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a b s t r a c t

In order to make projections for future air-quality levels, a robust methodology is needed that succeeds
in reconstructing present-day air-quality levels. At present, climate projections for meteorological vari-
ables are available from Atmospheric-Ocean Coupled Global Climate Models (AOGCMs) but the temporal
and spatial resolution is insufficient for air-quality assessment. Therefore, a variety of methods are tested
in this paper in their ability to hindcast maximum 8 hourly levels of O3 and daily mean PM10 from
observed meteorological data. The methods are based on a multiple linear regression technique
combined with the automated Lamb weather classification. Moreover, we studied whether the above-
mentioned multiple regression analysis still holds when driven by operational ECMWF (European Center
for Medium-Range Weather Forecast) meteorological data. The main results show that a weather type
classification prior to the regression analysis is superior to a simple linear regression approach. In
contrast to PM10 downscaling, seasonal characteristics should be taken into account during the down-
scaling of O3 time series. Apart from a lower explained variance due to intrinsic limitations of the
regression approach itself, a lower variability of the meteorological predictors (resolution effect) and
model deficiencies, this synoptic-regression-based tool is generally able to reproduce the relevant
statistical properties of the observed O3 distributions important in terms of European air quality
Directives and air quality mitigation strategies. For PM10, the situation is different as the approach using
only meteorology data was found to be insufficient to explain the observed PM10 variability using the
meteorological variables considered in this study.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Since high concentrations of O3 and PM10 affect the public
health, much attention is paid to the improvement of the accuracy
of short-term deterministic and statistical prediction models and
the development of robust long-term air-quality prediction
systems. Complex models, including a full description of atmo-
spheric chemistry and meteorological processes, are often used
with respect to the former (Giorgi and Meleux, 2007). Although
these techniques are shown to be powerful for short-term predic-
tions, the complex climate–air-quality modelling systems, together
with their computational/technical characteristics, are at present
less useful for long-term (decadal) predictions (Giorgi and Meleux,
2007).

Therefore, statistical downscaling methods were developed to
determine predictive relationships between air pollution
32 16326400.
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concentrations and individual meteorological parameters. This was
done for different air-quality variables and different locations.
Different methods can be distinguished namely multiple linear
regression (MLR) analysis (Barrero et al., 2006), nonlinear multiple
regressions (Cobourn, 2007), artificial neural networks (ANN) (e.g.
Hooyberghs et al., 2005), and generalized additive models and
fuzzy-logic-based models (Cobourn et al., 2000). Among these
approaches, regression methods are well documented because of
their ease of implementation and their low computation require-
ments (Wilby and Wigley, 1997; Wilby et al., 2004). The technique
first detects present-day relationships between local meteorolog-
ical variables (or ‘‘predictors’’) and e.g. air-quality variables (or
‘‘predictands’’). These relations based on (non) linear multiple
regressions have been described in literature numerously, as for e.g.
in Chaloulakou et al. (2003) and Ainslie and Steyn (2007). Never-
theless, the use of another circulation patterns as a downscaling
tool is widespread, although less common in air-quality research. In
that respect, this technique is adopted by e.g. Comrie and Yarnal
(1992) and Davies et al. (1992) to explain observed ozone variability
at measuring sites in the Europe, US and Canada. Some authors
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Table 1
The number of predictor occurrences in the synoptic-regression approach over all
circulation types and for each season (DJF – winter, MAM – spring, JJA – summer,
SON – autumn).

DJF MAM JJA SON

Sea-Level Pressure (P0) 7 1 2 1
Total Precipitation (Tprec) 2 1 3 2
Shortwave Downward Radiation (SWD) 7 7 6 4
Maximum Temperature (Tmax) 3 3 8 4
Minimum Temperature (Tmin) 1 1 0 2
Relative Humidity (RH) 3 6 6 6
10m Wind Speed (F010) 8 3 2 3
Wind Direction (D010) 5 1 4 4
Total Cloud Cover (CC) 4 2 2 2
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have tried to combine the above-mentioned two downscaling
techniques. A stratification based on the circulation pattern is
adopted to introduce nonlinearity into the model (Huth et al.,
2008a,b) under the assumption that the relations between large-
scale predictors and predictands may vary depending on the type of
the synoptic pattern. This technique is applied for downscaling
surface meteorological variables by e.g. Cavazos (1999). Neverthe-
less, this approach has not been adopted in terms of air quality
assessment yet. To the author’s best knowledge, there has been
only one study so far that used a within-synoptic-type air pollution
model to study future air pollution levels for a variety of pollutants
(Cheng et al., 2007a,b).

The aim of our study is to test a simple linear regression method
together with a stratification of the dataset by its daily synoptic
patterns in their ability to hindcast levels of O3 and PM10. To achieve
this goal, regression results from previous research based on station
measurements from Cabauw (Demuzere et al., 2009) are used to
reconstruct the observed maximum eight hourly mean O3 [mg m�3]
(hereafter referred to as m8O3) and daily mean PM10 [mg m�3]
levels for the period 2001–2004 (calibration) and 2005–2006
(evaluation). Furthermore, the Lamb weather type classification is
used as a synoptic circulation-typing tool to enter nonlinearity into
the downscaling model in order to construct a robust method for
the improved projections of air-quality levels. These methods are
calibrated on observed air quality data from the Cabauw
measurement tower and the measurement station of Zegveld-Oude
Meije (The Netherlands) for the period 2001–2004.

