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Abstract

The topic of this dissertation is situated in the field of machine learning. In
general, machine learning is concerned with the development of algorithms that
can learn from empirical datasets containing input and target patterns. What
will be considered within the context of this dissertation, is learning predictive
models from relational data. While propositional data is represented by a single
tuple for each input pattern, in relational data every input pattern consists of
multiple tuples with relationships between the tuples. Learning approaches
for this type of data should always take into account properties of the input
pattern as a whole. This could be structural features, which are properties
based on substructures of the input pattern, or aggregate features, which are
properties based on subsets of the collection of input pattern tuples. The focus
of this dissertation will be on aggregate features.

Artificial neural networks are one particular method in the field of machine
learning. Originally, they were developed as a method for simple data domains
in which every input pattern is represented by a single input vector of fixed
size. There has also been quite some interest in the use of neural networks for
relational data domains, but most of this research has focused on learning
structural features. The aspect of learning aggregate features with neural
networks has received very little attention so far, although this topic might
be more promising. Learning structural features with neural networks gives
rise to a number of problems but learning aggregate features is a task that
suits them very well. Therefore, a number of neural network approaches will
be developed in this dissertation that deal with learning aggregate features
from relational data.

The first part of the dissertation focuses on methods for data containing only
a single relation. This means that each input pattern can be represented as a
single, homogenous collection of tuples, with all tuples of the same type. In the
second part of the dissertation, methods for data containing multiple relations
are considered. In this case, every input pattern is represented by multiple
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iv ABSTRACT

collections of tuples, with different types of tuples for different collections.
For both cases, similar neural network methods are developed and empirically
tested on a number of datasets. These approaches are compared, both from
a theoretical and an experimental point of view, to related approaches such
as multi-instance methods or neural networks for graph structures. The
experimental results show that the new methods can be viable options for
tackling specific kinds of problems and have a performance that is in many
cases comparable to the performance achieved with other methods or in some
cases even better.



Beknopte samenvatting

Het onderwerp van deze dissertatie situeert zich in het onderzoeksveld machine
learning. Dit onderzoeksdomein spitst zich toe op de ontwikkeling van
algoritmes die in staat zijn te leren op basis van empirische gegevens, bestaande
uit invoerpatronen met daaraan gekoppelde doelvariabelen. In de context van
deze dissertatie wordt er voornamelijk gekeken naar het leren van voorspellende
modellen op basis van relationele gegevens. Dit zijn gegevens waarbij elk
invoerpatroon bestaat uit meerdere tupels met mogelijk bepaalde verbanden
tussen de tupels, dit in tegenstelling tot propositionele gegevens waarbij elk
invoerpatroon bestaat uit een enkel tupel. Leermethodes voor relationele
gegevens zullen steeds rekening moeten houden met de eigenschappen van
het invoerpatroon als geheel. Dat kunnen zowel structurele eigenschappen
zijn, gebaseerd op substructuren van het invoerpatroon, als geaggregeerde
eigenschappen, dat zijn eigenschappen die informatie uit een aantal tupels van
het invoerpatroon samenvatten. De klemtoon in deze dissertatie zal liggen op
geaggregeerde eigenschappen.

Artificiële neurale netwerken zijn een specifieke methode in machine learning.
Ze werden in eerste instantie ontwikkeld als een methode voor simpele,
propositionele gegevens waarbij elk invoerpatroon wordt voorgesteld door een
enkele vector met vaste lengte. Er is daarnaast ook heel wat onderzoek verricht
naar het gebruik van neurale netwerken in relationele domeinen, maar het
grootste deel van dit onderzoek concentreerde zich op structurele eigenschappen.
Het leren van geaggregeerde eigenschappen binnen de context van neurale
netwerken is een onderwerp dat tot dusver weinig aandacht gekregen heeft,
ondanks het feit dat net daarin heel wat potentieel zit. Het leren van
structurele eigenschappen met neurale netwerken geeft immers aanleiding tot
een aantal problemen, zodat ze geschikter zijn voor het leren van geaggregeerde
eigenschappen. Om die reden worden er in deze dissertatie een aantal methodes
ontwikkeld, gebaseerd op neurale netwerken, die zich richten op het leren van
geaggregeerde eigenschappen uit relationele gegevens.

v
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Het eerste deel van de dissertatie concentreert zich op methodes voor gegevens
die slechts een enkele relatie bevatten. Dat wil zeggen dat elk invoerpatroon
kan voorgesteld worden als een homogene groep tupels, allemaal van hetzelfde
type. In het tweede deel worden methodes bekeken die kunnen omgaan met
meerdere relaties. In dat geval bestaat elk invoerpatroon uit verschillende
groepen van tupels, waarbij de types van de tupels tussen de groepen kunnen
verschillen. Voor beide gevallen worden er gelijkaardige methodes uitgewerkt
die empirisch getest worden op een aantal gegevensbanken. De verschillende
methodes worden vergeleken, zowel in theoretisch als experimenteel opzicht,
met verwante methodes zoals algoritmes voor multi-instance problemen of
neurale netwerken voor grafen. De experimentele resultaten tonen aan dat deze
nieuwe methodes een bruikbare optie zijn voor bepaalde problemen en dat hun
performantie in vele gevallen vergelijkbaar is met die van andere methodes, in
sommige gevallen zelfs beter.
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Chapter 1

Introduction

In this chapter, the topic of the dissertation is introduced and some context is
given. To start with, machine learning is explained, the research field in which
this work is situated. Next, the goals of this work will be discussed and an
outline of the rest of text will be given.

1.1 Machine Learning

Machine learning is a subfield of artificial intelligence dealing with the
development of algorithms that allow computers to learn. Learning in this
context can be defined as the automatic acquisition of knowledge from some
kind of experience about the problem at hand. In this way, a computer program
can improve its own performance. Experience is typically provided as a number
of empirically observed patterns and is referred to as the data. The knowledge
that is obtained from the data throughout the learning process, is referred to
as the model. It can have different forms, depending on the method.

1.1.1 Learning Tasks

There are different possible learning tasks [35]. In descriptive learning for
instance, the goal is to find interesting regularities in the data. Another learning
task is predictive learning, where the goal is to find a model that can predict
some property of the data. This property is called the target. The data will
typically provide a number of example patterns with associated, known targets
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2 INTRODUCTION

from which the model can be learned. Afterwards, this model can be used to
make predictions for new patterns for which the target is not known. This
dissertation will only be concerned with predictive learning, not with other
kinds of learning.

A further distinction can be made between classification and regression tasks.
In classification, each data pattern has an associated target class, which has
to be predicted. So the prediction is a discrete value. As a consequence,
a prediction by the model is simply right or wrong. The performance of a
classification model can therefore be measured by the accuracy, the percentage
of correctly classified patterns. In regression, a real target value is associated
with each data pattern and the model has to predict this real value. The
prediction will not just be right or wrong, but will have some error with regard
to the target. This error is the difference between the predicted value and the
target value. A performance measure that is often used in this case is the mean
squared error.

1.1.2 Relational Learning

Nothing has been mentioned so far about the data patterns used as input for
the model. A lot of research in machine learning has focused on the most
simple data format. In this format, each pattern is described by a tuple. A
tuple contains values for a fixed number of attributes. This setting is called
attribute-value learning or propositional learning. This approach is probably
still the most widely used approach in machine learning.

However, more complicated data structures might be needed in some cases.
If the data under consideration is sequential for instance, it makes sense to
represent the data patterns as sequences of tuples instead of single tuples and
thus move from propositional learning to learning from sequences. In the next
chapter, learning from bags will be discussed, which is very similar to learning
from sequences, except that sequences are ordered while bags are not.

Sequences or bags are still very simple structures. It is possible to go further
and consider learning from trees or graphs. All these settings belong to the
domain of relational learning [8, 13], in which data patterns are described as
collections of elements with relationships between the elements. More details
will be given in later chapters. The topics discussed in Chapters 5, 6 and 7
involve relational learning settings.
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1.2 Motivation and Goals

The key idea behind this research is to develop a method for dealing with
relational data based on neural networks. This idea will be worked out step by
step in the following chapters. More specifically, the focus will be on learning
models that involve aggregation rather than structural features. Learning
aggregate features is a very challenging task, but it is definitely worth studying
in detail because it can be argued that it is one of the key elements of relational
learning. However, there are still relatively few methods with an explicit focus
on learning these aggregate features. In neural networks research for instance,
there has been much more interest in adapting networks to structured data
domains.

The approach taken in this dissertation, can be compared to existing work in
the context of inductive logic programming where several strategies have been
devised to embed aggregate features in the learned models. These features
are built using special aggregate predicates that are included in the knowledge
base. Of course, a neural network method will differ fundamentally from these
inductive logic programming methods with regard to the learned model and the
learning algorithm. The model will not be expressed in logic but in numerical
parameters and learning will be done by numerical optimization instead of
traversing a search space. It is interesting to explore this radically different
approach because it provides a different point of view on this type of learning
problems, with different advantages and disadvantages.

Although the popularity of neural networks has decreased over the years, mainly
in favor of kernel methods, they are well suited for this particular learning
setting. Basically, they approximate a function by using a composition of
units representing simpler functions. This makes it rather straightforward to
embed special units for aggregation in the network that can be adapted in a
very gradual and smooth way. For most other machine learning methods, it is
difficult to do something similar to this. There are for instance also kernels for
sets, which rely on some form of aggregation as well. However, different types
of kernels have been proposed with different advantages and disadvantages.
Most of these kernels also have a number of parameters. The most suitable
combination of type and parameters differs from case to case. The obvious
path to tackle this kind of problems would be to conduct a search through
different kernel types and parameters. But this is in fact very similar to the
inductive logic programming setting where a search is conducted to find the
right aggregate predicate. Therefore, this kernel approach would be closer to
this kind of methods than to the approach taken here.

For the first chapters, the focus will be on methods for data containing only
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a single relation. This means that each input pattern can be represented as
a single, homogenous set of tuples, with all tuples of the same type. In the
second part of the dissertation, methods for data containing multiple relations
are considered. In this case, every input pattern is represented by multiple sets
of tuples, with different types of tuples for different sets. For both cases, similar
neural network methods are developed and empirically tested on a number of
datasets.

1.3 Outline

Chapter 2 discusses the basics of neural networks and serves as a short
introduction to the subject. The rest of the text falls apart in two main parts.
The first part deals with neural networks for learning aggregate features. This
topic is discussed in Chapters 3 and 4. The second part is a logical extension of
this learning setting and will deal with neural networks for relational domains.
This part comprises Chapters 5, 6 and 7.

In Chapter 3, the different aspects of learning aggregate features are discussed.
After explaining learning from bags, different types of aggregate features and
possible strategies to learn them are considered. At the end of the chapter,
existing methods for learning aggregate features are discussed.

In Chapter 4, different types of neural network structures are presented that
are able to learn aggregate features. First, a number of network types are
proposed that are extensions of standard feedforward and recurrent networks.
Second, a cascade-correlation network is considered in which several types of
networks are combined. Important issues such as training are discussed as well.
The performance of all these networks is also tested in a series of experiments.

Chapter 5 makes the transition towards learning from relational data and
gives an overview of some existing neural network approaches for learning
from structured data. It covers recurrent, recursive and graph neural networks.
Details of these methods are explained and some advantages and disadvantages
of the different methods are discussed.

