado.edu~fabio/CUDD/
2CUDD also includes a C++ environment which is simpler to use but still requires to code

everything in C++.
3https://lirias.kuleuven.be/handle/123456789/253405

http://vlsi.colorado.edu~fabio/CUDD/
https://lirias.kuleuven.be/handle/123456789/253405


18 PROBLOG

2.3.6 Syntax of the Script Language

The SimpleCUDD package contains a parser that uses the following grammar to
describe a Boolean formula that is to be compiled to a ROBDD. The grammar
has: operators, variables, intermediate steps, constants, return result and
comments.

Operators

SimpleCUDD script language defines the operators: (=, ~, *, +, #).

The operator (=) is used to define assignment. It can appear only once in
each instruction line.

The operator (~) represents the negation. It is used as the negation for variables,
intermediate steps, constants and even the negation of operators.

The operator (*) represents the logical AND. If it appears combined with
the negation operator (~*) the combined operator represents the logical
NAND.

The operator (+) represents the logical OR. If it appears combined with
the negation operator (~+) the combined operator represents the logical
NOR.

The operator (#) represents the logical XOR. If it appears combined with
the negation operator (~#) the combined operator represents the logical
XNOR.

An important limitation of the script language is that there are no proper
operator priorities between AND, OR and XOR. This results in resolving the
operation in the order of appearance. Similarly the syntax does not allow the
use of brackets to prioritize the operation. Finally, it is important to mention
that the parsing works from right to left instead of left to right.

The described limitations might limit the ways the scripting language can be
used, but do not limit its expressive power. The scripting language using the
intermediate steps can enforce priority.

ROBDD Variables

A ROBDD variable can consist almost of any symbol. The syntax of ROBDD
variables has the following naming limitations:



KNOWLEDGE COMPILATION APPROACHES 19

1. A ROBDD variable name can not start with the capital letter L.

2. A ROBDD variable name can not have any of the operator symbols.

3. It is suggested that ROBDD variables should not use the symbols ‘<>’.

Examples of valid ROBDD variable names are: X1, x1, 123, foo, _abc.
Assignments to ROBDD variables are not allowed. The ROBDD variables
are the Boolean literals of the formula that is under transformation to become
a ROBDD. The “variables” that represent parts of the ROBDD, are called
intermediate steps.

Intermediate Steps

Intermediate steps are required to refer to stored parts of the ROBDD. Then by
combining these parts the complete ROBDD is constructed. Intermediate steps
need to be distinguished from variables. The correct syntax for intermediate
steps is as followed:

1. An intermediate step should start with a capital L.

2. An intermediate step should have after the capital L an integer number.

3. The number must be from 1 up to the defined intermediate steps variable
set at the file header.

Examples of valid intermediate names are: L1, L2. Intermediate steps are used
for ROBDD assignment. After assigning a ROBDD at an intermediate step,
that step can be used as a ROBDD variable. Reassigning a new ROBDD to
the intermediate step is not allowed.

Constants

The are two constants:

1. TRUE, this is the logical true and should be written capitalized.

2. FALSE, this is the logical false and should be written capitalized.

The constants are used in the same way as the variables.



20 PROBLOG

Generated ROBDD definitions of
Figure 2.4 Figure 2.5(b)

1 L1=e(1,3) 1 L1=e(1,2)*e(2,3)*e(3,4)*e(4,5)
2 L2=e(1,2)*e(2,3) 2 L2=e(1,2)*e(2,3)*e(3,5)
3 L3=L1+L2 3 L3=e(1,3)*e(3,4)*e(4,5)

4 L4=e(1,3)*e(3,5)
5 L5=L1+L2+L3+L4

Table 2.2: ROBDD definitions generated by the naive approach for the Boolean
formulae of Figures 2.4 and 2.5(b) respectively.

The Return Result Syntax

At the end of a script a return result needs to be declared. The return result
can be any one or more4 of the previously assigned intermediate steps, ROBDD
variables or constants. For example: L3. For the purpose of this text we can
skip the return result from the ROBDD definitions by assuming always that
only the last definition is returned.

Definition 5 (ROBDD Definition). A ROBDD definition is a complete line of
a ROBDD script.

We present two example ROBDD scripts in Table 2.2 that correspond to the
Boolean formulae of Figures 2.4 and 2.5(b) respectively.

Using Boolean formulae preprocessing, as mentioned before, the ROBDD
definitions of the Boolean formula of Figure 2.5(b) would be optimized to
match the ones presented at Table 2.3. In this specific example preprocessing
reduces the amount of operations from 11 to 6.

2.3.7 ROBDD Generation and Probability Calculation

In addition than easily generating ROBDDs, SimpleCUDD also provides
functionality to efficiently traverse ROBDDs and perform calculations over
their nodes. At Algorithm 2.1 we present a dynamic programming algorithm
used by ProbLog to calculate the probability of an annotated ROBDD. This
algorithm was first presented in [16]. SimpleCUDD provides the functionality
for annotating variables, to traverse and remember traversed nodes. For these
purposes it uses indexed tables, and a hash table when necessary.

4Returning a forest of ROBDDs in practice. This is a convenient feature for many ProbLog
applications which are not in our scope.



KNOWLEDGE COMPILATION APPROACHES 21

Generated ROBDD definitions
1 L1=e(3,4)*e(4,5)
2 L2=L1+e(3,5)
3 L3=L2*e(2,3)
4 L4=L3*e(1,2)
5 L5=L2*e(1,3)
6 L6=L4+L5

Table 2.3: ROBDD definitions of the Boolean formula of Figure 2.5(b) generated
by performing Boolean formulae pre-preprocessing.

Algorithm 2.1 A recursive dynamic programming depth first algorithm to
traverse and calculate in linear time the probability of an annotated ROBDD.
input The assumed root node Node of a ROBDD, a data structure V ars that

contains the annotated information for the ROBDD variables, and a history
data structure His which initially is empty and is used to store the traversed
nodes and calculated probabilities.

output The calculated probability Prob of the ROBDD and a History with
the calculation of the probability for each traversed node.

function CalcProbability(Node, V ars,His)
if Node = TRUE then
return (1.0, His)

if Node = FALSE then
return (0.0, His)

if Node ∈ His then
return (HistoryValue(His,Node), His)

LowNode := LowNodeOf(Node)
(LowNodeProb,His) := CalcProbability(LowNode, V ars,His)
HighNode := HighNodeOf(CurrentNode)
(HighNodeProb,His) := CalcProbability(HighNode, V ars,His)
V arProb := VariableAnnotatedValue(V ars,Variable(Node))
Prob := V arProb · LowNodeProb+ (1− V arProb) ·HighNodeProb
AddToHistory(His,Node, Prob)
return (Prob,His)



22 PROBLOG

SimpleCUDD provides us with and indexed table that is used for easy access to
the values of the annotated ROBDD variables; to easily traverse the ROBDD
it provides two functions LowNodeOf and HighNodeOf; and finally, for
remembering traversed nodes it provides an efficient hash table His that uses a
variable index to remember nodes traversed and calculated values.

The Algorithm 2.1 as can easily be shown has a worst case complexity O(N+M)
where N is the number of nodes and M the number of edges. Indeed the
memoization of each node results in calculating every node only once.

2.4 Other Approaches

Further than the compilation approaches, ProbLog uses several other methods
for calculating the probability of a ProbLog program. Namely, a Monte Carlo
Markov Chain approach, a Monte Carlo approach that samples programs
problog_program_sampling [34], a Monte Carlo approach that samples
explanations of DNF formulae problog_DNF_sampling [78], and a compilation
approach using weighted CNF’s instead of annotated ROBDDs [18]. In this thesis
we later focus on problog_program_sampling and problog_DNF_sampling.

There are other extensions of ProbLog that use inference or extend inference like
learning [26,27], decision theory ProbLog [86], algebraic ProbLog [38], continues
distributions [25]. These issues are out of the scope of this thesis.

2.4.1 Approximate Inference: Program Sampling

An alternative approach to inference is the use of Monte Carlo methods, that is,
to use the ProbLog program to generate large numbers of random subprograms
and to use those to estimate the probability. More specifically, such a method
proceeds by repeating the following steps:

1. sample a logic (sub)program L from the ProbLog program

2. search for a proof of the initially stated query q in the sample L ∪BK

3. estimate the success probability as the fraction P of samples which hold
a proof of the query

The implementation of this approach for ProbLog, as described in [35], takes
advantage of the independence of probabilistic facts to generate samples lazily
while proving the query, that is, sampling and searching for proofs which are



OTHER APPROACHES 23

ProbLog Inference Method: Program Sampling

Step 1: SLD Resolution

ProbLog
Program

Program Sampling
Sampled
ProbLog
Program

Prolog
SLD resolution

P

Figure 2.7: The diagram for the program sampling inference method.

interleaved. To assess the precision of the current estimate P , at each m samples
the width δ of the 95% confidence interval is approximated as

δ = 2 ·
√
P · (1− P )

N
(2.3)

If the number of samples N is large enough the interval of confidence becomes
smaller, and the probability that the estimate is close to the true probability of
the query increases.

Figure 2.7, shows the diagram for the program sampling inference method.

2.4.2 Approximate Inference: DNF Sampling

Program Sampling as presented in [35] generates samples by exploring the
SLD tree, which can be expensive if there are many failing derivations. DNF
Sampling for ProbLog as presented in [78] focuses on sampling possible worlds
containing a proof of the query of interest. This method first constructs the
DNF for the query as in exact inference, and then applies the Monte-Carlo
algorithm of Karp and Luby [32] to estimate the probability of the DNF.

DNF Sampling associates each possible world w to the first conjunction that
is true in w. Samples are generated by first sampling a conjunction ci with
probability P (ci)/

∑n
j=1 P (cj), and then generating a possible world by setting

the truth values of the variables in ci such that ci is true, and sampling
truth values for remaining variables. As for each pair (ci, w), the probability
of sampling that pair is P (w)/

∑n
j=1 P (cj) and thus proportional to P (w),

given a sufficient number N of samples, the fraction Naccepted/N of positive
samples approaches P (F )/

∑n
j=1 P (cj), and we can thus estimate P (F ) as∑n

j=1 P (cj) ·Naccepted/N .



24 PROBLOG

Algorithm

Let F = C1 ∨ . . . ∨ Cm be a propositional DNF for query q in the ProbLog
program T , where the Ci contain neither contradictions nor multiple occurrences
of the same variable. We denote possible worlds – truth value assignments to all
random variables – by w. The space from which samples are drawn is defined
as U = {(w, i)|w |= Ci}, and we associate each possible world w with the first
conjunction that is true in w, that is, the samples that will be accepted are
those from A = {(w, i)|w |= Ci ∧ ∀j < i : w 6|= Cj}. For each possible world w
with w |= F , U thus contains a pair (w, i) for each Ci that is true in w, whereas
A only contains the pair with minimal i. We define the sum of probabilities for
DNF F as

ST (F ) =
m∑
i=0

∏
fj∈Ci

pj (2.4)

Note that if conjunctions are mutually exclusive, ST (F ) is equal to the
probability of F being true, but it can be much higher in general.

DNF Sampling generates N samples in the following way

1. randomly choose Ci according to P (Ci|T )/ST (F )

2. randomly choose a possible world w where Ci is true

3. increment Naccepted if (w, i) ∈ A

The probability of formula F is then estimated as

PDNF (q|T ) = ST (F ) · Naccepted
N

(2.5)

Note that depending on the structure of the problem and the value of ST (F ),
estimates based on small numbers of samples may not be probabilities yet, that
is, they can be larger than one, especially if the actual probability is close to
one. This is due to the fact that a sufficient number of samples is needed to
identify overlap between conjunctions by means of sampling and to accordingly
scale down the overestimate ST (F ).

2.4.3 Convergence

DNF Sampling is an instance of the fully polynomial approximation scheme
of Karb and Luby [32], that is, the number of samples required for a given



OTHER APPROACHES 25

ProbLog Inference Method: DNF Sampling

Step 2: Sample DNF

Step 1: SLD Resolution

Trie(DNF) DNF Sampling P

ProbLog
Program

Prolog
SLD resolution

Trie(DNF)

Figure 2.8: The diagram for the DNF sampling inference method.

level of certainty is polynomial in the input length (the DNF in our case). For
formal detail, we refer to [32], and instead give a rough illustration here. The
algorithm uses the normalization factor ST (F ) from equation (2.4), therefore,
in each sampling step, the probability that the ith conjunction is sampled is
P (Ci)/ST (F ). It is then completed into a possible world according to the fact
probabilities. This possible world will be accepted exactly if all conjunctions
with smaller index are false in it. So the probability of sampling a specific Ci and
a world which will be accepted for this conjunction is P (Ci∧¬DNFi−1)/ST (F ),
where DNFi =

∨
j=1...i Cj . As each world can only be accepted by exactly one

conjunction, the probability of sampling an arbitrary world that will be accepted
is the sum of this probability over all conjunctions, and for N samples, the
estimated number of accepted possible worlds and the corresponding probability
estimate thus are:

E[Naccepted] =N · P (C1) + P (C2 ∧ ¬DNF1) + ...+ P (Cn ∧ ¬DNFn−1)
ST (F )

Pestimated =E[Naccepted]
N

· ST (F )

=P (C1) + P (C2 ∧ ¬DNF1) + ...+ P (Cn ∧ ¬DNFn−1)

The last line corresponds to one way of solving the disjoint-sum-problem for
the original DNF, which is exactly what the purpose of the algorithm is.

Figure 2.8, shows the diagram for the DNF sampling inference method.



26 PROBLOG

2.4.4 Weighted CNF ProbLog

Another approach worth mentioning is the weighted CNF ProbLog [18]. In
this approach ProbLog semantics and syntax is used but the three steps
(SLD-resolution, Boolean formulae preprocessing and ROBDD compilation) of
ProbLog have been significantly modified.

The first step, SLD-resolution has been renamed to Grounding. The step is
modified to use Prolog’s SLD resolution in order to collect the relevant ground
logic program for a query with evidence instead of the derivations of a query.
In order to achieve that the system uses the concept of a dependency set of a
ground atom with respect to a ProbLog program as presented in [27].

The second step named Conversion to CNF is the equivalent of the Boolean
formulae preprocessing step. The new system requires to convert the collected
ground logic program into a CNF instead of keeping the Boolean formulae into
its original form. In order to achieve that one could use Clark’s completion if
the collected logic program is acyclic. For logic programs that contain cyclic
rules, the system uses two different approaches. The first approach named
Rule-based conversion to CNF uses the approach presented in [30] and it is
based on converting the rules that introduce cycles to rules with auxiliary atoms
and then converting in a CNF formulae. The second approach used is called
Proof-based conversion to CNF and uses nested tries, a recursive structure
which is described in depth in Section 3.2.3 and a cycle breaking algorithm that
is described in detail in Section 3.4. The resulting Boolean formulae is then
converted in a CNF by using conversion rules from mathematical logic.

Finally, the third step named sd-DNNF compilation uses sd-DNNFs (Smooth
Deterministic Decomposable Negation Normal Form) instead of ROBDDs as
in the original ProbLog. For this step the system uses the CNF to sd-DNNF
implementation presented in [49]. After the generation of the sd-DNNF a
polynomial bottom-up algorithm is used to calculate the probability. These
three steps are shown visually in Figure 2.9.

Let PS be a denumerable set of propositional variables. NNF is a directed
acyclic graph where each leaf node is labelled with true, false, X or ¬X,
X ∈ PS; and each internal node is labelled with ∧ or ∨ and can have arbitrarily
many children. An sd-DNNF is an NNF structure that satisfy three extra
properties: decomposability, determinism and smoothness. The notion
of determinism appears to be necessary (but not sufficient) for algorithms to
perform model counting in polynomial time. Assessing the probability of a
weighted Boolean formula is a variant of weighted model counting. As presented
in [12] both ROBDDs and sd-DNNFs have the determinism property. Other
similar structures that have determinism are: d-DNNF, FBDD and MODS. For



OTHER APPROACHES 27

P
ro

b
L
o
g
 I

n
fe

re
n

ce
 M

e
th

o
d
: 

W
e
ig

h
te

d
 C

N
F

S
te

p
 3

: 
sd

-D
N

N
F
 C

o
m

p
ila

ti
o
n

S
te

p
 2

: 
C

o
n

v
e
rt

 t
o
 C

N
F

S
te

p
 1

: 
G

ro
u

n
d
in

g

C
N

F
D

S
H

A
R

P
sd

-D
N

N
F

P
ro

b
a
b
ili

ty
C

a
lc

u
la

ti
o
n

P

G
ro

u
n

d
L
o
g
ic

 P
ro

g
ra

m

R
u

le
-b

a
se

d
 c

o
n

v
e
rs

io
n

 t
o
 C

N
F

O
R

P
ro

o
f-

b
a
se

d
 c

o
n

v
e
rs

io
n

 t
o
 C

N
F

C
N

F

P
ro

b
L
o
g

P
ro

g
ra

m
P

ro
lo

g
S

L
D

 r
e
so

lu
ti

o
n

G
ro

u
n

d
L
o
g
ic

 P
ro

g
ra

m

Fi
gu

re
2.
9:

T
he

di
ag
ra
m

of
th
e
th
re
e
st
ep

s
fo
r
th
e
w
ei
gh

te
d
C
N
F
Pr

ob
Lo

g.



28 PROBLOG

AND

OR OR

AND

AND AND

AND

e(3,5) OR OR

e(3,4)~e(3,5) e(4,5) e(1,2) ~e(1,3) e(2,3)

e(1,3)OR OR

~e(3,4) ~e(4,5) ~e(1,2) ~e(2,3)

Figure 2.10: The equivalent sd-DNNF for the ROBDD of Figure 2.6 representing
the Boolean formula of Figure 2.5(b).

more details on sd-DNNF, the reader can consult [12]. Figure 2.10 shows the
equivalent sd-DNNF for the ROBDD presented in Figure 2.6.

2.5 Conclusion

We have briefly presented the probabilistic logic programming language ProbLog
which uses the distribution semantics. We presented some details about its
inference infrastructure, especially around the knowledge compilation approach
that uses ROBDDs. We clearly stated three different stages in the inference
process, namely: SLD resolution, Boolean formulae preprocessing, and Boolean
formulae compilation. We explain in some detail the syntax for the scripting
language that ProbLog uses to describe Boolean formulae. Finally, we mentioned
further approaches to inference and briefly presented two approximation
inference methods.



Chapter 3

Tabling of Probabilistic Logic
Programs

The implementation of ProbLog [37] is based on the use of tries [19] and reduced
ordered binary decision diagrams (ROBDDs) [1, 9]. The execution of ProbLog
programs uses SLD-resolution to collect all the proofs for a query. In order to
compute correct probabilities, ProbLog gathers for each successful proof of the
query the list of probabilistic facts the proof uses. The lists of probabilistic
facts of all different successful proofs are compactly represented by a trie. Such
a trie is then considered to be a sum of products (a disjunction of conjunctions
of probabilistic facts). ROBDDs are used to solve the disjoint sum problem and
to obtain the correct probability of the query.

This chapter discusses the use of tabling for probabilistic logic programs.
Tabling [5,11,84] is a very well known approach that reuses previous calculations
instead of recomputing them, in order to improve the performance of some logic
programs. Besides giving performance benefits, tabling also can be used for
writing more declarative programs and to handle some programs that do not
terminate because of execution cycles.

All three benefits of tabling for logic programs apply also to probabilistic
logic programs. There has been a significant amount of research for tabling
lately, which has provided many Prolog systems with tabling mechanisms.
Furthermore, several different strategies and many different optimizations [82]
have been developed.

The challenge is to find out how tabling can be combined with the ProbLog

29



30 TABLING OF PROBABILISTIC LOGIC PROGRAMS

execution mechanism. Tabling mechanisms are available in XSB [65,83], YAP
[70, 71] and other Prolog systems. The basic idea is to collect the answers
of a tabled subgoal in a table and, when the subgoal is re-encountered, to
reuse the tabled answers instead of computing them. As a consequence of this
memoization, tabling ensures termination of programs with the bounded term-
size property, i.e., programs where the size of subgoals and answers produced
during an evaluation is less than some fixed number. In the case of ProbLog,
tabling answers is not sufficient, as the proofs are needed too. Also cycles have
to be dealt with correctly.

The main contributions of this chapter are the identification and realisation
of the necessary tabling mechanism for ProbLog programs while respecting
the current ProbLog optimizations, such as the exploitation of tries and the
optimized translation of tries into ROBDDs. Through program transformation
we adapt the selected tabled predicates when called, to construct their own trie,
memorise it, and integrate it in the final trie.

ProbLog’s motivating link discovery applications and other typical ProbLog
programs have only ground goals. In order to table them, we represent the SLD
proof tree as a set of nested tries. We implemented a light-weight dedicated
tabling for ground goals that supports nested tries and obtained impressive
time improvements for some classes of programs. By the virtue of the nested
tries, we also realize suffix sharing and thus a substantial memory compaction.

Furthermore, we study in Section 3.4 how the modifications to the trie structure
affect the next calculation steps, in particular the construction of the ROBDDs.
In the case of non cyclic programs, our nested tries have important performance
impact to the generation of ROBDDs. Tabling and nested tries are crucial in
the tractability of the whole process. We get promising results and are able to
answer a larger set of queries for typical ProbLog programs. In a probabilistic
setting it is often the case that the same goals re-appear. For example for
determining the weather on day N there are several cases to be considered and
in several of them one needs to know the weather on the day before (N − 1), or
the day before that (N − 2).

By adding cycle detection, path-finding programs, typical for link discovery,
also benefit from the memoization. Unfortunately, the cycles are transferred to
the nested tries; this results in propagating the work load to the generation of
the ROBDD definitions. In order to tackle this inefficiency, we describe several
novel optimizations that aim in improving the performance of generating and
constructing ROBDD definitions. We see promising improvements from all
these optimizations.



TABLING OF PROBABILISTIC LOGIC PROGRAMS 31

Experiments with typical statistical relational learning tasks show that our light-
weight tabling boosts the performance of ProbLog with respect to both execution
time and memory consumption. Alternatively, we have obtained similar results
by using the standard YAP tabling mechanisms. In order to benefit directly
from standard tabling, we handle probabilistic inference differently from what
the ProbLog2010 implementation does using an abstracted ProbLog engine
which is further explained in Chapter 6. Figure 3.1 presents graphically the
ProbLog parts that are modified by tabling.

Our work is similar to the PRISM [73, 74] tabling mechanism, as both
mechanisms are restricted to ground goals and both mechanisms are memorising
all the proofs. PRISM assumptions such as exclusiveness and no cycles imply
that PRISM computations are simpler, in the sense that they do not have to
deal with the disjoint sum problem. PRISM contains a linear tabling system [75].
Only when PRISM is executing its learning algorithms, its tabling is extended
to do something special, namely to build support graphs which represent the
shared structure of explanations for an observed goal. The support graphs play
a central role in efficient EM learning of PRISM programs. The proofs ProbLog
needs to compute are somewhat similar to these explanations. One could
compare ProbLog’s nested tries with PRISM support graphs. Differences are
that PRISM assumes the exclusiveness condition for the proofs, while ProbLog
does not, and that ProbLog requires the handling of cycles as it is intended for
link discovery in graphs.

Another very similar approach is the one from PITA [69], which is an other
tabled inference method. In PITA, instead of handling the cycles, they authors
table programs that do not introduce cycles for example, the path program with
a member check. But differently from PRISM the system continues inference
in a similar way as ProbLog (with the use of ROBDDs) by not assuming
exclusiveness and solving the disjoint sum problem.

Another example of tabling that needs the memoization of proofs, is in the
scope of justification [24]. In logic programming justification is referred to the
derivation which justifies the success or failure of a goal. Justifications are
mainly used for debugging logic programs. It is important to note that tabling
in justification keeps only one proof [55] instead of all the proofs, and that it
requires tabling of non-ground goals. Finally, [36] proposes tabling for another
ProbLog inference method, namely Monte Carlo sampling.

The chapter is structured as follows. First, we briefly explain how tabling alters
SLD to SLG resolution in Section 3.1. We present our running example and
the nested tries and identify the necessary tabling support in Section 3.2. Then
follows ProbLog tabling in Section 3.3 where we explain the usage of tabling
and introduce the cycles in a probabilistic setting. Transforming the nested tries



32 TABLING OF PROBABILISTIC LOGIC PROGRAMS

Ta
b
lin

g
 M

o
d
ifi

ca
tio

n
s

S
te

p
 3

: R
O

B
D

D
 C

o
m

p
ila

tio
n

S
te

p
 2

: B
o
o
le

a
n

 fo
rm

u
la

e
 p

re
p
ro

ce
ssin

g

S
te

p
 1

: S
L
D

 R
e
so

lu
tio

n

R
O

B
D

D
D

e
fi
n

itio
n

s
S

im
p
le

C
U

D
D

R
O

B
D

D
P

ro
b
a
b
ility

C
a
lcu

la
tio

n
P

N
e
ste

d
 Trie

s
N

e
ste

d
 Trie

s to
 R

O
B

D
D

 d
e
fi
n

itio
n

s
O

p
tim

iz
a
tio

n
s: I, II, III

R
O

B
D

D
D

e
fi
n

itio
n

s

P
ro

b
L
o
g
 P

ro
g
ra

m
A

llo
w

: cy
clic p

ro
g
ra

m
s,

g
e
n

e
ra

l n
e
g
a
tio

n

P
ro

lo
g

S
L
G

 re
so

lu
tio

n
N

e
ste

d
 Trie

s

Figure
3.1:

T
he

diagram
ofthe

three
steps

ofProbLog
w
ith

tabling.
Shaded

blocks
m
ark

the
m
odifications

from
the

block
figure

ofFigure
2.2.



SLG RESOLUTION 33

to ROBDD definitions and further to a sum of products efficiently is described
in Section 3.4. The description of the implementation and the needed program
transformation that realise ProbLog tabling are found in Section 3.5. Section 3.6
contains the experimental evaluation. And we finally conclude in Section 3.7.

This chapter is based on the publications [42, 43] and is extended to include
the complete program transformation that realizes ProbLog tabling, as well
as a second program transformation that uses the built-in tabling mechanism
of the Prolog system. The chapter also describes several optimizations that
further improve the performance of generating ROBDD definitions and briefly
evaluates them experimentally.

3.1 SLG Resolution

A logic program that uses tabling alters the resolution mechanism from SLD
to SLG. Tabling strategies either use a suspension/resumption mechanism or
a linear tabling mechanism to build a forest of SLG trees [11], while in SLD
resolution there is only a single tree.

In logic programming the programmer can choose to table a predicate. When a
subgoal of the tabled predicate is encountered for the first time, most Prolog
tabling mechanisms suspend the resolution of the parent goal and start proving
the subgoal. As soon as a successful derivation for the subgoal is found the
answer is memoized in a table and the execution of the parent goal is resumed.
Note that if the subgoal fails, its failure is memoized. This subgoal is called the
generator subgoal.

All other occurrences of the subgoal, after the first, are called consumer
subgoals. For programs without cycles, the consumer subgoals are in a different
derivation branch than that of the generator subgoal. This means that the
subgoal has been evaluated either as failure or successful with at least one
answer. These repeated occurrences are not evaluated but the result of their
generator subgoal evaluation is used. In case of a cycle, the two subgoals share
the same derivation branch. It is possible that the generator subgoal has already
found and memoized a successful answer. In this case the consumer cyclic
subgoal consumes that answer and succeeds. If no answer has been generated
yet, then the consumer subgoal is suspended and waits until the generator
subgoal either finds an answer or fails. Then the execution of the suspended
consumer subgoal is resumed to consume the answer.

In tabling, new answers for a subgoal are generated only from the generator
subgoal. A consumer that requires a new answer that has not been generated



34 TABLING OF PROBABILISTIC LOGIC PROGRAMS

?-path(1,E)

?-edge(1,2)

E = 2

?-edge(1,3)

E = 3

?-edge(1,Z), E\==Z, path(Z,E)

□ □ ?-path(2,E)*

Z = 2

?-path(3,E)**

Z = 3

□ failure

?-path(2,E)*

?-edge(2,3)

E = 3

?-edge(2,Z), E\==Z, path(Z,E)

□ ?-path(3,E)*

Z = 3

failure

?-path(3,E)*

failure ?-edge(3,Z), E\==Z, path(Z,E)

failure

Figure 3.2: The complete Prolog SLG forest when proving the query: path(1,3)
of the ProbLog program of Figure 2.1 at page 8. The squares represent success.
* Represents the initiation of a new SLG tree. ** Represents a reused result.

yet returns the control to the generator subgoal. For this to be feasible a
completion mechanism for each tabled predicate is kept which marks if a
generator subgoal has still unexplored derivations. Figure 3.2 presents the SLG
trees that are generated from proving query path(1,E) of the ProbLog program
shown in Figure 2.1 at page 8.

There are two main strategies for collecting answers with tabling, namely local
and batch evaluation [65,83]. Local and batch evaluation differ in that batch
evaluation eagerly returns answers while local evaluation may not return any
answers to a parent goal until the subgoal is as far as it can be evaluated.



PROBLOG & TABLING PRELIMINARIES 35

path (X, Y):−
path (X, Y, [X ] ) .

path (X, Y, _):−
edge (X, Y) .

path (X, Y, V):−
edge (X, Z) ,
Y \== Z ,
\+ member(Z , V) ,
path (Z , Y, [ Z |V ] ) .

(a) Non-tabled path/2 predicate.

:− problog_table path /2 .

path (X, Y):−
edge (X, Y) .

path (X, Y):−
edge (X, Z) ,
path (Z , Y) .

(b) Tabled path/2 predicate.

Figure 3.3: Non-tabled & tabled path/2 predicate.

In logic programs, tabling only needs to remember whether the goal succeeded or
failed, and, in the case of non ground goals, the answers with which it succeeded.
Tabling a probabilistic logic program imposes the extra challenge that each
proven subgoal has probabilistic information that needs to be remembered.

3.2 ProbLog & Tabling Preliminaries

Before explaining the exact tabling mechanism used in ProbLog, we first present
the running example for tabling. We then need to mention the ground goal
assumption we take and explain what a nested trie is. Finally, we present the
technical details about the tabling mechanism.

3.2.1 ProbLog Tabling Example

It is common practice in tabling research to use the path predicate as a running
example. Also for ProbLog tabling we use the path predicate of Figure 3.3 but
with probabilistic graphs instead of deterministic ones. Figure 3.3(b) presents
the tabled version of the path predicate of Figure 3.3(a). The tabled path/2
relies on tabling to handle any cycles introduced by the graph structure, while
the non tabled version needs to keep a list V of visited nodes and to do a
member check.

To explain all the features of tabling we use two different graphs, the first
graph is presented in Figure 3.4 together with the probabilistic edge/2 facts
that represent it in ProbLog; and the second graph is presented in Figure 3.5
together with the extra probabilistic edge/2 facts required to represented it in



36 TABLING OF PROBABILISTIC LOGIC PROGRAMS

1

2
0.3

30.7

0.4
4

0.8

50.6

0.2

0 . 3 : : edge (1 , 2 ) .
0 . 7 : : edge (1 , 3 ) .
0 . 4 : : edge (2 , 3 ) .
0 . 8 : : edge (3 , 4 ) .
0 . 6 : : edge (3 , 5 ) .
0 . 2 : : edge (4 , 5 ) .

Figure 3.4: A probabilistic graph without cycles.

ProbLog. The first graph does not contain any cycles while the second one
does.

Through the chapter we use the following two ProbLog queries: problog_exact(
path(1, 3), P) and problog_exact(path(1, 5), P) to illustrate different
aspects of the behaviour with tabling; we abbreviate the queries as path(1,3)
and path(1,5) respectively. The answer to the first query is P = 0.736 and
the answer to the second query is P = 0.488704. The answer to these specific
queries is the same for both the directed and undirected graph. The reason is
that the undirected graph does not add any new paths for those specific queries.
As shown later, the difference between the two graphs is the introduction of
cycles.

3.2.2 Ground Goal Assumption

Typical ProbLog goals are ground; indeed, in a probabilistic framework, one
is interested in the probability that a goal can be proven, rather than in what
the answers are. While later we show how to generalize tabling for non ground
goals and return its answers, in this first part we focus on ground goals.

1

2
0.3

30.7

0.4
4

0.8

50.6

0.2

0 . 3 : : edge (2 , 1 ) .
0 . 7 : : edge (3 , 1 ) .
0 . 4 : : edge (3 , 2 ) .
0 . 8 : : edge (4 , 3 ) .
0 . 6 : : edge (5 , 3 ) .
0 . 2 : : edge (5 , 4 ) .

Figure 3.5: An undirected probabilistic graph introducing cycles.



PROBLOG & TABLING PRELIMINARIES 37

3.2.3 Nested Tries

ProbLog collects all the SLD refutations of a query as lists of probabilistic facts
in a trie. The probabilistic part of ProbLog programs creates new requirements
for the tabling mechanism. Our tabling builds a forest of SLG trees [11], one
for the original query and one for each tabled subgoal. For each tabled goal, we
need to memoize its contribution to the trie. To achieve this, we break up a
single trie into a set of nested tries. The nested trie of a goal represents the
successful proofs of the goal just as a normal trie does, but the parts of the trie
that are contributed by other tabled subgoals are replaced by a reference to the
trie of that subgoal.

When ProbLog uses tabling while proving the topquery, it constructs a set of
nested tries. This set of nested tries is equivalent with the trie that a non-tabled
program would generate: it contains all the information about the complete
successful proofs, the SLD refutations, of the topquery.

To better illustrate the differences between a single trie and a forest of nested
tries we use the query path(1,5) for the non-cyclic graph of Figure 3.4. We
present in Figure 3.6 the collected trie for the non tabled evaluation of our query
and we present in Figure 3.7 the collected forest of nested tries for the tabled
evaluation of the same query. We abbreviate the probabilistic facts edge/2
as e/2 and the subgoals path/2 as p/2. With t/1 we represent the trie of the
relevant subgoal and by t(/) the trie of the topquery.

An attentive reader can notice the trie prefix sharing in Figure 3.6 where the
first part of the proofs is being reused. Also, notice that the suffix of the proofs
is similar but tries can not detect this similarity and fail to perform reuses there.
On the other hand the nested tries allow us to easily detect this suffix similarity
which comes from proving the same goal twice. And this suffix is reused as
can be seen in Figure 3.7 where the trie for the subgoal path(3, 5) is being
referred to two places.

The original trie shown in Figure 3.6 is equivalent with the nested tries of
Figure 3.7. One could completely reconstruct the original trie by following in a
depth first matter the nested trie entries in the nested tries. For example, the
leftmost branch of the trie is reconstructed if one follows the leftmost branches
in the nested tries. Starting from the topquery trie we need to follow the
trie t(p(1, 5)), following the leftmost branch of trie t(p(1, 5)) we get the first
node e(1, 2) and find a reference to the trie t(p(2, 5)). Continuing this process
we construct the proof e(1, 2), e(2, 3), e(3, 4), e(4, 5) which is identical with the
leftmost entry of the original trie.



38 TABLING OF PROBABILISTIC LOGIC PROGRAMS

t(/)

e(1,2) e(1,3)

e(2,3) e(3,4) e(3,5)

e(3,4) e(3,5)

e(4,5)

e(4,5)

Figure 3.6: The collected trie for the graph of Figure 3.4 using the predicate of
Figure 3.3(a) by the query: path(1,5).

3.3 ProbLog Tabling

Definition 6 (Probabilistic Predicate). We call probabilistic predicate, any
predicate that directly or indirectly uses at least one probabilistic fact in any of
its definitions.

As shown earlier in Prolog a predicate must be indicated by the programmer
to be tabled with the use of the directive table/11. ProbLog tabling follows
a similar approach but uses the directive problog_table/1. The directive
problog_table/1 must be used to properly table a probabilistic predicate. One
could use the ProbLog directive for tabling purely logical predicates or use
the original Prolog table/1 directive. While both would work the latter is
more efficient as it does not perform the extra bookkeeping that probabilistic
predicates require. To table a probabilistic fact, again one should use ProbLog’s
tabling directive. Like in Prolog tabling, using tabling on probabilistic facts
does not have any significant performance impact.

When ProbLog encounters a generator subgoal, it creates a table entry for the
subgoal with an empty nested trie, and starts proving it. As soon as a successful

1For example: :- table path/2



PROBLOG TABLING 39

t(/)

t(p(1,5))

t(p(1,5))

e(1,2) e(1,3)

t(p(2,5))

e(2,3)

t(p(3,5))

e(3,4) e(3,5)

t(p(4,5))

e(4,5)

t(p(2,5)) t(p(3,5)) t(p(3,5))

t(p(4,5))

Figure 3.7: The collected nested tries for the graph of Figure 3.4 using the
predicate of Figure 3.3(b) by the query: path(1,5).

proof for the subgoal is found, it is added to its nested trie. Note that if the
subgoal fails, no proof is added and the nested trie remains empty.

ProbLog eagerly collects the proofs for the generator goals implementing a local
tabling strategy. For programs without cycles, tabling deals completely with a
generator subgoal before the parent goal is resumed and it is known whether
the subgoal failed or succeeded. If the generator subgoal fails, resumption
of the parent goal fails its current proof. If the generator subgoal succeeds,
on resumption of the parent goal, a reference to the nested trie of the tabled
subgoal is added to the current proof of the parent goal. For occurrences of
consumer subgoals, tabling avoids re-computation by adding a reference to the
appropriate nested trie in the current proof.

3.3.1 Cycles in a Probabilistic Setting

Until now, we presented how tabling avoids repeated subcomputations. Tabling
typically also deals with cycles. The probabilistic context determines how to



40 TABLING OF PROBABILISTIC LOGIC PROGRAMS

handle cycles.

An attentive reader might indeed have noticed that the path program of
Figure 3.3(a) is a version that encodes cycle detection explicitly by using
\+ member(X, V). That version does not benefit from tabling as almost all
the calls to path/3 are different. The path/2 program in Example 3.3(b) has
no code to detect cycles. We use this program and the undirected graph of
Figure 3.5 to explain how tabling should support cycle handling in a probabilistic
framework.

For the query path(1,3) on the graph of Figure 3.5 with the program of
Figure 3.3(b), we collect the following two proofs: edge(1,2), edge(2,3)
and edge(1,3). Trying to prove the query path(1,3) with the program of
Figure 3.3(b) without tabling, one will enter in an infinite cycle when asking for
multiple answers, such as the one between nodes 1 and 2 due to edge(1,2) and
edge(2,1). ProbLog’s calculation of success probability requires the collection
of all proofs and to that end it searches all branches of the SLD tree of a query
which means that in the presence of a cycle the execution gets caught in a loop.
The SLD tree for path(1,3) is indeed infinite. Tabling detects this type of
cycles on the SLG trees and handles them either as failures when the cycle
subgoal has no succeeding derivations or as success if the cycle subgoal has
succeeding derivations.

In the presence of cycles, logic programming tabling uses a completion
mechanism to ensure that all answers are returned to all consumers. For
our ground ProbLog goals, this boils down to returning information about
failure or success and in case of success the nested trie. A simple way to achieve
this for consumer goals that give rise to a cycle, is to assume that the generator
goal will succeed and add a reference to the partially completed nested trie of
the generator goal to the parent goal proof. Although a nested trie represents
all the proofs for the subgoal, we do not need its final value to reuse it, i.e. to
put a reference to it in the other tries.