According to the Intergovernmental of Climate Change, the
magnitude of the effect of climate change on O3 is still uncertain
(IPCC, 2001). Hence, before the above-mentioned downscaling
approach is used to bridge the gap between what is produced by
AOGCMs (Atmospheric–Ocean Coupled Global Climate Models) and
what is needed in climate impact research (Part II of this analysis),
the observed local relations between meteorological and air-quality
variables need to be tested on the larger scale. After all, AOGCM-
output is at present only available typically scales of 300� 300 km2.
Therefore, the validity of these station-based synoptic-regression
configurations as an air quality downscaling tool is tested using low-
resolution operational ECMWF (European Center for Medium-
Range Weather Forecast) data for the period 2005–2006. In this
way, a regression-based model forced with meteorological ECMWF
data is used as a prototype for a modelling system in which AOGCM-
output is downscaled for the purpose of obtaining projections for
future air-quality levels.

2. Data

High temporal resolution meteorological data for the period
2001–2006 from the rural measurement station of Cabauw (The
Netherlands), partly operated by the KNMI (Royal Dutch Meteoro-
logical Institute were used. Ten-minute measurements are aver-
aged to daily values. More details on the measurement site
characteristics and quality control are provided in Demuzere et al.
(2009). The calibration of the multiple linear regression equation is
based on local observations of 2 m air and dew point temperature
(T and Td), daily maximum and minimum temperature (Tmax and
Tmin), wind speed and direction (F010 and D010), total cloud cover
(CC), total precipitation (Tprec) and shortwave downward radiation
(SDW) for the period 2001–2006. Relative humidity (RH) is calcu-
lated from T and Td using the Magnus-Tetens approximation.
Similar meteorological information is obtained from the opera-
tional ECMWF model on an N400 Gaussian grid resolution for the
period 2005–2006. As this methodology is developed for providing
future air-quality projections based on global climate model
information, the ECMWF data is aggregated to the spectral T63
resolution (1.85� �1.85�), which is identical to the resolution of e.g.
the SRESA1B IPCC 4AR ECHAM5-MPI/OM experiment (Marsland
et al., 2003; Roeckner et al., 2003). As Cabauw is situated in the
center of 4 surrounding grid points, the average of the neighbour-
ing 4 ECMWF grid points is used in the further analysis, as Gachon
and Dibike (2007) have shown that for a range of meteorological
variables there is virtually no difference between a single grid point
use and neighbouring grid point averages.

The air-quality data for ozone is taken from Cabauw, for the period
2001–2006, while PM10 is taken from the neighbouring station
Zegveld-Oude Meije. The Directive 1999/30/EC and following up
Directive 2008/50/EC of the European Parliament (EU, 2008) describe
a threshold concentration of 120 mg m�3 and 50 mg m�3 for m8O3 and
daily mean PM10 concentration respectively for Europe. These
threshold values are important for possible regional air-quality
mitigation strategies and therefore, the remaining of this study
focuses on these thresholds as the framework to validate the
downscaling methodologies provided in Section 3.
3. Methods

Multiple linear regression models have widely been adopted to
reconstruct observed time series of O3 and PM10 for various
heterogeneous regions based on measurements (Barrero et al.,
2006). In addition, Huth et al. (2008a,b) points out the power of
a pointwise linear regression method (using grid point values
instead of principal components as predictors) in comparison with
nonlinear methods such as neural networks. And although Huth
et al. (2008a,b) do not find clear evidence in the improvement of
downscaling temperatures when stratifying the dataset by classi-
fication patterns prior to the regression analysis, Cheng et al.
(2007a) have shown this approach to be promising in terms of air
pollution variables. Therefore, in order to clarify the potential of
each method in air-quality applications, three regression-based
approaches are examined and compared: (1) a multiple linear
regression model as developed in Demuzere et al. (2009), hereafter
named MLR, (2) a multiple regression model with the Lamb
weather types (Jones et al., 1993) included as predictors (MLRLWT)
and (3) a stratification of the data by the Lamb weather type
technique prior to the multiple linear regression (LWTMLR). As
seasonality could be an important factor in terms of m8O3 and PM10

reconstruction (Tarasova et al., 2007), model approaches (2) and (3)
are also run in a seasonal mode, whereby the regression analysis is
done for each season separately. These techniques are hereafter
referred to as MLRSEAS and LWTSEASþMLR for (2) and (3) respectively.
The latter results in a set of NLWT times NSEAS regression equations
and describes the seasonal within-weather-type air pollution
characteristics, where NLWT is the number of weather type classes
and NSEAS is the number of seasons (44 equations in total). As an
example, Table 1 enlists for each season the number of occurrence
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of each predictor in the 44 linear equations. Over all seasons,
shortwave downward radiation, relative humidity and maximum
temperature are the most frequently occurring predictors, with the
largest individual frequency for the latter in JJA (72.7%). In winter,
wind speed is equally important as Tmax in summer, while in the
transition seasons MAM (spring) and SON (autumn), the frequen-
cies of occurrence are similar for each predictor variable.

