Infrastructure for Collaborating Data-Researchers
in a Smart Grid Pilot

W. Labeeuw, Graduate Student Member, IEEE, S. Claessens, K. Mets, C. Develder, Member, IEEE,
G. Deconinck, Senior Member, IEEE

Abstract—A large amount of stakeholders are often involved
in Smart Grid projects. Each partner has its own way of storing,
representing and accessing its data. An integrated data storage
and a joint online analytical mining infrastructure is needed to
limit the amount of duplicated work and to raise the overall
security of the system. The proposed infrastructure is composed
of standard application software and an in-house developed data
analysis tool that allows researchers to add and share their own
functionality without compromising security.

Index Terms—Smart Grid, Software architecture, Data analy-
sis, Data storage systems, Data warehouses

I. INTRODUCTION

A lot of data has to be processed in smart grid projects. Data
for analysis is provided by different partners with different
approaches towards storing and accessing data. The need for
an integrated tool emerges. An infrastructure for conducting
analytical mining by different researchers in different univer-
sities and institutes is presented in this paper. The focus of the
infrastructure is functionality for the researchers and security
of the data to meet the concerns of the data providing partners
while respecting the knowledge discovery and data mining
process. The implementation of the infrastructure is done by
using application software and an in-house developed software
tool. A central software version control system hosts the in-
house developed software tool.

Within the ‘Linear’-project [1], different parties have pro-
vided data to perform initial analyses upon. The data consists
of metering and questionnaire information. Electricity con-
sumption as well as generation at residential level is metered.
A subset of the metered households are questioned at home.
Responses to the questionnaire are coupled with the metered
electricity consumption to assess demographic properties.

The data providing parties are concerned about the security
of the data. Especially confidentiality needs to be tackled.
Only authorized researchers have access to the data or parts
of the data. A central data storage system is the easiest way to

This work is supported by the Ministry of Science (Minister I. Lieten)
via the project Linear organized by the Institute for Science and Technology
(IWT).

Wouter Labeeuw and Geert Deconinck are with the Department of Elec-
trical Engineering ESAT-ELECTA, KU Leuven, Kasteelpark Arenberg 10,
B-3001 Heverlee, Belgium (e-mail: wouter.labeeuw @esat.kuleuven.be and
geert.deconinck @esat.kuleuven.be).

K. Mets and C. Develder are with the Department of Information Tech-
nology Broadband Communication Networks (IBCN), Ghent University -
IBBT, Gaston Crommenlaan 8 (Bus 201), B-9050 Gent, Belgium (email:
kevin.mets @intec.ugent.be and chris.develder @intec.ugent.be).

S. Claessens is with VITO, Boeretang 200, B-2400 Mol, Belgium (email:
sven.clacssens @vito.be).

secure data [2]. Researchers, on the other hand, are interested
in availability and the functionality of the data analysis tool.
The tool should have a limited impact on their desktop, but
the availability of the data should be high. Most of the data
transformation will need to be done at the server side and
only the results are stored locally. Data transformation and
retrieval from the central storage should be automated and
their preferred machine learning tool should be able to read
the retrieved data.

II. REQUIREMENTS

The requirements of the infrastructure are, as mentioned
above, twofold. The data providing parties have a strong focus
on security: only research institutes with a non-disclosure
agreement with the data providing party are allowed to read
the data. Researchers, on the other hand, want functionality:
the infrastructure and the corresponding software tool need
to respect the knowledge discovery and data mining process.
Automation and processing data transformations at the server
side are regarded as an asset.

A. Security

Security patterns are a mix of design patterns with focus
on security and best practices with respect to the architecture
and the system [2]. Although several security patterns exist,
not all of them are well supported in the pattern landscape [3].
Literature describes four kinds of security properties that are
commonly accepted: confidentiality, integrity, availability and
accountability [4], [5]. Confidentiality ensures that only autho-
rised people or software are able to view the data or certain
parts of the application. By enforcing integrity, data can only
be adjusted by authorised people or software and authorisation
is required to execute application calls. Availability makes
sure that the system is accessible and responsive at all times.
Accountability keeps track of who is responsible for which
action and can be used for non-repudiation and auditing.

The main requirements for the data providing partners are
related to data confidentiality. Researchers are interested in
availability and integrity at the server side. They want to be
able to continue their work if the server goes down and the
data has to remain sound to make sure that the results of
the analyses are reliable. Further on, someone should be held
accountable if something goes wrong with confidentiality and
integrity.



B. Functional

The infrastructure has to meet the requirements for the
knowledge discovery and data mining (KDD) and support the
online analytical mining (OLAM) processes. Online analyti-
cal mining is online analytical processing (OLAP) with the
inclusion of data mining.