The logic programming tabling completion mechanism monitors that all choice
points of a generator goal have been explored. It also remembers all the locations
where a non completed generator goal was used by a consumer. When the
generator goal produces a new answer, the execution returns to any consumer
to use that new answer [82]. In our case, as the answer is limited to success or
failure of the goal, we do not require the execution to return to the consumer.

Now, our nested tries no longer only contain successful proofs. We optimistically
assumed success for consumer goals giving rise to a cycle. If none of the goals
involved in the cycle has a finite successful proof, they all fail. In this case,
the nested tries contain references to failed subgoals. This failure is dealt with



NESTED TRIES TO ROBDD DEFINITIONS 41

during the ROBDD script generation step.

3.4 Nested Tries to ROBDD Definitions

As described in Section 2.3, SLD resolution is responsible for collecting the
explanations that prove the query. These proofs form a Boolean formula, more
specifically the collected formula of a non tabled ProbLog program without
calls to negated probabilistic predicates2 is in disjunctive normal form (DNF).

With tabling, SLD resolution is modified to SLG resolution and together with
this modification also the DNF Boolean formula is modified to a forest of nested
DNF sub-formulae. More precisely the Boolean formula now is a more compact
representation of the previous DNF formula. Each subgoal has its own DNF
formula that might refer to another DNF formula of another subgoal.

This section discusses how to extract the ROBDD definitions from the set of
nested tries generated by ProbLog tabling. The main challenge for generating
the ROBDD definitions from the nested tries, is tackling the encoded cycles in
the set of nested tries efficiently.

By “unfolding” the nested tries back to a single Boolean formula we risk to
actually redo much of the work that tabling saved us. Actually this process can
end up being significantly more expensive, than the non tabled SLD evaluation,
if treated naively. For that reason it is very important to perform as much reuse
we can on the unfolding and avoid as many unfolding computations possibly.

3.4.1 Handling the Simple Case

We first present the case where there are no cycles in the nested tries. Using the
generated forest of nested tries of Figure 3.7 at page 39 and traversing it naively
depth first we get the ROBDD definitions of Table 3.1. The first column of the
table presents the nested trie where currently the algorithm is; the second table
column gives either the action taken by the algorithm or the generated ROBDD
definition. Notice that lines from L1 to L3 are repeated in lines from L6 to L8.
This repetition appears because the nested trie t(p(3, 5)) is being referred twice
in the forest of tries. The second appearance of t(p(3, 5)) is credited in tabling
reusage of proven goals. We optimistically would want to take advantage of this
multiple appearance by not unfolding multiple times nested tries and by taking
advantage of suffix similarity.

2The non tabled ProbLog program could still contain negated probabilistic facts or negated
non probabilistic subgoals, facts.



42 TABLING OF PROBABILISTIC LOGIC PROGRAMS

Nested Trie Generated ROBDD definitions
t(p(1,5)) Follow reference: t(p(2,5))
t(p(2,5)) Follow reference: t(p(3,5))
t(p(3,5)) Follow reference: t(p(4,5))
t(p(4,5)) 1 L1 = e(4,5)
t(p(3,5)) 2 L2 = e(3,4) * L1
t(p(3,5)) 3 L3 = e(3,5) + L2
t(p(2,5)) 4 L4 = e(2,3) * L3
t(p(1,5)) 5 L5 = e(1,2) * L4
t(p(1,5)) Follow reference: t(p(3,5))
t(p(3,5)) Follow reference: t(p(4,5))
t(p(4,5)) 6 L6 = e(4,5)
t(p(3,5)) 7 L7 = e(3,4) * L6
t(p(3,5)) 8 L8 = e(3,5) + L7
t(p(1,5)) 9 L9 = e(1,3) * L8
t(p(1,5)) 10 L10 = L5 + L9

Table 3.1: The ROBDD definitions for the Boolean formula of the nested tries
of Figure 3.7 generated by the naive approach.

To achieve these improvements we use a table that memoizes nested tries
unfolding and use that to reuse the generated ROBDD definitions of unfolded
tries. Table 3.2 presents the ROBDD definitions of our previous example of
the nested trie forest of Figure 3.7 at page 39 and the table used to memoize
trie unfolding. Notice that, through this dynamic programming approach, the
unfolding of a forest of tries that does not contain any cycles is linear in the
nodes of all nested tries.

The third column of Table 3.2 presents the memoized ROBDD intermediate
step which represents the generated ROBDD definitions for the nested trie
shown in the first column. The algorithm that generates these definitions again
works in depth first manner. It first traverses the leftmost branch of the first
nested trie. Whenever it finds a reference to another nested trie it must first
generate the ROBDD definitions of the new found (child) nested trie before it
generates any ROBDD definition for the parent nested trie. In that manner for
the nested tries of Figure 3.7 at page 39 the algorithm will first traverse through
all child nested tries until it reaches t(p(4, 5)) which does not have child nested
tries. Then it generates the first ROBDD definition which by memoizing the
intermediate step (L1) we can reuse the unfolding of this nested trie. Following
this strategy we get the ROBDD definitions of Table 3.2. Notice that this time
the nested trie t(p(3, 5)) is reused at line 6 of instead of being generated again
as in Table 3.1 lines 6 to 8.



NESTED TRIES TO ROBDD DEFINITIONS 43

Nested Generated ROBDD Memoized
Trie definitions ROBDD Step
t(p(1, 5)) Follow reference: t(p(2,5))
t(p(2, 5)) Follow reference: t(p(3,5))
t(p(3, 5)) Follow reference: t(p(4,5))
t(p(4, 5)) 1 L1 = e(4,5) L1
t(p(3, 5)) 2 L2 = e(3,4) * L1
t(p(3, 5)) 3 L3 = e(3,5) + L2 L3
t(p(2, 5)) 4 L4 = e(2,3) * L3 L4
t(p(1, 5)) 5 L5 = e(1,2) * L4
t(p(1, 5)) 6 L6 = e(1,3) * L31

t(p(1, 5)) 7 L7 = L5 + L6 L7
1Reusage of the generated ROBDD definitions.

Table 3.2: ROBDD definitions for the Boolean formula of the nested tries of
Figure 3.7 generated through memoization.

This approach presented up until here is very much related and similar to the
dynamic programming approach PRISM [73,74] follows. The extra assumptions
imposed by PRISM ensure the absence of cycles in the probabilistic information.

3.4.2 Handling Cycles and the Ancestor List

Introducing cycles in the graph alters things significantly. While the tabling
mechanism deals the cycles at the proof collection stage, it propagates the
problem to the next stage namely the generation of ROBDD definitions. Three
new complications arise because of the cycles. First we need a mechanism to
detect cycles, then find what ROBDD definition to generate for a cycle, and
finally decide when an unfolded trie can be reused.

To detect the cycles we introduce an ancestor list, for each encountered nested
trie, that remembers the previously visited nested tries. This ancestor list is
similar to the path kept by a depth first search algorithm for detecting cycles.

Definition 7 (Ancestor List). The ancestor list At(g) of a nested trie t(g) is
the set of nested tries that were traversed to reach t(g).

Cycles typically give rise to proofs that do not contribute to the final probability.
Figure 3.8 shows the collected nested tries, that contain infinite cycles, for the
query path(1,5) of the undirected graph in Figure 3.5. Consider the following
two successful proofs reconstructed from the nested tries:

edge(1,2),edge(2,3),edge(3,5)



44 TABLING OF PROBABILISTIC LOGIC PROGRAMS

t(/)

t(p(1,5))

t(p(1,5))

e(1,2) e(1,3)

t(p(2,5))

e(2,1) e(2,3)

t(p(3,5))

e(3,1) e(3,2) e(3,4) e(3,5)

t(p(4,5))

e(4,3) e(4,5)

t(p(2,5)) t(p(3,5)) t(p(1,5)) t(p(3,5))

t(p(1,5)) t(p(2,5)) t(p(4,5)) t(p(3,5))

Figure 3.8: The collected nested tries for the undirected graph of Figure 3.5
using the predicate of Figure 3.3(b) by the query: path(1,5).

edge(1,2),edge(2,3),edge(3,1),edge(1,3),edge(3,5)

What do we notice about their contribution to the final probability? At the
level of the Boolean formula, we can simplify the disjunction of the first and
the second proof to the first proof: (edge(1, 2) ∧ edge(2, 3) ∧ edge(3, 5)) ∨
(edge(1, 2) ∧ edge(2, 3) ∧ edge(3, 1) ∧ edge(1, 3) ∧ edge(3, 5)) ≡ edge(1, 2) ∧
edge(2, 3)∧edge(3, 5)∧(true∨(edge(3, 1)∧edge(1, 3))) ≡ edge(1, 2)∧edge(2, 3)∧
edge(3, 5). We say that the first proof is more general than the second one. Let
set(p) denote the set of probabilistic facts of a successful proof p in a trie.
Definition 8 (More general proof). A proof p is more general than a proof
p′ denoted by p ≺ p′ iff set(p) ⊂ set(p′).
Definition 9 (Proof in a trie). A proof p is in a trie T iff p ∈ T .
Definition 10 (Non-minimal proof). A proof p is a non-minimal proof in a
trie T iff there ∃p′ ∈ T where p′ � p.

The following theorem states that for a goal g with a trie t(g), we can safely
eliminate the proofs that contain an identical goal with the ancestor list At(g).



NESTED TRIES TO ROBDD DEFINITIONS 45

Theorem 1 (Non-minimality of cycles). Let ga be the first occurrence (ancestor)
and gd the second occurrence (descendant) of a goal g in the ancestor list of a
complete successful proof. If unfolding t(g) for the first occurrence ga constructs
for g a finite successful proof without adding gd to the ancestor list, then, the
unfolding of t(g) that also adds gd in the ancestor list, constructs non-minimal
proofs.

Proof. Suppose that unfolding t(g) for the first occurrence ga constructs the
following complete successful proof prl for ga: prb.prt.prc with set(prb) =
{pb1, ..., pbn}, set(prc) = {pc1, ..., pcl} and prt resulting from unfolding t(g) for
the second occurrence gd. We have to show that prl is a non-minimal proof in
t(g): there must be another proof prs in t(g) such that set(prs) ⊆ set(prl).

From the hypothesis of the theorem we know that g has at least one finite
successful proof pra with set(pra) = {pa1, ..., pam} that does not add gd to
the ancestor list. When this is used to unfold the second occurrence of t(g),
set(pra) ⊆ set(prl) and thus prl is non-minimal. The same reasoning holds for
all other finite successful proofs of g that do not add gd to the ancestor list.
Finally, we could unfold t(g) again by prb.prt.prc resulting in prb prb.prt.prc.prc,
but in the end, to get a finite successful proof, one of the finite successful proofs
of g that do not add gd to the ancestor list will be used. Thus again prl is a
non-minimal proof.

When unfolding detects a cycle, we can prune the current proof: either because
it is a failing proof or by Theorem 1 it gives rise to non-minimal proofs. If
pruning results in an empty trie, which encodes failure, we can prune the parent
branch.

Previously we showed that it is crucial to reuse the unfolding of nested tries as
much as possible. The absence of cycles allowed us to use all re-appearances
of nested tries and thus ensures a linear algorithm for generating the ROBDD
definitions. Unfortunately with the presence of cycles the naive reusage of
unfolding is not possible. We use the example graph of Figure 3.9 as a counter
example where the reusage of unfolding produces erroneous results. The counter
example uses the query: path(1,4) to collect the nested tries of Figure 3.10.
Using the naive approach of blindly reusing any memoized ROBBD definitions
by a nested trie unfolding, for our counter example, the ROBDD definitions in
Table 3.3 are generated.

The ROBDD definitions of Table 3.3 calculate a probability of P = 0.5058; but
the correct probability is actually Pcorrect = 0.545. This difference results from
the cycle introduced by the undirected edge from node 2 to 3 of the graph in
Figure 3.9. As the unfolding occurs depth first like, the algorithm unfolds the



46 TABLING OF PROBABILISTIC LOGIC PROGRAMS

1

3

0.7

2

0.3

0.5 4

0.4

0.6

0 . 3 : : edge (1 , 2 ) .
0 . 7 : : edge (1 , 3 ) .
0 . 5 : : edge (2 , 3 ) .
0 . 4 : : edge (2 , 4 ) .
0 . 5 : : edge (3 , 2 ) .
0 . 6 : : edge (3 , 4 ) .

Figure 3.9: A probabilistic graph with cycles which is used as a counter example.

t(/)

t(p(1,4))

t(p(1,4))

e(1,2) e(1,3)

t(p(2,4))

e(2,3) e(2,4)

t(p(3,4))

e(3,2) e(3,4)

t(p(2,4))

t(p(2,4))

t(p(3,4))

t(p(3,4))

Figure 3.10: The collected nested tries for the counter example graph of
Figure 3.9 using the predicate of Figure 3.3(b) by query: path(1,4).



NESTED TRIES TO ROBDD DEFINITIONS 47

Nested Generated ROBDD Memoized
Trie definitions ROBDD Step
t(p(1, 4)) Follow reference: t(p(2,4))
t(p(2, 4)) Follow reference: t(p(3,4))
t(p(3, 4)) Found cycle: prune proof
t(p(3, 4)) 1 L1 = e(3,4) L1
t(p(2, 4)) 2 L2 = e(2,3) * L1
t(p(2, 4)) 3 L3 = e(2,4) + L2 L3
t(p(1, 4)) 4 L4 = e(1,2) * L3
t(p(1, 4)) 5 L5 = e(1,3) * L11

t(p(1, 4)) 6 L6 = L4 + L5 L6
1Reusage of the generated ROBDD definitions.

Table 3.3: ROBDD definitions for the Boolean formula of the counter example
nested tries of Figure 3.10 generated through memoization. These definitions
calculate an erroneous result and are used as a counter example proving that
simple memoization is not sufficient.

ROBDD definitions of the nested trie t(p(3, 4)) before it unfolds the nested
trie t(p(2, 4)). The first branch of t(p(3, 4)) resolves in a cycle as it contains a
reference to t(p(2, 4)) which currently is an ancestor nested trie. By Theorem 1
the branch with the cycle is dropped. The ROBDD definition for t(p(3, 4)) is
shown at line 1 of Table 3.3. Later on, the nested trie t(p(3, 4)) is encountered
from the branch of the nested trie t(p(1, 4)), in this case t(p(2, 4)) is not an
ancestor and thus the first branch of t(p(3, 4)) is not part of a cycle. Now it
has a probability mass to offer, but because of the memoization the current
strategy reuses the previous result and calculates the probability wrongly.

The above example illustrates that it is erroneous to reuse the unfolding of
nested tries that introduce cycles. It is not safe as different occurrences might
give rise to different proofs. Actually, it depends on the context of the occurrence
of the nested trie, in particular on the ancestor list of the occurrence. In order
to maintain unfolding reusage for nested tries with cycles, we start from the
following observation. When two occurrences of a reference to a nested trie have
exactly the same ancestor list, then obviously the unfolding of the references
will introduce exactly the same cycles and exactly the same ROBDD definitions.

Theorem 2 (Same ancestor and ROBDD definitions). Let t1 with ancestors A
be the first occurrence of a nested trie, and t2 another occurrence with ancestors
A. Both occurrences have the identical ROBDD definition unfolding.

Proof. Indeed as t1 and t2 are the same nested trie and each occurrence has
the same ancestor list A, exactly the same branches from t1 and t2 would be



48 TABLING OF PROBABILISTIC LOGIC PROGRAMS

Nested Generated ROBDD Ancestor Memoized
Trie definitions List ROBDD
t(p(1,5)) Follow reference: t(p(2,5)) []
t(p(2,5)) Found cycle: prune proof [t(p(1,5))]
t(p(2,5)) Follow reference: t(p(3,5)) [t(p(1,5))]
t(p(3,5)) Found cycle: prune proof [t(p(1,5)),t(p(2,5))]
t(p(3,5)) Found cycle: prune proof [t(p(1,5)),t(p(2,5))]
t(p(3,5)) Follow reference: t(p(4,5)) [t(p(1,5)),t(p(2,5))]
t(p(4,5)) Found cycle: prune proof [t(p(1,5)),t(p(2,5)),t(p(3,5))]
t(p(4,5)) 1 L1 = e(4,5) [t(p(1,5)),t(p(2,5)),t(p(3,5))] L1
t(p(3,5)) 2 L2 = e(3,4) * L1 [t(p(1,5)),t(p(2,5))]
t(p(3,5)) 3 L3 = e(3,5) + L2 [t(p(1,5)),t(p(2,5))] L3
t(p(2,5)) 4 L4 = e(2,3) * L3 [t(p(1,5))] L4
t(p(1,5)) 5 L5 = e(1,2) * L4 []
t(p(1,5)) Can not reuse L3 []
t(p(3,5)) Found cycle: prune proof [t(p(1,5))]
t(p(3,5)) Can not reuse L4 [t(p(1,5))]
t(p(2,5)) Found cycle: prune proof [t(p(1,5)),t(p(3,5))]
t(p(2,5)) Found cycle: prune proof [t(p(1,5)),t(p(3,5))] false
t(p(3,5)) e(3,2) * false1 [t(p(1,5))]
t(p(3,5)) Can not reuse L1 [t(p(1,5))]
t(p(4,5)) Found cycle: prune proof [t(p(1,5)),t(p(3,5))]
t(p(4,5)) 7 L6 = e(4,5) [t(p(1,5)),t(p(3,5))] L7
t(p(3,5)) 8 L7 = e(3,4) * L6 [t(p(1,5))]
t(p(3,5)) 9 L8 = e(3,5) + L7 [t(p(1,5))] L9
t(p(1,5)) 10 L9 = e(1,3) * L8 []
t(p(1,5)) 11 L10 = L5 + L9 [] L11

1False simplifies the expression.

Table 3.4: ROBDD definitions for the Boolean formula of the nested tries of
Figure 3.8 generated through memoization and ancestor list check.

pruned as cycles resulting to exactly the same ROBDD definitions.

Returning to our running example and using Theorem 2 we present the ROBDD
definitions generated for the nested tries of Figure 3.8 at page 44 in Table 3.4.

3.4.3 Optimization I: Subset

Unfortunately if we remain at the reusage stated at Theorem 2 then for many
ProbLog programs that contain cycles the benefit gained by SLG resolution



NESTED TRIES TO ROBDD DEFINITIONS 49

will be lost during the generation of the ROBDD definitions. Fortunately, we
can do better than that.

Theorem 3 (Ancestor subset check). Consider two references to the same
nested trie, one occurrence t1 has ancestor list A1 and the other occurrence t2
has ancestor list A2 such that A1 ⊂ A23. Then t2 will at least participate in
the same cycles as t1.

Proof. Obviously as A2 contains all ancestors of A1 (and possibly more) then
all the cycles appearing at the unfolding of t1 will appear at the unfolding of t2
(and possibly more).

As is shown by Theorem 1 unfolding the proofs of a cycle produces non-minimal
proofs that do not alter the Boolean formulae. Thus from Theorem 3 and 1
we can conclude that the Boolean formula of t1 is equivalent to that of t2 and
dynamic programming can reuse it instead of unfolding t2 during the generation
of ROBDD definitions.

Returning to the example of Figure 3.5, Table 3.5 shows the generation process
of the ROBDD definitions in parallel with the memoization of the dynamic
programming approach. As the third column we have added the ancestor list
generated at each step of the generation. The 1 annotates a reusage of the nested
trie t(p(2,5)) which only occurs if ancestor subset check is used. At that location
we can see that the ancestors for t(p(2,5)) where A2 = [t(p(1, 5)), t(p(3, 5))]
but the ROBDD definitions memoized had as ancestors A1 = [t(p(1, 5))]. As
A1 ⊂ A2 the ROBDD definitions for t(p(2,5)) are reused. If we had re-
calculated t(p(2,5)), as if ancestor subset check was not used, the resulting
ROBDD definition would be false. This result would have simplified the final
ROBDD script. We address this issue later.

With this approach we managed to restore some reusage of the nested trie
unfolding, which as shown in the experiments improves the performance
significantly. Unfortunately, the complexity of the unfolding algorithm still
depends highly on the presence of cycles and in the worst case scenario appears
to be exponential.

3.4.4 Optimization II: Ancestor List Refine

We present a further optimization that aims at further reuse of nested trie
unfolding. This optimization relies on the observation that only the nested tries
that appear in the branches of a nested trie and the children of the children and

3An ancestor list can be interpreted as a set of ancestors.



50 TABLING OF PROBABILISTIC LOGIC PROGRAMS

Nested Generated ROBDD Ancestor Memoized
Trie definitions List ROBDD
t(p(1,5)) Follow reference: t(p(2,5)) []
t(p(2,5)) Found cycle: prune proof [t(p(1,5))]
t(p(2,5)) Follow reference: t(p(3,5)) [t(p(1,5))]
t(p(3,5)) Found cycle: prune proof [t(p(1,5)),t(p(2,5))]
t(p(3,5)) Found cycle: prune proof [t(p(1,5)),t(p(2,5))]
t(p(3,5)) Follow reference: t(p(4,5)) [t(p(1,5)),t(p(2,5))]
t(p(4,5)) Found cycle: prune proof [t(p(1,5)),t(p(2,5)),t(p(3,5))]
t(p(4,5)) 1 L1 = e(4,5) [t(p(1,5)),t(p(2,5)),t(p(3,5))] L1
t(p(3,5)) 2 L2 = e(3,4) * L1 [t(p(1,5)),t(p(2,5))]
t(p(3,5)) 3 L3 = e(3,5) + L2 [t(p(1,5)),t(p(2,5))] L3
t(p(2,5)) 4 L4 = e(2,3) * L3 [t(p(1,5))] L4
t(p(1,5)) 5 L5 = e(1,2) * L4 []
t(p(1,5)) Can not reuse L3 []
t(p(3,5)) Found cycle: prune proof [t(p(1,5))]
t(p(3,5)) 6 L6 = e(3,2) * L41 [t(p(1,5))]
t(p(3,5)) Can not reuse L1 [t(p(1,5))]
t(p(4,5)) Found cycle: prune proof [t(p(1,5)),t(p(3,5))]
t(p(4,5)) 7 L7 = e(4,5) [t(p(1,5)),t(p(3,5))] L7
t(p(3,5)) 8 L8 = e(3,4) * L7 [t(p(1,5))]
t(p(3,5)) 9 L9 = e(3,5)+L6+L8 [t(p(1,5))] L9
t(p(1,5)) 10 L10 = e(1,3) * L9 []
t(p(1,5)) 11 L11 = L5 + L10 [] L11

1Reusage of L4 as the memoized ancestor list of t(p(2,5)) is a subset of the new ancestor
list that t(p(2,5)) would be produced with. Formally: [t(p(1,5))] ⊆ [t(p(1,5)),t(p(3,5))].

Table 3.5: ROBDD definitions for the Boolean formula of the nested tries of
Figure 3.8 generated through memoization and ancestor list subset check.

so forth can affect the generation of the ROBDD definitions. Thus, we could
refine the ancestor list to a smaller subset that contains only those.

Theorem 4 (Descendants of nested tries). The ROBDD definitions of a nested
trie T with ancestor list A and descendants list D depend only on the nested tries
that appear both in A and D thus the ancestor list can be refined as A′ = A∩D.

Proof. It is easy to prove the base case of Theorem 4, if a nested trie does
not contain any reference to another nested trie then the resulting ROBDD
definitions are always the same regardless of the ancestors. Assuming that
all the descendant nested tries in DT1 that are referred have no descendants
themselves then the ROBDD definitions of T depend only on the appearance of



NESTED TRIES TO ROBDD DEFINITIONS 51

the DT1 in the ancestor list. Either a descendant nested trie from DT1 appears
in the ancestor list and introduces a cycle reducing the ROBDD definitions, or
it does not appear and unfolding it will produce further ROBDD definitions.
Similarly if a descendant nested trie contains references to other descendants
then the produced ROBDD definitions for this nested trie will depend to its
descendant nested tries. Applying this reasoning recursively to all descendants
then it is clear that the resulting ROBDD definitions are influenced only by the
descendants that also appear in the ancestor list.

From the implementation point of view this optimization imposes extra
challenges. First it requires that we collect an exhaustive list of all descendants
used and maintain it after backtracking, further it requires at each reuse of
ROBDD definitions of a nested trie to include the descendants of that nested
trie as descendants of the parent nested trie. Both issues are solved by using
the refined ancestor list of the memoized nested trie as its descendants list.

We present in Table 3.6 an example of extra memoization reusage because of
the ancestor list refinement. Notice that the ancestor list of t(p(4,5)) shrinks
from [t(p(1,5)),t(p(2,5)),t(p(3,5))] to [t(p(3,5))], this allows it to be reused at
the second encounter of the same nested trie, as now the ancestor list of the
memoized t(p(4,5)) is a subset of the ancestor list for the second occurrence of
t(p(4,5)) which is [t(p(1,5)),t(p(3,5))].

Through the use of this optimization, further reusage was possible and significant
performance benefits appear in many queries that contain cycles especially if
the nested tries contain symmetries.

3.4.5 Optimization III: Pre-process Step

Another interesting observation is that while the ancestor subset check, increases
the reuses of previous unfolded ROBDD definitions, it often uses more complex
ROBDD definitions than necessary to describe the Boolean formulae. The
pre-process optimization aims at improving exactly that.

The underlying idea is that an inexpensive pre-process step can generate the
basic unfolding of each nested trie together with its minimal ancestor list. Then
during the generation of ROBDD definitions, before reusing any memoized
unfolding, we first check if any minimal unfolding can be reused to introduce a
simpler Boolean formulae instead.

Table 3.7 presents the ROBDD definitions generated by the pre-process step,
for the nested tries of Figure 3.8 at page 44. This optimization does not follow
any references or checks for any cycles, it processes every nested trie once and



52 TABLING OF PROBABILISTIC LOGIC PROGRAMS

Nested Generated ROBDD Refined Memoized
Trie definitions Ancestor List ROBDD
t(p(1,5)) Follow reference: t(p(2,5)) []
t(p(2,5)) Found cycle: prune proof [t(p(1,5))]
t(p(2,5)) Follow reference: t(p(3,5)) [t(p(1,5))]
t(p(3,5)) Found cycle: prune proof [t(p(1,5)),t(p(2,5))]
t(p(3,5)) Found cycle: prune proof [t(p(1,5)),t(p(2,5))]
t(p(3,5)) Follow reference: t(p(4,5)) [t(p(1,5)),t(p(2,5))]
t(p(4,5)) Found cycle: prune proof [t(p(3,5))]1
t(p(4,5)) 1 L1 = e(4,5) [t(p(3,5))]1 L1
t(p(3,5)) 2 L2 = e(3,4) * L1 [t(p(1,5)),t(p(2,5))]
t(p(3,5)) 3 L3 = e(3,5) + L2 [t(p(1,5)),t(p(2,5))] L3
t(p(2,5)) 4 L4 = e(2,3) * L3 [t(p(1,5))] L4
t(p(1,5)) 5 L5 = e(1,2) * L4 []
t(p(1,5)) Follow reference: t(p(3,5)) []
t(p(3,5)) Found cycle: prune proof [t(p(1,5))]
t(p(3,5)) 6 L6 = e(3,2) * L42 [t(p(1,5))]
t(p(3,5)) 7 L7 = e(3,4) * L13 [t(p(1,5))]
t(p(3,5)) 8 L8 = e(3,5) +L7+L6 [t(p(1,5))] L8
t(p(1,5)) 9 L9 = e(1,3) * L8 []
t(p(1,5)) 10 L10 = L5 + L9 [] L10

1Refinement of the ancestor list with the children nested tries of the current nested trie.
2Reusage of the generated ROBDD definitions as [t(p(1,5))] ⊆ [t(p(1,5)),t(p(3,5))].
3Reusage of the generated ROBDD definitions as [t(p(3,5))] ⊆ [t(p(1,5)),t(p(3,5))].

Table 3.6: ROBDD definitions for the Boolean formula of the nested tries of
Figure 3.8 at page 44 generated through memoization, ancestor list subset check
and ancestor list refinement.

it assumes false as the result of each branch that contains a reference to any
other nested trie. In that way, it generates and memoizes the base case for each
nested trie with an ancestor list that contains all referred children nested tries.
By using the memoized base cases shown in Table 3.7 the full generation of the
ROBDD definitions of the nested tries is shown in Table 3.8. Notice that the
nested trie t(p(4,5)) is immediately reused from the pre-processed memoizations.
Also notice that, because the algorithm uses the first memoized unfolding that
has a suitable ancestor list, the nested trie t(p(2,5)) is reused from the pre-
processed tries instead of the newly generated tries. This simplifies the ROBDD
definitions imposing less work on the ROBDD generation; in our example the
final ROBDD definitions shown in Table 3.8 contain 8 operations against the
10 and 9 operations from the ROBDD definitions generated respectively in
Table 3.5 and Table 3.6.



NESTED TRIES TO ROBDD DEFINITIONS 53

Nested Generated ROBDD Ancestor Memoized
Trie definitions List ROBDD
t(p(1,5)) [t(p(2,5)),t(p(3,5))] false
t(p(2,5)) [t(p(1,5)),t(p(3,5))] false
t(p(3,5)) 1 L1 = e(3,5) [t(p(1,5),t(p(2,5)),t(p(4,5))] L1
t(p(4,5)) 2 L2 = e(4,5) [t(p(3,5))] L2

Table 3.7: ROBDD definitions generated from the pre-process step for the
nested tries of Figure 3.8.

Nested Generated ROBDD Ancestor Memoized
Trie definitions List ROBDD
t(p(1,5)) Follow reference: t(p(2,5)) []
t(p(2,5)) Found cycle: prune proof [t(p(1,5))]
t(p(2,5)) Follow reference: t(p(3,5)) [t(p(1,5))]
t(p(3,5)) Found cycle: prune proof [t(p(1,5)),t(p(2,5))]
t(p(3,5)) Found cycle: prune proof [t(p(1,5)),t(p(2,5))]
t(p(3,5)) 3 L3 = e(3,4) * L21 [t(p(1,5)),t(p(2,5))]
t(p(3,5)) 4 L4 = e(3,5) + L3 [t(p(1,5)),t(p(2,5))] L4
t(p(2,5)) 5 L5 = e(2,3) * L4 [t(p(1,5))] L5
t(p(1,5)) 6 L6 = e(1,2) * L5 []
t(p(1,5)) Follow reference: t(p(3,5)) []
t(p(3,5)) Found cycle: prune proof [t(p(1,5))]
t(p(3,5)) e(3,2) * false2 [t(p(1,5))]
t(p(3,5)) 7 L7 = e(3,4) * L21 [t(p(1,5))]
t(p(3,5)) 8 L8 = e(3,5) + L7 [t(p(1,5))] L9
t(p(1,5)) 9 L9 = e(1,3) * L8 []
t(p(1,5)) 10 L10 = L6 + L9 [] L10

1Reusage of a pre-processed nested trie t(p(4,5)) as [t(p(3,5))] ⊆ [t(p(1,5)),t(p(2,5)),
t(p(3,5))].
2Reusage of a pre-processed nested trie t(p(2,5)) as [t(p(1,5)),t(p(3,5))] ⊆ [t(p(1,5)),
t(p(3,5))]. False simplifies the expression.

Table 3.8: ROBDD definitions for the Boolean formula of the nested tries of
Figure 3.8 generated through memoization, with ancestor list subset check,
ancestor list refinement and using pre-processed ROBDD definitions.



54 TABLING OF PROBABILISTIC LOGIC PROGRAMS

In contrast to the previous ones this optimization comes at an added cost. It
takes one extra iteration among all nested tries to generate the pre-processed
ROBDD definitions. This cost is linear in the number of variables stored inside
the nested tries; as the algorithm has a higher worst case complexity, this cost
is insignificant. This is verified by the experiments where the cost is barely
noticeable and in many cases the benefit much more significant.

3.4.6 Optimizing the Representation

As we already said, the unfolding of the nested tries heavily depends on the
ancestor and the descendant lists. In order to perform set operations we handle
both the ancestor and descendant lists as ordered lists that contain only unique
nested trie references. To further improve the performance of the algorithm
we use arbitrary long integers as bit-strings to represent both the ancestor and
descendant lists as sets.

While the manipulation of the lists is not the main reason for the computational
overhead in generating the ROBDD definitions, in big problems the maintenance
of the lists in the correct form and the subset check has an observable cost.
By using arbitrary long integers those operations become significantly faster
providing a noticeable improvement in performance as we can see in the
experiments.

Finally, we need to mention that Algorithm 4.4 which uses these optimizations,
can be found and is further explained in Section 4.8. The algorithm is quite
complex and uses several other algorithms as its components, therefore we urge
the reader to continue reading and return to this section again at that point, if
needed.

3.5 Implementation

ProbLog tabling has been realized through a program transformation. This
final section presents two different transformations that implement ProbLog
tabling. The first one is shown in Algorithm 3.1, can be used in a Prolog system
without tabling but is limited to work only on fully grounded goals, while the
second transformation is shown in Algorithm 3.2 takes advantage of the existing
tabling of a Prolog system and can work with any type of goals.



IMPLEMENTATION 55

3.5.1 Light Weight Tabling Implementation

In order to be able to explain the tabling implementation we mention that
the predicates nb_getval/2, b_setval/2 which handle global variables in
Prolog [76] are available in several Prolog systems. For further information
concerning global variables please see a Prolog manual [71]. Similarly, in
the transformation we use the predicates put_trie_entry/2, empty_trie/1,
merge_trie/3. These predicates are based on Yap’s trie implementation. For
more information please look Yap’s manual [71]

For this approach we use a custom made, light weight tabling implementation.
The transformation used is presented in Algorithm 3.1. This implementation
has the advantage that it is more flexible and easier to integrate with any
Prolog system. This approach is used in the ProbLog2010 implementation.
We are not able to use the built-in approach together with the ProbLog2010
implementation because of limitations in the way inference collects information
in its data structures when performing inference.

The main concept is to transform the body of the tabled predicate so that it
first checks within a table whether the specific grounded goal of the predicate
has been called before or not. This approach is viable only for ground goals
because it memorizes only success or failure of a goal. It also memorizes the
derivations used to prove the goal and constructs the nested tries.

The tabling mechanism is based on using a table for memoizing entries. These
entries, when stored, use as a key the grounded head (Head) of the goal. This
key is indexed similarly as in a hash table for fast access. In the table we store
the trie identifiers GoalTrie, Trie, SuspendedTrie and the goal’s completion
state.

The Trie is used to store the successful derivations of the goal; the
SuspendedTrie is used to store the derivations that resulted in a cycle; failed
derivations are ignored. At the completion of a goal, if successful derivations
exist for the goal, then all Trie entries and all SuspendedTrie entries are
merged into GoalTrie. If there are no successful derivations, the completed
entry is memoized and is reused as if it succeeded normally, but because of the
empty GoalTrie it signifies failure instead of success. Every tabled goal has its
own unique set of those three tries.

The goal_lookup/5 predicate has two responsibilities: first responsibility is
to return the stored entry under the key Head; its second responsibility is to
initialize three empty tries with identifiers GoalTrie, Trie, SuspendedTrie for
the key Head if there is not yet a stored entry for the key Head.

As we mentioned, the goal_lookup/5 predicate is responsible for the read access



56 TABLING OF PROBABILISTIC LOGIC PROGRAMS

Algorithm 3.1 ProbLog tabling transformation for only ground goals without
using built-in tabling support.
input A clause to be tabled (Head :- Body).
output A transformed clause (Head :- NewBody).

term_expansion((Head :- Body), (Head :- NewBody)):-
NewBody = (

goal_lookup(Head, GoalTrie, Trie, SuspendedTrie, Completion),
(Completion = newgoal ->

update_table(Head, GoalTrie, Trie, SuspendedTrie, ongoing),
nb_getval(explanation, ParentExplanation),
nb_getval(trie, ParentTrie),
b_setval(explanation, []),
(

Body,
nb_getval(suspended_tries, Susp),
(memberchk(GoalTrie, Susp) ->

b_setval(trie, SuspendedTrie)
;

b_setval(trie, Trie)
)
nb_getval(explanation, CurrentExplanation),
nb_getval(trie, CurrentTrie),
put_trie_entry(CurrentTrie, CurrentExplanation),
fail

;
update_table(Head, GoalTrie,Trie,SuspendedTrie, finished)

)
\+ empty_trie(Trie),
merge_trie(Trie, SuspendedTrie, GoalTrie),
b_setval(trie, ParentTrie),
b_setval(explanation, [GoalTrie|ParentExplanation])

; Completion = ongoing ->
nb_getval(suspended_tries, Susp),
b_setval(suspended_tries, [GoalTrie|Susp]),
nb_getval(explanation, CurrentExplanation),
b_setval(explanation, [GoalTrie|CurrentExplanation])

; Completion = finished
nb_getval(explanation, CurrentExplanation),
b_setval(explanation, [GoalTrie|CurrentExplanation])

)
).



IMPLEMENTATION 57

to the table and returns the appropriate tries (GoalTrie, Trie, SuspendedTrie)
and completion status of the goal. There are three possible completion statuses
for a goal: newgoal when a goal appears for the very first time, finished when
all the choice points of a goal have been explored and ongoing when the goal
has at least one open choice point.

When there is no entry for the key Head in the table, goal_lookup/5 predicate
returns the status newgoal and initializes three new tries (GoalTrie, Trie,
SuspendedTrie) to return.

The predicate update_table/5 is responsible for the write access to the table.
Its first functionality is, to create an entry under the access key Head when no
such entry already exists in the table; in that entry it stores GoalTrie, Trie,
SuspendedTrie. The newly created entry starts with the the newgoal status.
The second functionality of update_table/5 is, when an entry under the key
Head already exists to update the state of the goal. The predicate never creates
a second entry under the same key Head.

When a new goal is encountered the transformed predicate reads the global
variables (explanation, trie) of ProbLog2010 which are responsible for
collecting the probabilistic information. It then alters them in order to create a
nested trie for each goal. After each successful derivation the tabling mechanism
checks whether the current goal is suspended in order to choose in which of the
two tries (Trie, SuspendedTrie) to store the derivation.

When goal_lookup/5 returns the ongoing state, it means that the resolution
discovered a cycle. To handle the cycle we simply mark the goal as suspended
and assume success of the derivation in order to continue the execution normally.

If by the end of the goal proving, there are no successful derivations then the
cycle derivations stored in the SuspendedTrie should all fail, the goal fails and
GoalTrie remains empty indicating failure.

Reusage in this tabling implementation is very simple. Whenever goal_lookup/5
returns a completion status finished then GoalTrie is returned to be added in
the collected derivations of the father goal. Regardless of success of the goal the
GoalTrie is added. For this reason when we generate the ROBDD definitions
from the nested tries we handle the empty tries as false branches.

3.5.2 Built-in Tabling

Using the built-in tabling of a Prolog system has many benefits. First of
all, the tabling mechanism of ProbLog now can be generalized to work also
with non-ground goals. Second, we do not need to implement a complex



58 TABLING OF PROBABILISTIC LOGIC PROGRAMS

completion mechanism and to use suspended tries any-more. This approach still
produces the nested tries and maintains the connection between the goal and
the appropriate trie within the tables of the tabling mechanism. The problem
with this approach is that it imposes extra requirements on the structure of the
ProbLog inference algorithm. The built-in tabling approach is used in the new
ProbLog implementation.