Moreover, it is important to underline that air-quality variables are
not taken into account as predictor variables. As there is no infor-
mation on future air-quality data as input variables from AOGCMs,
they cannot be included in the regression analysis as predictors. For
future use, this approach has two important assumptions: 1) when
applying these techniques for future air-quality projections, the
impact of meteorological changes on future O3 and PM10 levels is
isolated, and possible changes in future (precursor) emissions are not
assessed and 2) applying this method on future AOGCM scenarios
assumes that the present-day relations between meteorologyand air-
quality variables stay constant through time.

The Lamb weather types (WTs) are developed using operational
ECMWF sea-level pressure (SLP) data for the calibration period
2001–2004 and for the validation period 2005–2006. For a given
day, the WTs describe the location of the high and low-pressure
centers that determine the direction of the geostrophic flow. A grid
with 16 points is assigned over the larger Western and Central
Europe, with a central point over the Netherlands, in 52.5�N and 5�E.
We computed a set of simple atmospheric circulation indices using
12 h sea-level pressure in these 16 grid points, namely the direction
and vorticity of geostrophic flow: southerly flow (SF), westerly flow
(WF), total flow (F), southerly shear vorticity (ZS), westerly shear
vorticity (ZW) and total shear vorticity (Z). A small number of
empirical rules devised previously (Jones et al., 1993) are then used
to classify each day as one of the 10 þ 1 undetermined circulation
types as developed in Demuzere et al. (2008, 2009). The composite
maps of SLP for each Lamb weather type derived from ECMWF fields,
averaged over the period 2001–2006 are depicted in Fig. 1.

A wide range of possible criteria can be used to evaluate
statistical downscaling methods. First, the quality and reliability of
the downscaled values are examined using several statistical
indices proposed by Willmott (1981) and Willmott and Matsuura
(2005). These indices include the mean, the standard deviation (s)
and variance (s2) and the mean absolute error (MAE), which
averages the absolute error magnitudes. Furthermore, we used the
root mean square error (RMSE), measuring the total deviation of
downscaled values from observed values and the explained vari-
ance (R2). In addition, higher-order moments of the distribution are
essential for air-quality modelling, where adverse health effects are
more related exceedences of thresholds than to mean air-quality
levels. Therefore, as suggested by Huth et al. (2008a,b), the degree
of asymmetry and peakedness are evaluated in terms of the third
and fourth moments, viz. skewness and kurtosis respectively.

Furthermore, Murphy (1988) suggested that the skill of any
given model is a measure of the relative accuracy of a model with
respect to a standard reference model. Hence, the skill of any model
should be interpreted as the percentage improvement over
a reference model. One of the most common used reference models
in forecasts is persistence i.e., the previous value in a sequence of
observations (Wilks, 1995). Therefore, the skill scores based on the
mean square error (MSE) will be used in this paper with persistence
(MSEpers) as a reference:

SSpðMSEÞ ¼ MSE�MSEpers

0�MSEpers
� 100%

with MSE ¼ 0 corresponding to the accuracy level that would be
achieved by a perfect model (Wilks, 1995). Furthermore, the
student t-test and the F-statistics are used to test whether observed
and downscaled time series have significant different means and
variances respectively, on a 95% confidence level.

4. Results and discussion

First, the various multiple linear regression equations described
in Section 3 are calibrated for the period 2001–2004, using obser-
vational data (Section 4.1). Secondly, it is tested which of the
methods is most suitable for hindcasting m8O3 and daily mean
PM10 concentrations for the independent evaluation time period
2005–2006, using observed meteorological data as input to the
regression-based model. Thirdly, it is tested whether the MLR
equations derived from observed meteorological data still hold
when using gridded low-resolution meteorological data as input to
the regression-based model. For this purpose operational ECMWF
meteorological data for the 2005–2006 are used (Section 4.2).
Finally, Section 4.3 describes the within-type variability of the
meteorogical predictors provided by Cabauw observations and
ECMWF forecast data.