Within online analytical processing of data, two subtypes
are defined: relational and multidimensional OLAP [6], [7].
Relational processing works with data stored in relational
databases. SQL-queries are used to process the data. Multidi-
mensional processing tools store data in special data structures
such as arrays and matrices. They use matrix operations to get
the data into the right form. Most of the processing needs to
be done in the relational database using SQL because of the
flexibility of the SQL-language. Special operations that are
hard to describe in SQL should be done by special routines
on the multidimensional data store.

The knowledge discovery and data mining process has five
different steps [8]: data selection, data preprocessing, data
transformation, data mining and interpretation. Data selection
is done on beforehand by consensus. The preprocessing of
the data is done before the data is placed in the database.
OLAP ensures the data transformation. Data transformation
results are stored locally. The use of a local computer makes
it easier for a researcher to use in-house developed or specific
data mining tools. In general, only subsets of the data are
required by the researcher. By keeping data at a central point
and requesting specific data, data storage at the researchers
part is reduced. However, not having all the data locally forces
the researcher to query each time some required data is not
yet available locally.

Automation of data retrieval makes it easier to query for
data. Researchers should be able to select data based on the
relations of the different questionnaire responses and metering
data in the database. Data needs be transformed into the right
aggregated form and time dimensions when it reaches the
researcher. It is preferred that the communication between
the central server and the researcher is limited. This requires
data transformations to be done at the server side by the
central SQL-server, i.e. relational online analytical processing.
Transformations that can not be executed by the SQL-server
because of the complexity of query generation, are done at the
desktop of the researcher. First, SQL-queries are sent to the
server to pre-transform the data. The received pre-transformed
data is then converted locally into the correct form by matrix
transformations, which is multidimensional online analytical
processing.

Researchers should be able to make adjustments to the data
analysis tool. The source code of the software tool has to be
shared by using a software version control system. Sharing
the source code increases the productivity of the researchers:
already implemented data retrieval or data transformation
scripts can be reused and adapted by other researchers.

III. OVERVIEW

An overview of the infrastructure can be found in Fig-
ure 1. Three different stages are defined: data cleaning and

preprocessing, data storage and data transformation, analysis
and interpretation according to the steps of the knowledge
discovery and data mining process. The full data set is stored
at a central server in an SQL-repository. An in-home devel-
oped data analysis tool is marked in grey. The tool includes
cleaning, warehousing (SQL-query generator), scripting and
processing. A version control system that keeps track of
the adjustments in the software tool is also hosted centrally.
Researchers have a version control system client to keep the
software tool locally up to date and to be able to commit their
own adjustments.

A. Data analysis tool

In Figure 1, the software tool is indicated by the grey
frame that surrounds its functionality. The different steps of
the knowledge discovery and data mining process determine
the functionality of the developed software tool.

At the local cleaning and preprocessing side, data selection,
data cleaning and data preprocessing is executed. Data selec-
tion is done on beforehand by consensus in meetings between
researchers and data providing parties about what data should
be researched. The cleaning functionality of the software
tool performs cleaning and preprocessing. The version control
system is able to keep code secret based on authentication
and authorisation. By placing data provider specific cleaning
functions in a different directory and by limiting authorisation
on the directories, references to specific data structures of the
data providing party are kept confidential.

Data transformation and interpretation are controlled at
the local transformation, analysis and interpretation side. The
warehousing functionality of the software tool generates SQL-
queries to process relations in the data and to aggregate data
based on date and time criteria. The results of the warehousing
are stored in the local data store, preserving the integrity of the
central data. Not all of the required data transformations can be
done by SQL queries. Processing functionality of the software
tool implements some additional transformations. Also, visu-
alisation is implemented. The processing functionality allows
for automated plotting of processed and transformed data. The
resulting plots are again stored at the local data store.

B. Security

The central storage server hosts the SQL-server. A firewall,
indicated in dark grey on Figure 1, limits the range of IP-
addresses that can connect to the central storage server. Only
the IP-addresses of the researchers, or the research institutes
if IP-addresses are dynamical, are allowed to connect to the
server. To secure the connection between the SQL-server
and the different clients, the SQL-traffic is tunnelled using
secure shell (SSH). It is not possible to eavesdrop on or to
tamper the SQL-messages in an SSH-tunnel. By storing the
RSA authorisation keys for the SSH connection to the server
locally, the researcher will be informed about an invalid key
if someone is trying to spoof the IP-address of the server.
Another advantage is that the SQL-server only needs allow
connections from localhost. The connection with the version
control system is secured by Hypertext Transfer Protocol



SSH
cleaning

SQL

7

SVN

data partner repository

subversion

https

SVN client httpd

SSh scriptin

warehousing [« enviropnmgnt
SQL

A

Y
l { processing
data store
data minin

https tool 9

SVN client

local cleaning and preprocessing central storage

Fig. 1. Data analysis infrastructure

Secure (HTTPS), which is HTTP traffic with Transport Layer
Security (TLS). Again, eavesdropping and tampering is made
almost impossible. A certification authority (CA) ensures that
spoofing is impossible.

