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Abstract

The present thesis describes the use of reinforcement learning to enhance
heuristic search for solving complex (real-world) optimization problems such
as (project) scheduling, routing and assignment. Heuristic search methods are
known to deliver good results in a reasonable amount of calculation time, without
any guarantee of optimality. Often they require careful parameter tuning to
obtain good results. Reinforcement learning methods on the other hand, learn
to act in a possible unknown random environment on a trial-and-error basis.
The goal of the hybridization of heuristic search and reinforcement learning is to
generate intelligent search methods which are adaptive and generally applicable
while keeping eventual extra overhead to a minimum.

Three levels of inclusion of reinforcement learning into heuristic search methods
are defined: the direct, the metaheuristic and the hyperheuristic level. At the
direct level, the reinforcement learning method searches directly for good quality
solutions, while at the metaheuristic and hyperheuristic level, the reinforcement
learning component is added for learning good starting solutions, good parameter
values, good objective functions, good heuristics, etc. For each level, one or
more learning enhanced methods are demonstrated on benchmark and/or real-
world problems. A general methodology for learning permutations without any
domain knowledge is described. Additionally, a method for learning to select
heuristics during search is described and tested on several hard combinatorial
optimization problems such as the traveling tournament problem, the patient
admission scheduling problem, and the machine reassignment problem. It is
shown that this learning selection method performs significantly better than
selecting the heuristics at random.

From an application point of view, this thesis is mainly, though not exclusively,
devoted to scheduling problems. We tackled the multi-mode resource-
constrained project scheduling problem, the decentralized resource-constrained
multi-project scheduling problem, the (dynamic) flexible job shop scheduling
problem and a real-world production scheduling problem from the food industry.
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iv ABSTRACT

Real-world problems often hold a rich structure allowing for learning valuable
information. We show that a multi-agent reinforcement learning architecture,
more specifically a network of learning automata with a common reward signal,
is very well suited to design new hybrid well performing methods. Many new
best results for project scheduling benchmarks are generated using the proposed
GT-MAS approach.



Beknopte samenvatting

In deze thesis wordt beschreven hoe reinforcement learning kan aangewend
worden om heuristische zoekmethoden te verbeteren voor het oplossen van moei-
lijke (praktische) optimalisatie problemen zoals bijvoorbeeld (project)plannings,
routerings en toewijzingsproblemen. Heuristische zoekmethoden worden
gebruikt om goede resultaten te behalen in korte tijd, maar zonder enige
garantie van optimaliteit. Vaak vragen deze methoden een grondige fijnstelling
van parameters voor het behalen van de beste resultaten. Reinforcement learning
technieken daarentegen zullen op een trial-and-error manier leren om acties
te nemen in mogelijk ongekende omgevingen. Het doel van de hybridisatie
van heuristisch zoeken en reinforcement leren is het genereren van intelligente
zoekmethoden die adaptief en generiek toepasbaar zijn, zonder daarbij veel
overhead toe te toevoegen.

Drie niveaus voor het toevoegen van reinforcement learning aan heuristisch
zoeken worden gedefinieerd: het directe, het metaheuristisch en het hyperheu-
ristisch niveau. Op het directe niveau zal de reinforcement learning methode
rechtstreeks op zoek gaan naar de beste oplossing, terwijl op het metaheuristisch
en hyperheuristisch niveau, de reinforcement learning component zal ingezet
worden voor het leren van goede startoplossingen, goede parameter waarden,
goede doelfuncties, goede heuristieken, enz. Voor ieder niveau worden er één of
meerdere door leren versterkte methoden gedemonstreerd op benchmarks en/of
praktische problemen. Een algemen methode voor het leren van permutaties
zonder domeinkennis wordt beschreven. Bovendien wordt er een methode
beschreven voor het leren selecteren van heuristieken tijdens het zoeken. Deze
methode werd uitgetest op enkele moeilijke combinatorische problemen, zoals
het traveling tournament probleem, het patient admission scheduling probleem
en het machine reassignment probleem. Er wordt aangetoond dat deze lerende
selectie methode beter presteert dan een methode die de heuristieken volledig
willekeurig gaat selecteren.

Het toepassinggebied waar in deze thesis het meeste aandacht wordt besteed
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vi BEKNOPTE SAMENVATTING

is ‘scheduling’. We hebben de volgende problemen aangepakt: het multi-mode
resource-constrained project scheduling probleem, het decentralized resource-
constrained project scheduling probleem, het (dynamic) flexible job shop
scheduling probleem, en een productie scheduling probleem uit de voedings
industrie. Praktische problemen hebben vaak een rijke structuur die toelaat om
waardevolle informatie te leren. Er wordt aangetoond dat een multi-agenten
reinforcement leeromgeving, meer specifiek een netwerk van leerautomaten met
een gemeenschappelijk reward signaal, zeer geschikt is voor het ontwerpen
van goed presterende hybride methoden. Vele nieuw beste resultaten werden
behaald voor gekende projectplanningsdatasets met behulp van de voorgesteld
GT-MAS aanpak.
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Chapter 1

Introduction

On a daily basis, people and companies are challenged with difficult problems
such as finding the best route between different locations, or finding the
best feasible schedule, or managing their resources. For many of these
combinatorial optimization problems, the number of solutions grows
exponentially in the input size, and finding the best solution(s) is hard.
Heuristic search methods are very appropriate tools for solving such problems.
Many heuristic search methods exist. Some of these are metaphorically inspired
by phenomena from biology or physics, others use simple rules of thumb. The
field of machine learning offers a variety of techniques, such as supervised
learning, unsupervised learning and reinforcement learning, to develop improved
and more intelligent heuristic search methods.

The aim of this thesis is to create heuristic search methods with a
Reinforcement Learning (RL) component making them more adaptive and
generally applicable to many (real-world) combinatorial optimization problems
such as scheduling, planning, assignment and routing, while keeping the overhead
low. Reinforcement learning (RL) is the subfield of machine learning, where one
or more agents have to learn to take actions in a possibly unknown environment
in order to reach some goal(s). Opposed to supervised learning, an RL agent
is not told which actions are best to take, and thus has to learn by trial-
and-error (e.g. child learning to ride a bike). RL methods have to deal with
delayed rewards and incomplete information. Learning automata (LA) belong
to this category of methods, and are extensively applied in this thesis to create
intelligent optimization methods. Battiti et al. [2008] state that using an RL
method in a feedback loop with a heuristic search could have many advantages.
In this thesis we show that this is in fact the case.

1
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 Action 

 Feedback 

Figure 1.1: Person solving a hard edge-matching puzzle.

Consider the following illustrative example (Figure 1.1): A person is challenged
with the task of solving a hard edge-matching puzzle such as the Eternity
II puzzle [Wauters et al., 2012a] (combinatorial optimization problem). She
will start with an initial solving technique, possibly based on some rule of
thumb (heuristic search method). In the course of the solving process the
human will receive feedback, e.g. how many pieces are placed by using the
current solving technique. She will adapt her solving technique based on the
retrieved feedback (reinforcement learning), i.e. the performance of the search
technique. If everything goes well, she applies the current solving technique
with a larger probability, if not, she decreases that probability and tries other
solving techniques. A similar reasoning process will be followed by the methods
described in this thesis.

1.1 Motivation

Researchers developing heuristic search methods to hard combinatorial
optimization problems (e.g. scheduling problems) are faced with a number
of challenges. One major challenge is to avoid convergence to a poor solution.
Another challenge is to create a method applicable to different problems of
various sizes and properties, while still being able to produce good quality
solutions in a short amount of time. Metaheuristics [Glover, 1986, Glover
and Kochenberger, 2003, Talbi, 2009] and the more recently introduced
hyperheuristics [Burke et al., 2003a] try to address these issues. Hybrid systems
and their various perspectives cope with these challenges even better, as shown
in many recent publications for benchmark and practical problems [Blum et al.,
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Figure 1.2: Intersection between operations research and artificial intelligence.

2008]. Successful hybridizations with integer programming and constraint
programming techniques were proposed. Another possible hybridization, which
is the main topic of this contribution, involves the inclusion of a Reinforcement
Learning (RL) [Kaelbling et al., 1996, Sutton and Barto, 1998a] component to
these meta- and hyper-heuristic methods. This idea fits in the area of intelligent
optimization [Battiti et al., 2008], which can be defined as a combination of
techniques from Operations Research and Artificial Intelligence (Figure 1.2).
Some intelligent (learning) component aids the optimization method in order to
obtain a better informed search. During the search process a learning component
can adjust parameters or support the optimization method in making decisions.

In what follows, it is shown how RL and metaheuristics can be fruitfully
combined. Reinforcement learning causes the algorithm to be adaptive, and as
such it minimizes the weaknesses of strongly parameterized methods. As long
as the algorithm is granted enough time facilitating the learning of valuable
information, reinforcement learning offers interesting advantages. It does not
require a complete model of the underlying problem. RL methods learn the
model by gathering experience, often referred to as trial-and-error. Many model
free RL methods exist. This is noteworthy since ordinarily no model is available
for most combinatorial optimization problems. Some reinforcement learning
methods can handle incomplete information, even though this is obviously a
much harder learning task. Reinforcement learning allows applying independent
learning agents, and thus, it is even applicable to fully decentralized problems.
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Furthermore, it is computationally cheap in that it often uses only a single
update formula at each step. Additionally, if only general problem features and
no instance specific features are used, then the learned information can possibly
be transfered to other instances of the same problem. Recently some type of RL
algorithms that are well suited for this task have been introduced, these are called
transfer learning [Taylor et al., 2007, Taylor and Stone, 2009]. Furthermore, one
can build on theoretical properties showing that many RL methods converge to
optimal state-action pairs under certain conditions (e.g. the policy for choosing
the next action is ergodic) [Sutton and Barto, 1998a]. In this dissertation we
will demonstrate that these interesting theoretical properties show good results
when applied to heuristic search for combinatorial optimization.

The thesis focuses on how RL methods, more specifically learning automata,
can be used for solving combinatorial optimization problems, and how they can
be hybridized with existing heuristic search methods. We study the calculation
time overhead of learning, and the influence of the learning parameters on the
obtained results. Often a single parameter is used, i.e. the learning rate.

An interesting application domain for these RL enhanced heuristic search
methods is scheduling. Scheduling problems are very relevant for industry, e.g.
production scheduling, scheduling multiple projects in the construction sector,
or just scheduling jobs on machines in a shop floor environment. Strict time
and resource constraints have to be fulfilled, while simultaneously optimizing
time or cost related objectives such as the makespan. Scheduling is the main
application area of this thesis, including project scheduling problems, flexible
job shop scheduling problems and a real world production scheduling problem
in the food industry.

1.2 Structure of the thesis

The present thesis starts by discussing the concepts of reinforcement learning and
heuristic search, and the combination of both. Chapter 2 describes how these
two methods are related, and how they can be efficiently combined. An extensive
literature overview on approaches combining both domains is given, discussing
their similarities and differences. We illustrate the opportunities for inclusion of
learning at three different levels, i.e. the direct level, the metaheuristic level and
the hyperheuristic level (Figure 2.4). At the direct level the RL method directly
learns good quality solutions, while at the metaheuristic level the RL method
can learn good starting solutions, a good objective function, or good parameter
values. At the hyperheuristic1 level the RL method can be integrated in the

1A typical hyperheuristic in the category of ‘heuristics to choose heuristics’ is assumed.
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selection or acceptance steps. Learning enhanced approaches to permutation
problems, project scheduling problems and other combinatorial optimization
problems are described in full detail in the subsequent chapters. The coverage
of the RL inclusion levels by the chapters in this thesis is shown in Figure 1.3.

We start with the general task of learning permutations. Permutations are
frequently part of combinatorial optimization problems and techniques for
solving them. Designing a method able to learn good quality permutations
without using problem specific information, would contribute to the general
applicability of heuristic search methods. Chapter 3 describes such techniques
for learning permutations using learning automata. These permutation learning
methods can be integrated into the hyperheuristic framework to order their
low-level heuristics. Hyperheuristics can also use the techniques introduced in
Chapter 4 for learning which heuristic to select at each step. A single learning
automaton shows to outperform the often used simple random heuristic selection
method. These LA based heuristic selection methods are demonstrated on three
hard combinatorial optimization problems: the traveling tournament problem,
the patient admission scheduling problem and the machine reassignment problem.
The traveling tournament problem is a combination of a timetabling and a
routing problem. A double round robin tournament for (football, rugby, soccer)
teams has to be created with minimal total traveling distance, while respecting
consecutive home-away constraints. In the patient admission scheduling problem,
patients have to be assigned to beds in a hospital taking into account many
medical and personal constraints. The machine reassignment problem, which
was the subject of a recent challenge organized by EURO/ROADEF in 2012,
considers the (re-)assignment of processes to machines such that the resource
loads on the machines are balanced and the costs of moving the processes are
minimized.

In the further chapters of this thesis we switch to our main application domain:
scheduling. Reinforcement learning enhanced heuristic search methods were
applied to the multi-mode resource-constrained project scheduling problem
(MRCPSP) and the decentralized resource-constrained multi-project scheduling
problem (DRCMPSP). Activities of the MRCPSP can be scheduled in multiple
execution modes. An execution mode defines the duration and resource
requirement of an activity. The DRCMPSP incorporates scheduling multiple
projects in a decentralized manner where both global and local resources are
available. Details of the methods for these two well known project scheduling
problems are described in Chapter 5. State-of-the-art results are achieved and
many new best solutions were found.

The application of learning automata for flexible job shop scheduling problems is
demonstrated in Chapter 6. The proposed methods are tested on datasets from
the literature and compared to existing well performing methods. Furthermore a
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Figure 1.3: Coverage of the RL inclusion levels by the chapters in this thesis.

dynamic version of the problem is introduced with release dates, due dates, and
perturbations. New problem instances are generated. The LA based method
is adapted to this dynamic setting and compared to pure reactive and global
optimization approaches, using several time related objective measures.

Application of the proposed techniques to a production scheduling case in the
food-industries is discussed in Chapter 7. This real-world case combines multiple
hard optimization problems such as routing, assignment and scheduling. The
scheduling part is translated to a project scheduling problem with generalized
precedence relations which can be effectively solved by a network of learning
automata (as demonstrated in Chapter 5). It is shown where RL can be used
to improve the developed scheduling system. In addition, machine learning
techniques are employed to ‘learn’ correct background information, which can be
used by the scheduler to obtain more realistic schedules A supervised learning
technique was used on historical data to predict machine speeds.

In Chapter 8 we conclude by formulating the main achievements of this thesis
in terms of the contribution to the field of heuristic search, scheduling and
combinatorial optimization in general. We end this thesis by enlisting several
promising directions for future work.



Chapter 2

Reinforcement learning and
heuristic search

2.1 Reinforcement learning

Artificial intelligence (AI) is a broad research field in which one tries to develop
intelligent machines or agents. These agents have to take actions in order to find
some goals or to optimize their performance. Some of the main AI disciplines
include, but are not limited to, knowledge representation, planning, natural
language processing and machine learning. Machine learning can be useful to
create intelligent optimization methods, as stated by Battiti et al. [2008].

Reinforcement Learning (RL) [Kaelbling et al., 1996, Sutton and Barto, 1998a]
belongs to the category of machine learning algorithms. A reinforcement learning
agent has the computational task of learning which action to take in a given
situation (state) to achieve one or more goal(s). The learning process takes
place through interaction with an environment (Fig. 2.1), and is therefore
different from supervised learning methods that require a teacher. At each
discrete time step an RL agent observes the current state s. In each state s
the agent can take some action a from the set of actions available in that state.
An action a can cause a transition from state s to another state s′, based on
transition probabilities. The model of the environments contains these transition
probabilities. A numerical reward signal r is returned to the agent to inform
the RL agent about the ‘quality’ of its actions or the intrinsic desirability of a
state. The reward signal is also a part of the model of the environment. An RL
agent searches for the optimal policy in order to maximize accumulated reward.

7
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RL agent Environment

Action a

Reward signal r

Observation of current state s

Figure 2.1: The basic reinforcement learning model.

A policy π maps states to actions or action probabilities. π (s, a) denotes the
probability that action a is selected in state s. An RL agent wants to maximize
the expected sum of future rewards. When an infinite horizon is assumed, a
discount factor γ is used to discount these future rewards. As such, less or more
importance is given to rewards further into the future.

One of the main issues in RL is balancing exploration and exploitation, i.e.
whether to exploit the already gathered experience or to gather completely new
experience. Another important issue is the credit assignment problem, where
one has to deal with delayed rewards, and thus answering the question which
action from the past should receive credit for a given reward. The latter problem
is currently getting limited attention in hybrid RL inspired search methods, as
will be shown in Section 2.5.

2.1.1 Policy iteration methods

Two different types of reinforcement learning methods exist, namely policy
iteration and value iteration. An RL agent searching directly for the optimal
policy in the space of all possible policies is applying a ‘policy iteration’ method.
One category of methods of this type are the policy gradient methods, like the
REINFORCE algorithm [Williams, 1992]. Learning Automata (LA) [Narendra
and Thathachar, 1989, Thathachar and Sastry, 2004] also belong to this category,
and are discussed next.
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Learning Automata

LA are simple reinforcement learning devices that take actions in single state
environments. A single learning automaton maintains an action probability
distribution p, which it updates using some specific learning algorithm or
reinforcement scheme. Several reinforcement schemes with varying convergence
properties are available in the literature. These schemes use information from a
reinforcement signal provided by the environment, and thus the LA operates
with its environment in a feedback loop. Examples of linear reinforcement
schemes are linear reward-penalty, linear reward-inaction and linear reward-
ε-penalty. The philosophy of these schemes is to increase the probability of
selecting an action in the event of success and decrease it when the response is
a failure. The general update scheme is given by:

pm(t+ 1) = pm(t) + αrewardβ(t)(1− pm(t))

− αpenalty(1− β(t))pm(t) (2.1)

if am is the action taken at time t

pj(t+ 1) = pj(t)− αrewardβ(t)pj(t)

+ αpenalty(1− β(t))[(|A| − 1)−1 − pj(t)] (2.2)

if aj 6= am

with pi(t) the probability of selecting action i at time step t. The constants
αreward ∈ [0, 1] en αpenalty ∈ [0, 1] are the reward and penalty parameters.
When αreward = αpenalty, the algorithm is referred to as linear reward-penalty
(LR−P ), when αpenalty = 0, it is referred to as linear reward-inaction (LR−I) and
when αpenalty is small compared to αreward, it is called linear reward-ε-penalty
(LR−εP ). β(t) ∈ [0, 1] is the reward received by the reinforcement signal for an
action taken at time step t. |A| denotes the number of actions.

Pursuit Algorithm

Another type of learning automata algorithms are the estimator algorithms.
These algorithms use the past history of actions and reinforcements for updating
their action probabilities. A distinguished estimator algorithm is the Pursuit
Algorithm [Thathachar and Sastry, 1986]. This algorithm maintains two
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additional vectors Z(t) and η(t). Z(t) stores the total obtained reinforcement
for each action, while η(t) counts the number of times each action was chosen.
Both vectors are used and updated at each step to generate estimates of the
reward probabilities d(t) = Z(t)

η(t) . These estimates are equivalent to the average
reinforcement for each action. The reward probability estimates are used to
update the action probability vector p(t) as follows:

p(t+ 1) = p(t) + λ(eM(t) − p(t)) (2.3)

where 0 < λ ≤ 1 is the learning parameter, and eM(t) is a unit vector with
element at index M(t) equal to 1 and all other elements 0. The greedy action
M(t) is determined by

dM(t) = max
i
di(t) (2.4)

A major advantage of the pursuit algorithm is that the reward values are not
necessarily in [0,1]. Since most objective function values are not limited to
[0,1], this property makes it an interesting candidate for inclusion in heuristic
search methods. Further on, it converges faster than LR−I while keeping the
interesting theoretical properties [Thathachar and Sastry, 2004]. However, the
update step requires more calculation time, thus less attractive for inclusion into
a heuristic search method. A limited number of experiments with the pursuit
algorithm were carried out on actual cases, but due to the lack of significant
results, this technique was omitted for further research.

2.1.2 Value iteration methods

Value iteration methods are more common than policy iteration methods. Value
iteration methods do not directly search for the optimal policy, instead they
are learning evaluation functions for states or state-action pairs. Evaluation
functions, as in the popular Q-learning algorithm [Watkins, 1989b, Watkins and
Dayan, 1992] can be used to evaluate the quality of a state-action pair. The
Q-learning algorithm maintains an action-value function called Q-values. The
Q-learning update rule is defined by

Q(s, a) = Q(s, a) + α
[
r + γ max

a′
Q(s′, a′)−Q(s, a)

]
, (2.5)
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where s is the previous state, s′ the new state, a the action taken in state s, a′
a possible action in state s′, r the received reward, α ∈ [0, 1] the learning rate
or step size, and γ ∈ [0, 1] the discount rate which indicates the importance
of future rewards. In many cases the number of states or state-action pairs is
too large to store, and thus the (action)-value function must be approximated.
Often an artificial neural network is used to accomplish this task, but any linear
or nonlinear function approximation can be applied. Q-learning is known as a
Temporal Difference (TD) learning method because the update rule uses the
difference between the new estimate and the old estimate of the value function.
Other common TD methods are SARSA [Rummery and Niranjan, 1994, Sutton,
1996] and TD(λ) [Watkins, 1989b].

2.1.3 Multi-agent reinforcement learning

Multi-agent reinforcement learning (MARL) refers to systems where multiple
reinforcement learning agents act together in a common environment [Busoniu
et al., 2008b]. A large number of multi-agent applications where learning could
be beneficial exist, e.g. distributed control, robotic teams, collaborative decision
making, resource management, etc. In the case of resource management, the
resources can be controlled centrally, but managing each resource by its own
agent may add a helpful, distributed perspective to the system. The agents
can work together (cooperate) or have their individual (maybe conflicting)
objectives (competitive). Since the agents all share a common environment,
the environment becomes non-stationary for each individual agent. The reward
each agent receives is influenced by the actions of the other agents. Excellent
multi-agent learning overview papers are given by Busoniu et al. [2008a], Panait
and Luke [2005], Yang and Gu [2009], Tuyls and Weiss [2012].

Examples of state-of-the-art algorithms in MARL literature are Joint Action
Learning [Claus and Boutilier, 1998], Nash-Q learning [Hu and Wellman, 2000,
2003] and Gradient Ascent algorithms such as the Infinitesimal Gradient Ascent
algortihm [Singh et al., 2000].

2.2 Heuristic search

Heuristics are simple and fast techniques to find ‘good enough’ solutions for
combinatorial optimization problems. They are often used when exact methods
such as mixed integer linear programming or constraint programming are
inadequate. Metaheuristics and hyperheuristics are more general and intelligent
heuristic search methods and are described in the following sections.
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Figure 2.2: Local and global optima of a fictitious search landscape.

2.2.1 Metaheuristics and local search

Metaheuristics [Glover, 1986, Glover and Kochenberger, 2003, Talbi, 2009] are
commonly used methods for solving combinatorial optimization problems. They
use an objective function to intelligently guide the search towards better solutions.
Compared to simple heuristics, metaheuristics employ higher level strategies to
escape from a local optima. A local optimum is a solution for an optimization
problem for which no improving candidate solution exists using the current set
of operators. The goal is to reach the global optimum, i.e. the best solution
among all local optima (Figure 2.2)1. Metaheuristics are often metaphorically
inspired by physics or biological behaviour. Throughout this thesis we focus on
single-solution based metaheuristics, also called S-metaheuristics by Talbi [2009].
S-metaheuristics keep only a single solution in memory, opposed to population
based metaheuristics (P-metaheuristics) which store multiple solutions (the
population).

A balance must be made between diversification and intensification. Diver-
sification stimulates the search to find solutions in other areas of the search
space, while intensification limits the search to promising regions. Common
S-metaheuristic techniques are tabu search [Glover, 1986, Glover and Laguna,
1997], simulated annealing [Kirkpatrick et al., 1983b] and variable neighbourhood

1The search landscape is not intended to be continuous, but is just for illustration purposes.
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search [Mladenovic and Hansen, 1997a], while genetic algorithms [Holland, 1975]
and ant-based methods [Dorigo, 1992., Dorigo and Gambardella, 1997] belong
to the P-metaheuristic class.

Local search

Local search is an S-metaheuristic method which employs one or multiple
neighbourhood functions to iteratively improve upon a starting solution by
moving from one solution to another. These neighbourhood functions define
small local changes to the current solution, e.g. swapping two elements or adding
an element to the solution.

In recent years the application of metaheuristics and local search has led to
better understanding how to tackle complex optimization problems in practice.
Still it is not clear which method is most appropriate for a given problem.
Metaheuristics typically require finetuning multiple parameters. Moreover
these parameters are problem or even instance specific and thus require expert
knowledge. Out of the box software solutions are therefore very labour-intensive,
complex and as a result very expensive. This increases the need for automated
systems, for which the human part in design and tuning of heuristic search
methods is limited. For example: how to a priori choose the length of the tabu list
in tabu search or the cooling schedule in a simulated annealing method? Recent
trends in metaheuristic research show this need for a more general approach.
The hybrid methods are popular, where multiple optimization techniques are
combined. Another recent trend in the area of local search is the development
of so called hyperheuristics [Burke et al., 2003a], discussed in the next section.