4.1. Comparison and evaluation of various downscaling tools

In order to justify the implementation of a circulation
approach prior to the linear regression technique, it is important
to know whether the introduction of this stratification leads to
an improvement in performance of the downscaling procedure.
Therefore, the comparisons are carried out not only in terms of
correlation coefficients, but also for temporal correlations
(persistence) and higher-order statistical moments (skewness
and kurtosis). These performance statistics for the calibration and
evaluation period are summarized in Tables 2–4 respectively. In
general, the combination of synoptic classification using Lamb
weather types prior to a seasonal linear multiple regression
analysis (LWTSEASþMLR) performs best for both m8O3 and PM10.
This is shown in terms of explained variance and SSp for both
m8O3 and PM10 (80/75% and 60/66% respectively). Furthermore,
MAE and RMSE show a similar tendency, with the lowest values
for m8O3 of 8.3 and 10.9 mg m�3 and for PM10 of 5.8 and
8.6 mg m�3 compared to the other approaches. Differences
between observed and modelled means are insignificant for all
model configurations based on the t-test. In terms of variance,
the F-test shows that all models are unable to reproduce the
observed variance, except for m8O3 using MLRSEAS, LWTMLR and
LWTSEASþMLR. As all statistics for PM10 are lower than for m8O3,
these results suggest that m8O3 has more predictability based on
meteorology solely compared to PM10.

To further illustrate this, scatter plots of modelled versus observed
m8O3 (upper panels) and PM10 (lower panels) concentrations
following the pure MLR (left panels) and synoptic-regression (right
panels) approach are shown (Fig. 2). For ozone, the best results are
obtained for LWTSEASþMLR, with the regression line closer to the 1:1
(perfect model) line. For PM10, there is a large difference between the
various models, with again the best performance for the LWTSEASþMLR

model.
Furthermore, Tables 2–4 show the models performance for

hindcasting m8O3 and daily mean PM10 levels for the independent
evaluation time period 2005–2006, using observed meteorological
variables. For m8O3, all models perform similar in terms of R2 and
SSp, with the best results obtained for R2 for LWTSEASþMLR (72%) and
for SSp with MLRSEAS (59%). Both model approaches are also able to
reproduce the observed variances, whereas all other model
configurations have variances significant different on the 95%
confidence interval compared to the observed explained variance.
In terms of skewness and kurtosis, the best results are obtained



Fig. 1. Composite maps of sea-level pressure for each Lamb weather type derived from ECMWF SLP fields, averaged over the whole period 2001–2006. The Cabauw measurement
site is marked with a black dot.
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Table 2
Statistics describing the performance of the calibration time series (2001–2004) and evaluation series (2005–2006) for ozone and PM10 (mg m�3). The measures include the
mean (x), standard deviation (s), variance (s2), mean absolute error (MAE), root mean square error (RMSE), explained variance (R2 in %) and skill score against persistence (SSp
in %). Values significant different on the 95% confidence interval based on t-test and chi-square test for mean and variance respectively are denoted in bold.

Species Model x s s2 MAE RMSE R2 SSp

Calibration 2001–2004 O3 Reference 57.0 29.8 887.2
MLR 54.9 25.9 671.4 14.3 19.0 61 38
MLRSEAS 55.1 27.5 758.7 10.4 13.2 65 69
MLRLWT 56.6 26.0 676.3 12.6 15.9 71 56
LWTMLR 55.2 27.4 751.5 10.2 13.9 78 67
LWTSEASDMLR 56.5 28.0 783.1 8.3 10.9 80 75

PM10 Reference 27.2 15.6 244.6
MLR 27.7 9.1 83.4 11.1 15.1 12 22
MLRSEAS 27.1 10.5 110.5 8.6 11.8 41 50
MLRLWT 27.0 9.9 97.8 8.6 11.8 40 52
LWTMLR 27.0 12.5 155.3 3.4 10.8 52 62
LWTSEASDMLR 27.1 13.4 180.6 5.8 8.6 60 66

O3 Reference 57.59 30.82 955.90
MLR Observations 56.60 25.28 639.29 13.70 17.70 68 50

ECMWF 58.05 21.52 463.13 16.98 22.42 60 37

MLRSEAS Observations 57.13 27.87 776.57 11.77 15.11 58 59
ECMWF 58.24 22.03 485.32 13.97 17.92 44 43

MLRLWT Observations 56.48 26.55 704.85 13.46 17.65 68 51
ECMWF 63.35 26.62 708.37 16.00 20.22 61 34

LWTMLR Observations 57.34 26.81 718.59 13.13 17.35 69 52
ECMWF 59.42 27.98 782.89 19.68 25.76 61 31

LWTSEASDMLR Observations 57.87 29.37 862.85 12.76 16.71 72 56
ECMWF 57.6 27.14 736.58 16.24 20.42 63 33

Evaluation 2005–2006 PM10 Reference 23.13 12.05 145.20
MLR Observations 26.64 8.17 66.71 7.16 10.29 32 35

ECMWF 21.45 8.31 69.04 8.59 10.72 28 43

MLRSEAS Observations 25.56 10.20 104.09 8.39 10.62 34 30
ECMWF 20.72 9.76 95.27 8.35 11.20 27 27

MLRLWT Observations 25.18 10.54 111.17 8.47 10.73 31 35
ECMWF 19.16 10.80 116.57 8.45 10.73 32 31

LWTMLR Observations 26.16 12.66 160.15 8.32 10.54 34 34
ECMWF 23.03 13.78 189.88 8.40 10.62 32 28