IV. SECURITY

The most important requirement regarding security is confi-
dentiality. The data providing parties want to limit the number
of people that have access to their data. Only research institutes
with a non disclosure agreement with the data providing party
is able to view the data. Next, data integrity at the central
storage has to be met. If the data got changed before analysis,
wrong conclusions will be drawn. Availability is important for
the researchers. If the central server goes down, data analysis
can still be performed on the locally stored data. And if
confidentiality and integrity are violated, it should be possible
to trace back where the violation occurred.

Confidentiality is applicable to the data and the application.
Transmission confidentiality makes eavesdropping impossible.
Communication is made confidential by working with secure
pipes and secure access layers between the central storage
and the local workstations. Storage confidentiality at the
central server can be done by encrypting the data storage, but
the double authentication (SSH and SQL) and authorisation
(firewall) should keep unwanted guests out. Confidentiality
of the local data store is the responsibility of the researcher.
Application confidentiality is hard to implement if each client
has access to the data analysis tool. However, to make sure that
the data remains confidential, researchers and data providers
are only granted a limited access on the different tables. An
SQL-error will be generated if someone is trying to access
data without authorisation to do so.

The integrity of the data and the applications are tackled
as well. Transmission integrity is also dealt with by secure
pipes and secure access layers, making tampering impossible.
Storage integrity at the central storage is assured because
researchers only have read access in the database and the
transformed data used for mining is stored locally. Data
providers only have access to their data. Application integrity
can be coped with by using an input guard that checks all SQL
queries before passing them to the SQL-server. An SQL-server

local transformation, analysis & interpretation

has safety measures like authentication and authorisation on its
own and generates errors if erroneous queries are send to the
server. Further on, a query log keeps track of who is executing
which queries. It will be easy to point out which researcher
executed malicious queries.

A firewall makes sure that only connections from authorised
[P-addresses can be established and that only connections
to certain ports on the server are allowed. The availability
is raised by storing data transformation results locally. Ac-
countability is tackled by logging SQL-queries and SSH login
attempts.

A. Storing data at the client

In most cases, it is preferred to store data at the server
side for security reasons [2]. However, in the proposed infras-
tructure, client storage has advantages. Data providing parties
are able to chose which data is made available to the central
server. Not all metered data is placed in the central server.
Confidentiality of the non-upload data is as a consequence
high. The data at the central storage remains sound because
researchers are only limited to manipulating data locally. Also,
by storing the transformed data locally in comma separated
value files, it is possible to use most modern data mining tools.
Local storage makes sure that the already requested data stays
available if the server goes down.

The software tool needs to stay sound as well. Researchers
and data providing parties are able to make adjustments to
the data analysis tool locally. After tests, changes can be
committed to the central storage. If something goes wrong
with the data analysis tool, a previous version will replace
the non-functioning software. The data analysis tool remains
operational in this way. It is also possible for the data providing
parties to keep the specific functionality to pre-process their
own data locally, without committing it to the central server.

B. Firewall

A firewall operates at system level and is used to restrict
access to certain hosts at network level and to control incoming
and outgoing network connections [9]. The firewall is config-
ured in such a way that only connections from IP-addresses



of researchers and data providers are allowed. In cases where
IP-addresses are dynamic, a range of addresses is used in the
firewall, which is a practical, but less secure solution. Only
SSH- and HTTPS-connections are allowed, since these are
the only services that should be accessible from outside the
server. However, a firewall does not protect against other SSH
tunnelled connections. Firewalls are also unable to prevent
misuse of SQL and subversion. An input guard is able to fix
this problem, but because of the limited amount of users and
the slow query log, it was not implemented. A slow query
log tracks executed SQL-queries and the responding user that
executed the queries, making repudiation impossible.

C. Secure access layer

Secure access layer is a non-application security solu-
tion [10]. Existing security infrastructure is used to make
insecure applications secure, without adapting the application.
The secure shell (SSH) connection layer is used to tunnel
SQL-connections. It is impossible to eavesdrop on the tun-
nelled connection and the tunnelled connection can not be
tampered [11]. The use of SSH requires each researcher or
research institute to have an account on the host. By using a
secure access layer (SSH-tunnel), a standard SQL-connection
can be created between the application at the side of the
researcher or the data providing partner and the SQL-server.
The SQL-server only needs to listen to the localhost because
all connections have to be tunnelled. Connections that are not
tunnelled are not allowed, which increases security.