2.2.2 Hyperheuristics

Hyperheuristics [Burke et al., 2003a] are search methods operating at a higher
level than metaheuristics. Opposed to metaheuristics, hyperheuristics perform
a search in a space of (meta)heuristics. Typically these hyperheuristics do not
use any problem specific knowledge. Only information about the performance
of the lower-level (meta)heuristics is given, e.g. the achieved improvement or
the required CPU-time. In this way hyperheuristics tend to be more general
than metaheuristics, by using information that is common to all optimization
problems. The methods proposed in this thesis are developed towards a similar
goal as hyperheuristics. Moreover, some of them can be a part of a hyperheuristic
(e.g. Chapter 4). Misir [2012] gives a complete survey and the state-of-the-art
of hyperheuristics.
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Figure 2.3: Example of a solution for the one-dimensional bin packing problem
constructed with the minimal bin slack heuristic.

2.2.3 Example

To clarify the differences between a heuristic, a metaheuristic and a
hyperheuristic we consider the following example. In a classical one-dimensional
bin packing problem, n items with size si, i = 1..n have to be packed into a
minimum number (m) of bins with capacity C. For each bin Bj , j = 1..m, the
sum of the sizes of the items in that bin must be smaller or equal than the bin
capacity.∑

i∈Bj

ci ≤ C (2.6)

An example heuristic for this problem sorts the items by non-increasing size,
and puts them one by one in the first available bin with sufficient free capacity.
This heuristic is called first fit decreasing. Better heuristics exist, such as the
best fit decreasing and the minimal bin slack heuristics [Gupta and Ho, 1999,
Fleszar and Hindi, 2002]. The best fit decreasing heuristic is similar to first fit
decreasing, but puts the items in the best fitting bin, i.e. the fullest bin offering
sufficient free capacity. The minimal bin slack heuristic and its extensions is
one of the best performing heuristics in bin packing literature. The heuristic
recursively attempts to find a set of items that fits the bin capacity as much as
possible. An example solution with 24 items and 8 bins is shown in Figure 2.3.
The solution was constructed using the minimal bin slack heuristic.

A simple local search metaheuristic for this problem for example, makes use
of an ordered list of items and places the items in order in the first bin with
sufficient free capacity. A local search e.g. tries all possible swaps of items
in the list to create new solutions. This is called a swap neighbourhood. A
steepest descent will take the best solution (i.e. the solution with a minimal
number of bins) from the swap neighbourhood to continue with, and stops when
no improving solution can be found. More advanced metaheuristics like tabu
search or simulated annealing can be applied.
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A hyperheuristic can manage these heuristics and metaheuristics and decide on
the acceptance of the solution they produce. The selection of the (meta)heuristics
can be done at random or in a more intelligent way. For the acceptance part,
any of the existing acceptance mechanisms can be used, e.g. improving-or-equal,
which accepts solution if their quality is better than or equal to the quality of
current solution.

2.3 Relationships between reinforcement learning
and heuristic search

A direct link exists between reinforcement learning and search algorithms. Given
a state space, an action space and a reward function, the reinforcement learning
problem can obviously be reduced to a search in the space of policies. It can
be seen as an online stochastic optimization problem with unknown objective
function. Thus similar issues like exploration and exploitation are faced, often
called diversification and intensification in metaheuristic literature.

Evolutionary algorithms like GAs are often used for solving combinatorial
optimization problems. However, GAs and (reinforcement) learning are closely
related [Panait et al., 2008]. Shapiro shows the usage of GAs in machine learning,
and states that reinforcement learning is the most important application of
genetic algorithms in machine learning. Moriarty et al. [1999] gives an overview
on the usage of evolutionary algorithms for reinforcement learning. A GA
receives feedback (the fitness value) from the environment similar to an RL
method. Because of the use of a population, a GA can also be used for learning
in multi-agent systems. The interaction between learning and evolution was
studied in [Ackley and Littman, 1991].

Unlike the subject of the present thesis, where (reinforcement) learning methods
are used to support heuristic search, there are methods which do exactly the
opposite, i.e. using metaheuristic methods to improve learning. Bennett and
Parrado-Hernández [2006] discuss this interplay between optimization and
machine learning.

2.4 Opportunities for learning

Reinforcement learning methods can be utilized at different levels for solving
combinatorial optimization problems. We define the following three levels
(shown in Figure 2.4).



16 REINFORCEMENT LEARNING AND HEURISTIC SEARCH

Reinforcement

Learning (RL)

Combinatorial 

Optimization

Problem

Combinatorial 

Optimization

Problem

Combinatorial 

Optimization

Problem

Metaheuristic

Hyperheuristic

(Meta)heuristics
RL

RL

Figure 2.4: Different levels to employ reinforcement learning for combinatorial
optimization.

• The direct level (left): RL is directly applied to the problem.

• The metaheuristic level (middle): RL is used as a component of a
metaheuristic.

• The hyperheuristic level (right): RL is used as a component of a
hyperheuristic.

These levels will be used to further classify the methods described in this thesis.

When metaheuristics are considered, learning may help to find good settings
for various parameters or components. For example, RL methods can learn
properties of good starting solutions or an objective function that guides a
metaheuristic towards good quality solutions. Such an approach is adopted
in [Boyan, 1998, Boyan et al., 2000], where a function is learned that is able
to guide the search to good starting solutions. Another component on which
learning can be applied is the neighborhood or heuristic selection. A learning
method can learn which are the best neighborhoods or heuristics to construct
or change a solution at any time during the search, so that in the end good
quality solutions can be generated. Such an approach is applied by Zhang and
Dietterich [1995] and Nareyek [2001]. When a classical hyperheuristic with
acceptance and selection mechanism is used, learning can be applied to both
mechanisms. A learning method can learn to select the low-level heuristics (e.g.
in [Burke et al., 2003c] and [Misir et al., 2009]), or it can ascertain when to
accept a move. To summarize, the components possibly involved, include but
are not limited to:
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• the starting solution,

• the objective function,

• the neighborhoods or heuristics selection,

• the acceptance of new solutions/moves.

All these parameters or components can be updated by the RL algorithm in an
adaptive way.

Alternatively, RL methods can also be directly applied to solve optimization
problems (left image of Figure 2.4). In this case they are not considered
hybridized and are themselves used as a metaheuristic. The RL method learns
and directly assigns values to the variables. Such approaches are investigated
by Gambardella et al. [1995], Miagkikh and Punch [1999], Wauters et al. [2010]
and Wauters et al. [2011]. The latter two papers are developed in the course
of this thesis and described in Chapter 5. In contrast to [Gambardella et al.,
1995] and [Miagkikh and Punch, 1999] which employ value iteration methods
such as Q-learning, we directly search in the space of policies using a network
of learning automata.

A possible indication for the benefit of including RL in a search algorithm is
the presence of a random component. By replacing this random component
with an RL component the algorithm develops a more intelligent decision
mechanism. For example in a hyperheuristic with a simple-random selection
step, the selection can be replaced by some RL method, as we proposed in
[Misir et al., 2009], and further discussed in Chapter 4 of this thesis.

Yet another opportunity for learning arises when either the problem is intrinsi-
cally distributed or can be split into several subproblems. Examples of such
include distributed scheduling and planning problems such as the decentralized
resource-constrained multi-project scheduling problem (DRCMPSP) [Confessore
et al., 2007] and [Homberger, 2009]. This problem considers scheduling multiple
projects simultaneously, with each project having multiple jobs. A job requires
local or global resources, which are available for either all jobs in the project or
have to be shared among all projects respectively. Some local objectives can
be optimized, for example the makespan of the individual projects, whereas
global objectives, such as the average project delay or the total makespan can
be minimized. For this kind of problems multi-agent reinforcement learning
methods are appropriate. When one or more global objectives need to be
optimized, the agents share a common goal and can thus be cooperative. The
agents have to coordinate in order to jointly improve their decisions. Using a
common reward, the agents can simply but effectively coordinate their decisions.
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We applied this approach in [Wauters et al., 2010, 2012b] for the DRCMPSP,
which is further described in Chapter 5 of this thesis.

Some important counter-indications might shed doubts on the applicability of
RL in (meta)heuristic search. A metaheuristic operating on a combinatorial
optimization problem behaves as an unknown random environment for the
reinforcement learner, which makes it a hard learning task. Moreover, the
Markov Property, which is the basic hypothesis for most theoretical RL results,
does not hold for a heuristic search method. In heuristic search methods, the
next optimal action depends on the previous actions (memory), which invalidates
the Markov property. Additionally, time or information available for learning is
often limited. As shown further in this thesis these arguments do not affect the
applicability of RL methods in practice. A well thought design of states, actions
and reward signal is needed. This will be discussed in the following sections.

2.4.1 States and actions

Before applying RL to a problem, the set of possible states and the set of possible
actions available in each state, have to be defined. Many possible ways exist to
accomplish this. First of all we can make a distinction between search-dependent,
problem-dependent and instance-dependent state space definitions. A search-
dependent state space definition uses observations of the search process itself,
such as the current iteration, the number of successive non-improving iterations,
or the total improvement over the initial solution. A problem-dependent setting
is defined by the use of generic problem features, like the Resource Dilation
Factor for scheduling problems, as defined by Dietterich and Zhang [2000]. An
instance-dependent setting uses instance-specific features, like the number of
tardy jobs in a scheduling problem, or the number of full bins in a bin-packing
problem. Combinations of these three settings are also possible. When a
problem-dependent or a search-dependent state space definition is used, the
learned information can possibly be transfered to other instances of the same
problem, or even to other problems. In many cases the properties of the solutions
to the optimization problem itself cannot be used directly, due to the curse
of dimensionality. It would be better to use some extracted problem features.
Take for example a traveling salesman problem (TSP), where one searches for
the shortest tour through a set of cities. If one should use the encoding of
a complete tour directly as the state, then the number of states would grow
exponentially, i.e. n! with n the number of states.

The set of possible actions in each state is determined by the decisions an RL
agent or multiple RL agents have to make. These actions are parameter values
or components of the metaheuristic one wants to learn.
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2.4.2 Reward function

Experience gathering is a prerequisite to learning, which can be achieved either
online or offline. Experience is hardly present in combinatorial optimization
problems. Often only a single numerical value is available, indicating the quality
of a complete solution. However, reward functions are very important for an RL
method in order to learn some valuable information. As stated by Dietterich and
Zhang [2000], there are three requirements that a reward function should satisfy.
First of all, it should give higher rewards to better solutions. Secondly, it should
encourage the reinforcement learning system to find efficient search policies, i.e.
search policies that involve only a few steps. Thirdly, it should be a normalized
measure, in order to be transferable to new problem instances. An additional
fourth requirement may be added, namely that it should be computationally
efficient. When designing a reward function for a hybrid RL-metaheuristic
method we do take these four requirements into account.

The RL framework is able to deal with delayed rewards, nevertheless using the
final solution quality as a reward would mean that one has to repeat the search
multiple times. Restarting the search is not always possible, e.g. because of
limited computation time. In such a case, only a small number of runs can be
performed. As an example, we refer to the winning hyperheuristic algorithm
of the Cross-domain Heuristic Search Challenge (CHESC2011)2. The winning
algorithm developed by Misir et al. [2012] had the best overall performance over
a set of six problem domains, but due to the lack of sufficient time for learning,
it had a very bad performance on the personnel scheduling domain. For this
reason, it is necessary to use the information available during a single search
run (online), and adapt the current search appropriately. An example of an
immediate reward signal is the improvement achieved by a selected move type
or heuristic (see Chapter 4).

2.5 Literature overview

The combination of heuristic search and (reinforcement) learning is relatively
new. Only few references describe and use such a hybrid approach. Applied
problem domains include, but are not limited to, scheduling, packing and
routing. Table 2.1 compares the methods further discussed in this section by
the used RL-method, heuristic search method and the component involving RL.
The methods in bold are part of this thesis.

2CHESC website: http://www.asap.cs.nott.ac.uk/external/chesc2011/

http://www.asap.cs.nott.ac.uk/external/chesc2011/
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2.5.1 Value iteration methods for heuristic search

As mentioned earlier, the methods described in this thesis employ learning
automata, which is a policy iteration method. For completeness we give an
overview of the existing value iteration methods for heuristic search in this
section.

One of the first papers covering the combination of learning and metaheuristic
search is presented by Zhang and Dietterich [1995]. A reinforcement learning
method is applied to learn domain-specific heuristics for the NASA space shuttle
payload processing problem, which is modeled as a job shop scheduling problem.
A value function is learned offline using a temporal difference algorithm TD(λ)
together with a neural network. General features of the schedules (solutions)
such as the percentage of the time units with a violation are used to represent
a state. The possible actions are taken from a set of repair heuristics. After
learning the value function on a number of small problem instances, it is used
over multiple instances of the same problem. The TD algorithm is compared
to an existing method for the problem, i.e. an iterative repair method with
simulated annealing. The reinforcement learning based method outperforms
the iterative repair method. It is noteworthy that the value functions that were
learned on small problem instances also have a very good performance on larger
instances. Dietterich and Zhang [2000] provide a more detailed description and
application of this approach.

Another early contribution to the application of RL for solving combinatorial
optimization problems can be found in [Gambardella et al., 1995]. The paper
describes the Ant-Q algorithm, which combines the Ant System and the Q-
Learning algorithm, and has been successfully applied to the Asymmetric
Traveling Salesman Problem (ATSP). Ant System is based on the observation
of ant colonies. Each ant from a colony constructs a solution for the ATSP,
called a tour. The method uses a modified version of Q-values, called AQ-values.
These AQ-values are updated using a Q-learning update rule. The delayed
reward, which is calculated when each ant completes a tour, is based on the best
tour of the current iteration or on the best tour of all past iterations, taking
each ant into account. The Ant-Q algorithm shows an interesting property. It
was observed that the Ant-Q agents do not make the same tour, demonstrating
the explorative character of the search method.

Miagkikh and Punch [1999] present an algorithm that combines reinforcement
learning with genetic algorithms for the Asymmetric Traveling Salesman Problem
(ATSP) and Quadratic Assignment Problem (QAP). For the ATSP a Q-learning
[Watkins, 1989b, Watkins and Dayan, 1992] method is used to both express
and update the desirability of choosing city a after city b. A state is a city,
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and an action is another city following the aforementioned city in the tour. A
population of RL agents with desirability values (Q-values) is formed, with
each agent holding one solution. The offspring is constructed by replicating
solution parts from one parent and filling in the other parts using the desirability
values (updated by a q-learning update rule) of the other parent, rather than
the traditional genetic crossover operators method. The reward is a weighted
combination of immediate and global rewards based on the tour lengths of
the new solution and the solutions of the parents. The QAP is solved using a
simplified update rule that does not require a particular order as opposed to
the Q-learning update rule. Competitive results compared to other population
based approaches are shown for both addressed problems.

Boyan [1998] and Boyan et al. [2000] describe the STAGE algorithm, which
searches for good quality solutions using two alternating phases. The first phase
runs a local search method, e.g. hill climbing or simulated annealing from a
starting solution until a local optimum is reached. During this phase, the search
trajectory is analyzed and used for learning an evaluation function. This is
achieved by training a linear or quadratic regression method using the properties
or features of the visited solutions and the objective function value of the local
optimum. The authors point out that in some conditions a reinforcement
learning method like TD(λ) belonging to the class of the temporal-difference
algorithms, may make better use of the training data, converge faster, and use
less memory during training. The second phase performs hill climbing on the
learned evaluation function to reach a new starting solution for the first phase.
This phase enables the algorithm to learn how to find good starting solutions
for a local search method. Empirical results are provided for seven large-scale
optimization domains, e.g. bin-packing, channel routing, . . . This demonstrates
the ability of the STAGE algorithm to perform well on many problems.

Moll et al. [1998] combine aspects taken from the research by Zhang and
Dietterich [1995], Boyan [1998] and Boyan et al. [2000]. A reinforcement
learning algorithm TD(λ) is applied to learn a value function in an offline
training phase, and then uses this function to solve other instances of the same
problem. This method also uses features of solutions for representing a state.
A linear function approximation algorithm is used. The method is applied to
the dial-a-ride problem, and was compared to both the STAGE algorithm, and
a 2-opt and 3-opt local search method. The method performs better than 2-opt
and STAGE if the same calculation time is used. It was not as performant as
3-opt, but a lot faster.

Gabel [2009] gives an extensive overview of single and multi-agent RL approaches
for distributed job-shop scheduling problems. Both value function-based and
policy search-based RL methods are discussed, including policy gradient RL
methods and Q-learning.
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2.5.2 RL enhanced hyperheuristics

Hyperheuristics are perfectly suited for inclusion of learning methods.
Hyperheuristics are categorized in ‘heuristics to choose heuristics’ and ’heuristics
to generate heuristics’. In this thesis we focus on the first category.
Reinforcement learning can help to choose the lower level heuristics, as discussed
in the following papers.

Nareyek [2001] describes a non-stationary reinforcement learning method for
choosing search heuristics. At each decision point weights are used to select
the search heuristics via a probabilistic selection rule (softmax) or by randomly
selecting among the choices with maximal value. Based on the increase/decrease
of the objective function the weights of the search heuristics are updated using
simple positive/negative reinforcement rules (e.g. incrementing/decrementing
the weight value). Different selection and reinforcement method combinations
are tested on two types of problems - the Orc Quest problem and problems
from the Logistics Domain benchmark. Nareyek conclude that a weak positive
reinforcement rule combined with a strong negative reinforcement rule works
best on the tested problems.

Burke et al. [2003c] present a hyperheuristic in which the selection of low-
level heuristics makes use of basic reinforcement learning principles combined
with a tabu search mechanism. The reinforcements are performed by
increasing/decreasing the rank of the low-level heuristics when the objective
function value improves/worsens. The hyperheuristic was evaluated on various
instances of two distinct timetabling and rostering problems and showed to be
competitive with the state-of-the-art approaches. The paper states that a key
ingredient in implementing a hyperheuristic is the learning mechanism.

An interesting study on memory length in learning hyperheuristics is performed
by Bai et al. [2007]. Utility values or weights are used to select the low-level
heuristics, similar to [Nareyek, 2001] and [Burke et al., 2003c]. A discount factor
is added to this mechanism to discount rewards later on in the search process,
and thus obtaining a short term memory. The results obtained on a course
timetabling problem show that a short term memory can produce better results
than both no memory and infinite memory.

Özcan et al. [2010] present a hyperheuristic with an RL selection mechanism
and a great-deluge acceptance method for the examination timetabling problem.
A set of exams must be assigned a timeslot and possibly a room while respecting
a number of hard and soft constraints, such as the room capacity. An RL
method based on utility values with simple update rules is used, similar to
what was presented by Nareyek [2001]. The idea is that a heuristic is selected
when it results in a lot of improving moves, and thus has a higher utility value.
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When a heuristic i results in an improving move, the utility value ui of that
heuristic is incremented, and in case of a worsening move the utility value is
lowered using three different rules, namely subtractive (ui = ui − 1), divisional
(ui = ui/2) and root (ui = √ui). Upper and lower bounds are applied to
the utility values to encourage exploration in further steps. Experiments are
performed with different settings for the selection of the heuristics, the upper and
lower bound, and the negative utility adaptation mechanism. The setting with
a maximal selection (i.e. selecting the heuristic with a maximal utility value)
and subtractive negative utility adaption mechanism performed the best. The
method improves the performance of a non learning simple-random great-deluge
hyperheuristic on the examination timetabling problem.

2.5.3 Search supported by Learning Automata

Recently, learning automata have been introduced to solve combinatorial
optimization problems. Most of these applications are further described in
subsequent chapters of this thesis. In [Misir et al., 2009] we have presented a
heuristic selection method for hyperheuristics, which they have applied to the
traveling tournament problem. Instead of using simple reinforcement rules, a
learning automaton was used for the selection. In [Wauters et al., 2009c] we
describe the combination of a genetic algorithm and learning automata to solve
the Multi-Mode Resource-Constrained Project Scheduling Problem (MRCPSP).
The GA is applied to find good activity orders, while the LA are used to find
good modes, a mode being an important decision variable of the scheduling
problem. This work is extended in [Wauters et al., 2011] where the GA is
replaced by a network of learning automata [Thathachar and Sastry, 2004]. All
decision variables (i.e. activity order and modes) of the scheduling problem
(MRCPSP) are now directly chosen by multiple LA. The method produces
state-of-the-art results for the MRCPSP. In [Wauters et al., 2010] we follow a
very similar approach for the Decentralized Resource-Constrained Multi-Project
Scheduling Problem (DRCMPSP). Multiple projects are scheduled factoring in
the availability of both private and shared resources, while a global objective,
i.e. the average project delay, is optimized. A network of learning automata
searches for activity orders resulting in good schedules for each single project,
while a dispersion game is employed to coordinate the projects. A multi-agent
system with project managers and network of LA for solving the DRCMPSP
was applied in [Wauters et al., 2010]. One motivating factor for organizing
the activities in a project as learning automata is that theoretical convergence
properties hold in both single and multi automata environments. One of the
foundations for LA theory is that a set of decentralized learning automata using
the reward-inaction update scheme is able to control a finite Markov Chain with
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unknown transition probabilities and rewards. In [Littman, 1994], this result
was extended to the framework of Markov Games. That is a straightforward
extension of single-agent Markov decision problems (MDP’s) to distributed
multi-agent decision problems. However, the convergence properties fail to hold
here since the activity-on-node model does not bear the Markov property. Good
results can be achieved with the network of LA in the single project scheduling
scheme, as we show in [Wauters et al., 2011]. Torkestani and Meybodi [2011]
proposes a cellular learning automata for solving the minimum vertex colouring
problem. Each vertex employs a learning automata which chooses its own color
based solely on the colors selected by its adjacent vertices. The authors show
that this learning algorithm outperforms the existing methods both in terms
of running time and quality. The methods aforementioned are added to the
bottom of Table 2.1.

2.6 Conclusion

A combination of reinforcement learning and heuristic search methods can lead
to more general and adaptive methods. Many opportunities for combining
both techniques are available. Well-considered design of the reward signal and
state/action definitions is needed to get the best out of these hybrid methods.

Many hybrid approaches generate high quality results, in some cases even up to
the state-of-the-art. One might notice that most early hybrid RL-metaheuristic
methods use RL algorithms as Q-learning and TD(λ), which make use of
delayed rewards. Recent methods, mostly applied to hyperheuristics, are using
a more simple RL mechanism based on utility values operating in a single state
environment, and thus do not benefit the full power of RL which deals with the
problem of delayed rewards and the credit assignment problem. LA or networks
of LA are also simple to apply, but have strong theoretical advantages, which
are also observed in practice. In subsequent chapters these LA are extensively
used to enhance heuristic search methods for general problems such as learning
permutations, to more specific (project) scheduling and real world optimization
problems.





Chapter 3

Learning permutations

3.1 Introduction

The process of finding good quality permutations, i.e. arrangement of objects
or values into a particular order, is a recurring element in combinatorial
optimization problems. The permutations may represent a full or a partial
solution to such problems. Typical examples can be found in routing and
scheduling. The traveling salesman problem (TSP) for instance, aims at finding
a tour of minimum distance through a number of cities. A solution can be
represented by a permutation, defining the order for visiting the cities. Many
solutions for scheduling problems contain some permutation representation. A
solution for the permutation flow shop scheduling problem (PFSP) is such an
example. In the PFSP a number of jobs have to be sequenced in order to be
processed on a predefined number of resources. All these problems have a search
space exponential in the number of inputs n (cities, jobs, . . .). Due to the very
nature of permutations there are at least n! different solutions. An objective
function representing the quality of the solutions has to be optimized. If a
solution to a problem can be represented by a permutation, then the objective
function value states how good the permutation is.

In fact, we can imagine the following general problem (see Figure 3.1): given a
permutation π, an objective function f can give a value for that permutation
f(π). Function f can be the objective function of an optimization problem, and
it is assumed that the function is not known. It is a black box. Since all values
can be normalized, we can assume that f(π) ∈ [0, 1], with a value f(π) = 0
meaning the worst permutation and f(π) = 1 the best or optimal permutation.

27
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- -fPermutation π Value f(π)

Figure 3.1: General permutation problem seen as a black box function.

In the present chapter, this general permutation problem is tackled using
simple reinforcement learning devices, called Learning Automata (LA). It is
shown how these methods are capable of learning permutations of good quality
(f(π) close to 1) without the use of problem specific information or domain
knowledge. However it is not our primary concern to outperform existing
specialized optimization methods for these problems, but only to show the
strength of simple and general learning mechanisms for online permutation
learning.

Several related papers have been published in the literature. Population based
incremental learning (PBIL) [Baluja, 1994] is a method related to genetic
algorithms for solving optimization problems. It maintains a real-valued
probability vector for generating solutions. PBIL is very similar to a cooperative
system of finite learning automata where the learning automata choose their
actions independently and update with a common reward, i.e. all LA are updated
with the same reward value. Population based methods like GAs are related to
(reinforcement) learning (as discussed in Section 2.3.

COMET [Baluja and Davies, 1998] incorporates probabilistic modeling in
conjunction with fast search algorithms for application to combinatorial
optimization problems. The method tries to capture inter-parameter
dependencies by generating a tree-shaped probabilistic network.

PermELearn [Helmbold and Warmuth, 2009] is an online algorithm for learning
permutations. The approach makes use of a doubly stochastic1 weight matrix
to represent estimations of the permutations, together with exponential weights
and an iterative procedure to restore double stochasticity.