ProbLog tabling is again implemented as a program transformation which is
shown in Algorithm 3.2. The transformed body of the original predicate calls a
new predicate that is tabled by Prolog and that has two additional arguments.
The first new argument is EngineID an identifier that is used for specifying to
which ProbLog engine the goal exists. This argument protects the tables from
repeated executions of the same goals with different inference methods. It is
also used to check for reuse over compatible inference methods. The second
argument is SubTrie which is the trie that stores the derivations that prove the
goal.

The predicate goal_lookup/2 is responsible to assign a unique SubTrie at each
goal the first time that it is called. The relation among the trie SubTrie and
the goal Head is stored in the arguments of the predicate and inside the internal
table of the Prolog tabling mechanism.

This approach takes advantage of the ProbLog engine which is presented in
Section 6.3. The ProbLog2010 implementation does not have an engine, nor
states. The light weight tabling approach we used for ProbLog tabling in
ProbLog2010 inspired the concepts of an engine and a state in ProbLog which
then appeared in the new ProbLog2011 implementation.

3.6 Experiments

Our tabling directly interacts with the first two execution steps of ProbLog,
SLD resolution and Boolean formulae preprocessing. The third step (ROBDD
compilation) is affected indirectly. It is well-known that ROBDD packages use
heuristics while constructing a ROBDD and that their behaviour depends on
the input, i.e., different inputs describing the same Boolean formula can give rise
to different results and/or execution times. We address the following questions:

1. How does our light weight tabling implementation perform both in time
and in space for the SLD-resolution?

2. How do the nested tries compare with their flat equivalents during the
Boolean formulae preprocessing and the ROBDD compilation?



EXPERIMENTS 59

Algorithm 3.2 ProbLog tabling transformation that uses Prolog built-in
tabling support.
input A clause to be tabled (Head :- Body).
output A list containing two transformed clauses (Head :- NewBody,

NewHead :- NewBody2).

term_expansion((Head :- Body), [(Head :- NewBody),
(NewHead :- NewBody2)]) :-

Head ..= [Predicate|Arguments],
atom_concat(Predicate, ’_internal’, NewPredicate),
append(Arguments,[EngineID,SubTrie],NewArguments),
NewHead ..= [NewPredicate|NewArguments],
length(Arguments, Arity),
NewArity is Arity + 2,
table(NewPredicate/NewArity),
NewBody = (

get_problog_state(explanation, Explanation),
get_problog_state(trie, Trie),
set_problog_state(explanation, []),
NewHead,
set_problog_state(explanation, [SubTrie|Explanation]),
set_problog_state(trie, Trie)

),
NewBody2 = (

Body,
goal_lookup(Head, SubTrie),
set_problog_state(trie, SubTrie),
continuation_explanation

).



60 TABLING OF PROBABILISTIC LOGIC PROGRAMS

3. How do the nested tries with cycles perform and what are the effects of
the ancestor subset check?

3.6.1 Benchmark Programs

Our benchmarks represent three different categories of problems that are typical
for ProbLog. Our weather benchmark is a typical example of a (Hidden)
Markov Model (HMM). In this type of problems the value of the current time
state depends on the value of the previous time state. It is well known that
time series problems, when naively implemented, are of exponential complexity.
Using tabling for this type of problems we expect significant improvement as
memoization reduces the complexity of the problem to linear4. The size of the
weather problem is determined by the “Day” argument.

The bloodtype benchmark models a Bayesian network and infers the
probability of a person’s bloodtype based on its ancestors. The size of the
problem depends on the number of generations and the interconnectivity of the
nodes that represent the family. We took a randomly connected pedigree chart
of fifteen generations and ask for the bloodtype of random persons from each
generation.

From the link discovery [16] applications, we took a graph benchmark, namely
a number of graphs from the biomine database [77]. This benchmark expresses
connections between various types of objects such as genes, proteins, tissues, etc.
and predicts relationships among them. We use the program of Figure 3.3(a)
for the non-tabled version and the program of Figure 3.3(b) for the tabled
version. For our experiments we used the first sample of graphs and the queries
of [16]. The size is determined by the number of edges of the graph and the
interconnectivity between the nodes. As these graphs are cyclic, cycle handling
is necessary.

3.6.2 Results

All the experiments are performed on an IntelR CoreTM2 Duo CPU at 3.00GHz
with 2GB of RAM memory running Ubuntu 8.04.2 Linux under a usual load.
The reported times are the averages of five runs from which we dropped the
best and worst time and all times are in milliseconds. For the SLD resolution
and the Boolean formulae preprocessing, we used a time-out of 1 hour, while for
the ROBDD compilation we used a 1 minute time-out. One reason for that is

4The complexity statements regard only the SLD resolution step as it is always #P-Hard
to assess the probability for a sum-of-products.



EXPERIMENTS 61

Memory SLD/SLG Boolean formulae ROBDD
(Bytes) resolution preprocessing compilation

Day non-tab tab non-tab tab non-tab tab non-tab tab
1 352 912 0 0 0 0 5 5
2 1048 2148 0 0 0 0 5 5
13 184941472 15744 115400 2 2584 4 802 37
14 554824408 16980 380011 3 7938 4 2380 36
167 - 206088 - 25 - 89 - 9728

1600 - 1977276 - 262 - 3587 - -

Table 3.9: Results for the weather program. Times are in milliseconds.

that we want to measure the effects on the first two steps and a second reason
is that we know from experience that for our benchmarks most ROBDDs either
will be built within one minute or run out of memory.

The results for the weather benchmark are in Figure 3.11 and in Table 3.9.
Figure 3.11(a) shows that the SLD resolution execution times of the non-tabled
version are exponential with respect to the “Day” argument, while the tabled
version is linear. Figure 3.11(b) shows the scaling of the SLD resolution for
queries that the non-tabled version fails to compute, as it exceeds the available
memory.

When we consider all three steps of ProbLog in Table 3.9, we see that the tabled
version manages to compute “Day 167”, while the non-tabled version stops at
“Day 14”. The tabled version is limited by the ROBDD compilation step that
generates the ROBDD using a state-of-the-art ROBDD tool. Table 3.9 shows
that the tabled version can continue the SLG-resolution step even further. For
weather, the tabled version outperforms the non-tabled version in all stages
including the ROBDD compilation.

Another interesting point is the memory usage to represent the proofs which
goes from exponential to linear for the tabled version as shown in Figure 3.11(c).
In Figure 3.11(d) we see the gain in memory is similar to the gain in time. This
can be explained by the suffix sharing in the nested tries.

For the bloodtype benchmark, the results are in Table 3.10. The effect of
increasing the input size, namely the number of generations, has also an impact
on the interconnectivity and this clearly affects the results. For example, the run
for 5 generations turns out to have less connectivity and thus faster execution
times. The tabled version clearly outperforms the non-tabled version for the
SLD-resolution and the Boolean formulae preprocessing. The slowdown for the
ROBDD compilation for smaller problems is relative small. By tabling, we can
collect the proofs even for the 15th generation, where the non-tabled benchmark
stops at the 3rd generation.



62 TABLING OF PROBABILISTIC LOGIC PROGRAMS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

50000

100000

150000

200000

250000

300000

350000

400000

Tabled Non-tabled

Day

T
im

e
 (

m
s)

(a) Comparison of SLD/G resolution times for
non-tabled versus tabled implementation.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

50000

100000

150000

200000

250000

300000

350000

400000

Tabled Non-tabled

Day

T
im

e
 (

m
s)

10
20

30
40

50
60

70
80

90
100

110
120

130
140

150

0

5

10

15

20

25

Tabled

Day
T

im
e

 (
m

s)

(b) Day parameter impact on SLG resolution
time in tabled implementation.

10
20

30
40

50
60

70
80

90
100

110
120

130
140

150

0

5

10

15

20

25

Tabled

Day

T
im

e
 (

m
s)

1 2 3 4 5 6 7 8 9 10111213141516

0

100000000

200000000

300000000

400000000

500000000

600000000

Tabled Non-tabled

Day

M
e

m
o

ry
 (

b
yt

e
s )

(c) Comparison of memory usage for non-
tabled versus tabled implementation.

1 2 3 4 5 6 7 8 9 10111213141516

0

100000000

200000000

300000000

400000000

500000000

600000000

Tabled Non-tabled

Day

M
e

m
o

ry
 (

b
yt

e
s )

10
20

30
40

50
60

70
80

90
100

110
120

130
140

150

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

Tabled

Day

M
e

m
o

ry
 (

b
yt

e
s )

(d) Day parameter impact on memory con-
sumption in tabled implementation.

Figure 3.11: Tabling benchmarks for the weather program. ProbLog SLD/SLG
resolution times are shown in (a), day parameter impact at time is shown in (b);
memory consumption comparison is shown in (c), day parameter impact at
memory is shown in (d).



EXPERIMENTS 63
200 400 600 800 10001200140016001800

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

tabled no-ancestor

Edges

T
im

e
 (

m
s)

200 400 600 800 1000 1200 1400 1600 1800

0

50000

100000

150000

200000

250000

300000

tabled non-tabled

Edges

T
im

e
 (

m
s)

200 400 600 800 10001200140016001800

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

Column K

Edges

T
im

e
 (

m
s)

(a) Comparison of SLD/SLG resolution of
non-tabled with tabled implementation

200 400 600 800 1000 1200 1400 1600 1800

0

50000

100000

150000

200000

250000

300000

tabled non-tabled

Edges

T
im

e
 (

m
s)

200
800

1400
2000

2600
3200

3800
4400

5000
5600

6200
6800

7400
8000

8600
9200

9800

0

20

40

60

80

100

120

140

160

180

200

tabled

Edges

T
im

e
 (

m
s)

(b) Edges parameter impact on SLG resolu-
tion time in tabled implementation

200 400 600 800 10001200140016001800

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

tabled non-tabled no-ancestor

Edges

T
im

e
 (

m
s)

(c) SLD/SLG resolution and Boolean formu-
lae preprocessing comparison of non-tabled,
tabled and tabled without ancestor subset
check implementation

200 400 600 800 10001200140016001800

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

tabled non-tabled no-ancestor

Edges
T

im
e

 (
m

s)

200 400 600 800 10001200140016001800

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

tabled no-ancestor

Edges

T
im

e
 (

m
s)

(d) Boolean formulae preprocessing compari-
son with/without ancestor subset check

Figure 3.12: Graph benchmark results.

Again ROBDD compilation is the limiting factor. This benchmark also illustrates
that the difficulty in generating a ROBDD really depends on its input and not
directly on the size of the problem.

In the graph benchmark we study the benefits of tabling in combination with
cycle handling. As shown in Figure 3.12(a), the tabled version has a significant
performance improvement for the SLD-resolution. Figure 3.12(b) shows that
increasing the number of edges in the graph affects the SLG-resolution linearly.



64 TABLING OF PROBABILISTIC LOGIC PROGRAMS

M
em

ory
SLD

/SLG
B
oolean

form
ulae

R
O
B
D
D

(B
ytes)

resolution
preprocessing

com
pilation

G
en

non-tab
tab

non-tab
tab

non-tab
tab

non-tab
tab

1
1048

1948
0

0
0

0
8

10
2

84568
9996

12
1

3
3

20
11

3
554824408

26092
125978

2
9566

6
80

166
4

-
34140

-
3

-
7

-
342

5
-

9996
-

1
-

2
-

8
6

-
130716

-
13

-
27

-
-

7
-

179004
-

17
-

38
-

44432
8

-
170956

-
16

-
35

-
40900

9
-

179004
-

17
-

37
-

-
10

-
187052

-
18

-
39

-
41916

11
-

179004
-

17
-

36
-

-
12

-
227292

-
22

-
46

-
-

13
-

235340
-

22
-

48
-

-
14

-
219244

-
21

-
45

-
-

15
-

211196
-

20
-

43
-

-

Table
3.10:

R
esults

for
the

bloodtype
program

.
T
im

es
are

in
m
illiseconds.



EXPERIMENTS 65

Table 3.11 displays the results of running three different queries: Query
1: path(’HGNC_983’,’HGNC_582’), Query 2: path(’HGNC_582’,’HGNC_983’)
and Query 3: path(’HGNC_620’,’HGNC_582’) on the same graphs. The figures
in Figure 3.12 correspond to the first query. The effect of tabling on the memory
usage is a bit different now. Using nested tries for tabling favours suffix sharing
rather than prefix sharing. It seems that in some graphs prefix sharing is more
important for memory compaction than suffix sharing. However, in bigger
graphs, the nested tries are again improving significantly memory consumption.
Another observation is that the tabled version requires to construct the nested
tries even for goals that fail or succeed without probabilistic facts. This
introduces a significant minimum memory cost to the implementation.

Unfortunately, we notice in Figure 3.12(c) that all the versions behave
exponential when summing up the SLD/SLG resolution times and the Boolean
formulae preprocessing times. Figure 3.12(d) presents the times for generating
the ROBDD scripts from the nested tries with cycles and the performance gain
of the ancestor subset check. While the tabled version without the ancestor
subset check is less efficient (total time) than the non-tabled version, the version
with the ancestor subset check shows significant performance gains in all cases.
Using the ancestor subset check, sometimes causes a small slowdown during the
execution of the ROBDD scripts. This is due to non-minimal proofs introduced
by reused cycles.

In all our benchmarks without tabling, we see that the cost of the first two
steps is usually higher than the cost of the third step. But, while tabling makes
the first step scale linearly and similarly improves the second step for some
benchmarks, we notice sudden exponential blow ups for the third step, as is to
be expected for a #P-hard problem.

Finally, we present in Table 3.12 the results of experiments related with the
several different optimizations presented in Section 3.4. For these experiments
we used the same experimental setting as we did for the graph based experiments,
but in this case we use the built-in tabling implementation of Section 3.5.2 and
we compare the optimizations related with the generation of ROBDD definitions
from the nested tries. As before, we notice that having no optimization at
all is the worst strategy and that using the first optimization: subset check
is very important. With that in-mind all optimization experiments are made
in conjunction with subset checking. Furthermore, we notice that generated
ROBDD definitions with subset checking perform substantially worse than the
non-optimized ROBDD definitions.

The ancestor list refine optimization aimed at increasing the reuse of
unfolded nested tries and at decreasing the Boolean formulae preprocessing time.
Comparison of the results of subset checking without and with ancestor list



66 TABLING OF PROBABILISTIC LOGIC PROGRAMS

M
em

ory
SLD

/SLG
B
oolean

form
ulae

R
O
B
D
D

(K
ilobytes)

resolution
preprocessing

com
pilation

Q
uery

Edges
non-tab

tab
non-tab

tab
non-tab

tab
no-anc

non-tab
tab

no-anc
800

<
1

192
19

17
0

22
37

3
3

4
1000

32
239

245
20

1
107

258
36

33
37

1
1200

3303
286

18928
25

28
1982

16844
119

214
196

1400
39020

333
255546

28
473

7832
335853

455
454

278
1600

-
380

-
33

-
145669

-
-

26789
-

1800
-

426
-

37
-

1523948
-

-
-

-
800

<
1

<
1

0
0

0
0

0
3

3
3

1000
22

230
1253

20
1

86
3816

29
35

40
2

1200
2150

276
143276

24
17

62388
3367873

178
930

109
1400

21545
323

1374688
28

203
58818

-
441

1712
-

1600
-

368
-

33
-

584502
-

-
-

-
1800

-
414

-
37

-
3425065

-
-

-
-

800
<

1
192

23
16

0
19

25
5

3
4

1000
16

239
99

20
0

68
203

5
5

8
3

1200
825

286
4160

25
6

1330
12198

125
406

232
1400

3251
333

18745
29

24
1412

-
380

397
-

1600
-

380
-

35
-

24037
-

-
28978

-
1800

-
426

-
39

-
237624

-
-

-
-

Table
3.11:

R
esults

for
the

graph
program

.
T
im

es
are

in
m
illiseconds.



CONCLUSIONS 67

refine confirm that the optimization achieves its target. Notice in Table 3.12 that
there is a significant improvement in several queries for the Boolean formulae
preprocessing time; also we notice an improvement in ROBDD compilation
time.

As was previously explained, the pre-process optimization targets in reclaiming
the lost performance, compared with the no optimization and subset check at
the ROBDD compilation step. We notice that the performance for ROBDD
compilation improves significantly comparing the subset check column with
our without pre-process. In parallel, we also see that the Boolean formulae
preprocessing time is improved. Depending on the query, pre-process performs
better than ancestor list refine and vice-versa. Most of the times, we notice that
using the ancestor list refine performs a bit better than using the pre-process
and, because of that, we say that overall it is a bit better. As both optimizations
are independent from each other, we can use both. Unfortunately, we do not
really see an improvement compared from when we are using only one of the
two. From that we conclude that the two optimizations are not compatible and
possibly take advantage the same source of inefficiency.

The last column of Table 3.12 presents the results for using a different
representation for the ancestors. We used the ancestor list refine optimization
setting as it is slightly better in average than the other ones to see the impact of
the different representation. The different representation obviously only affects
the Boolean formulae preprocessing time and we can notice that there is an
improvement. Especially for query 2 we can notice that this improvement is
significant.

Finally, we want to mention that the results in Table 3.11 and Table 3.12, while
they are from the same benchmarks and are using the same queries, origin from
two different implementations. Namely our light weighted implementation
of tabling and the built-in implementation of tabling. For that reason,
the performance varies a bit. An important difference among the two
implementations is that our light weighted tabling has a special treatment
of cycle introducing derivations. This treatment orders differently the cycle
introducing branches of nested tries. We have noticed that in specific cases such
as the 2nd query for 1000 edges the order of the branches might play a big role
in performance.

3.7 Conclusions

In this chapter we successfully identified the requirements for a tabling mecha-
nism for ProbLog and presented two different program transformations in order



68 TABLING OF PROBABILISTIC LOGIC PROGRAMS

A
ncestor

A
ncestor

N
o

Subset
A
ncestor

List
R
efine

&
List

R
efine

&
Q
uery

Edges
O
ptim

ization
C
heck

List
R
efine

Pre-process
Pre-process

R
epresentation

B
oolean

form
ulae

preprocessing
1000

285
81

76
96

98
39

1
1200

5336
1380

504
608

618
295

1400
72733

7891
497

657
633

250
1000

3806
1050

670
827

828
243

2
1200

-
49459

11350
13545

13692
5409

1400
-

58422
12100

14288
14408

5737
1000

244
72

66
87

86
40

3
1200

59997
1175

431
525

529
274

1400
-

994
437

550
556

286
R
O
B
D
D

com
pilation

1000
11

98
18

18
19

19
1

1200
386

1035
508

502
503

511
1400

410
1904

569
585

584
569

1000
90

375
217

89
90

219
2

1200
-

3322
2757

1726
1728

2740
1400

-
7336

3129
2885

2854
3002

1000
17

18
18

18
18

18
3

1200
645

1119
511

571
531

510
1400

-
1057

667
682

585
665

Table
3.12:

R
esults

for
the

graph
program

by
the

use
ofdifferent

optim
ization

options.
T
im

es
are

in
m
illiseconds.



CONCLUSIONS 69

to extend ProbLog with a tabling mechanism. The first transformation actually
realizes a light weight tabling mechanism while the second transformation uses
the built-in tabling mechanism of the underlying Prolog system.

We also introduced a new data structure namely nested tries where ProbLog
tabling records the relevant part of the SLD tree of grounded goals, namely
the probabilistic facts that are used in the proofs. In ProbLog terms, the tries
of clause identifiers are tabled. When a goal has to be re-computed, ProbLog
just reuses the tabled trie creating a nested structure. Nested tries establish
prefix and suffix sharing. Furthermore, we presented how cycle handling can be
performed using the nested tries.

Our experiments have shown that tabling is definitely beneficial for the
SLD-resolution step, where the memory and time consumption can go from
exponential to linear. Nested tries establish prefix and suffix sharing which are
crucial for good results.

Tabling also affects the next ROBDD related steps of ProbLog. For benchmarks
without cycles, tabling further reduces the execution times, as these steps also
benefit from the compaction by the sharing. In the graph benchmark, we
see that tabling improves the overall performance of the system. While the
improvement for SLD resolution is remarkable, the work is partly transferred to
the Boolean formulae preprocessing step. Our approach encodes the cycles of the
SLD resolution by the nested tries. The ancestor subset check is indispensable
during the Boolean formulae preprocessing.

Finally, we presented further optimizations related with the generation of
ROBDD definitions and we did a short experimental evaluation of them. We
can see that while both ancestor list refinement and pre-process optimizations
provide a significant improvement, unfortunately they appear not to co-operate
for an even greater gain. A further improvement, that is important for
performance, is the representation chosen for the ancestors. We saw that
we can have a significant performance gain when the task is hard.





Chapter 4

Preprocessing I: Boolean
Formulae to ROBDD
Definitions

This chapter focuses on the different approaches for generating ROBDD
definitions from a Boolean formula. First, we present three different approaches
namely: naive, decomposition [66] and recursive node merging [35] in
Sections 4.2, 4.3 and 4.4 respectively. All three approaches generate a script
of ROBDD definitions from a single trie that represents a DNF Boolean
formula. In Section 4.5, we present a new structure named depth breadth
trie (dbtrie) that allows further optimization of ROBDD definitions before the
script generation. We combine the recursive node merging method with the
dbtrie structure. Section 4.6 presents a complexity analysis of all presented
preprocessing algorithms. We verify the benefits and claims experimentally in
Section 4.7. Finally, Section 4.8 generalizes our approaches to be usable with
the previously presented nested tries and with Boolean formulae different from
DNFs through the introduction of negation.

As is shown in the experimental part in Section 4.7, all of the presented
approaches significantly outperform the naive method. But unfortunately
depending on the structure of the Boolean formula to be processed there is no
single best method. Figure 4.1 presents graphically the ProbLog parts that are
modified by preprocessing.

This chapter is based on the publication [47]. New with respect to [47] is the
extension of the approaches to nested tries and the support for general negation.

71



72 PREPROCESSING I: BOOLEAN FORMULAE TO ROBDD DEFINITIONS

P
ro

b
L
o
g
 p

re
p
ro

ce
ssin

g
 m

e
th

o
d
s

S
te

p
 3

: R
O

B
D

D
 C

o
m

p
ila

tio
n

S
te

p
 2

: B
o
o
le

a
n

 fo
rm

u
la

e
 p

re
p
ro

ce
ssin

g

S
te

p
 1

: S
L
D

 R
e
so

lu
tio

n

R
O

B
D

D
D

e
fi
n

itio
n

s
S

im
p
le

C
U

D
D

R
O

B
D

D
P

ro
b
a
b
ility

C
a
lcu

la
tio

n
P

Trie
(D

N
F
)

N
e
ste

d
 Trie

s

R
e
cu

rsiv
e
 N

o
d
e
 M

e
rg

in
g

D
e
co

m
p
o
sitio

n
N

a
iv

e

D
e
p
th

 B
re

a
d
th

 Trie
O

p
tim

iz
a
tio

n
 L

e
v
e
l: 1

, 2
, 3

R
O

B
D

D
D

e
fi
n

itio
n

s

P
ro

b
L
o
g

P
ro

g
ra

m
P

ro
lo

g
 S

L
D

 re
so

lu
tio

n
P

ro
lo

g
 S

L
G

 re
so

lu
tio

n
Trie

(D
N

F
)

N
e
ste

d
 Trie

s

Figure
4.1:

T
he

diagram
ofthe

three
steps

ofP
robLog

w
ith

the
preprocessing

additions.
Shaded

blocks
m
ark

the
m
odifications

from
the

block
figure

ofFigure
2.2.



PREPROCESSING I: BOOLEAN FORMULAE TO ROBDD DEFINITIONS 73

1

2
0.3

30.7

0.4
4

0.8

50.6

0.2

(a) A probabilistic graph without cycles.

e(1, 2) ∧ e(2, 3) ∧ e(3, 4) ∧ e(4, 5) ∨
e(1, 2) ∧ e(2, 3) ∧ e(3, 5) ∨
e(1, 3) ∧ e(3, 4) ∧ e(4, 5) ∨
e(1, 3) ∧ e(3, 5)

(b) The collected proofs for the graph by the
query: path(1,5) in their DNF Boolean formula
form.

t(/)

e(1,2) e(1,3)

e(2,3) e(3,4) e(3,5)

e(3,4) e(3,5)

e(4,5)

e(4,5)

(c) The collected trie for the graph by the query: path(1,5).

Figure 4.2: The graph together with the Boolean formula in DNF form and the
collected trie by the query: path(1,5), used as an example.



74 PREPROCESSING I: BOOLEAN FORMULAE TO ROBDD DEFINITIONS

L1 = e(3,4)*e(4,5)
L2 = e(3,5)+L1
L3 = e(2,3)*L2

L1 = e(1,2)*e(2,3)*e(3,5) L4 = e(3,4)*e(4,5)
L2 = e(1,2)*e(2,3)*e(3,4)*e(4,5) L5 = e(3,5)+L4
L3 = e(1,3)*e(3,5) L6 = e(1,3)*L5
L4 = e(1,3)*e(3,4)*e(4,5) L7 = e(1,2)*L3
L5 = L1+L2+L3+L4 L8 = L7+L6

(a) Naive (b) Decomposition

L1 = e(3,4)*e(4,5)
L2 = e(3,5)+L1 L1 = e(3,4)*e(4,5)
L3 = e(1,3)*L2 L2 = e(3,5)+L1
L4 = e(2,3)*L2 L3 = e(1,3)*L2
L5 = e(1,2)*L4 L5 = e(1,2)*e(2,3)*L2
L6 = L3 + L5 L6 = L3+L5

(c) Recursive Node Merge (d) Depth Breadth Trie

Table 4.1: ROBDD Definitions of the Boolean Formula of Figure 4.2 generated
from each preprocessing method.

4.1 Preprocessing Example

The running example of this chapter is shown in Figure 4.2. The graph used is
in Figure 4.2(a), the DNF Boolean formula is in Figure 4.2(b) and finally the
collected trie is in Figure 4.2(c).

Table 4.1 presents the resulting ROBDD definitions generated by the four
different methods used for the example in Figure 4.2.

4.2 Naive

The naive method directly mirrors the structure of the DNF Boolean formula
by first constructing all conjunctions of the DNF Boolean formula and then
combining those in one big disjunction. Table 4.1(a) shows, at the top left, the
resulting script for the proofs of our example.



DECOMPOSITION 75

4.3 Decomposition

The decomposition method [66] recursively divides a DNF Boolean formula into
smaller ones until only one variable remains. To do so, it first chooses a Boolean
variable from the formula, the so-called decomposition variable dv, and then
breaks the formula into three subformulae. The first subformula f ′1 contains the
conjunctions that include dv, the second subformula f ′2 those that include the
negation of dv and the third subformula f3 those that include neither of the
two. Then, by applying the distribution axiom, the original Boolean formula
can be re-written as f = f ′1 ∨ f ′2 ∨ f3 = (dv ∧ f1) ∨ (¬dv ∧ f2) ∨ f3. Up to now
we have not presented examples where negated literals like ¬dv occur; later in
Section 4.9.2 we discuss further about negated literals and also in Chapter 6 we
fully explain general negation and give examples where it is used.

As all three new subformulae f1, f2 and f3 do not contain dv, they can be
decomposed independently. The most simple choice for the decomposition
variable is the first variable of the current formula, however, various heuristic
functions can be used as well, cf. [66]. Algorithm 4.1 formalizes the
decomposition method, while Table 4.1(b) again shows, at the top right,
the result for our example query. All definitions resulting from the same
decomposition step are written as a block at the end of that step, omitting
those equivalent to false to avoid unnecessary ROBDD operations.

For example, if for the DNF of Figure 4.2(b) we choose as a decomposition
variable e(1, 2) then the DNF is broken in three parts: f1 = (e(2, 3) ∧ e(3, 4) ∧
e(4, 5)) ∨ (e(2, 3) ∧ e(3, 5)), f2 = false and f3 = (e(1, 3) ∧ e(3, 4) ∧ e(4, 5)) ∨
(e(1, 3) ∧ e(3, 5)). The algorithm first further decomposes f1 by choosing e(2, 3)
as the decomposition variable to: f1 = (e(3, 4) ∧ e(4, 5)) ∨ e(3, 5), f2 = false
and f3 = false. At the next recursion variable e(3, 4) is chosen and the
produced formulae are: f1 = e(4, 5), f2 = false and f3 = e(3, 5). Finally,
the first ROBDD definition is written as: Li = e(3, 4) ∗ f1, Lj = e(3, 4) ∗ f2,
Lk = Li + Lj + f3 → Li = e(3, 4) ∗ e(4, 5), Lj = e(3, 4) ∗ false, Lk =
Li + Lj + e(3, 5) → L1 = e(3, 4) ∗ e(4, 5) and L2 = e(3, 5) + L1. Now the
algorithm can return to the previous step and similarly produce L3 = e(2, 3)∗L2
and so forth.

4.4 Recursive Node Merging

The approach followed in ProbLog, as described in [35], exploits the sharing
of both prefixes – as directly given by the tries – and suffixes, which have



76 PREPROCESSING I: BOOLEAN FORMULAE TO ROBDD DEFINITIONS

Algorithm 4.1 Decomposition method.
input A DNF Boolean formula and a start index i for ROBDD definitions.
output The ROBDD definitions for the Boolean formula in a script file, the

next available ROBDD definition index j and Ln the last ROBDD definition
written.

function decompose(DNF, i)
if DNF = true or DNF = false or DNF = {{dv}} then
return (DNF, i)

f1 := false; f2 := false; f3 := false
dv := choose_decomposition_variable(DNF )
for all conj ∈ DNF do
if dv ∈ conj then
drop dv from conj to obtain c
f1 := f1 ∨ c

else if ¬dv ∈ conj then
drop ¬dv from conj to obtain c
f2 := f2 ∨ c

else
f3 := f3 ∨ conj

(Lf1 , j) := decompose(f1, i)
(Lf2 , k) := decompose(f2, j)
(Lf3 , l) := decompose(f3, k)
write Ll = dv ∗ Lf1

write Ll+1 = ¬dv ∗ Lf2

write Ll+2 = Ll + Ll+1 + Lf3

return (Ll+2, l + 3)

to be extracted algorithmically. We will call this approach recursive node
merging.

Recursive node merging traverses the trie representing the DNF bottom-up. In
each iteration it applies two different operations that reduce the trie by merging
nodes. The first operation (depth reduction) creates the conjunction of leaf
nodes that are a single child with their parents. The second operation (breadth
reduction) creates the disjunction of all children nodes of a node, when these
children nodes are all leaves. In our new implementation of this method, depth
reduction can be applied to an arbitrary chain of ancestor nodes with a single
child.

Algorithm 4.2 shows the details for this method and Figure 4.3 illustrates its
step-by-step application to the example trie in Figure 4.2(c). The resulting



DEPTH BREADTH TRIE 77

script can be found on the bottom left in Table 4.1(c).

Algorithm 4.2 Recursive node merging. replace(T,C, Li) replaces each
occurrence of C in T by Li.
input A trie T representing the DNF Boolean formula.
output The ROBDD definitions for the Boolean formula in a script file.

function Recursive_Node_Merging(T )
i := 1
while ¬leaf(T ) do
S∧ := {(C,P )|C leaf in T and single child of P}
for all (C,P ) ∈ S∧ do
write Li = C ∗ P
T := replace(T, (C,P ), Li)
i := i+ 1

S∨ := {([C1, . . . , Cn], P )| leaves Cj are all the children of P in T, n > 1}
for all ([C1, . . . , Cn], P ) ∈ S∨ do
write Li = C1 + . . .+ Cn
T := replace(T, [C1, . . . , Cn], Li)
i := i+ 1

For both reduction types, a subtree that occurs multiple times in the trie is
reduced only once, and the resulting conjunction/disjunction is used for all
occurrences of that subtree (procedure replace() in Algorithm 4.2). Recursive
node merging thus performs some suffix sharing.

Because of the internal structure of tries it is not necessary to explicitly collect
the leaf nodes at each iteration (represented by the terms S∧, S∨); we can
instead just ask for the next leaf of the trie. Note however, that the replace()
procedure fully traverses the trie to search for repeated occurrences of subtrees
and that can be quite costly. Actually, in the worst case scenario when no
replacement occurs the procedure increases the complexity for each operation
from O(N) to O(N2). Furthermore, the original implementation of the recursive
node merging algorithm worked on a list based representation of tries which
required the transformation of the trie to a set of lists before performing the
algorithm it self.

4.5 Depth Breadth Trie

In this section, we introduce our new approach to implement recursive node
merging. The initial implementation explicitly performed the costly replace()



78 PREPROCESSING I: BOOLEAN FORMULAE TO ROBDD DEFINITIONS

t(/)

e(1,2) e(1,3)

e(2,3) e(3,4) e(3,5)

e(3,4) e(3,5)

e(4,5)

e(4,5)

(a) Original Trie.

t(/)

e(1,2) e(1,3)

e(2,3) L1 e(3,5)

L1 e(3,5)

(b) Step 1.

t(/)

e(1,2) e(1,3)

e(2,3) L2

L2

(c) Step 2.

t(/)

e(1,2) L3

e(2,3)

L2

(d) Step 3.

t(/)

e(1,2) L3

L4

(e) Step 4.

t(/)

L5 L3

(f) Step 5.

t(/)

L6

(g) Step 6.

Figure 4.3: Execution of the recursive node merging shown in Algorithm 4.2 for
the example trie of Figure 4.2.



DEPTH BREADTH TRIE 79

procedure of Algorithm 4.2. The new approach avoids this by storing all ROBDD
definitions in a central data structure. For each new definition, we first check if
it is already present in the data structure, and if so, reuse the corresponding
reference Li. As such a check/insert operation can be done in a single pass
for tries, we introduce an additional and specific trie configuration for this
purpose, that we named depth breadth trie. Apart from this improvement,
the depth breadth trie has the additional advantage of allowing one to easily
identify common prefixes on the level of ROBDD definitions, which was not
possible before. As we will see, this leads to the definition of three new
(optional) optimizations that can be performed during recursive node merging
to further reduce the number of Boolean operations to be performed in ROBDD
construction.

A depth breadth trie is divided in two parts corresponding to the two reduction
types of recursive node merging: the depth part collects the conjunctions,
the breadth part the disjunctions. This separation is achieved by two
specific functors of arity two, depth/2 and breadth/2. Their first argument
is a Prolog list containing the literals that participate in the formula, the
second argument is the unique reference Li assigned to the corresponding
ROBDD definition. For example, the terms depth([e(3,4),e(4,5)],L1)
and breadth([e(3,5),L1],L2) represent definitions L1 = e(3, 4) ∗ e(4, 5) and
L2 = e(3, 5) + L1 respectively. Note that reference L1 introduced by the first
term is used in the second term to refer to the corresponding subformula. At the
same time, those references provide the order in which ROBDDs are defined in
the script. Figure 4.4 shows the complete depth breadth trie built by recursive
node merging for our example DNF, which produces the ROBDD definitions
shown in Table 4.1(c).

In the following, we introduce the three new optimizations that can be exploited
with the depth breadth trie. The motivation behind these optimizations is to
decrease the amount of operations performed in ROBDD construction. The
optimizations are illustrated in Figure 4.5. Figure 4.5(a) presents the initial trie
used in all cases, Figures 4.5(b), 4.5(c) and 4.5(d) correspond to Optimizations
I, II and III, respectively.

Optimization I (Contains Prefix): The first optimization occurs when a
new formula [p1, . . . , pn] to be added to the depth breadth trie contains
as prefix an existing formula [p1, . . . , pi], i ≥ 2, with reference Ln. In
this case, the existing formula will be reused and, instead of inserting
[p1, . . . , pn], we will insert [Ln, pi+1, . . . , pn] and assign a new reference to
it.

Optimization II (Is Prefix): The second optimization considers the inverse
case of the first optimization. It occurs when a new formula [p1, . . . , pi],



80 PREPROCESSING I: BOOLEAN FORMULAE TO ROBDD DEFINITIONS

t(/)

depth breadth

e(3,4) e(1,3) e(2,3) e(1,2) e(3,5) L3

e(4,5) L2 L2 L4

L1

L1

L2L3 L4

L5

L5 L6

Figure 4.4: The ROBDD definitions generated by using recursive node merging
as in Algorithm 4.2 collected in a depth breadth trie.

i ≥ 2, to be added to the depth breadth trie is a prefix of an existing
formula [p1, . . . , pn] with reference Ln. In this case, we split the existing
subformula representing [p1, . . . , pn] in two: one representing the new
formula [p1, . . . , pi] with a new reference Lr−1, the other representing the
existing formula, but modified to re-use the new reference Lr−1, that is,
[p1, . . . , pn] is replaced by [Lr−1, pi+1, . . . , pn].

Optimization III (Common Prefix): The last optimization generalizes the
two previous ones. It occurs when a new formula [p1, . . . , pn] being added
to the depth breadth trie has a common prefix [p1, . . . , pi], i ≥ 2, with an
existing formula [p1, . . . , pi, p

′
i+1, . . . , p

′
m] with reference Ln. In this case,

first, the common prefix is inserted as a new formula with reference Lr−1,
triggering the second optimization, and second, the original new formula
is added as [Lr−1, pi+1, . . . , pn] using Lr−1 as in the first optimization.

Each repeated occurrence of a prefix of length P identified by one of the
optimizations decreases the total number of operations required by P − 1.
Consider that M and N are the lengths of formulae fM and fN , respectively,
and that fN is a prefix of fM . Then, optimizations I and II decrease the
amount of operations from N − 1 +M − 1 to N − 1 +M −N = M − 1, this
is a total decrease of (N − 1 + M − 1) − (M − 1) = N − 1 and as fN was
the prefix formula then N = P . For Optimization III, consider two formulae
fM and fN of length M and N respectively with common a prefix fP of



DEPTH BREADTH TRIE 81

t(/)

depth

a

b

c

Ln

(a) Initial trie

t(/)

depth

a Ln

b

c

Ln

d

Ln+1

(b) Adding [a, b, c, d]

t(/)

depth

a Ln-1

b

Ln-1

c

Ln

(c) Adding [a, b]

t(/)

depth

a Ln-1

b

Ln-1

c

Ln

d

Ln+1

(d) Adding [a, b, d]

Figure 4.5: Examples that trigger (b) Optimization I, (c) Optimization II and
(d) Optimization III for the depth breadth trie.



82 PREPROCESSING I: BOOLEAN FORMULAE TO ROBDD DEFINITIONS

t(/)

depth breadth

e(3,4) e(1,3) e(1,2) e(3,5) L3

e(4,5) L2 e(2,3)

L2L1

L1

L2L3

L5

L5

L6

Figure 4.6: The ROBDD definitions generated by using recursive node merging
with multiple depth node reduction collected in a depth breadth trie.

length P , the number of operations decreases from (N − 1) + (M − 1) to
(P − 1) + (N − P ) + (M − P ) = N + M − P − 1, and if a third formula fK
shares the same prefix, the number of operations it requires again reduces to
(K − 1)− (P − 1) = K − P .