LWTSEASDMLR Observations 26.75 15.98 255.30 10.55 15.22 34 33
ECMWF 24.34 15.74 247.75 10.17 15.22 32 28
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with the LWTSEASþMLR model, with values of 0.91 and 3.27
respectively, compared to an observed skewness and kurtosis of 1
and 2.28 respectively (Tables 3 and 4). For PM10 in general, lower
values of the statistical indices are obtained compared to the results
for m8O3. Again here, models perform similar in terms of R2 and SSp

for all methods, with the best results obtained with MLRSEAS,
MLRLWT and LWTSEASþMLR for the former (34%) and for MLR and
MLRLWT for the latter (35%). The large observed skewness and
kurtosis values are best reproduced by LWTMLR with respective
values of 1.02 and 4.29 compared to an observed skewness and
Table 3
Skewness coefficients for O3 (left) and PM10 (right) for the various methods and the
reference and observed and ECMWF downscaled datasets, for the period 2005–
2006.

O3 PM10

Reference Obs ECMWF Reference Obs ECMWF

1.00 1.73
MLR 0.26 �0.002 �0.085 0.043
MLRSEAS 0.78 0.42 �0.19 �0.11
MLRLWT 0.28 0.15 �0.27 �0.056
LWTMLR 0.62 0.31 1.02 0.70
LWTSEASþMLR 0.91 0.80 3.08 0.82
kurtosis of 1.73 and 4.78 respectively. These results are also
depicted in Fig. 3 (upper panels), showing the best representation
of observed m8O3 and daily mean PM10 levels based on observed
meteorological variables for the independent period 2005–2006
using LWTSEASþMLR and LWTMLR respectively.
4.2. Evaluation of various downscaling tools for low-resolution data

In order to know whether regression-based models developed
from measured predictors are still valid using lower resolution data,
Table 4
Kurtosis coefficients for O3 (left) and PM10 (right) for the various methods and the
reference and observed and ECMWF downscaled datasets, for the period 2005–
2006.

O3 PM10

Reference Obs ECMWF Reference Obs ECMWF

2.28 4.78
MLR �0.40 �0.71 �0.083 �0.50
MLRSEAS 0.86 0.43 0.12 �0.20
MLRLWT �0.27 �0.63 �0.26 �0.49
LWTMLR 0.51 0.028 4.29 6.54
LWTSEASþMLR 3.27 2.31 6.14 6.92



Fig. 2. Scatter plot of modelled versus observed eight hourly maximum O3 (upper panels) and daily mean PM10 (lower panels) concentrations [mg m�3] for the calibration period
2001–2004.
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such as operational ECMWF data, this approach is tested on the latter
for the independent evaluation period 2005–2006 (Fig. 3 – lower
panels). In general the lower variability of the low-resolution
meteorological ECMWF predictors results in a smaller explained
variance of operational ECMWF downscaled m8O3 and PM10 time
series compared to the observed downscaled series (Table 2). The
explained variance for m8O3 is, in accordance to the calibration
period, the highest for the LWTSEASþMLR method for both observed
and ECMWF downscaled series (72 and 63%). In terms of SSp, the
pure seasonal regression model MLRSEAS is slightly better than the
LWTSEASþMLR method, with a performance of 59/43% and 56/33%
(Observations/ECMWF) respectively against persistence (Table 2).

In order to compare the distribution of the observed and
modelled m8O3 and daily mean PM10 throughout the evaluation
period, the quantile distribution of the modelled air-quality data is
plotted against the quantile distribution of the observed air-quality
data in qq-plots (Fig. 3). When using the ECMWF data as predictors,
the LWTMLR and LWTSEASþMLR approaches perform similar for the
higher percentiles, although the former has a larger overestimation
of modelled m8O3 concentrations around 100 mg m�3 (Fig. 3 – lower
panel). Moreover, the degree of asymmetry and peakedness of the
statistical distributions are also evaluated in terms of the third and
fourth order statistical moments, i.e. skewness and kurtosis (Tables 3
and 4). Following the supposition that the number of independent
realizations in the time series is 70 (approximately every 10th day as
an independent realization), than the skewness test for normality
(Thode, 2002) indicates that the hypothesis of zero skewness is
rejected at the 95% significance level if the skewness coefficient
exceeds a value of 0.459 (in the absolute sense). The reference O3

distribution shows a positive skewness of 1.00 (significant skewed)
and a kurtosis of 2.28. When using observed meteorological data as
predictors, the methods applying stratification of the m8O3 distri-
bution by the Lamb classification method prior to the regression
analysis (LWTSEASþMLR) are able to catch the third and fourth order
statistical measures much better than methods without such strat-
ification. Similarly, the same conclusions can be drawn when using
the ECMWF data as predictors, although the distribution is slightly
less positive skewed in that case (Table 4).