The work in the present chapter shows the learning of permutations and the use
of learning automata for solving optimization problems, and was published as:
Wauters, T., Verbeeck, K., De Causmaecker, P., Vanden Berghe, G. (2012).
Fast permutation learning. In Hamadi, Y. (Ed.), Schoenauer, M. (Ed.), LION
6 proceedings: Vol. LNCS 7219. Learning and Intelligent OptimizatioN

1A matrix is doubly stochastic if all its elements are nonnegative, all the rows sum to 1,
and all the columns sum to 1.



PERMUTATION FUNCTIONS 29

T0 T1 T2 T3
A0 3 4 1 3
A1 3 2 3 1
A2 3 4 2 2
A3 2 3 4 4

Table 3.1: Cost matrix for an example assignment problem of size n = 4

Conference. Paris, France, 16-20 January 2012 (pp. 292-306) Springer.
Different categories of permutation functions and their properties are discussed.
Centralized and decentralized methods based on learning automata for online
permutation learning are described. The presented methods are analyzed using
some well known benchmarks, and a successful application to project scheduling
is demonstrated. The methods in this chapter are applicable to all RL inclusion
levels as shown in Figure 2.4.

Scheduling is one of the main application areas of this thesis. Typically, solutions
for scheduling problems can be encoded as a sequence of jobs (a permutation).
The methods proposed in this chapter were applied in the following scheduling
papers and will be further discussed in Chapter 5. In Wauters et al. [2011] we
introduce a method with multiple learning automata to cooperatively find good
quality schedules for the multi-mode resource-constrained project scheduling
problem (MRCPSP). A common reward is used based on the makespan of
the scheduling solution. In Wauters et al. [2010] we present a method using
learning automata combined with a dispersion game for solving the decentralized
resource-constrained multi project scheduling problem (DRCMPSP). To date
the method is part of the state-of-the-art for this problem2.

3.2 Permutation functions

A permutation function is a function mapping permutations to values. This can
take several forms. Most of them are highly non-linear. The most straightforward
function is one that gives a value to each individual position. Take for example
an assignment problem where a matrix defines the cost for assigning an agent
to a task. A permutation, where task i at position j is performed by agent j, is
a possible solution representation for this problem.

Solutions to the assignment problem with the cost matrix from Table 3.1 result
in a permutation function as shown in Figure 3.2. The total cost for each

2Multi project scheduling problem library: http://www.mpsplib.com ; accessed on July:
16, 2012
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Figure 3.2: Permutation function for an example assignment problem.

permutation is plotted. The search space has an optimal solution [2, 1, 3, 0] with
a total cost of 7. This solution denotes that task 2 is performed by agent 0,
task 1 is performed by agent 1, task 3 is performed by agent 2 and task 0 is
performed by agent 3. It is noteworthy that the assignment problem is solvable
in polynomial time by the Hungarian method [Kuhn, 1955], but is here only
used as an example. Moreover, the solutions of the LP relaxation are always
integer valued. This is because the constraint matrix is totally unimodular.

For many problems using a permutation representation the total cost or value is
determined by the adjacency of elements. For example, if element A is directly
followed by element B in the permutation, there is a cost of cAB . These costs
can be symmetric (cAB = cBA) or asymmetric (cAB 6= cBA). In this category
of permutation functions we can also make a distinction between cyclic and
non-cyclic functions. In cyclic permutation functions there exists a cost between
the first and the last element of the permutation. A typical example where the
permutation function is based on adjacency costs and is also cyclic is the TSP.
In the TSP the cities are the elements in the permutation, and the cost between
adjacent elements is the distance between the cities. The distance between
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the first city and last city is also counted in the evaluation, which makes the
permutation function for TSP cyclic.

To summarize, we distinguish the following default permutation function
categories:

• individual position

• adjacent positions (cyclic and non-cyclic)

Many permutation functions use or combine elements from these default
categories.

Some optimization problems have additional constraints on the permutations.
For example, one can have precedence constraints, imposing that one element
must occur before or after another element. Examples include the sequential
ordering problem (SOP) which is a TSP with precedence constraints) and
project scheduling problems. Yet another additional constraint can be that
several elements must be adjacent to each other and form groups. As often
done, one can incorporate these or any other additional hard constraints by
adding a high penalty to the cost value of the permutation.

3.3 Learning permutations

In order to learn permutations of good quality one or more learning components
are put in a feedback loop with the permutation evaluation function f (i.e. the
environment), as is shown in Figure 3.3. The rest of this section describes a
number of centralized and decentralized approaches for performing this learning
task.

3.3.1 Naive approach

A naive and centralized approach (Figure 3.4) to learning permutations using
learning automata would be to assign one action per permutation. An action
being a particular decision to take by the LA. This results in a total of n!
actions, which is impractical for larger n both with respect to calculation time
and memory usage.
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- fPermutation π Value f(π)

�Learning

Component

Figure 3.3: Learning component in a feedback loop with the permutation
learning problem

LA

π1 π2 πn!...

a1 a2 an!

Figure 3.4: A naive approach, one LA with one action per permutation.

3.3.2 Hierarchical approach

A better approach would be to divide the learning task among different learning
automata, more specifically a tree of learning automata, called a hierarchical
learning automaton [Thathachar and Ramakrishnan, 1981]. An example of such
a hierarchical learning automaton for n = 3 is shown in Figure 3.5. An LA
at depth d ∈ {1, 2, . . . , n} in the tree is responsible for choosing the element
at position d in the permutation. Each LA at depth d has n+ 1− d actions,
excluding all the actions chosen in the LA in the path from this LA to the root
of the tree. The advantage of this hierarchical approach is that each individual
LA has a smaller action space (maximum n). There is also a drawback. In case
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Figure 3.5: An example of a hierarchical learning automaton for n = 3.

of a large exploration, the whole search tree is visited in the worst case, which
results in

∑n
d=1

n!
d! LAs. Since all action selection probabilities for each LA have

to be stored, this can be very memory intensive.

3.3.3 Probability matrix approach

To deal with the large memory requirements of the hierarchical approach we
developed an algorithm with a compact representation. Following [Helmbold
and Warmuth, 2009], we use a doubly stochastic matrix P with n rows and
n columns. Pij is the probability for element i to be on position j in the
permutation. The approach works as follows:

1. generate a uniform doubly stochastic matrix P with:
∀i=1..n∀j=1..nPij = 1

n

2. select a permutation π using P

3. retrieve a reward r = f(π) for the selected permutation

4. update P using reward r and a specific LA update rule

5. repeat from step 2 until some stopping condition is met.

These steps are now described in more detail.

Selecting a permutation from P : Several methods can be used to select a
permutation from a doubly stochastic matrix. A first method is to uniformly
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p1 p2 p3 p4 H Entropy based row order
0.035 0.947 0.000 0.018 0.35 2
0.020 0.023 0.001 0.956 0.31 1
0.673 0.001 0.326 0.001 0.92 3
0.272 0.030 0.673 0.025 1.18 4

Table 3.2: Entropy based row order for a probability matrix of size n = 4.
Largest probabilities indicated in bold.

select a row i and then use a probabilistic selection (e.g. roulette wheel selection)
on this row for determining at which position j we have to put element i in the
permutation. After that we reduce the matrix by removing row i and column
j. Then we normalize the remaining rows, and repeat the process until all
rows (and also all columns) have been selected once. We then have a complete
permutation. Another permutation selection method, selects the rows using the
entropy. The entropy is a measure of uncertainty associated with a random
variable [Ihara, 1993]. The rows with small entropy are selected first.

argmin
i

H = −
∑
j=1..n

Pij log2 (Pij)

The reason for using the entropy would be to select the least uncertain row first.
Consider the probability matrix from Table 3.2. The second row will be used
first to select a position in the permutation because it has the lowest entropy
value (0.31), then the first row will be used to select a position, followed by the
third and the fourth row.

Updating P with reward r: The probability matrix P is updated with an
LA update scheme for each row i, and the selected action is determined by j.
After updating all rows, the matrix P remains doubly stochastic, which is not
the case in the PermELearn algorithm [Helmbold and Warmuth, 2009]. The
PermELearn algorithm requires an extra normalizing step to make the matrix
doubly stochastic again. This requires extra calculation time, which is not
required by the method here proposed.

The proof for remaining doubly stochastic after an update with a linear LA
update scheme is the following. Assume matrix P (t) is doubly stochastic at
time step t, and that we use the LR−I update scheme. We need to prove that
the matrix P (t + 1) is still doubly stochastic at time step t + 1. Therefore,
both the rows and the columns need to remain stochastic (sum to 1). At each
update, we apply the LA update scheme to all rows. As a consequence, the rows
automatically remain stochastic (property of the linear LA update scheme).
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Only one element per column and one element per row are updated positively
(Equation 2.1), while all other elements are updated negatively (Equation 2.2).
To prove that the columns also remain stochastic, the increase in a column l by
the positive update of element pkl must equal the decrease of all other negative
updates.

Proof. According to Equation 2.1, the value on row k and column l increases
with:

∆+ = αrewardβ(t)(1− pkl(t)) (3.1)

All other elements in column l are decreased (according to Equation 2.2) with:

∀i,i 6=k∆−i = αrewardβ(t)pil(t) (3.2)

In order to prove that the columns remain stochastic, the increase must be
equal to the total summed decrease.

∆+ =
∑
i,i6=k

∆−i (3.3)

αrewardβ(t)(1− pkl(t)) =
∑
i,i6=k

αrewardβ(t)pil(t) (3.4)

1− pkl(t) =
∑
i,i6=k

pil(t) (3.5)

1 =
∑
i,i6=k

pil(t) + pkl(t) (3.6)

1 =
∑
i

pil(t) (3.7)

Which is true given our assumptions.
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3.3.4 Decentralized action selection approach

The following method is similar to the ‘probability matrix method’, but uses a
more decentralized approach. Each position in the permutation is determined
by an individual agent. An agent employs a learning automaton for choosing its
individual position from the full set of positions. Thus, there are n agents (LA)
representing the element of the permutation, with n actions each corresponding
to the elements’ position in the permutation. This leads to the same memory
footprint as the ‘probability matrix approach’. The agents play a dispersion game
[Grenager et al., 2002], also called an anti-coordination game, for constructing
a permutation. In a full dispersion game the number of agents is equal to
the number of actions. In order to form a permutation, all agents need to
select a distinct action so that the assignment of actions to agents is maximally
dispersed. For example, if three agents select the following distinct actions:
agent 1 selects position 2, agent 2 selects position 3 and agent 3 selects position
1, then the permutation becomes [3, 1, 2].

A Basic Simple Strategy (BSS) was introduced by Grenager et al. [2002],
allowing agents to select maximally dispersed actions in a logarithmic (in
function of the number of agents) number of rounds, where a naive approach
would be exponential. BSS does not incorporate the agents’ preferences, it uses
uniform selection. To take the agents’ preferences into account, we introduce a
probabilistic version of BSS, which we call Probabilistic Basic Simple Strategy
(PBSS). The PBSS works as follows. Given an outcome o ∈ O (selected actions
for all agents), and the set of all actions A, an agent using the PBSS will:

• select action a with probability 1 in the next round, if the number of
agents selecting action a in outcome o is 1 (noa = 1).

• select an action from the probabilistic distribution over actions a′ ∈ A
for which noa′ 6= 1, otherwise.

The probabilistic distribution over actions is obtained from the agents’ LA
probability vector. Once a permutation is constructed by playing the game, a
common reward (permutation function) or individual reward can be obtained.
These common or individual rewards are then given to the agents’ LA, which
consequently update their probabilistic distribution. Experiments have shown
that this decentralized action selection approach has very similar performance
characteristics to those of the ‘probability matrix approach’ and converges to a
near-optimal permutation.

To illustrate the decentralized action selection approach and the PBSS, consider
the following example permutation learning problem with n = 3. There are
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3 agents, one for each element. Each agent has one LA with 3 actions. The
actions are the positions in the permutation.

At the start of the procedure the learning automata have the following uniform
probability vectors:

Agent 1 : [ 0.33 ; 0.33 ; 0.33 ]
Agent 2 : [ 0.33 ; 0.33 ; 0.33 ]
Agent 3 : [ 0.33 ; 0.33 ; 0.33 ]

Now we can start the PBSS using these probability vectors. The agents select a
position (=action) in the permutation.

Agent 1 : position 2
Agent 2 : position 2
Agent 3 : position 3

Agent 3 is the only agent who has selected position 3, therefore it will reselect
position 3 in the next round. Agent 1 and agent 2 have selected the same
position, therefore they will reselect a position different from 3 in the next round
using the following temporary probabilities.

Agent 1 : [ 0.5 ; 0.5 ; 0.0 ]
Agent 2 : [ 0.5 ; 0.5 ; 0.0 ]
Agent 3 : [ 0.0 ; 0.0 ; 1.0 ]

Then, the agents select the following positions in the permutation.

Agent 1 : position 2
Agent 2 : position 1
Agent 3 : position 3

All the positions are unique, and the PBSS is finished, resulting in the
permutation π = [2, 1, 3]. The permutation is evaluated with a permutation
evaluation function f(π) = 0.4. Then, the probability vectors can be updated
using the linear-reward inaction update scheme with this evaluation and a
predefined learning rate α = 0.1. This update leads to the following probability
vectors:

Agent 1 : [ 0.32 ; 0.36 ; 0.32 ]
Agent 2 : [ 0.36 ; 0.32 ; 0.32 ]
Agent 3 : [ 0.32 ; 0.32 ; 0.36 ]
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This procedure can be repeated by selecting a permutation using PBSS and
these updated probabilities.

3.4 Experiments

As an illustration of the methods’ behaviour, some experiments were performed
on a fictitious permutation function and simple benchmark problems, the TSP
and an assignment problem. Subsequently, an application to a more extensive
multi-project scheduling problem is given, which shows the real advantage of
the described methods. The following experiments report on the decentralized
action selection approach unless mentioned otherwise. Similar properties were
observed for the hierarchical and probability matrix approach. All results are
averaged over 100 runs and the experiments were performed on an Intel Core i7
2600 3.4Ghz processor, using the Java version 6 programming language.

3.4.1 Peaked permutation function

Consider the following permutation function definition. If the decimal number of
the permutation π is dec (π) according to the factorial number system (Lehmer
code) [Knuth, 1973], then the value of the permutation is defined as:

f (π) =
(

2dec (π)
n!

)10
if dec (π) ≤ n!

2 (3.8)

=
(

2 (n!− dec (π))
n!

)10
if dec (π) > n!

2 (3.9)

This function has a peak value in the middle of the permutation range. Figure
3.6 shows this permutation function for n = 9.

Figure 3.7 compares the average calculation time (in milliseconds) of the
described approaches. For each size n = 2..20, 5000 iterations are performed
on the peaked permutation function. The learning rate has no influence on
the calculation time. All but the naive approach show good calculation time
properties. Since the memory usage of the hierarchical approach is very high,
we prefer the decentralized action selection approach.
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Figure 3.6: Peaked permutation function landscape n = 9.
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Figure 3.8: Max. objective function value for different number of iterations in
the decentralized action selection approach on a peaked permutation function
of size n = 15.

Figure 3.8 shows the maximum function value over a number of iterations
(50,100,500) for different learning rates when applying the decentralized action
selection approach with common reward (i.e. the permutation function value).
The results show that for a particular range of learning rates, better permutations
are learned compared to random sampling (i.e. learning rate equal to 0). When
more iterations can be spent on learning, the difference between random sampling
and learning becomes smaller. Bad performance can be observed when the
learning rates are too high, and thus premature convergence is likely to occur.

Figure 3.9 shows the visited solutions with their corresponding position in the
search space (permutation number) during a single run of 500 iterations on
the peaked permutation function. A learning rate of 0.03 was used. At the
beginning of the search, an extensive exploration of the search space is observed.
After a while the search is focused towards high quality solutions (peak of the
function). The duration of the exploration phase depends on the learning rate.
In the experiments presented in Figure 3.9, most exploration disappears after
approximately 150 iterations.
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Figure 3.9: Visited solutions with their corresponding position in the search
space. Run of 500 iterations on the peaked permutation function of size n = 15.

3.4.2 TSP

We tested the decentralized action selection approach with common reward
on a number of TSP instances from TSPLIB3. The distance was scaled to
a value between 0 and 1, such that a value of 1 corresponds to an optimal
distance and 0 corresponds to an upper bound on the distance. Figure 3.10
shows the maximum function value over a number of iterations (1000, 5000,
10000, 50000) for different learning rates on a size n = 17 instance with name
‘gr17’. For a particular range of learning rates better solution values can be
observed, compared to random sampling. If more iterations are given, then the
best solutions occur for lower learning rates. Again, too high learning rates lead
to worse solutions.

3TSPLIB website: http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/ ; last check of
address September: 23, 2011
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Figure 3.10: Max. objective function value for different number of iterations on
a TSP instance (gr17) of size n = 17.

3.4.3 Assignment problem

Assignment problems belong to the category of permutation functions where
the total cost of the permutation is equal to the sum of the individual costs.
Therefore both individual and global rewards can be given to the agents. Figure
3.11 shows a comparison of the maximum objective function value for individual
and common rewards on a random assignment problem of size n = 9 with the
cost matrix of Table 3.3. A run of 1000 iterations is performed for each learning
rate and the maximum objective function value is measured. The objective
function is scaled between 0 and 1 such that 1 corresponds to the optimal
solution. The results show that individual rewards produce better solutions
than common rewards. For a particular range of learning rates the method
performs better than random sampling, and the optimal solution can be found
by using individual rewards .
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T0 T1 T2 T3 T4 T5 T6 T7 T8
A0 7 8 5 3 9 3 9 4 7
A1 3 6 9 3 2 9 6 5 7
A2 6 3 5 1 3 6 9 2 7
A3 8 1 9 3 3 6 3 6 3
A4 7 3 5 7 3 8 9 3 2
A5 4 2 8 2 7 5 4 6 4
A6 7 8 8 9 4 8 9 8 8
A7 7 4 7 8 9 8 1 3 5
A9 9 3 9 7 6 1 5 2 8

Table 3.3: Cost matrix for a random assignment problem of size n = 9
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Figure 3.11: Comparison of max. objective function value for individual and
common reward on a assignment problem of size n = 9.
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3.4.4 Multi-project scheduling

The decentralized action selection method was used for solving the decentralized
resource-constrained multi project scheduling problem (DRCMPSP) (See
Chapter 5). The DRCMPSP was introduced by Confessore et al. [2002, 2007]
and extended by Homberger [2007]. It is a generalization of the Resource
Constrained Project Scheduling Problem (RCPSP) [Blazewicz et al., 1983b,
Kolisch, 1996a] and can be stated as follows. A set of n projects have to be
scheduled simultaneously using autonomous and self-interested decision makers.
Each individual project contains a set of jobs or activities, precedence relations
between the jobs, and resource requirements for executing each job. These
resource requirements constitute local renewable resources, and global renewable
resources shared among all projects. A global objective value must be minimized,
examples include but are not limited to: the average project delay (APD), the
total makespan (TMS), and the deviation of the project delay (DPD). The
project delay of a project is its makespan minus the critical path duration.
The remainder of the current section will concentrate on the APD objective.
A constructive schedule generation scheme was applied to the DRCMPSP,
requiring the project order and the job order for each project as input. The
project order is a permutation of projects, while the job order is a permutation
with precedence constraints. The decentralized method with the dispersion
game was used to find good quality project orders, leading to schedules with a
low APD objective value. Each project was represented by one project order
decision maker. Instances from the multi project scheduling problem library4

have been experimented on. To date, the method is part of the state-of-the-art
for this problem, showing 104 best solutions out of 140, with respect to the
average project delay objective.

3.5 Conclusion

Permutations are part of many optimization problems and solution methods.
Learning these permutations online could make a heuristic search more adaptive
and generally applicable. In this chapter, several centralized and decentralized
methods using learning automata were studied for online learning good quality
permutations. The decentralized approach uses a single learning automaton
for each element in the permutation and a dispersion game to deliver the best
runtime performance (calculation time and memory).

4Multi project scheduling problem library: http://www.mpsplib.com ; retrieved September:
23, 2011
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Different permutation functions have been discussed. The capabilities of the
methods have been analyzed and demonstrated on well known benchmark
problems. The methods are very general because they do not use any problem
specific information or domain knowledge, which makes them well suited for
application within general optimization methods, like hyperheuristics. In fact
the methods are applicable to all RL inclusion levels as defined in Figure
2.4. One could directly learn solutions for the problem (direct level), but
also a sequence of neighborhoods or low-level heuristics (meta- and hyper-
heuristic level). In the future, the very same methods can be applied to many
other optimization problems and make them core elements of new intelligent
optimization approaches. An application to the multi-project scheduling problem
showed to be very successful. It will be discussed in Chapter 5.





Chapter 4

Learning Automata for
Heuristic Selection

For many combinatorial optimization problems, multiple well performing
heuristics or neighborhoods exist. Single solution based metaheuristics methods
or hyperheuristics apply these heuristics/neighborhoods in an alternating
manner. It is of highest importance to select and switch between these in
the best possible manner in order to reach the best possible solutions. One
could select heuristics in a fixed order, or use a random order, but often a better
selection strategy exists. Such a strategy depends on the type of problem or
even on the problem instance. Therefore it is interesting to select heuristics in a
more adaptive way (compared to a static selection strategy). This is the subject
of the present chapter. More specifically we will use learning automata for
heuristic or neighborhood selection. Section 4.1 describes the proposed technique
of using learning automata for heuristic selection. Section 4.2 demonstrates
the properties of these learning heuristic selection methods. Conclusions are
formulated in Section 4.3. Our main contributions on this topic were published
as [Misir et al., 2009].

4.1 Heuristic selection with learning automata

Learning automata are very appropriate for learning which heuristics to select
and apply at each time step. The most straightforward way is to use a single
learning automaton whose action set is the set of heuristics (as shown in Figure
4.1). The LA’s internal action probability vector determines the selection of a

47
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heuristic at each time step. Another possibility is to use the methods described
in Chapter 3 to learn a sequence of heuristics determining the order in which to
apply heuristics.

A very important design question here is the reward signal. When do we update?
Which reward value is given? The most basic reward signal is the following.
Update with

− a reward value of 1 if a better solution was found.

− a reward value of 0 otherwise. (4.1)

This basic reward signal is simple, however it does not use much information.
One could incorporate the calculation time of the heuristics or the achieved
gain/loss in solution quality. Another possibility is to compare the solution
quality improvement achieved by the heuristic with the average solution quality
improvement over all heuristics. The latter will favor heuristics that generate
large solution quality improvements, without taking into account the needed
calculation time. It may be better to use a combination of these to have the
best update signal. In this chapter we will always normalize the reward values
between 0 and 1. One could also use a learning method which supports absolute
values, such as the pursuit algorithm. In any case, no problem specific knowledge
is used, which makes the method generally applicable.

Another important question is: what is the overhead of learning? This is
influenced by the number of heuristics. In all conducted experiments (described
in the next Section) the overhead of learning was negligible (much less than 1%
of the total calculation time). A linear behaviour in the number of heuristics was
observed, which is normal because an LA with linear-reward inaction update
scheme was used.

4.2 Case studies

The LA based heuristic selection methods were tested on several challenging
combinatorial optimization problems such as the traveling tournament problem,
the patient admission scheduling problem and the machine reassignment problem
(subject of the GOOGLE/ROADEF 2012 challenge). In the following sections
we will describe how the LA based selection was applied to these different cases.
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Figure 4.1: Selection of heuristics using a single learning automaton.

4.2.1 Case: the traveling tournament problem

We have proposed an LA based selection method in [Misir et al., 2009] for solving
the Traveling Tournament Problem (TTP). The selection method was integrated
in a classical hyperheuristic with two sub-mechanisms, i.e. the selection of low-
level heuristics and the acceptance of new candidate solutions.

Problem description

The Traveling Tournament Problem (TTP) is a very hard timetabling problem.
The goal is to find a feasible home/away schedule for a double-round robin
tournament [Easton et al., 2001]. No optimal solutions have been found for
realistic problem sizes, i.e. more than 10 teams. The optimization version of this
problem considers the shortest total traveling distance (sum over all the teams).
In small or middle-sized countries such as in Europe, the teams typically return
home after playing another team in another place. But, in large countries, places
are too far away from each other, so that returning home between matches
might not be an option.

Generally, solutions for the TTP should satisfy the following two constraints :
(c1) a team cannot play more than three consecutive games at home or away
and (c2) for the games between team ti and tj , ti–tj cannot be followed by tj–ti.

The objective function that was used to measure the quality of the TTP solutions
is defined as f = d × (1 +

∑2
i=1 wivci). With: d the total traveling distance,

vc1 the number of violations of the first constraint, w1 the weight of c1, vc2 the
number of violations of the second constraint, w2 the weight of c2. The weights
w1 and w2 were set to 10.
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Low-level heuristics

To handle the constraints and optimize the solutions for the TTP, five low-level
heuristics were used in the heuristic set of the hyperheuristic. Short descriptions
are:

SwapHomes : Swap home/away games between teams ti and tj
SwapTeams : Swap the schedule of teams ti and tj
SwapRounds : Swap two rounds by exchanging the assigned matches to

ri with rj
SwapMatch : Swap matches of ti and tj for a given round r
SwapMatchRound : Swap matches of a team t in rounds ri and rj

Results and experiments

The TTP instances1 used in this study were derived from the US National
League Baseball and the Super 14 Rugby League. The first group of instances
(NL) incorporate ∀8

n=22n teams and the second set of instances (Super) includes
4 to 14 teams (∀7

n=22n). Several LA based heuristic selection experiments
were performed on these instances, including the basic reward signal (Equation
4.1) and a probability restart policy experiment, in which the probabilities of
the learning automata are reset during the search. The method showed to be
competitive with existing approaches for the TTP. Some new best solutions were
found for the Super12 and Super14 instances. These results were submitted and
validated on the TTP benchmark website http://mat.gsia.cmu.edu/TOURN/
(submitted on March 30, 2009).