In Chapter 6, extensions of standard feedforward and recurrent networks to
relational domains are presented, similar to what was done in Chapter 4 for
learning aggregate features. Aspects such as the encoding of the network from
the data description and training of the network are discussed. A number of
experiments are also conducted to assess the performance of this method.

Chapter 7 also deals with neural networks for relational domains, but in this
chapter a cascade-correlation network is proposed. This is, again, similar to
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what was done in Chapter 4 for learning aggregate features. Data conversion
and training of the network are discussed. The same experiments as in Chapter
6 are conducted to compare the performance of the different methods.

Finally, Chapter 8 draws some general conclusions and discusses directions for
future work.

1.4 Publications

Chapters 4, 6 and 7 contain original research and describe novel methods
developed by the author. Most of this has been published before in conference
and journal papers. The other chapters mainly serve as context and background.
They also contain discussions of methods developed by other authors that relate
in some way to this work.

The publications related to Chapter 4 are:

• Werner Uwents and Hendrik Blockeel. A comparison between neural
network methods for learning aggregate functions. In Discovery
Science, volume 5255 of Lecture Notes in Computer Science, pages 88–99.
Springer, October 2008.

• Werner Uwents and Hendrik Blockeel. Learning aggregate functions with
neural networks using a cascade-correlation approach. In Inductive Logic
Programming, 18th International Conference, ILP 2008, Proceedings,
volume 5194 of Lecture Notes in Computer Science, pages 315–329.
Springer, September 2008.

• Werner Uwents, Celine Vens, Anneleen Van Assche, and Hendrik Blockeel.
Learning aggregations and selections with relational neural networks. In
M. Gori and P. Avesani, editors, Proceedings of the Workshop on Sub-
Symbolic Paradigms for Learning in Structured Domains, pages 112–121,
2005.

The publications related to Chapters 6 and 7 are:

• Werner Uwents, Gabriele Monfardini, Hendrik Blockeel, Marco Gori,
and Franco Scarselli. Neural networks for relational learning: An
experimental comparison. Machine Learning, 82(3):315–349, 2011.

• Werner Uwents, Gabriele Monfardini, Hendrik Blockeel, Franco Scarselli,
and Marco Gori. Two connectionist models for graph processing: An
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experimental comparison on relational data. In T. Gärtner, G.C. Garriga,
and T. Meinl, editors, MLG 2006, Proceedings on the International
Workshop on Mining and Learning with Graphs, pages 211–220, 2006.

• Werner Uwents and Hendrik Blockeel. Classifying relational data with
neural networks. In Inductive Logic Programming, 15th International
Conference, ILP 2005, Proceedings, volume 3625 of Lecture Notes in
Computer Science, pages 384–396. Springer, 2005.

• Werner Uwents and Hendrik Blockeel. Experiments with relational neural
networks. In M. van Otterlo, M. Poel, and A. Nijholt, editors, Proceedings
of the Fourteenth Annual Machine Learning Conference of Belgium and
the Netherlands, pages 105–112, 2005.

• Hendrik Blockeel and Werner Uwents. Using neural networks for
relational learning. In T. Dietterich, L. Getoor, and K. Murphy,
editors, ICML 2004 Workshop on Statistical Relational Learning and Its
Connections to Other Fields, pages 23–28, 2004.



Chapter 2

Neural Networks

The following chapters will focus on one specific method within machine
learning, i.e., artificial neural networks. In this chapter, the basic concepts
of neural networks are explained first. In the second part of the chapter, some
general background is given about neural networks for structured and relational
domains, which paves the way for the discussions in the following chapters.

2.1 Neural Networks

Artificial neural networks, or simply neural networks, are one example of a
machine learning method. Because the rest of the dissertation will involve
different types of neural networks, the basic notions about neural networks will
be explained here. This explanation will also provide a good example of how
machine learning methods, discussed in very general terms in the introduction,
work in practice.

2.1.1 Feedforward Neural Networks

A neural network [22, 4, 43] is a non-linear model that can be trained to learn
complex functions between input and output patterns. The name is due to the
analogy with biological neural networks as present in the central nervous system.
Although the actual functioning is rather different, there is a similarity between
both in the sense that functions are performed collectively and represented
distributively by the subparts of the networks.

7
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Figure 2.1: Simple feedforward network with two inputs, three hidden units
and one output unit.

The basic idea is to represent a complex function by modeling it as a
composition of simpler functions. This composition can be modeled as a
directed graph or network. Each node of the network represents a unit, either
an input unit or a neuron. The neurons all represent a simple function. Every
edge represents a directed and weighted connection between two units. In
principle, connections between units can be made in any way, but usually it is
done in a regular fashion by organizing the units in layers. Typically, there is
a layer with input units, a layer with output units and a layer in between with
hidden units.

Example 2.1. Figure 2.1 depicts an example of a simple feedforward network
with two inputs, three hidden units and one output unit.

The simplest type of networks are feedforward networks. In a feedforward
network, the information only flows forward, from inputs to outputs. This
implies that there are no cycles or loops in the network. It also means that it
is possible to define an order in which the values of the units in the network
should be computed to generate valid output values.

For each unit, an activation value is computed. For the input units, this is
simply the corresponding value of the input vector. For the other units, this
value is computed based on the activation values of units that have a connection
to the considered unit. For a typical two layer network, the activation values
xj of the hidden layer units and the activation values yj of the output layer



NEURAL NETWORKS 9

✲ x

✻
σ(x)

0

1

Figure 2.2: Example of a sigmoid function.

units are computed as follows:

netxj
=

N
∑

i=1

wijui + bj (2.1)

xj = f(netxj
) (2.2)

netyj
=

H
∑

i=1

w′
ijxi + b′

j (2.3)

yj = f(netyj
) (2.4)

with N the number of inputs, H the number of hidden units, ui the input values,
wij the weights of the hidden layer, w′

ij the weights of the output layer, bj the
bias weights of the hidden layer, b′

j the bias weights of the output layer and f
an activation function. A typical activation function is the sigmoid function σ,
shown in Figure 2.2, or a similar function. Networks can have more than one
hidden layer, but in most cases, one hidden layer suffices.

2.1.2 Backpropagation

The backpropagation algorithm is probably the most popular training method
for feedforward neural networks. Training a network is defined as a
minimization problem, with the weights of the network connections as the
parameters that need to be optimized. The mean squared error of the network,
computed on all training examples, is the objective function that has to be
minimized. It is a function of the weights of the connections in the network.
After computing the gradient of this function, the weights can be adjusted in
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order to reduce the mean squared error. By repeating this procedure, a series
of weight adjustments can be made that will hopefully let the weight values
converge to an optimum, minimizing the total output error.

The training data consists of P pairs {up, tp}, with up = {up
1, . . . , up

N} the
input vector and tp = {tp

1, . . . , tp
M} the corresponding target vector. N is the

size of the input vectors and M the size of the output vectors. When the
output values of the network are computed for input vector up, an output
vector yp = {yp

1 , . . . , yp
M} is obtained. For each pattern p, a squared error Ep

between the output vector yp and the target vector tp can be computed:

Ep =
1
2

M
∑

k=1

(tp
k − yp

k)2 (2.5)

The total squared error is the sum of all squared errors on all the training
patterns, while the mean squared error is the total squared error divided by
the number of training patterns, P :

E =
1
P

P
∑

p=1

Ep (2.6)

=
1

2P

P
∑

p=1

M
∑

k=1

(tp
k − yp

k)2 (2.7)

It is clear that E is a function of the weight parameters of the network. To
minimize this error E, the gradient ∂E

∂wij
is computed. After that, gradient

descent is applied. The gradient vector points in the direction of the steepest
ascent, so the negative gradient vector points in the direction of the steepest
descent. By taking a small step in the direction of the negative gradient vector,
a lower value for E is obtained, moving towards a minimum on the error surface.
To make this step, adaptations for all weights should be computed:

∆wij = −η
∂E

∂wij

and ∆w′
ij = −η

∂E

∂w′
ij

(2.8)

with η the step size of the gradient descent. The partial derivatives ∂E
∂wij

and
∂E

∂w′

ij

can be broken down by using equation 2.6. For ∂E
∂wij

this results in:

∂E

∂wij

=
1
P

P
∑

p=1

∂Ep

∂wij

(2.9)
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Applying the chain rule to ∂Ep

∂wij
results in:

∂Ep

∂wij

=
∂Ep

∂netp
xj

∂netp
xj

∂wij

(2.10)

with netp
xj

the sum of all weighted input values:

netp
xj

=
N
∑

i=1

wijup
i + bj (2.11)

This means that:

∂netp
xj

∂wij

=
∂

∂wij

N
∑

i=1

wijup
i = up

i (2.12)

If δp
xj

is defined as:

δp
xj

= −
∂Ep

∂netp
xj

(2.13)

then equation 2.10 can be rewritten as:

∂Ep

∂wij

=
∂Ep

∂netp
xj

∂netp
xj

∂wij

= −δp
xj

up
i (2.14)

To compute δp
xj

, the chain rule can be applied again:

δp
xj

= −
∂Ep

∂netp
xj

= −
∂Ep

∂xp
j

∂xp
j

∂netp
xj

(2.15)

Similar formulas can be derived for the output units, defining the partial
derivatives and the δp

yj
values in the same way:

∂Ep

∂w′
ij

=
∂Ep

∂netp
yj

∂netp
yj

∂w′
ij

= −δp
yj

xp
i (2.16)

δp
yj

= −
∂Ep

∂netp
yj

= −
∂Ep

∂yp
j

∂yp
j

∂netp
yj

(2.17)
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The second part of Equations 2.15 and 2.17 is the derivative of activation
function f :

∂xp
j

∂netp
xj

= f ′(netp
xj

) (2.18)

∂yp
j

∂netp
yj

= f ′(netp
yj

) (2.19)

For a hidden unit, the effect of a change in the activation value on the final
output values, can only be propagated through the M outgoing connections of
that unit. Using the chain rule, this results in the following equation:

∂Ep

∂xp
j

=
M
∑

k=1

∂Ep

∂netp
yk

∂netp
yk

∂xp
j

=
M
∑

k=1

∂Ep

∂netp
yk

w′
jk = −

M
∑

k=1

δp
yk

w′
jk (2.20)

By using Equations 2.20 and 2.18, Equation 2.15 can be rewritten as:

δp
xj

= f ′(netp
xj

)
M
∑

k=1

δp
yk

w′
jk (2.21)

The δp
yj

values are even easier to determine because the contribution to the
output error is known directly. Equation 2.5 implies that:

∂Ep

∂yp
j

= −(tp
j − yp

j ) (2.22)

By using Equations 2.22 and 2.19, Equation 2.17 can be rewritten as:

δp
yj

= (tp
j − yp

j )f ′(netp
yj

) (2.23)

Together, Equations 2.23 and 2.21 provide a way to calculate the δ values for
all neurons by proceeding from the outputs to the inputs. In this way, the error
signal is backpropagated from the outputs towards the inputs, hence the name
of the algorithm. The δ values are then used to compute the weight adaptations
from Equation 2.8:

∆wij = η
1
P

P
∑

p=1

δp
xj

up
i (2.24)

∆w′
ij = η

1
P

P
∑

p=1

δp
yj

xp
i (2.25)
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The bias weights should be adapted in the same fashion, the reasoning is exactly
the same as for the other weights.