For PM10, a regression-based approach using only meteo-
rology data is insufficient to explain a great deal of the observed
PM10 variability (Table 2). The results of the regression-based
models are similar in terms of R2, whereby the best approxima-
tion of the observed time series is obtained by both LWTMLR and
LWTSEASþMLR (34 and 34% respectively). Contrarily, better results
for SSp are obtained for the standard regression model MLR, with
a 35% and 43% improvement for both observed and ECMWF
downscaled PM10 series compared to the persistence model. For
all models except LWTMLR the variance (s2) differs significantly



Fig. 3. Quantile–quantile plots of modelled versus observed eight hourly maximum O3 and daily mean PM10 concentrations [mg m�3] for the evaluation period 2005–2006, using
observed (upper panels) and operational ECMWF (lower panels) data as predictors for the regression-based models. The 1:1 line presents the perfect model hindcast and the red
lines (dotted – observation, dashed – modelled) show the threshold of 120 and 50 mg m�3 for O3 and PM10 respectively.
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from the observed variance in PM10. The reference PM10 distri-
bution is highly positively skewed (significant on the 95% level),
which is well reproduced by the LWTMLR approach and over-
estimated by LWTSEASþMLR when observed meteorological data
are used as predictors (Tables 3 and 4). Moreover, the LWTMLR

model more realistically generates the strong reference peaked-
ness of 4.775 compared to the LWTSEASþMLR approach (Table 4).
For the ECMWF downscaled PM10 time series, the distribution is
in general more normal compared to the reference distribution,
although the kurtosis is overestimated for the LWTMLR and
LWTSEASþMLR approach (Tables 3 and 4).

In general, the above-analysis shows that for m8O3, seasonality
is an important factor, which confirms the results of Tarasova et al.
(2007). Next to its photochemical production and the seasonal
variation of anthropogenic and biogenic emissions, a season-
dependant impact of meteorological variables (e.g. wind speed and
total precipitation) on ozone should be taken into account in the
downscaling process. For PM10, this effect is less distinct, which is
also clear from a less pronounced seasonal cycle in observed PM10

concentrations (Flemming et al., 2005; Demuzere et al., 2009).
Moreover, the results in Table 2 show that a regression-based
approach using only meteorology data is able to explain a great deal
of the observed m8O3 variability, which is not the case for PM10.
Possibly, a part of the low explained variability is due to the absence
of the boundary layer height as a predictor variable. Previous
research (Hooyberghs et al., 2005) has shown that by far the
boundary layer height is the most important parameter in their
neural network approach. Unfortunately, boundary layer height
measurements are not available at present for Cabauw.

Furthermore, the results in Tables 2–4 show an additional value
of stratifying all days according to their circulation characteristics
prior to the regression analysis. Although Huth et al. (2008a,b)
states that the effect of introducing non-normality by mixing
several normal distributed meteorological parameters using
a classification method for temperature downscaling is rather weak
and insufficient to produce significant deviations from normality,
our result show that this is not the case for air-quality distributions.
Hereby, large skewness and kurtosis values can only be reproduced
by stratifying the dataset by developing a Lamb weather-type-
dependant regression model as described in Section 3. Moreover,
the skill score, which tests the temporal structure of the down-
scaled time series against a 1-day lag persistence model, shows
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a better performance for the LWT methods than compared to the
more simple linear regression model approaches (Table 2). There-
fore we opt to use the LWTMLRþSEAS and LWTMLR for m8O3 and PM10

respectively in the remaining of this study.
Fig. 4. Scatter plots showing observed versus modelled O3 concentrations using observed m
for each season separately. (For interpretation of the colour plots and legend, the reader is
Finally, the hypothesis that an observation-based regression still
holds when applied on low-resolution gridded (ECMWF) data is
validated and shown in Tables 2–4. Although part of the explained
variance is lost due to a lower variability of the meteorological
eteorological data as input to the LWTSEASþMLR model for each Lamb weather type and
referred to the web version of this article.)
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predictors (Fig. 3), this regression-circulation pattern approach is
able to detect the high observed m8O3 and PM10 concentrations
that are important in terms of European air quality Directives and
air quality mitigation strategies. This will be discussed in more
detail the following Section 4.3.
Fig. 5. Same as Fig. 4, but now using ECMWF meteorological data as input to the LWTSEASþM

web version of this article.)
4.3. Meteorological predictor variability

In the previous paragraph, regression-based models were used
to hindcast air-quality levels by calculating m8O3 and PM10

concentrations from meteorological conditions on a larger scale as
LR model. (For interpretation of the colour plots and legend, the reader is referred to the
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available from ECMWF. However, when the ECMWF output differs
from the observed conditions, this will negatively influence the
model performance. Therefore, it is important to provide more
insight in the effect of forecasted meteorological ECMWF variable
Fig. 6. Scatter plots showing observed versus modelled PM10 concentrations using observed
whole year.
deficiencies on the performance of the regression-based models for
each weather type separately. As the regression-based method
profits from introducing nonlinearity by the objective Lamb clas-
sification method prior to the regression analysis, modelled versus
meteorological data as input to the LWTMLR model for each Lamb weather type for the
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observed m8O3 and PM10 concentrations are analyzed for each
weather type class separately (Figures 4–7).