4.2.2 Case: the patient admission scheduling problem

An LA based heuristic selection study was also performed on the patient
admission scheduling problem (PAS). The PAS problem with all its real world
constraints was introduced by Demeester et al. [2010]. The problem was further
investigated and simplified by Ceschia and Schaerf [2011], new lower-bounds
and an effective local-search procedure using simulated annealing are proposed.
When extending the original work by Demeester et al. [2010], we observed
improved performance by using a learning heuristic selection compared to a
simple random selection mechanism on the existing heuristic set for the PAS
problem [Wauters et al., 2009b].

1http://mat.gsia.cmu.edu/TOURN/

http://mat.gsia.cmu.edu/TOURN/
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Figure 4.2: Visualization of a schedule for a single department.

Problem description

The PAS problem, is a complex real world optimization problem where patients
have to be assigned to beds in a hospital. Beds belong to a room in a certain
department. Such a department can have one or more specialisms. Examples of
departments are pediatrics, geriatrics, etc. The patients stay in the hospital for
a number of nights and are transfered to other rooms as less as possible. The
objective is to optimize several hard and soft constraints such as: availabilities
of the rooms, the admission and discharge date of the patients, gender of
the patients (only men, only women, mixed), age restrictions, personal room
preferences (single or double room), medical equipment (oxygen machine), etc.
For a more detailed problem description we refer the reader to the original PAS
paper [Demeester et al., 2010].

Solution representation

A solution to this PAS problem was represented as a set of two-dimensional
matrices, where each matrix represents a department. The rows in the matrices
refer to the beds, while the columns denote the nights (Figure 4.2).
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Low-level heuristics

The following set of existing low-level heuristics was used:

• Swap-beds (H1)

• Transfer patient to an empty bed in another department (H2)

• Transfer patient in the same department (H3)

• Transfer patient to another department (H4)

Results and experiments

Experiments were conducted on instances from the PAS dataset (http:
//allserv.kahosl.be/~peter/pas/). The dataset contains 14 instances
(testdata0.txt, testdata1.txt,. . . ,testdata13.txt) with varying properties (e.g.
number of beds, number of departments, etc.).

Figure 4.3 shows the evolution of the heuristic selection probabilities in time
when the heuristic selection mechanism with basic reward signal is used. The
learning rate was set to a low αreward = 0.005 to avoid premature convergence.
The heuristics above defined (H1,H2,H3,H4) have been used in the experiments.
Heuristics H2 and H3 are given a higher probability by the learning method,
while H1 and H4 are almost completely diminished. Heuristic H3 receives about
70% of the time during the second half of the search, which means it realized
the most improvements.

4.2.3 Case: the machine reassignment problem

A metaheuristic approach with a late acceptance mechanism was developed
for participation in the GOOGLE/ ROADEF 2012 challenge. The algorithm
reached a first place in the qualification round of the challenge, and a fourth
place in the final round of the junior category. Late acceptance, recently
introduced by Burke and Bykov [2008], is a simple metaheuristic diversification
mechanism (like simulated annealing). The mechanism accepts new solutions
only if they are better or equal than L iterations ago. It showed to be very well
performing on hard combinatorial optimization problems like exam timetabling
[Burke and Bykov, 2008, Ozcan et al., 2009] and lock scheduling [Verstichel
and Vanden Berghe, 2009]. Moreover, late acceptance is easy to tune because
of its single parameter (L). Further experimentation on this problem showed

http://allserv.kahosl.be/~peter/pas/
http://allserv.kahosl.be/~peter/pas/
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Figure 4.3: Probability-time evolution of the four heuristics with the basic
learning selection method applied to PAS instance testdata1.txt.

that adding an LA based selection method can improve the previously obtained
results.

Problem description

The machine reassignment problem, which was the subject of the GOOGLE/ROADEF
2012 challenge, considers the reassignment of processes to machines. The
machines have multiple resources (e.g. RAM and CPU) each with their own
capacity and safety capacity. Processes belong to a service, while the set of
machines is partitioned into locations and neighborhoods2. The objective is
to optimize the machine load and the resource balance, while keeping the cost
of moving the processes to a minimum. The goal of the resource balance is
to achieve a given target on the available ratio of two different resources, for
example the ratio between CPU and RAM. Several hard constraints need to be
respected:

• Capacity constraints: the total usage of a resource cannot exceed its
capacity.

2Not a local search operator, but a geographical region like a city.
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• Conflict constraints: all processes belonging to the same service must run
on distinct machines.

• Spread constraints: the number of distinct locations where at least one
process of service s should run is at least spreadMin(s).

• Dependency constraints: if service sa depends on service sb, then each
process of sa should run in the neighborhood of an sb process.

• Transient constraints: respect the capacity of the transient resources.
Transient resources are consumed twice, once on the original machine,
and once on the machine the process moved to.

For more detailed information on the problem we refer to the challenge subject
paper [roa, 2012].

The resource usage of an initial solution and an optimized solution are visualized
in Figure 4.4. A green colored block refers to a resource with a usage below the
safety capacity, where as a red colored block refers to a resource usage higher
than the safety capacity. As expected, the optimized solution contains less red
blocks, i.e. less safety capacity violations.

Neighborhoods

Several neighborhood functions were developed during the course of the challenge.
The most important neighborhoods are:

• Move a single randomly selected process to another randomly selected
machine (srm).

• Swap the assignment of two randomly selected processes (swap).

• Swap the assignment of three randomly selected processes (triswap).

Results and experiments

Experiments with an LA based neighborhood selection method were conducted
using these three neighborhood functions, and tested on the challenge problem
instances. Two problem datasets were available, dataset A with small size
instances (used for the qualification round of the challenge) and dataset B with
large size instances (used for the final round). The large size dataset (dataset
B) of the challenge will be used in further experiments. The dataset contains
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(a) Before optimization

(b) After optimization

Figure 4.4: Comparison of the resource usage of two solutions for the machine
reassignment problem on instance: a2_4 of the ROADEF 2012 challenge.

10 instances with varying characteristics. The number of processes varies from
5, 000 to 50, 000, and the number of machines ranges from 100 to 5, 000. For the
experiments an improving-or-equal acceptance method was used to minimize
the effect of the acceptance method. Such an acceptance method, as the name
already indicates, only accepts solutions when they have an objective function
value equal to or better than the current solution’s objective value. At each
iteration we sample a single move out of the neighborhood, and apply it to the
current solution.

Two learning selection methods were tested, both use an LRI learning automaton
with a learning rate αreward = 0.0013, but differ in the reward signal. The first
uses the basic reward signal (Equation 4.1), i.e. update with a reward value
of 1 if the solution improved (denoted as BasicHS in the figures). The second
learning selection method updates with a reward value of 1 if the improvement
was larger than the average improvement (denoted as AAHS in the figures).
Figure 4.5 shows the comparison of average objective function values obtained
by a search with these two learning neighborhood selection methods and a

3The learning rate value was not tuned for better performance, but set sufficiently low to
avoid premature convergence.
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random selection method on instance b_1 and b_2 of the machine reassignment
problem. The BasicHS performs better than random selection on all instances,
while the AAHS only performs better than random on instance b_2 and b_3
and even worse on instance b_4. On the complete B dataset, the basic selection
method obtains an average improvement of 1.47% over random selection, while
the average selection method realizes a smaller 0.35% average improvement.
By changing the learning rate αreward larger improvements can possibly be
realized. A large difference between the behavior of both learning selection
methods is observed. This behavior is shown in Figure 4.6 for the basic learning
selection method and in Figure 4.7 for the above average learning selection
method. It is clear that the method using the reward signal based on average
improvements, prefers moves which realize a large improvement (triswap in
this example), while the basic method almost immediately discards the triswap
because it is not often finding improvements. Both methods eventually give a
higher selection probability to swap moves. Summarized, both learning selection
methods perform better than just randomly selecting a neighorhood.

4.3 Conclusion

We have proposed an LA based heuristic selection method using a single learning
automaton. We show that using the performance of the heuristics at runtime to
adjust the heuristic selection probabilities leads to a more efficient search. The
most important design parameter is the reward signal, which incorporates the
performance of the heuristic. The proposed selection methods are very suitable
to use in the general hyperheuristic framework, because they do not use any
problem specific information. However, the method can also be integrated into
an existing local search where a neighborhood needs to be selected at each
iteration.

Experiments were conducted on several test cases such as the traveling
tournament problem, the patient admission scheduling problem, and the machine
reassignment problem. Significant improvements were realized by the learning
heuristic selection, when comparing it to a simple random heuristic selection
mechanism. New best solutions were found on the traveling tournament problem
with a hyperheuristic method, which included the LA based heuristic selection
proposed in this chapter.

Further experiments can be performed with other RL methods such as the pursuit
algorithm, which is able to handle absolute values. This can be interesting
because most objective function values are not between 0 and 1. Early tests
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Figure 4.5: Comparison of two learning heuristic selection methods with a
random heuristic selection on instances B_1 to B_4 of the machine reassignment
problem.
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Figure 4.6: Probability-time evolution for the basic learning selection method
using three neighborhoods on instance b_1 of the ROADEF 2012 challenge.
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Figure 4.7: Probability-time evolution for the above average learning selection
method using three neighborhoods on instance b_1 of the ROADEF 2012
challenge.
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however show no significant improvements over the simple linear-reward-inaction
mechanism used in this chapter.

Referring to Figure 2.4 the topics discussed in this chapter are situated at the
meta- and hyper-heuristic level. Rather than intelligently selecting the heuristic
to apply at each time step, the next chapter will discuss the usage of learning
automata as a direct heuristic to two general project scheduling problems.





Chapter 5

Learning automata for project
scheduling

Project scheduling is a research discipline with a long lasting history, mainly
originated from economics and management. Standard project management
techniques include CPM (Critical Path Method) and PERT (Programme
Evaluation Review Technique). Most project scheduling problems are NP-hard
and difficult to solve. State-of-the-art results are obtained by heuristics and
metaheuristics. Applying reinforcement learning to project scheduling is rather
new, but not without success. Two successful applications to project scheduling
are reported in this chapter. Both problems are generalizations of the common
Resource-Constrained Project Scheduling Problem (RCPSP), as shown in Figure
5.1. The first application (Section 5.1) is the multi-mode resource constrained
project scheduling problem (MRCPSP), where each activity can be performed
in more than one mode. A mode is a combination of resource usage and activity
duration. A network of learning automata was employed for learning the activity
lists and the modes. A common reward signal was used to update all LA. The
second application (Section 5.2) is the decentralized resource-constrained multi-
project scheduling problem, where multiple projects are scheduled together in a
decentralized way by autonomous and self-interested agents. In addition to the
individual resources for each project, some resources have to be shared between
the projects. The methods for the MRCPSP were extended with a dispersion
game to learn good project orders for this (D)RCMPSP using the techniques
introduced in Chapter 3. According to Figure 2.4 the methods presented in this
chapter are operating at the direct RL inclusion level, and are thus using RL
directly to find good solutions.

61
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RCPSP 
(Single-mode, Single-project)

MRCPSP 
(Multi-mode, Single-project)

RCMPSP 
(Single-mode, Multi-project)

MRCMPSP 
(Multi-mode, Multi-project)

Figure 5.1: Resource-constrained project scheduling problem hierarchy.

The methods described in this chapter are slightly modified versions of the
following two papers:
Wauters, T., Verbeeck, K., Vanden Berghe, G., De Causmaecker, P. (2011).
Learning agents for the multi-mode project scheduling problem. Journal of the
Operational Research Society, 62 (2), 281-290.

Wauters, T., Verbeeck, K., De Causmaecker, P., Vanden Berghe, G. (2012).
Decentralized multi-project scheduling: a game theoretic learning approach.
Technical Report KAHO-CW-09/07/2012 (Under review)

5.1 The multi-mode resource-constrained project
scheduling problem

In [Wauters et al., 2009c,a, 2011] we have introduced a multi-agent reinforcement
learning and local search for building schedules in the multi-mode resource-
constrained project scheduling problem (MRCPSP). The idea is to learn a good
constructive heuristic that can be further refined by local search techniques for
large scale scheduling problems. With the latter goal in mind, a network of
distributed reinforcement learning agents was set up, in which agents cooperate
to jointly learn a well performing heuristic. As we will show later, our learning
method generates results comparable to those obtained by the best-performing
finetuned algorithms found in the literature, confirming the mentioned positive
presumptions of using machine learning in search.

In the last few decades, the resource constrained project scheduling problem
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(RCPSP) has become an attractive subject in operational research. It considers
scheduling a project’s activities while respecting the resource requirements
and the precedence relations between the activities. The academic problem
has many relevant real world counterparts in the building and consultancy
sector, for example, resulting in a challenging list of instances with varying
optimization objectives. The MRCPSP is a generalized version of the RCPSP,
where each activity can be performed in one out of a set of modes, with a
specific activity duration and resource requirements (e.g. 2 people each with
a shovel need 6 days to dig a pit, while 4 people each with a shovel and one
additional wheelbarrow need only 2 days). The RCPSP was shown to be
NP-hard [Blazewicz et al., 1983a], thus so is the MRCPSP because it is a
generalisation of the RCPSP. Demeulemeester and Herroelen [2002] published a
comprehensive research handbook on project scheduling.
We introduce a novel multi-agent based approach [Wauters et al., 2009c,a, 2011],
which is fundamentally different from the ones found in literature. It is based
on a graph representation in which the nodes are agents representing activities.
Each agent is responsible for one activity of the project. The agents make use of
two simple reinforcement based learning devices i.e. learning automata (LA) to
learn constructing good quality schedules. One of the agents’ learning automata
is responsible for selecting the order of its succesor activities. The second
learning automaton in the agent is responsible for selecting an appropriate mode
for its own activity. We use a smart coupling mechanism of rewards to learn
both the order of the activities and the modes at the same time. Our approach
is inspired by theoretical results that show how interconnected LA devices are
capable of finding attractor points in Markov Decision Processes and Markov
Games [Wheeler and Narendra, 1986, Vrancx et al., 2008].

The rest of this section gives a brief problem description, followed by related
work, the model and multi-agent learning algorithm, computational experiments
and comparative results on well studied benchmarks.

5.1.1 Problem formulation

The MRCPSP is a well known combinatorial optimization problem, of which
several problem formulations have been proposed in the literature. Talbot
[1982] gives a 0-1 formulation based on the traditional Pritsker’s model of the
RCPSP [Pritsker et al., 1969]. More recently, a new conceptual formulation
was presented by [Van Peteghem and Vanhoucke, 2010]. We use a formulation
similar to that of [Sprecher et al., 1997] and formulate it as follows. A project
consists of J non-preemptive activities (jobs), including a dummy start and
dummy end activity. Each activity i ∈ {1, . . . , J} can be performed in one
out of a set of Ki modes. A mode represents a way of combining different
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resources and the amount of resources requested. The activities of the project
may require some renewable and non-renewable resources. A set R of renewable
resources is available. Each renewable resource r ∈ R has a constant availability
Kρ
r for each time period. Similarly a set N of non-renewable resources r is

available, each with an availability Kν
r for the entire project. Each mode

j ∈ {1, . . . ,Ki} of activity i corresponds to a specific activity duration dij and
resource requirements for the resources. The requirement of activity i in mode
j for resource r ∈ {1, . . . , |R|, . . . , |R|+ |N |} is kρrij for the renewable resources
and kνrij for the non-renewable resources. The dummy start (i = 1) and end
(i = J) activities have zero duration and zero resource usage. The activities of
the project have to be scheduled according to their strict finish-start precedence
relations. Any activity i has a set Pi of strictly preceding activities, and also a
set Si of strictly succeeding activities.

A solution to the MRCPSP consists of start times si and finish times fi for
each activity i (a schedule). The objective is to find an activity order and mode
combination that produces a schedule with a minimum makespan (=fJ). It
should satisfy three hard constraints: 1) an activity should not start before
all its predecessors have finished (precedence constraint), 2) the number of
units used of a renewable resource should not be larger than the availability of
that resource at any time, and 3) the number of units used of a non-renewable
resource for the entire project should not exceed its availability. The second
and third constraint are the resource constraints.

5.1.2 Related work

Brucker et al. [1999] present a unifying notation, a model, a classification scheme,
i.e. a description of the resource environment, the activity characteristics and
the objective function for the MRCPSP. The notation is similar to that for
machine scheduling and allows for classifying the most important models. They
furthermore introduce some exact and heuristic methods for both single and
multi-mode problems. Herroelen et al. [1998] discuss the problem and its
practical relevance. Kolisch and Hartmann [2006] provide an update of their
survey of heuristics for the RCPSP that was first published in 2000. They
summarize and categorize a large number of heuristics that have recently been
proposed in the literature together with some detailed comparative results.
Several exact methods have been developed for the MRCPSP in [Talbot,
1982, Patterson et al., 1990, Sprecher et al., 1997, Zhu et al., 2006]. None
of these algorithms are useful for addressing large realistic problems, due to high
calculation times. Different (meta-)heuristics have been proposed to address
the problem, in order to enable producing good quality solutions in a short
amount of time. Hartmann [1997], Alcaraz et al. [2003], Masao and Tseng
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[1997], Lova et al. [2009], Van Peteghem and Vanhoucke [2010] all present
a genetic algorithm for the MRCPSP. Other recent attempts for solving the
MRCPSP include [Jarboui et al., 2008] where a combinatorial particle swarm
optimization is proposed. Ranjbar et al. [2009] present an algorithm based
on scatter search and path relinking. An artificial immune system has been
reported in [Van Peteghem and Vanhoucke, 2009]. Jozefowska et al. [2001]
and Bouleimen and Lecocq [2003] use a simulated annealing approach. A tabu
search metaheuristic is applied in [Thomas and Salhi, 1998] for the RCPSP, and
in [Herroelen and De Reyck, 1999] for solving the MRCPSP with generalized
precedence relations.

Agent-based approaches have also been successfully applied to the MRCPSP.
Knotts et al. [2000] use two types of agent (basic and enhanced agents), together
with a set of different priority rules. The two agent types differ by the feasible
execution mode that is selected for each resource. A basic agent, which is
purely reactive, chooses the first feasible execution mode that it finds. In
contrast, an enhanced agent deliberates the mode selection according to several
rules. No learning is involved. Jedrzejowicz and Ratajczak-Ropel [2007] used a
number of agents to work on a population of solutions in parallel on different
computers. Each request represents a different optimization algorithm including
local search, tabu search, as well as several specialized heuristics. Jedrzejowicz
and Ratajczak-Ropel [2006] present a population learning algorithm for solving
both the single and the multi-mode problems.

The contributions of this work include the application of multi-agent
reinforcement learning for the project scheduling problem and the introduction
of new benchmark results obtained with this method.

5.1.3 Multi-agent learning for the MRCPSP

The multi-agent learning approach is inspired by a commonly used activity
network representation, namely the activity on node diagram (AON) where
each activity is represented by a node in a graph, and where the edges represent
the precedence relations between the activities. Figure 5.2 shows an example
of a project with 7 activities according to the problem description in Section
5.1.1 (1 and 7 are dummy activities) and their relations. Activity 5 can only be
executed when Activity 2 and 3 are finished.

Our goal is to generate an activity list (AL) and a mapping from activities to
modes, i.e. a mode assignment (MA), which can later be used to construct a
schedule. In this section, we first describe the multi-agent algorithm and its
control flow. Next we discuss learning automata and how they are used in the
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Act 1 Act 7

Act 2

Act 3

Act 4

Act 5

Act 6

Figure 5.2: An example of an activity-on-node diagram for a project with 7
activities.

multi-agent setup, followed by more detailed information about the dispatcher
agent, which is an important agent in the method.

Multi-agent setup

The activity list is a permutation of all the activities. It determines in which
order the schedule construction algorithm handles the activities. The mode
assignment determines in which mode each activity will be executed. The
algorithm works by forwarding control from one agent to another. When an
agent receives the control, the agent has to make some decisions. We start by
placing an agent in every activity node. As in the AON diagram, these agents
are interconnected by precedence relations on their activity nodes. Further
on, we add an extra dispatching agent (dispatcher), which is employed by the
algorithm for constructing schedules that respect the two hard constraints. In
contrast to the other agents, the dispatcher does not represent an activity. It
only selects another agent for taking over the control. This initial situation is
presented in Figure 5.3.
The main idea of the algorithm is to enable every agent to learn which decisions
to make, concerning:

1. the order in which to visit its successors, and

2. the mode in which the activity needs to be performed.

The algorithm works as follows: we start in the situation depicted in Figure 5.3.
That is, we start from an empty activity list and an empty mode assignment.
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Figure 5.3: Initial situation: one agent in every activity node + one extra
dispatching agent.
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Figure 5.4: Final situation, all agents have been visited at least once.
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The goal is to complete these lists. First the control is given to Agent 1. This
agent chooses the order to visit its successors and picks the first agent from this
order (Agentnext). Its activity is already in the activity list so it does not need
to choose a mode. We set Agentcurrent = Agentnext. Now the control is given
to Agentcurrent, which also decides in which order to visit its successors and
takes the first agent from this order, which is the new Agentnext (e.g. Agent2
chooses order |4, 5|, so it will first take Agent4 and then Agent5). Agentcurrent
has not been visited before. Consequently the activity it represents is added
to the activity list, and the agent also chooses a mode that is added to the
mode assignment. This process is continued until the agent in the last dummy
node is visited. This node is special in the sense that its agent does not need
to choose an activity order or a mode, but always forwards the control to the
dispatcher. The dispatcher has a certain probability (PrDispToV isited) to choose
a random eligible agent from the list of visited agents. Otherwise it chooses a
random eligible unvisited agent. An agent is eligible when all the predecessors
of the activity it represents have been visited. Note that this simple random
dispatcher strategy can be replaced by a more intelligent one (e.g. a heuristic
strategy, a learning dispatcher, . . .), as is explained further. These steps are
carried out subsequently until all the agents have been visited at least once. A
possible final situation is shown in Figure 5.4. All the agents are visited and
have chosen a successor order and a mode. A complete activity list and mode
assignment have been generated.

The behavior of the agents is stochastic. At any time they can, with a small
probability PrToDisp, give the control to the dispatcher. This is a natural way
to make all possible activity-order permutations reachable and hence all the
possible schedules.

Now we can construct a schedule using the activity list and mode assignment
with a schedule generation scheme (SGS) that uses a standard heuristic method
for the RCPSP (see [Kolisch, 1996b] for details). The parallel SGS does not
always lead to an optimal solution. The serial SGS does not have this defect.
The extended schedule generation scheme from [Van Peteghem and Vanhoucke,
2010] makes use of the well-known forward/backward technique (introduced
by [Li and Willis, 1992]) together with a new procedure to improve the mode
selection. We will use the latter. When scheduling an activity i ∈ {2, . . . , J − 1}
there is a probability Pmodimp for applying a mode improvement procedure.
This procedure will consider other modes than the currently selected mode.
If the usage of these other modes does not increase the violation of the non-
renewable resource constraints, then the finishing time fi is computed. We
select the mode with the lowest fi and set it as the current mode. We do this
in the forward as well as in the backward step of the SGS. Van Peteghem and
Vanhoucke [2010] show that this procedure leads to a significant improvement
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in the solution quality.

In Algorithm 1, the global control of the algorithm for constructing an activity
list and mode assignment is presented in pseudo-code. It gives control to
individual agents that use Algorithm 2. The latter returns the next agent
(Agentnext) to hand over control. For clarity we left out the description of the
method that determines if an agent is eligible. This is done by checking whether
all the agent’s predecessors have been visited.

Algorithm 1 Global Control
Require: Project data and Algorithm parameters
Ensure: A feasible schedule w.r.t. the precedence constraints and renewable
resource constraints.
initialize ActivityList and ModeAssignment
Agentcurrent ⇐ Agent1
while Not all agents visited do
give the control to Agentcurrent
Agentnext determined by Agentcurrent using Algorithm 2
if Agentnext is eligible then
Agentcurrent ⇐ Agentnext

else
Agentcurrent ⇐ Dispatcher

end if
end while
Schedule ⇐ construct a schedule using the complete ActivityList and
ModeAssignment
return Schedule

The method for constructing a schedule can now be used in an iterative way.
We use the optimized schedule’s quality (makespan) and mode assignments
for the agents to learn which actions to take. We apply some simple learning
automata which we will describe next. Note that the constructed schedules can
be infeasible in terms of non-renewable resource usage, but in our experiments
we noticed that at the end of a run the produced schedules are completely
feasible. This is because a penalty proportional to the number of violations is
given to infeasible schedules, and thus rewarding better schedules with lower
violations and a better makespan, as we will describe later.