Algorithm 4.3 formalizes the implementation of these three optimizations. One
should notice that with the depth breadth trie, the references Li are no longer
incremented by one but by the length of the formula being added. This is
necessary as Optimizations II and III insert additional subformulae that have
to be created before the current formula is added, and thus need to be assigned
a smaller reference. As our formulae always contain at least two elements,
using the length of the formula to increment Li is sufficient to leave enough
free places for later use with Optimizations II and III. Figure 4.6 presents the
depth breadth trie of the same DNF by taking in account multiple depth node
reductions and having longer than one increment for references. The ROBDD
definitions for this depth breadth trie are shown at Table 4.1(d).

The order given by those references will therefore ensure that subformulae will
be generated before being referred to. Moreover, as we are using tries, these
optimizations can be performed while adding the new formulae. During insertion,
if the new definition branches off an existing one after two or more steps, the



COMPLEXITY OF PREPROCESSING METHODS 83

insertion of the new formula is frozen while the appropriate optimization is
performed and resumed afterwards.

Our implementation in fact offers four choices of optimization level: no
optimizations, Optimization I only, Optimizations I and II, or all three
optimizations. Furthermore, the minimal length of common prefixes can be
adapted. Note that depending on the order in which the formulae are inserted,
different optimizations might trigger and the resulting trie might be slightly
different.

Finally, we want to mention that all different preprocessing methods (naive,
decomposition, recursive node merging) can be easily modified to use a depth
breadth structure in order to store the generated ROBDD definitions.

4.6 Complexity of Preprocessing Methods

This section analyses the worst case complexity of our preprocessing algorithms.
We use N to denote the number of proofs or conjunctions and M to denote
the number of probabilistic facts or Boolean variables. From our experience,
N >> M usually holds for typical ProbLog programs.

4.6.1 Naive Method

The naive approach writes N conjunctions, each with a maximum ofM Boolean
variables, and one disjunction of length N . Thus, its worst case complexity is
O(N ·M +N) = O(N ·M).

4.6.2 Decomposition Method

The decomposition method repeatedly scans a DNF to assign conjunctions
to subformulae which are then in turn decomposed further. If decomposing
on the first variable of the current formula, the decomposition variable is
determined in constant time. In the worst case, the N conjunctions of the
initial DNF are of length M each. Thus, the first decomposition step needs
to scan the entire formula, corresponding to a cost of N · M . This then
results in three recursive calls for each part, respectively, with N1, N2 and
N3 conjunctions subject to the constraint N = N1 +N2 +N3, with maximal
length M − 1 for each conjunction. Decomposing the ith part in turn requires
scanning with cost Ni · (M − 1), that is, the total cost of the second level is



84 PREPROCESSING I: BOOLEAN FORMULAE TO ROBDD DEFINITIONS

Algorithm 4.3 Depth breadth trie optimizations. COUNTER is a global
counter and replace(Literals, C, Li) replaces C in Literals by Li.
input A trie T representing either the depth or breadth part of the depth
breadth trie and a list Literals with the literals to be added.

output Updates T to contain the Literals and returns the reference Li assigned
to Literals in T .

function Update_Depth_Breadth_Trie(T , Literals)
if (Literals, Li) ∈ T then
return Li

for all (List, Li) ∈ T do
if List is prefix of Literals then
/* Optimization I */
Literals := replace(Literals, List, Li)
return Update_Depth_Breadth_Trie(T, Literals)

if Literals is prefix of List then
/* Optimization II */
T := remove((List, Li), T )
T := add((Literals, Li−length(Literals)), T )
List := replace(List, Literals, Li−length(Literals))
T := add((List, Li), T )
return Li−length(Literals)

if Literals, List have a common prefix Prefix and length(Prefix) > 1
then
/* Optimization III */
Lj := Update_Depth_Breadth_Trie(T, Prefix)
Literals := replace(Literals, Prefix, Lj)
return Update_Depth_Breadth_Trie(T, Literals)

Counter := Counter + length(Literals)
T := add ((Literals, LCounter), T )
return LCounter



COMPLEXITY OF PREPROCESSING METHODS 85

N1 ·(M−1)+N2 ·(M−1)+N3 ·(M−1) = (N1 +N2 +N3)·(M−1) = N ·(M−1).
Again, it then results in three recursive calls for each part, with Ni1, Ni2 and
Ni3 conjunctions respectively, with maximal length M − 2 for each conjunction,
and subject to the constraint Ni = Ni1 +Ni2 +Ni3. In general, due to the fixed
number of conjunctions to be assigned to subformulae, the total cost of the j-th
decomposition level is N · (M + 1− j). As the number of such levels is bound
by the number of variables M that can be used for decomposition, the overall
cost is

∑M
j=1 N · (M + 1− j) and thus O(N ·M2).

4.6.3 Recursive Node Merging

Recursive node merging complexity strongly depends on the amount of prefix
sharing in the initial trie. In the following analysis, we will consider our new
approach using the depth breadth trie.

In the first iteration of the algorithm, it is possible that no conjunctions (depth
reductions) are found, in which case the size of the trie is not reduced. However,
in later iterations, depth reduction will always reduce the depth of the trie by at
least one. Likewise, breadth reduction will always reduce the number of leaves
by at least one, that is, after O(min(M,N)) iterations, either the depth or the
breadth of the trie will be reduced to one and the algorithm will terminate with
the next iteration. In each iteration, both depth and breadth reductions will
touch each leaf, leading to a complexity of O(N) for each iteration.

Viewed over all iterations, depth reduction will scan and reduce each branch of
the trie once, starting from the leaves, and process each node once leading to a
complexity of O(#nodes) = O(N ·M).

Obtaining a reference for each depth and breadth reduction corresponds to a
check/insert operation on the depth breadth trie, which is linear in the number
of nodes the reduction term contains, plus the number of sibling nodes visited.
Note however that searching through a chain of sibling nodes that represent
alternative paths in the trie could be too expensive if we have a large number
of nodes. To avoid this problem, a threshold value (8 in our implementation)
controls whether to dynamically index the sibling nodes through a hash table,
hence providing direct node access and optimizing search. Further hash collisions
are reduced by dynamically expanding the hash tables. As each node in the
proof trie participates in one reduction, for the total execution, the cost of
obtaining references is thus bound by O(8 ·#nodes) = O(N ·M).

Therefore, the overall complexity of recursive node merging using a depth
breadth trie is O(min(M,N)) ·O(N) +O(#nodes) +O(#nodes) = O(N ·M).
While the constant factor is higher than for the naive method, in practice, this



86 PREPROCESSING I: BOOLEAN FORMULAE TO ROBDD DEFINITIONS

is typically outweighted by the fact that prefix sharing causes the number of
nodes in the proof trie to be far less than N ·M .

4.7 Experimental Results

We report on experiments comparing the four preprocessing methods: naive,
decomposition (dec), recursive node merging as described in [35] (rnm) and
recursive node merging with the depth breadth trie (dbt). The environment
for our experiments was a C2Q 2.83 GHz 8 GB machine running Linux. We
use Yap Prolog 6.0 and the CUDD ROBDD package [80] with the group sifting
algorithm for variable reordering [53].

As rnm has been developed to exploit structure sharing in the trie, whereas
dec is a general purpose method, we consider two benchmarks that show the
difference in this aspect. The first is a three-state Markov model, where we query
for the probability of a sequence of length N ending in a given state. Proofs
for such queries share large amounts of structure. The second is the domain
of connectivity queries in biological graphs that originally motivated ProbLog.
In this case, we consider two different ProbLog inference methods which lead
to different types of formulae. Exact inference as discussed in Chapter 2
produces formulae with high sharing in both prefixes and suffixes of proofs
(which correspond to paths starting and ending at specific nodes). On the other
hand, upper bound formulae as encountered in bounded approximation [35]
typically contain small numbers of proofs and large numbers of so-called
stopped derivations, i.e. partial proofs cut off at a probability threshold.
While the latter still share prefixes, their suffixes are a lot more diverse. This
type of formulae has been observed to be particularly hard for ProbLog. In our
experiments, we use a 144 edge graph extracted from the Biomine network also
used in [35], and query for acyclic paths between given pairs of nodes. We use
a set of 45 different queries, some chosen randomly, and some maximizing the
degrees of both nodes.

We thus set up experiments to study the following questions:

Q1: How do the different preprocessing methods compare on more, or less
structured problems?

Q2: What is the impact of each optimization and which parameters affect
them?

Table 4.2 presents the results for the Markov model. In this benchmark, no
extra optimizations are triggered for dbt. Times are given in milliseconds



EXPERIMENTAL RESULTS 87

Preprocessing ROBDD compilation
N naive dec rnm dbt naive dec rnm dbt
1 2 2 0 0 6 6 6 6
2 3 3 0 0 6 6 6 6
3 3 5 1 0 6 6 6 6
4 5 14 3 1 7 7 7 7
5 12 48 10 1 22 27 27 24
6 36 187 39 2 95 33 27 24
7 94 518 93 5 251 45 28 25
8 286 1,934 219 8 786 87 28 25
9 974 7,142 676 25 3,698 188 31 25
10 3,313 26,293 2,369 92 20,854 539 35 29
11 11,109 109,407 7,316 346 256,330 1,638 43 31
12 37,745 442,805 22,759 1,076 / 5,024 96 31
13 / - 73,631 2,733 / - 205 48
14 / - - 10,100 / - - 75

Method dbt is implemented in C, other preprocessing methods in Prolog.

Table 4.2: Average runtimes for preprocessing and ROBDD compilation on
three-state Markov model, for sequence length N .

and are averages over three runs. ROBDD compilation uses a timeout of 600
seconds. When a method reaches this timeout, it is not applied to larger
problems. These cases are marked with (/). Cases marked with (-) fail due to
memory during script preprocessing; this also occurs when using dbt at length
15. Note that dbt is implemented in C, while the other preprocessing methods
are implemented in Prolog, which partly accounts for the time differences. In
this experiment, both trie based methods clearly outperform the naive and dec
methods, and dbt also clearly outperforms rnm. In particular, preprocessing
with rnm is one order of magnitude slower than with dbt, and also leads
to somewhat slower ROBDD compilation. As a first answer to Q1, we thus
conclude that for structured problems, dbt is indeed the first choice.

For the graph domain, we use a timeout of 300 seconds, and a cutting threshold
δ = 0.05 for obtaining upper bound formulae. As the naive method always
performs worst, it is excluded from the following discussion. Typically, all
optimizations for the dbt method are triggered, with type I being most frequent
(note that type III increases type I usage).

In exact inference, cf. Table 4.3, ROBDD compilation times for all methods are
very close and rarely exceed 4 seconds. However, preprocessing time for dec is
one and two orders of magnitude higher than for rnm and dbt, respectively.
Again, this is due to the high amount of suffix sharing in those tries, which is



88 PREPROCESSING I: BOOLEAN FORMULAE TO ROBDD DEFINITIONS

Method Preprocessing ROBDD compilation Sum
avg sdev avg sdev avg sdev

dec 40,076 38,417 2,235 1,313 42,312 39,543
rnm 3,694 3,632 1,844 1,150 5,538 4,110
dbt 124 117 1,998 1,318 2,123 1,355
dbt1 125 118 1,891 1,697 2,016 1,708
dbt2 125 118 1,481 630 1,607 667
dbt3 128 120 1,446 769 1,575 800
Average and standard deviation of times over 45 queries.
Method dbti uses all optimization levels l ≤ i.

Table 4.3: ROBDDs for exact inference over the graph domain.

exploited by our method, but causes repeated work during construction for the
decomposition method. This also explains the slightly higher ROBDD execution
times for dec. Again these results clearly enforce our first conclusions about
Q1. Regarding Q2, these results show that our optimizations are incrementally
effective in reducing construction time without introducing costs in preprocessing
time.

For upper bound ROBDDs, the results are more diverse. Here, we focus on
the comparison between dec and dbt with different optimization levels, where
dbti refers to dbt using all optimization levels l ≤ i. For presentation of results
in Table 4.4, we partition queries in categories by using two thresholds on
ROBDD compilation time (t < 15, 000ms for Easy, 15, 000ms ≤ t < 50, 000ms
for Medium and t ≥ 50, 000ms for Hard), and use majority vote among the
methods different preprocessing methods to decide the query’s class (as one
single test query finishes in few milliseconds, it is omitted from the results).
The last column gives the number of queries reaching the timeout in ROBDD
compilation.

Compared to exact inference, preprocessing times for dec are lower, as significant
parts of the tries are unique and only small parts cause redundant work. On
average, ROBDDs obtained by dec have smaller construction times than those
obtained from dbt, even though variation is high. Table 4.5 compares methods
by counting the number of queries for which they achieve fastest upper bound
ROBDD compilation. Together, those results provide the second part of the
answer to Q1: for problems with less suffix sharing, scripts obtained from dec
often outperform those obtained from dbt.

Concerning the optimization levels, Table 4.4 indicates that for the graph case,
their effect varies greatly. For all levels, we observe cases of improvement as well
as deterioration. We suspect that optimizations are often performed to greedily.



EXPERIMENTAL RESULTS 89

G
ro
up

M
et
ho

d
P
re
pr
oc
es
si
ng

R
O
B
D
D

co
m
pi
la
ti
on

Su
m

T
im

e
av
g

sd
ev

av
g

sd
ev

av
g

sd
ev

ou
ts

de
c

1,
64
8

26
1

9,
35
1

2,
32
3

10
,9
99

2,
37
1

0
E
as
y

db
t

17
2

10
,1
48

2,
19
2

10
,1
65

2,
19
2

0
19
/4
4

db
t1

16
2

10
,7
14

2,
38
9

10
,7
30

2,
38
9

0
db

t2
16

2
14
,4
17

3,
26
3

14
,4
33

3,
26
3

0
db

t3
17

2
15
,3
11

4,
05
5

15
,3
28

4,
05
5

0
de

c
2,
08
6

41
4

21
,7
85

5,
19
7

23
,8
71

5,
32
5

0
M
ed

iu
m

db
t

23
3

29
,7
19

4,
02
9

29
,7
43

4,
02
9

0
14
/4
4

db
t1

24
3

39
,9
14

9,
08
4

39
,9
38

9,
08
3

0
db

t2
21

3
28
,5
22

3,
16
5

28
,5
43

3,
16
3

0
db

t3
23

3
46
,2
63

19
,2
31

46
,2
86

19
,2
30

0
de

c
2,
06
6

17
9

28
,9
79

9,
17
2

31
,0
45

9,
09
3

0
H
ar
d

db
t

22
2

62
,6
12

16
,3
50

62
,6
35

16
,3
53

3
11
/4
4

db
t1

21
2

12
1,
44
2

29
,0
52

12
1,
46
4

29
,0
53

2
db

t2
20

3
94
,4
54

28
,7
53

94
,4
76

28
,7
55

3
db

t3
22

3
12
2,
15
0

37
,7
51

12
2,
17
2

37
,7
53

3
Av

er
ag

e
an

d
st
an

da
rd

de
vi
at
io
n
of

ti
m
es

ov
er

44
qu

er
ie
s
qu

er
ie
s
gr
ou

pe
d
in
to

ca
te
go
ri
es

ac
co
rd
in
g
to

ru
nt
im

es
.

M
et
ho

d
d

b
ti

us
es

al
lo

pt
im

iz
at
io
n
le
ve
ls
l
≤
i.

Ta
bl
e
4.
4:

R
O
B
D
D
s
fo
r
up

pe
r
bo

un
ds

at
th
re
sh
ol
d
0.
05
.



90 PREPROCESSING I: BOOLEAN FORMULAE TO ROBDD DEFINITIONS

Method All rnm + dbt rnm + All dbt All dbt
dec 26 - - -
rnm 2 14 6 -
dbt 6 30 13 16
dbt1 2 - 9 10
dbt2 5 - 9 9
dbt3 3 - 7 9
Method dbti uses all optimization levels l ≤ i.

Table 4.5: Upper bound ROBDDs: number of queries where method leads to
fastest ROBDD compilation, for various sets of methods.

Initial experimentation on artificially created formulae indicate that several
factors influence performance of optimizations, among which are: (i) the length
of the shared prefix; (ii) the number of times it occurs; (iii) the structure of the
subformulae occurring in the prefix; and (iv) the structure of the suffixes sharing
the prefix. While the latter three are harder to control during preprocessing, we
performed a first experiment where we only trigger the optimizations for shared
prefixes of minimal length n > 2. Results on upper bound formulae confirm that
this parameter indeed influences ROBDD compilation, again to the better or
the worse. We conclude that, while we identified certain parameters influencing
the success of optimizations in synthetic data, in the case of less regular data,
the answer to Q2 remains an open issue for further investigation.

4.8 Nested Tries

In Chapter 3 we presented the notion of nested tries and their generation
through tabling. We also presented how the nested tries are converted to
ROBDD definitions and discussed several optimizations (subset check, ancestor
list refine and pre-process); we refer to these optimizations as the nested trie
optimizations. The complete algorithm for processing nested tries with the
nested trie optimizations as presented in Chapter 3 is shown in Algorithm 4.4.
The main complication for this algorithm as mentioned in Chapter 3 is related
with the cycle handling. Furthermore, it is important to maintain an efficient
preprocessing of the nested tries. In order to achieve that, we have presented the
nested trie optimizations that improve different performance aspects. Here we
present the generalized algorithm that can use any of the preprocessing method
presented in this chapter to generate the ROBDD definitions from nested tries.

Algorithm 4.4 is presented in three parts. The first part, which is the function



NESTED TRIES 91

Nested_Trie() is responsible for initializing the data structures needed by
the algorithm. The most important part of the algorithm is included in function
Nested_Trie_Recursive() and finally the third part shown in Algorithm 4.5
is the pre-process optimization presented in Section 3.4.5.

Algorithm 4.4 can be used in conjunction with any of the different preprocessing
algorithms presented in this chapter. In Algorithm 4.4, the chosen preprocessing
method is called by the function call Preprocessing_Method(). The
preprocessing methods in order to be integrated in Algorithm 4.4 need to
function as follows:

1. The preprocessing algorithm needs to create a copy of the trie that is about
to be processed. This is important, as the same trie can be processed
several times with different ancestors sets. Different ancestor sets could
produce different ROBDD definitions.

2. The preprocessing algorithm must reduce the trie at each iteration by
removing any processed part of the Boolean formula, similarly as the
recursive node merging method does. This is important in order to ensure
termination.

3. Whenever the preprocessing algorithm detects a nested trie, it stops its
process and returns control to the nested trie Algorithm 4.4 which is
responsible to replace the nested trie with a ROBDD definition reference
(for example: L10, false, etc.). After, the preprocessing algorithm is
called again to continue the generation of ROBDD definitions from the
point where it had stopped. Note, that only one copy of the trie is at
all times kept; this copy is reduced while it is processed. In that way
the algorithm knows exactly where its processing had stopped. A second
occurrence of the same trie is resolved as a cycle.

Algorithm 4.4 starts with calling one of the preprocessing methods as shown at
line 1. Whenever a descendant nested trie (Tnested in Algorithm 4.4) is found,
the preprocessing method is stopped for Algorithm 4.4 to handle the nesting.
First, Algorithm 4.4 at line 6 checks if the descendant nested trie introduces
a cycle in order to prune the branch by replacing Tnested with false as shown
in line 7, otherwise it checks at line 8 if the descendant nested trie is already
memoized with the appropriate ancestor list (ATnested

or superset of that list).
If so, the algorithm re-uses the memoized result as shown in lines 9-11. Finally,
if the nested trie is neither a cycle nor memoized, Algorithm 4.4 recursively
executes the generation processing for the descendant nested trie in order to
get a suitable ROBDD definition reference to replace Tnested which is shown in
lines 13-16.



92 PREPROCESSING I: BOOLEAN FORMULAE TO ROBDD DEFINITIONS

The memoization for this algorithm is performed by using as key the trie
identifier. We can memoize a result whenever it is fully processed, which means
that no more descendant nested tries have been left to be processed. Then for
each trie identifier we use a bucket which contains the different possible results.
Those results are scanned linearly to find one that is suitable for re-usage
depending on the ancestor list.

Algorithm 4.5 formalizes the pre-process optimization presented in Section 3.4.5.
It operates over each nested trie by assuming that all references to other nested
trie are pruned. In that way it generates and memoizes base cases which can be
re-used by Algorithm 4.4. As it is shown the algorithm uses the preprocessing
methods in a similar way as Algorithm 4.4 uses them. Note that the memoized
ancestor list is the descendant list of the nested trie, as this ancestor list would
generate these ROBDD definitions.

4.9 Negation

4.9.1 Negated Literals

Handling negated literals for ProbLog is relatively simple. A negated literal is
produced by negating a single probabilistic fact. This means that the negated
literal succeeds when the probabilistic fact does not exist in the possible world,
thus the probability for the negated literal is P (not(pf)) = 1−P (pf). One can
simply interpret the negation of a single probabilistic fact as negating the literal
in the Boolean formula.

4.9.2 General Negation

With the introduction of nested tries, one can handle general negation for
ProbLog. As it is argued in [36] negation as defined in the well-founded
semantics [20] is more suitable for ProbLog programs. Using nested tries one
can implement negation as in the well-founded semantics for ProbLog.

When negating a goal in ProbLog the expected result is the probability that
the goal fails instead of succeeds, thus P (not(G)) = 1 − Psuccess(G). On the
Boolean formula level we negate the DNF part of the goal at hand. As a nested
trie actually corresponds to the proofs required for a specific goal, negating the
nested trie results in negating the specific part of the DNF and thus achieves
our goal.



NEGATION 93

Algorithm 4.4 The generalized nested trie to ROBDD definitions approach
that uses all presented preprocessing methods and optimizations.
input A root trie T of the nested tries to generate ROBDD definitions and an

empty depth breadth trie DBT to store the generated ROBDD definitions.
output Updates DBT to contain the generated ROBDD definitions for T and

returns the reference Lend that represents the complete Boolean formula.

1: function Nested_Trie(T , DBT )
2: Tries := Collect_Tries_In(T )
3: Lbegin := Pre-process(Tries, DBT , 1)
4: (Lend, _) := Nested_Trie_Recursive(T , DBT , ∅, ∅, Lbegin)
5: return Lend

input A trie T of the nested tries to generate ROBDD definitions, the depth
breadth trie DBT to store the generated ROBDD definitions, the ancestor
tries AT and any previously known descendant tries DT of the trie T .

output Updates depth breadth trie DBT to contain the ROBDD definitions
generated for T . Returns for trie T the representative reference Lend and
all its descendant tries as DT .

1: function Nested_Trie_Recursive(T , DBT , AT , DT , Lbegin)
2: (Lend, Tnested) := Preprocessing_Method(T , DBT , Lbegin)
3: if Tnested 6= null then {T contains a nested trie Tnested}
4: ATnested

:= AT ∪ {T}
5: DT := DT ∪ {Tnested}
6: if Tnested ∈ ATnested

then {Tnested introduces a cycle}
7: Replace the occurrence of Tnested in trie T with false.
8: else if Is_Memoized(Tnested, ATnested

) then
9: (LTnested

, DTnested
) := Get_Memoized_Result(Tnested, ATnested

)
10: Replace the occurrence of Tnested in trie T with LTnested

.
11: DT := DT ∪DTnested

12: else {Tnested is not a cycle, neither is memoized.}
13: (LTnested

, DTnested
) := Nested_Trie_Recursive(Tnested, DBT ,

ATnested
, ∅, Lend + 1)

14: Replace the occurrence of Tnested in trie T with LTnested
.

15: DT := DT ∪DTnested

16: Lend := LTnested

17: return Nested_Trie_Recursive(T , DBT , AT , DT , Lend + 1)
18: else {T is fully processed}
19: AT := AT ∩DT {Ancestors Refine}
20: Memoize(T , AT , DT , Lend)
21: return (Lend, DT )



94 PREPROCESSING I: BOOLEAN FORMULAE TO ROBDD DEFINITIONS

Algorithm 4.5 The algorithm that performs the pre-process optimization in
all Tries.
input A trie collection Tries to be pre-processed, the depth breadth trie DBT

to store the generated ROBDD definitions and the starting ROBDD definition
reference Lbegin.

output Updates DBT to contain ROBDD definitions for the pre-processed
tries and returns the reference Lend + 1 that represents the next free ROBDD
definition reference.

function Pre-Process(Tries, DBT , Lbegin)
Lend := Lbegin
for all T ∈ Tries do
DT := ∅
(Lend, Tnested) := Preprocessing_Method(T , DBT , Lend)
while Tnested 6= null do
Replace the occurrence of Tnested in trie T with false.
DT := DT ∪ {Tnested}
(Lend, Tnested) := Preprocessing_Method(T , DBT , Lend)

memoize(T , DT , DT , Lend)
return Lend + 1

Complications arise when considering cycles. We have shown that a cycle does
not contribute to the probabilities mass and can be dropped. At that point
we where considering cycles in which both goals (the one proving and the
one introducing the cycle) are not negated. It is easy to show that the same
reasoning applies when both goals are negated. But when only one of the two
goals that form a cycle is negated, special handling is required.

The problem in this specific situation is that a paradox is defined which states:
that a goal is proven if the negation of the goal is proven (p← ¬p). These type
of theories lie in the undecided part of the well-founded semantics which has no
practical use for ProbLog. To tackle the problem we assume that all undecided
atoms do not provide any probabilistic information and we can remove them.
In Chapter 7, we present an application of general negation where we need to
perform model verification and inconsistent clauses such as the previous one are
detected and calculated to provide a normalization factor. Specifically for that
application we used Stickel’s [81] approach for proving inconsistencies. This
results to a logic very similar to that of Nilson [52].

While, in general, nested tries are only used for tabled goals, we implemented
ProbLog negation for goals to generate their own nested tries regardless whether
the goal is tabled or not. A consequence of general negation and this approach



CONCLUSIONS AND FUTURE WORK 95

is, that the produced Boolean formulae are no more in DNF form. Fortunately,
our approaches for computing the probability are not limited to DNF formulae
and the issue is easily resolved.

4.10 Conclusions and Future Work

We introduced depth breadth tries as a new data structure to improve
preprocessing in ProbLog, and compared the resulting method and its variations
to the method used so far as well as to the decomposition method presented
by [66]. Our experiments with the three-state Markov model and with exact
inference confirm that our trie based method outperforms the other methods
on problems with a high amount of suffix sharing between proofs. At the same
time they reveal that the decomposition method is more suited if this is not the
case, and thus is a valuable new contribution to ProbLog. Finally, we presented
how our preprocessing methods generalize to handle nested tries and negation.
Though that our approaches are inspired by ProbLog they can be used by other
applications that use Boolean formulae regardless their form.

While the three depth breadth optimizations, aimed at reducing the number of
ROBDD operations, can greatly improve performance in some cases, in others,
they have opposite effects. Initial experiments suggest that those optimizations
should be applied less greedily. Future research could be in the line of a more
in depth study of the factors influencing the effects of these optimizations. Also
further investigation of the respective strengths of our trie based approach
and the decomposition method, and to exploit those in a hybrid preprocessing
method could be an interesting research topic.





Chapter 5

Preprocessing II: Variable
Compression

ProbLog uses ROBDDs to compute the success probability of a query. While
the complexity of the calculation of the probability is linear in terms of the size
of the ROBDD, the generation of the ROBDD is an NP-hard task.

It is well-known that the variable ordering used to construct the ROBDD for a
Boolean formula has an impact on the size of the ROBDD. The orderings that
give rise to smaller ROBDDs are called good orderings: constructing smaller
ROBDDs takes less time and space and also the computation of the probability
is faster. State-of-the-art ROBDD tools use heuristics to decide about the
variable ordering, which search space is exponential.

In this chapter we present an approach that reduces the search space for the
variable ordering by decreasing the number of variables in the Boolean formula,
namely by replacing subsets of variables by new representative variables. We
call this variable compression. In the context of ProbLog we can perform
variable compression if the calculated probability of the new ROBDD remains
the same.

In order to do variable compression before the ROBDD generation, we need to
detect these variable subsets in the Boolean formulae, or in the case of ProbLog
at the level of the DNF. We discovered sets of variables in the DNF for which
we can compute the contribution of such a set of variables to the probability
of the ROBDD independently from the rest of the ROBBD and replace these
sets by new representative variables. We name these sets AND/OR-clusters.

97



98 PREPROCESSING II: VARIABLE COMPRESSION

The AND/OR-clusters are determined for a particular DNF and as such they
are query-dependent. Remember that a DNF contains all the proofs of a query.
Figure 5.1 presents graphically the ProbLog parts that are modified by variable
compression.

In this chapter, we first give the cluster definitions and present how the clusters
can be used to compress variables in Section 5.2. Next, we show how to discover
AND/OR-clusters in DNF Boolean formulae in Section 5.3 and Section 5.4
respectively. Finally, we present some experiments for the AND-clusters in
Section 5.5 and a complexity analysis of the algorithms in Section 5.6.

This chapter is based on publication [44]; novel is the discussion of OR-clusters
and the complexity analysis of all algorithms.

5.1 Example

For this chapter we use the example ProbLog program of Figure 5.2. This
program represents the graph of Figure 5.3(a). The edges in the graph are
labelled with the probabilities and with the Boolean variables (xi) that will be
used in the ROBDD. We use the query path(1, 3) which collects the proofs
shown as a trie in Figure 5.3(b). The collected trie represents the DNF Boolean
formula: (x0 ∧x2)∨ (x0 ∧x3 ∧x6)∨ (x1 ∧x4 ∧x5 ∧x2)∨ (x1 ∧x4 ∧x5 ∧x3 ∧x6).
Figure 5.4 presents three possible ROBDDs, (a) with a bad ordering for the
variables, (b) with a good ordering for the variables and (c) with the ordering
by ProbLog. The success probability of the query is P = 0.498296.

Comparing the three ROBDDs of Figure 5.4 it is clear that we want to avoid
generating ROBDDs with a bad ordering. The heuristics used by the ROBDD
package do not take into consideration special properties (such as annotated
disjunctions, chains of probabilistic facts, graph structure, etc.) that arise from
specific domains like the probabilistic one.

5.2 Cluster Definitions

We define two kinds of clusters and prove that their compression does not affect
the final probability. We define the clusters in terms of the ROBDDs, as the
idea of looking for patterns can also be valuable for other application areas that
use ROBDDs.



CLUSTER DEFINITIONS 99

P
ro

b
L
o
g
 V

a
ri

a
b
le

 C
o
m

p
re

ss
io

n

S
te

p
 3

: 
R

O
B

D
D

 C
o
m

p
ila

ti
o
n

S
te

p
 2

: 
B

o
o
le

a
n

 f
o
rm

u
la

e
 p

re
p
ro

ce
ss

in
g

S
te

p
 1

: 
S

L
D

 R
e
so

lu
ti

o
n

R
O

B
D

D
D

e
fi
n

it
io

n
s

S
im

p
le

C
U

D
D

R
O

B
D

D
P

ro
b
a
b
ili

ty
C

a
lc

u
la

ti
o
n

P

Tr
ie

(D
N

F
)

A
N

D
-,

O
R

-c
lu

st
e
r

B
o
o
k
m

a
rk

in
g

C
o
m

p
re

ss
e
d
 T

ri
e
(D

N
F
)

R
e
cu

rs
iv

e
 N

o
d
e
 M

e
rg

in
g

D
e
co

m
p
o
si

ti
o
n

N
a
iv

e

D
e
p
th

 B
re

a
d
th

 T
ri

e
O

p
ti

m
iz

a
ti

o
n

 L
e
v
e
l:
 1

, 
2

, 
3

R
O

B
D

D
D

e
fi
n

it
io

n
s

P
ro

b
L
o
g

P
ro

g
ra

m
P

ro
lo

g
S

L
D

 r
e
so

lu
ti

o
n

Tr
ie

(D
N

F
)

Fi
gu

re
5.
1:

T
he

di
ag
ra
m

of
th
e
th
re
e
st
ep

s
of

Pr
ob

Lo
g
w
ith

th
e
va
ria

bl
e
co
m
pr
es
sio

n
ad

di
tio

ns
.
Sh

ad
ed

bl
oc
ks

m
ar
k

th
e
m
od

ifi
ca
tio

ns
fr
om

th
e
bl
oc
k
fig

ur
e
of

Fi
gu

re
2.
2.



100 PREPROCESSING II: VARIABLE COMPRESSION

Probabilistic Facts:

0 . 5 : : edge (1 , 2 ) .
0 . 4 : : edge (1 , 4 ) .
0 . 7 : : edge (2 , 3 ) .
0 . 8 : : edge (2 , 6 ) .
0 . 9 : : edge (4 , 5 ) .
0 . 7 : : edge (5 , 2 ) .
0 . 4 : : edge (6 , 3 ) .

Background Knowledge:

path (X, Y):−
path (X, Y, [X ] ) .

path (X, Y, _):−
edge (X, Y) .

path (X, Y, V):−
edge (X, Z) ,
Y \== Z ,
\+ member(Z , V) ,
path (Z , Y, [ Z |V ] ) .

Figure 5.2: ProbLog example program. The probabilistic facts edge/2 and for
background knowledge the predicate path/2.

Definition 11. Let F be a Boolean formula with variables v1, . . . , vl. The
variables {x1, . . . , xk} ⊆ {v1, . . . , vl}, k > 1, form an AND-cluster if there
exists a variable ordering such that the ROBDD R of F

1. has only one node ni for variable xi, 1 ≤ i ≤ k,

2. node nj has as its only incoming edge the high edge of node nj−1, 2 ≤ j ≤ k,

3. and the low edges of the nodes {n1, . . . , nk} connect to the same node in
R.

An example of AND-clusters can been seen in Figure 5.5(a).

Definition 12. Let F be a Boolean formula with variables v1, . . . , vl. The
variables {x1, . . . , xk} ⊆ {v1, . . . , vl}, k > 1, form an OR-cluster if there
exists a variable ordering such that the ROBDD R of F

1. has only one node ni for variable xi, 1 ≤ i ≤ k,

2. node nj has as its only incoming edge the low edge of node nj−1, 2 ≤ j ≤ k,

3. and the high edges of the nodes {n1, . . . , nk} connect to the same node in
R.

An example of OR-clusters can been seen in Figure 5.5(b).

In a probabilistic framework like ProbLog that uses ROBDDs to calculate
probabilities, each ROBDD variable has an assigned probability. To be able to
compress the clusters of variables to new representative variables, we need to



CLUSTER DEFINITIONS 101

1 20.5 (x0)

4

0.4 (x1)

30.7 (x2)

6

0.8 (x3)

50.9 (x4)
0.7 (x5) 0.4 (x6)

(a) The probabilistic graph of the example ProbLog program.

t(/)

e(1,2) (x0) e(1,4) (x1)

e(2,3) (x2) e(2,6) (x3) e(4,5) (x4)

e(6,3) (x6) e(5,2) (x5)

e(2,3) (x2) e(2,6) (x3)

e(6,3) (x6)

(b) The collected trie for the query: path(1,3).

Figure 5.3: The probabilistic graph of the example ProbLog program shown in
Figure 5.2 and collected trie for the query: path(1,3).



102 PREPROCESSING II: VARIABLE COMPRESSION

 x0 

 x1 

 x2 

 x3 

 x4 

 x5 

 x6 

root

n0

n0

n1n0

false

n0

n1

n1

true

n0

n0

n1n0

(a) Bad ordering:
(x0-x1-x2-x3-x4-x5-x6)

 x0 

 x1 

 x4 

 x5 

 x2 

 x3 

 x6 

root

n0

n0

n0

n0

false

n0

n0

true

n0

(b) Good ordering:
(x0-x1-x4-x5-x2-x3-x6)

 x6 

 x3 

 x2 

 x5 

 x0 

 x4 

 x1 

root

n0

n0

n0

n0

false

n0 n1

true

n0

n0

(c) ProbLog ordering:
(x6-x3-x2-x5-x0-x4-x1)

Figure 5.4: ROBDD for the query: path(1, 3) of the example ProbLog program
shown in Figure 5.2. ROBDD notation is explained at Section 2.3.4

compute the probabilities of the representative variables such that the probability
we compute for the ROBDD as a whole does not change.

Definition 13 (Replacing a cluster by a representative variable). Replacing a
cluster of variables {x1, . . . , xn} by a representative variable V is the equivalent
of removing all nodes of the variable in ROBDD and replacing them by one. All
ingoing edges to the cluster would be ingoing edges to the representative variable.
Similarly, the representative variable node outgoing edges will go to the same
nodes where the cluster’s outgoing edges are going.

Theorem 5 (Probability of AND-cluster). Replacing an AND-cluster {x1,
. . . , xn} by a representative variable V with probability PV = PAND({x1, . . . , xn})
=

n∏
i=1

P (xi) does not change the probability of the ROBBD as a whole.

Proof. First consider the simple case of a ROBDD that consists of exactly one
AND-cluster, {x1, . . . , xn}. The probability of this ROBDD is P (x1) ·P (x2) · ... ·
P (xi) · ... ·P (xn) ·1+(1−P (x1) ·P (x2) · ... ·P (xi) · ... ·P (xn)) ·0 =

n∏
i=1

P (xi). But

in general, an AND-cluster has an outgoing high edge to a part T with PT and
its low edges connect to a part F with PF . The probability of the ROBDD part
that includes the AND-cluster can be generalised as P = P (x1)·P (x2)·...·P (xi)·



CLUSTER DEFINITIONS 103

... ·P (xn) ·PT + (1−P (x1) ·P (x2) · ... ·P (xi) · ... ·P (xn)) ·PF = PT ·
n∏
i=1

P (xi) +

PF −PF ·
n∏
i=1

P (xi) = (PT −PF ) ·
n∏
i=1

P (xi) +PF . If we replace the AND-cluster

with a new representative variable V with PV and calculate the probability, we
get P = PV ·PT +(1−PV ) ·PF = PV ·PT +PF −PV ·PF = (PT −PF ) ·PV +PF .
Therefore PV = PAND({x1, . . . , xn}) =

n∏
i=1

P (xi).

Theorem 6 (Probability of an OR-cluster). Replacing an OR-cluster {x1,
. . . , xn} by the representative variable V with probability PV = POR({x1, . . . , xn})
= P (x1) + (1− P (x1)) · POR({x2, . . . , xn}) and POR({xn}) = P (xn) does not
change the probability of the ROBBD as a whole.