2.1.3 Resilient Propagation

The backpropagation algorithm provides an elegant way to adjust the weight
parameters of a neural network, but one of its drawbacks is the learning
parameter η. The choice of this parameter determines the time needed until
the algorithm converges to an optimum because it determines the step size
of the gradient descent. If it is set too small, it will take a large number of
iterations before an acceptable solution is reached, but if it is set too large, it
will be difficult to come close enough to the optimum because the algorithm
takes too large steps.

Different solutions have been proposed to determine the learning rate dynam-
ically during training. One of these methods is resilient propagation [42, 41].
The idea is to increase the step size as long as steps are taken in the same
direction, and to decrease it otherwise. This allows to move rapidly on long
monotone parts of the error curve, but also to take smaller steps in the
neighborhood of a local optimum to approximate it well.

For each weight wij a value ∆ij is computed, which determines the size of the
weight update. The computation depends on the sign of the partial derivative
of the weight wij . If this sign has changed with regard to the previous iteration,
it means that the last update was too big and the algorithm has jumped over
a local minimum. Therefore, the update value is reduced with a factor η−. If
the sign is still the same, the value is increased with a factor η+. So the update
value grows when all updates keep on being positive or negative, and it shrinks
when the updates alternate between being positive and negative. This results
in Algorithm 2.1.

A number of parameters have to be determined still, and the same values will
be used as in [42]. The ∆ij values are limited by a minimum and a maximum.
These values are set to 1e−6 and 50 respectively. The initial values ∆0 of
the ∆ij values also have to be determined, 0.1 is a reasonable choice for that.
And also the scaling factors η− and η+ have to be set. Reasonable values are
η− = 0.5 and η+ = 1.2.

The resilient propagation training algorithm will be used as the basic training
algorithm for the networks in the next chapters.
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Algorithm 2.1 The resilient propagation training algorithm for adapting the
weights wij , T is the number of training iterations.

∆ij(0) = ∆0

∂E
∂wij

(0) = 0

for t = 1 to T do

for each wij do

compute ∂E
∂wij

(t)

if ∂E
∂wij

(t− 1)× ∂E
∂wij

(t) > 0 then

∆ij(t) = minimum(∆ij(t− 1)× η+, ∆max)

∆wij(t) = −sign
(

∂E
∂wij

(t)
)

×∆ij(t)

wij(t + 1) = wij(t) + ∆wij(t)

else if ∂E
∂wij

(t− 1)× ∂E
∂wij

(t) < 0 then

∆ij(t) = maximum(∆ij(t− 1)× η−, ∆min)
∂E

∂wij
(t) = 0

else if ∂E
∂wij

(t− 1)× ∂E
∂wij

(t) = 0 then

∆wij(t) = −sign
(

∂E
∂wij

(t)
)

×∆ij(t)

wij(t + 1) = wij(t) + ∆wij(t)

end if

end for

end for

2.2 Neural Networks for Relational Domains

The standard neural network is only suitable for simple input patterns
consisting of single vectors. But more advanced types of neural networks have
been developed to deal with relational data domains. There are however two
new aspects that come into play when using neural networks - or other machine
learning methods - in relational domains.

2.2.1 Learning Structural Features

There has been quite some research in the past on using neural networks for
relational learning [46, 15, 18, 21]. From the beginning of the development
of neural networks, the possibility of using recurrent instead of feedforward
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networks has been explored. This kind of networks can process sequences of
input vectors instead of single vectors. From there, it was only a small step to
expand this to treelike structures and acyclic graphs. More recently, methods
have been proposed that can also process cyclic graphs. The details of some of
these approaches will be discussed in Chapter 5.

Most of the existing methods focused mainly on learning structural features,
i.e., they are designed to learn concepts based on some characteristic structural
pattern in the input pattern. This could for instance be the occurrence of
a specific combination of attributes, distributed over a number of connected
vectors in the input pattern. A good example of this is a learning problem
where some property of a molecule has to be predicted, a property that is
determined by the existence of a certain substructure, e.g., a chain of three
carbon atoms.

All these different neural network models for relational domains are distributed
models where the network consists of several connected parts, with each part
a small neural network on itself. The structure of the network as a whole
typically mirrors the structure of the input pattern quite closely. This is a very
natural way of applying neural networks to this kind of domains, but it comes
with some disadvantages, especially when the focus lies on learning structural
features.

First of all, it means that these methods are local methods in the sense that each
part of the network only sees its own neighborhood, i.e., its own inputs and the
information coming from directly connected network parts. There is no global
view. This introduces some theoretical restrictions on what can be learned, as
will be discussed in Chapter 5. So not every concept can be learned. Another
disadvantage is that even if the concept can be learned in principle, it might be
difficult because of problems related to the learning process. It is known that
learning relations between vectors of the input pattern that are far from each
other, is difficult with this kind of methods. The fact that information has to
be propagated through a lot of different parts of the network to reach the other
vector, influences the ability to recognize the relation between the two vectors
in a negative way. These two disadvantages have as effect that these methods
might actually not be the best choice for learning structural features, especially
when features get more complicated or comprehensive.

2.2.2 Learning Aggregate Features

Little attention has been given so far to neural network methods that focus on
learning aggregate features. Aggregate features are features that summarize
information from different elements of the relational input pattern into one
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single feature. This is very similar to the process of aggregating a set of
values, resulting in a single value, e.g., the maximum or the average. Learning
this kind of features can also play an important role in relational domains [6].
Consider the problem of learning to predict the property of a molecule again. It
could be that the prediction does not depend on the existence of some specific
substructure, but rather on some aggregate properties of the atoms of the
molecule. Such aggregate properties could be the count of all carbon atoms in
the molecule or the highest charge value of all atoms in the molecule.

The distinction between structural and aggregate features is a bit vague because
there is some overlap between both concepts. In the existing neural network
models for relational domains, this problem of learning aggregate features has
never been considered very explicitly. However, these methods do also learn
aggregate features, albeit rather simple ones in most cases. In fact, every
distributed model has to be able to learn aggregate features, because every
part of the network needs to process information coming from the connected
parts. This processing naturally involves some kind of information reduction
to single features that can be used as input. Learning how to perform this
reduction is the same as learning aggregate features.

In this sense it seems very logical to dedicate some attention to this problem of
learning aggregate features on itself and to focus more on problem settings
where this ability of learning aggregate features is more important than
the ability to learn structural features. That will also be the main theme
throughout the rest of this dissertation.



Chapter 3

Learning Aggregate Features

This chapter provides some background on learning aggregate features, the
topic of this chapter and the next one. The idea of learning from bags is
explained and the aggregate features that are typically involved in this process
are considered in more detail. A number of existing approaches will be discussed
at the end of the chapter.

3.1 Introduction

First, learning from bags will be defined, the learning setting that will be the
subject of this and the next chapter. Also the relationship with other settings,
such as multi-instance learning and relational learning, is discussed.

3.1.1 Learning from Bags

Every machine learning algorithm for supervised learning is supposed to learn
some model, i.e., a mapping function between an input and an output domain,
that can be used for prediction. There are however big differences between
machine learning algorithms with regard to the considered domains and models.
In the simplest case, the input domain consists of simple tuples or data vectors1

1The terms tuple and vector are almost the same in this context. They both denote a
fixed-sized list of simple features. When talking about relational data, the term tuple is more
common, the term vector is generally used for neural networks. The only difference is the
assumption that a vector has only real values while a tuple can also have nominal values for

17
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Loan

age gender amount class

l1 31 male 5000 pos

l2 25 female 7000 pos

l3 39 male 9000 neg

l4 28 male 4000 pos

l5 42 female 8000 neg

Figure 3.1: Propositional data example. The dataset is given in a single table,
the loan relation, where each row represents a single data example described
by three attributes - age, gender and amount - and a class label.

of the same type and the output domain is either a set of labels or the domain
of the real numbers, depending on whether it is a classification or a regression
problem. This setting is called propositional or attribute-value learning. The
fact that the input data are all tuples of the same type means that they contain
values for the same attributes.

Example 3.1. A simple example of a propositional dataset is a database
describing loans which have to be classified as positive or negative depending
on whether they are paid back correctly or not. Each loan corresponds to one
person, the borrower, and is described by three attributes, i.e., age and gender
of the borrower and the amount borrowed. This means that for each loan, a
tuple or vector with values for these three attributes is given together with a
class label. From a given set of loans, the right model can then be learned
empirically by the algorithm. A concrete example of such a loan dataset is
shown in Figure 3.1. This propositional format can easily be represented as
a single table where every row stands for a tuple. A model learned from these
examples could predict for instance that a loan is positive if the amount is lower
than 7500, and negative otherwise.

It is clear that propositional learning uses a simple representation. However, in
many cases it makes sense to look for more expressive representations, which
enables dealing with more complicated input domains. A simple but substantial
extension, which will be the focus of this chapter, is to make it possible that
an input pattern is described by a set or bag2 of tuples instead of a single one.
Each tuple in the bag consists of values for a number of attributes, just as the

instance. However, it is in most cases quite easy to transform these other types of values into
real values and thus obtain a vector from a tuple.

2Throughout the rest of the text, the term bag will be used instead of set because, strictly
speaking, each element in a set can occur only once. In the setting considered here, it is
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Loan

bag class

l1 {a1, a2, a3} pos

l2 {a4, a5} pos

l3 {a6, a7} neg

l4 {a8} pos

l5 {a9, a10, a11} neg

Account

type amount

a1 checking 400

a2 savings 250

a3 savings 350

a4 savings 600

a5 checking 300

a6 savings 150

a7 checking 100

a8 savings 500

a9 savings 100

a10 checking 150

a11 savings 300

Figure 3.2: Bag data example. Each row in the loan table represents a data
example, described by references to the corresponding tuples from the account
table and a class label.

single tuples in the propositional setting. All tuples in all the bags should be of
the same type, which means that they contain values for the same attributes.

Example 3.2. In the example of the loan classification, loans could be described
in a different way. Instead of representing a loan by the three attributes of
Example 3.1, a loan could be represented by a bag of tuples. This bag of tuples
could for instance represent the different accounts the borrower owns at the
bank. Suppose that each borrower can have a number of savings and checking
accounts. Each account is described by attributes for the account type and the
amount on it. Each loan is described by a bag of accounts and a class. An
example dataset is shown in Figure 3.2. The same dataset in Prolog format,
which will be useful later on, is shown in Figure 3.3. A valid model learned from
this data could for instance predict that a loan is positive if the total amount
on all savings accounts in the bag is equal to or greater than 500, otherwise the
loan is negative.

sometimes possible that the same tuple occurs multiple times in the collection. This will for
instance be the case with the networks from Chapters 6 and 7.
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loan(l1, pos).

loan(l2, pos).

loan(l3, neg).

loan(l4, pos).

loan(l5, neg).

account(l1, a1, checking, 400).

account(l1, a2, savings, 250).

account(l1, a3, savings, 350).

account(l2, a4, savings, 600).

account(l2, a5, checking, 300).

account(l3, a6, savings, 150).

account(l3, a7, checking, 100).

account(l4, a8, savings, 500).

account(l5, a9, savings, 100).

account(l5, a10, checking, 150).

account(l5, a11, savings, 300).

Figure 3.3: The bag data example from Figure 3.2 in Prolog.