Learning a constructive heuristic

For learning the activity order and the best modes we apply the (LR−I) learning
automata update scheme because of its ε-optimality property in all stationary
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Algorithm 2 Single Agent Control
Require: ActivityList, ModeAssignment
Ensure: Agentnext

rand ⇐ random number between 0 and 1
if (rand < PrToDisp) or (this is AgentN ) then
Agentnext ⇐ Dispatcher

else
if Agentcurrent not yet visited then
add Agentcurrent to the ActivityOrderList
Mode ⇐ chooseMode() using Mode LA
add the Mode to the ModeAssignment
Order ⇐ chooseOrder() using Order LA
Agentnext ⇐ first Agent in Order

else
Agentnext ⇐ next Agent in Order

end if
end if
return Agentnext

environments. The learning rate (reward parameter) used for learning the
activity order and the one used for learning the mode are named LRO and
LRM respectively. The application of the reinforcement will be presented in
what follows.

Once a schedule has been constructed, we update all the learning automata
using the following reinforcements. If the makespan of the constructed schedule
at instant k is:

• Better: r(k) = 1

• Equal: r(k) = req (req ∈ [0, 1])

• Worse: r(k) = 0

Both req and the learning rates LRO and LRM determine the learning speed.
A higher req can speed up the learning, especially for a problem like the
MRCPSP where attempts to generate new schedules only rarely result in quality
improvements. The settings of the two learning rates are dependent. A proper
combination will be important for a good overall performance.

If the constructed schedule turns out to be infeasible in terms of the non-
renewable resources, we add a high penalty value to the makespan of the
schedule. This forces the method to construct feasible schedules. Although
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Figure 5.5: The single agent view.

we have no formal arguments to justify this theoretically, in practice not one
infeasible schedule was found at the end of a run, when using such a penalty.

Note also that the mode LA is reinforced with the mode that was actually used
in the constructed schedule. Since the mode optimization procedure in the SGS
can change the mode that was originally selected by the mode LA.

The viewpoint of a single agent is presented in Figure 5.5. Each agent has two
learning devices. When an agent is visited for the first time, the algorithm
will ask the agent to choose an order for visiting its successors and a mode.
For both choices the agent consults the corresponding learning automaton.
These learning automata make a choice according to their probability vector
(probability distribution). After all the agents have been visited at least once,
the algorithm constructs a schedule. Using the information from this schedule,
the reward system will update all the agents according to the basic 0-1 reward
signal. The agents forward the reinforcement signal to their learning automata
devices. These learning automata will then update their probability vector
using the LR−I method.

The dispatcher agent

The dispatcher agent assures that the algorithm will end in finite time by
forwarding the control to visited and other eligible agents. The simplest strategy
to apply for this dispatcher is just a random selection of agents. We added to
this that the dispatcher has a certain probability (PrDispToV isited) of choosing
a random eligible agent from the list of already visited agents, otherwise it
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chooses a random eligible unvisited agent. This probability can be fixed or
dynamically evolve through the process.

The next step was to apply a learning method to the dispatcher. We decided
to make a dispatcher based on Q-learning [Watkins, 1989a]. In contrast to a
single automaton, Q-learning can handle environments of more than one state.
Q-learning learns optimal policies by exploring and exploiting the state-action
space. In our case, states are presented by the agent that was visited in the
previous step. The actions are the next agent to forward the control to.

Preprocessing

Before we start the learning algorithm we apply a preprocessing step. This
preprocessing step consists of applying the preprocessing procedure of [Sprecher
et al., 1997]. Modes that are inefficient or non-executable are excluded. Further
on, preprocessing excludes redundant non-renewable resources. Sprecher et al.
[1997] define a mode as inefficient if its duration is not shorter and its resource
needs are not less than the other modes of the same activity. A non-executable
mode is a mode for which the renewable or non-renewable resource constraints
are violated. A non-renewable resource is redundant if the sum of the maximum
requests for that resource is not larger than the resource’s availability.

5.1.4 Experimental results

In this section we evaluate the performance of the multi-agent learning algorithm.
The algorithm has been implemented in Java Version 6 Update 16 and runs on
a mobile Intel Core 2 Duo T9600 2.8GHz processor, 4GB RAM. To test the
performance of the algorithm, we applied it to instances of the project scheduling
problem library (PSPLIB) [Kolisch and Sprecher, 1996], which is available from
the ftp server of the University of Kiel (http://129.187.106.231/psplib/).

First we present the experimental results for the multi-mode RCPSP followed
by the results on the single-mode version.

Multi-mode

PSPLIB contains a number of MRCPSP datasets with a number of activities
ranging from 10 to 30 (J10, J12, J14, J16, J18, J20 and J30). For all except
the last dataset, the optimal solutions are known. All the instances in these
datasets have two renewable and two non-renewable resources. Each dataset
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contains 640 instances, of which some are infeasible. We exclude the infeasible
instances from the experiments.

When testing the algorithm, we found that the required number of iterations
strongly depends on the initial settings. For that reason we used the algorithm in
the common multi-restart way. This involves restarting the algorithm a number
of times per instance and taking the best solution over all the runs. In Table
5.1 and Table 5.2, we present the results of the multi-agent based algorithm
for the J10 to J20 datasets from the PSPLIB library, using the following
empirically obtained parameters for all the tests: 0.4 for the order learning rate
(LRO), 0.4 for the mode learning rate (LRM), req = 0.01, PrToDisp = 0.00(0%),
PrDispToV isited = 0.50(50%), Pmodimp = 0.40(40%), Random Dispatcher (RD)
and 5× 1, 000 iterations.

In Table 5.3 we present the results for the J30 dataset using 5× 1, 000 iterations
and 5× 5, 000 iterations, both with Random (RD) and Q-Learning Dispatcher
(QLD). For this dataset the optimal solutions are not known to the research
community. We therefore calculated the average procentual deviation from the
best known solutions.

When considering these results for the MRCPSP, we can conclude that the
multi-agent approach performs very well when comparing it to the state of the
art methods from the literature. We even reach the best result for one dataset
(J16).

Single mode

Since the MRCPSP is a more general definition than the RCPSP, the multi-
agent learning approach is also suitable for solving the latter problem. Table 5.4
presents the results for the J120 RCPSP dataset, which is the largest dataset
for RCPSP in the PSPLIB library. The tests were carried out with the same
parameters as in Section 5.1.4 but with 5× 5, 000 iterations and without mode
learning. Since the optimal solutions are not all known for this dataset, we
calculate the average procentual deviation from the critical path length. We
also provide the average procentual deviation from the best known solutions.

Evaluation

When looking at the single-mode RCPSP results, which reveal average
performance when comparing them to the best algorithms reported in the
literature [Kolisch and Hartmann, 2006], we can conclude that the power of
the approach is its coupling between learning the activity order and learning
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the modes. Note that our approach does not require mutual communication
between the learning automata. The coupling of the LA happens through the
common global reward signal. For both the RCPSP and MRCPSP, specialized
Genetic Algorithms (GA) are among the best performing algorithms in the
literature. When we compare our results with one of the very best GAs for the
MRCPSP [Van Peteghem and Vanhoucke, 2010], the results of the multi-agent
learning approach have similar quality.

We investigated the contribution of each component in our system. An example
of this is shown in Figure 5.6 where we show the effect of disabling each
component in the system (no mode learning, no order learning and no mode
optimization procedure in the SGS). We compared this to the situation were all
components are active. These tests have been run using the same settings as
before on several instances. The results in Figure 5.6 are for one instance from
the J30 set, but tests on other instances show similar results. As shown, all
components are important. Disabling one of them reduces the average solution
quality. Disabling the mode learning has the most negative impact on the
quality of the solutions.

The multi-agent learning model is based on the models of [Wheeler and Narendra,
1986, Vrancx et al., 2008], where it was shown that a network of LA is capable
of converging to some optimal attractor points of the underlying multi-agent
game. Although the activity-on-node model for the MRCPSP problem that
we consider here does not satisfy the ergodicy property that was assumed in
[Vrancx et al., 2008], in practice it still produces good results. The main reason
why the sufficient conditions for convergence are not satisfied is that not all
nodes in the network are reachable from any other node. Not all agents are
reachable from the dispatcher agent for instance. Only the eligible agents can
be selected. Further study could investigate the theoretical properties of the
learning scheme as presented here.

Previous contributions to the MRCPSP using agent technology include [Knotts
et al., 2000, Jedrzejowicz and Ratajczak-Ropel, 2006, 2007]. We briefly point
out the main differences and similarities between the work in this paper and
other agent based approaches in the literature. Table 5.1 shows that our
approach clearly results in solutions of better quality than those obtained by
similar approaches [Jedrzejowicz and Ratajczak-Ropel, 2006, 2007]. These
other approaches applied a different stopping criterion, which was a predefined
running time of 5 minutes [Jedrzejowicz and Ratajczak-Ropel, 2007] and 50000
generated solutions [Jedrzejowicz and Ratajczak-Ropel, 2006]. In [Jedrzejowicz
and Ratajczak-Ropel, 2007] each agent represents a different algorithm (heuristic
or meta-heuristic) without any learning, while a population based method is
presented in [Jedrzejowicz and Ratajczak-Ropel, 2006]. It operates on complete
solutions (individuals in their population), while our approach uses simple local
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Figure 5.6: Contribution of system components.

learning to construct solutions. The main difference between our approach and
[Knotts et al., 2000] is that we use learning to adapt the decisions made by the
agents, while their approach uses some predefined rules.

Finally, in the future a lot of different dispatcher strategies could be tested as
well. A dispatcher could be equipped with heuristic information or use more
complex learning schemes than the one we use here.

5.1.5 Conclusion

A novel algorithm was developed that combines reinforcement learning and
search for solving the multi-mode resource-constrained project scheduling
problem (MRCPSP). Our approach integrates ideas from multi-agent systems,
reinforcement learning (more in particular, learning automata) and search. We
equipped our agents with the ability to learn activity orders and modes, based
on past performance. A smart rewarding mechanism coupled both learning
tasks intelligently, whereby we managed to obtain competitive results on most
of the MRCPSP datasets from the PSPLIB Library. We even improve the
results for one dataset. The big advantage of our method is that it uses simple
local learning schemes, which makes our approach easy to apply.

We have shown that the combination of reinforcement learning and optimization
is definitely useful and that this combination will certainly be further investigated
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Table 5.1: Comparison with other approaches for the MRCPSP - Average
deviation from optimal solutions (%)

J10 J12 J14 J16 J18 J20
[Jedrzejowicz and Ratajczak-Ropel, 2007] 0.72 0.73 0.79 0.81 0.95 1.80
[Jedrzejowicz and Ratajczak-Ropel, 2006] 0.36 0.50 0.62 0.75 0.75 0.75

[Bouleimen and Lecocq, 2003] 0.21 0.19 0.92 1.43 1.85 2.10
5000 schedules:

[Jozefowska et al., 2001] 1.16 1.73 2.60 4.07 5.52 6.74
[Alcaraz et al., 2003] 0.24 0.73 1.00 1.12 1.43 1.91
[Jarboui et al., 2008] 0.03 0.09 0.36 0.44 0.89 1.10
[Ranjbar et al., 2009] 0.18 0.65 0.89 0.95 1.21 1.64

[Van Peteghem and Vanhoucke, 2009] 0.02 0.07 0.20 0.39 0.52 0.70
[Lova et al., 2009] 0.06 0.17 0.32 0.44 0.63 0.87

[Van Peteghem and Vanhoucke, 2010] 0.01 0.09 0.22 0.32 0.42 0.57
Multi-Agent Learning Approach RD 0.05 0.08 0.23 0.30 0.53 0.70

Table 5.2: Experimental results for Multi-Agent Learning Approach RD -
5× 1, 000 iterations

J10 J12 J14 J16 J18 J20
Average RE (%) 0.05 0.08 0.23 0.30 0.53 0.70

Std. Dev. RE (%) 0.49 0.61 0.99 1.09 1.40 1.64
Optimal (%) 98.70 98.17 94.74 92.18 86.23 81.59

Average runtime (s) 0.8 1.0 1.4 1.7 1.9 2.1

Table 5.3: Experimental results MRCPSP - J30
Avg. deviation from Avg. deviation from
Critical Path LB (%) best known solutions (%)

5 × 1, 000 iter. RD 14.68 1.80
5 × 1, 000 iter. QLD 14.62 1.74
5 × 5, 000 iter. RD 14.0 1.26

5 × 5, 000 iter. QLD 13.91 1.20

Table 5.4: Experimental results RCPSP - J120
Avg. deviation from Avg. deviation from

critical path length (%) best known solutions (%) Avg. runtime (s)
5 × 5, 000 iterations 36.98 4.36 41
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in the future. One of the next topics will be to test the scalability of our local
learning approach.

In some cases multiple projects have to be scheduled simultaneously, taking into
account the availability of shared resources. This extension to multi-project
scheduling is discussed in the next section of this chapter.

5.2 The decentralized resource-constrained multi-
project scheduling problem

Collaborative project management is becoming quite common in today’s globally
active industries. Indeed, enterprises collaborate simultaneously with different
customers or partners in various projects requiring scarce and shared resources.
It is a means of accelerating product development, reducing cost, and increasing
quality. However, it requires careful scheduling of overlapping tasks with possible
competing resource requirements. This is exactly the focus of the decentralized
resource constrained multi-project scheduling problem (DRCMPSP), which is a
generalization of the familiar resource-constrained project scheduling problem
(RCPSP) [Brucker et al., 1999].

A set of n projects has to be planned simultaneously in the DRCMPSP. For
each project the following information is given: an earliest release date, a
set of activities, precedence relations between the activities and a set of local
renewable resources. On top of these, a finite set of global renewable resources
is available, which have to be shared by all projects. Projects are planned in a
decentralized manner by autonomous and self-interested decision makers, which
are typically the project managers. A project manager has the goal to minimize
its local objectives. However, the local objectives of the managers are usually
in conflict with each other. Activities of different projects may require the same
shared resource at the same time. In order to enable comparing alternative
solutions of a given DRCMPSP, some local and global performance criteria
are defined. Commonly used criteria are the Total Makespan (TMS) and the
Average Project Delay (APD). Both will be considered in this study.

Multi-agent systems have been applied before, for solving the DRCMPSP.
Confessore et al. [2007] introduced a multi-agent system, and an iterative
combinatorial auction mechanism for solving the DRCMPSP. Large multi-
project instances are solved by integrating a metaheuristic called the centralized
restart evolution strategy, with an efficient decentralized electronic negotiation
mechanism [Homberger, 2007]. This approach was further improved by
Homberger [2009]. Adhau et al. [2011] present an auction-based negotiation
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approach, using a new heuristic for the winner determination problem in auctions.
Some improved results for the APD objective are presented.

Rather than having all project managers negotiate for each activity to be
scheduled, the present work focuses on coordination through learning a simple
sequence game managed by a trusted third party or mediator agent. A serial
schedule generation scheme, which is adopted from single project scheduling
[Kolisch and Hartmann, 1998], first builds a solution to the DRCMPSP. Instead
of giving the serial scheduler one activity list, as in single project scheduling, it
is here presented with a sequence of activity lists, one for each project. The
observation to be made here is that the order of the different activity lists in the
sequence has a non-neglectable effect on the quality of the resulting schedule1.
Each project manager simultaneously chooses a place in this sequence. Since
all project managers should have a unique place, they in fact play a dispersion
game [Grenager et al., 2002]. As such, the goal of each project manager boils
down to, 1) building an efficient precedence feasible activity list locally and 2)
learning a suitable place in the overall sequence of activity lists. In the proposed
method, both goals are learned simultaneously and iteratively by using a global
reinforcement signal, i.e. the APD or TMS of the schedule that was generated
at the previous time step. The project managers locally use a network of simple
reinforcement learning devices called learning automata for learning an efficient
activity list. This technique was adopted from our learning technique for the
single project version discussed in Section 5.1. The sequence game is played with
a probabilistic version of the Basic Simple Strategy (BSS), which guarantees
the players to coordinate within logarithmic time. This technique was adopted
from previous work on fast permutation learning (Chapter 3).

Experiments show that the sequence learning game approach (GT-MAS) has
a large positive effect on the minimization of the average project delay. In
fact, the combination of local reinforcement learning, the sequence learning
game and a smart forward-backward implementation of the serial scheduler
significantly improves the best known results for all the MPSPLIB datasets.
Many new best solutions for the APD objective were produced, dominating the
MPSPLIB benchmark website with 104 best solutions out of 140. Besides the
APD successes, also the TMS objective generated several new best solutions.
Due to the usage of linear update rules and a mechanism with logarithmic
properties for playing the sequence game, the learning approach scales very
well.

In the course of this thesis, the GT-MAS method was adopted as a reference
in a comparative study by Mao [2011]. Two objectives are used in this study,

1This may seem counter intuitive since all projects should benefit from being scheduled
first. However, projects have different release times and some projects detoriate the solution
more when being scheduled late than others.
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Figure 5.7: Multi-Project activity-on-node diagram for an example with 2
projects (7 activities each, dummy activities included)

i.e. the average project delay and the total squared resource utilization (TSRU)
which is a resource leveling objective. GT-MAS outperforms the other methods
concerning the APD objective.

This section is structured as follows. Section 5.2.1 describes the DRCMPSP. The
solution representation and encoding together with the new GT-MAS approach
are given in Section 5.2.2. Section 5.2.3 presents the experiments and results.
Conclusions are drawn in Section 5.2.4.

5.2.1 Problem description

The RCPSP problem considers a single project in which activities need to be
scheduled according to their precedence relations and resource requirements.
The literature covers many models for generalizing the RCPSP to a multi-project
version. The present work relies on the DRCMPSP originally introduced by
Confessore et al. [2007], and on a problem notation similar to [Homberger, 2009].

The DRCMPSP is described by a set of N projects i, i = 1..N . Each project
i consists of Ji non-preemptive activities with specific finish-start precedence
relations. Each activity j of project i has a duration of dij time periods. As is
common in the RCPSP literature, the first and last activities of the projects are
dummy activities, which have a zero duration, no resource requirements. They
determine the start and end of the project. Figure 5.7 presents an example of a
multi-project activity-on-node diagram with two projects with seven activities
each (dummy activities included), also showing the preference relations.
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Each project i has an arrival (or release) date adi, which is the earliest point in
time for the project to start. Project 1 always starts at ad1 = 0, while the other
projects start at adi ≥ 0. A set Li of local renewable resources is available for
each project i. A constant maximum capacity of Ril units is associated with
each local resource l ∈ Li. On top of these, a set G (with |G| ≥ 1) of global
renewable resources is to be shared among all projects. Accordingly, a constant
maximum capacity of Rg units is associated with each global resource g ∈ G.
Each activity j of project i requires rijl units of local resource l and rijg units
of global resource g.

A solution for the DRCMPSP must define a start time (or finish time) sij
(fij) for each activity j of each project i, with fij = sij + dij . This solution is
precedence feasible if it respects all precedence relations, and is resource feasible
if at each time period t, the applied resources do not exceed the maximum
capacity of the global and local resources. A solution that is both precedence
and resource feasible is simply called feasible.

Once a solution is constructed, i.e. a multi-project schedule, its quality can be
evaluated based on both local and global criteria. Each project i has a starting
date si that is equal to the starting time si1 of the dummy starting activity.
Similarly, each project i has a finishing date fi that is equal to the finishing time
fiJi of the dummy finishing activity. Commonly used local or private criteria are
the makespan and the project delay. In contrast to the single project scheduling
problem in the previous section, where the arrival date of the project was
zero adi = 0, the makespan MSi of a project i is here defined as the difference
between the project’s finishing date and the project’s arrival dateMSi = fi−adi.
The project delay PDi of project i is defined as the difference between the
project’s makespan and the critical path duration PDi = MSi − CPDi, with
CPDi the critical path duration of project i. The critical path duration can be
determined using the well known critical path method and it is a lower bound
for the project makespan [Willis, 1985]. Commonly used global criteria are the
total makespan (TMS), the average makespan (AMS), the average project
delay (APD), and the standard deviation of the project delay (DPD). The
total makespan is the difference between the latest finish time and the earliest
arrival date of all single projects. Note that the earliest arrival date over all
projects is always zero, because ad1 = 0. The average makespan is the average

of the makespans of all the projects (AMS =
∑N

i=1
MSi

N ). The average project

delay is the average of the project delays of all the projects (APD =
∑N

i=1
PDi

N ).
Finally the DPD is calculated as the standard deviation of the project delays

of all the projects DPD =
√∑N

i=1
(PDi−APD)2

N−1 . The remainder of the chapter
only considers the APD and TMS objectives.
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5.2.2 Game theoretic multi-agent learning approach

This section describes the game theoretic multi-agent learning approach (GT-
MAS) to the DRCMPSP. It provides details of the applied encoding, schedule
construction, multi-agent configuration and learning techniques.

Solution representation and encoding

Multi-project schedules are generated by organizing each project’s activity list
in a sequence of activity lists. This sequence consists of one activity list (AL)
for each project, together with a project order list (POL). An AL is an ordered
list of activities belonging to one project that is precedence feasible. When
all ALs are combined as defined by the POL into one large AL, a combined
sequence of activity lists (SAL) is obtained.

Once a SAL is generated, it serves for constructing a multi-project schedule
with the serial schedule generation scheme (SGS) [Kolisch and Hartmann, 1998]
in a multi-pass iterative forward-backward technique. The iterative forward-
backward technique was introduced by [Li and Willis, 1992] and is known to
produce good quality schedules. Lova et al. [2000] used the forward-backward
technique in a multi-criteria heuristic for multi-project scheduling. The technique
alternates between forward and backward passes until no more improvement
can be made. The forward pass constructs schedules from the SAL, where
activities start as early as possible (most left). The finish times of the activities
in the forward schedules are then used to generate a new activity list that is
subsequently used in a backward pass. The backward pass constructs schedules
where activities start as late as possible (most right), while not exceeding the
TMS of the preceding forward schedule. This procedure continues until no
further objective improvements can be made. For the present purpose, the
project managers jointly learn how to offer the schedule generator the best
possible SAL.

Combining activity lists

The projects’ activity lists and a project order list enable many possible ways
for building a sequence of activity lists. The two most natural ways schedule
projects either sequentially or interleaved. Obviously many hybrid combination
techniques are equally applicable.

• Sequential: schedule all activities from the first project in the POL, then
all activities from the second project in the POL, . . .
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Figure 5.8: Combining activity lists: sequential and interleaved

• Interleaved: schedule the first activity from the first project in the POL,
then schedule the first activity from the second project in the POL, . . .

Figure 5.8 illustrates these two methods with a simple two-project example
(A and B). The POL for this example determines that project A comes before
project B.

The performance difference between the sequential and interleaved approach,
will be studied in Section 5.2.3.

Learning activity lists using learning automata

A DRCMPSP environment is introduced with two main agent types: the
project manager agents and the mediator agent. The approach consists of one
single mediator agent while each project is represented by an individual project
manager agent. Figure 5.9 illustrates the multi-agent configuration. In this
section the main functionality of the project managers is described, while in
Section 5.2.2 the role of the mediator will be discussed.

Each project manager agent is responsible for scheduling its own project. Its
first responsibility is to learn to schedule its own activities efficient and feasible.
Each activity in the project uses simple reinforcement learning devices called
learning automata to learn an order of its successor activities. It is based on the
technique for learning the multi-mode resource-constrained project scheduling
problem (DRCMPSP) presented in Section 5.1, but without the modes.

A motivation for organizing the activities in a single project as a network of
learning automata is that nice theoretical convergence properties are proven
to hold in both single and multi automata environments. One of the principal
contributions of LA theory is that a set of decentralized learning automata using
the reward-inaction update scheme is able to control a finite Markov Chain
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with unknown transition probabilities and rewards. This result was extended
to the framework of Markov Games, which is an extension of single-agent
markov decision problems (MDP’s) to distributed multi-agent decision problems
[Littman, 1994]. Although the convergence results do not hold here because the
activity-on-node model does not have the Markov property, good results are
achieved with the network of LA in the single project scheduling scheme.

The project manager agent uses its network of LA to build an activity list.
Further on, the manager logs its own performance for which it receives the
information from the mediator, and updates the LA. The reward-inaction update
scheme is applied because of the above mentioned theoretical convergence
properties. The simple reinforcement signal used is the following. If the newly
generated schedule resulted in an APD which was:

• Better: update all the LA with reward β(t) = 1

• Worse: update all the LA with reward β(t) = 0
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A sequence learning game

The mediator collects the separate activity lists produced by the project
managers and starts a process for determining the project order list. Based
on the retrieved activity lists and the POL, it constructs a sequence of AL
(SAL), which is used to build a multi-project schedule (with the serial schedule
generation scheme). The mediator then sends the quality of the obtained
schedule back to the project managers.

The order determination process to construct a POL can be seen as a game,
more specifically as a dispersion game [Grenager et al., 2002] where the number
of agents n is equal to the number of actions k. To construct a POL, all manager
agents need to select a distinct action (an order here) or a maximally dispersed
assignment of actions to agents. For example, if three agents select the following
distinct actions: agent 1 selects action 2, agent 2 selects action 3 and agent 3
selects action 1, then the POL becomes [3, 1, 2].