The disadvantage of secure shell is that users get an account
on the server. They are able to execute applications on the
server and they might try to get root access. The root account
needs to be disabled, so that nobody outside of the project tries
to guess the root password. This means that another account
has to get the possibility to become administrator (super user).

Most SSH-clients have a repository for the RSA-keys that
are used to establish the connection. When the RSA-keys are
stored locally, researchers and data providing parties will be
notified that the key is invalid if they try to connect to a
spoofed server, which is a way of detecting man-in-the-middle
attacks.

D. Secure pipe

A secure pipe tackles the same security issues as a secure ac-
cess layer: transmission confidentiality and integrity. However,
secure pipes are, in contrast to secure access layers, a form of
application security [12]. Transport Layer Security (TLS) and
its predecessor, Secure Sockets Layer (SSL), provide secure
transmission [13].

Apache Subversion is selected as version control system
because it is a centralized rather than distributed version
control system. With a central system, there is only one
repository, which is easier to track. Subversion is able to work
together with the Apache web server, by using Web Distributed
Authoring and Versioning (WebDAV). The Apache web server
also supports Transport Layer Security. The combination of
subversion with WebDAV and TLS/SSL results into a version
control system with secure communication. Man-in-the-middle

attacks are coped with by a public key certificate of the central
server, issued by a certification authority. The subversion client
uses the public key to encrypt the data. Only the owner of the
private key, i.e. the central storage server, is able to decrypt
1t.

E. Full view with errors

Full view with errors is a security pattern that describes
a system where users are allowed to access all software
operations, but the system generates error messages when
the user performs illegal actions [10]. The pattern is used to
disallow users to execute operations where they do not have
permissions for. A better way to handle the illegal operations
problem is working with a limited view. A limited view
gives an overview of the operations that the user is allowed
to do [10]. This is impossible to implement, since every
researcher has access to the same data analysis tool. Although
researchers are informed about the data they can access, full
view with errors might frustrate some users because they can
view functionality that they can not use. Full view with errors
is however easier to maintain.

Each researcher has its own account for the SQL-server.
The permissions for viewing the data can vary amongst the
different researchers. A researcher is granted its own limited
view on the data, which ensures confidentiality. The same goes
for the data providing partners: they have their own account
and limited access to the database. Due to the fact that some
competing companies had access to the same tables, it was
opted to appoint someone with write access to the database.
A better way to let the data providing partners upload their
data, is by the implementation of web services. The next step
in the project is to meter and sub-meter households and to
control appliances. Web services will be implemented when
data has to be uploaded frequently.

V. DATA ANALYSIS TOOL

Researchers demand that the data analysis tool is able to
conduct online analytical mining, a combination of online
analytical processing and data mining. The different steps
of the knowledge discovery and data mining paradigm are
the basis for the tool. The five steps are data selection,
data preprocessing, data transformation, data mining and in-
terpretation. Data mining itself is done by specialised tools
and is beyond the scope of the data analysis tool. Online
analytical processing relates to relational and multidimensional
data. Relations are used to select the relevant data sets for
data transformation. The result of the data transformation is
multidimensional data that can be read by the data mining
tool.

A. Cleaning

Although a large questionnaire is included, most data is me-
tering information of gas consumption or electricity consump-
tion and production. Metered electricity consumption data of
over 1500 residential customers, metered gas consumption
of over 800 residential customers, sub-metering data of over



80 residential customers and metered data of PV and CHP-
installations are amongst the data for the database [14].

Cleaning and pre-processing happens locally. Consensus
about the relevant data that needs to be placed into the database
determines data selection. Generic implemented functionality
to load the data into the database and a fixed database
scheme makes sure that the data is delivered uniformly by
the different partners. Data providing parties implement the
specific functionality to pre-process their own data.

The cleaning module in the data analysis tool is designed
to have generic classes to parse data files. At the top, generic
classes that can be used across different projects are de-
fined. These classes include routines to automatically generate
queries to place data into a database. Queries to place data
into the database of the project are the same amongst the
different data providing parties and are based on the fixed
structure in the SQL-database. Classes that implement the
project specific queries, inherit from these generic classes.
Missing data, metering information in a different time step
and data in a different unit are handled by generic cleaning
routines. Data providing parties implement specific classes,
tailor made on their specific representation of the data, e.g. a
special representation of timestamps, by inheriting from the
project classes and using the generic cleaning routines.