3.1.2 Bag Learning Settings

Learning from bags can be further differentiated into separate learning settings
depending on the characteristics of the model that has to be learned. These
settings are, from simple to complex, multi-instance learning, multi-tuple
learning, multi-join learning and multi-relational learning [7].

Multi-instance learning. The simplest form of learning from bags is multi-
instance learning. For this specific machine learning problem, an extensive
literature already exists, because it is often not so difficult to extend
propositional machine learning methods to cover this class of problems as well.
The distinguishing mark of multi-instance problems is that the target value
depends on the occurrence of at least one specific type of tuple in the bag.
Dependencies or connections between the different tuples in a bag do not play
any role. This allows to keep the model simple and close to propositional
models.

Example 3.3. Using the same data as in Example 3.2, the learning problem
would be a multi-instance problem if the model that has to be learned, classifies
the loan as negative if at least one of the accounts in the associated bag of
accounts satisfies a condition C, and positive otherwise. In this case, the
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condition C could be ‘the account is a savings account and the amount on
it is less than or equal to 150’, giving a correct classification of the example in
Figure 3.2.

Multi-tuple learning. The multi-tuple learning setting is very similar to multi-
instance learning, the only difference is that in multi-tuple learning the target
value depends on the occurrence of a combination of two or more specific tuples
in the same input bag. The target depends on more than just single tuples, as
in multi-instance learning, but the interdependence is still very limited. Only
the concurrence of specific tuples as such plays a role.

Example 3.4. Using the same data as in Example 3.2, the learning problem
would be a multi-tuple problem if the model that is learned, classifies the loan
as negative if and only if at least one of the accounts in the associated bag of
accounts satisfies a condition C and at least one of the accounts in the same
bag satisfies a condition D. In this case, the condition C could be ‘the account
is a savings account and the amount on it is less than 300’ and the condition
D could be ‘the account is a checking account and amount on it is less than
200’, giving a correct classification for the example data of Figure 3.2.

Multi-join learning. In the multi-join learning setting, the target also relies
on an interdependence between two or more tuples in the bag but the
interdependence goes further than just concurrence. This means that there is
some relation between attributes of different tuples involved in the underlying
model. In relation databases, this typically involves the use of a join, hence the
name.

Example 3.5. Using the same data as in Example 3.2, the learning problem
would be a multi-join problem if the model that is learned, classifies the loan as
negative if and only if the loan has an associated account, savings or checking,
with an amount of exactly 100 and an another account of the opposite kind
with an amount of exactly 150. This results in a correct classification for the
example data of Figure 3.2.

Multi-relational learning. The multi-relational learning setting stands a bit
apart from the rest. It is different from the previous ones because it allows
different types of tuples in the bag, with different numbers and types of
attributes. So the crucial difference in this case is not the characteristics of
the model that is learned, but the representation of the input data. It is very
close to the relational learning setting that will be discussed in the next section.
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Loan

bag class

l1 {a1, a2, a3, c1, c2} pos

l2 {a4, a5, c3} pos

l3 {a6, a7} neg

l4 {a8, c4, c5, c6} pos

l5 {a9, a10, a11, c7} neg

Account

type amount

a1 checking 400

a2 savings 250

a3 savings 350

a4 savings 600

a5 checking 300

a6 savings 150

a7 checking 100

a8 savings 500

a9 savings 100

a10 checking 150

a11 savings 300

Card

type limit

c1 credit 50

c2 debit 100

c3 debit 100

c4 credit 80

c5 debit 50

c6 credit 75

c7 credit 100

Figure 3.4: Extension of the dataset from Figure 3.2. An extra table with
information about credit and debit cards is added to the dataset. The result is
that each example consists of a heterogenous bag with account tuples as well
as card tuples.

Example 3.6. The dataset of Example 3.2 could be extended with an extra
table containing information about the credit and debit cards associated with
the borrower. In this case, the input bags would not only consist of account
tuples but also contain card tuples. See Figure 3.4.
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3.1.3 Relational Learning

Representing input patterns as bags of tuples is a substantial representational
extension of the propositional setting, but it still has some limitations. In
general, two very important capacities are needed for relational learning, i.e.,
the capacity to deal with different types of tuples and the capacity to deal with
relationships between the tuples of an input pattern. Together they provide
a way to represent complex structured input patterns. In this sense, multi-
relational learning is the last setting that can be considered as a form of
learning from bags, although it already deals with different types of tuples.
But relational learning takes it one step further because structure is added
to the data representation. Adding structural aspects clearly renders the
representation of data by bags of tuples inadequate.

Learning from bags can also be seen as a simple case of relational learning, in
which only one type of tuples is allowed, and only one type of relationships,
namely the relationship that expresses that tuples all belong to the same bag.
However, one of the more difficult problems in relational learning, how to handle
multiple tuples, has to be addressed already by taking this step. So in this
respect, learning from bags is a crucial part of relational learning. Relational
learning could also be seen as some form of learning from bags of bags, where
tuples that are of the same type and take part in the same type of relationship
are grouped together in bags.

Example 3.7. The loan database example would for instance be a relational
dataset if each loan is described by a single loan tuple, a bag of account tuples
and a bag of card tuples. There are three different types of tuples now, i.e., loans,
accounts and cards. Just as in the propositional case, a loan has attributes
for age, gender and amount. Furthermore, a bag of account and card tuples
are associated with each loan. Accounts are described by two attributes, type
and amount, and cards by type and limit. See Figure 3.5. This could be
extended further, for example by adding a table with all transactions related
to the accounts. Once multiple levels of relationships are added, the structural
aspects of the dataset become more important.

An overview can be made, from simple to more complicated settings, as shown
in Figure 3.6. Propositional learning is the starting point, learning from bags
is an extension with multi-instance, multi-tuple and multi-join learning as
subdomains, and relational learning is the most complex and complete setting.
Between learning from bags and relational learning, there is the special case
of multi-relational learning. For the rest of this chapter, only learning from
bags will be considered. The multi-relational setting will be ignored because it
involves different types of tuples. In the context of this dissertation, this will
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Loan

age gender amount accounts cards class

l1 31 male 5000 {a1, a2, a3} {c1, c2} pos

l2 25 female 7000 {a4, a5} {c3} pos

l3 39 male 9000 {a6, a7} {} neg

l4 28 male 4000 {a8} {c4, c5, c6} pos

l5 42 female 8000 {a9, a10, a11} {c7} neg

Account

type amount

a1 checking 400

a2 savings 250

a3 savings 350

a4 savings 600

a5 checking 300

a6 savings 150

a7 checking 100

a8 savings 500

a9 savings 100

a10 checking 150

a11 savings 300

Card

type limit

c1 credit 50

c2 debit 100

c3 debit 100

c4 credit 80

c5 debit 50

c6 credit 75

c7 credit 100

Figure 3.5: Relational data example. There are three relations in the dataset:
loan, account and card. The loan table contains references to the tuples of the
account and card tables.

be considered to be a form of relational learning and be separated from the
learning from bags setting. The topic of relational learning will come back in
later chapters.

3.1.4 Aggregation

The learned mapping between input and output patterns is defined by a model
that is constructed from a set of example data. The essential difference between
propositional learning and learning from bags is that for the latter setting
some form of aggregation will have to be involved in the model. In general,
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propositional learning
↓

multi-instance learning
↓

multi-tuple learning
↓

multi-join learning
↓

multi-relational learning
↓

relational learning

Figure 3.6: Overview of learning settings, from simple to more complex.

aggregation is the process by which a set of items is summarized into a single
piece of information. In this case, a bag of tuples will have to be reduced to a
single output value. In general, this aggregation will be found in the model in
the form of aggregate features, as defined below. These are features of the bag
as a whole and will be discussed in more detail in the next section.

Definition 3.1 (Aggregate Feature). If DI denotes an n-dimensional input
domain (e.g. Rn), DO is a one-dimensional output domain (e.g. R) and B(D)
represents the domain of all finite bags of elements from a domain D, then an
aggregate feature f is defined as a function f : B(DI) 7→ DO that maps a bag
of tuples from an input domain DI to an output domain DO.

The result is that the whole model will have two parts and the process of
constructing it will involve two steps:

• First of all, a number of aggregate features need to be generated. A
very simple example of such a feature is a count of the tuples in the bag.
Another example is the maximum value of one specific attribute over all
the tuples in a bag. This part is the feature construction.

• In a second stage, the aggregate features will be combined to construct
the model. How this combination is made, will depend on the considered
representation and learning method. This part is the model construction.

The details of how this works in practice will become clear in Section 3.3 when
some existing approaches are explained. The following example gives a first
idea of what such a model could look like.
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Example 3.8. Consider the data from Example 3.2 again. A model covering
all the negative examples would be ‘the amount on checking accounts is 150
or the amount on savings accounts is 150’. In this case the aggregate features
would be a sum of the amounts on checking accounts (feature f1) and a sum of
the amounts on savings accounts (feature f2). The combination of the features
is then ‘f1 == 150 or f2 == 150’, which is a disjunction of two equality checks
on single features.

Example 3.9. The same example can also be expressed in Prolog, using
the representation from Figure 3.3. In this case, the aggregate features are
represented as:

sum(M, account(L, A, checking, M), X)

sum(M, account(L, A, savings, M), X)

These features are then embedded in clauses:

loan(L, neg) :- sum(M, account(L, A, checking, M), X), X=150.

loan(L, neg) :- sum(M, account(L, A, savings, M), X), X=150.

3.1.5 Propositionalization and Direct Approaches

The question remains how a model containing aggregate features is constructed.
Learning the right model is essentially all about constructing the right
aggregate features. Although there is a lot of difference between learning
methods with respect to how this problem is tackled, it is possible to divide
methods into two separate classes with regard to the construction of the
aggregate features:

• Propositionalization approaches: in these methods, the features are
constructed before actual learning takes place [27, 28]. It can be regarded
as a data transformation that has been predefined by the user. This
means that the aggregate feature construction is not part of the learning
process. The RELAGGS system will be discussed in Section 3.3.1 as
an example. In a nutshell, RELAGGS uses the average, maximum,
minimum, etcetera, of each attribute of the tuples in the input bag as
features, instead of using the input bag directly. The advantage of this
kind of approach is that it is simple and it makes it possible to rely on
existing propositional learning techniques. Methods for feature selection,
meta learning, etcetera, can also be used. The distinction between feature
and model construction is very clear in this case.
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• Direct approaches: in this case, the construction of the aggregate features
is done during the learning process. This yields a more flexible but also
a more complicated method. The fact that the learning algorithm has
to construct both features and model, often at the same time, makes
this approach very challenging. Inductive logic programming (ILP) falls
into this category [25]. Examples of existing systems will be discussed
in Section 3.3.2 and 3.3.3. The distinction between feature and model
construction can become much vaguer in this case.

3.2 Aggregate Features

In this section, a closer look will be taken at the aggregate features that need
to be constructed to learn from bags of data. A general form of these features
is given and the aggregate functions that are involved are discussed in more
detail.

3.2.1 Aggregation and Selection

To be able to discuss the aggregate features in more detail, a general aggregate
feature form can be proposed consisting of two different parts. As has been
pointed out in [6], the features typically have an aggregation and a selection
part. The aggregation part provides a way to reduce a number of elements to
a single value while the selection part operates on individual elements. The
distinction between aggregation and selection will be useful when discussing
the different methods.