The Basic Simple Strategy (BSS) introduced by Grenager et al. [2002], allows
agents to select maximally dispersed actions in a logarithmic (as a function of
the number of agents) number of rounds, where a naive approach would be
exponential. The original version uses a uniform selection, the method used
in the current work incorporates the agents’ preferences. This is achieved by
introducing a probabilistic version of this BSS, called the Probabilistic Basic
Simple Strategy (PBSS). The PBSS works as follows. Given an outcome o ∈ O
respecting the selected actions for all agents, and the set of all actions A, an
agent using the PBSS will:

• select action a with probability 1 in the next round, if the number of
agents selecting action a in outcome o is 1 (noa = 1).

• select an action from the probabilistic distribution over actions a′ ∈ A
for which noa′ 6= 1, otherwise.

The probabilistic distribution over actions is obtained from the experience
the project manager has with previous decisions. This technique described in
Chapter 3 for fast permutation learning was used. Each project manager agent
maintains a single learning automaton to adjust its preferences for a place in the
POL. Moreover, this method requires information about the actions that were
selected uniquely during the PBSS procedure. The managers in the multi-agent
system play the dispersion game, and the mediator provides the needed unique
action selection information, i.e. for which actions a ∈ A in outcome o the
noa = 1 holds. Figure 5.10 shows the performance of the probabilistic version
of BSS in function of the number of agents n. It also results in a logarithmic
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Figure 5.10: Average number of rounds to play in a dispersion game with n
agents. Note that the axes have a logarithmic scale.)

behaviour as can be observed.

Algorithm 3 describes the full multi-agent system.

Summarized, the task of the mediator is to inform the project managers about
the impact of their decisions and to coordinate the sequence learning game. The
mediator does not take any decisions itself, it just deterministically constructs
a schedule (SGS) using the decisions made by the project managers. The
time required by the mediator is the time needed to send the messages and to
construct a schedule.

5.2.3 Experiments and results

The present section presents the experimental results of the proposed game
theoretic multi-agent learning method on standard benchmark problems for the
DRCMPSP.

Problem instances

The proposed GT-MAS approach is assessed for the same 140 (60+80)
DRCMPSP instances used by Homberger [2009] and Adhau et al. [2011]. These
instances are available from the Multi-Project Scheduling Problem Library
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Algorithm 3 Mediator Agent Control
Require: A DRCMPSP
Ensure: A feasible multi-project schedule
Initialize project managers and mediator
while Maximum number of schedule generations not exceeded do

for all Project Managers do
Generate a precedence feasible activity list (see Algorithm ??)
Send the generated activity list to the mediator

end for
{**determine the POL by playing a dispersion game**}
while Not all project managers have chosen a different position in the POL
do

for all Project Managers do
Choose a position in POL (=action) using PBSS strategy based on
POL performance logs
Send chosen position to mediator

end for
Mediator informs project managers about the actions that have been
selected once.

end while
Mediator uses the POL and activity lists to create a SAL
Mediator uses the SAL in a forward-backward SGS method to create a
multi-project schedule SCHEDnew

if SCHEDnew has lower objective value than SCHEDbest then
SCHEDbest = SCHEDnew (store as new best)

end if
Mediator sends the objnew to the project managers
for all Project Managers do
Update the learning automaton used for POL determination
Update its sub-network of LA:
if objnew < objbest then
Update all its LAs with a reward β(t) = 1
objbest = objnew

end if
end for

end while
return SCHEDbest
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(http://www.mpsplib.com last check of address: 18 June 2012). The library
contains 20 datasets with 140 instances based on multiple RCPSP instances
(PSPLib, R. Kolisch, http://129.187.106.231/psplib/, 18 June 2012). The
number of projects, is one out of N = 2, 5, 10, 20. The number of activities
per project i, is one of Ji = 30, 90, 120. Thus the largest instances consist of
20× 120 activities = 2400 activities. The library contains two types of datasets.
The ‘normal’, ones which incorporate global and local resources with varying
capacity, and the ‘AgentCopp’ (AC) instances where all the resources are global
and have the same capacity. The normal datasets contain 5 instances per
dataset, while the AC instances contain 10 instances per dataset. The instances
vary in terms of arrival dates, and the ratio between the number of global and
local resources. Table 5.5 shows the problem datasets and their properties,
taken from [Homberger, 2009]. An additional column representing the total
problem size (number of projects times number of jobs per project) was added
for further scalability experiments. More information on the characteristics of
the instances and the generation of the problems can be found in [Homberger,
2009].

Sequential vs interleaved scheduling

Figure 5.11 shows the schedules produced with the same SAL, for both the
sequential and the interleaved method. They were applied to an instance with 10
projects, and 90 activities each (mp90_a10_nr2). The graphs show the number
of activities executed per time step for all 10 projects (stacked on top of each
other). The schedule on the left is the sequential one and it has APD = 15.6
and TMS = 164, while the schedule on the right (interleaved) has APD = 22.9
and TMS = 148. When the two scheduling methods are compared, considerable
differences in the produced schedules can be noticed. Figure 5.12 shows the
difference between sequential and interleaved scheduling for different global
objectives like APD, TMS, DPD and AMS. The graph shows average values over
10, 000 randomly generated multi-activity lists for one instance of the datasets,
but similar graphs can be shown for other instances. In general, the sequential
scheduling method produces schedules with lower APD and higher TMS, while
the interleaved scheduling method produces schedules with higher APD and
lower TMS.

Comparison with best known results

The experiments in this section were carried out using the following setup. The
tests were executed on an Intel Core 2 Duo PC (3.3Ghz, 4GB RAM, Windows
Vista), and all the methods were implemented in the Java 1.6 programming

http://www.mpsplib.com
http://129.187.106.231/psplib/
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Problem subset NOI Characterization per instance Size

N Ji (|G| ; |Li|)
MP30_2 5 2 30 (1;3) or (2;2) or (3;1) 60
MP90_2 5 2 90 (1;3) or (2;2) or (3;1) 180
MP120_2 5 2 120 (1;3) or (2;2) or (3;1) 240
MP30_5 5 5 30 (1;3) or (2;2) or (3;1) 150
MP90_5 5 5 90 (1;3) or (2;2) or (3;1) 450
MP120_5 5 5 120 (1;3) or (2;2) or (3;1) 600
MP30_10 5 10 30 (1;3) or (2;2) or (3;1) 300
MP90_10 5 10 90 (1;3) or (2;2) or (3;1) 900
MP120_10 5 10 120 (1;3) or (2;2) or (3;1) 1200
MP30_20 5 20 30 (1;3) or (2;2) or (3;1) 600
MP90_20 5 20 90 (1;3) or (2;2) or (3;1) 1800
MP120_20 5 20 120 (1;3) or (2;2) or (3;1) 2400
MP90_2AC 10 2 90 (4;0) 180
MP120_2AC 10 2 120 (4;0) 240
MP90_5AC 10 5 90 (4;0) 450
MP120_5AC 10 5 120 (4;0) 600
MP90_10AC 10 10 90 (4;0) 900
MP120_10AC 10 10 120 (4;0) 1200
MP90_20AC 10 20 90 (4;0) 1800
MP120_20AC 10 20 120 (4;0) 2400

Table 5.5: Problem datasets and their properties [Homberger, 2009]. NOI
is the number of instances, N is the number of projects, Ji is the number of
activities of project i, |G| is the number of global resources, |Li| is the number
of local resources of project i, Size is the total number of activities.

Figure 5.11: Schedule comparison, sequential (left) vs interleaved (right) activity
list combination methods. Problem instance: mp_j90_a10_nr2.
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Figure 5.12: Performance comparison between sequential and interleaved
scheduling. Problem instance: mp_j90_a10_nr2.

language. The stopping criterion was set to 100,000 schedule generations, in
order to enable comparing with the 100,050 schedule generations used by all the
methods in [Homberger, 2009]. A learning rate αreward = 0.001 for updating all
the learning automata is used. A sequential activity list combination method is
used when the APD objective is considered, while an interleaved activity list
combination method is used for the TMS objective.

The first analysis considers the APD objective. The GT-MAS approach is
compared with the best found solutions, either centralized or decentralized, in
the literature. The APD results are shown in Table 5.6. The table shows that
GT-MAS obtains an average APD increase of 24.5% compared to the best in
the literature. It is interesting to see that for the very large instances (up to 20
projects with each 120 activities to be planned) the achieved improvements are
even better (up to 41%), indicating good scalability. Figure 5.13 compares the
average project delay over all instances of GT-MAS with all the methods from
the literature. It is clear that GT-MAS realizes a significant APD improvement
over other methods from the literature Many new best APD solutions were
found, showing 104 best APD solutions out of 140 instances on the MPSPLIB
benchmark website (last check on July 18, 2012).

When the total makespan objective (TMS) is considered, the GT-MAS approach
performs best with an interleaved activity list combination method. Table 5.7
shows a TMS result of the GT-MAS method using the interleaved method.
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Literature GT-MAS
Problem subset (APDAV ) (APDAV ) Percentual Difference
MP30_2 12.4 11.2 9.7%
MP90_2 5.6 5.3 5.4%
MP120_2 60.8 49.4 18.8%
MP30_5 16.7 15.4 7.8%
MP90_5 8.9 7.8 12.4%
MP120_5 65.1 48.5 25.5%
MP30_10 84.4 52.0 38.4%
MP90_10 46.1 31.8 31.0%
MP120_10 131.0 100.0 23.6%
MP30_20 177.8 111.4 37.3%
MP90_20 30.2 17.6 41.8%
MP120_20 31.8 28.2 11.3%
MP90_2AC 127.8 104.3 18.4%
MP120_2AC 47.0 35.2 25.1%
MP90_5AC 287.8 244.6 15.0%
MP120_5AC 247.5 178.8 27.8%
MP90_10AC 244.9 169.4 30.8%
MP120_10AC 151.0 96.9 35.8%
MP90_20AC 146.4 85.4 41.7%
MP120_20AC 237.1 158.6 33.1%

Table 5.6: Comparison of average project delay with the best in the literature

The GT-MAS approach is able to keep up with the best in literature. Even a
slight improvement can be observed on some datasets. Figure 5.13 compares
the total makespan over all instances of GT-MAS with all the methods from
the literature. GT-MAS performs best of all decentralized methods. Only RES,
which is a centralized method, performs slightly better. Several new best TMS
solutions were obtained. Moreover, the GT-MAS approach generated some
pareto non-dominated solutions, which improve on both objectives (APD and
TMS). Figure 5.15 illustrates a multi-objective comparison of GT-MAS with
other methods on instance j90_a10_nr5.

The result mentioned in Table 5.6 and Table 5.7 have been validated and
uploaded to the Multi-Project Problem Library website.
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Literature GT-MAS
Problem subset (TMSAV ) (TMSAV ) Percentual Difference
MP30_2 63.6 63.4 0.3%
MP90_2 107.2 107.6 -0.4%
MP120_2 169.0 173.4 -2.6%
MP30_5 89.2 87.2 2.2%
MP90_5 123.6 123.8 -0.2%
MP120_5 182.2 191.0 -4.8%
MP30_10 180.6 180.4 0.1%
MP90_10 180.4 182.4 -1.1%
MP120_10 279.8 287.8 -2.9%
MP30_20 327.4 330.8 -1.0%
MP90_20 161.6 161.4 0.1%
MP120_20 187.6 186.0 0.9%
MP90_2AC 232.2 235.7 -1.5%
MP120_2AC 139.2 147.2 -5.7%
MP90_5AC 538.2 551.7 -2.5%
MP120_5AC 480.7 493.1 -2.6%
MP90_10AC 458.3 469.4 -2.4%
MP120_10AC 350.7 357.3 -1.9%
MP90_20AC 285.9 286.7 -0.3%
MP120_20AC 506.4 512.9 -1.3%

Table 5.7: Comparison of total makespan with the best in the literature

Effect of the sequence game

Figure 5.16 shows the difference between a completely randomly chosen SAL
(random feasible activity lists and random project order), and a SAL constructed
with the sequence game (dispersion game). The figure shows average APD
evolution per 1000 iterations, for one DRCMPSP instance. The noticeable APD
increase is due to learning a good sequence via a dispersion game.

5.2.4 Conclusion

A new multi-agent approach (GT-MAS) to the decentralized resource-
constrained multi-project scheduling problem (DRCMPSP) was proposed.
Agents are called project manager agents, and they learn a sequence to order
their activities using a network of simple reinforcement learners, i.e. learning
automata. In the meantime, project managers also play a sequence game, in
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Figure 5.13: Comparison of algorithms with respect to average project delay
over all problem instances.

which they all need to select a distinct action, representing their position in the
overall project order list. The outcome of this game determines the order of the
projects’ activity lists for building a multi-project schedule. A dispersion game
was played with a probabilistic version of the basic simple strategy, which is a
method with logarithmic performance characteristics. An additional mediator
agent was used to coordinate the dispersion game, and to build a multi-project
schedule using a well known serial schedule generation procedure. The serial
schedule generation procedure was also applied into a smart forward-backward
mechanism that is known to improve the schedule’s time criteria. The mediator
agent has the task to inform the project managers about the quality or the
impact of their decisions, but does not take any decisions himself. Combining
the separate activity lists in a sequential way by playing the sequence game
(opposed to an interleaved way), leads to smaller average project delays.

The proposed GT-MAS approach was evaluated on the MPSPLIB benchmark,
and was able to generate schedules with an average project delay superior to all
the previous best results. Concerning the total makespan objective the algorithm
shows to be competitive with the state-of-the-art, and delivers better results
than other decentralized methods. Many new best schedules on the DRCMPSP
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Figure 5.14: Comparison of algorithms with respect to total makespan over all
problem instances.

instances were found, some of them even improved on both considered objectives
(average project delay and total makespan). The experiments conducted on the
MPSPLIB benchmark clearly revealed the algorithm’s scalability by showing
very good results on the largest instances.

It would be interesting to investigate the influence of different performance
measures (such as individual project delays) to define the project manager’s
preferences in the dispersion game. In addition a multi-objective optimization
version of the DRCMPSP, where pareto non-dominated solutions need to be
found, opens perspectives for further improvement.

5.3 Conclusion

In this chapter it was shown how RL is capable of learning good quality solutions
for two general project scheduling problems. More specifically a network of
learning automata coupled by a common reward signal was employed. Basic
0 − 1 reward signals upon improvement and a linear reward-inaction update
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Figure 5.16: Effect of the sequence game
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mechanism are sufficient to deliver state-of-the-art results and many new best
solutions. In addition the techniques from Chapter 3 were used to (anti-
)coordinate the project managers in the decentralized multi-project scheduling
problem.

The methods described in this chapter can be applied to other scheduling or
combinatorial optimization problems in a similar fashion. One such example is
the flexible job shop scheduling discussed in the next chapter.





Chapter 6

Learning automata for flexible
job shop scheduling

6.1 Introduction

Scheduling jobs on machines plays a crucial role in manufacturing environments.
Jobs have to be processed on time as much as possible, while the available
resources have to be used in an efficient manner. Some machine scheduling
problems are polynomial solvable using a simple heuristic rule, while others are
strongly NP-hard. For example the case with only one machine and a total
weighted completion time objective is optimally solvable with a simple heuristic
rule, i.e. the weighted shortest processing time. Real world scheduling problems
are often more complex than this, including properties as: multiple machines,
non-identical machines, multiple execution modes, not all jobs are released at
the same time, machines can have breakdowns, changeovers, etc. Many of these
properties are considered in this chapter. We propose an effective learning
method for the flexible job shop scheduling problem (FJSP), and an adapted
version for the dynamic problem extension.

In Chapter 5 state-of-the-art learning enhanced search methods were introduced
for solving two general project scheduling problems, i.e. the multi-mode resource-
constrained project scheduling problem (MRCPSP) and the decentralized
resource-constrained multi-project scheduling problem (DRCMPSP). These
problems are generalizations of a large class of scheduling problems from practice.
For example a flexible job shop scheduling problem with multiple production lines
or machines can be modeled as an MRCPSP. A typical production scheduling

97
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problem with multiple orders for different customers can be modeled as a
DRCMPSP, where the orders are projects and the operations are activities.

In cooperation with Elsy Kaddoum1 and Yailen Martinez2 a comparative study
was performed on different learning and optimization methods for the flexible
job shop scheduling problem with due-dates, release-dates and perturbations
[Kaddoum et al., 2010]. The goal was to study the differences and similarities
between purely reactive decentralized approaches and global optimization
approaches. Another question we tried to answer is: is complete or partial
rescheduling in case of a dynamic environment more suitable than trying to
adapt online (during execution)?

Many tabu search approaches have been proposed in the literature [Brandimarte,
1993, Hurink et al., 1994, Barnes and Chambers, 1995, Nowicki and Smutnicki,
1996, Dauzère-Pérès and Paulli, 1997, Brucker and Neyer, 1998] Recently
a genetic algorithm was introduced for solving the FJSP [Pezzella et al.,
2008] improving on existing GA approaches for this problem. To the best
of our knowledge no RL approaches were applied to this problem. However, a
reinforcement learning approach to the classic (non-flexible) job shop scheduling
problem was proposed by Zhang and Dietterich [1995].

In what follows the flexible job shop scheduling problem with all its constraints
and objectives is described. It is shown how learning automata can be
successfully applied to this NP-hard problem, similarly to what has been done
for the MRCPSP. It is NP-hard because it is a generalization of the classical
job shop scheduling problem which is also NP-hard [Garey et al., 1976]. RL
methods, more specifically learning automata, are employed at the direct RL
inclusion level (left image of Figure 2.4). As in previous chapters, a simple
common 0− 1 reward signal is used to update the learning automata.

6.2 Problem description

The flexible job shop scheduling problem (FJSP)(also called the multi-mode job
shop problem [Brucker and Neyer, 1998]) in this study consists of performing a set
of n jobs J = {J1, J2, . . . , Jn} on a set of m machines M = {M1,M2, . . . ,Mm}.
A job Ji has an ordered set of oi operations Oi = {Oi,1, Oi,2, . . . , Oi,oi

}. Each
operation Oi,j can be performed on any among a subset of available of machines
(Mi,j ⊆M), also called execution modes further in this text. Since the machines
are not fixed in advance, the problem actually includes a routing or assignment

1Systèmes Multi-Agents Coopératifs (SMAC), IRIT, Université Paul Sabatier, Toulouse,
France

2Computational Modeling Lab (CoMo), Vrije Universiteit Brussel, Brussels, Belgium
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component. Executing operation Oi,j on machine Mk takes pi,j,k processing
time (or duration). Operations of the same job have to respect the finish-start
precedence constraints given by the operation sequence. A machine can only
execute one operation at a time. An operation can only be executed on one
machine and cannot leave it before the treatment is finished. In contrast to
the MRCPSP, operations in the FJSP do not have more than one predecessor
operation, and only renewable resources are considered.

6.2.1 Dynamic environment

The basic problem formulation was extended with the following features, and
tested in a dynamic environment. A job Ji is released at time ri and is due
at time di. A machine Mk can have perturbations (e.g. breakdowns) causing
already started operations to suspend their execution. The interrupted operation
can continue when the perturbation is finished. Once an operation has started
on a machine it can not move to another machine. In a way, this can be
considered as a limitation with respect to the basic FJSP.

To create a dynamic environment, problem information is released in a step by
step manner. This means that jobs in the future are not known in advance,
neither are machine perturbations. Information about job i is only known at
time t = ri. Such a release of information is called an event. There are three
possible events:

• Job release event.

• Machine perturbation started event.

• Machine perturbation finished event (the duration of the perturbation is
not known in advance).

In the dynamic environment it is allowed that operations can be rescheduled
as long as they have not been started yet. This dynamic extended version is
further denoted as DFJSP, to distinguish it from the flexible job shop scheduling
problem (FJSP).

6.2.2 Objectives

We denote the scheduled start and completion time of an operation Oi,j as si,j
and ci,j . The completion time of a job ci is equal to the completion time of its
latest operation ci,oi

. The tardiness of a job Ji is Ti = max(ci − di, 0). If a job



100 LEARNING AUTOMATA FOR FLEXIBLE JOB SHOP SCHEDULING

Ji has a tardiness larger than zero (Ti > 0), then we say that it is tardy and
Ui = 1 else Ui = 0. The following objectives are used:

• Cmax = max{Ci|1 ≤ i ≤ n}: makespan or completion time of the last job
that leaves the system,

• Tmax = max{Ti|1 ≤ i ≤ n}: maximum tardiness,

• T = (1/n)
∑n
i=1 Ti: mean tardiness, and

• Tn =
∑n
i=1 Ui: the number of tardy jobs.

No weights are used, all jobs are equally valued. The most common objective
for this problem is the makespan objective.

6.3 Learning approach

As in the method applied to the MRCPSP in Chapter 5, an agent with two
learning automata is used for each operation in order to generate a precedence
feasible operation list. One LA is used for selecting the next job to select an
operation from, while the other is used for selecting the machine to execute
the operation. An additional learning automaton (LA0) is added for selecting
the job to start with. Figure 6.1 shows the LA used for learning a precedence
feasible operation list. The arrows denote the actions each LA can take. For
example, the LA for operation O1,1 can choose between the next operation of
the same job (O1,2), or the next operation of Job 2. Using this LA configuration,
no solutions are excluded from the search space. All LA are equipped with a
linear reward-inaction update scheme (LR−I). As described in previous chapters
of this thesis, the LR−I has interesting theoretical properties, which also show
good results for practical problems. In what follows we will describe how the
LA will learn a precedence feasible operation list and how they will learn the
execution modes. Both have to be learned simultaneously in order to reach
good quality solutions.

6.3.1 Learning a precedence feasible operation list

In order to learn a precedence feasible operation list, the learning method starts
in LA0 and chooses a job. The first unvisited operation of the chosen job is
added to the end of the operation list. The corresponding LA has the following
choices: go to the next operation of the same job, or go to another job. Each



LEARNING APPROACH 101

Job 2

Job 1

LA0

LA 
O1,1

LA
O1,2

LA
O2,1

LA
O2,2

Figure 6.1: Learning automata configuration for learning a precedence feasible
operation list. Example with 2 jobs, each job having 2 operations.

time a job is chosen, it automatically goes to the next unvisited operation of
that job. If a selected job has no unvisited operations left, a random job with
at least one unvisited operation is chosen.

6.3.2 Learning execution modes

For each operation a second corresponding LA is responsible for learning the
execution mode of that operation, i.e. on which machine the job will be performed.
The LA has one action per execution mode, with a maximum of m (number of
machines) actions.

6.3.3 Schedule generation

Schedules are generated with a serial schedule generation scheme (serial-SGS),
adopted from the project scheduling literature [Kolisch and Hartmann, 1998].
This well known list based scheduling technique is perfectly suited for use in
combination with heuristics. The serial-SGS requires a precedence feasible
operation list as input to generate a schedule. Each operation in the operation
list is scheduled at the first available time where all the required resources are
available for the whole duration of the operation. The operation duration and
resource requirements are determined by the chosen execution modes. The serial-
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SGS is augmented with the effective forward/backward procedure introduced by
Li and Willis [1992]. The procedure alternates between forward and backward
steps. In each step the operation list is resorted according to the schedule that
was obtained in the previous forward/backward step. The first step performs a
forward pass on the input operation list, resulting in a forward schedule. The
second step, resorts the operation list according to the completion times of
the operations in the forward schedule, and performs a backward pass on this
resorted operation list. The third step, resorts the operation list according to
the completion times of the operations in the backward schedule, and performs
a forward pass on this resorted operation list. This procedure can now continue
until no more improvements are realized between subsequent forward passes.

SGS example

Consider the following example to illustrate the serial-SGS with forward/backward
procedure. A problem instance with two jobs (J1 and J2) and two machines
(M1 and M2). Each job has two operations. Job 1 has a release date r1 = 0.
Job 2 has a release date r2 = 2. Assume the execution modes are already fixed
to:

• p1,1,1 = 3 for operation O1,1 (processing time of 3 units on machine M1),

• p1,2,2 = 3 for operation O1,2,

• p2,1,2 = 2 for operation O2,1,

• p2,2,1 = 4 for operation O2,2.

We start the SGS procedure with the following operation list: O1,1,O1,2,O2,1,O2,2.
Figure 6.2 shows how this operation list is scheduled by the SGS in a forward
pass, resulting in a schedule with makespan Cmax = 12. We start with operation
O1,1. Job 1 has a release date r1 = 0, and the execution mode of operation O1,1
has a processing time of 3 time units. Given an empty schedule we can schedule
O1,1 at time t = 0. The next operation in the operation list is O1,2, which needs
to be scheduled after O1,1 (precedence relation). Operation O1,2 is therefore
scheduled at time t = 3. Operation O2,1 must be scheduled after t = 2, because
job 2 has a release date of r2 = 2. However, operation O1,2 occupies machine
M2 during t = [3, 6], causing O2,1 to be scheduled at t = 6. The last operation
in the list is operation O2,2 which must be scheduled after O2,1 and is therefore
scheduled at t = 8. All operations are now scheduled, the resulting schedule
has a makespan Cmax = 12.
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(a) O1,1 (b) O1,2

(c) O2,1 (d) O2,2

Figure 6.2: Serial-SGS example - first forward step, resulting in a schedule with
makespan Cmax = 12.

Resorting the operation list according to the completion times of the
operations in the schedule of Figure 6.2, gives the following operation list:
O2,2,O2,1,O1,2,O1,1. We now perform a backward pass on this operation list,
shifting all operations to the right not further than the t = 12 (the makespan of
the forward schedule). The steps of this backward pass are shown in Figure 6.3.
The backward pass does not take the release dates into account.