Proof. First consider the simple case of a ROBDD that consists of exactly
one OR-cluster, {x1, . . . , xn}. The probability of this ROBDD is P (x1) · 1 +
(1 − P (x1)) · (P (x2) · 1 + (1 − P (x2)) · . . . · (P (xi) · 1 + (1 − P (xi)) · . . . ·
(P (xn) · 1 + (1 − P (xn)) · 0)) . . .) = P (x1) + (1 − P (x1)) · POR({x2, . . . , xn}).
But in general an OR-cluster has its high edges to a part T with PT and an
outgoing low edge to a part F with PF . The probability can be generalised
as P = P (x1) · PT + (1 − P (x1)) · (P (x2) · PT + (1 − P (x2)) · . . . · (P (xi) ·
PT + (1 − P (xi)) · . . . · (P (xn) · PT + (1 − P (xn)) · PF )) . . .) = (P (x1) + (1 −
P (x1)) ·P (x2) + . . .+ (1−P (x1)) · . . . · (1−P (xi−1)) ·P (xi) + . . .+ (1−P (x1)) ·
. . . · (1− P (xn−1)) · P (xn)) · PT + (1− P (x1)) · . . . · (1− P (xn)) · (PF /PT ). If
we replace the OR-cluster with a new representative variable V with PV and
calculate the probability, we get P = PV · PT + (1 − PV ) · PF if we replace
PV = P (x1) + (1 − P (x1)) · P (x2) + . . . + (1 − P (x1)) · . . . · (1 − P (xi−1)) ·
P (xi) + . . . + (1 − P (x1)) · . . . · (1 − P (xn−1)) · P (xn) then we need to prove
that 1 − PV = (1 − P (x1)) · . . . · (1 − P (xn)) ⇒ 1 − (P (x1) + (1 − P (x1)) ·
P (x2) + . . .+ (1− P (x1)) · . . . · (1− P (xi−1)) · P (xi) + . . .+ (1− P (x1)) · . . . ·
(1− P (xn−1)) · P (xn)) = (1− P (x1)) · . . . · (1− P (xn)). Finally by using the
distribution rule we see that the previous formula is a tautology. Therefore
PV = POR({x1, . . . , xn}) = P (x1) + (1− P (x1)) · POR({x2, . . . , xn}).

5.2.1 Using the Clusters for Variable Compression

We illustrate the variable compression with our path(1, 3) example. In
Figure 5.5(a) we have two AND-clusters, {x1;x4;x5} and {x3;x6}. After
compression we obtain the ROBDD in Figure 5.5(b) with two new Boolean
variables x1,4,5, x3,6 and their associated probabilities P (x1,4,5)1, P (x3,6)2. After

1P (x1,4,5) = PAND({x1;x4;x5}) = 0.4 · 0.9 · 0.7 = 0.252
2P (x3,6) = PAND({x3;x6}) = 0.8 · 0.4 = 0.32



104 PREPROCESSING II: VARIABLE COMPRESSION

 x0 

 x1 

 x4 

 x5 

 x2 

 x3 

 x6 

root

n0

n0

n0

n0

false

n0

n0

true

n0

(a) AND-clusters.

 x0 

 x1,4,5 

 x2 

 x3,6 

root

n0

n0

n0

false

n0

true

(b) OR-clusters.

 x0,1,4,5 

 x2,3,6 

root

n0

n0

false true

(c) AND-cluster.

 x0,1,4,5,2,3,6 

root

n0

false true

(d) Compressed.

Figure 5.5: Compressing ROBDD for the query: path(1,3). Notation: coloured
nodes represent clusters.

AND-compression we have two OR-clusters, {x0;x1,4,5} and {x2;x3,6} as shown
in Figure 5.5(b); by further compressing them we get the ROBDD in Figure 5.5(c)
with two new Boolean variables x0,1,4,5, x2,3,6 and their probabilities P (x0,1,4,5)3,
P (x2,3,6)4. Finally, by compressing the single AND-cluster {x0,1,4,5;x2,3,6} of
the ROBDD in Figure 5.5(c) we end up with the ROBDD in Figure 5.5(d) that
has a single Boolean variable x0,1,4,5,2,3,6 and probability P (x0,1,4,5,2,3,6)5.

Not all ROBDDs can be compressed to a single variable, but iterating AND/OR-
cluster based variable compression can lead to an easier to construct ROBDD.
We want to use variable compression to be able to deal with queries that caused
timeouts. So, we are willing to pay a certain cost to detect the clusters. In order
to use our variable compression in practice, we first have to detect AND-clusters
in DNFs.

5.3 Discovering AND-clusters

To be able to benefit from AND-cluster compression, we need to identify them
before the ROBDD generation. Fortunately, AND-clusters also appear in the
DNF representing the proofs: either all the probabilistic facts of an AND-cluster

3P (x0,1,4,5) = POR({x0;x1,4,5}) = 0.5 + (1− 0.5) · 0.252 = 0.626
4P (x2,3,6) = POR({x2;x3,6}) = 0.7 + (1− 0.7) · 0.32 = 0.796
5P (x0,1,4,5,2,3,6) = PAND({x0,1,4,5;x2,3,6}) = 0.626 · 0.796 = 0.498296



DISCOVERING AND-CLUSTERS 105

appear in a proof, or none of them. A naive approach to detect AND-clusters
is to find longest common subsequences (LCS) in the conjunctions of the DNF,
however this is an NP-hard problem [39]. As our problem is a special case of
the LCS we can do better.

Theorem 7. Every set of Boolean variables {v1, . . . , vn} in a set of clauses
{cl1, . . . , clm} satisfying: ∀vi ∈ {v1, . . . , vn} occur(vi) = (

⋂
vi∈clj clj) ∩

(
⋂
vi 6∈clj clj) = {v1, . . . , vn}, forms an AND-cluster; where clj denotes the

complement of the set clj with respect to the set of the Boolean variables in all
clauses.

Proof. Indeed, if in a DNF Boolean formula we take all clauses cl1, . . . , clk ∈
{cl1, . . . , clm} where vi appears and in those and only those all {v1, . . . , vn}
appear, then by the distribution property we can create a single clause of the
form (v1 ∧ · · · ∧ vn) ∧ (cl′1 ∨ · · · ∨ cl′k) with cl′i ∧ (v1 ∧ · · · ∧ vn) = cli.

In ProbLog setting we call the Boolean variables as probabilistic facts, and the
clauses as proofs. Thus, the first part of occur(pfi) is the set of probabilistic
facts that occur in each proof in which pfi occurs. The second part is the set
of probabilistic facts that do not occur in proofs that do not contain pfi. The
first set is a possible AND-cluster for pfi but it might also contain probabilistic
facts that occur in proofs that do not contain pfi. In order to exclude the latter
ones, the possible AND-cluster has to be restricted to probabilistic facts that
only occur in proofs containing pfi.

5.3.1 The Book Marking Algorithm for AND-clusters

Based on Theorem 7, the Book Marking Algorithm 5.1 deals with all the proofs
one by one and ensures that for all probabilistic facts pfi seen by the algorithm
so far occur(pfi) is computed. The algorithm encodes a proof by a bit string.
We order the probabilistic facts by their chronological appearance in the proofs.
The ith probabilistic fact is denoted by pf(i). The ith bit encodes whether the
probabilistic fact pf(i) is used in the proof. We refer to the bit string as the
occurrence number (ON) of the proof.

We use a two dimensional matrix (MA) of bits to represent the AND-clusters.
Row k corresponds to the probabilistic fact pf(k) and represents occur(pf(k)).
Column l represents the probabilistic fact pf(l). The element l of a row k
indicates whether pf(l) forms an AND-cluster with pf(k). This matrix grows
incrementally as we deal with the proofs one by one and the size of each
dimension is equal to the number of different, already seen probabilistic facts.



106 PREPROCESSING II: VARIABLE COMPRESSION

Dealing with a new proof involves computing ON and then computing its
impact on the AND-clusters already in MA according to Theorem 7 using the
following three operations:

1. for each previously seen probabilistic fact i which appears in this proof,
we compute MA[i] = MA[i] ∧ON ;

2. for each previously seen probabilistic fact i that does not occur in this
proof, we compute MA[i] = MA[i] ∧ ¬ON ; and

3. we grow MA to include AND-clusters for the probabilistic facts that were
not seen before.

After all proofs of the DNF have been dealt with, all the rows in MA with more
than one active bit (i.e. set to 1) represent an AND-cluster.

Algorithm 5.1 The Book Marking algorithm for AND-clusters.
input A DNF Boolean formulae (DNF) and the count of different variables in
the Boolean formulae (Count).

output A two dimensional bit matrix represented as a matrix of integers
containing all AND-clusters (Matrix).

function bookmarking(DNF,Count)
MatrixSize := 0
create(Matrix, Count)
for all Proof ∈ DNF do
OccurrenceNumber := bit_encode(Proof)
for (i := 0; i < MatrixSize; i+ +) do
if (2i&OccurrenceNumber) > 0 then {Existing matrix row and pfi
in OccurrenceNumber - operation 1}
Matrix[i] := Matrix[i]&OccurrenceNumber

else {Existing matrix row and pfi not in OccurrenceNumber -
operation 2}
Matrix[i] := Matrix[i]&not(OccurrenceNumber)

for (i := MatrixSize; i < bit_length(OccurrenceNumber); i + +)
do {Add a new matrix row - operation 3}
Matrix[i] := not(2MatrixSize − 1)&OccurrenceNumber

MatrixSize := max(bit_length(OccurrenceNumber),MatrixSize)
return Matrix

After all proofs of the DNF have been processed, the resulting matrix can
be processed in a straightforward way: iterate over all matrix rows starting
the count from 0, and every row i that has a value greater than 2(i+1) is



DISCOVERING AND-CLUSTERS 107

representing an AND-cluster. Because the row of each probabilistic fact that
is a member of an AND-cluster fully represents that AND-cluster, we have
multiple appearances of the same AND-cluster. As the matrix is symmetric
with respect to its diagonal we can check if any bit before the ith is active and
that informs us about duplicates.

5.3.2 An Example of the Book Marking Algorithm for AND-
clusters

As an example for the Book Marking algorithm we use the proofs of path(1,3):
[x0, x2], [x0, x3, x6], [x1, x4, x5, x2], [x1, x4, x5, x3, x6]. Each row of Table 5.1
corresponds to a single proof (PR), and has the probabilistic fact order (OL),
the occurrence number (ON) and the matrix (MA).

For the first proof, the algorithm uses the order x0 < x2 to compute 11 as the
occurrence number of the proof. As initially the matrix MA is empty, operation
3 uses the ON to construct a MA with two rows and two columns with all bits
activated.

For the second proof the algorithm adds x3 and x6 to the order which becomes
x0 < x2 < x3 < x6. The algorithm computes ON = 1101; note that we are
reading the bit strings from right to left. Operation 1 computes the conjunction
of 1101 with the row of x0: 11∧ 1101 = 0011∧ 1101 = 0001. This operation sets
the bit corresponding to x2 to 0 as x0 and x2 are no longer an AND-cluster.
For the row of x2, operation 2 computes 11 ∧ neg(1101) = 0011 ∧ 0010 = 0010
and sets the bit for the probabilistic fact x0 to 0. Finally, the algorithm extends
MA by two new rows and columns for the probabilistic facts x3 and x6 with,
as values of the rows, neg(11) ∧ 1101 = 1100 ∧ 1101 = 1100. Note that also the
existing rows are expanded with new columns set to 0.

When all proofs are dealt with, the Book Marking Algorithm has found two
different AND-clusters, namely {x1;x4;x5} and {x3;x6}. Without variable
compression, ProbLog generates the ROBDD of Figure 5.4(c), which has a size
in between the sizes of the other two ROBDDs in Figure 5.4. After compressing
the variables of the AND-clusters to a representative variable x1, 4, 5 with
P (x1, 4, 5) = 0.252 and x3, 6 with P (x3, 6) = 0.32, we get the compressed
proofs: [x0, x2], [x0, x3,6], [x1,4,5, x2], [x1,4,5, x3,6]. For the compressed proofs,
ProbLog generates the ROBBD of Figure 5.5(b).

The algorithm as presented here only tackles proofs that contains either positive
or negative occurrences of each probabilistic fact and not both. If in one proof
a probabilistic fact is positive and in an other is negative, this probabilistic fact
is not part of an AND-cluster.



108 PREPROCESSING II: VARIABLE COMPRESSION

Proof(PR
)

=
x0,x2

O
rder

List
(O

L)
=

[x0,x2]
O
ccurrence

N
um

ber
(O

N
)

=
11

=
3

M
atrix

(M
A
)

=
[3,3]

1
1

x2
1

1
x0

x2
x0

PR
=

x0,x3,x6
O
L

=
[x0,x2,x3,x6]

O
N

=
1101

=
13

M
A

=
[3
∧

13,3
∧
n
eg(13),

n
eg(3)∧

13,
n
eg(3)∧

13]
M
A

=
[1,2,12,12]

1
1

0
0

x6
1

1
0

0
x3

0
0

1
0

x2
0

0
0

1
x0

x6
x3

x2
x0

PR
=

x1,x4,x5,x2
O
L

=
[x0,x2,x3,x6,x1,x4,x5]

O
N

=
1110010

=
114

M
A

=
[1
∧
n
eg(114),2

∧
114,12

∧
n
eg(114),

12
∧
n
eg(114),

n
eg(15)∧

114,
n
eg(15)∧

114,
n
eg(15)∧

114]
M
A

=
[1,2,12,12,112,112,112]

1
1

1
0

0
0

0
x5

1
1

1
0

0
0

0
x4

1
1

1
0

0
0

0
x1

0
0

0
1

1
0

0
x6

0
0

0
1

1
0

0
x3

0
0

0
0

0
1

0
x2

0
0

0
0

0
0

1
x0

x5
x4

x1
x6

x3
x2

x0

PR
=

x1,x4,x5,x3,x6
O
L

=
[x0,x2,x3,x6,x1,x4,x5]

O
N

=
1111100

=
124

M
A

=
[1
∧
n
eg(124),2

∧
n
eg(124),12

∧
124,

12
∧

124,112
∧

124,112
∧

124,112
∧

124]
M
A

=
[1,2,12,12,112,112,112]

1
1

1
0

0
0

0
x5

1
1

1
0

0
0

0
x4

1
1

1
0

0
0

0
x1

0
0

0
1

1
0

0
x6

0
0

0
1

1
0

0
x3

0
0

0
0

0
1

0
x2

0
0

0
0

0
0

1
x0

x5
x4

x1
x6

x3
x2

x0

Table
5.1:

A
n
exam

ple
ofthe

B
ook

M
arking

algorithm
for

A
N
D
-clusters

show
n
in

A
lgorithm

5.1.



DISCOVERING OR-CLUSTERS 109

5.4 Discovering OR-clusters

Similarly to AND-clusters, in order to benefit from OR-cluster compression,
we need to identify them before the ROBDD generation. Fortunately, also
OR-clusters appear in the DNF representation of the proofs. By using the
distributive property so that each probabilistic fact of an OR-cluster appears only
in a single clause, then the formed clauses are identical (except the probabilistic
fact belonging to the OR-cluster). Again, our detection problem is similar to
the LCS problem. Fortunately, again it is a special case which we can solve in
polynomial time.

Theorem 8. Every set of Boolean variables {v1, ..., vn} in a set of clauses
{cl1, ..., clm} satisfying ∀vi ∈ {v1, ..., vn}, (1) vi ∈ cli and (2) vi 6∈ clj with
i 6= j, 1 ≤ i, j ≤ n and (3) (cli \ {vi}) = (clj \ {vj}) forms an OR-cluster.

Proof. Indeed, if in a DNF Boolean formula we take all the clauses cl1, ..., clk ∈
{cl1, ..., clm} where v1, ..., vn appear, by the distribution property we can create
a single clause of the form (v1 ∨ · · · ∨ vn) ∧ cl′ where cl′ is the common part of
cl1, ..., clk.

In ProbLog setting we call the Boolean variables as probabilistic facts, and
the clauses as proofs. Thus, using the above observation we separately apply
the distribution property for each probabilistic fact, collecting all “common”
clauses cl1, . . . , clk. Finally, we compare all the clauses among them to identify
the variables that have identical clauses. Those variables that have identical
clauses participate in the same OR-cluster.

5.4.1 The Book Marking Algorithm for OR-clusters

Based on the previous observation and on Theorem 8, the Book Marking
Algorithm 5.2 first collects all clauses for each variable by using the distributive
property. As we apply the distribution property in the whole DNF formula
each clause might contain both disjunctions and conjunctions. For that
reason, we encode the conjunctions as a bit string generating like before an
OccurrenceNumber and then each encoded conjunction is being stored in an
ordered set. This way the order of variables and duplicate conjunctions will not
affect later the comparison to determine whether two clauses are identical.

After all variables have been processed then we need to compare all the generated
clauses among them. For this final step we compare all steps and we modify
a Matrix which will finally contain all OR-clusters. Notice in Algorithm 5.2



110 PREPROCESSING II: VARIABLE COMPRESSION

that by using the bitwise OR operator we mark all the identical clauses in the
Matrix.

Finally, the resulting matrix can be processed in a straight forward way: iterate
over all matrix rows starting the count from 0, and every row i that has a
value greater than 2(i+1) is representing an OR-cluster. Because the row of
each probabilistic fact that is a member of an OR-cluster fully represents that
AND-cluster, we have multiple appearances of the same OR-cluster. As the
matrix is symmetric with respect to its diagonal we can check if any bit before
the ith is active, and that informs us about duplicates.

Algorithm 5.2 The Book Marking algorithm for OR-clusters.
input A DNF Boolean formulae (DNF) and the count of different variables in
the Boolean formulae (Count).

output A two dimensional bit matrix represented as a matrix of integers
containing all OR-clusters (Matrix).

function bookmarking(DNF,Count)
create(Matrix, Count)
create(Clause, Count)
for (i := 0; i < Count; i+ +) do
Matrix[i] := 2i

for (V ariable := 0;V ariable < Count;V ariable+ +) do
Clause[V ariable] := Distribution_Property(V ariable,DNF )

for (i := 0; i < Count; i+ +) do {Clause comparison process}
for (j := i+ 1; j < Count; j + +) do
if (Clause[i] = Clause[j]) then
Matrix[i] := Matrix[j] := Matrix[i]|Matrix[j] {Where | denotes
the bitwise OR operator}

return Matrix
function Distribution_Property(V ariable,DNF )

CreateSet(Clause)
for all (Proof ∈ DNF ) do
OccurrenceNumber := bit_encode(Proof)
if (2V ariable&OccurrenceNumber > 0) then
OccurrenceNumber := OccurrenceNumber − 2V ariable
Clause := AddToSet(OccurrenceNumber, Clause)

return Clause



EXPERIMENTS FOR AND-CLUSTERS 111

5.4.2 An Example of the Book Marking Algorithm for OR-
clusters

To finish our example for the Book Marking Algorithm, we now continue from
the compressed proofs that we stopped earlier: [x0, x2], [x0, x3,6], [x1,4,5, x2],
[x1,4,5, x3,6]. The Table 5.2 is broken into three parts: first is the encoding of
the proofs in integer numbers, where we also present the order list (OL) used
for encoding; the second part is performing the distributive property for each
variable over the DNF; finally we present the clause comparison process that
actually discovers the OR-clusters in the DNF formulae.

The second step of our example shown at Table 5.2 presents the final result of
the encoding for the clause. Each conjunctive clause is encoded to a bit string.
In our example there are only single literal conjunctive clauses but assume that
we had the conjunction 1∧ 2, this gets encoded by activating bits 1,2 (110) from
a zero indexed bit string and would result in the number 6. We perform this
encoding as it is easy to insert, sort the resulted integers and keep efficiently at
all times sorted sets which later we can efficiently compare.

For the final step, we present the initial Matrix for each iteration of the
comparison and the concluding Matrix for the same iteration. We only present
the two iterations where the clauses actually are identical and the matrix is
being manipulated. The final return Matrix for our example is MA = [9, 6, 6, 9].

Finally, we can see that the algorithm detected two OR-clusters, namely:
{x0; x1,4,5}, {x2; x3,6} and will compress the two OR-clusters into two new
probabilistic facts x0,1,4,5 and x2,3,6 respectively. The new probabilities
for these facts are P (x0, 1, 4, 5) = 0.626 and P (x2, 3, 6) = 0.796. After this
compression ProbLog generates the ROBDD shown in Figure 5.5(c).

5.5 Experiments for AND-clusters

We implemented the variable compression method using only AND-clusters
within ProbLog. To judge the practicality and the impact, we use ProbLog
benchmarks that discover links in real biological networks [77]. Graphs model
probabilistic links between concepts such as genes, proteins, etc. The first
benchmark consists of a graph of concepts related to the Alzheimer disease that
has 23, 060 edges; because of the size, inference for this graph soon becomes
intractable. We query for the existence of a path between two given nodes,
to control the problem size we limit the maximum path length. For the
second benchmark, we take the experiments (the same data sets and the same



112 PREPROCESSING II: VARIABLE COMPRESSION

First Step: Numeric Encoding of Proofs
x0, x2
x0, x3,6
x1,4,5, x2
x1,4,5, x3,6

=⇒

0, 1
0, 2
3, 1
3, 2

Order List (OL) = [x0, x2, x3,6, x1,4,5]
Second Step: Perform Distributive Property for each Variable

Variable Boolean Clause Set Encoded Clause
0 0 ∧ (1 ∨ 2) Clause[0]=[2,4]=[0010, 0100]
1 1 ∧ (0 ∨ 3) Clause[1]=[1,8]=[0001, 1000]
2 2 ∧ (0 ∨ 3) Clause[2]=[1,8]=[0001, 1000]
3 3 ∧ (1 ∨ 2) Clause[3]=[2,4]=[0010, 0100]

Third Step: Clause Comparison Process
Starting Matrix =⇒ Concluding Matrix
1 0 0 0 0
0 1 0 0 1
0 0 1 0 2
0 0 0 1 3
0 1 2 3

i=0;j=3−−−−−−−−−−−−−→
Clause[i]=Clause[j]

1 0 0 1 0
0 1 0 0 1
0 0 1 0 2
1 0 0 1 3
0 1 2 3

Starting Matrix =⇒ Concluding Matrix
1 0 0 1 0
0 1 0 0 1
0 0 1 0 2
1 0 0 1 3
0 1 2 3

i=1;j=2−−−−−−−−−−−−−→
Clause[i]=Clause[j]

1 0 0 1 0
0 1 1 0 1
0 1 1 0 2
1 0 0 1 3
0 1 2 3

Table 5.2: An example of the Book Marking algorithm for OR-clusters shown
in Algorithm 5.2.

queries) from [16]. All the graphs are fragments of the same network [77]. The
experiments should give answers to the following questions:

Q1: What is the compression ratio in a real life data set?

Q2: How does compression improve the performance of generating an ROBDD?

Q3: In which cases is the variable compression beneficial?

The default setting of ProbLog is to use CUDD’s [80] group sifting [53] dynamic
reordering during ROBDD compilation. CUDD uses the following memory-time
trade-off. It starts by consuming memory without reordering the variables; once
the memory usage passes a threshold, it starts reordering the variables and as a



EXPERIMENTS FOR AND-CLUSTERS 113

consequence it consumes time. While CUDD is implemented in C, our Book
Marking algorithm is implemented in Yap Prolog [71].

When we increase the problem size for the first benchmark, we see that the
ROBDD compilation time is the limiting factor. We executed three different
queries with a timeout of 1 hour for the ROBDD compilation. Each query was
executed 5 times and we present the averaged times for the ROBDD compilation.
Table 5.3 presents the comparison of executing the queries with four different
settings. The results are presented grouped by the three queries (a), (b) and
(c). The first and second column use the dynamic reordering strategy; the third
and the fourth use the order in which probabilistic facts appear in the proofs
as a static ordering; the first and third column use variable compression of
AND-clusters. Our experiments confirm that for big ProbLog problems dynamic
reordering performs better than static ordering. Variable compression improves
the ROBDD compilation times and has the expected effect both for dynamic
and static orderings.

The second part of Table 5.3 presents the compression statistics which are
independent of the reordering method: the time to do variable compression,
the number of AND-clusters found, the number of variables before compression
(ovars), the number of variables after compression (cvars), and finally the
variable compression ratio6. We note that the time cost for doing the variable
compression is much less than the time gained during ROBDD compilation.
More importantly, the time for finding the AND-clusters is polynomial (as
shown in the next section), while that for ROBDD compilation is exponential.
Because our constant costs are relatively high, we notice that in small problems
variable compression needs more time than we gain during ROBDD compilation,
but those problems are solved very fast either way. The benefit of variable
compressing is far more significant for larger problem sizes.

In order to confirm the positive results for the compression ratio and the better
performance of the ROBDD compilation, we use the larger set of experiments
of our second benchmark. We study the impact of variable compression in
combination with dynamic reordering as it was confirmed to be the better
option for ProbLog. In this benchmark, all the queries can be computed without
variable compression. The behaviour of queries is diverse, as some spent most of
the time in the ROBDD compilation and others in SLD resolution. Among the
360 queries of [16], 100 queries do not use any probabilistic facts. We divided the
other 260 queries into 3 groups: the first group contains 92 queries that generate
tiny ROBDDs with less than 20 variables; the second group contains 152 queries
that generate small ROBDDs with 20 or more variables, but less than 100;
and finally the third group contains the queries that generated relatively big

6Ratio = (ovars - cvars) / ovars



114 PREPROCESSING II: VARIABLE COMPRESSION

R
O
B
D
D

com
pilation

T
im

es
C
om

pression
Statistics

Path
R
eordering

R
eordering

Static
Static

T
im

e
C
lusters

O
riginal

C
om

pr.
C
om

pr.
Length

C
om

pressed
O
nly

C
om

pressed
D
iscovered

Var.
Var.

R
atio

8
4

4
5

5
7

11
34

23
32%

9
51

97
7

9
22

17
91

71
22%

(a)
10

153
297

10
12

32
25

137
110

20%
11

24,830
90,529

*
*

336
76

337
254

25%
12

3,083,750
-

-
-

835
92

479
378

21%
8

5
4

4
5

5
7

26
17

35%
(b)

9
282

417
24,904

47,000
72

49
170

119
30%

10
1,035

1970
*

*
91

53
226

169
25%

11
1,019,588

-
-

-
966

104
528

410
22%

4
4

4
4

4
0

3
13

10
23%

(c)
5

95
246

18
23

64
42

135
91

33%
6

224
497

74
122

33
45

180
131

27%
7

58,917
2,488,793

*
*

385
92

455
350

23%
T
he

reported
tim

es
are

in
m
illiseconds.

Longer
path

lengths
tim

eout.
A

-
indicates

a
tim

eout.
A

*
indicates

that
the

system
runs

out
ofm

em
ory.

Table
5.3:

A
N
D
-cluster

experim
entalresults

for
the

first
set

ofbenchm
arks.



EXPERIMENTS FOR AND-CLUSTERS 115

ROBDDs with more than 100 variables.

For the ’Tiny’ group we obtain an average compression ratio of 42%. Their
ROBDD compilation times and the variable compression times are too small to
draw any conclusions. For the other two groups, we compute averages for each
group and for both groups together. The results are in Table 5.4. We give the
variable compression ratio, the time gain realised for the ROBDD compilation,
and the variable compression time relative to the SLD resolution time.

Query ROBDD ROBDD Com. Compression
Group Compr. Ratio Time Gain Time Ratio
Small (28± 11)% (40± 36)% (26± 41)%
Big (27± 5)% (47± 23)% (69± 107)%
All (28± 10)% (41± 36)% (32± 53)%

The reported times are in milliseconds. All presented results are
average and with their standard deviation.
Compr. Ratio = (original variables - variables after compression)
/ original variables.
ROBDD Com. Time Gain = (ROBDD time without compression
- ROBDD time with compression) / ROBDD time without
compression.
Compression Time Ratio = (SLD time with book marking
algorithm - SLD time without) / SLD time without.

Table 5.4: AND-cluster experimental results for the second set of benchmarks.

While the results might be specific for the application, they confirm the actual
presence of AND-clusters in real world datasets. In this real dataset we encounter
a compression ratio that ranges from 7% to 61% with an average of 28%. The
compression ratio results are similar to the ones of the first benchmark.

In the ‘Small query’ group 44% of the queries have a small number of variables
and they do not need variable reordering neither before nor after compression:
their time gain is near 0. Most of the other queries in the ‘Small query’ group
need reordering before and no reordering after compression, so they have a huge
time gain up to 87%. On average we end up with a gain of 40%.

For the ‘Big query’ group the average gain is larger, namely 47%, but the
variation is less as all the queries need reordering before and after compression.
Here the gain comes from having less variables that have to be dealt with during
the reordering by the state-of-the-art tool.

Comparing the variable compression time with the SLD resolution time shows
that the former is smaller than the latter, but its cost is relatively higher for
the ’Big’ queries.



116 PREPROCESSING II: VARIABLE COMPRESSION

Our experiments7 yield promising results, answering our initial questions by
showing that there is in real life ProbLog applications a role for variable
compression, as it improves significantly the performance of the ROBDD
compilation.

5.6 Complexity Analysis

The Book Marking algorithm for AND-clusters shown in Algorithm 5.1 has a
worst case complexity of O(M ·N2) where M is the number of proofs seen and
N is the number of different probabilistic facts; usually for ProbLog applications
M >> N . For all M proofs, we do a bitwise encoding, and then we modify the
matrix Matrix.

By using an indexed table, the encoding of a proof is done in O(N) time
and requires O(N) space to remember the index for each probabilistic fact
encountered. Each proof needs to modify Matrix which is an NxN bit table.
Activating or deactivating a bit in the table is done in constant time, but in
the worst case all bits needs to be processed resulting in O(N2) operations. So,
the total time complexity is O(M · (N +N2)) = O(M ·N2) and the total space
complexity O(N +N2) = O(N2).

One can take advantage of the symmetry and other properties of the NxN bit
matrix Matrix to avoid some computations. These optimisations reduce the
constant times rather than the complexity. One such optimisation is that we
use arbitrary precision integers to represent each row of Matrix.

The worst case complexity of the Book Marking algorithm for OR-clusters
shown in Algorithm 5.2 is similar O(M · N2 + N2) = O(M · N2). In more
detail, the first part of the algorithm requires N steps to collect, for each
probabilistic fact, the clauses from the M proofs in the DNF formulae in
which the probabilistic fact appears. The maximum size for each clause is N .
Thus, in the worst case scenario, N steps are required to collect MxN sized
proofs. The second part of the algorithm which compares all collected clauses
takes N2 steps. Unfortunately, the total space complexity of this algorithm is
worse than the previous one. Collecting the clauses can require memory up to
O(M ·N2); while the second step requires an NxN matrix resulting to a final
O(M ·N2 +N2) = O(M ·N2) memory complexity.

7For our experiments we used an IntelR CoreT M2 Duo CPU at 3.00GHz with 2GB of
RAM memory running Ubuntu 8.04.2 Linux.



RELATED WORK AND CONCLUSIONS 117

5.7 Related Work and Conclusions

We exploit regularities, AND-clusters and OR-clusters, observed in ROBDDs to
improve the generation of ROBDDs for DNFs in ProbLog. Variable compression
based on these clusters reduces the number of variables in the DNFs. This
results in smaller ROBDDs, whose generation uses less time and memory, and
as such we can deal with ProbLog queries that used to cause timeouts. Our
method is a preprocessing step that detects clusters of Boolean variables. Taking
into account the probabilistic setting, variable compression is feasible and can
be followed by any other variable ordering heuristic. For other applications, one
might be able to find different meaningful compressions, or one might just use
our clusters as input to existing variable ordering heuristics.

Variable ordering heuristics also exploit structural properties of the problem
modelled by the ROBDD such as connected variables [2,53]. Heuristics designed
for one application area might perform poorly in another context [50]. We are
not aware of variable ordering heuristics being used in a probabilistic context.

Hintsanen [28] argues that structural properties are important for finding the
most reliable subgraph. He calculates the probability of subgraphs connecting
two nodes and searching for the subgraph with the maximum probability. The
paper identifies as a special case the series-parallel subgraphs for which they
can compute the probability polynomially. These series-parallel subgraphs have
similarities with our AND/OR-clusters.

We have presented a polynomial algorithm for detecting the AND-clusters and
we have obtained promising results for an application using a real database.
For ProbLog the best results are obtained by combining AND-cluster variable
compression with the group sifting dynamic variable ordering of CUDD. By
using variable compression we managed to answer more queries. We showed
that AND-cluster based variable compression is beneficial for more complex
ROBDD.

For a future implementation of the Book Marking algorithm, C would be a better
choice than Prolog both for time efficiency as for space. This would reduce the
hidden constant factors of Prolog and would also save Prolog garbage collector
executions. It is worth noting that the first iteration to discover AND-clusters
could be computed in parallel with the SLD resolution.

A further task would be to implement the presented OR-cluster discovery
algorithm and verify experimentally its benefits. In addition to the technical
improvements, a challenging task is to investigate how we can take advantage
of the AND/OR-clusters in other Boolean forms like CNF. Unfortunately,
discovering AND/OR-clusters in nested tries imposes fundamental difficulties



118 PREPROCESSING II: VARIABLE COMPRESSION

as both bookmarking algorithms presented here are based on properties of
the DNF Boolean form. For example, collecting the clauses required for the
OR-clusters would be the equivalent of unfolding the nested trie structure to
a DNF. Finally, the goal would be to generalise the method and to be able to
compress repeated structures in the ROBDD such as XOR-like clusters. The
size of the ROBDDs is one of the limits that is currently reached when executing
ProbLog programs. We think that an approach based on variable compression
can push this limit.



Chapter 6

A New Implementation:
MetaProbLog

In this chapter we present technical details of the ProbLog2011 implementation.
The motivation for this implementation is the inability to extend the
ProbLog2010 implementation with support for features such as: meta-
programming, higher-order probabilistic calls, modularity issues, memory
management. Also, it is more elegant in ProbLog2011 to perform general
negation for non-tabled goals and to use the built-in tabling mechanism of a
Prolog system as shown in Section 3.5.2.

In order to achieve these new features we introduce the abstract ProbLog engine
concept. Our solution allows the engine to suspend the resolution of a query qc
with its relevant probabilistic information, to start the resolution of a new query
qn and to compute its desired result, and then use the result of qn when resuming
the inference of qc. Our approach is based on ProbLog engines. A ProbLog
engine has a set of parameters and a state. Every different instantiation of these
parameters implements a different ProbLog inference method. By suspending
the execution of the current ProbLog engine and creating a new one, we are able
to support nested inference. To suspend and resume ProbLog engines we use
a stack. The contributions of this work are: (1) a general solution for nesting
ProbLog queries; (2) the implementation of new primitives; (3) a ProbLog that
abides to the Prolog module system; (4) better memory management.

In Prolog, we typically write a program and then we formulate goals in terms
of the program predicates. The program predicates can call new Prolog goals,
effectively nesting them. A Prolog system uses SLD resolution to compute the

119



120 A NEW IMPLEMENTATION: METAPROBLOG

failure or success of the goals and in case of success the answer substitutions.
During SLD resolution goals are nested in a very natural way: in order to prove
a particular goal the conjunction of nested goals must be proven. Results of
goals are always used in the same way: failure causes backtracking and on
success we use the answer substitution. Meta-programming makes it possible
to construct some of the nested goals at run-time, but once the Prolog system
has mapped such a callable term to a goal, execution continues as if the query
was known at compilation time. This feature of Prolog allows the programmer
to easily form programs that include higher-order functionality.

For Problog, in order to compute the probability of a query, the inference
methods need to do some bookkeeping about the probabilistic facts used for
proving the query. This bookkeeping interferes with meta-programming and
as a consequence does not directly allow higher-order functionality. Current
probabilistic logic programming languages such as PHA [61], PRISM [73,74],
PITA [68,69], do not support nested inference1. We are presenting an approach
for nested inference. Nested inference in a probabilistic logic programming is
required for implementing higher-order probabilistic calls. Nested inference
in ProbLog interferes with the necessary bookkeeping performed. Moreover,
ProbLog queries can return different kinds of results. For a ground query,
ProbLog can compute its success probability. For a non-ground query, ProbLog
can compute the different answers for the query together with their respective
probabilities.

In the new approach, instead of computing the probability, ProbLog can also
return detailed information about the annotated facts used during the proofs of
the query, for example the corresponding DNF. Therefore, we present a more
general ProbLog predicate that has the form problog_inference(Inference,
Query, ResultType, Result). The variable Inference is used to specify the
used inference method; Query the user’s query to be proven; ResultType the
type of return result we are interested in, for example the probability, or the
corresponding DNF(nested tries); and finally Result is the returned result.

In most Prolog systems programming in the large is achieved through the use
of modules. The ProbLog2010 implementation was not taking into account
modularity. One was unable to write a program that would be encapsulated
by a module: when ProbLog2010 would load it would make assumptions that
all ProbLog programs where situated in the user namespace. Furthermore, it
would assert information about probabilistic facts, and internal structures in
the user namespace. The behaviour of ProbLog2010 implementation would
prevent other Prolog based extensions to cooperate harmonically. ProbLog2011

1We use the term “nested inference” when we refer to a higher-order call that contains
probabilistic information.



WHY PROBABILISTIC META-CALLS 121

implementation fully conforms to the module system of Yap Prolog, allowing
users to make ProbLog programs that lie in different namespaces than the user
namespace. The ProbLog2011 implementation is fully encapsulated, allowing
the user to safely import it as a separate library without interfering with other
Prolog extensions.

Prolog systems base their memory management on the use of an automated
garbage collector. ProbLog2010 creates several structures where the automated
garbage collector of Prolog is not aware of. That results in used data that
remain after the termination of a query. In order to tackle these memory leaks,
ProbLog2011 completely alters the way it manages memory compared with
ProbLog2010. The new approach keeps track of used data structures over each
query and is able to fully remove unnecessary data structures on the termination
of queries.

The main focus of this chapter, is to introduce the ProbLog engine abstraction
used to achieve nested inference and explain how technically it can be used to
implement several different inference methods. We also explain in detail the
new memory management. Then we explain the new higher-order primitives
that we have implemented and illustrate their functionality with some examples.
We finally describe the modularity improvements we made.

Section 6.1 presents the limitation of the existing system and motivates the
need for probabilistic meta-calls. We briefly present the running example in
Section 6.2. Then we propose a way to overcome these limitations by the usage
of ProbLog engines in Section 6.3. Then follows some new primitives and some
examples of their usage in Section 6.4. Section 6.5 presents the ProbLog2011
implementation modularity improvements. A few experiments are presented in
Section 6.6 and finally, Section 6.7 concludes.

This chapter is been based on [45].

6.1 Why Probabilistic Meta-calls

Many real life applications use probabilistic inference to make decisions about
a task. For a probabilistic logic system, to fully support decision making, the
nesting of its inference methods is required. Consider for example the problem
of inferring the semantic similarity between two words. While there are many
approaches to tackle this problem, there is no best one. A reasonable approach
is to infer the word similarity in different independent ways and then use a
combination model. One could represent the synonym relation between words
as a probabilistic graph and write a ProbLog program to infer the probability



122 A NEW IMPLEMENTATION: METAPROBLOG

of two words having the same meaning. This technique does not perform well if
spelling errors appear in the words. One could write another ProbLog program
to find the probability of a spelling error. There are several ways to use these
results in a probabilistic model. The final model that uses probabilistic inference
during probabilistic inference, can be looked at as a higher order model.

The existing ProbLog implementation does not support nested inference.
Moreover, once we start using nested inference we also want to determine at run-
time the actual ProbLog query. We call the proposed extensions probabilistic
meta-calls.

In Prolog, goals are nested all the time as the basic step of SLD resolution
proves a goal by proving the goals in the body of a unifying clause. Moreover,
goals can be constructed as Prolog terms at run-time and then Prolog’s support
for meta-calls transforms the terms into executable goals.