Definition 3.2 (General Aggregate Feature Form). The general form of
an aggregate feature is F(σC(B)) with B a bag of tuples, C a condition defined
over single objects, σ the selection operator from relational algebra, and F an
aggregate function, which maps a set of objects to a scalar.

Example 3.10. A simple example will help to clarify this. Consider the
dataset of Figure 3.2, where each input bag represented a number of accounts.
Each account is represented by a tuple with an attribute indicating the type and
another attribute for the amount. Many different aggregate features could be
constructed then. The simplest example is a feature that just counts the number
of tuples in the bag, which corresponds to the number of accounts a person has.
In this case there is no selection condition needed, only an aggregate function
F that counts the number of objects in the bag. Another feature could count
the number of savings accounts in the bag. This involves the count aggregate
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function again, but also a selection condition that filters the tuples for which
the type attribute equals ‘savings’ out of the original bag.

Example 3.11. More complicated features can be constructed by considering
combinations of two attributes. An example is the feature that counts the
number of savings accounts with more than 250 on it:

count(σtype=′savings′∧amount≥250(Account))

The selection condition selects the tuples for which the type attribute equals
‘savings’ and the amount attribute is greater than 250, the aggregate function
is still the count function.

With regard to this aggregation and selection part of the features, another
distinction between learning systems can be made:

• On the one hand there are methods that focus on the construction of the
selection condition and keep the aggregate function very simple. These
are selection-oriented methods. It has been pointed out [6] that for
instance ILP systems typically construct structurally complex conditions
but often use the same, trivial, aggregate function, namely ∃ (the exists
operator, checking for non-emptiness of the set). The reason for this
is computational complexity, which will be explained further in Section
3.3.2.

• The importance of using more complex aggregate functions has however
been recognized by many people [24, 29]. This is the other side of
the spectrum, aggregation-oriented methods, where the focus is on the
aggregate function while the selection condition is kept simple. One
way of achieving this, is by restricting the selection condition to a single
attribute. This is done for instance in the RELAGGS system, explained
in Section 3.3.1. Most existing systems that do handle such complex
aggregate functions, follow the propositionalization approach.

3.2.2 Aggregate Functions

One of the interesting aspects of having aggregate features of the form
F(σC(B)), is that the selection condition corresponds to a part of a
propositional model. Features that are learned in propositional learning
typically have the same form as these selection conditions. The aggregate
function on the other hand is new, something that is not found in propositional
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methods. So the most challenging part of the feature construction are the
aggregate functions.

Two well-known examples of aggregate functions are maximum and average.
They can be defined on a bag of real numbers as the maximum and the average
of these numbers. Typically, it is this kind of aggregate functions that are
thought of first. But in general, aggregate functions can be very diverse and
one could think of much more complicated and exotic functions. Consider for
instance a function that works as a statistical distribution detector, giving 1
as value when a set of numbers comes from a gaussian distribution, and 0
otherwise. The only constraint that these functions always have to satisfy,
is that they are invariant to permutations, which means that there is no
order between the elements of the bag on which they operate. The considered
aggregate functions are defined as follows:

Definition 3.3 (Aggregate Function). An aggregate function F is defined
as a function F : B(DI) 7→ DO that maps a bag of elements from a one-
dimensional input domain DI to a one-dimensional output domain DO.

These aggregate functions add two complications to the aggregate features.
The first problem is that the class of aggregate functions is very broad. This
makes it hard to find a general, parameterized expression that, with the right
parameters, is able to represent any aggregate function. Unfortunately, this
is exactly what is highly desirable in a machine learning algorithm because
it would allow to simply adjust the parameters to create the right aggregate
function. In some cases the aggregate function can be reduced to a simpler
form, like for the additive aggregate functions defined below, but this is not
always possible. An additive aggregate function defines an aggregate function
as the sum of the values of a simpler function that is applied to the individual
elements in the bag separately.

Definition 3.4 (Additive Aggregate Function). An additive aggregate
function is an aggregate function F(B) : B(DI) 7→ DO that can be defined
as
∑

x∈B φ(x), where φ(x) : DI 7→ DO.

Another problem is that it is not always clear what the aggregation part is and
what the selection part. The reason for this is that an aggregate feature is not
necessarily defined in a unique way, as will be demonstrated in the next example.
How it can be defined, depends for instance on the aggregate functions that
are available for defining it.

Example 3.12. Consider the following aggregate feature in Prolog:

count(AccId, account(LoanId, AccId, savings, 150), X)



30 LEARNING AGGREGATE FEATURES

which counts the number of savings accounts with an amount of 150 a borrower
identified by LoanId has. This feature could also be written using the sum
function:

sum(1, account(LoanId, AccId, savings, 150), X)

This demonstrates that the same feature can be defined in different ways.

3.3 Learning Approaches

It should be clear from the explanation above that the problem of learning
aggregate features is far from easy. In this section, some existing approaches
to tackle the problem are discussed.

3.3.1 Propositionalization

A simple approach to dealing with bags of tuples is to convert them first to a
propositional representation. After that, the problem has been reduced to a
propositional learning problem and so a propositional learner can be applied.
Of course, the problem is how to define the right transformation. The choice
of the transformation will determine whether the propositional learner is able
to learn the desired model or not.

A good example of this kind of approach is the RELAGGS system [29, 30]. It
is meant to be a fully relational system, able to deal with multiple relations,
but what is relevant here is only how it deals with bags of tuples coming from
a single relation. With the RELAGGS approach, the tuples in the bag would
be summarized according to the types of the tuple attributes. If an attribute
is a numeric value, the average, maximum, minimum and sum of this attribute
are computed for each bag and added to the propositional representation. If
the attribute is a nominal value, the occurrences of the different possible values
are counted for each bag and added to the propositionalization. Finally, also
the number of tuples in the bag is added to the new representation.

Example 3.13. If the input bags consist of tuples with two attributes, X1 and
X2, with X1 a numeric value and X2 a nominal value with possible values a and
b, then the propositional representation contains avg(X1), max(X1), min(X1),
sum(X1), count(X2 = a), count(X2 = b) and the cardinality of the bag. On
this propositional representation, propositional learners like decision trees or
support vector machines can be used.
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f1 f2 f3 f4 f5 f6 f7 class

l1 3 2 1 333.3 400 250 1000 pos

l2 2 1 1 450 600 300 900 pos

l3 2 1 1 125 150 100 250 neg

l4 1 1 0 500 500 500 500 pos

l5 3 2 1 183.3 300 100 550 neg

f1 = count(Account)

f2 = count(σtype=′savings′(Account))

f3 = count(σtype=′checking′(Account))

f4 = average(σamount(Account))

f5 = maximum(σamount(Account))

f6 = minimum(σamount(Account))

f7 = sum(σamount(Account))

Figure 3.7: RELAGGS transformation for the loan example from Figure 3.2.

It is clear that this representation can be very limiting in some cases. For
instance, if a bag should be classified as positive if the number of tuples where
X1 > 0 and X2 = a is greater than 2, and negative otherwise, then the right
model would be impossible to learn for the propositional learner. The reason is
that the propositionalization discarded all information about any relationship
between the values for X1 and X2. But even if only a single attribute is
considered, there can be a problem. If a bag is classified as positive if the
number of tuples where X1 > 0 is greater than 2, and negative otherwise, then
the same problem arises. The concept can not be learned correctly, although
the learner can possibly learn an approximation from the average, maximum,
minimum and sum values and still achieve a somewhat acceptable predictive
performance in this way.

Example 3.14. For the loan dataset from Example 3.2, RELAGGS would
propositionalize the data with features counting the number of savings and
checking accounts, and features for the average, maximum, minimum and
sum of the amounts on the accounts. So the dataset of Figure 3.2 would be
transformed into the one in Figure 3.7, which is a propositional dataset.

In an improved version of the RELAGGS system, new aggregate functions were
included for numeric values, namely standard deviations, medians, quartiles
and ranges. Also combinations of attributes were considered, with one of them
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nominal. This leads to a propositionalization that preserves more information
and it helps to learn the problematic concepts mentioned before. However,
for other concepts it will not result in improved performance at all. The
question remains what aggregate functions to include and how far to go with
combinations of attributes, as it enlarges the propositionalized input space very
rapidly.

3.3.2 Inductive Logic Programming

Inductive logic programming (ILP) can also be used to learn from bags [7].
In fact, ILP can do more than just learning from bags, as it supports fully
relational learning, but here the discussion will be limited to how it handles
learning from bags.

Contrary to the RELAGGS method, ILP is a direct approach, so the features
are constructed during learning, as they are needed. In the case of ILP, features
are expressed as clauses of a logic program. The generated clauses are typically
of the form h ← l1, . . . , lm, where the head atom or predicate h is true when
all literals li of the body are true. The data is represented as a collection of
facts, i.e., clauses without literals in the body. Now the aim in ILP is to find
a set of clauses that entail all positive examples and none of the negative ones.
These clauses define the predictive model.

In fact, standard ILP techniques can be used to work with bags of tuples,
without further modifications. A standard clause in ILP represents a selection
condition and this condition can be tested on multiple tuples as well as on one
tuple. If there is at least one tuple for which the condition holds, then the
clause will become true, otherwise it is false. With regard to the aggregate
feature form F(σC(B)), this means that the aggregate function F is implicit
and it is always the ∃ operator.

Example 3.15. Consider the following standard clause in ILP:

loan(L, pos) :- account(L, A, savings, M).

It says that a loan is classified as positive if there exists a savings account for
the person to which the loan belongs. It does not matter whether there is only
one account for each person, or multiple accounts.

It is clear that constructing more advanced aggregate features, with other
aggregate functions than the ∃ operator, would be useful. This is possible
for instance by generating clauses that include a literal F (X, Q, R), where F
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is an aggregate function, Q a query, X a variable from the query Q and R
the result of applying F to all substitutions of X in the result of the query
Q. The function F from this aggregate literal corresponds to the F function
from the aggregate feature form, while the query Q corresponds to the selection
condition C. The query can contain complicated conditions, depending on what
refinements are allowed.

Example 3.16. Consider the following aggregate clause:

loan(L, pos) :- sum(M, account(L, A, savings, M), X), X >= 500.

This clause covers all the positive examples from the example dataset of Figure
3.3, so together with a clause that says that all other examples are negative, it
provides a correct model for the example dataset. In this case, the aggregate
function F is the sum function and the query Q selects all saving accounts that
are related to a loan L.

However, the introduction of aggregate predicates gives rise to problems with
complexity and monotonicity [50]. First of all, introducing aggregate functions
increases the computational complexity of the learning task. Typically, ILP
systems explore the search space in a greedy manner. They start from the
current best clause, generate a number of refinements and select the best one
to start all over again. The complexity of this procedure depends on the
number of possible refinements at each step. The problem with constructing
features of the form F(σC(B)) is that the number of possible refinements grows
very rapidly. Different aggregate functions can be used, each of the aggregate
functions can be applied to any of the variables, and within these aggregate
functions complicated selection conditions can be constructed. Together, these
factors give rise to a very large number of possible combinations and blow up
the search space.