Again we resort the operation list, but this time according to the start times of
the operations in the backward schedule (Figure 6.3). The resulting operation
list is: O1,1,O2,1,O2,2,O1,2. Rebuilding the schedule using the SGS in a forward
pass, results in the schedule of Figure 6.4. The schedule has a makespan of
Cmax = 8, which is 4 time units less than the first forward pass. As illustrated
in this example, the forward/backward procedure can lead to more compact
schedules.

6.3.4 Reward signal

Similar to our work on the MRCPSP (Chapter 5), a common reward signal is
used to immediately update the LA after generating a schedule with the chosen
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(a) O2,2 (b) O2,1

(c) O1,2 (d) O1,1

Figure 6.3: Serial-SGS example - backward step.

(a) O1,1 (b) O2,1

(c) O2,2 (d) O1,2

Figure 6.4: Serial-SGS example - second forward step, resulting in a schedule
with makespan Cmax = 8.
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operation list and execution modes. Update with a

• reward of 1, if the schedule improved,

• reward of requal ∈ [0, 1], if the schedule was equal to the previous best,

• reward of 0, otherwise.

This reward signal stimulates learning improved schedules. The requal parameter
must be set to a small value, in order to avoid premature convergence. In all
the following experiments we set requal = 0.01.

6.3.5 Application to the dynamic FSJP

In order to also apply the learning approach from the FJSP to the dynamic
FSJP, we only need to change the reward signal and relearn on every new event.
This reward signal is then not based on improvements of the complete schedule,
but on improvements of the partial schedule. A partial schedule is a schedule
where not all operations are scheduled yet (here because of unknown future
information). For example: the makespan is the finishing time of the latest
operation in the partial schedule.

At every time step the problem is checked for new events. If no events occurred
then nothing has to be done, else the ‘future’ has to be (re-)scheduled during a
number of learning iterations (LIT ). As described by the DFJSP, operations
can not be re-scheduled if they have already started. The dynamic execution
can be described as in Algorithm 4, and is further called the ‘RollingTime’
approach.

Let us illustrate the dynamic execution with the following small example.
Consider a DFJSP problem with 2 jobs (J1 and J2), each job consisting of two
operations. J1 has a release date at time r1 = 0, while J2 has a release date of
r2 = 2. The operation execution modes are:

• Job 1 operation 1 (O1,1): p1,1,1 = 2

• Job 1 operation 2 (O1,2): p1,2,2 = 6

• Job 2 operation 1 (O2,1): p2,1,1 = 3

• Job 2 operation 1 (O2,2): p2,2,1 = 2 or p2,2,2 = 1
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Note that the only operation with more than one execution mode is O2,2.
Furthermore, a breakdown will occur at time t = 4 on machine M1, the
breakdown will end at time t = 7.

The partial schedules generated by the RollingTime approach for this dynamic
example are shown in Figure 6.5. At time step t = 0 only the operations of
job J1 are known and scheduled, resulting in a partial schedule with makespan
Cmax = 8 shown in Figure 6.5(a). At time step t = 2, job J2 is released, and
all operations of this job are scheduled on machine M1 (Figure 6.5(b)). O2,2,
the operation with two available execution modes, was scheduled on machine
M1 because the other operation mode would result in a schedule with a higher
makespan. At time step t = 4, a breakdown on machine M1 occurs (Figure
6.5(c)). The duration of the breakdown is unknown and operation O2,2 stays
on machine M1, because changing to machine M2 would result in a larger
makespan. At time step t = 5 the breakdown has not been sorted out yet
(Figure 6.5(d)). Since operation O2,1 was already in execution at the start of
the breakdown, the duration of operation O2,1 was extended with one time slot,
causing operation O2,2 to move from machine M1 to machine M2. At time
step t = 6 the breakdown is still ongoing (Figure 6.5(e)), again leading to an
extended duration of operation O2,1. The breakdown finishes at t = 7, resulting
in the final schedule with makespan Cmax = 9 shown in Figure 6.5(f). Note
that if O2,2 would not have changed its execution mode, the makespan would
be Cmax = 10.

Algorithm 4 Dynamic execution of the learning algorithm
Require: Machine information
Ensure: Feasible schedule
t⇐ 0 **time step**
E ⇐ ∅ **set of events**
S ⇐ emptySchedule **current schedule**
while not all operations executed do
E ⇐ getEvents(t) **get all events a time t**
if E 6= ∅ then
S ⇐ reschedule(S,E, t)

end if
t+ +

end while
return S
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(a) t = 0 (b) t = 2

(c) t = 4 (d) t = 5

(e) t = 6 (f) Final schedule

Figure 6.5: Evolution of the partial schedules during the RollingTime approach.
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Dataset No. Instances n m oi

Brandimarte [1993] 10 [10-20] [4-15] [5-15]
Dauzère-Pérès and Paulli [1997] 18 [10-20] [5-10] [5-25]
Barnes and Chambers [1995] 21 [10-15] [11-18] -
Hurink et al. [1994] 129 [6-30] [5-15] -

Table 6.1: Datasets and their characteristics

6.4 Experimental results

6.4.1 Datasets from the literature

The proposed learning algorithm is tested against a large number of problem
instances from the literature (http://www.idsia.ch/~monaldo/fjsp.html).
Multiple sets of problem instances without release dates, due dates and
perturbations have been considered. Table 6.1 shows these problem datasets
and their main characteristics: the number of instances in the dataset, the
number of jobs n, the number of machines m and the number of operations per
job oi.

6.4.2 DFJSP datasets

Since no datasets are available for the DFJSP, we generated new datasets based
on existing FJSP datasets. Two problem categories were generated: instances
with perturbations and instances without perturbations. Five problem instances
were generated for each FJSP instance from the Brandimarte dataset in the
following manner.

Release dates and due dates

The release dates and due dates are uniformly generated between lower and
upper bound values. The lower bound LB is the best known lower bound for
the FJSP instance which is used as a basis. The upper bound UB is obtained
by applying a simple greedy algorithm to the FJSP instance. This greedy
algorithm assigns each operation to the first available machine from the list of
eligible machines.

http://www.idsia.ch/~monaldo/fjsp.html
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Perturbations

Perturbations or machine breakdowns are unpredictable events and are not
known in advance to the scheduler. The inter-arrival times of the perturbations
follow a Poisson distribution which is defined by the mean inter-arrival time.
The mean inter-arrival time λia is calculated as: λia = UB

z , where z is the upper
bound division factor. A higher z value leads to shorter inter-arrival times, and
thus more perturbations. The instances have been generated with z ∈ [2, 10].

The duration of the perturbations are generated using an Erlang Distribution
and rounded to the nearest integer. An Erlang Distribution is defined by two
parameters: the shape parameter k which is a non-negative integer, and the
rate parameter λ which is a non-negative real number. The following parameter
values were used: k = 6 and λ = 2, leading to a mean perturbations duration of
3 time units.

6.4.3 Effect of learning

The learning rate αreward is the only parameter of the proposed method.
Figure 6.7 shows the influence of the learning rate on the performance of
the algorithm. 10 runs of 10, 000 iterations were conducted on instance Mk01
from the Brandimarte dataset [Brandimarte, 1993]. The best known makespan
for instance Mk01 is 40. The learning rate values range from 0 to 1 and
increase in steps of 0.01. A learning rate between 0.1 and 0.4 shows an
improved performance over no learning (αreward = 0). On the other hand,
too high learning rates > 0.5 result in bad performance, even worse than
without learning. Similar behaviour was observed while solving other instances
of the FJSP problem. The time needed to perform a run of 10, 000 learning
iterations on instance Mk01 with 10 jobs and 6 machines is about 1 second on
a PC with Intel Core 2 Duo 2.8GHz processor.

Note that, despite of the randomly generated instances, the network of LA is
still capable of learning valuable information.

Figure 6.8 shows an iteration-cost comparison between a search with learning
(αreward = 0.2) and a search without learning, on instance Mk01 and for 100, 000
iterations. The learning search method is able to find more and better solutions,
and for this instance even the best known solution with a makespan Cmax = 40.
The schedule found by the learning approach is shown in Figure 6.6.
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Figure 6.6: Schedule with makespan Cmax = 40, generated by the learning
approach for instance Mk01. The graphical user interface (GUI) was developed
by the author during the course of this thesis.
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Figure 6.7: Influence of the learning rate on the objective function value.
Minimum, average and maximum values on instance Mk01 from the Brandimarte
dataset for different learning rate settings.
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Figure 6.8: Iteration-cost comparison between learning and no learning, on
instance Mk01 from the Brandimarte dataset.

6.4.4 FJSP - Comparison to other approaches

Table 6.2 compares the learning approach to other approaches from the literature,
when applied to the Brandimarte instances. GA is the genetic algorithm from
Pezzella et al. [2008], while M.G. denotes the effective approach of Mastrolilli
and Gambardella [1996]. The learning approach (denoted as LA in the table)
performed 100, 000 learning iterations with a learning rate αreward = 0.3. The
results show to be competitive with these state-of-the-art approaches, reaching
similar solution values on many instances. For instance Mk09 the learning
approach performs even better than the GA.

6.4.5 Comparison of global knowledge and present knowledge

An interesting experiment is to study the effect of losing global knowledge in
a dynamic setting (DFJSP) on various objectives. We compare the learning
approach with global knowledge where the perturbations and job releases are
known in advance to the RollingTime approach where only the information up
to the present time is known.
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Name n m LB LA GA dev (%) M.G. dev (%)
Mk01 10 6 36 40 40 0,00 40 0,00
Mk02 10 6 24 27 26 3,85 26 3,85
Mk03 15 8 204 204 204 0,00 204 0,00
Mk04 15 8 48 62 60 3,33 60 3,33
Mk05 15 4 168 175 173 1,16 173 1,16
Mk06 10 15 33 63 63 0,00 58 8,62
Mk07 20 5 133 146 139 5,04 144 1,39
Mk08 20 10 523 523 523 0,00 523 0,00
Mk09 20 10 299 307 311 -1,29 307 0,00
Mk10 20 15 165 224 212 5,66 198 13,13

Table 6.2: Comparison to other approaches on the Brandimarte dataset. LB
denotes the best known lower bound, LA are the result of our learning approach,
GA are the result of Pezzella et al. [2008], and M.G. are the results of Mastrolilli
and Gambardella [1996].

Figure 6.9 shows the difference between both approaches for the makespan
objective, on the complete DFJSP dataset with upper bound division factor
z = 5. The figure is normalized such that the global approach is always 100%.
Both approaches use a learning rate αreward = 0.2. The global approach
performs 10, 000 learning iterations, while the RollingTime approach performs
100 (re-)learning iterations at each rescheduling step. The average total number
number of (re-)learning iterations is about 10, 000. As expected, the RollingTime
approach with only present knowledge performs worse than an approach with
global knowledge. The average difference between both approaches considering
the makespan objective, is about 5, 23%.

Figure 6.10 shows the influence of the z parameter on the average makespan
for the global and present knowledge (RollingTime) approaches. A higher z
leads to more perturbations and thus to increased makespan values. The lack
of global knowledge induces a constant average makespan increase of about 5%
for all z values, indicating that the impact on the makespan of losing global
knowledge is not influenced by the perturbation frequency. Similar results are
observed for all considered objectives. For example the average tardiness T
objective as shown in Figure 6.11.

A radarplot with multiple objectives is shown in Figure 6.12. The figure
compares the global approach with the RollingTime approach. Each objective
axis is scaled such that the largest value corresponds to 100%. The RollingTime
approach has a significant performance degradation for each objective, which is
a result of losing global knowledge.
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Figure 6.9: Comparison of the average makespan objective between the global
and present knowledge (RollingTime) approaches on all 50 instances of the
DFJSP dataset with z = 5.

6.5 Conclusion

A learning approach to the flexible job shop scheduling problem was proposed.
The approach uses simple reinforcement learning devices, called learning
automata for learning good sequences of operations, and simultaneously learning
good execution modes. The learning approach shows to be competitive with
other well performing methods from the literature including a recently proposed
genetic algorithm. Similar to the methods in the previous chapter, the methods
in this chapter can be seen as a learning heuristic which is applied directly to
the problem, and thus operating at the direct level according to Figure 2.4.

A dynamic version of the flexible job shop scheduling problem with release dates,
due dates and perturbations was introduced. New benchmark instances were
generated, and an adapted version of the learning approach (RollingTime) were
proposed. Experiments on these instances show the effect of the lack of global
knowledge in a dynamic setting. This dynamic problem extension was a step
towards real-world cases. In the next chapter we will discuss the application of
these methods to an actual real-world production scheduling case in the food
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Figure 6.12: Radarplot with multiple objectives comparing the global and
present knowledge (RollingTime) approaches. Each objective is scaled according
to the largest value (100%).

industry.





Chapter 7

Beyond the benchmarks:
application to a real-world
scheduling problem

7.1 Introduction

Manufacturing Execution Systems (MES) incorporating a scheduling component
have the potential of contributing considerably to the efficiency of a factory. A
manufacturing execution system is a control system for managing and monitoring
work-in-process on a factory floor. MES systems are being increasingly
integrated with enterprise resource planning (ERP), hereby connecting the
control and management levels automatically and continuously. The overall aim
is that the costumer requests are processed fast and that available resources are
being used most efficiently. At the same time, waiting times for materials waste,
set-up times and preparation times are reduced while simultaneously managing
product variation and (product) exceptions on the plant floor [Kletti, 2007].

MES systems are perfectly suited for supporting real-world production
scheduling for the so-called process industry, where manufacturing is subject
to formulas and manufacturing recipes. The primary production processes are
either continuous, or occur on an indistinguishable batch of materials. Examples
of the process industries include food, beverages, chemicals, pharmaceuticals,
petroleum, paints and coatings etc. In general, the production process can be
divided in two stages. First raw materials are processed into (intermediate)

117
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products. Next, finished food products are packed. This chapter concentrates
on food processing companies. In these environments, the scheduler has to deal
with a combination of discrete, continuous and batch processes, and is typically
complicated by particular characteristics. For instance, the physical routes
between workcenters in the plant layout, the high diversity of products (different
tastes, different packaging, custom labels, . . .), complex product recipes, and
many more. More information about the food industry and its characteristics
can be found in Akkerman and van Donk [2009].

Although production scheduling is a widely studied topic [Hermann, 2006], it
has received little attention in real (food) processing industries [Akkerman and
van Donk, 2009]. Nevertheless, a number of related papers can be found in the
academic literature. Christou et al. [2007] and Ferreira et al. [2009] developed a
practical production planning approach for a real application in the beverage
industry. Blanc et al. [2008] described a holonic approach for an MES, and
illustrated this approach on a real industrial application. Bilgen and Günther
[2010] introduced a so called ‘block planning approach’ for production scheduling
in the fast moving consumer industry. Some recent real life industrial case studies
using mathematical programming techniques can be found. Entrup et al. [2005]
introduce three MILP model formulations and apply it for a weekly production
planning on an industrial case study of yogurt production. A combination
of a discrete and continuous representation of time is used. Kopanos et al.
[2010] propose a MILP model for the simultaneous lot-sizing and production
scheduling problem in a multiproduct yogurt production line of a diary plant
in Greece. Kapanos et al. [2011] show a MIP for the production planning
and scheduling of parallel (single-stage) continuous processes in the presence
of sequence-dependent switchover times and costs for product families, and
sequence-independent switchovers for products belonging to the same family.

In joint cooperation with MESware nv1, we developed an integrated approach
to refine the scheduling kernel inside their products. The overall challenge
the customers of the company are faced with is to cope with an increasing
demand for flexible, customized and faster production. At the same time, the
company also aims at serving larger customers. At this time the company and
its clients do not require optimal schedules. The schedules have to be generated
fast enough and must be of sufficient quality compared to manual practice.
Explicit requirements for the company are: i) being able to schedule multiple
orders simultaneously, ii) being able to map the different processing steps to
workcenters present in the plant layout of the customer, while satisfying the
relations between these steps (i.e. routing), iii) being able to feed the scheduler

1MESware nv is a software company that offers generic MES solutions.
Adress: Beversesteenweg 561 B2, B-8800, Roeselare, Belgium.
Website: http://www.mesware.be

http://www.mesware.be
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with up-to-date information on the production process, iv) being able to include
stock capacities and sequence depending set-up times, v) being able to work
with customer specific objectives and finally vi) being able to integrate with
personnel scheduling.

The overall solution approach developed in this work consists of a generic
scheduling framework in which industry specific problems can be included by
means of preprocessing or decision modules. A make-to-order setting is assumed,
where products are only produced when there is an order for it. Techniques from
local search are used to optimize the decisions taken in these modules. Secondly,
we use machine learning techniques to improve the background knowledge on
key performance indicators (KPIs). Processing times, set-up times, breakdowns,
etc were brought in. We then show how the modular framework is used to
implement the first three requirements, and how it can be used to further address
the remaining ones. Currently the scheduler operates in a fully deterministic
setting, but there are plans to make it more dynamic.

The main contributions of this chapter include academic and practical
components. Academically we show that a combination of Artificial Intelligence
and Operational Research methods allows dealing generically with complex
problem definitions provided by industry. We point at a set of practical issues
that are underestimated when considering applications of an academic approach.
Examples include how to grasp accurate data (expert knowledge); how to get
accurate information about the execution; how to make a scalable generic
scheduler for all sorts of industrial processes. These issues have been addressed
in the framework.

The remainder of this chapter is organized as follows. In the next section the
generic scheduling framework is described at an abstract level. Each different
module is discussed afterwards in a separate section. The application of our
approach to real-life data from the food processing industry is illustrated. We
conclude with a discussion and, finally, indicate some directions for further
research.

This chapter is a slightly adapted version of Wauters, T., Verbeeck, K.,
Verstraete, P., Vanden Berghe, G., De Causmaecker, P. (2012). Real-world
production scheduling for the food industry: an integrated approach. Engineering
Applications of Artificial Intelligence, 25 (2), 222-228.
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7.2 A high level overview

Real world scheduling is a highly complex challenge with many constraints. It
seemed therefore a good idea to decompose the scheduling task into several steps
as shown in Figure 7.1. We can distinguish the following steps: a preprocessing
step, a decision step, a translation step, a schedule generation step, and finally
an optimization step.

The preprocessing step checks the correctness of the incoming orders, and makes
some preparations, e.g. it can calculate all the possible assignments of operations
to workcenters for manufacturing the demanded products. This is a routing
problem that is discussed in Section 7.3. Choosing an actual route is left for
the decision step.

The decision step, which is a part of the optimization step, assigns values to
the decision variables. In the case study here discussed, the decision variables
are the possible routes, and the sequence or order in which the orders will be
scheduled. These decisions can be made by an intelligent component such as a
reinforcement learning agent. This step is discussed in Section 7.4.

The translation step uses the background information, the incoming orders, and
the decision variables to formulate a scheduling problem. We use a general
scheduling problem, namely the resource-constrained project scheduling problem
with generalized precedence relations (RCPSP/GPR) [Franck et al., 2001]. It
encompasses all the resource and time constraints. Each order is translated
into one project scheduling problem. Multiple orders will then compose a
multi-project scheduling problem.

The schedule generation step solves the scheduling problem formulated in the
previous step, which is a multi-project RCPSP/GPR. The multiple scheduling
problems are solved one by one by the given sequence of orders (chosen in
the decision step). The individual scheduling problems can be solved by any
applicable method from the literature [Bartusch et al., 1988, De Reyck and
Herroelen, 1998, Schwindt, 1998, Franck et al., 2001]. For the RCPSP/GPR, we
use a scheduling method based on priority rules, together with a serial schedule
generation scheme with unscheduling rules. Section 7.5 describes the translation
step, together with the schedule generation step. The schedule generation step
provides some feedback on the quality of the solution that was generated. This
information is fed back to the optimization step, so that better local decisions
can be made and better solutions (schedules) can be found iteratively.

Finally, the optimization step searches for good quality solutions in a guided
way by receiving information from the previous steps in a feedback loop. Many
optimization methods can serve as guiding mechanism. For example, steepest
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Figure 7.1: A high level overview of the integrated approach to the food
processing case

descent, simulated annealing [Kirkpatrick et al., 1983a], tabu search [Glover and
Laguna, 1997] and variable neighborhood search [Mladenovic and Hansen, 1997b]
are appropriate. This step also holds the termination condition and the set of
objectives (e.g. makespan, weighted tardiness, . . .). In addition, reinforcement
learning enhanced heuristic search methods, as discussed in previous chapters of
this thesis, are perfectly suited for this task. Note, as we discuss later, that an
internal optimization algorithm is also possible inside the schedule generation
step, which itself can be determined by a decision variable.

In all the steps we assume the presence of background knowledge. It holds static
and dynamic information about the plant layout, process relations, product
structure, processing times, setup times, machine breakdown or maintenance,
personnel, working hours and equipment. The accuracy of this information
strongly influences the applicability of the scheduler. Section 7.6 discusses the
latter topic.
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7.3 Routing

7.3.1 Routing problem description

In order to manufacture the demanded products, operations have to be assigned
to workcenters. This leads to the following routing problem. Consider a plant
layout containing all the connections in the plant, i.e. connections between
workcenters, buffers and storage zones. The connections contain information
about process relations and the possible time lags in between. Two types of
connections are present, i.e. end-end and end-start connections. An end-end
connection between two connected workcenters means that the operations on
these two workcenters must end at the same time (excluding time lags). An
end-start connection means that the second operation can not start before its
predecessor operation finishes. The product structure, which is the recipe of the
product or the bill of materials, is also given. This product structure contains a
number of process steps and the order relation in between. Figure 7.2 shows
an example of such a product structure with its process steps. The example
shows that processes can have multiple input products in a certain proportion.
The default form of the product structure is a tree and the plant layout is a
graph. Both end-end and end-start connected workcenters are allowed. In fact,
the problem is to find one or all mappings from process steps to workcenters,
with the restriction that the workcenters should be able to perform the required
processes.

By decomposing the product structure into linear substructures, this routing
problem can be solved recursively. We start at the root process of the tree
defined by the product structure. We move along the tree towards the leafs and
add the vertices to the substructure. When arriving in a vertex q with more
than one child vertex, we end the current substructure with vertex q and start a
new substructure (recursive call) for each subtree starting from the child vertices
of q. Vertex q is added as the first vertex of the new substructure, followed by
its child vertex. This method results in the following set of substructures for
the example given in Figure 7.2: {A = {1, 2, 3, 4}, B = {4, 5, 7}, C = {4, 6, 8}}.
These substructures are also connected, e.g. A is the parent substructure of
substructures B and C.

Once the set of linear substructures is generated, we search for all feasible routes
through the plant layout for each substructure. A feasible route is a mapping
from process steps to workcenters, respecting the following two conditions. The
workcenters must be able to perform the required process, and two consecutive
processes must be mapped to connected workcenters. We have two kinds of
connections between workcenters: direct connections and connections through
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Figure 7.2: Example of the process steps in a product structure

storages and buffers (indirect). When searching for feasible routes, we prefer
the direct connections. Indirect connections are considered when no direct
connections are available. A depth-first search is used to find all the feasible
routes for each linear substructure. When only direct connections are present,
we have a worst case time complexity of O(bd), with d the number of process
steps, and b the average number of feasible connections for each workcenter
(which is in practice not very high). When the runtime of the depth-first search
would become problematic or when costs are introduced on the connections
between workcenters, then more informed search methods like A* or IDA* are
recommended.

The last step in this routing method combines the feasible routes from the
substructures into a route for the whole product structure. This is done by
selecting a feasible route for each substructure such that the overlapping vertices
(process steps) of the substructures are mapped to the same workcenter. For
end-end connected production steps, an extra requirement is necessary. Sibling
substructures with end-end parts at the start of their routes must be mapped
to different workcenters.

7.3.2 Special routing case

We distinguish a special case of the routing problem, in which only end-end
connections are allowed. We define the product structure as a directed graph
G(VG, EG) with labeled vertices. We further have the plant layout, which is also
a directed graph H(VH , EH) with a list of labels on the vertices. The labels in
G are the process steps, while the labels in H are the process steps supported by
the workcenters. Only end-end connected workcenters are allowed. The problem
is to find a mapping f from the vertices of G to a subset of the vertices of H,
respecting the following constraints. If two vertices v1, v2 ∈ VG are connected
by a direct edge in G, then the corresponding vertices f(v1), f(v2) ∈ VH must
also be connected by a direct edge in H. A second constraint is that the
labels of mapped vertices must have a common label, ∀v ∈ VG : ∃li(v) ∈
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L(v), lj(f(v)) ∈ L(f(v)) : li(v) = lj(f(v)) with L(v) the set of labels of
vertex v and with li(v) label i of vertex v. The problem described here is a
variant of the induced subgraph isomorphism problem, with directed edges
and labels on the vertices. Ullmann [1976] proposed a backtracking algorithm
for the subgraph isomorphism problem. It is one of the most commonly used
algorithms for exact graph matching. It has a worst case time complexity
of O

(
N ! N2). Better (sub)graph isomorphism algorithms exist for matching

larger graphs. More recently Cordella et al. [2004] described the VF2 algorithm
with a worst case time complexity of O (N ! N). Because of its simplicity, we
adapted the algorithm of Ullmann [1976], to handle our specific problem with
directed edges and vertex labels that have to match. Experiments have shown
that the backtracking algorithm is sufficiently fast for the real world routing
problem in this study (less than 10ms for the largest test case).