As we have presented, the ProbLog2010 system can compute a probabilistic query
of the form problog_inference(Inference, Query, Result) for a given
Query, with a chosen Inference method and returns the success probability at
Result. Note that during this inference no nested calls to problog_inference/3
are allowed as they interfere with the bookkeeping of the use of probabilistic
facts.

In this chapter we generalise the problog_inference/3 predicate, to allow
nested inference and to support meta-call features. In addition of determining
at run-time the inference method and the query, we also want to specify
what kind of result we want: the success probability of the query, or
a specific representation of the bookkeeping information on which the
probability computation is based. The generalised ProbLog query will call
problog_inference( Inference, Query, ResultType, Result) and these
calls can be nested. We introduce the notion of a ProbLog engine that allow us
to implement the general problog_inference/4 meta-predicate.

6.2 Example

To illustrate the features of this chapter we use the example ProbLog program
in Figure 6.1. The program encodes a probabilistic graph which is a typical
example in ProbLog. In this type of programs the usual queries are for the
probability that a path exists between two nodes in the graph; or a query that
contains an unbound variable for a node asks what the probability that a path
exists which starts or ends at the node that was given as an input; finally, one
can ask what is the probability that a path exists in the graph by leaving both



TECHNICAL DETAILS 123

Probabilistic Facts:

0 . 3 : : edge (1 , 2 ) .
0 . 7 : : edge (1 , 3 ) .
0 . 4 : : edge (2 , 3 ) .
0 . 8 : : edge (3 , 4 ) .
0 . 6 : : edge (3 , 5 ) .
0 . 2 : : edge (4 , 5 ) .

Background Knowledge:

path (X, Y):−
edge (X, Y) .

path (X, Y):−
edge (X, Z) ,
Y \== Z ,
path (Z , Y) .

1

2
0.3

30.7

0.4
4

0.8

50.6

0.2

Figure 6.1: An example of a probabilistic graph and the corresponding ProbLog
program.

arguments unbound. In the ProbLog2010 implementation it is not possible
to query about the answers of a query, thus with which binding the query
succeeded.

6.3 Technical Details

Before describing the ProbLog engine, we want to point out that for the exact
inference of Section 2.3, ProbLog collects the probabilistic facts used in a success
branch of the SLD tree of the query in a list (a so-called explanation or proof),
and also collects all explanations as a DNF, which is typically represented
by a trie. This trie is then transformed into a ROBDD in order to compute
the correct success probability. On the other hand, program sampling as in
Section 2.4.1 samples a possible world which is kept in a list2 and counts the
successful derivations.

Some shortcoming of the previous system are: the lack of intermix different
inference methods; each inference method needs its own SLD-resolution kernel;
the difficulty to use alternative data structures and to extend or modify current
functionality. We identified the need for an abstract framework that provides
a common SLD-resolution kernel, that can be instantiated to realise different
inference methods and/or different design options.

2Or an equivalent data structure like an array.



124 A NEW IMPLEMENTATION: METAPROBLOG

6.3.1 ProbLog Engine

The ProbLog engine is an abstraction that allows dynamic modifications of
Prolog’s resolution to uniformly implement the different bookkeeping methods
needed by the different inference methods. By parametrisation of the ProbLog
engine, one parametrises the resolution.

The basic functionality of the parametrised ProbLog engine is the resolution of
the query together with the bookkeeping about the probabilistic facts that are
used during this execution. By setting the parameters of the ProbLog engine,
different instances are created that correspond to different inference methods
and to different result types.

The difference with the ProbLog2010 implementation is the parametrised design,
but also the organisation of the data-structures of the ProbLog engine. Each
instance of the ProbLog engine has its own unique identifier, which is used
when working with instance specific data. This instance-based organisation is
necessary for the nested inference.

In the rest of this section we explain the relevant parameters of the ProbLog
engine and how the nesting is supported.

6.3.2 Parameters of the ProbLog Engine

In order to define an instance of a ProbLog engine that implements an inference
method, we specify two “continuation” predicates that deal with the construction
of the explanations and the construction of the DNF. We also decide about
the kind of data structures that are used to represent the explanations and the
DNF. The instance of the ProbLog engine uses two “registers” to refer to the
two data structures.

More specifically, we use two “continuation” predicates that are used during the
SLD resolution to implement the adequate bookkeeping for the probabilistic
facts, which are called annotated facts in this context: a fact annotated with a
probability is a probabilistic fact3. Both predicates are used to perform inference
specific tasks and are different from inference method to inference method.

The first dynamic “continuation” predicate is continuation_af/2 (af stands
for annotated fact) which is called every time the proven goal is an annotated
fact. The first argument is the unique identifier of the annotated fact and

3We use annotated facts instead of probabilistic facts, for the low level implementation,
in order to support different type of annotations such as the ones used in Decision Theory
ProbLog [86] and Algebraic ProbLog [38] extensions.



TECHNICAL DETAILS 125

the second argument the annotation of the fact, typically its probability. The
second dynamic “continuation” predicate is continuation_explanation/0
and is called every time the SLD resolution reaches a successful derivation.
In addition to the two predicates, each instance of a ProbLog engine has two
“registers”. These registers contain a reference to the instance specific data
structures in which the information about the usage of annotated facts is
collected. The first register (actually the referred data structure) is used by
continuation_af/2 and the second by continuation_explanation/0. These
registers are part of the state of the ProbLog engine that has to be saved and
reset for nested inference.

6.3.3 Inference Method: Exact

In Figure 6.2(a) we present the parametrisations that implements the exact
inference method. The continuation_af/2 predicate is responsible for
collecting the identifiers of the used annotated facts in a list, i.e., the ID of
the used annotated fact is added to the current explanation (referred to by the
first register). The continuation_explanation/0 predicate is responsible for
collecting the explanations in a trie: it adds the current completed explanation
to the trie (referred to by the second register). The first register refers to the
current (partial) explanation, and the second to the trie under construction.

6.3.4 Inference Method: Program Sampling

In Figure 6.2(b) we present the parametrisations that implement the program
sampling inference method which we briefly explained in Section 2.4.1.
For program sampling, the continuation_af/2 predicate is responsible for
checking whether the annotated fact or its negation is in the current sampled
possible world, and if not to sample it and add it or it’s negation. The
continuation_explanation/0 predicate does not need to do anything. In
this example we represent a partial possible world by a list but it could be
represented by an array or another data structure. The first register refers to
the current partial possible world. The equivalent bookkeeping for the second
register would be the complete possible world, but because it is not required to
sample the complete possible world we only need and keep a unique identifier
which refers to the sample.



126 A NEW IMPLEMENTATION: METAPROBLOG

Continuation_af = (continuation_af(ID, _Probability):-
add_to_explanation(ID)),

Continuation_explanation = (continuation_explanation:-
add_to_trie(completed)),

problog_engine_init(exact,
continuations(Continuation_af,

Continuation_explanation),
state(list, trie)).

(a) ProbLog engine parametrisation for exact.

Continuation_af = [(continuation_af(ID, _Probability):-
in_possible_world(ID, Result),
!, call(Result)),

(continuation_af(ID, Probability):-
sample(Probability, Result),
add_possible_world(ID, Result),
call(Result))

],
Continuation_explanation = (continuation_explanation),
problog_engine_init(program_sampling,

continuations(Continuation_af,
Continuation_explanation),

state(list, identity)).

(b) ProbLog engine parametrisation for program sampling.

Figure 6.2: Modifying the SLD resolution for exact, program sampling inference
methods.

6.3.5 ProbLog Memory

Together with the ProbLog engine strategy we also redesigned the way
ProbLog handles memory. There where several drawbacks in the ProbLog2010
implementation. Most characteristic was that plenty of execution related data
would not be properly destroyed after the faulty termination of a query. Similarly,
even a correct termination of a query could not ensure that all related data had
been removed from memory. In order to address these issues the ProbLog2011
implementation creates a memory space for each ProbLog engine. Together
at the destruction of the ProbLog engine the ProbLog garbage collector is
responsible to remove all used data from memory.

To structure ProbLog’s memory more efficiently we distinguished the memory



TECHNICAL DETAILS 127

into two different types, static memory and dynamic memory. ProbLog’s static
memory contains data that are usually constructed by the compilation of a
ProbLog program and are not affected by the execution of a query. For example,
the annotations of facts are all stored in ProbLog’s static memory. The focus
of this memory is to provide fast access to the data. The second and more
interesting part is ProbLog’s dynamic memory.

All data that are stored to the dynamic memory are marked to belong to a
specific ProbLog engine. This is easily achieved by adding to the stored data
the ProbLog engine identifier. Obviously, data for the dynamic memory can
only be produced when a ProbLog engine is active. Furthermore, any memory
access of data must belong to the same ProbLog engine that stored it. In this
way, data of a ProbLog engine are protected from another ProbLog engine. This
is a crucial feature for meta calls and for properly using the built-in tabling
mechanism.

The most obvious benefit of this approach is, that it is easy to reclaim used
memory from a ProbLog engine after it is destroyed. In that way we can ensure,
both for the proper or faulty termination of a query, that no traces of the
execution are left in memory. We need to mention that the built-in tabling
mechanism does not permit to partially abolish tabled results. To overcome
this limitation and to ensure that all tables are cleared, the ProbLog system
schedules the abolishment of tabled results after the termination of all nested
engines. After the termination of a query, a ProbLog finalization step is called
which fully “cleans” the memory. This finalization step optionally triggers the
host Prolog garbage collector in order to ensure that non referred Prolog terms
are removed too.

Prolog uses an automated memory management through the use of a garbage
collector. The implementation of ProbLog uses several structures that Prolog’s
garbage collector cannot automatically remove. For example, it asserts facts,
creates tries, arrays or generates records. Furthermore, the unpredictable
nature of a garbage collector generates latency and can cause several problems.
ProbLog’s finalization step, instead of being triggered periodically, is activated
at the termination of each engine. By also triggering Prolog’s garbage collector,
we reduce the influence of terminating a query on the performance of the next
query.

The presented strategy showed significant improvement especially in the ability
of the system to call several queries. Optionally, the garbage collector can
be configured to keep information which future queries can reuse in order to
save execution time. This implemented but experimental feature potentially
improves the execution of a query by reusing previous results, similarly to
tabling, instead of recalculating the query. Also the feature allows the reuse of



128 A NEW IMPLEMENTATION: METAPROBLOG

tabled calls from compatible engines extending the tabling benefits over meta
calls. Programs that call several times similar queries or sub-parts of a query,
(e.g., for learning) can have huge benefits from an approach like this.

6.3.6 Nesting ProbLog Engines

The nesting of ProbLog engines, requires a suspension/resumption mechanism
for which we use a stack. The active ProbLog engine is called the current
engine.

When a new engine is initialised, it first pushes the current engine on the top of
the stack and then becomes the active engine. When an engine has finished all
its computations, it ends by popping the stack of engines.

When pushing an engine on the stack, we save the engine parameters:
continuation_af/2, continuation_explanation/0, the two registers, and
the unique identifier of the engine. This information is sufficient to implement
the nesting of engines using a stack discipline. Note that the information kept
in the stack is related to the probabilistic bookkeeping.

6.3.7 Calling the ProbLog Engine

Probabilistic inference in ProbLog is invoked through problog_inference/3.
Given the inference method and the query one retrieves the probability that the
query succeeds. When the given query is non-ground, problog_inference/3
computes as success probability the success probability of all the instances of
the query without binding the variables. Later at Section 6.4.3 we present a new
inference method that returns the answers through backtracking by binding the
non-ground variables.

An instance of ProbLog engine is used to execute the problog_inference/2,
problog_inference/3, and problog_inference/4 predicates. The four
arguments of the predicate problog_inference/4 are Inference, Goal,
ResultType, Result. The argument Inference is used to define which
ProbLog inference method is used and its possible values are pure, exact,
program_sampling, and current, where pure denotes that the engine behaves
as pure Prolog and current instructs the engine to use the same inference
method as was being used. The argument Goal denotes the goal that needs
to be proved by the call. ResultType denotes that we are interested in the
success probability of the goal or in the explicit representation of the collected
information and its possible values are probability and info. Finally, the



NESTED INFERENCE 129

argument Result is the returned probability or the detailed information that
the engine returns.

The following predicates problog_inference/3 and problog_inference/2 are
used as syntactic sugar.

problog_inference(Inference, Goal, Probability):-
problog_inference(Inference, Goal, probability, Probability).

problog_inference(Goal, Probability):-
problog_inference(current, Goal, probability, Probability).

6.4 Nested Inference

With our ProbLog engine based approach we can realise several interesting
extensions as is described in the following subsections. Nested inference allows
us to compute the success probability of a new child query that was possibly
defined at run-time, and use the success probability during the execution of
the parent ProbLog query. The nested inference allows us to interleave any
combination of different inference methods or inference tasks. Furthermore,
returning the explicit information instead of the success probability can be used
to formulate the counterpart of the \+/1 predicate of Prolog. Finally, we use
our approach to support non-ground queries.

6.4.1 Nested Inference Returning Success Probability

Our approach allows us to perform nested inference. The nested inference
computes the correct results as every call to problog_inference suspends the
previous ProbLog engine, starts a new independent ProbLog engine and uses
the result when the previous one is resumed. In the example of Figure 6.3,
ProbLog inference is used to decide which route will be taken.

6.4.2 Nested Inference Returning Information & ProbLog
Negation

The implementation of negation as failure in Prolog uses a meta-call as shown in
Figure 6.4(a). ProbLog negation [36] is a more complex task due to bookkeeping
issues. In the ProbLog2010 implementation, probabilistic facts could be easily
negated as their integration is very simple and, as presented in Section 4.9.2,
also tabled goals can be negated, but no other goals. Our approach allows to



130 A NEW IMPLEMENTATION: METAPROBLOG

?- Input =..., problog_inference(exact, model(Input), Psucc).

model(Input):-
some_computation(Input, From),
decide_route(From).

decide_route(From):-
problog_inference(path(1, From), P),
(P < 0.3 ->

path(From, 5)
; P < 0.6 ->

path(From, 4)
;

path(From, 3)
).

Figure 6.3: An example of inference within inference using the ProbLog program
of Figure 6.1.

negate all probabilistic goals, namely goals that use in their proofs probabilistic
facts.

Different inference methods require different implementations of negation. We
illustrate the difference using the exact and program sampling inference methods.

For exact inference, proving the negation of a probabilistic fact means to add
to the explanation the complementary probabilistic fact4. As probabilistic facts
are represented by Boolean variables, we simply mark them negated. This
negation clearly does not alter the representation of the DNF formula.

The success probability of a probabilistic goal Goal is computed from
a representation of its corresponding DNF. In order for the negation of
a probabilistic goal problog_not(goal) to succeed, the negation of the
corresponding DNF should hold or the corresponding CNF should hold.

Now consider the contribution of the subgoals to the final DNF: their
corresponding annotated facts are scattered over the different explanations in
the DNF. If we allow problog_not in ProbLog, we need to do something special
to incorporate the CNFs in a correct way. Moreover the calls to problog_not
can be nested. Our solution uses the suspend/resume mechanism to compute
the DNF for the negated probabilistic goal. We use nested tries to represent the

4Probabilistic facts are represented as random variables, negating them results to the
complementary random variable with probability 1− P .



NESTED INFERENCE 131

’\+’(Goal):-
call(Goal), !, fail.

’\+’(_).

(a) Negation as Failure in Prolog.

problog_not(exact, Goal):-
problog_inference(current,Goal,info,DNF),
continuation_af(not(DNF), _).

problog_not(program_sampling, Goal):-
\+ Goal.

(b) ProbLog Negation for exact and program sampling inference methods.

Figure 6.4: Negation

DNF: by collecting the explanations of the subgoals separately we store them in
nested tries (as used for tabling, see [42,43] and Chapter 3) and in these nested
tries we can indicate which parts need to be negated.

In the case of program sampling, things are very different. Instead of proof
collection, we count in how many samples the query succeeds. In the process of
constructing a possible world, we sample each probabilistic fact that we need to
prove. At each sample, a probabilistic fact either succeeds or fails. Negating a
probabilistic fact means inverting success with failure and failure with success.
Similarly, a probabilistic goal succeeds or fails depending on the possible world
sampled, and its negation again means the inversion on success and failure.
For that reasons one can use the negation as failure as defined in Prolog for
ProbLog programs when doing program sampling.

ProbLog negation has many uses in modelling. First of all it can be used to
calculate the probability of a query not succeeding. Further on, it has been
used to model annotated disjunctions which are needed for many probabilistic
models such as a hidden Markov models, Bayesian networks and other. Some
example uses are shown in Figure 6.5.

6.4.3 Nested Inference Returning Answers & ProbLog An-
swers

Finding all the answers of a non-ground query in Prolog is done through
backtracking. In ProbLog, we also need to calculate the success probability of
the query having a particular answer.



132 A NEW IMPLEMENTATION: METAPROBLOG

% This example encodes a coin toss.
0.50::heads(_Number).
toss(Number, heads) :- heads(Number).
toss(Number, tails) :- problog_not(heads(Number)).

% This example encodes the following Sprinkler/Rain
% Bayesian network from wikipedia.

SPRINKLER
RAIN T F

F 0 . 4 0 . 6
T 0 . 0 1 0 . 9 9

SPRINKLER

GRASS WET

RAIN

GRASS WET
SPRINKLER RAIN T F

F F 0 . 0 1 . 0
F T 0 . 8 0 . 2
T F 0 . 9 0 . 1
T T 0 . 9 9 0 . 0 1

RAIN
T F

0 . 2 0 . 8

0.20::rain.
0.01::sprinkler_on(rain).
0.40::sprinkler_on(no_rain).
0.80::grass_wet(rain).
0.90::grass_wet(sprinkler).
0.99::grass_wet(both).
sprinkler :- rain, sprinkler_on(rain).
sprinkler :- problog_not(rain), sprinkler_on(no_rain).
grass_wet :- problog_not(sprinkler), rain, grass_wet(rain).
grass_wet :- sprinkler, problog_not(rain),grass_wet(sprinkler).
grass_wet :- sprinkler, rain, grass_wet(both).

Figure 6.5: Example uses of ProbLog negation



NESTED INFERENCE 133

problog_answers(Inference, Goal, P):-
init_inference(pure_prolog_engine),
call(Goal),
problog_inference(Inference, Goal, P),
(suspend_engine; (resume_engine, fail)).

Figure 6.6: Simplified ProbLog Answers

We implemented this task by using Prolog to find the answers of the query.
Once we have an answer, we have a grounding of the query and we can do
probabilistic inference for this ground query. A simplification of the actual code
implementing ProbLog answers is shown in Figure 6.6. With this extension we
can return answers to non-ground queries tupled with their success probability.
We call this extension ProbLog answers.

The call(Goal) goal is using Prolog’s backtracking mechanism to enumerate
all possible answers by fully ignoring any probabilistic information related with
the query. When an answer is found, problog_inference(Inference,Goal,P)
uses the appropriate inference method to calculate the probability of the answer.

This simplified code calls problog_inference/3 also when a particular answer
occurs again. This inefficiency is solved easily by memoizing the calculated
answers.

We need to add some functionality to the stack discipline. After dealing with
one answer, we need to re-activate the parent engine5 for continuing the previous
goal, but when execution backtracks back to call(Goal) we need to again
activate the pure Prolog engine that returns us the answers. To solve this we
implemented a special suspension mechanism which swaps the order of engines
in the stack.

Finally, the last difficulty is that the different engines need separate garbage
collectors which must be triggered when an engine is not needed anymore,
thus we need a mechanism to tell us when the call(Goal) is completed or the
user commits to an answer6. This problem is solved with the help of YAP’s
setup_call_cleanup/3 built-in predicate.

ProbLog answers has many uses. Non-ground queries are needed to find which
nodes are connected in probabilistic graphs and with which probability. One can
use it in combination with other higher-order calls such as Prolog’s findall/3,
forall/2, etc. answering even more complex queries such as which node is more

5The outer engine that called ProbLog answers.
6When for example the choice points are cut.



134 A NEW IMPLEMENTATION: METAPROBLOG

connected_node(From, To, P):-
problog_answers(path(From, To), P).

find_most_probable_node(From, MaxNodeTo, MaxP):-
findall(To-P, problog_answers(path(From, To), P), Tuples),
findmax(Tuples, MaxNodeTo, MaxP).

Figure 6.7: Example uses of ProbLog answers

probable to be connected with a node in a probabilistic graph. See example in
Figure 6.7.

6.5 Modularity

It is easy to argue that a module system is an essential feature of a programming
language. It facilitates the easy safe reuse of existing code and the development
of general purpose libraries. Yap Prolog has a module system [71] based on the
Quintus Prolog module system [29] and as ProbLog has been developed as an
extension of Yap Prolog it should at least abide by its module system.

The ProbLog2010 implementation violates the rules of the module system,
resulting in programmers being unable to write modular ProbLog programs.
Furthermore, the ProbLog2010 implementation compiles code without taking
into account other modules or other possible Prolog extensions that might be
working in together, creating several conflicts. The ProbLog2011 implementation
takes in account these issues and addresses the underlying problems of the
existing implementation.

In addition of achieving full modularity for the new ProbLog we also
suggest and implement the extension of the module system with four new
predicates that are useful in the probabilistic domain and especially for
machine learning applications. The new predicates namely: problog_import/2,
problog_forget/2, problog_import_only/2, problog_forget_all/1. They
are inspired by the example set system of hipP Prolog [31] which was extensively
used in the TILDE/ACE data mining system [6,7].

The idea behind hipP’s example set system was to be able to load/unload
different example sets (Prolog facts) to make more clear and modular
experiments for data mining. Unfortunately, in Yap Prolog it is not possible
to abolish compiled facts. But with the predicates problog_forget/2 and



EXPERIMENTS 135

problog_forget_all/1 we restrict the access of compiled probabilistic facts
from a module.

Figure 6.8 presents a modular ProbLog program. At Figure 6.8(a) the ProbLog
background theory is shown; at Figure 6.8(b), Figure 6.8(c) two different example
sets are presented and finally, Figure 6.8(d) illustrates how the modules are
used to execute two different experiments which each use a different dataset.

The predicate problog_import/2 is responsible for importing one or more
predicates from a module giving access to the module which it was called from.
Predicate problog_import_only/2, ensures that the specified predicates will
be loaded only from the specified module. The predicate problog_forget/2
removes one or more imported predicate from a specific module denying access to
the calling module and similarly problog_forget_all/1 removes the specified
imported predicates regardless the module that they where imported from. It
is important to note that the module system of Prolog has precedence over the
four ProbLog predicates. For that reason one must not import any predicates
while loading a module otherwise the imports override the functionality of the
four presented predicates.

6.6 Experiments

Our experiments aim to measure the meta-call overheads. For the experiments
we used a prototype7 implementation of ProbLog that is implemented using the
ProbLog engine approach. All the experiments are performed on an Intel Core 2
Duo CPU at 3.00GHz with 2GB of RAM memory running Ubuntu 8.04.2 Linux
under a usual load using Yap 6.2.0 [71].

To measure the overhead we used a typical ProbLog application namely an
Alzheimer graph from [37] with a path/2 predicate that defines paths between
nodes; we consider the pair of nodes ’HGNC_582’, ’HGNC_983’ which is a
query that has both many failing and succeeding derivations. We executed
three different benchmarks, all of them nested with meta-calls exactly 10
times. The first benchmark is performing all the nesting first and then
the goal is proved. The query for the first benchmark is of the form:
exact((exact((exact((...)), G1)), G1)), where exact/2 is the abbreviation for
problog_inference(exact,Goal,_P). This benchmark measures the overhead
of the created engines. For these experiments we used a different sample taken
from the same graph as the ones used in the experiments for Chapters 3 and 4.

7The prototype implementation is available at: https://lirias.kuleuven.be/bitstream/
123456789/316482/3/metaproblog.tar.gz

https://lirias.kuleuven.be/bitstream/123456789/316482/3/metaproblog.tar.gz
https://lirias.kuleuven.be/bitstream/123456789/316482/3/metaproblog.tar.gz


136 A NEW IMPLEMENTATION: METAPROBLOG

:- module(path, [path/2]).
path(X, Y):-

edge(X, Y).
path(X, Y):-

edge(X, Z),
Y \== Z,
path(Z, Y).

(a) ProbLog background knowledge.

:- module(small_graph, [edge/2]).
0.3::edge(1, 2).
0.7::edge(1, 3).
0.4::edge(2, 3).

(b) The probabilistic facts of the small graph shown in Figure 2.1.

:- module(directed_graph, [edge/2]).
0.3::edge(1, 2).
0.7::edge(1, 3).
0.4::edge(2, 3).
0.8::edge(3, 4).
0.6::edge(3, 5).
0.2::edge(4, 5).

(c) The probabilistic facts of the example graph shown in Figure 6.1.

:- use_module(problog).
:- use_module(path, [path/2]).
:- use_module(small_graph, []).
:- use_module(directed_graph, []).

experiment1:-
problog_forget(directed_graph, [edge/2]),
problog_import(small_graph, [edge/2]),
problog_exact(path(1,3), P).

experiment2:-
problog_forget(small_graph, [edge/2]),
problog_import(directed_graph, [edge/2]),
problog_exact(path(1,5), P).

(d) The definition of two different experiments using modules.

Figure 6.8: A ProbLog program using the module system to separate the
background, two different data sets and the experiments.



CONCLUSIONS 137

The second benchmark has the goal before the nesting. In this way, an engine
consumes resources before starting a nested engine. To avoid executing the
nested call after each successfull derivation of the goal, path(’HGNC_582’,
’HGNC_983’), we transform the goal into ((path(’HGNC_582’,’HGNC_983’),
fail);true)8. The query for this benchmark is of the form: exact((G2,
exact((G2, exact((...)))))). This benchmark measures the the impact of
previously proven goals to newer engines.

Our final benchmark is the combination of the two above. The query is of the
form: exact((G2, exact((G2, exact((...)), G1)), G1)).

Executing the presented queries with no nested meta-calls we achieve the
following execution times: 19069, 12080, 31191 milliseconds respectively for the
first, second and third query.

The results of our benchmarks are presented in Table 6.1. The left hand side
of the table presents the average times of 10 executions for each call at each
nesting. The right hand side presents the average time any nested goal took
at each execution. First thing we notice is all our averages are very close and
that the standard deviation is low. From this observation we can safely claim
that the depth of nesting does not impose any significant loss of time. On the
other hand we do notice a very small overhead around 1% going from no nested
calls to any nested call. The path query we use is a representative ProbLog
path query. Furthermore, from the nesting desing we know that the overhead
for nesting ProbLog queries does not vary among different queries. So we can
safely state that a similar overhead should appear regardless the query.

6.7 Conclusions

In this chapter we briefly presented the ProbLog2011 implementation based on
the ProbLog engines strategy. This implementation is able to perform nested
inference. Furthermore, it achieves modularity and properly performs the
needed memory management. The underlying idea is to abstract the required
information for the probabilistic bookkeeping in a parametrised ProbLog engine.
By storing the engines in a stack, we achieve probabilistic meta-calls. We
introduced the general probabilistic query problog_inference/4, which allows
us to perform nested inference and, further more, we presented how to implement
problog_not/1 and problog_answers/3 with meta-calls. We also briefly
illustrated the functionality of meta-calls in probabilistic modelling. Also
we presented a more structural way to handle memory, which ensures no

8This will also reduce somewhat the work load but still retain it suitable for our experiment.



138 A NEW IMPLEMENTATION: METAPROBLOG

Query: exact((exact((exact((...)),G1)),G1))
Depth Avg Time Standard Run Avg. Time Standard

(msec) Deviation (msec) Deviation
1 19347.7 191.72 1 19447.2 125.89
2 19281.3 120.29 2 19382.4 312.21
3 19380.7 202.51 3 19287.2 216.96
4 19279.2 114.64 4 19253.2 85.79
5 19318.3 215.61 5 19231.9 144.35
6 19240.1 155.73 6 19226.2 190.78
7 19435.6 175.61 7 19561.5 103.54
8 19268.2 99.21 8 19320.0 140.81
9 19338.0 112.58 9 19285.8 89.11

10 19361.3 340.75 10 19255.0 91.08
Query: exact((G2,exact((G2,exact((...))))))
Depth Avg Time Standard Run Avg. Time Standard

(msec) Deviation (msec) Deviation
1 12202.5 124.22 1 12252.6 154.03
2 12301.2 145.41 2 12269.5 73.19
3 12269.2 130.31 3 12275.9 141.36
4 12294.7 134.93 4 12240.8 108.59
5 12256.9 163.27 5 12218.3 188.52
6 12189.6 152.83 6 12272.3 176.31
7 12169.9 140.61 7 12259.7 196.27
8 12148.4 134.18 8 12234.1 141.92
9 12312.4 119.22 9 12257.6 165.59

10 12346.9 95.93 10 12210.9 76.06
Query: exact((G2,exact((G2,exact((...)),G1)),G1))
Depth Avg Time Standard Run Avg. Time Standard

(msec) Deviation (msec) Deviation
1 31509.1 250.17 1 31494.3 300.57
2 31749.2 362.68 2 31444.8 205.96
3 31667.5 242.61 3 31529.5 138.27
4 31416.1 121.02 4 31406.4 218.04
5 31379.6 145.27 5 31453.1 363.23
6 31331.7 270.83 6 31680.6 433.29
7 31930.7 301.64 7 31562.7 121.24
8 31466.0 322.14 8 31686.2 330.58
9 31588.4 121.49 9 31482.0 203.66

10 31331.8 108.03 10 31630.5 397.61

Table 6.1: Experimental results.



CONCLUSIONS 139

garbage remains after the termination of a query. Finally, the ProbLog2011
implementation is module aware and abides to the rules of Yap Prolog’s module
system. As a result of that the ProbLog2011 implementation is easier to be
used as a library and possible to be used for programming in the large. To
verify our approach for nested inference, we performed some experiments and
measured an overhead of approximately 1% for our strategy. This overhead is
independent from the type of query.





Chapter 7

Applications

In this chapter we present two applications that use some of the features we
presented. Both applications would have been very difficult to address without
the added features. The difficulties lie both in computational and expressive
power.

The two applications presented were motivating examples for ProbLog both in
order to expand the system and in order to stress test its applicability in real
life. The first application as we will present is a very difficult computationally
task. In order to solve the problem a first attempt was made using external
from ProbLog tools [88]. In order to tackle the newly discovered difficulties we
extended ProbLog’s tabling to fully handle cycles and abide to the well found
semantics. Further, we implemented some syntactic sugar to define different
atoms which are the negation of each other. For example: male and female.

The second application was a stress test for ProbLog both in expressive power
and in scalability. We analysed a network protocol using ProbLog to model
its behavior. The challenges lied both in the modelling of the protocol as in
making a scalable analysis application. Using several of ProbLog’s features such
as tabling, general negation and dynamic probabilistic facts, we implemented
a scalable analysis application that provides interesting extra information in
addition of that from the state-of-the-art simulation techniques provided until
now.

141



142 APPLICATIONS

7.1 First Order ProbLog

The first application of the features that we presented previously, was to extend
the expressibility of ProbLog to full first order logic. This section presents
joint work with Maurice Bruynooghe, Angelika Kimmig, Bernd Gutmann,
Joost Vennekens, Gerda Janssens and Luc De Raedt published in [8,88]. The
main contributions of the author are the implementation of the necessary
ProbLog extensions to handle first order logic such as handling cycles with
negation, providing syntax for marking atoms as the negation of each other,
automatically calculating the needed normalization factor. As well as performing
the experimental part. The paper [8] is directly presented here.

7.1.1 Introduction

A problem for languages that combine probability theory with expressive
logical formulas is that probabilistic and logical knowledge might interact
in complex ways, leading to a semantics that is too complicated to understand,
and inference/learning that is too slow to be of practical use. Initial research into
Probabilistic Logic Learning therefore mainly focused on adding probabilities
to restricted logical languages, such as definite clause logic [33, 73]. Since then,
the trend has been to extend the expressibility of the logical language, e.g., to
normal clauses [63]. In the past few years there has been a lot of attention to
Markov Logic [67], a probabilistic logic used in statistical relational learning [21].
Markov Logic consists of a set of weighted logical formulas each of which can be
regarded as a soft constraint. If such a soft constraint is violated by a possible
world, the probability of the world does not become zero, as in first order logic,
but gracefully decreases. The higher the weight, the harder the constraint
becomes, with infinite weights corresponding to the usual logical interpretation.
While Markov Logic has been very successful as a framework for statistical
relational learning and has been applied in several challenging applications,
such as natural language processing and entity resolution, Markov Logic models
are hard to interpret and not really suitable as a knowledge representation tool.
The reason is that the weights cannot directly be interpreted as probabilities
and also that the probability of a formula depends non-linearly on all weights
in the theory.

This section contributes a new formalism, called First Order ProbLog, using the
Markov Logic idea of soft constraints, but in which each first order formula is
annotated with the probability that a grounding of the formula – independently
of anything else – holds. This gives a logic very similar to that of Nilson [52].
The questions arise whether inference is feasible and how one can cope with



FIRST ORDER PROBLOG 143

inconsistency. These questions are explored in this section. Using ideas of
Stickel [81], we translate a theory in our logic into a ProbLog program [35] that
also includes clauses for inferring inconsistency (with head false). We show how
to use the ProbLog machinery to assign a minimal and a maximal probability
to the truth of the query while taking consistency requirements into account.

7.1.2 First Order ProbLog and its Semantics

A ProbLog program [35] consists of a set of facts annotated with probabilities –
called probabilistic facts – together with standard definite clauses that can have
positive and negative probabilistic facts in their body. The semantics is defined
through belief sets which correspond to least Herbrand models of the clauses
together with subsets of the probabilistic facts. If fact fi is annotated with pi,
fi is included in a belief set with probability pi and left out with probability
1 − pi. The different facts are assumed to be probabilistically independent,
however, negative probabilistic facts in clause bodies allow the user to enforce a
choice between two clauses.

In this section we define FOProbLog, a language similar to ProbLog, but using
full first order logic formulas instead of definite clauses. A FOProbLog statement
is of the form ∀x.Ψ1 : α1 ∨ . . . ∨Ψn : αn where the αi are non-zero probabilities
with sum 1 and the Ψi are first order formulas with free variables included
in x. If Ψi is true, it can be omitted (in which case the sum of the probabilities
becomes smaller than 1); if α1 = 1, it can be omitted as well. These formulas
express independent beliefs about the world. Each belief is disjunctive: we
believe that for each grounding of x exactly one of a number of possibilities
holds, but we don’t know which one, so we attach a probability to each of the
disjuncts. We can now have a number of different "complete belief sets", which
are formed by believing precisely one disjunct from every grounded disjunction
according to its probability.

Ex. 1. Our running example uses a domain with a single constant Floris and
theories consisting of subsets of the following formulas

(1) male(Floris) : 0.4 ∨ female(Floris) : 0.6

(2) ∀x.(cs(x)→ male(x) : 0.8) ∨ (cs(x)→ female(x) : 0.2)

(3) ∀x.¬(male(x) ∧ female(x))

(4) cs(Floris)

If the theory contains only formula (1), expressing a prior belief about the name
Floris being male or female, each complete belief set either includes the fact



144 APPLICATIONS

male(Floris) (with probability 0.4) or the fact female(Floris) (with probability
0.6).
After adding the second formula, each complete belief set also contains one
of cs(Floris) → male(Floris) and cs(Floris) → female(Floris). One of
the resulting four belief sets, with probability 0.8 · 0.6, contains the formulas
female(Floris) and cs(Floris)→ male(Floris).
Adding the third formula to the theory, the extension of the latter belief set
allows one to infer ¬male(Floris) and ¬cs(Floris).

Belief sets in FOProbLog can be inconsistent. One should assign zero probability
to such belief sets. With s a total choice and c(s) expressing consistency
of s, P (s|c(s)), the normalized probability of a total choice s, is given by
P (s) · P (c(s)|s)/P (c(s)) where P (c(s)|s) is either 1 or 0.

Ex. 2. Using all four formulas of Example 1 makes the belief set with
formulas female(Floris), cs(Floris) and cs(Floris)→ male(Floris) (as well
as another one) inconsistent. The probability of an inconsistent belief set is
0.8·0.6+0.4·0.2 = 0.56. Normalizing the probabilities of the two consistent belief
sets, we obtain 0.4 · 0.8/(1− 0.56) = 0.73 for the one containing male(Floris)
and 0.27 for the one with female(Floris). Using all our independent formulas
about maleness, we thus derive that Floris is more likely male than female,
contrary to the belief about the name Floris.

While the above example can be modeled in ProbLog, the probabilities inferred
there will have a different meaning, as ProbLog adopts a different view on
consistency. In a ProbLog program containing clauses male(Floris). with
probability 0.4 andmale(X):-cs(X). with probability 0.8, those clauses together
define the male predicate and, by closed world assumption, also ¬male, the
equivalent of female. There are 4 different belief sets, one with both clauses,
two with one clause and one without clauses, but none with an inconsistent belief
set where Floris is both male and not male. The probability of male(Floris)
is thus 0.8 + 0.4− 0.8 · 0.4 = 0.88 instead of 0.73.

In the rest of the section, we use a more basic form of FOProbLog which,
similarly to ProbLog, distinguishes probabilistic facts from the logical part of a
theory.

Definition 14 (FOProbLog theory). A FOProbLog theory T = (PF,Φ)
consists of a probabilistic part PF and a logical part Φ. Its predicates are split
into sets ΣP and ΣL of probabilistic and logical predicates, respectively. PF
contains probabilistic facts of the form pf(x) : α, with α a non-zero probability,
x n different variables and pf/n ∈ ΣP . Each ground instance pf(x)θ of such a
fact is true with probability α, and is not a grounding of any other probabilistic
fact. Different instances (of the same or of different probabilistic facts) are



FIRST ORDER PROBLOG 145

probabilistically independent. An assignment of a truth value to a ground
instance of a probabilistic fact is called atomic choice, an assignment to all of
them a total choice. The probability prob(s) of a total choice s is the product
of all αi for true instances pfi(x)θ : αi and all (1 − αj) for false instances
pfj(x)θ : αj. The logical part Φ of the theory consists of a set of implications
∀x.P (x)→ F (x), where F (x) is a first-order formula with free variables x using
only predicates from ΣL, and P (x) is a conjunction of literals with predicates
from ΣP 1.

Ex. 3. Formulas (1)-(4) of Example 1 are now written as

(1a) pf_mn(Floris) : 0.4

(1b) pf_mn(Floris)→ male(Floris)

(1c) ¬pf_mn(Floris)→ female(Floris)

(2a) pf_cs(x) : 0.8

(2b) ∀x.pf_cs(x)→ (cs(x)→ male(x))

(2c) ∀x.¬pf_cs(x)→ (cs(x)→ female(x))

(3) ∀x.¬(male(x) ∧ female(x))

(4) cs(Floris)

The probabilistic part of formulas (3) and (4) is true and omitted.

To define the semantics of our logic, we fix a domain D and consider the set
WD of all possible worlds in D, i.e., each I in WD is an interpretation for the
vocabulary of the theory with D as its domain; in particular I assigns true or
false to each probabilistic and each logical ground atom.

Notation 1. In what follows, we use I |= s with I an interpretation and
s a total choice to express that I makes the same truth assignments to the
probabilistic facts as s. We often say I extends s.