The purpose of preprocessing, which is part of the cleaning
module in the software tool, is getting the units of the data in
the same domain. All data should be in the same energy or in
power form. Time intervals of the data have to be the same,
e.g. fifteen minute time intervals. Daylight savings time has
to be applied in the same way, which requires interpolations
and aggregations in certain data sets.

The implementation of the cleaning functionality of the data
analysis tool is done in Python. A class designed around the
csv-library is used to read in the data. For each type of data,
a class is implemented to load the data into the database.
The idea was that the data provider would define a class
that inherits from this database inserting class and implement
specific routines for their data. However, this responsibility
was assigned to a dedicated database manager. Only the
database manager is allowed to write data into the database,
which ensures the storage integrity of the data and improves
accountability.

B. Warehousing

A data warehouse is, in general, a database which is used
for analysis and reporting. In contrast to most warehousing
solutions, warehousing data is stored locally in the described
infrastructure. Warehousing in this paper refers to a module
that implements the relational online processing. The module
generates queries to get aggregated data from the central
database and stores this information locally at the system of
the researcher.

The warehousing module generates SQL-queries to aggre-
gate data. SQL (Structured Query Language) supports multiple
aggregation functions, such as minimum, average, standard
deviation, variance, sum etc. SQL databases also have a
standardized way of storing date and time information and a lot

Query:

SELECT

AVG (power) as p,

month (ts) as mont, hour(ts) as hou,

minute (ts) as minut
FROM

metering
WHERE

ts BETWEEN %s AND %s
GROUP BY

mont, hou, minut
ORDER BY

mont, hou, minut

with arguments (Python, the datetime library):

e datetime (2008,1,1)
e datetime (2009,1,1) - timedelta (seconds=1)

Fig. 2. Automatically generated SQL-query to retrieve the load curve,
detailed up to minutes, of the average days of each month for all metered
profiles in 2008

of functions to manipulate that information. Second, minute,
hour, day, day of the week, month, etc. information is easy
to extract by using SQL. Data can be aggregated over time
frames by combining the ‘group by’-statement with date and
time intervals. For example, the load curve of the average day
of each month in 2008 can be calculated by using the average
function, by grouping by minute, hour, and month and by
requiring that only data from 2008 is selected, as shown in
Figure 2. Functionality like this is ideal to create different
kinds of load curves and to analyse behaviour. The date and
time data transformations themselves are hard to implement in
software, the use of an SQL-queries makes it very convenient.

The version control system makes sure that all researchers
have access to the warehousing module. Each researcher can
implement its own warehousing queries into the module.
Researchers tend to focus mainly on one domain, e.g. gas or
electricity. By pushing the query generating functionality to
the parent classes once the functionality has been tested, the
functionality becomes available for researchers with focus on
other domains, which ensures a rapid development of the data
warehousing functionality.

Although a large number of NoSQL-solutions provide
SQL-like support (e.g. Hive [15], Pig Latin [16] and
HadoopDB [17]), the magnitude of the amount of data is not
large enough to justify the use of NoSQL technologies for this
infrastructure.

C. Processing

The warehousing module of the data analysis tool is limited
to relational processing and the aggregation of data in the
time domain. Multidimensional online analytical processing
is done by the processing module. The multidimensional
processing functionality fills up the gaps of the warehousing:
extra date/time transformations, multidimensional algebraic
transformations, statistics and plotting functionality. The re-
sults from the data mining tool can be processed as well,
making it possible to iterate over warehousing, mining and
interpretation. Just as for the warehousing module, researchers
are encouraged to implement their own algorithms and share
them by committing the new functionality to the software
repository.



SQL-queries become very complex if a distinction between
weekdays and weekends has to be made. The process module
is able to read in aggregated data from the warehousing of
different weekdays and to convert it into a general weekday
and weekend day while keeping the amount of detail available
from the warehousing. For example, the average week of the
year with detail up to minutes can be converted into the
average weekday and weekend day with the same detail. This
conversion makes it easier to plot data, given that weekdays
are in general similar to each other.

Multidimensional data transformations are easier to perform
in an mathematical environment than an SQL-environment.
SciPy!, and its basis NumPy, provide convenient and fast
multidimensional array manipulations. SciPy and NumPy were
amongst the main reasons to chose Python. Principal com-
ponent analysis and multidimensional array projections are
amongst the most important multidimensional data transfor-
mation functions in the processing functionality.

Statistical information is useful to get additional insights of
the data. Different kinds of (cumulative) probability density
functions and curve fitting functions are implemented to allow
for statistical analyses.