This computational complexity is determined by the branching factor, the
number of possible refinements generated from a clause. If C is the number of
standard literals that can be added to a standard clause in ILP, then C is also
the branching factor of the search. However, when aggregate literals F (X, Q, R)
are allowed in the clause, the branching factor is much larger. If the query Q
can only be a simple literal, the branching factor for this part is C again. But
all of the variables in the added literal can be used as aggregate variable, so
if there are V variables, the branching factor becomes V × C. Furthermore,
different aggregate literals can be used for the aggregate function F . If there
are N different aggregate literals, the branching factor grows to N×V ×C. The
total branching factor will be C + N × V × C. It gets even worse if the query
Q can be refined to more complicated expressions. Then the total branching



34 LEARNING AGGREGATE FEATURES

factor will be as large as C + N × V × C + N × V × C × (C + N × V × C)L,
with L the number of added language elements in the query.

Another problem is that not all possible refinements are valid. Many ILP
systems rely on the property that refinements always happen from more general
to more specific, or vice versa, but this is not automatically guaranteed when
aggregate functions are introduced. To ensure valid refinements, the aggregate
functions should be monotone (or anti-monotone) for all possible refinements.
As long as this condition is met, valid refinements can be defined and the
normal refinement procedure in ILP can be used.

Example 3.17. Suppose that the start clause is:

loan(L, pos) :- sum(M, account(L, A, T, M), X), X >= 100.

This can be refined to:

loan(L, pos) :- sum(M, account(L, A, savings, M), X), X >= 100.

This refinement is valid because it will always have at most the same coverage
as the original clause, at least if M ≥ 0. In this case the refined clause is a
specialization. But if the refined clause is:

loan(L, pos) :- sum(M, account(L, A, T, M), X), X >= 50.

then the coverage is at least the same as for the original clause, which means
that the refined clause is a generalization.

Looking at the clauses with aggregate literals, three parts can be refined. The
aggregation function F can be changed, the query Q, and the check on the
result of the aggregation function. Refinement can happen along these three
dimensions, so it must be guaranteed that in all three dimensions refinement
happens in a monotone way. To facilitate this, the available aggregate functions
should be ordered, as well as the query refinements and the tresholds of the
result check. For the query and threshold, this is rather straightforward. For
the aggregate functions, this is also possible by considering parameterized
classes of aggregate functions in which the desired functions are included. If
these conditions are ensured, a monotone path along these three dimensions
can be followed during the refinement procedure.

So if aggregation is used in ILP, complexity should be kept within reasonable
bounds and monotonicity properties should be preserved. But if these
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restrictions are met, it is possible to use ILP methods with aggregate functions
to learn from bags. It is clear that this method is much more powerful and
flexible than the propositionalization method, especially with regard to the
selection conditions. The problem of choosing the right aggregate functions
persists however.

3.3.3 Metric-Based Methods

Metric-based methods, such as the k-nearest neighbors algorithm (k-NN) or
support vector machines (SVMs), can also be used to learn from bags, although
in this case the link with the general aggregate features defined in Section 3.2.1
is lost. In general, the problem of learning aggregate features is reformulated
in terms of a similarity or distance measure between bags. The most popular
metric-based approach is probably support vector machines.

The basic idea of a support vector machine is to construct a separating
hyperplane between the positive and negative vectors in a dataset, maximizing
the margin between the vectors of the two classes. In order to handle non-
linear classification problems as well, a transformation function is introduced
to perform a non-linear mapping of the vectors into some feature space. In
fact, this function itself is not needed but only the dot products between the
vectors in feature space. These dot products are computed by a kernel function
k(x, y), which can be interpreted as a similarity or distance measure between
the input patterns x and y.

Instead of defining the kernel function between single vectors, a kernel function
can also be constructed between bags of vectors. This bag kernel function will
typically be defined in terms of a simple kernel function between the single
vectors from the bags. An example of such a bag kernel function is the average
linkage kernel, which is defined as:

KAL(A, B) =

∑|A|
i=1

∑|B|
j=1 k(ai, bj)

|A||B|
(3.1)

with A = {ai} and B = {bj} bags of vectors and |A| and |B| the sizes of bags
A and B respectively. This function can be interpreted as the average distance
between all vectors of the two bags. Many other kernel functions could be
defined as well. For instance, if the maximum possible distance between vectors
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of the two bags is taken, the Hausdorff distance is obtained:

KH(A, B) = max[maxai
(minbj

(k(ai, bj))), maxbi
(minaj

(k(bi, aj)))] (3.2)

Two problems arise when using kernels to learn from bags. As already
mentioned, the link with the aggregate features described in Section 3.2.1 is
lost in these kernel functions. It is not immediately clear how each similarity
measure corresponds to an aggregate feature. Essentially, if two bags are very
similar, it is implied that there exists an aggregate feature F(σc(B)) for which
the values are very close to each other for these two bags, and vice versa:

B1 ∼ B2 ⇔ F(σC(B1)) ≈ F(σC(B2)) (3.3)

The aggregate feature is implicitly defined by the similarity measure, but it is
not constructed explicitly. On the other hand, the bag kernel function can also
be broken up into two parts, as can be seen in Equations 3.1 and 3.2. There
is the simple kernel function between single vectors from the bags and then
there is the function which combines the results of this simple kernel applied
to all pairs of vectors. The simple kernel looks a bit similar to the selection
part σC and the combining function bears some resemblance to the aggregate
function F in the aggregate feature, but there is no direct correspondence. One
similarity is that the simple kernel could also be used to perform some kind of
feature selection, just as the selection operator σC .

The second problem is very similar to the problem with propositionalization or
ILP. The right kernel has to be selected, just like the right propositionalization
or aggregate predicates had to be selected, to achieve a good performance. This
requires some background knowledge about the problem. In fact, this is related
to the two parts of which the bag kernel consists, as explained above. The right
simple kernel together with the right combination function should be found. If
they are selected by the user before learning is performed, which is a typical
practice with SVMs, then they might be unsuited for the considered problem, a
problem which could also occur with propositionalization. If they are selected
automatically during training, a search will have to be conducted to find the
right combination. This gives rise to the same kind of problems as with ILP
methods because the search space can be quite large, especially because the
simple kernels typically also have parameters that need to be optimized.

Example 3.18. Consider the bag data example from Figure 3.2 again. A
measure based on the average linkage kernel will be used as an example here.
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It is not sure that this measure would be very useful for this example, it only
serves as an illustration. First, some encoding has to be provided for nominal
attributes like the account type. Savings accounts can be encoded as -100 and
checking accounts as 100 for instance. Ideally, some scaling should be done
to bring all attributes of the vectors in the same interval, but this will be left
out of consideration here. As vector kernel, the simple dot product is taken.
In this case, the average linkage kernel between the first and second loan gives
(230000+130000+160000+65000+220000+95000)/6 = 150000 as result. The
same kernel between the first and the third loan gives (50000 + 50000 + 47500 +
15000 + 62500 + 25000)/6 = 41667 as result. This implies that the first and
second loan are more similar than the first and the third, at least according to
this measure.

3.4 Conclusions

It is clear from the discussion above that learning aggregation is an interesting
and challenging topic. In the rest of the dissertation, novel methods will be
proposed, based on neural networks, that deal with this aspect of machine
learning. It is also clear that from a machine learning perspective, a direct
approach is preferable to a propositionalization approach, because it relies
much less on prior knowledge about the problem at hand. The existing direct
approaches typically rely on a discrete search. Neural network methods are
different because they are based on a gradient optimization. In this respect,
they provide a new perspective on the aggregation learning problem. In the
next chapters, the focus will be first on learning from simple bags of data. This
allows to consider aggregation in its most elementary form. After that, an
attempt will be made to broaden this to more complex relational domains.





Chapter 4

Neural Networks for Learning

Aggregate Features

In this chapter, approaches to learning from bags based on neural networks are
discussed. There are different ways to adapt neural networks in order to let
them process bags of vectors instead of single vectors. They will be explained
in the following sections. First, a number of novel approaches are developed
that are based on standard neural networks. After that, a hybrid approach
based on cascade-correlation will be proposed. In the last part of the chapter,
experiments with these different types of networks will be discussed and the
results will be compared with results for other approaches.

4.1 Simple Aggregate Network Structures

In the following subsections, extensions of feedforward networks are discussed.
Most of these extensions are rather simple and straightforward. To ease the
discussion further on, some terminology is explained here first.

Consider a standard feedforward network with one hidden layer. This network
consists of a number of N input units, H hidden units with activation values
xi and M output units with activation values yi. The connections in a layered
network are between subsequent layers, so there are connections from each
input unit to all hidden units, and from each hidden unit to all output units.
The weight associated with a connection from the input unit ui to the hidden

39
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unit xj is denoted by wij , the bias weight is denoted by bj . For the output
units, w′

ij and b′
j are used.

Computation of the activation values of hidden and output units is done in two
steps. First, the net value netxi

=
∑

wjiuj + bi is computed. After that, an
activation function σ is applied to the net value to compute the actual activation
value xi = σ(netxi

). The σ-function is the sigmoid function, although other
functions could be used as well. So the computation of all activation values for
a data pattern p happens in the following way:

• For the hidden units:

netp
xi

=
N
∑

j=1

wjiu
p
j + bi (4.1)

xp
i = σ(netp

xi
) (4.2)

• For the output units:

netp
yi

=
H
∑

j=1

w′
jix

p
j + b′

i (4.3)

yp
i = σ(netp

yi
) (4.4)

Explanations of the network structures in the following subsections will always
start from this standard feedforward network with one hidden layer. Because
these network structures will deal with multiple input vectors, an extra index
is needed. An input value ui(j) now denotes the i-th component of the j-th
vector. The indexing of the vectors is arbitrary because there is no real order
among them. When different activation values are computed for the different
input vectors, these will also be denoted as xi(j) or yi(j). The number of input
vectors for a data pattern p is #p.

4.1.1 Padded Feedforward Networks

Probably the simplest and most straightforward way to extend normal
feedforward neural networks to bags, is to use a feedforward network F with
#max × N inputs. In this formula, #max is the maximum number of vectors
a bag can contain, while N is the number of values per vector. When a bag
of size #p is fed into the network, the first #p × N inputs are filled with the
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Figure 4.1: Example of a padded network. The network has one output unit,
three hidden units and six input units. Each vector contains two values. In
this case, the maximum number of input vectors (#max) is three.

values of the #p vectors in the bag. The order in which this happens, is not
important. The remaining (#max−#p)×N inputs are filled up with padding
values. For these padding values, a fixed, given value is used.

Another way to look at it, is that every bag is extended with padding vectors
upad until it has cardinality #max. After that, all bags can be converted into
a long vector with size #max × N , by concatenating all vectors from the bag.
This vector can then be used as input to the network F . This procedure can
also be carried out with other learning algorithms than neural networks. The
padding vector upad can be a vector filled with zero values, but, depending on
the problem, other choices might be better. Most importantly, there should be
no confusion between a padding vector and a regular input vector so that the
learning algorithm can make the distinction.

Example 4.1. Suppose that all tuples in the bag are represented by two-
dimensional vectors, the maximum number of tuples encountered in a bag is
3 and the default value for unused inputs is 0. In this case, a network should
be used with 6 inputs. For a bag with tuples [0.5, 0.3], [0.1,−0.2] and [0.7, 0.4],
an input vector [0.5, 0.3, 0.1,−0.2, 0.7, 0.4] can be constructed to feed into the
network. If there are only two tuples, for instance [0.2, 0.8] and [−0.3, 0.1],
then an input vector [0.2, 0.8,−0.3, 0.1, 0, 0] can be constructed. Other orders,
like [−0.3, 0.1, 0, 0, 0.2, 0.8], are also valid. In Figure 4.1, an example of such
a padded network is shown for input tuples with two variables and a maximum
of three tuples in the input bag.