High m8O3 concentrations are restricted to the summer season
(JJA), and more specific to the Lamb weather types A, E, SE and S. The
modelled m8O3 time series are in good agreement with the
Fig. 7. Same as Fig. 6, but now using ECMWF mete
observed m8O3 concentrations for the period 2005–2006 (Fig. 4).
All distributions are thereby closely scattered around the perfect 1:1
line. When ECMWF data are used as predictors for the regression-
based model, the highest concentrations are found for the same
weather type classes (A, E, SE and S). However, the distributions are
orological data as input to the LWTMLR model.
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characterized by a larger scatter and a lower explained variability, in
the higher quantiles of the distribution (Fig. 5).

The modelled versus observed PM10 values show a large scatter
around the optimal 1:1 line, especially for those types character-
ized by the highest concentrations (all types except N, NE, W and
NW) both when observations and when ECMWF data are used as
predictors (Figs. 6 and 7 respectively). Again, these results show
that for PM10, a regression-based approach using only meteorology
data is insufficient to explain the observed PM10 variability.
Therefore, the remaining of this sensitivity study of downscaled air-
quality levels to its meteorological predictor values is restricted to
m8O3.

In order to understand the deficiencies of the regression-based
model, the differences between ECMWF data and observations are
studied only for the meteorological predictors that are included in
the circulation pattern dependent regression equations (Fig. 8).
Data are shown for the JJA months only, as this season is charac-
terized by the highest m8O3 concentrations.

Modelled m8O3 values for the weather types A, SE and S are
positively related to Tmax (Demuzere et al., 2009), which is
underestimated in its median value by up to 3 K in the ECMWF
model. CC, RH and P0 are negatively related to ozone concen-
trations for the southern circulation pattern. These variables are
overestimated by the ECMWF model (Fig. 8) and dampen high
ozone concentrations. The underestimation of modelled m8O3

concentrations under high-pressure conditions (type A) are
favored by an overestimation of the relative humidity in ECMWF
compared to the observations, which is again a predictor in the
regression model for O3 formation.
Fig. 8. Median (number) and normalized standard deviation (colors) for each of the meteoro
averaged over the summer (JJA) period 2005–2006. The upper panel presents observations
colour plots and legend, the reader is referred to the web version of this article.)
5. Discussion

Deficiencies in the regression-based models can be due to 1) an
inadequate representation of the predictor variables and 2) the fact
that most downscaling methods tend to resolve only part of the
total variance (Barrero et al., 2006). In the previous section we
found substantial differences between ECMWF data and observed
meteorological variables. This difference can be due to 1) defi-
ciencies in the ECMWF model or 2) the low spatial resolution used
in our analysis. After all, in order to test our method for possible
future downscaling purposes using AOGCM-output as an input for
the regression-based models, we averaged 4 surrounding grid
points from the spectral T63 horizontal grid, being representative
for an area of about 350 � 350 km2. By using such a coarse reso-
lution, predictor variability is possibly dampened. In order to test
this, a comparison is made with ECMWF operational forecast data
from a single grid point (52.505�N/4.95� E) extracted from the
original N400 Gaussian grid resolution (hereafter referred to as
ECMWF1). The ECMWF1 data are representative for a much smaller
area of about 25 � 25 km2.

The quantile distribution of the ECMWF data is compared to the
observed quantile distribution for the relevant meteorological
variables (Fig. 9). The largest differences between ECMWF1 and
ECMWF are found for Tmax, RH and CC. Tmax shows a large decrease
in RMSE in ECMWF1 caused by a better representation of the higher
percentile values. Although the RMSE for RH and CC derived from
ECMWF1 is slightly higher than from ECMWF, the quantile distri-
bution of ECMWF1 corresponds more closely to the observations.
The impact of these differences in ECMWF predictor values on
logical predictor variables that are used in the circulation-specific regression equations,
, the lower panel present the results based on ECMWF data. (For interpretation of the



Fig. 9. Quantile–quantile plots of ECMWF versus observed meteorological predictor variables for the evaluation period 2005–2006. The 1:1 dashed line presents perfect ECMWF
data and the RMSE present the error for both ECMWF spatial averaged on over an area of 350 km2 (ECMWF) and ECMWF for one grid point (25 km2) (ECMWF1) compared to
reference observed meteorological values from Cabauw.
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Fig. 11. Quantile–quantile plot of ECMWF and ECMWF1 downscaled O3 versus
observed O3 concentrations for the evaluation period 2005–2006. The 1:1 line presents
perfect model line.
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downscaled m8O3 levels is plotted in terms of RMSE for
LWTSEASþMLR (Fig. 10). Furthermore, a qq-plot is used to present the
distribution for both ECMWF and ECMWF1 downscaled m8O3

concentrations using the LWTSEASþMLR approach (Fig. 11). This
comparison shows that in term of RMSE, there is a negligible
difference for the downscaled m8O3 time series using either spatial
averages or single grid point predictor data. Nevertheless, the qq-
plot (Fig. 11) shows that higher quantiles of observed m8O3

concentrations (>120 mg m�3) are better reproduced by the single
grid point predictor data compared to the 4-grid point spatial
average. This suggests that the differences between observed and
ECMWF downscaled m8O3 time series are both due to the usage of
the 4-grid point average ECMWF data, dampening some of the
predictors variability, as well as deficiencies in the ECMWF,
resulting in an insufficient representation of the meteorological
variables used as predictors in the regression-based model.
Consequently, this result implies that downscaling techniques
using low-resolution gridded data from for e.g. AOGCMs suffer from
the low-resolution itself although improvement can already be
obtained by addressing and carefully taking into account model
errors, as was suggested by Cheng et al. (2007b).