The visualisation of the data transformation and the data
mining results is done by the plotting functionality in the
processing module. Support for the different date/time trans-
formation results is included. An example of the automation
of plotting is shown in Figure 3. The TimeSequencePlot
class reads the load curve data (measurements) and makes a a
plot of the load curve for each selected household, gives the
generated plot the name of the household id and places the
plots in the ¢mages directory. The plot contains curves for
each weekday.

D. Scripting

Building all the automation functionality into a graphical
user interface would be very time consuming and complex.
The functions of data transformation and retrieval depend on
the new insights researchers get by analysing the data. A
scripting environment is more flexible than a graphical user
interface, but requires more effort from the researchers as a
trade off. However, it is often easier to change a line of code
to get a different data transformation, than to rerun through a
graphical user interface. Also, scripts are exchangeable, while
user input is not.

Figure 3 shows a generic example of an automated data
retrieval script in the developed software package. The script
selects the household that meet the first and the second option
of question 1.1 in the question series 1. The load curve of
the electricity consumption on the average day of the month
for each month of 2008 is calculated for these households
and saved into the measurements file. The detail of the load
curve goes up to minute level. A plot of the load curve
of the electricity consumption of each selected household is
generated in the folder ¢mages.

ISciPy is open-source scientific software for Python, more information
available at http://www.scipy.org/

hQuest = QuestionRangel ()
hQuest.select = ["H_ID"]

hQuest.questionl_1 = [1,2]
ids = hQuest.execute ()
duration = {"from": datetime (2008,1,1),

"to": datetime(2009,1,1) - timedelta (seconds=1)}
intervals = ["quarter", "weekday", "hour", "minute"

eMeasure = Measurements (
eMeasure.selection = ["E"]
eMeasure.duration = duration
eMeasure.aggregator = "avg"
eMeasure.intervals = intervals
eMeasure.h_ids = ids

eMeasure.getdata ("output/measurements.csv")

readin = CSVReader ("output/measurements.csv")
p = TimeSequencePlot (readin)

p.format = "png"
p.outputdir = "images/"
p.output = map(str, ids)
p.duration = duration
p.newgraphon = "weekday"
p.intervals = intervals
p.execute ()

Fig. 3. Script example

VI. RELATED WORK

Rusitschka et al. presented a smart grid data cloud to
manage real time streams [18]. The focus of their work is
on different industrial parties in the smart grid domain. As in
the infrastructure in this paper, a distinction between parties
that are allowed to put data in and the ones that can only
get specific elements out of the database is made. However,
the interface is provided by APIs instead of a query language
(SQL) as presented in this paper. The API interface is based on
REST (representational state transfer). A PUT request pushes
data into the infrastructure, while a GET request is able to
pull data from the server. SQL is, in contrast to REST APIs
or portals, a declarative language that gives a lot of flexibility.
Their solution is better in an industrial environment where
predefined ways of retrieving data are preferred. The approach
presented in this paper suits researchers better.

A system infrastructure to analyse data in power grid com-
panies can be found in [19]. Some data mining algorithms are
implemented to predict wind power output. The infrastructure
has similarities with the infrastructure presented in this paper,
although the audience for their system is different. The users
of the system are not able to define their own queries, only a
portal is available.

Research collaboration is not limited to data. Liu et al.
describe a way to let dispatchers, security engineers, planners,
etc. collaborate on simulation models [20].

An in depth description of data cleaning of locally and
globally corrupted data can be found in [21]. Locally corrupted
data is data that deviates from the local patterns of time series,
while globally corrupted data deviates from the global trends.
Chen et al. use Splines and Kernel Smoothing to clean up the
data. Local and global cleaning in this work mainly consists
of removing or marking invalid data. Local cleaning is done
in the cleaning and preprocessing step, global cleaning is done
in the processing step.



VII. CONCLUSIONS

A lot of data mining is happening in the power system and
smart grid context [22]-[24]. Most online analytical mining
solutions presented in literature target industrial companies and
do not allow for active development and cooperation amongst
the users of the system [6], [18], [19]. Researchers have
different demands with respect to data analysis than people
in industry. The paper shows that a flexible infrastructure
for collaborating researchers is able to meet the security
requirements of industry.

The four types of security patterns (confidentiality, integrity,
availability and accountability) are the basis to design the
secure infrastructure. The use of secure access layers and a
secure pipes enforces confidentiality and integrity of the data
connections, making eavesdropping and message tampering
impossible. Researchers only get read access on the central
database, which makes it impossible for them to change data
at the central storage. The authentication systems, SSH- and
SQL-authentication, restrict access. Researchers have a full
view with errors, which means all the possibilities of the
software can be viewed by the researcher, but the software
generates errors when the user is trying to access a function
without the proper authorisation. The availability of the system
is raised by storing the data transformation results locally.
However, local storage has some confidentiality risks. A non
disclosure agreement of the research institutes with the data
providing parties and logging enforces accountability and
makes sure that reseachers protect their data locally.