The main advantage of this approach is that it is simple. One of the
disadvantages is that #max can be quite large. This results in a network with
a lot of connections and corresponding weights to train, which is inconvenient
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Figure 4.2: Example of a symmetric network. The original feedforward network
is shown at the left, the unfolded network at the right. The network has two
inputs, one hidden and one output unit and has been unfolded to handle three
input vectors.

because it increases the complexity of the model and the danger of overfitting.
If there is a large variation in the sizes of the bags, a lot of these network
connections will also be irrelevant most of the time because they will only be
used for padding values. It is also not guaranteed that the F network is really
not sensitive to the order of the vectors. To relieve these problems somewhat,
one could change the order of the bag and padding vectors constantly during
training.

Another problem is that the number of hidden neurons for F has been fixed
when determining the network architecture, just as for any other feedforward
neural network. This is however not ideal. It seems more logical that
the number of hidden neurons would be somehow proportional to #p, the
cardinality of the input bag, because the complexity of the function is probably
more or less proportional to the size of the bag.

In the experimental results, this type of network structure is denoted as FF
because it is basically a standard feedforward network.

4.1.2 Symmetric Feedforward Networks

To avoid the mentioned problems with padded feedforward networks, a similar
but more sophisticated approach can be taken. Consider a feedforward network
structure having N inputs, with N the number of attributes in each vector.
However, the network does not work like a normal feedforward network. It
uses some kind of folding procedure, which means that the network, or at least
some parts of it, are copied as many times as there are input vectors. So the
network is dynamically adapted to the input pattern. This folding method is
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used in neural networks for structured domains, and will be explained in detail
in Section 5.1.1 for recurrent networks.

Here it means that the inputs and hidden units are copied #p times, one set
for each input tuple. The connections are also copied. Each input is connected
with all #p ×H hidden units. In principle, weights are shared between copies
of the same connection. When a change is made to a weight, it should also
be propagated to the weights of the other copies of that connection. In this
case, two different weights per connection will be used for the hidden units.
The weight for the connection between ui(k) and xj(k) is wij , for all other
connections between ui(k) and xj(l), the weight is w∗

ij . The reason for this is
that some kind of one-against-all evaluation is done. Each copy of the hidden
neurons computes a contribution based on the corresponding input vector
versus all other input vectors. The other input vectors are indistinguishable
from each other because there is no order among them, so the same weights
are used there.

Mathematically, the activation values are now calculated as follows:

• For the hidden units:

netp
xi

(j) =
N
∑

k=1

wkiu
p
k(j) +

j−1
∑

k=1

N
∑

l=1

w∗
liu

p
l (k) (4.5)

+
#p

∑

k=j+1

N
∑

l=1

w∗
liu

p
l (k) + bi

xp
i (j) = σ(netp

xi
(j)) (4.6)

• For the ouptut units:

netp
yi

=
H
∑

j=1

#p

∑

k=1

w′
jix

p
j (k) + b′

i (4.7)

yp
i = σ(netp

yi
) (4.8)

Example 4.2. An example of how this network and its folding works, is shown
in Figure 4.2. The vectors all have two attributes. One hidden and one output
unit is used. The folding is shown for an input bag with three vectors.

Making the input and hidden layer variable, depending on the size of the input
bag, and introducing a lot of weight sharing, makes this type of network more
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Figure 4.3: Example of an aggregated network with an aggregate unit after the
hidden unit. The original network is shown at the left, the unfolded network at
the right. The network has two inputs, one hidden and one output unit. The
square unit represents the aggregate function used to combine the activation
values from the different folds. The weights of the connections to this unit are
just 1.

suitable for learning aggregate functions than the first, naive one. It reduces
the number of parameters to be learned and it ensures that this type of network
is symmetric. In the experimental results, this type of network is denoted by
SYM.

4.1.3 Aggregated Feedforward Networks

Another possibility is to introduce special aggregate units in the network.
Outputs for these units are computed for all vectors in the input bag and the
output values are combined with an aggregate function g that maps a collection
of real values to a single real value. The function g should be differentiable
to allow computation of the gradient for the training of the network. For
functions that are not differentiable, it is possible to consider approximations
that are differentiable. If the aggregate units are used in the hidden layer, the
computation of the activation values goes as follows:

• For the hidden units:

netp
xi

(j) =
N
∑

k=1

wkiu
p
k(j) + bi (4.9)

xp
i = g(σ(netp

xi
(j))) (4.10)



SIMPLE AGGREGATE NETWORK STRUCTURES 45

• For the output units:

netp
yi

=
H
∑

j=1

w′
jix

p
j + b′

i (4.11)

yp
i = σ(netp

yi
) (4.12)

Two possible choices for g will be considered here, the sum and the maximum
function. If a sum is used for the function g, and the aggregate units are used
at the level of the hidden neurons, then the network is evaluated as follows:

• For the hidden units:

netp
xi

(j) =
N
∑

k=1

wkiu
p
k(j) + bi (4.13)

xp
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∑
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(j)) (4.14)

• For the output units:

netp
yi

=
H
∑

j=1

w′
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p
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i (4.15)

yp
i = σ(netp
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) (4.16)

When the max function is used instead of the sum, the computation for the
hidden units changes as follows:

netp
xi

(j) =
N
∑

k=1

wkiu
p
k(j) + bi (4.17)

xp
i = max{σ(netp

xi
(j))} (4.18)

Example 4.3. Figure 4.3 shows how this works for an input bag with three
vectors.

If a sum is used for g but the aggregate units are placed at the output layer
instead of the hidden layer, the network becomes:
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• For the hidden units:

netp
xi

(j) =
N
∑

k=1

wkiu
p
k(j) + bi (4.19)
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i (j) = σ(netp

xi
(j)) (4.20)

• For the output units:

netp
yi

(j) =
H
∑
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p
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i (4.21)
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When the max function is used instead of the sum, the computation for the
output units changes as follows:

netp
yi

(j) =
H
∑

k=1

w′
kix

p
k(j) + b′

i (4.23)

yp
i = max{σ(netp

yi
(j))} (4.24)

Example 4.4. Figure 4.4 shows how this works for an input bag with three
vectors. The approach is visualized using the same unfolding procedure as for
the symmetric networks.

When a maximum function is used for the g function, there is a complication
because the derivative has to be calculated to perform gradient based learning,
but it can not be calculated directly for the max function. However, the
max function could easily be approximated by a softmax function, which is
differentiable. This is the approach taken in [40], where the same kind of
network is described for use in a multi-instance learner. The softmax function
and its derivative are:

smaxC{z1, . . . , zn} =
1
C

ln

(

n
∑

i=1

eCzi

)

(4.25)

∂

∂zj

smaxC{z1, . . . , zn} =
eCzj

∑n
i=1 eCzi

(4.26)
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Figure 4.4: Example of an aggregated network with an aggregate unit after the
output unit. At the left, the original network with an aggregate unit is shown.
The network processes input vectors with two attributes. There is one hidden
and one output unit. At the right, the unfolded network is shown for an input
bag with three tuples. The square node represents the aggregate function g
that is used. Connections to this node have weight 1.

The larger the value C, the closer this function will approximate the real max
function. It can be shown that:

|smaxC{z1, . . . , zn} −max{z1, . . . , zn}| <
ln(n)

C
(4.27)

Instead of choosing a value for C that is large enough to give a good
approximation, one could take the limit for C going to infinity, which results
in the real max function and its derivative:

max{z1, . . . , zn} = lim
C→∞

1
C

ln

(

n
∑

i=1

eCzi

)

(4.28)

∂

∂zj

max{z1, . . . , zn} =

{

1 if xj = max{z1, . . . , zn}

0 otherwise
(4.29)

The disadvantage with this exact function is that the derivative is not
continuous anymore, which can deteriorate learning. In the experimental
results, these networks will be named MAX and HMAX when the real max
function is used, and SMX and HSMX when the softmax function is used. The
H indicates that the aggregate function is used at the level of the hidden units,
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Figure 4.5: Example of a recurrent network. The original network is shown
at the left, the unfolded network for three input vectors at the right. The
network has two inputs, one hidden and one output unit. There is one recurrent
connection, from the hidden unit to itself. The leftmost of the hidden units in
the unfolded network represents the initial state of the hidden unit. For more
details about the unfolding process, see Section 5.1.1.

otherwise it is used at the output units. In the same way, the names SUM and
HSUM will be used for the sum networks.

4.1.4 Recurrent Networks

Instead of feedforward networks, recurrent networks could be used as well.
Typically, these networks are used to process sequences of data, but they can
also be used to process bags. The difference with a feedforward network is that
some connections feed information back into the network instead of propagating
it towards the outputs. This gives the network a memory or internal state
while processing multiple input vectors. The question is what kind of recurrent
connections should be used. Two different types of recurrent networks will be
discussed here.

The simplest type of recurrent neural networks, are locally recurrent networks.
In this case, each neuron in the hidden layer has exactly one recurrent
connection, namely to itself. Fully recurrent networks work in the same way
as locally recurrent networks, but now the hidden neurons do not only have a
recurrent connection to themselves, but also to all the other hidden neurons.
This enhances the expressive power of the network, but it also increases the
complexity of the network quadratically with respect to the number of hidden
neurons.

The #p vectors of the input pattern are fed into the network one after another.
For each vector, the activation values of the hidden neurons are updated. After
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processing all input vectors, the last activation values are used to compute the
activation value of the output neurons. Assuming that the weights of the
recurrent connections are represented by wr

ij , the activation values for all units
of a fully recurrent network are computed as follows:

• For the hidden units:

netp
xi

(0) = 0 (4.30)

xp
i (0) = σ(netp
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(0)) (4.31)
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• For the output units:
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i = σ(netp
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Example 4.5. Graphically, this procedure is equivalent again to some kind of
folding procedure, which is shown in Figure 4.5.