Definition 15 (Semantics). Let T = (PF,Φ) be a theory and D a domain.

Let Cons be the set of total choices s such that there exists an interpretation
I that extends s (I |= s) and is a model of Φ (I |= Φ), i.e., the total belief set
corresponding to the total choice is consistent.

1A formula ∀x.Ψ1 : α1 ∨ . . .∨Ψn : αn is split into n formulas ∀x. Pi(x)→ Ψi(x) and n− 1
probabilistic facts are introduced, their probabilities are computed and the probabilistic part
Pi(x) of each formula contains a conjunction of probabilistic literals as described in [36].



146 APPLICATIONS

p̂rob(s) (the normalized probability of a total choice) is given by prob(s)·prob(s ∈
Cons|s)/

∑
s∈Cons prob(s) where prob(s ∈ Cons|s) is 1 when s is consistent and

0 otherwise.

A probability distribution µ over WD is a model of T , denoted µ |= T , if and
only if (i) for all I : I 6|= Φ implies µ(I) = 0; (ii) for each total choice s:
p̂rob(s) =

∑
I|=s µ(I).

The theory is inconsistent when no consistent total choice exists. In that case,
no probability distribution is defined.

Note that the normalization introduced here corresponds to conditioning on
total choices with consistent extensions, which will be exploited in Section 7.1.3
to calculate probabilities of queries.

In contrast to the above informal exposition, where belief sets contained logical
formulas and hence had interpretations over the logical predicates only, now
interpretations assign truth to both probabilistic and logical predicates.

Ex. 4. In our example, with two probabilistic and three logical predicates and
a single constant, we now have 32 possible interpretations. However, as before,
only two of the four total choices can be extended in a belief set that is a model
of the logical part; moreover, these models are unique. One of them is the belief
set {pf_cs(Floris), pf_mn(Floris), cs(Floris),male(Floris)}. It extends the
total choice {pf_cs(Floris), pf_mn(Floris)}, is a model of the logical part of
the theory and is assigned probability 0.73 in the probability distribution that
is a model. The other one, {cs(Floris), female(Floris)}, extends the total
choice where both probabilistic atoms are false; it is assigned probability 0.27.
The total choices that make one probabilistic atom true and the other one false
cannot be extended in a model of the logical part; their probability mass has been
redistributed over the other ones.

In the above example, there is at most one belief set that extends a total choice
and hence only one probability distribution that is a model. This does not
hold in general. FOProbLog theories impose constraints, and any distribution
satisfying these constraints is a model. Instead of making additional assumptions
(such as the principle of indifference) to choose a specific distribution, we will
restrict ourselves to sound inference, and will infer probability intervals only.

Ex. 5. Consider a theory consisting of the probabilistic fact pf(x) : 0.7 and
the logical formula ∀x.pf(x) → p(x) with a single element domain {A}. The
total choice pf(A) can be extended into the belief set {pf(A), p(A)} and hence
µ({pf(A), p(A)}) = 0.7. The empty total choice can be extended in two ways,
namely ∅ and {p(A)}; hence µ(∅) + µ({p(A)}) = 0.3. Any distribution that



FIRST ORDER PROBLOG 147

satisfies the latter constraint is a model. The principle of indifference would
assign probability 0.15 to each of the latter two belief sets and hence 0.85 to
p(A) and 0.15 to ¬p(A). We infer that the probability of p(A) is in the interval
[0.7, 1.0] and that of ¬p(A) in [0.0, 0.3].

7.1.3 Inference

We are now interested in deciding what the theory T allows us to conclude
over the probability of some query formula Q. For each given domain, T has a
non-empty set M̂ of models µ. Each µ ∈ M̂ assigns a particular probability
µ(Q) =

∑
I|=Q µ(I) to Q, yielding, in general, a non-empty probability interval

[minµ∈M̂ µ(Q),maxµ∈M̂ µ(Q)]. We are now interested in the inference task
of determining this interval. Because maxµ∈M̂ µ(Q) must be equal to 1 −
minµ∈M̂ µ(¬Q), we can restrict attention to the computation of a lower bound
on the probability of a query. As the following theorem shows, we can compute
this lower bound without having to consider any specific model µ of T .

Theorem 9. Let M̂ be the non-empty set of models of a consistent theory T .
Then minµ∈M̂ µ(Q) =

∑
s|=Q p̂rob(s), where s |= Q means that Q holds in all

I ∈ WD such that I |= s.

Proof. Let WQ = {I|I |= Q} and WSQ = {I|∃s : I |= s∧ s |= Q}. By definition,
µ(Q) =

∑
I∈WQ

µ(I). Also by definition,
∑
s|=Q p̂rob(s) =

∑
I∈WSQ

µ(I).
Obviously,

∑
I∈WQ

µ(I) ≥
∑
I∈WSQ

µ(I). To prove the theorem, it suffices
to show that there exists a probability distribution µ′ that is a model and for
which the equality holds. The equality holds if µ′ assigns 0 probability to all
I ∈ WQ \WSQ. For such I, we can distinguish two cases. Either I restricted
to the probabilistic atoms gives a total choice that cannot be extended into a
consistent belief set, in which case all distributions that are a model assign 0
probability to I. Or I restricted to the probabilistic atoms gives a total choice s
with at least one I ′ extending s such that I ′ 6|= Q. In this case, µ′ can be chosen
to assign all the probability mass p̂rob(s) to interpretations that are not models
of Q and hence set µ′(I) = 0. Hence µ′(I) = 0 for all I ∈WQ \WSQ.

The normalized probability of a total choice that can be extended into
a consistent belief set is obtained by dividing its probability by the
probability of all such total choices. The latter is the complement of the
probability of those total choices where this is not possible, that is, the
belief sets containing false. Furthermore, recall that p̂rob(s) = 0 for total
choices without consistent extension. Hence, we also have minµ∈M̂ µ(Q) =



148 APPLICATIONS

(∑
s|=Q∧¬false prob(s)

)
/
(

1−
∑
s|=false prob(s)

)
, which in fact corresponds to

the conditional probability prob(Q|¬false).

Ex. 6. Let us reconsider the theory consisting of pf(x) : 0.7 and ∀x.pf(x)→
p(x). The query p(A) can be proven with a total choice that includes the
probabilistic fact pf(A). As no total choice results in inconsistency, this gives a
minimal probability of 0.7. No proofs are possible for ¬p(A), hence the maximal
probability of p(A) is 1.

The number of total choices is exponential in the number of probabilistic facts,
hence it is not feasible to evaluate a query for each total choice. More promising
is the ProbLog approach that enumerates all proofs in terms of the probabilistic
facts they use and encodes this information in a Reduced Ordered Binary
Decision Diagram (ROBDD), which can be used to compute the probability of
the query [37]. The main difference is that we do not work with Horn clauses but
with full first order logic, hence we cannot, as in ProbLog, use the SLD proof
procedure to enumerate proofs. However, for quickly building a first prototype
and for making maximal use of the ProbLog technology, it is interesting to stay
as much as possible within Prolog. Here the work of Stickel [81] that describes
how to use Prolog technology for building a first order logic theorem prover
comes to the rescue and allows us to convert FOProbLog theories into ProbLog
programs.

The basic idea of Stickel’s work is to transform formulas into clausal form
and to encode each n-literal clause l1 ∨ . . . ∨ ln by n Horn clauses of the
form li:-not(l1), . . . , not(li−1), not(li+1), . . . , not(ln).. To obtain Horn clauses,
negative literals are encoded by positive ones: For each predicate p/n, Stickel
introduces a not_p/n and the negation of p(t) is replaced by not_p(t). In the
context of FOProbLog, for each formula ∀x.P (x)→ F (x), the logical part F (x)
is converted in clausal form, Stickel’s transformation is applied to the resulting
clauses, and the conjunction P (x) is added to the bodies of the final Horn
clauses.

Ex. 7. Applying the transformation to our example gives the following ProbLog
program (we switch to Prolog notation for constants and variables):

(1a) 0.4::pf_mn(floris)

(1b) male(floris) :- pf_mn(floris).

(1c) female(floris) :- not(pf_mn(floris)).

(2a) 0.8::pf_cs(X)

(2b) male(X) :- cs(X), pf_cs(X).



FIRST ORDER PROBLOG 149

(2b) not_cs(X) :- not_male(X), pf_cs(X).

(2c) female(X) :- cs(X), not(pf_cs(X)).

(2c) not_cs(X) :- not_female(X), not(pf_cs(X)).

(3a) not_female(X) :- male(X).

(3b) not_male(X) :- female(X).

(4) cs(floris).

The transformation also has to generate clauses with false in the head, as
those are needed during inference to take consistency into account. One way
to do so is to use the knowledge that a resolution proof must use at least one
clause pf(x) → not(l1) ∨ . . . ∨ not(ln) with only negative literals (to have all
such clauses as "set of support"). By adding false:-l1, . . . ln, pf(x) for each such
clause, we ensure that all proofs of false employ such clauses. Alternatively, one
can use the positive clauses (clauses with only positive literals) as set of support.
Simply adding a clause false:-p(X), not_p(X) for each logical predicate p/n
is also possible, but will typically result in a lot of redundant proofs.
Ex. 8. In our example, using negative clauses as set of support would add:
false :- male(X), female(X).
whereas using positive clauses would add:

false :- not_cs(floris).
false :- not_male(floris), pf_mn(floris).
false :- not_female(floris), not(pf_mn(floris)).

Stickel additionally needs to modify certain parts of the inference mechanism.
First, Prolog’s input resolution is extended with ancestor resolution: resolution
between the current goal and one of the ancestors in the linear chain from query
to current goal. A convenient way to do so in the setting of Prolog’s depth
first left to right execution policy is to keep track of the selected literals with
uncompleted proof. If in the uncompleted proof of a literal p(t) (or not_p(t)),
its negation not_p(s) (or p(s)) is selected, the latter literal can be resolved by
unifying its atom with the atom of the former (i.e. unifying t with s) [81]. Also,
care is required to avoid unsound unification. In general, some unifications may
have to be replaced by a sound variant that performs an occur check. When
proving queries in knowledge bases, it is unlikely that the occur check is needed.
Finally, performing iterative deepening avoids that the search gets trapped in
an infinite branch.

Given the transformed theory and a query Q, we can now use ProbLog’s
machinery to construct two Boolean formulas ψ and φ representing the
proofs of Q and the proofs of false, respectively. The formula ψ ∧ ¬φ thus



150 APPLICATIONS

restricts the proofs of Q to consistent belief sets, whereas φ is used for
normalization, i.e. minµ∈M̂ µ(Q) is obtained by P (ψ ∧ ¬φ)/(1− P (φ)), where
both intermediate results are calculated using ProbLog’s ROBDD algorithm.
For the running example, we obtain φ = (¬pf_cs(floris) ∧ pf_mn(floris)) ∨
(pf_cs(floris) ∧ ¬pf_mn(floris)), and, for the query ? − male(floris),
ψ ∧ ¬φ = pf_cs(floris) ∧ pf_mn(floris).

7.1.4 A Case Study

To assess performance in practice, we explored an application of Markov Logic
in entity resolution [79]. We will first review some details of the application,
and then describe how to encode key parts of it directly in ProbLog.

In this application, a fact database containing information about bibliographic
entries such as authors and titles is combined with a probabilistic first order
theory describing when two database references of the same type are likely the
same. The purpose of entity resolution is to compute the probability that two
keys or two authors (e.g. author_william_w_cohen_ and author_w_w_cohen_)
refer to the same object, i.e., to be able to get probabilities for the queries
sameBib(b1, b2) and sameAuthor(a1, a2), as well as for not_sameBib(b1, b2)
and not_sameAuthor(a1, a2).

Part of the facts database is a binary encoding of a ternary relation between
authors, paper title and publication venue. A tuple (author, paper, venue) is
encoded as author(bib, author), title(bib, paper) and venue(bib, venue) with bib
an arbitrary key identifying a bibliographic entry. As formulas for authors,
papers and venues are similar in structure, we will restrict our discussion
to those concerning authors and bibliographic entries. Authors are strings
(extracted from web pages) that are composed from different words (e.g.
author_william_w_cohen_ and author_w_w_cohen_ are composed of the
words word_cohen, word_w, and word_william. This information is encoded
in the database relation hasWordAuthor(author, word).

Figure 7.1 shows the first order logic formulas used in [79] to model a key part
of the application. A first simple set of rules states that different strings refer
to different authors or different bibliographical entries, respectively. The next
formula is an example of rules expressing that the relations about sameness
are likely transitive, while the remaining ones link authors to bibliographical
entries and words to authors, respectively.

Figure 7.2 shows the result of translating those formulas into ProbLog. We
cannot blindly translate the first order theory. The main reason is that the
closed world assumption is applied on the large database. Explicitly adding



FIRST ORDER PROBLOG 151

¬sameBib(b1, b2)

¬sameAuthor(a1, a2)

∀ b1, b2, b3 : sameBib(b1, b2) ∧ sameBib(b2, b3)→
sameBib(b1, b3)

∀ b1, b2, a1, a2 : author(b1, a1) ∧ author(b2, a2) ∧
sameAuthor(a1, a2)→ sameBib(b1, b2)

∀ a1, a2, w : hasWordAuthor(a1, w) ∧
hasWordAuthor(a2, w)→ sameAuthor(a1, a2)

∀a1, a2, w : ¬hasWordAuthor(a1, w) ∧
hasWordAuthor(a2, w)→ ¬sameAuthor(a1, a2)

Figure 7.1: A key part of the logical theory.

all negative facts would result in an exponential blow-up in the size of the
logical theory. Therefore, we instead use negation as failure to encode them and
add the first group of rules to our theory. Note that calls to these predicates
are correctly executed only when all arguments are ground. This need not
be a problem because ProbLog aims at inference of ground queries. Another
difficulty – if we stick to the negative clauses as set of support – is that,
for each tuple (b, a) not in the database, we would need to add a clause
false :- author(b, a). As we cannot enumerate all such pairs (b, a), we resort
to a different approach to define false. Using a positive set of support, we
should add false :- not_author(b, a) for each pair in the author relation. As
the theory does not contain clauses with author/2 in the head, we can use the
author relation to generate the pairs. Furthermore, this approach introduces less
redundancy in the search space of proofs for false than the approach of simply
adding a rule false :- p(X), not_p(X) for each of the predicates author/2,
hasWordAuthor/2, sameAuthor/2, and sameBib/2. The next block of rules
states that identical strings refer to identical entities (with certainty), different
strings to different entities (with a rather high probability). As we have added
positive clauses, we also have to add the next block of extra rules for proving
false. Here domBib/1 and domAuthor/1 are used to generate the values for
the keys and the authors respectively (appropriate ground facts have to be
added to the database). Each clause about transitivity gives rise to three
ProbLog clauses, which form the next block. Note that loop checking as well as
ancestor resolution are important for doing exact inference with these clauses.



152 APPLICATIONS

not_author(B,A) :- not(author(B,A)).
not_hasWordAuthor(A,W) :-

not(hasWordAuthor(A,W)).

false :- author(B,A), not_author(B,A).
false :- hasWordAuthor(A,W),

not_hasWordAuthor(A,W).

sameBib(B,B).
sameAuthor(A,A).
not_sameBib(B1,B2) :- B1 \= B2, pf1(B1,B2).
not_sameAuthor(A1,A2) :- A1 \= A2, pf2(A1,A2).

false :- domBib(B), not_sameBib(B,B).
false :- domAuthor(A), not_sameAuthor(A,A).

sameBib(B1,B3) :- sameBib(B1,B2),
sameBib(B2,B3), pf5(B1,B2,B3).

not_sameBib(B1,B2) :- sameBib(B2,B3),
not_sameBib(B1,B3), pf5(B1,B2,B3).

not_sameBib(B2,B3) :- sameBib(B1,B2),
not_sameBib(B1,B3), pf5(B1,B2,B3).

sameBib(B1,B2) :-
author(B1,A1), author(B2,A2),
sameAuthor(A1,A2), pf9(B1,B2,A1,A2).

not_sameAuthor(A1,A2) :-
author(B1,A1), author(B2,A2),
not_sameBib(B1,B2), pf9(B1,B2,A1,A2).

not_author(B1,A1) :-
sameAuthor(A1,A2), author(B2,A2),
not_sameBib(B1,B2), pf9(B1,B2,A1,A2).

not_author(B2,A2) :-
sameAuthor(A1,A2), author(B1,A1),
not_sameBib(B1,B2), pf9(B1,B2,A1,A2).

Figure 7.2: Key clauses in ProbLog.

The clauses linking authors to bibliographic entries give rise to the last block.
Finally, as the rules linking authors and words can be translated in the same
way as the previous clauses, we do not further elaborate them.

However, one important observation is that the sharing of words in different
author names, paper titles, and venues, results in a densely connected network
to the point that almost for every pair (b1, b2) of keys, one can prove
sameBib(b1, b2) as well as not_sameBib(b1, b2). Hence, there are a lot of
inconsistent total choices, it is essential to perform normalization and to execute
the false query. Clearly, this is very demanding.



FIRST ORDER PROBLOG 153

10 20 30 40 50 60 70 80 90 100

0

500

1000

1500

2000

2500

3000

3500

Depth 1 Depth 2 Depth 3 Depth 4 Depth 5 Depth 6 Depth 7

Domain Size

P
ro

o
f C

o
lle

ct
io

n
 (

m
s)

Figure 7.3: Friends experiments.

7.1.5 Experiments

We set up experiments to investigate the feasibility of inference in FOProbLog.
We focus on the query false, as this can involve all possible queries in a
theory and thus is the most challenging query. We used a version of ProbLog
with tabling [42,43] which we extended with ancestor resolution and iterative
deepening as suggested by Stickel [81]. Experiments are performed on an Intel
Core 2 Duo CPU at 3.00GHz with 2GB RAM running Ubuntu 8.04.2 Linux.
In our experiments ProbLog is used to first collect the proofs and construct a
Boolean formula for false and to then compute the probability by constructing
a ROBDD.

The first experiment uses the following FOProbLog theory:

∀x, y, z. pf1(x, y, z)→ (Fr(x, y) ∧ Fr(y, z)→ Fr(x, z))
∀x. pf2(x)→ (Sm(x)→ Ca(x))
∀x, y. pf3(x, y)→ (Fr(x, y)→ (Sm(x)↔ Sm(y)))

and randomly generated databases to investigate the influence of the domain size
and the maximum depth used in iterative deepening. The latter limits transitive
closure. The runtimes to obtain the Boolean formula representing false are
presented in Figure 7.3; a missing bar indicates that the experiment failed to
properly terminate. We notice that the search space grows exponentially with
the depth limit, while the influence of the domain size is less drastic. Assessing
the probability of the Boolean formula through ROBDDs is feasible within one
minute for most of these experiments.



154 APPLICATIONS10 20 30 40 50 60 70 80 90 100

0

500

1000

1500

2000

2500

3000

3500

Depth 1 Depth 2 Depth 3 Depth 4 Depth 5 Depth 6 Depth 7

Domain Size

P
ro

o
f C

o
lle

ct
io

n
 (

m
s

)

1 2 3 4 5

0

500000

1000000

1500000

2000000

2500000

Bibliography

Depth Bound

P
ro

o
f C

o
lle

ct
io

n
 (

m
s

)

Figure 7.4: Bibliography experiments.

The second experiment uses the entity resolution model of Section 7.1.4 with
the full database of [79] containing 1295 bibliographic entries involving roughly
90 authors, 400 venues, 200 titles and 2700 words. Figure 7.4 shows the time to
obtain the Boolean formula representing false for increasing maximum search
depth. The results confirm that search time increases exponentially, as can
be expected for such a densly connected problem. The limiting factor of our
current prototype is the size of the resulting ROBDDs; in this application, they
are too large to be constructed within a time limit of one hour.

It is worth mentioning that in both experiments, the Boolean formulas for
other queries are far smaller. However, in most cases, the time still increases
exponentially with the depth bound. Furthermore, our current results do
not permit general conclusions about the gap between minimal and maximal
probabilities obtained for each query.

7.1.6 Discussion

In FOProbLog, probabilities are associated with formulas in first order logic.
The assumption that these formulas are independent allows us to define a
semantics based on complete belief sets. Inference in FOProbLog is the task of
calculating the probability that a query can be proven in a randomly selected
complete belief set. Randomly selected belief sets can be inconsistent. The
probability of such a selection can be computed. Normalization assigns 0
probability to inconsistent total choices and redistributes their probability mass



FIRST ORDER PROBLOG 155

over the consistent ones. The probability of the truth of a query is computed
with respect to consistent total choices.

One could argue that inconsistency is an indication of the violation of the
independence assumption. Interestingly, inconsistent belief sets typically arise
after adding factual knowledge (adding cs(Floris) or adding the database of
bibliographical information). This factual knowledge can be seen as evidence
that excludes certain belief sets. Inconsistency in the non-factual part is thus
not an indication of poor design, as it can make sense to add a formula as
evidence to an existing theory. This refines the theory by ruling out certain
complete belief sets, and hence causes a redistribution of the probability mass.

A related issue is the presence of redundant formulas. One might consider a
situation where two independent experts contribute exactly the same formula
to a theory, each of them claiming this formula with probability p1 and p2
respectively. The probability that this formula then holds in a complete belief
set is p1 + p2 − p1 · p2. This makes sense when the expertise is really based
on different knowledge. However, with each additional independent expert
coming up with the same formula and assigning some probability pi to it, the
overall probability would further increase (unless the experts explicitly assign a
probability to both the formula and its negation). It is plausible that different
experts have used the same common knowledge to come up with their formula
and hence the independence assumption is violated. In general, the interaction
can be more subtle. For example, in the context of our case study, one could
add that sameBib is a symmetrical relation. This will likely result in different
probabilities for queries2.

One should be aware that the probability annotating a formula is the probability
that a ground instance is included in a belief set. To know the minimal
probability that the formula can be proven in a randomly selected consistent
belief set, one should query for it. This probability can be different for different
instances and our current prototype supports querying only for ground instances.

In reality, given a theory and a number of datasets with evidence, one will
typically learn probabilities. In that case it is very desirable to have a logical
part that avoids inconsistencies and redundancies as much as possible. Indeed,
consider again the extreme case that one has two copies of the same formula in
the theory. From the evidence, one will derive only the value of p1+p2−p1 ·p2, so
there is a certain randomness in allocating p1 and p2. Hence, the logical theory
better avoids inconsistencies and redundancies to facilitate the understanding
of the learned probabilities.

2We have followed as close as possible the original Markov Logic formulation as we only
wanted to evaluate the feasibility of inference.



156 APPLICATIONS

7.1.7 Related Work and Conclusion

We have proposed FOProbLog, a simple but very expressive probabilistic logic
and defined its semantics. As Markov Logic, FOProbLog is based on a notion
of soft constraint, but formulas are labeled by probabilistic predicates instead of
weights. Indeed, the higher the probability of a formula, the lower the probability
will be of interpretations not satisfying it. The use of probabilities should make
FOProbLog more intuitive from a knowledge representation point of view.
Another difference is that the semantics of Markov Logic is defined through the
sets of weighted ground instances of the formulas, while FOProbLog’s semantics
is defined in terms of groundings of probabilistic facts. The difference can be
illustrated using the formula ∀X.pf(X) → ∃Y.likes(X,Y ). In Markov Logic
the probability would necessarily depend on the groundings of both X and
Y , whereas in FOProbLog it only depends on those of X. Furthermore, the
key inference mode in Markov Logic is typically based on the MPE principle
approximating a most likely state given some evidence, while in FOProbLog an
interval on the probability of queries is computed. In this regard, FOProbLog
is also related to the work on Probabilistic Logic Programming (PLP) [51].
Both PLP and FOProbLog combine probabilities of basic random events to
assign probabilities to Boolean valued interpretations, subject to constraints
given by the program or theory. However, in PLP, basic random events as
well as individual atoms in clauses can be annotated with (independent) closed
probability intervals. Inference in PLP obtains maximally concise probability
bounds for a given query by propagating those intervals using techniques from
linear programming. Finally, FOProbLog is also closely related to systems such
as PRISM [73] and ICL [64], which are both based on atomic and total choices,
but only for definite clauses, as well as to Stochastic Logic Programs [48],
an extension of probabilistic context-free grammars, where normalization is
required to redistribute the probability mass of failing derivations over successful
ones.

We have described how FOProbLog theories can be transformed into ProbLog
programs and have identified the bottleneck to do inference in problems similar to
the ones tackled by Markov Logic [67]. Much work remains to be done. Tabling
makes search for all proofs feasible even for large problems. But calculating the
ROBDD needed for normalization becomes too expensive. Hence approximation
methods for tabled ProbLog are a first promising direction. Another one is the
analysis of independencies in the theory, which may allow to restrict consistency
computations to the parts of the database influencing the probability of the
current query. Similarly, studying the influence of the depth bound on the
probability values obtained may provide insights into the necessary depth of
search. So far we only compute probabilities of ground atomic queries. The
question arises whether inference for other queries is feasible. Our logic is as



ANALYSING A PUBLISH/SUBSCRIBE SYSTEM FOR MANETS WITH PROBLOG 157

expressive as Nilson’s [52], indeed, for a formula F we can write F : α∨¬F : 1−α,
so it is natural that some queries are hard to evaluate. This has to be analysed.
On the representation side, the insights obtained from the case study can serve
as basis for an automated translation of FOProbLog into ProbLog. Finally,
learning parameters for FOProbLog based on corresponding techniques for
ProbLog [26] is another interesting line of work.

7.2 Analysing a Publish/Subscribe System for Mo-
bile Ad hoc Networks with ProbLog

This section presents joint work with Koosha Paridel, Gerda Janssens, Yves
Vanrompay and Yolande Berbers published in [46]. The main contributions of
the author is the implementation of the ProbLog application, and the evaluation
of analysis of the Publish/Subscribe system. The paper [46] is directly presented
here.

7.2.1 Introduction

We use ProbLog [35], a probabilistic extension of Prolog, to analyse Fadip [54],
a Publish/Subscribe protocol for Mobile Ad hoc Networks (MANETs).
Publish/Subscribe systems for MANETs are used commonly in disaster recovery,
smart city and vehicular networks. We model a MANET as a probabilistic
graph representing connections between nodes by ProbLog’s probabilistic facts.
The Fadip protocol can be seen as a special kind of path finding in such a
probabilistic graph. As there can be multiple non-mutually exclusive paths
between two nodes, ProbLog is an appropriate probabilistic system to model
this application.

Our main contribution is to show how a simple ProbLog program can encode
this Fadip application for the case of one publisher and one subscriber, and how
simple ProbLog queries can then compute the probabilities of message delivery
for different parameter settings. Before, simulations were needed to estimate
delivery ratios, while now they are inferred analytically.

We analytically investigate the delivery probability among random node pairs
and show the effects of the fading gossip technique. We also evaluate different
parameter settings and conclude on what their impact is.



158 APPLICATIONS

7.2.2 Problem Statement

Publish/Subscribe systems have been intensively studied for wired networks and
infrastructured mobile networks [4]. When used in MANETs they suffer from
scalability issues. Fadip [54] is a Publish/Subscribe system for MANETs and is
designed to be lightweight in terms of the network topology (i.e. fixing routing
information and maintaining logical structures of nodes) and the number of
messages exchanged for communication. To achieve a reasonable delivery ratio,
Fadip uses a hybrid model which propagates subscriptions and publications as
bounded as possible and makes matching in intermediary nodes which act as
undedicated rendezvous points. In Fadip, the routing is done probabilistically
and neither the publishers nor the subscribers have any information about where
their publication or subscription might be matched.

7.2.3 ProbLog

ProbLog [37] is a probabilistic framework that extends Prolog with probabilistic
facts. A ProbLog program specifies a probability distribution over all possible
non-probabilistic subprograms of the ProbLog program. The success probability
of a query is defined as the probability that it succeeds in these subprograms.
The framework includes different methods to compute probabilities: for Fadip
we will use two alternatives, namely exact inference and program sampling as
an approximation method.

ProbLog has been motivated by the real-life application of mining large biological
networks where edges are labelled with probabilities. An edge represents
a probabilistic link between the concepts represented by its nodes. The
probabilistic links are mutually independent. ProbLog typically computes the
probability of the existence of a path between two nodes [16]. The contribution
of common parts in different paths between two nodes to the final probability
is dealt according to the inclusion-exclusion principle from set theory.

7.2.4 Fadip Model in ProbLog

We model the MANET as a probabilistic graph. The graph nodes are the nodes
of the mobile network. The graph edges model the connectivity between nodes.
In a MANET this connectivity is not permanent. To model this, we attach to
the edges probabilities which express the fraction of the time the connections
are present. These probabilistic edges are represented by probabilistic facts.



ANALYSING A PUBLISH/SUBSCRIBE SYSTEM FOR MANETS WITH PROBLOG 159

We extend the path program to model the Publisher/Subscriber propagation
of Fadip as a bounded bidirectional search of a path among two nodes. The
parameters MaxHopp and MaxHops are used as bounds when propagating the
message of the Publisher and the subscription of the Subscriber, respectively.
We used tabling as in [43] to avoid re-computations and to handle loops.

To integrate the fading gossip, we also need to express the fact that sending a
message has a probability which decreases with the distance from its source [54].
We model this by flexible probabilistic facts, whose probability is determined
at runtime. The delivery of a message between two nodes depends on the
connection being present and the distance from the Publisher.

The model results in a relatively simple ProbLog program that allow us to query
for the probability of a message delivery from a Publisher to a Subscriber3.

7.2.5 Analysing the Model

We present how ProbLog can be used to analyse Fadip. The base operation is to
calculate delivery probabilities. Fadip aims to reduce network traffic. For this it
is beneficial to retain MaxHop parameters as low as possible and to use fading
gossip while retaining a good delivery probability. We used the OMNeT++
simulation log of a 150 node WiFi network, moving randomly at 1m/s in a
playground of 1.5km× 1km. For the selection of Publisher and Subscriber, we
considered two settings based on the distance between them. For the first, we
randomly selected pairs of nodes which have paths with a minimum hop from
4 to 6 and for the second, pairs that have paths with a minimum hop from
8 to 10. We used ProbLog to query the delivery probability for these pairs
with multiple values for MaxHopp and MaxHops and activating or not fading
gossip. The results of these queries are first used to evaluate the impact of the
MaxHop parameters. We observed that increasing MaxHops has more effect
on improving the delivery probability than increasing MaxHopp. We also used
the results to infer optimal values for MaxHopp and MaxHops. For example,
in the first setting both are 3 and for the second setting are 4, 5 respectively.
Our analysis showed that fading gossip retains a high delivery probability for
close distances up to 3− 4 hops and the delivery probability rapidly decreases
for longer paths.

3The ProbLog program and the analysis results can be found at: https://lirias.kuleuven.
be/bitstream/123456789/284687/2/Appendix.pdf

https://lirias.kuleuven.be/bitstream/123456789/284687/2/Appendix.pdf
https://lirias.kuleuven.be/bitstream/123456789/284687/2/Appendix.pdf


160 APPLICATIONS

7.2.6 Conclusions

We presented an application of ProbLog that models and analyses the
performance of Fadip. In [10] Bayesian Networks are used to analyse MANETs.
By analysing the model one can infer delivery probabilities for different settings
and use this information to chose optimal parameter settings and do evaluations.
For our example network we concluded that MaxHops is more important
for obtaining a high delivery probability than MaxHopp and that the fading
gossip technique has a good delivery probability for small hop counts while
the message rapidly fades for larger hop counts. In [54] similar results are
attained by simulating the behaviour of the network, in this work we attain
them analytically. For future work we want to extend the ProbLog program
to support multiple publishers and subscribers and study the impact of their
interaction.

7.3 Appendix of: Analysing a Publish/Subscribe
System for Mobile Ad hoc Networks with
ProbLog

Fadip is a Publish/Subscribe system for Mobile Ad hoc Networks which uses
probabilistic routing of messages to deal with the volatile nature of the network.
It uses controlled propagation of publications and subscriptions, with the fading
gossip technique to reduce the number of broadcasts. We present a probabilistic
logic program in ProbLog that models Fadip. This allows us to calculate
the probabilities that messages are successfully received by subscribers and to
analyse the performance of the Fadip system.

7.3.1 Example Network

% used to model the nodes of the network
% in future might become probabilistic
node(n1).
node(n2).
node(n3).
node(n4).
% the probabilistic facts representing the connections
0.20::con_pf(n1,n2).
0.40::con_pf(n2,n3).



APPENDIX OF: ANALYSING A PUBLISH/SUBSCRIBE SYSTEM FOR MANETS WITH PROBLOG 161

0.60::con_pf(n1,n3).
0.80::con_pf(n2,n4).
% to make connection double way
con(N1, N2):-

node(N1),
node(N2),
N1 \== N2,
are_con(N1, N2).

are_con(N1, N2):-
con_pf(N1, N2).

are_con(N1, N2):-
con_pf(N2, N1).

7.3.2 Fadip Model in Problog

% flexible probabilistic facts
% ID is used to to uniquely identify each msg
P::pf(_ID, P).

% use fading message if fadip, otherwise not
fading_msg(_, _):-

normal.
fading_msg(_ID, 0):-

fadip.
fading_msg(ID, HOPS):-

fadip,
HOPS > 0,
P is 0.5 + 0.5 * e ^ (- 1.0 * HOPS),
pf(ID, P).

% propagate_publication is tabled
:- dynamic propagate_publication/4.

% propagate a publication from a Publisher to a Subscriber
% 1st case: Publisher has a subscription & connection to Subscriber
propagate_publication(Publisher, Subscriber, Message, Parameters):-

check_subscription(Subscriber, Publisher, message(0), Parameters),
check_hops(Message, Parameters, 1, 1),
broadcast(Publisher, Subscriber, Message, 1).

% 2nd case: Publisher has a connection to Subscriber
propagate_publication(Publisher, Subscriber, Message, Parameters):-

check_hops(Message, Parameters, 1, 0),
broadcast(Publisher, Subscriber, Message, 0).

% 3rd case: Publisher has a subscription, propagate to neighbours
propagate_publication(Publisher, Subscriber, Message, Parameters):-

check_subscription(Subscriber, Publisher, message(0), Parameters),
check_hops(Message, Parameters, 1, 1),
broadcast(Publisher, To, Message, 1),
Subscriber \== To,



162 APPLICATIONS

increment_hops(Message, NewMessage),
propagate_publication(To, Subscriber, NewMessage, Parameters).

% 4th case: Publisher has not a subscription use fading message
propagate_publication(Publisher, Subscriber, Message, Parameters):-

check_hops(Message, Parameters, 1, 0),
broadcast(Publisher, To, Message, 0),
Subscriber \== To,
increment_hops(Message, NewMessage),
propagate_publication(To, Subscriber, NewMessage, Parameters).

:- problog_table propagate_publication/4.

:- dynamic check_subscription/4.
% 1st case: Check if a subscription reached from a direct connection
check_subscription(Publisher, Subscriber, Message, Parameters):-

check_hops(Message, Parameters, 0, 1),
broadcast(Publisher, Subscriber, Message, 0).

% 2nd case: Check subscriptions through neighbours
check_subscription(Publisher, Subscriber, Message, Parameters):-

check_hops(Message, Parameters, 0, 1),
broadcast(Publisher, To, Message, 0),
Subscriber \== To,
increment_hops(Message, NewMessage),
check_subscription(To, Subscriber, NewMessage, Parameters).

:- problog_table check_subscription/4.

increment_hops(message(HOPS), message(NHOPS)):- NHOPS is HOPS + 1.
check_hops(message(HOPS), parameters(PUBMAXHOP, SUBMAXHOP), PUB, SUB):-

HOPS < PUB * PUBMAXHOP + SUB * SUBMAXHOP.

broadcast(Sender, Receiver, message(_HOPS), 1):-
con(Sender, Receiver).

broadcast(Sender, Receiver, message(HOPS), 0):-
con(Sender, Receiver),
fading_msg(id(Receiver, Sender), HOPS).

% To be able to swap between the two approachs
:-dynamic normal/0, fadip/0.
fadip.
method(Method):-

Method, !.
method(normal):-

retract(fadip),
assert(normal).

method(fadip):-
retract(normal),
assert(fadip).

7.3.3 Options Used for Optimization

:- use_module(library(problog)).



APPENDIX OF: ANALYSING A PUBLISH/SUBSCRIBE SYSTEM FOR MANETS WITH PROBLOG 163

:- use_module(library(lists)).
:- set_problog_flag(use_db_trie,true).
:- set_problog_flag(use_old_trie,false).
:- grow_atom_table(2000000), yap_flag(agc_margin, 200000000).
:- set_problog_flag(retain_tables, false).
:- set_problog_flag(refine_anclst, true).
:- set_problog_flag(anclst_represent, integer).
:- set_problog_flag(trie_preprocess, true).

7.3.4 Queries

One should query the probability of a message delivered. This is done with:

:- problog_exact(propagate_publication(Publisher, Subscriber,
message(0), parameters(MaxHopP, MaxHopS)), P,S).

Where Publisher, Subscriber can be any node number, the message contains
the starting hops (0) and the parameters the Max Hop Publisher and Max Hop
Subscriber. To activate/deactivate the fading gossip technique one needs to call
method(fadip) or method(normal) respectively.

For example: problog_exact(propagate_publication(n1,n4,message(0),
parameters(2,1)),P,S) returns: P = 0.2650531.

7.3.5 Analysis Results

The network and source code that used for analysis can be found at: https:
//lirias.kuleuven.be/bitstream/123456789/284687/4/code.tar.gz. We
used the distributed ProbLog with the developer version of Yap 64 configured
with --prefix=$PWD --enable-tabling=yes --with-cudd="CUDDPATH" to-
gether with CUDD-2.4.15.

The following tables present the data gathered through the analysis. The query
column defines the Publisher to Subscriber nodes analysed for message delivery,
the MaxHopPub,MaxHopSub columns present the maximum hop parameters
used and the normal, fadip columns the probability that the message reaches
without fading gossip and with fading gossip technique respectively. The normal
column in a real network it would flood the network significantly, thus one is

4http://www.dcc.fc.up.pt/~vsc/Yap/
5http://vlsi.colorado.edu/~fabio/CUDD/

https://lirias.kuleuven.be/bitstream/123456789/284687/4/code.tar.gz
https://lirias.kuleuven.be/bitstream/123456789/284687/4/code.tar.gz
http://www.dcc.fc.up.pt/~vsc/Yap/
http://vlsi.colorado.edu/~fabio/CUDD/


164 APPLICATIONS

Query MaxHopPub MaxHopSub Normal Fadip
50 to 36 0 5 0.93055 0.91667
50 to 36 0 6 0.93508 0.93507
50 to 36 3 3 0.91455 0.79199
50 to 36 3 4 0.92980 0.91448
50 to 36 3 5 0.93511 0.93511
50 to 36 3 6 0.93511 0.93511
50 to 36 4 3 0.91938 0.82786
50 to 36 4 4 0.92980 0.91760
50 to 36 4 5 0.93511 0.93511
50 to 36 4 6 0.93511 0.93511
50 to 36 5 0 0.70662 0.15027
50 to 36 5 3 0.91938 0.84773
50 to 36 5 4 0.92980 0.91760
50 to 36 5 5 0.93511 0.93511
50 to 36 5 6 0.93511 0.93511
50 to 36 6 0 0.81123 0.23443
50 to 36 6 3 0.91938 0.85641
50 to 36 6 4 0.92980 0.91798
50 to 36 6 5 0.93511 0.93511
50 to 36 6 6 0.93511 0.93511
42 to 28 0 5 0.99263 0.97636
42 to 28 0 6 0.99686 0.99680
42 to 28 3 3 0.95143 0.94046
42 to 28 3 4 0.99427 0.99426
42 to 28 3 5 0.99705 0.99705
42 to 28 3 6 0.99705 0.99705
42 to 28 4 3 0.95154 0.94428
42 to 28 4 4 0.99427 0.99427
42 to 28 4 5 0.99705 0.99705
42 to 28 4 6 0.99705 0.99705
42 to 28 5 0 0.84314 0.27184
42 to 28 5 3 0.95154 0.94544
42 to 28 5 4 0.99427 0.99427
42 to 28 5 5 0.99705 0.99705
42 to 28 5 6 0.99705 0.99705
42 to 28 6 0 0.84727 0.37159
42 to 28 6 3 0.95154 0.94618
42 to 28 6 4 0.99427 0.99427
42 to 28 6 5 0.99705 0.99705
42 to 28 6 6 0.99705 0.99705

Table 7.1: Results from nodes of 4 to 6 hop distance (1).

looking for the best trade in minimizing the MaxHop parameters and retaining
high probability.