7.4 Decision and optimization

The decision step should assign values to decision variables. An initial schedule
is constructed through subsequent steps (translation, schedule generation). The
schedule is fed back to the optimization step. The initial decision variable
assignments can be chosen randomly or by a simple heuristic procedure.

The decision variables in the current approach include: a route and a sequence for
processing the orders. A route is the mapping from process steps to workcenters.
The list of possible routes was determined in the preprocessing step. Many
other decision variables could be added, for example, the algorithm or priority
rule that will be used to solve the translated scheduling problem (see Section
7.5). This fits perfectly into the idea behind hyperheuristics [Burke et al.,
2003b]. Hyperheuristics are search methods operating on a higher level. Unlike
metaheuristics, which are searching in the space of solutions, hyperheuristics
are searching in the space of low-level heuristics or metaheuristics. In other
words they are searching for the best method to find good solutions quickly at
each part of the optimization process. We will further discuss hyperheuristics
in Section 7.8.

The heuristic used for generating an initial schedule works as follows. For
mapping the process steps to workcenters, we choose the routes with the
largest free capacity and we maximally disperse routes for different orders.
Dispersion is arranged by first selecting a random route, and subsequently
selecting routes that are maximally different from the previous routes (ties are
broken randomly). A random sequence of orders is generated. If tardiness
needs to be considered, sorting the orders according to the ‘earliest due date’
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first rule is more appropriate. The decision step is actually a sub step of the
optimization step. We have chosen to guide the optimization by a local search
algorithm, which can be any metaheuristic, hyperheuristic or RL enhanced
heuristic (as was explained in the preceding chapters of this thesis). For each
decision variable a neighborhood is defined. These neighborhoods contain a set
of solutions, i.e. one for each alternative value of the decision variable. Some of
the solutions in the neighborhood can violate constraints, these are infeasible
and are not considered further. The neighbourhoods can be intelligently selected
at each step by the methods proposed in Chapter 4. The latter would lead to
more adaptive methods that are less sensitive to specificities of particular cases
and predefined settings and thus more generally applicable. For example, in
some situations it can be that changing the order sequence has no effect on
the schedule, and that it is better to not use a neighbourhood changing the
sequence. This would be the case when the orders are selected to run on distinct
workcenters. The methods from Chapter 4 would reduce the probability of
selecting such a ‘bad’ move, and leaving more time for more effective moves.

An objective value is determined by information of the constructed schedules.
This could be a time-dependent or a cost-dependent objective. Examples of
time-dependent objectives are: lateness, tardiness, total completion time or
total makespan. Other objectives are the total cost or a resource leveling
objective. The makespan objective is used in this research, i.e. the difference
between the start time of the earliest operation and the end time of the latest
operation. The choice of the objective does not influence the general structure
of our approach. The optimization stops when a termination condition is met.
Possible termination conditions include a certain number of iterations without
improvement, the computation time or a quality level. At termination, the
system returns the best found schedule.

7.5 Translation to RCPSP/GPR

The real world constraints, variables and objectives are translated to a scheduling
problem. The resource-constrained project scheduling problem with generalized
precedence relations (RCPSP/GPR) is a very general scheduling problem, in
which resource and time constraints can easily be formulated. An example of
these constraints are the time-lags between consecutive activities, which are
explained later in the present text. Each order is translated into a RCPSP/GPR.
Multiple orders will then compose a multi-project scheduling problem with
shared resources. First the RCPSP/GPR is described, followed by the conversion
of the real world constraints to this theoretical scheduling problem.



126 BEYOND THE BENCHMARKS: APPLICATION TO A REAL-WORLD SCHEDULING PROBLEM

The RCPSP/GPR is a type of resource-constrained project scheduling problem
with minimal and maximal time lags, also called generalized precedence relations
or temporal constraints [Franck et al., 2001]. Neumann and Schwindt [1997]
describe make-to-order production scheduling as one of the most obvious
application fields of such a problem. We use a similar notation as the one
described by Franck et al. [2001]. The RCPSP/GPR consists of a project with
n real activities (1, . . . , n). Two dummy activities (0 and n+ 1) are added to
represent the start and the completion of the project. Let pi be the processing
time or duration and Si the start time of activity i. Neither of the time values
are limited to integer values, but can be any moment or timespan, since we are
working with real world data. In fact, we use a continuous-time implementation.
S0 is set to the earliest point in time from which scheduling activities can start,
and Sn+1 is equal to the project duration or makespan.

Minimum and maximum time lags are defined between the activities of the
project. dmin

ij > 0 denotes a minimum time lag between activities i and j (i 6= j).
Their start times are related as Sj − Si ≥ dmin

ij . For a maximum time lag
dmax
ij > 0 between activities i and j, the relation between start times is defined

as Sj − Si ≤ dmax
ij . If all the time lags are respected in a schedule, we say that

the schedule is time-feasible.

Activities require resources to be executed. A set R of renewable resources
is available. Renewable resources are resources that can be re-used when a
previous activity is finished. These resources k have a capacity Rk > 0. A
resource capacity rik is required for carrying out activity i on resource k, where
0 ≤ rik ≤ Rk. If at each time t, the resource capacities are respected in a
schedule, we say that the schedule is resource-feasible.

If a schedule is both time- and resource-feasible, then it is called feasible. The
question whether or not a feasible schedule exists is an NP-complete decision
problem [Bartusch et al., 1988]. Finding a feasible solution that minimizes the
project duration is strongly NP-hard. Therefore, we have chosen to use heuristic
methods for solving this problem.

Table 7.1 shows how concepts of the real world problem map to a theoretical
scheduling problem (RCPSP/GPR). We translate each order to a project.
Process steps are translated to activities. Workstations and equipment are
translated into renewable resources. The resources have a capacity of Rk = 1 in
most cases, but larger capacities are possible (e.g. a palletising workcenter that
can handle input from multiple lines). Routing relations (i.e. synchronization
of start or finish times), time lags and product structure are translated into
generalized precedence relations. Mapping the process steps to workcenters
was determined in the decision step as discussed in the previous section. The
processing times are set.
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Real world problem Theoretical project scheduling problem
Order Project
Process step Activity
Workcenter Renewable resource
Equipment Renewable resource
Product structure Generalized precedence relations
Routing relations Generalized precedence relations
Time lags Generalized precedence relations

Table 7.1: Translation to a theoretical project scheduling problem.

In what follows, we describe an example of the translation to generalized
precedence constraints. Two consecutive process steps PS1 and PS2 are assigned
to be executed on workcenters WC1 and WC2 respectively. If PS1 is translated
to activity i and PS2 to activity j, and WC1 and WC2 have a time lag of TL,
then we define the following minimum and maximum time lags, depending on
the type of connection between WC1 and WC2.

• End-start connection: dmin
ij = pi + TL

• End-end connection: dmin
ij = TL and dmax

ij = TL

Once translated, i.e. into an RCPSP/GPR problem, the solution is generated
sequentially project by project. The sequence was determined in the decision step.
The RCPSP/GPR problems can be solved with techniques from the literature.
Several branch-and-bound methods have been proposed for this scheduling
problem [Bartusch et al., 1988, De Reyck and Herroelen, 1998, Schwindt,
1998]. Franck et al. [2001] introduce truncated branch and bound methods and
metaheuristics such as tabu-search and genetic algorithms. Different priority
rules have been presented in the literature [Franck and Neumann, 1998, Kolisch,
1996c] and can be used: smallest ‘latest start time’ first (LST rule), ‘minimum
slack time’ first (MST rule), ‘most total successors first’ (MTS rule), . . . Priority
rules have been shown to be fast, and they produce solutions of acceptable
quality (especially for large problems). Priority rule methods are used together
with a serial schedule generation scheme to successively schedule the activities
of a project. From Franck et al. [2001], we selected the priority rule method
with LST rule and applied it to the investigated problem.

The methods described in Chapter 5, where a network of learning automata
is employed for solving two general project scheduling problems, can also be
applied to this RCPSP/GPR. Especially the method applied to the multi-project
scheduling problem (DRCMPSP) is very appropriate, since we have multiple
projects here (one project for each order).
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K-Nearest Neighbor (k=10) Model Tree Neural Network
50,9% 50,4% 40,4%

Table 7.2: Comparison of regression techniques for predicting machine speed
values for a production history of 1 year. The values represent the percentage
RMSE improvement over a naive predictor.

7.6 Feeding the scheduler with accurate back-
ground knowledge

In various steps of the approach, different background knowledge is required.
The accuracy of background knowledge is of highest importance for obtaining
a good scheduling method. For example, adequate processing times, i.e. the
time needed to process a certain quantity of a certain product on a certain
workcenter. Mostly these values are estimated using theoretical machine speeds.
This is reasonable as a first estimate, but in practice these values are not very
accurate. We use the production history to determine more accurate machine
speeds. We will shortly describe this method.

We developed a method based on regression techniques, for adjusting the
machine speed values by using the production history. Experiments have been
carried out on a confidential dataset provided by a costumer of MESware. The
dataset contains logs of executed operations over a period of one year. First
of all, we translated the information history of executed operations to a set of
instances. Each executed operation corresponds to one instance with multiple
parameter values (workcenter, product type, quantity, . . .) and one continuous
class value (i.e. machine speed). Afterwards, we fed these instances to a
regression technique in order to build a model from the data. The model was
then used to adjust the machine speed values in the background knowledge. We
experimented with multiple regression techniques: neural networks, regression
trees, model trees [Wang and Witten, 1996] and K-nearest neighbor methods
[Atkeson et al., 1997]. Table 7.2 shows the results of three regression techniques
for a production history of 1 year. Model trees and K-nearest neighbor methods
performed best in terms of root mean squared error (RMSE) performance. We
compared the methods to a naive predictor. A naive predictor would always
predict the average observed machine speed. The K-nearest neighbor based
predictor method, appeared to meet the quality expectations (50% better than a
naive predictor) on the real test cases, and has by now been promptly integrated
in the scheduler at the production site. A screenshot of the utility application
using the k-nearest neighbour algorithm is added in the Appendix A (Figure
A.1).
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7.7 Illustrative example

We illustrate the approach by means of an average scale real world example. We
have obtained data from a plant layout with about 20 workcenters, 3 parallel
packing lines, and a lot of storage zones and buffers. Both end-end and end-
start connections are present. Almost all workcenters are different in speed and
capability. A number of heterogeneous sets of production orders with different
sizes (from 10 to 100 in increments of 10, and from 100 to 1000 in increments
of 100 production orders) are prepared, using a set of 5 different product types
given by MESware (all tree structures). The orders consist on average of 10
process steps (including production and packaging). All these orders contain
one or more mixing steps where multiple intermediate products are required as
input.

Figure 7.3 shows the average calculation times in milliseconds for generating an
initial feasible schedule for a set of heterogeneous orders of a certain size. The
schedule generation step applies LST as a priority rule. The tests are performed
on an Intel core 2 Duo 2.8Ghz processor, and the program is written in the
c] programming language. All background information is loaded in advance,
database connection times are excluded. We can see that even for the largest set
of 1000 production orders the algorithm needs less than a second to find a first
feasible schedule (initial solution). This includes the preprocessing (routing),
decision and schedule generation step. At this moment a typical customer
of MESware is scheduling less than 100 orders a week. The tested approach
needs less than 100 milliseconds for scheduling this number of orders, and thus
leaving enough potential for optimization and for scaling to larger clients. The
performance scales linearly with the number of orders because the orders are
scheduled one after the other. The number of process steps per order will have
a larger impact on the system, and influences the runtime of both the routing
and schedule generation steps.

For an improved schedule, i.e. a schedule with lower makespan than the initial
one, the calculation time depends on several factors. One such factor is the
termination condition. We use the following termination condition: stop when
the number of consecutive loops (iterations) without significant (> xmin%)
improvement exceeds a limit Lmax. Other factors that influence the calculation
time are the intial solution, the number of orders and the number of alternative
routes. The local search method used is a simple steepest descent which
optimizes the total makespan objective (i.e. minimize the makespan over all
projects).

Generating an optimized schedule for a set of 30 orders takes approximately 10
seconds, when we use xmin = 0.01% and Lmax = 3 as the termination condition.
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Figure 7.3: A simple scaling analysis: average calculation time (with error bars)
in function of the numbers of production orders.

The progress of this optimization in terms of total makespan is presented in
Figure 7.4. The figure shows that the optimization further improves on the
initial solution. In our tests we noticed that many improvements are realized by
changing the routes. The sequence of orders has less influence on the schedule
makespan when all the orders are similar. Note that we could easily replace
the steepest descent algorithm by a more intelligent optimization algorithm
(tabu-search, simulated annealing, genetic algorithm, RL enhanced heuristic
search, . . .), which would enable further improvements, at the cost of some
computation time.

7.8 Conclusion

In this chapter we presented an integrated approach for production scheduling,
and demonstrated its applicability to the food processing industry. In these
environments, scheduling has to deal with a combination of discrete, continuous
and batch processes, and is typically complicated by particular characteristics.
For instance, the physical routes between workcenters in the plant layout, the
high diversity of products (different tastes, different packaging, custom labels,
. . .), complex product recipes, and many more. We decomposed the real world
scheduling task into several sub tasks or steps that can be performed by different
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Figure 7.4: Optimization progress starting from an initial schedule for a set of
30 heterogeneous orders

components. This allowed us to develop methods for each subtask separately
as well as to easily extend the approach with new components. We initially
modeled the scheduling problem as a very general resource-constrained project
scheduling problem with generalized precedence relations. This enabled us to
model a variety of industry related constraints in separate modules. A popular
priority rule based method is used to solve the theoretical scheduling problem.
The priority rule method could be replaced by any solution technique, including
the LA based methods described in previous chapters of this thesis. Especially
the techniques for general project scheduling problems (Chapter 5) are well
suited.

The presented approach allows scheduling multiple production orders at once,
which was actually an important requirement of the industrial partner. Dealing
with any possible plant layout was another essential requirement. Therefore, a
routing problem is solved in a separate module, i.e. process steps are mapped
onto workcenters. By putting this in a separate module, deciding on a specific
route has become an explicit decision variable. By applying local search, new and
better decisions can be explored for this module. As Figure 7.4 shows, deciding
on a route is a well chosen decision variable since considerable improvements of
the schedule can be reached by changing this decision variable.

Another decision variable determines an explicit sequence in which the customer
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orders should be scheduled. This module should be extended further, so as to
address sequence dependent set-up times. Other modules can be added to decide
on, for instance, whether or when to include stock capacity into the production.
This module could be designed as a reinforcement learning module [Sutton
and Barto, 1998b] that learns in which situations stock should be included
or not. In the special setting of food industries, keeping products in stock or
in refrigerators is subject to timing constraints. This kind of constraints are
perfectly expressible using the generalized precedence relations as well.

Many other decision variables could be taken into account. One could even make
a decision variable to represent the choice of the actual theoretical scheduling
algorithm used. This idea fits into a trend in search methodologies, called
hyperheuristics [Burke et al., 2003b]. The idea behind hyperheuristics is to
build generic search methods independent from problem or domain specific
characteristics. As such, a hyperheuristic framework is concerned with learning
at an abstract level which low level algorithm is most suited for a problem
at hand. It would be interesting to investigate whether hyperheuristics could
improve the generic applicability of our approach.

One of the remaining requirements is to feed the scheduler with up-to-date
information on the production process. This was addressed by replacing the
default machine speeds by better estimates. These estimates result from a
regression algorithm that uses historical information. For now, only estimations
of the processing times are fed back to the system, but this can straightforwardly
be extended to other KPIs.

The project discussed in this chapter can be considered as a good exercise
for bridging the gap between real world cases and innovative research. When
working with a company, strict timing and robustness requirements are set. One
can not just implement the state-of-the-art methods without careful testing
these additional requirements. Real world implementation and research differ a
lot from this point of view. Our approach is fast enough for practical use and
scales well to a large number of production orders. It is currently integrated into
a commercial software package that is running at several production sites. Many
opportunities for improvement and the inclusion of learning techniques, as the
one described in this thesis, are left to investigate in further research. However,
the necessary conditions for realizing these opportunities have already been
foreseen in the developed framework, making it easy to plug-in new learning
components.

In the future we will extend our approach by including extra functionality and
additional real world constraints. Of particular interest will be a complete
integration of stock and buffers, the use of sequence dependent set-up times,
customer specific objectives and the integration with personnel scheduling.
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An additional challenge to be considered is grouping and splitting orders on
workcenters or production lines.





Chapter 8

Conclusion

Methods for solving combinatorial optimization problems in practice, and
more specifically real-world scheduling problems, offer many opportunities for
including learning approaches. First of all the data is continuously changing,
requiring the methods to be adaptive enough. Second, the applied heuristic
search methods take random decisions, e.g. the selection of the next heuristic to
apply. Third, in practice the data is often based on default values, whereas the
real values can be significantly different. In order to allow a larger applicability
of heuristic search methods in practice, more general methods need to be created.
In the present thesis reinforcement learning enhanced heuristic search methods
for combinatorial optimization were studied in order to develop intelligent and
more adaptive heuristic methods capable of addressing these issues. In this
chapter we summarize the main results and contributions.

8.1 Contributions

The goal of this dissertation was successfully realized by applying simple
reinforcement learning devices, called learning automata. We showed that
these learning automata can contribute to the growing fields of intelligent
optimization, scheduling, heuristic search and reinforcement learning in the
following ways.

• It is shown how reinforcement learning can be applied to combinatorial
optimization problems and hybridized with meta-/hyper-heuristic search.
Three different levels of RL inclusion are defined. The direct level, the

135



136 CONCLUSION

meta-heuristic level, and the hyperheuristic level. At each of these levels
experimental research was performed and demonstrated on benchmark
and real world problems. It was shown that replacing a random component
in a heuristic search procedure by one or more learning automata can
improve the results.

• A general LA based scheduling methodology was described, which is
applicable to many scheduling problems from benchmarks and practice.

• The proposed methods show to be well performing on hard optimization
problems, such as scheduling, routing and assignment problems. Further
on they show to deliver state-of-the-art results for the multi-mode resource
constrained project scheduling problem (MRCPSP), and the decentralized
resource-constrained multi-project scheduling problem (DRCMPSP)
(Chapter 5). Many new best solutions for the MPSPLIB benchmark1 have
been presented in this dissertation, significantly improving on previous
best results (up to 41%).

• The proposed GT-MAS method for the DRCMPSP has been adopted as
a reference in the multi-project scheduling literature by [Mao, 2011].

• A new method using LA was introduced for learning good quality
permutations online, when no problem specific knowledge is provided
(Chapter 3). Combining a decentralized action selection with a
dispersion game technique and a common reward signal leads to a fast
and memory efficient permutation learning method. Where existing
permutation learning techniques require an additional normalization
procedure, this is not required by the LA based approach proposed in
this dissertation. Experimental results show interesting properties, i.e.
improved performance for a particular range of learning rate values.

• It is also shown that LA can be used efficiently for selecting heuristics or
neighbourhood functions during meta-/hyper-heuristic search (Chapter
4). Such an LA based heuristic selection method can be added to many
existing heuristic search techniques, and as a result be applied to manifold
optimization problems. Application to three hard optimization cases
shows improved results over random heuristic selection. This approach
generated new best results on some instances of the traveling tournament
problem2.

• We show how LA can be successfully applied to the flexible job shop
scheduling problem and a more realistic extended problem with release

1Best results submitted to http://www.mpsplib.com
2Best results obtained on March 30, 2009 and submitted to http://mat.gsia.cmu.edu/

TOURN/

http://www.mpsplib.com
http://mat.gsia.cmu.edu/TOURN/
http://mat.gsia.cmu.edu/TOURN/
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dates and due dates (Chapter 6). Application of LA based rescheduling
to a dynamic flexible job shop environment with machine perturbations is
also tested and compared to more reactive methods on newly generated
instances. Multiple objectives, such as the makespan or the tardiness,
have been considered.

• The proposed LA based methods require only a single parameter (the
learning rate) as input, avoiding the labour intensive finetuning process
of most heuristic search methods.

• Scaling is one of the important factors of heuristic search methods. We
showed that a network of learning automata, when applied to scheduling,
scales very well towards large instances.

• Most of the proposed methods in this thesis require only a simple
0 − 1 reward signal and a linear reward-inaction learning automaton
update scheme to reach good results in practice. This simple mechanism
requires little extra calculation time, thus introducing less overhead when
enhancing heuristic search with RL. Further on, these simple reward
signals contain no problem specific information, which contributes to the
general applicability of the proposed methods.

• Many RL inspired hyper-heuristic methods currently use simple utility
value mechanisms, which are not theoretically supported. The proposed
LA based techniques in this thesis for use in hyper-heuristics are
theoretically substantiated by learning automata theory.

• We developed a successful application to a real-world production
scheduling problem in the food industry (Chapter 7). This complex
problem was tackled with a combination of heuristic search and techniques
from AI. We have shown that this real-world problem offers many
opportunities for including the LA based methods proposed in the rest of
this thesis.

To summarize, we have shown that the application of reinforcement learning
components such as learning automata, can make a search method more adaptive,
can improve on static search methods, are easy to apply, and require little extra
calculation time. Moreover, they can be either applied directly to the problem
or added to an existing heuristic search technique.
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8.2 Further Directions

Reinforcement learning offers many opportunities for enhancing heuristic search
procedures as was discussed in Chapter 2. Some issues were not addressed
during the course of this thesis, therefore we give some directions for further
research and for extending the work of this thesis.

New hybridizations with RL
Still many possible inclusions of RL into heuristic search are left to investigate.
Think about the integration of RL into the neighbourhood functions of a
metaheuristic, to learn when to accept a new solution (even if it is worse), or to
learn when to stop the heuristic search.

Transfer learning
Techniques to transfer learned information to other RL tasks were recently
introduced in the RL literature. However, transferring learned information to
solve similar combinatorial optimization problems has hardly been studied. A
possible requirement for successfully applying transfer learning, is the usage of
problem or instance independent features.

Simultaneously learning multiple parameters
Simultaneously learning multiple parameters or components at the meta-
or hyper-heuristic level offers interesting future perspectives. In Chapter 5
execution modes and the order of activities were learned simultaneously for the
MRCPSP. This was at the direct level. All the methods in this thesis at the
two higher levels use RL to learn only a single thing (e.g. the heuristic selection
probabilities). Learning two or even more parameters simultaneously could
bring some extra challenges. These learning mechanisms will possibly have to
coordinate, as in multi-agent systems, to reach a good combined performance
setting. What if they have conflicting goals (e.g. calculation time vs quality)?

Multi-objective optimization
Some combinatorial optimization problems tackled in this thesis had multiple
objective functions. For example, in the decentralized resource-constrained
multi-project scheduling problem we studied both the total makespan and
average project delay objectives. However, in all cases the reward signal had a
single numerical value. But how would we deal with a multi-dimensional reward
signal containing information about multiple objectives? How can learning be
beneficial in the search for nondominated solutions (or Pareto optima) that
offer different trade-offs of the competing criteria? A straightforward solution
could be to have separate learning devices for each objective and to combine
their decisions with some voting or bidding process. A recent study by Liao



FURTHER DIRECTIONS 139

and Wu [2012] takes a first step in this direction by using learning automata
for continuous multi-objective optimization.

Parallel execution
When the problems become too large to be solved on a single processor, parallel
execution could be a solution. Multi-agent systems are perfectly suited for
parallel execution, hence are the methods proposed in this thesis. A possible
advantage for this is that the communication between the agents is very low,
i.e. only a single reward value is sent to the agents.

Reward signal
All the methods in this thesis employ a basic 0−1 immediate reward signal, while
most RL methods are capable of dealing with delayed rewards. As discussed
earlier in this thesis, it is not clear which step of a heuristic search leads to a
final high quality solution. Additionally it is possible that a heuristic search
has very limited time to perform only a few runs, or even one. If one would
only use the quality of the final solutions (delayed reward), this would result in
hardly any feedback to learn something valuable.

States
Most methods described in this thesis use no explicit3 state definition, which is
not a problem since they operate online (while searching) and a state would
be visited only once. However, the definition of a state space is part of the RL
problem. Before using states into these RL enhanced heuristic search methods,
one has to answer the following question: what is the state of a heuristic search
procedure? The total improvement? The calculation time? Or the number
of new best solutions found? Splitting the search into phases could bring a
possible solution, but that requires defining phases.

Real-world integration Next to the topics discussed in this thesis, we were
challenged with multiple real-world scheduling problems in the automotive,
joinery and food industry. In this experience we can state that the gap between
scheduling in the literature and scheduling in practice has a long way to go.
Often the software companies offer a manual scheduling component or in the
best case a simple heuristic solution. The scheduling software developers seem
not to be familiar with state-of-the-art scheduling approaches. To bridge the
gap, a translation of the real-world problem to a general project scheduling
problem seems to be a first step in the right direction, as was shown by a
preliminary implementation in Chapter 7 of this thesis.

3A networks of LA, used in this thesis, is a way to create multiple states in a more implicit
manner.





Appendix A

Machine speed prediction
tool

This appendix contains a screenshot (Figure A.1) of the machine learning
prediction tool we developed for the real-world production scheduling case
(described in Chapter 7). The tool predicts machine speeds based on historical
data. The k-nearest neighbour algorithm with k = 10 was used.
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Figure A.1: Screenshot of the machine speed prediction tool.
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