The analysis in this manuscript is based on one single rural
measurement site in the Netherlands. One could question the
representativeness of this research to other sites in the world.
Demuzere et al. (2009) showed that four different rural
measurement stations in The Netherlands have similar character-
istics, both in terms of the annual cycle of O3 and PM10 as in their
relation with the suite of selected meteorological variables. This
provides confidence in the spatial homogeneous character of rural
sites for a mid-latitude area (in the Netherlands) and is in agree-
ment with the results of Flemming et al. (2005). Nevertheless, this
approach does not automatically imply a possible use in other
non-rural environments, as the latter are more complex in terms
of meteorological conditions (e.g. urban heat islands, street
ventilation.) and local emission sources. As an example, ozone
concentration in Belgian urban areas are usually lower than in
their rural counterparts; such a ‘VOC-limited’ ozone formation
regime is also observed in other North-Western and Central
European urban areas (Hooyberghs et al., 2005). A first possible
future approach to extend our analysis to non-rural areas could
exist of the identification of different air-quality regimes for
different pollutants, as suggested by Flemming et al. (2005) and
Fig. 10. Root mean square error (RMSE) values for O3 for each weather type class
derived from 4-grid point averaged ECMWF and single grid point ECMWF (ECMWF1)
data using LWTSEASþMLR.
secondly to develop a new set of circulation-dependant regression
equations for these air-quality regimes.

6. Conclusion

The primary aim of this paper is to evaluate a variety of
regression-based methodologies to hindcast levels of m8O3 and
PM10 from meteorological predictors. In order to quantify the
performance of the regression-based methods, several statistical
indices are used besides the common first and second order
moments: fit between modelled and observed series using the
explained variance, shape of the distribution in terms of skewness
and kurtosis and the performance against a persistence reference
model. The analysis based on the calibration period 2001–2004 and
an independent evaluation period 2005–2006 reveals that a strati-
fication of the dataset using the automated Lamb weather type
scheme, prior to the regression analysis improves the downscaling
results for m8O3 and PM10 in terms of explained variance and skill
score against the persistence model. Furthermore, simple model
regressions have shown not to be able to capture the deviation from
normality, e.g. with a non-zero skewness and kurtosis for the
observed m8O3 and PM10 distributions. The introduction of a clas-
sification approach can reproduce these nonlinearity characteris-
tics. Moreover, as m8O3 is highly dependent on seasonal changes in
its relations with meteorological predictors, the m8O3 regression
model is run in a seasonal mode, which is not helpful for PM10.

Before the regression-based methods can be used for downscaling
air-quality levels from coarse AOGCM-output, it needs to be tested
whether the observed local relations between meteorological and
air-quality variables hold on a larger scale. Therefore all regression-
based models are evaluated using low-resolution ECMWF data
interpolated on the spectral T63 horizontal grid for the period 2005–
2006. Using these data as an input of the regression-based models
leads to a slight decrease of the explained variance due to a lower
variability of the meteorological predictors. Nevertheless, this
approach can compete with other dynamical and statistical down-
scaling methods, which are often employed using observed time
series, without being tested on low-resolution gridded data.
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The somewhat deteriorated model performance is closely
related to both ECMWF model deficiencies as well as to the coarse
resolution of the data by averaging 4 surrounding grid points from
the spectral T63 horizontal grid. The results from the regression-
based model are similar in terms of RMSE, but better for the higher
m8O3 percentiles when using original ECMWF data on a Gaussian
N400 resolution (corresponding to about 25 km2) from the single
grid point nearest to Cabauw as input to the regression-based
model. Furthermore, comparing ECMWF meteorological data with
observed data has shown some circulation-specific biases for these
variables that play an important role in the ozone formation
process. Therefore, we can conclude that apart from the dampening
of variance due to the coarse resolution, ECMWF model deficiencies
also control the lower performance compared to modelled m8O3

and PM10 time series when observational meteorological data are
used as predictors. It is clear that the errors in the predictor vari-
ables need to be reduced or quantified in order to produce realistic
air-quality projections as a downscaling product of AOGCMs.

Our analysis shows that the use of a circulation approach prior
to a linear regression model is beneficial for representing higher-
order statistical moments of the air-quality level distributions and
that this method is therefore suitable for downscaling O3 concen-
trations. For PM10, the situation is different as a regression-based
approach using only meteorology data was found to be insufficient
to explain the observed PM10 variability. Therefore, the second part
of this analysis will only deal with projections of future m8O3

concentrations derived from an AOGCM.
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