APPENDIX OF: ANALYSING A PUBLISH/SUBSCRIBE SYSTEM FOR MANETS WITH PROBLOG 165

Query MaxHopPub MaxHopSub Normal Fadip
34 to 57 0 5 0.99989 0.99977
34 to 57 0 6 0.99989 0.99989
34 to 57 3 3 0.99826 0.99124
34 to 57 3 4 0.99989 0.99987
34 to 57 3 5 0.99989 0.99989
34 to 57 3 6 0.99989 0.99989
34 to 57 4 3 0.99826 0.99226
34 to 57 4 4 0.99989 0.99987
34 to 57 4 5 0.99989 0.99989
34 to 57 4 6 0.99989 0.99989
34 to 57 5 0 0.98985 0.66224
34 to 57 5 3 0.99826 0.99277
34 to 57 5 4 0.99989 0.99987
34 to 57 5 5 0.99989 0.99989
34 to 57 5 6 0.99989 0.99989
34 to 57 6 0 0.99013 0.79284
34 to 57 6 3 0.99826 0.99290
34 to 57 6 4 0.99989 0.99987
34 to 57 6 5 0.99989 0.99989
34 to 57 6 6 0.99989 0.99989
19 to 17 0 5 0.99951 0.99920
19 to 17 0 6 0.99990 0.99991
19 to 17 3 3 0.95969 0.90643
19 to 17 3 4 0.99880 0.99575
19 to 17 3 5 0.99992 0.99992
19 to 17 3 6 0.99992 0.99992
19 to 17 4 3 0.98306 0.93398
19 to 17 4 4 0.99888 0.99652
19 to 17 4 5 0.99992 0.99992
19 to 17 4 6 0.99992 0.99992
19 to 17 5 0 0.51387 0.13597
19 to 17 5 3 0.98356 0.94495
19 to 17 5 4 0.99888 0.99705
19 to 17 5 5 0.99992 0.99992
19 to 17 5 6 0.99992 0.99992
19 to 17 6 0 0.53996 0.18752
19 to 17 6 3 0.98356 0.95331
19 to 17 6 4 0.99888 0.99729
19 to 17 6 5 0.99992 0.99992
19 to 17 6 6 0.99992 0.99992

Table 7.2: Results from nodes of 4 to 6 hop distance (2).



166 APPLICATIONS

Query MaxHopPub MaxHopSub Normal Fadip
96 to 91 4 5 0.31091 0.11317
96 to 91 4 6 0.75804 0.48629
96 to 91 5 4 0.29762 0.05732
96 to 91 5 5 0.62376 0.24765
91 to 0 4 5 0.09333 0.03549
91 to 0 4 6 0.03549 0.77500
91 to 0 4 5 0.77500 0.09333
135 to 91 4 5 0.32120 0.11716
135 to 91 4 6 0.77059 0.49556
135 to 91 5 4 0.30744 0.05933
135 to 91 5 5 0.63394 0.25327
102 to 85 4 5 0.73073 0.26262
102 to 85 4 6 0.93231 0.83127
102 to 85 5 4 0.68023 0.14909
87 to 86 4 5 0.61940 0.24165
87 to 86 4 6 0.84652 0.58963
87 to 86 5 4 0.60336 0.12513
87 to 86 5 5 0.70304 0.31845
87 to 86 5 6 0.84833 0.65106
87 to 86 6 4 0.64601 0.17245
87 to 86 6 5 0.70411 0.38441
87 to 86 6 6 0.84833 0.68492
63 to 51 4 5 0.97482 0.65070
63 to 51 4 6 0.20526 0.93928
76 to 2 4 5 0.61283 0.52868
76 to 2 4 6 0.05476 0.89417
76 to 2 5 4 0.20830 0.25000
76 to 2 5 5 0.69991 0.52875
76 to 2 5 6 0.05931 0.89417
76 to 2 6 4 0.26636 0.25006
76 to 2 6 5 0.70025 0.52875
76 to 2 6 6 0.37030 0.89417
86 to 68 4 5 0.90069 0.78221
86 to 68 4 6 0.27176 0.96060
86 to 68 5 4 0.53345 0.77712
86 to 68 5 5 0.93215 0.80056
86 to 68 5 6 0.41493 0.96066
86 to 68 6 4 0.63340 0.79534
86 to 68 6 5 0.94239 0.80061
86 to 68 6 6 0.73740 0.96066
117 to 85 4 5 0.93597 0.93050
117 to 85 4 6 0.34620 0.94227
117 to 85 5 4 0.00000 0.82474

Table 7.3: Results from nodes of 8 to 10 hop distance.



Chapter 8

Conclusion

We have presented ProbLog a probabilistic extension of Prolog. This new
programming language is both a simple and very expressive tool useful for
modelling data mining and machine learning applications. Together with its
expressibility power several performance issues appear.

In this thesis we have made a clear distinction among the several steps that
ProbLog takes to perform inference: SLD resolution, Boolean formulae
preprocessing and ROBDD compilation. We have presented different ways
to optimise the performance of each step separately in order to achieve more
tractable inference for different ProbLog programs.

We presented how ProbLog and other similar probabilistic logic programming
systems can be tabled. The benefits from tabling ProbLog programs are both
in performance and expressive power. Furthermore, tabled programs are more
declarative than their non-tabled equivalents. We have shown how tabled
ProbLog programs achieve significant performance improvements over the SLD
resolution step. We also have presented how tabling for a class of problems
affected negatively the next steps. To achieve tabling in ProbLog we have
introduced a new data structure, namely nested tries. This newly introduced
data structure has similarities with the support graph of PRISM.

Furthermore, we introduced three different approaches to perform Boolean
formulae preprocessing for DNF Boolean formulae, namely naive, decomposition
and recursive node merging. We compared them experimentally and explained
them. Unfortunately, we shown that there is “no one best for all” programs
method. Besides the three different preprocessing methods, we also presented a
new data structure, namely, depth breadth trie which can be used to further

167



168 CONCLUSION

optimise preprocessing. We also presented three additive optimisations that use
this data structure. Finally, we presented a generalised algorithm that performs
preprocessing over nested tries by using any of the preprocessing methods
available. As nested tries are produced from tabling, it is very important that
the preprocessing methods perform well together with nested tries. To improve
their performance we introduced several different optimisations that target at
remedying the negative performance effects of tabling.

In order to improve the performance over the last step of inference, ROBDD
compilation, we presented an approach that relies on finding patterns of Boolean
variables in DNF Boolean formulae, namely AND/OR-clusters. We used these
patterns to reduce the number of Boolean variables and simplify the DNF that
is needed to be processed. In this thesis we explained how AND/OR-clusters
can be taken in advantage for probabilistic inference and we also mentioned
that these patterns could have similar benefits in advantage in other fields that
use DNF formulae. We also presented two polynomial algorithms that detect
this patterns in DNF formulae. In addition we showed how the two patterns
can be used interchangeable to reduce the DNF Boolean formulae. We finally,
experimentally verified the benefits of AND-clusters.

Besides improving the performance of inference methods, our work also included
the extension of ProbLog’s functionality. We presented how a ProbLog negation
that abides to the well found semantics can be realised. Furthermore, we also
extended ProbLog with meta-calls and higher order functionality. In order
to achieve efficiently these tasks we introduced the abstract ProbLog engine
which we used to implement several different inference methods. Through
nesting ProbLog engines we achieved to implement meta-calls and higher order
functions such as ProbLog answers and ProbLog findall predicates.

Finally, we presented two ProbLog applications that use several of the mentioned
features in order to achieve their tasks. We see that tabling is an irreplaceable
feature of ProbLog both for expressibility and performance benefits.

The ProbLog2010 and ProbLog2011 systems equipped with the presented
improvements and optimisations have shown a significant improvement compared
with the initial implementation1 of ProbLog. From our experience for SLD
resolution, tabling is indispensable and heavily used. For the preprocessing
step the most used method is recursive node merging in combination with
depth breadth trie. While decomposition is often advantageous, the lack of an
implementation that combines decomposition with nested tries implies its use
is restricted to non tabled programs. Finally the AND/OR-clusters are a very
promising approach, unfortunately the implementation currently only computes

1With initial implementation we refer to ProbLog before any of our contributions.



FUTURE WORK 169

AND-clusters and only on DNF Boolean formulae without negated literals, so
it is only useful for specific programs.

We propose the following settings for ProbLog 2010 implementation:

• for non cyclic applications that benefit from tabling, such as (Hidden)
Markov Models, Bayesian Networks, we suggest the use of: Tabling,
preprocessing by Recursive Node Merging together with the use of
Depth Breadth Trie with optimisation level three;

• for cyclic applications that benefit from tabling, such as reachability in
probabilistic graphs, we suggest the use of: Tabling, preprocessing by
Recursive Node Merging together with the use of Depth Breadth
Trie and with the optimisations: ancestor check, ancestor list refine
or pre-process active;

• for applications where tabling does not grand a significant benefit, such
as bounded reachability in probabilistic graphs, we suggest the use of:
Decomposition together with AND-clusters compression.

8.1 Future Work

The work presented in this thesis, leaves several interesting points for further
research. On the part of performance the most challenging open matter is the
improvement of the preprocessing method for nested tries. Furthermore, while
the presented preprocessing approaches are theoretically compatible among
them due to technical issues we have not investigated their behaviour when
combined. An outline to that direction would be the investigation of using
the decomposition method in conjunction with the depth breadth trie data
structure.

Further research is been made related to the replacement of ROBDDs by
arithmetic circuits [12, 85] or other knowledge compilation data structure.
Related to this matter, future work also should focus on avoiding compiling a
Boolean formula in a data structure as much as possible. Easily, several different
patterns could be detected in DNF or CNF Boolean formulae. These patterns
could then be used to compute the probability for parts of the problem reducing
the size of the Boolean formula to compile. In some cases these patterns could
signify mutual exclusiveness of separate parts of the Boolean formula, one could
then divide the Boolean formula in several smaller ones and after compiling
each smaller re-combine the result. In general, approaches such as that could
ensure polynomial inference for several classes of programs.



170 CONCLUSION

Future work, also could be focused on several aspects not related with
performance. Our initial approach for achieving meta-calls introduced several
new functionalities for ProbLog, research to extend the functionality through
meta-calls could be interesting. A second form of probabilistic findall could be
developed that would return possible worlds instead of answers.



Bibliography

[1] S. B. Akers. Binary decision diagrams. IEEE Transactions on Computers,
27(6):509–516, 1978.

[2] F. A. Aloul, I. L. Markov, and K. A. Sakallah. Faster SAT and smaller
BDDs via common function structure. In Proceedings of International
Conference on Computer Aided Design, pages 443–448, 2001.

[3] H. R. Andersen. An introduction to binary decision diagrams. In
Lecture Notes, http: // www. cs. auc. dk/ ~kgl/ VERIFICATION99/ mm4.
html , 1997.

[4] R. Baldoni and A. Virgillito. Distributed event routing in publish/subscribe
communication systems: a survey. DIS,Universita di Roma“La Sapienza”,
Tech.Rep, 2005.

[5] R. S. Bird. Tabulation techniques for recursive programs. ACM Comput.
Surv., 12(4):403–417, December 1980.

[6] H. Blockeel. Top-Down Induction of First Order Logical Decision Trees.
PhD thesis, Department of Computer Science, Katholieke Universiteit
Leuven, 1998. http://www.cs.kuleuven.ac.be/~ml/PS/blockeel98:
phd.ps.gz.

[7] H. Blockeel and L. De Raedt. Top-down induction of first-order logical
decision trees. Artif. Intell., 101(1-2):285–297, 1998.

[8] M. Bruynooghe, T. Mantadelis, A. Kimmig, B. Gutmann, J. Vennekens,
G. Janssens, and L. De Raedt. ProbLog technology for inference in a
probabilistic first order logic. In H. Coelho, R. Studer, and M. Wooldridge,
editors, Proceedings of European Conference on Artificial Intelligence,
volume 215 of Frontiers in Artificial Intelligence and Applications, pages
719–724. IOS Press, 2010.

171

http://www.cs.auc.dk/~kgl/VERIFICATION99/mm4.html
http://www.cs.auc.dk/~kgl/VERIFICATION99/mm4.html
http://www.cs.kuleuven.ac.be/~ml/PS/blockeel98:phd.ps.gz
http://www.cs.kuleuven.ac.be/~ml/PS/blockeel98:phd.ps.gz


172 BIBLIOGRAPHY

[9] R. E. Bryant. Graph-based algorithms for Boolean function manipulation.
IEEE Transactions on Computers, 35(8):677–691, 1986.

[10] S. Buchegger and J.-Y. L. Boudec. The effect of rumor spreading in
reputation systems for mobile Ad-Hoc networks. In Proceedings of WiOpt,
2003.

[11] W. Chen and D. S. Warren. Tabled evaluation with delaying for general
logic programs. Journal of the ACM, 43(1):20–74, 1996.

[12] A. Darwiche and P. Marquis. A knowledge compilation map. J. Artif.
Intell. Res. (JAIR), 17:229–264, 2002.

[13] L. De Raedt, P. Frasconi, K. Kersting, and S. Muggleton, editors.
Probabilistic Inductive Logic Programming - Theory and Applications,
volume 4911 of Lecture Notes in Computer Science. Springer, 2008.

[14] L. De Raedt and K. Kersting. Probabilistic logic learning. SIGKDD
Explorations, 5(1):31–48, 2003.

[15] L. De Raedt and K. Kersting. Probabilistic inductive logic programming. In
S. Ben-David, J. Case, and A. Maruoka, editors, Proceedings of Algorithmic
Learning Theory, volume 3244 of Lecture Notes in Computer Science, pages
19–36. Springer, 2004.

[16] L. De Raedt, A. Kimmig, and H. Toivonen. ProbLog: A probabilistic
Prolog and its application in link discovery. In M. M. Veloso, editor,
Proceedings of International Joint Conferences on Artificial Intelligence,
pages 2462–2467, 2007.

[17] J. Eisner and N. W. Filardo. Dyna: Extending datalog for modern AI.
In O. de Moor, G. Gottlob, T. Furche, and A. J. Sellers, editors, Datalog,
volume 6702 of Lecture Notes in Computer Science, pages 181–220. Springer,
2010.

[18] D. Fierens, G. Van den Broeck, I. Thon, B. Gutmann, and L. De Raedt.
Inference in probabilistic logic programs using weighted CNF’s. In F. G.
Cozman and A. Pfeffer, editors, Proceeding of Uncertainty in Artificial
Intelligence, pages 211–220. AUAI Press, 2011.

[19] E. Fredkin. Trie Memory. Communications of the ACM, 3(9):490–499,
Sept. 1960.

[20] A. V. Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics
for general logic programs. Communications of the ACM, 38(3):620–650,
1991.



BIBLIOGRAPHY 173

[21] L. Getoor, N. Friedman, D. Koller, A. Pfeffer, and B. Taskar. Probabilistic
relational models. In L. Getoor and B. Taskar, editors, An Introduction to
Statistical Relational Learning. MIT Press, 2007.

[22] L. Getoor and B. Taskar. Introduction to Statistical Relational Learning
(Adaptive Computation and Machine Learning). The MIT Press, 2007.

[23] N. D. Goodman, V. K. Mansinghka, D. M. Roy, K. Bonawitz, and D. Tarlow.
Church: a language for generative models. Computing Research Repository,
abs/1206.3255, 2012.

[24] H.-F. Guo, C. R. Ramakrishnan, and I. V. Ramakrishnan. Speculative
beats conservative justification. In Proceedings of the 17th International
Conference on Logic Programming, pages 150–165, London, UK, 2001.
Springer-Verlag.

[25] B. Gutmann, M. Jaeger, and L. De Raedt. Extending ProbLog with
continuous distributions. In P. Frasconi and F. A. Lisi, editors, Proceedings
of Inductive Logic Programming, volume 6489 of Lecture Notes in Computer
Science, pages 76–91. Springer, 2010.

[26] B. Gutmann, A. Kimmig, K. Kersting, and L. De Raedt. Parameter learning
in probabilistic databases: A least squares approach. In W. Daelemans,
B. Goethals, and K. Morik, editors, ECML/PKDD (1), volume 5211 of
Lecture Notes in Computer Science, pages 473–488. Springer, 2008.

[27] B. Gutmann, I. Thon, and L. De Raedt. Learning the parameters
of probabilistic logic programs from interpretations. In D. Gunopulos,
T. Hofmann, D. Malerba, and M. Vazirgiannis, editors, ECML/PKDD
(1), volume 6911 of Lecture Notes in Computer Science, pages 581–596.
Springer, 2011.

[28] P. Hintsanen. The most reliable subgraph problem. In Proceedings of
Principles and Practice of Knowledge Discovery in Databases, pages 471–
478, 2007.

[29] Intelligent Systems Laboratory. Quintus Prolog user’s manual, 2003. http:
//www.sics.se/quintus/.

[30] T. Janhunen. Representing normal programs with clauses. In R. L.
de Mántaras and L. Saitta, editors, ECAI, pages 358–362. IOS Press,
2004.

[31] G. Janssens, B. Demoen, R. Tronçon, and H. Vandecasteele. hipP
User’s Manual, 2006. /cw/prolog/hipp/hipp-yes.linux/share/doc/
hipp/manual.pdf.

http://www.sics.se/quintus/
http://www.sics.se/quintus/
/cw/prolog/hipp/hipp-yes.linux/share/doc/hipp/manual.pdf
/cw/prolog/hipp/hipp-yes.linux/share/doc/hipp/manual.pdf


174 BIBLIOGRAPHY

[32] R. M. Karp and M. Luby. Monte-Carlo algorithms for enumeration
and reliability problems. In SFCS ’83: Proceedings of the 24th Annual
Symposium on Foundations of Computer Science, pages 56–64, Washington,
DC, USA, 1983. IEEE Computer Society.

[33] K. Kersting and L. De Raedt. Basic principles of learning Bayesian logic
programs. In De Raedt et al. [13], pages 189–221.

[34] A. Kimmig. A Probabilistic Prolog and its Applications. PhD thesis,
Informatics Section, Department of Computer Science, Faculty of
Engineering Science, Nov. 2010. Luc De Raedt (supervisor).

[35] A. Kimmig, B. Demoen, L. De Raedt, V. Santos Costa, and R. Rocha.
On the implementation of the probabilistic logic programming language
ProbLog. Theory and Practice of Logic Programming, 11(2-3):235–262,
2011.

[36] A. Kimmig, B. Gutmann, and V. Santos Costa. Trading memory for
answers: Towards tabling ProbLog. In International Workshop on Statistical
Relational Learning, 2009.

[37] A. Kimmig, V. Santos Costa, R. Rocha, B. Demoen, and L. De Raedt. On
the efficient execution of ProbLog programs. In M. Garcia de la Banda
and E. Pontelli, editors, Proceedings of International Conference on Logic
Programming, volume 5366 of Lecture Notes in Computer Science, pages
175–189. Springer, 2008.

[38] A. Kimmig, G. Van den Broeck, and L. De Raedt. An algebraic Prolog
for reasoning about possible worlds. In W. Burgard and D. Roth, editors,
Proceedings of AAAI Conference on Artificial Intelligence. AAAI Press,
2011.

[39] D. Maier. The complexity of some problems on subsequences and
supersequences. Communications of the ACM, 25(2):322–336, 1978.

[40] T. Mantadelis. SimpleCUDD package, technical report and manual, 2008.
https://lirias.kuleuven.be/handle/123456789/253405.

[41] T. Mantadelis, B. Demoen, and G. Janssens. A simplified fast interface for
the use of CUDD for Binary Decision Diagrams, September 2008. Computer
Intelligence and Learning PhD student day (collocated with ECML PKDD
2008), Antwerp, 15-19 September 2008.

[42] T. Mantadelis and G. Janssens. Tabling relevant parts of SLD proofs for
ground goals in a probabilistic setting. In P. Tarau, P. Moura, and N. Zhou,
editors, International Colloquium on Implementation of Constraint and

https://lirias.kuleuven.be/handle/123456789/253405


BIBLIOGRAPHY 175

LOgic Programming Systems (CICLOPS), Pasadena, California, USA,
14-17 July 2009, July 2009.

[43] T. Mantadelis and G. Janssens. Dedicated tabling for a probabilistic setting.
In M. Hermenegildo and T. Schaub, editors, Technical Communications
of the 26th International Conference on Logic Programming, volume 7
of Leibniz International Proceedings in Informatics (LIPIcs), pages 124–
133, Dagstuhl, Germany, 2010. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik.

[44] T. Mantadelis and G. Janssens. Variable compression in ProbLog. In
C. G. Fermüller and A. Voronkov, editors, Proceedings of International
Conference on Logic for Programming, Artificial Intelligence and Reasoning,
volume 6397 of Lecture Notes in Computer Science, pages 504–518. Springer,
2010.

[45] T. Mantadelis and G. Janssens. Nesting probabilistic inference. Computing
Research Repository, abs/1112.3785, 2011.

[46] T. Mantadelis, K. Paridel, G. Janssens, Y. Vanrompay, and Y. Berbers.
Analysing a Publish/Subscribe System for Mobile Ad Hoc Networks with
ProbLog. In R. Rocha and J. Launchbury, editors, Proceedings of Practical
Aspects of Declarative Languages, volume 6539 of Lecture Notes in Computer
Science, pages 34–37. Springer, 2011.

[47] T. Mantadelis, R. Rocha, A. Kimmig, and G. Janssens. Preprocessing
Boolean Formulae for BDDs in a Probabilistic Context. In T. Janhunen
and I. Niemelä, editors, Proceedings of European Conference on Logics in
Artificial Intelligence, volume 6341 of Lecture Notes in Computer Science,
pages 260–272. Springer, 2010.

[48] S. Muggleton. Stochastic logic programs. In L. De Raedt, editor, Advances
in Inductive Logic Programming. IOS Press, 1996.

[49] C. Muise, S. A. Mcilraith, J. C. Beck, and E. Hsu. DSHARP: Fast d-
DNNF compilation with sharpSAT. In Canadian Conference on Artificial
Intelligence, Canadian Conference on Artificial Intelligence, 2012.

[50] N. Narodytska and T. Walsh. Constraint and variable ordering heuristics
for compiling configuration problems. In Proceedings of International Joint
Conferences on Artificial Intelligence, pages 149–154, 2007.

[51] R. T. Ng and V. S. Subrahmanian. Probabilistic logic programming.
Information Computing, 101(2):150–201, 1992.

[52] N. J. Nilson. Probabilistic logic. AI, 28:71–87, 1986.



176 BIBLIOGRAPHY

[53] S. Panda and F. Somenzi. Who are the variables in your neighborhood. In
Proceedings of International Conference on Computer Aided Design, pages
74–77, 1995.

[54] K. Paridel, Y. Vanrompay, and Y. Berbers. Fadip: Lightweight
Publish/Subscribe for Mobile Ad Hoc Networks. In R. Meersman, T. S.
Dillon, and P. Herrero, editors, OTM Conferences (2), volume 6427 of
Lecture Notes in Computer Science, pages 798–810. Springer, 2010.

[55] G. Pemmasani, H.-F. Guo, Y. Dong, C. R. Ramakrishnan, and I. V.
Ramakrishnan. Online justification for tabled logic programs. In Lecture
Notes in Computer Science: Logic Programming, pages 500–501, London,
UK, 2003. Springer-Berlin.

[56] C. Perez-Iratxeta, P. Bork, and M. A. Andrade-Navarro. Association of
genes to genetically inherited diseases using data mining. Natural Genetics,
31:316–319, 2002.

[57] A. Pfeffer. Ibal: A probabilistic rational programming language. In
B. Nebel, editor, Proceedings of International Joint Conferences on
Artificial Intelligence, pages 733–740. Morgan Kaufmann, 2001.

[58] A. Pfeffer. CTPPL: A continuous time probabilistic programming language.
In C. Boutilier, editor, Proceedings of International Joint Conferences on
Artificial Intelligence, pages 1943–1950, 2009.

[59] A. Pfeffer. Figaro: An object-oriented probabilistic programming language,
2009.

[60] D. Poole. Logic programming, abduction and probability. In Proceedings
of Future Generation Computer Systems, pages 530–538, 1992.

[61] D. Poole. Probabilistic Horn abduction and bayesian networks. Artif.
Intell., 64(1):81–129, 1993.

[62] D. Poole. The independent choice logic for modelling multiple agents under
uncertainty. Artificial Intelligence, 94(1-2):7–56, 1997.

[63] D. Poole. Abducing through negation as failure: stable models within the
independent choice logic. Logic Programming, 44(1-3):5–35, 2000.

[64] D. Poole. The independent choice logic and beyond. In De Raedt et al. [13],
pages 222–243.

[65] P. Rao, K. F. Sagonas, T. Swift, D. S. Warren, and J. Freire. XSB: A
system for effciently computing WFS. In Proceedings of LPNMR, pages
431–441, 1997.



BIBLIOGRAPHY 177

[66] A. Rauzy, E. Châtelet, Y. Dutuit, and C. Bérenguer. A practical comparison
of methods to assess sum-of-products. Reliability Engineering & System
Safety, 79(1):33–42, 2003.

[67] M. Richardson and P. Domingos. Markov logic networks. Machine Learning,
62(1-2):107–136, 2006.

[68] F. Riguzzi and T. Swift. Tabling and answer subsumption for reasoning on
logic programs with annotated disjunctions. In M. V. Hermenegildo and
T. Schaub, editors, Technical Communications of the 26th International
Conference on Logic Programming, volume 7 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 162–171. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2010.

[69] F. Riguzzi and T. Swift. The PITA system: Tabling and answer
subsumption for reasoning under uncertainty. Computing Research
Repository, abs/1107.4747, 2011.

[70] R. Rocha, F. Silva, R. R. Fern, and V. Santos Costa. A tabling engine
for the YAP Prolog system. In Proceedings of the APPIA-GULP-PRODE
Joint Conference on Declarative Programming, AGP’2000, La Habana,
Cuba, December 2000.

[71] V. Santos Costa, L. Damas, R. Reis, and R. Azevedo. YAP user’s manual,
2002. http://www.ncc.up.pt/˜vsc/Yap.

[72] T. Sato. A statistical learning method for logic programs with
distribution semantics. In Proceedings of International Conference on
Logic Programming, pages 715–729, 1995.

[73] T. Sato and Y. Kameya. PRISM: A language for symbolic-statistical
modeling. In Proceedings of International Joint Conferences on Artificial
Intelligence, pages 1330–1339. Morgan Kaufmann, 1997.

[74] T. Sato and Y. Kameya. Parameter learning of logic programs for symbolic-
statistical modeling. J. Artif. Intell. Res. (JAIR), 15:391–454, 2001.

[75] T. Sato and Y. Kameya. Statistical abduction with tabulation. In A. C.
Kakas and F. Sadri, editors, Computational Logic: Logic Programming and
Beyond, volume 2408 of Lecture Notes in Computer Science, pages 567–587.
Springer, 2002.

[76] P. Schachte. Global variables in logic programming. In Proceedings of
International Conference on Logic Programming, pages 3–17, 1997.



178 BIBLIOGRAPHY

[77] P. Sevon, L. Eronen, P. Hintsanen, K. Kulovesi, and H. Toivonen. Link
discovery in graphs derived from biological databases. In U. Leser,
F. Naumann, and B. A. Eckman, editors, DILS, volume 4075 of Lecture
Notes in Computer Science, pages 35–49. Springer, 2006.

[78] D. S. Shterionov, A. Kimmig, T. Mantadelis, and G. Janssens. DNF
Sampling for ProbLog Inference. Computing Research Repository,
abs/1009.3798, 2010.

[79] P. Singla and P. Domingos. Entity resolution with Markov logic. In
Proceedings of International Conference on Data Mining, pages 572–582.
IEEE Computer Society, 2006.

[80] F. Somenzi. CUDD: Colorado University Decision Diagram package,
programmer’s manual, 2005. http://vlsi.colorado.edu~fabio/CUDD/.

[81] M. E. Stickel. A Prolog technology theorem prover: Implementation by an
extended Prolog compiler. Automated Reasoning, 4:353–380, 1988.

[82] T. Swift and D. S. Warren. XSB: Extending Prolog with tabled logic
programming. CoRR, abs/1012.5123, 2010.

[83] T. Swift, D. S. Warren, and et al. The XSB system, programmer’s manual,
2009.

[84] H. Tamaki and T. Sato. OLD resolution with tabulation. In E. Shapiro,
editor, Third International Conference on Logic Programming, volume
225 of Lecture Notes in Computer Science, pages 84–98. Springer Berlin /
Heidelberg, 1986.

[85] L. G. Valiant. Why is Boolean complexity theory difficult? In Poceedings
of the London Mathematical Society symposium on Boolean function
complexity, pages 84–94, New York, NY, USA, 1992. Cambridge University
Press.

[86] G. Van den Broeck, I. Thon, M. van Otterlo, and L. De Raedt. DTProbLog:
A decision-theoretic probabilistic Prolog. In M. Fox and D. Poole, editors,
Proceedings of AAAI Conference on Artificial Intelligence. AAAI Press,
2010.

[87] J. Vennekens, M. Denecker, and M. Bruynooghe. CP-logic: A language of
causal probabilistic events and its relation to logic programming. Theory
and Practice of Logic Programming, 9(3):245–308, 2009.

[88] J. Vennekens, A. Kimmig, T. Mantadelis, B. Gutmann, M. Bruynooghe,
and L. De Raedt. From ProbLog to first order logic: A first exploration. In

http://vlsi.colorado.edu~fabio/CUDD/


BIBLIOGRAPHY 179

P. Domingos and K. Kersting, editors, International Workshop on Statistical
Relational Learning, Leuven, Belgium, 2-4 July 2009, July 2009.





List of Publications

Journal Articles

• Koosha Paridel, Theofrastos Mantadelis, Ansar-Ul-Haque Yasar, Davy
Preuveneers, Gerda Janssens, Yves Vanrompay, Yolande Berbers.
Analyzing the efficiency of context-based grouping on collaboration in
VANETs with large-scale simulation. Journal of Ambient Intelligence and
Humanized Computing, volume 3, pages 1-16, 2012.

Conference Papers

• Theofrastos Mantadelis, Koosha Paridel, Gerda Janssens, Yves Vanrompay,
Yolande Berbers. Analysing a publish/subscribe system for mobile ad hoc
networks with ProbLog. Ricardo Rocha, John Launchbury (eds.), PADL,
Austin, 24-25 January 2011, LNCS Series, volume 6539, pages 34-37,
Springer 2011.

• Theofrastos Mantadelis, Gerda Janssens. Variable compression in ProbLog.
Christian Fermüller, Andrei Voronkov (eds.), Logic for Programming,
Artificial Intelligence and Reasoning (LPAR), Yogyakarta, Indonesia, 10-
15 October 2010, Lecture Notes in Computer Science, volume 6397, pages
504-518, Springer-Verlag’s 2010.

• Theofrastos Mantadelis, Ricardo Rocha, Angelika Kimmig, Gerda
Janssens. Preprocessing Boolean formulae for BDDs in a probabilistic
context. Tomi Janhunen, Ilkka Niemelä (eds.), The European Conference
on Logics in Artificial Intelligence, Helsinki, 13-15 September 2010,
Logics in Artificial Intelligence, 12th European Conference, JELIA 2010,
Proceedings, volume 6341, issue 12, pages 260-272, Springer 2010.

181



182 LIST OF PUBLICATIONS

• Maurice Bruynooghe, Theofrastos Mantadelis, Angelika Kimmig, Bernd
Gutmann, Joost Vennekens, Gerda Janssens, Luc De Raedt. ProbLog
technology for inference in a probabilistic first order logic. Helder Coelho,
Rudi Studer, Michael Woolridge (eds.), European Conference on Artificial
Intelligence, Lisbon, Portugal, 16-20 August 2010, ECAI 2010 - 19th
European Conference on Artificial Intelligence, pages 719-724, IOS Press
2010.

• Theofrastos Mantadelis, Gerda Janssens. Dedicated tabling for a probabilis-
tic setting. Manuel Hermenegildo, Torsten Schaub (eds.), International
Conference on Logic Programming, Edinburgh, Scotland, July 16-19,
Technical Communications of the 26th International Conference on
Logic Programming, volume 7, pages 124-133, Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2010.

Workshop Papers

• Theofrastos Mantadelis, Gerda Janssens. Nesting probabilistic inference.
Salvador Abreu, Vitor Santos Costa (eds.), International Colloquium
on Implementation of Constraint and LOgic Programming Systems
(CICLOPS), Lexington, Kentucky, USA, 10 July 2011, CICLOPS, pages
1-16, 2011.

• Dimitar Shterionov, Angelika Kimmig, Theofrastos Mantadelis, Gerda
Janssens. DNF sampling for ProbLog inference., International Colloquium
on Implementation of Constraint and LOgic Programming Systems
(CICLOPS), Edinburgh, Scotland, 15 July 2010, Proceedings International
Colloquium on Implementation of Constraint and LOgic Programming
Systems (CICLOPS), 15 pages, 2010.

• Mantadelis, Theofrastos; Janssens, Gerda. Tabling relevant parts of SLD
proofs for ground goals in a probabilistic setting, Tarau, Paul; Moura,
Paulo; Zhou, Neng-Fa (eds.), International Colloquium on Implementation
of Constraint and LOgic Programming Systems (CICLOPS), Pasadena,
California, USA, 14-17 July 2009.

• Joost Vennekens, Angelika Kimmig, Theofrastos Mantadelis, Bernd
Gutmann, Maurice Bruynooghe, Luc De Raedt. From ProbLog to first
order logic: A first exploration. Pedro Domingos, Kristian Kersting
(eds.), International Workshop on Statistical Relational Learning, Leuven,
Belgium, 2-4 July 2009.



LIST OF PUBLICATIONS 183

Technical Reports & Manuals

• Theofrastos Mantadelis, Gerda Janssens. Variable compression in ProbLog
(technical report). CW Reports, volume CW586, 11 pages, Department of
Computer Science, K.U.Leuven, Leuven, Belgium, May 2010.

• Theofrastos Mantadelis, Bart Demoen, Gerda Janssens. A simplified fast
interface for the use of CUDD for Binary Decision Diagrams. A BDD
Tool for Statistical Relational Learning: SimpleCUDD (poster & manual).
Computer Intelligence and Learning PhD student day (collocated with
ECML PKDD 2008), Antwerp, 15-19 September 2008.







Arenberg Doctoral School of Science, Engineering & Technology
Faculty of Engineering

Department of Computer Science
Scientific Computing Group

Celestijnenlaan 200A box 2402
B-3001 Heverlee


	Abstract
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	ProbLog
	ProbLog and the Distribution Semantics
	Possible Worlds

	Success Probability
	Knowledge Compilation Approaches
	SLD Resolution
	Tries
	Boolean Formulae Preprocessing
	Reduced Order Binary Decision Diagrams (ROBDDs)
	Boolean Formulae Compilation and SimpleCUDD
	Syntax of the Script Language
	ROBDD Generation and Probability Calculation

	Other Approaches
	Approximate Inference: Program Sampling
	Approximate Inference: DNF Sampling
	Convergence
	Weighted CNF ProbLog

	Conclusion

	Tabling of Probabilistic Logic Programs
	SLG Resolution
	ProbLog & Tabling Preliminaries
	ProbLog Tabling Example
	Ground Goal Assumption
	Nested Tries

	ProbLog Tabling
	Cycles in a Probabilistic Setting

	Nested Tries to ROBDD Definitions
	Handling the Simple Case
	Handling Cycles and the Ancestor List
	Optimization I: Subset
	Optimization II: Ancestor List Refine
	Optimization III: Pre-process Step
	Optimizing the Representation

	Implementation
	Light Weight Tabling Implementation
	Built-in Tabling

	Experiments
	Benchmark Programs
	Results

	Conclusions

	Preprocessing I: Boolean Formulae to ROBDD Definitions
	Preprocessing Example
	Naive
	Decomposition
	Recursive Node Merging
	Depth Breadth Trie
	Complexity of Preprocessing Methods
	Naive Method
	Decomposition Method
	Recursive Node Merging

	Experimental Results
	Nested Tries
	Negation
	Negated Literals
	General Negation

	Conclusions and Future Work

	Preprocessing II: Variable Compression
	Example
	Cluster Definitions
	Using the Clusters for Variable Compression

	Discovering AND-clusters
	The Book Marking Algorithm for AND-clusters
	An Example of the Book Marking Algorithm for AND-clusters

	Discovering OR-clusters
	The Book Marking Algorithm for OR-clusters
	An Example of the Book Marking Algorithm for OR-clusters

	Experiments for AND-clusters
	Complexity Analysis
	Related Work and Conclusions

	A New Implementation: MetaProbLog
	Why Probabilistic Meta-calls
	Example
	Technical Details
	ProbLog Engine
	Parameters of the ProbLog Engine
	Inference Method: Exact
	Inference Method: Program Sampling
	ProbLog Memory
	Nesting ProbLog Engines
	Calling the ProbLog Engine

	Nested Inference
	Nested Inference Returning Success Probability
	Nested Inference Returning Information & ProbLog Negation
	Nested Inference Returning Answers & ProbLog Answers

	Modularity
	Experiments
	Conclusions

	Applications
	First Order ProbLog
	Introduction
	First Order ProbLog and its Semantics
	Inference
	A Case Study
	Experiments
	Discussion
	Related Work and Conclusion

	Analysing a Publish/Subscribe System for MANETs with ProbLog
	Introduction
	Problem Statement
	ProbLog
	Fadip Model in ProbLog
	Analysing the Model
	Conclusions

	Appendix of: Analysing a Publish/Subscribe System for MANETs with ProbLog
	Example Network
	Fadip Model in Problog
	Options Used for Optimization
	Queries
	Analysis Results


	Conclusion
	Future Work

	Bibliography
	List of Publications