Next to secure, the data analysis infrastructure needs to be
functional. The knowledge discovery and data mining process
is the basis for the functionality of the infrastructure. The
infrastructure has the different steps in the KDD process (data
selection, data preprocessing, data transformation, data mining
and data interpretation). Data selection is done on beforehand
by consensus in meetings. However, it is still possible to select
subsets of the data in the data transformation step. Cleaning
and preprocessing is implemented in the cleaning module of
the data analysis tool. Most of the data transformation is done
by the warehousing module. Warehousing, in the context of
the data analysis tool, refers to the relational online analytical
processing (ROLAP) of the data. The result of the ROLAP
process is multidimensional data, which is stored into the
local data store. The multidimensional data can be processed
or directly used in the data mining tool. Data mining is
not implemented in the tool, because most researchers have
their own preferred tool and the implementation of different
algorithms is very time consuming. Data transformations that
are not possible in SQL, are done by the processing module.
The processing module implements multidimensional online
analytical processing (MOLAP) and includes functions as
specific data/time transformations, multidimensional algebraic
transformations and statistics. The visualisation, needed for the
interpretation of the results, is done by the data mining tool
of the researcher or by the processing module.

REFERENCES

[1] E. Peeters, C. Develder, J. Das, J. Driesen, and R. Belmans, “Towards a
breakthrough of smart grids in Flanders,” in i-SUP conference, Bruges,

[2]
[3]

[4]

[5]

[6]
[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

Belgium, April 2010.

D. Kienzle, M. Elder, D. Tyree, and J. Edwards-Hewitt, “Security
patterns repository, version 1.0,” 2006.

T. Heyman, K. Yskout, R. Scandariato, and W. Joosen, “An analysis
of the security patterns landscape,” in Software Engineering for Secure
Systems, 2007. SESS ’07: ICSE Workshops 2007. Third International
Workshop on, May 2007.

N. Yoshioka, H. Washizaki, and K. Maruyama, “A survey on security
patterns,” Progress in Informatics, no. 5, pp. 3547, 2008.

A. Yautsiukhin, R. Scandariato, T. Heyman, F. Massacci, and W. Joosen,
“Towards a quantitative assessment of security in software architectures,”
in Nordic Workshop on Secure IT Systems (NordSec), October 2008.
S. Chaudhuri and U. Dayal, “An overview of data warehousing and olap
technology,” SIGMOD Rec., vol. 26, no. 1, pp. 65-74, Mar. 1997.

H. Hasan and P. Hyland, “Using OLAP and multidimensional data for
decision making,” IT Professional, vol. 3, no. 5, pp. 44 —50, Sep/Oct
2001.

U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “The KDD process for
extracting useful knowledge from volumes of data,” Commun. ACM,
vol. 39, no. 11, pp. 27-34, Nov. 1996.

M. Schumacher, “Firewall patterns,” in The 8th European Conference
on Pattern Languages of Programs (EuroPLoP 2003), Irsee, Germany,
June 2003.

J. W. Yoder and J. Barcalow, “Architectural patterns for enabling
application security,” in Fourth Conference on Pattern Languages of
Programs (PLoP 1997), Monticello, Illinois, Sept. 1997.

T. Ylonen and C. Lonvick, “The secure shell (SSH) transport layer
protocol,” Request for Comments 4254, 2006. [Online]. Available:
http://www.ietf.org/rfc/rfc4253.txt

C. Steel and R. a. Nagappan, Core Security Patterns: Best Practices and
Strategies for J2EE, Web Services, and Identity Management. Prentice
Hall PTR, 2005.

D. Wagner and B. Schneier, “Analysis of the ssl 3.0 protocol,” in
Proceedings of the Second USENIX Workshop on Electronic Commerce
- Volume 2, ser. WOEC’96. Berkeley, CA, USA: USENIX Association,
1996, pp. 29-40.

W. Labeeuw and G. Deconinck, “Customer sampling in a smart grid
project,” in Proceedings of the IEEE PES general meeting, 2012,
accepted, to be published.

A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu,
P. Wyckoff, and R. Murthy, “Hive: a warehousing solution over a map-
reduce framework,” Proc. VLDB Endow., vol. 2, no. 2, pp. 1626-1629,
Aug. 2009.

C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, “Pig
latin: a not-so-foreign language for data processing,” in Proceedings of
the 2008 ACM SIGMOD international conference on Management of
data, ser. SIGMOD ’08. New York, NY, USA: ACM, 2008, pp. 1099—
1110.

A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi, A. Silberschatz, and
A. Rasin, “Hadoopdb: an architectural hybrid of mapreduce and dbms
technologies for analytical workloads,” Proc. VLDB Endow., vol. 2,
no. 1, pp. 922-933, Aug. 2009.

S. Rusitschka, K. Eger, and C. Gerdes, “Smart grid data cloud: A
model for utilizing cloud computing in the smart grid domain,” in
First IEEE International Conference on Smart Grid Communications
(SmartGridComm), Oct. 2010, pp. 483 —488.

A. Bara, I. Lungu, M. Velicanu, and S. Oprea, “Intelligent systems for
predicting and analyzing data in power grid companies,” in Information
Society (i-Society), 2010 International Conference on, june 2010, pp.
266 —271.

J. Liu, X. Li, D. Liu, H. Liu, and P. Mao, “Study on data management
of fundamental model in control center for smart grid operation,” Smart
Grid, IEEE Transactions on, vol. 2, no. 4, pp. 573 =579, dec. 2011.

J. Chen, W. Li, A. Lau, J. Cao, and K. Wang, “Automated load curve
data cleansing in power systems,” Smart Grid, IEEE Transactions on,
vol. 1, no. 2, pp. 213 221, sept. 2010.

M. Sforna, “Data mining in a power company customer database,”
Electric Power Systems Research, vol. 55, no. 3, pp. 201 — 209, 2000.
L. B. Romdhane, N. Fadhel, and B. Ayeb, “An efficient approach for
building customer profiles from business data,” Expert Systems with
Applications, vol. 37, no. 2, pp. 1573-1585, 2010.

G. Chicco, R. Napoli, and F. Piglione, “Comparisons among clustering
techniques for electricity customer classification,” Power Sytems, IEEE
Transactions on, vol. 21, no. 2, pp. 933 — 940, 2006.



VIII. BIOGRAPHIES

Wouter Labeeuw received the M.Eng. degree in electronics-ict from Provin-
ciale Industriéle Hogeschool, Kortrijk, Belgium, in 2007 and the M.Sc. degree
in computer science from the Katholieke Universiteit Leuven (KU Leuven),
Leuven, Belgium, in 2009. He is currently a Research Assistant at K.U.
Leuven ESAT/ELECTA, where he is working toward the Ph.D. degree.

Sven Claessens received the M.Eng. degree in computer engineering from
Stedelijke Industriéle Hogeschool Antwerpen Mechelen (IHAM), Belgium,
in 1991. He has been active as a software engineer in different domains like
telecommunication, medical, micro-electronics and energy. Since 2009, he is
employed at the Flemish Institute for Technological Research (VITO), and is
involved in research projects related to Smart Grids.

Kevin Mets received the M.Sc. degree in computer science from Ghent
University - IBBT, Ghent, Belgium, in 2009. He is currently a Research
Assisent at the Internet Based Communication Networks and Services research
group at the Department of Information Technology, Ghent University, where
he is working toward the Ph.D. degree.

Chris Develder received the M.Sc. degree in computer science engineering
and a Ph.D. in electrical engineering from Ghent University (Ghent, Belgium),
in July 1999 and December 2003 respectively. From Jan. 2004 to Aug.
2005, he worked for OPNET Technologies, on transport network design and
planning. In Sep. 2005, he re-joined the research group IBCN in the Dept.
of Information Technology (INTEC) at Ghent University as a post-doctoral
researcher, and as a post-doctoral fellow of the FWO since Oct. 2006. In
Oct. 2007 he obtained a part-time, and since Feb. 2010 a fulltime associate
professorship at Ghent University. His research interests include dimensioning,
modeling and optimizing optical (grid/cloud) networks and their control
and management, smart grids, as well as multimedia and home network
software and technologies. He regularly serves as reviewer/TPC member for
international journals and conferences (IEEE/OSA JLT, IEEE/OSA JOCN,
IEEE/ACM Trans. Networking, Computer Networks, IEEE Network, IEEE
JSAC; IEEE ICC, IEEE SmartGridComm, ECOC, etc.)

Geert Deconinck received the M.Sc. degree in electrical engineering and the
Ph.D. degree in applied sciences from the Katholieke Universiteit Leuven (KU
Leuven), Leuven, Belgium, in 1991 and 1996, respectively. Since 1997, he has
been with the staff of the Department of Electrical Engineering, K.U.Leuven,
first as a Postdoctoral Fellow and now as full Professor. His research interests
include the design, analysis, and assessment of software-based fault-tolerant
solutions to meet real-time, dependability, and cost constraints for embedded
applications on parallel and distributed systems.