4.2 Aggregate Cascade-Correlation Networks

Cascade-correlation networks are a special kind of neural networks, constructed
one unit at a time. In the next subsection, the original cascade-correlation
algorithm will be discussed. After that, a number of new units, capable of
aggregation, will be presented. These units will then be integrated in an
adapted version of the cascade-correlation network, resulting in a cascade-
correlation algorithm that can learn concepts involving aggregation. The
resulting networks are called aggregate cascade-correlation networks (ACCNs).
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4.2.1 The Original Cascade-Correlation Network

The idea behind the original cascade-correlation algorithm [14] is to learn not
only the weights, but also the structure of the network at the same time. This
is done in a constructive way, meaning that only one neuron at a time is trained
and then added to the network. At first, a network without any hidden unit is
created, and then hidden neurons are added, one by one, until some stopping
criterion is satisfied. Once a hidden neuron has been added to the network, its
weights remain fixed throughout the rest of the procedure. This also means
that, besides the actual input vector, the output values of these existing hidden
units can be used as extra inputs for any new hidden neuron. At the output, a
sigmoid or a linear function can be used. A schema of the network is shown in
Figure 4.6. Assume that the network has grown to a network with H hidden
units, the weights of the connections from the existing hidden units to the new
one are denoted by w∗

ij and the weights of the connections from the inputs to
the outputs by w′′

ij . Then the activation values of the network are computed
as follows:

• For the hidden units:
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∑
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• For the output units:
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The training of the network is done in two alternating phases. Before a new
hidden neuron is added, its weights are trained while keeping the weights of all
other hidden units fixed. This training is not done by minimizing the squared
error between target and output, but by maximizing the correlation with the
residual error. The residual error is defined as the difference between the actual
target value and the output of the existing network, before adding the new
neuron. Instead of the real correlation, a slightly different measure S is taken,
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Figure 4.6: Example of the construction of a feedforward cascade-correlation
network. At the left, the original network with two inputs and one output unit
is depicted. There are no hidden units in this original state. In the middle, the
next step step is shown when one hidden unit has been added to the network.
At the right, another hidden unit has been added to the network.

in which some normalization factors are omitted and the absolute value is taken:

S =
M
∑

k=1

|sk| (4.40)
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∑
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(4.41)

ep
k = tp

k − yp
k (4.42)

with M the number of outputs, xH+1 the activation value of the new candidate
unit and tp the target vector for pattern p. When this S value is maximized, the
output of the new hidden neuron will correlate well with the residual error. The
key idea here is that a unit that correlates well with the residual error, will help
to reduce the output error when added to the network. The maximization is
done by computing the gradient and performing gradient ascent. This gradient
is computed as follows:

∂S

∂wij
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∑
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∑
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sign(sk) σ′(netp
xj

) (ep
k − ep

k) up
i (4.43)

The gradient for the w∗
ij weights and the bi bias weights can be computed in

the same way. Instead of training only one candidate neuron at a time, a pool
of neurons, initialized with random weights, can be trained. At the end, the



52 NEURAL NETWORKS FOR LEARNING AGGREGATE FEATURES

best one is selected. This increases the chance that a good candidate will be
found. Once the best candidate is selected and added to the network, the
output weights for the updated network can be trained. If a linear function is
used at the outputs instead of a sigmoid, the output weights can be obtained
by simple linear regression.

4.2.2 Cascade-Correlation with Aggregate Units

The concept of cascade-correlation networks can be extended to networks for
learning from bags of vectors. The crucial difference is that instead of the simple
hidden neurons, aggregate units that can process bags are used. For the rest,
the network and the training of it works in the same way as for the feedforward
cascade-correlation networks. The dataset now consists of patterns with an
input bag and an associated target vector tp. Because the input pattern is a
bag of vectors instead of one single vector, it can no longer be used as direct
input for the output units, and so this part is dropped from the equation. Each
input bag will be processed by the hidden units. Each time a vector of the bag
for pattern p has been processed, an intermediate output value for the hidden
units can be computed, yielding a sequence of #p values for each hidden unit.
The final value is used by the output units, but if this network works in the same
fashion as the feedforward one, the whole sequence of values can also be used
by new hidden units. A schema of an aggregate cascade-correlation network for
2 input vectors is shown in Figure 4.7. The formulas for the network activation
values then become:

• For the hidden units:
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Figure 4.7: Schema for an aggregate cascade-correlation network with 2 input
vectors. The circle unit is the feedforward output unit, the square units
are aggregate units. The network is constructed in the same fashion as the
feedforward network. At the left, the initial situation is shown without any
aggregate units, in the middle the network after adding one aggregate unit and
at the right the same network after adding a second aggregate unit.

with gi an aggregate function. Different functions can be used for gi, as long as
they perform some kind of aggregation. This is similar to the aggregate units
for the networks defined in Section 4.1. One could take the sum or the max
function for instance. Another possibility is to use a locally recurrent neuron
instead. The only condition imposed on the gi function is that it must be
differentiable to allow gradient training. Different types of units can easily be
combined in the network. For every new unit, several candidates of different
types can be trained and the best one selected and added to the network. The
four different types that will be considered here, are explained below:

1. The sum unit:
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(k)) (4.49)
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2. The smx (softmax) unit:
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3. The max unit:
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4. The lrc (locally recurrent) unit:
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4.2.3 Aggregate Cascade-Correlation Training

With all parts of the aggregate cascade-correlation network explained, only the
training of the network is left for discussion. Each time a new unit should be
added to the hidden layer, a pool of units is created containing the four types
discussed in the previous section. Weights are initialized randomly. After that,
all units in the pool are trained for a number of iterations. This training
is basically a gradient ascent, maximizing the correlation with the outputs
as defined in Equation 4.40. The computation of the gradient depends of
course on the type of unit. The gradient ascent itself is actually done by using
resilient propagation, as described in [42] and discussed in Section 2.1.3. This
method has the advantage that the step size is determined automatically and
convergence is faster than for a fixed step size. The basic idea is to increase
the step size when the sign of the gradient remains the same, and decrease the
step size when the sign changes.

When all units in the pool have been trained, the best one is chosen. In
this case, the best unit is the one with the highest correlation. To be able
to compare units of different types with each other, the absolute value of the
real correlation has to be computed, and not the S-value from Equation 4.40
in which some normalization constants were omitted. When the unit with the
highest correlation has been chosen, it is installed in the network and the output
weights have to be trained again. When linear activation functions are used
for the output units, the output weights can be determined with least squares
linear regression.
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In the ideal case, when there is enough data available, a validation set can be
used to determine when to stop adding new units. If this is difficult, there
is also an alternative stopping criterion. Typically, the first units added to
the network will have a high correlation. When more units are added, the
correlation will decrease until no more reduction can be made. Training can be
stopped when the correlation is below a certain threshold or does not decrease
significantly anymore.

4.3 Experiments

To assess the performance of the different simple network structures and the
cascade-correlation approach, a number of experiments will be discussed in the
next sections. Because there are not that many real-world datasets available
that represent data as bags of vectors and because the focus for existing
datasets has been mostly on multi-instance problems, a large part of these
experiments will be carried out on artificial datasets. The datasets discussed in
the following subsections are two artificial datasets, i.e., simple aggregates and
trains, two multi-instance datasets, i.e., musk and Thioredoxin-fold proteins,
and a simplified version of the financial dataset, which is a relational dataset.

4.3.1 Simple Aggregates

A first, simple experiment to examine the capacity of the new networks, is
to create artificial datasets, using predefined aggregate functions to define the
target concepts, and then train the networks on these datasets. The data
consists of bags with a variable number of elements. Each element of the bag is
a vector with five components. Only the first or the first and second component
are relevant for the target value, depending on the aggregate function under
consideration. The values of these components are randomly generated, but in
such a way that the target values are uniformly distributed over the possible
target values. All the other components are filled with uniformly distributed
random numbers from the interval [−1, 1]. It is very likely that the number
of vectors in the bags influences the difficulty of the learning task, so different
sizes are tested. The datasets denoted as small contain 5 to 10 vectors per
bag, the medium datasets 20 to 30 and the large ones 50 to 100. Each dataset
contains 3000 bags. A range of different target concepts are used to construct
the datasets:

1. count: the target is the number of vectors in the bag.
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small medium large

M
SE

count 0.06 (0.10) 0.26 (0.01) 0.23 (0.01)

sum 0.00 (0.00) 0.09 (0.10) 0.23 (0.01)

max 0.02 (0.00) 0.01 (0.00) 0.01 (0.01)

avg 0.02 (0.00) 0.01 (0.01) 0.01 (0.01)

stddev 0.03 (0.00) 0.04 (0.00) 0.04 (0.01)

cmpcount 0.02 (0.01) 0.01 (0.01) 0.11 (0.07)

corr 0.07 (0.01) 0.08 (0.04) 0.04 (0.01)

ac
cu

ra
cy

even 52.64 (0.01) 50.19 (0.02) 50.23 (0.01)

distr 51.62 (0.05) 63.49 (0.02) 58.70 (0.02)

select 90.55 (0.03) 63.47 (0.03) 50.42 (0.02)

conj 94.43 (0.01) 68.09 (0.10) 49.11 (0.05)

disj 72.08 (0.03) 51.24 (0.05) 50.32 (0.02)

Table 4.1: Results for the simple aggregate datasets with fully recurrent
networks. Accuracies or mean squared errors are given, depending on whether
the target is numerical or nominal, together with the standard deviations. The
columns small, medium and large refer to the size of the bags in the datasets.

2. sum: the target is the sum of all values of the first component of the bag
vectors.

3. max: the target is the maximum value of the first component of the bag
vectors.

4. avg: the target is the average value of the first component of the bag
vectors.

5. stddev: the target is the standard deviation of the values of the first
component of the bag vectors.

6. cmpcount: the target is the number of bag vectors for which the value
of the first component is smaller than the value of the second component.

7. corr: the target is the correlation between the first two components of
the bag vectors.

8. even: the target is one if the number of positive values for the first
component is even, and zero if it is odd.

9. distr: the target is one if the values of the first component come from a
Gaussian distribution, and zero if they are from a uniform distribution.
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small medium large

M
SE

count 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

sum 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

max 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

avg 0.04 (0.03) 0.01 (0.01) 0.01 (0.01)

stddev 0.02 (0.02) 0.01 (0.01) 0.00 (0.00)

cmpcount 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

corr 0.04 (0.03) 0.02 (0.02) 0.01 (0.01)

ac
cu

ra
cy

even 51.59 (0.05) 51.10 (0.04) 51.34 (0.10)

distr 66.48 (0.05) 77.97 (0.07) 84.23 (0.09)

select 99.21 (0.07) 99.13 (0.10) 98.83 (0.10)

conj 100.00 (0.04) 100.00 (0.00) 99.89 (0.10)

disj 99.13 (0.06) 98.57 (0.10) 96.54 (0.11)

Table 4.2: Results for the simple aggregate datasets with aggregate cascade-
correlation networks. Accuracies or mean squared errors are given, depending
on whether the target is numerical or nominal, together with the standard
deviations. The columns small, medium and large refer to the size of the bags
in the datasets.

10. select: the target is one if at least one of the values of the first component
lies in a given interval, and zero otherwise.

11. conj: the target is one if there is at least one vector in the bag for which
the first and the second component lie in a certain interval.

12. disj: the target is one if there is at least one vector in the bag for which
the first or the second component lies in a certain interval.

The first 7 datasets have a numerical target, the other 5 a nominal target. In
case of a nominal target, the number of positive and negative examples are
equal, while in the case of a numerical target, the target values are uniformly
distributed over the target interval. The experiments are done using 10-fold
cross-validation. One fold is used as test set, 7 folds are used for training
and 2 folds are used as validation set to determine when to stop training.
For the simple network structures, 3 hidden units are used. Because the
number of inputs is only five and the concepts to be learned are not that
complicated, a small number of units should be sufficient. Training is done
using resilient propagation and 1000 training iterations. The validation set is
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Figure 4.8: Comparison between fully recurrent networks (FRN) and aggregate
cascade-correlation networks (ACCN) on the aggregate classification datasets.

used to determine the optimal number of iterations. For the cascade-correlation
networks, the maximum number of hidden units is limited to 10. The number
of candidate units trained in every step is 20, which means that there are five
units of every type. Each unit is trained for 500 iterations, which should be
enough to have converged to optimal weights. For the datasets with nominal
target, the accuracy is reported and for the sets with numerical targets the
mean squared error is given. Standard deviation is reported as well.

Table 4.1 shows the results for fully recurrent networks. On some datasets, e.g.
the small version of select and conj, the results are reasonably good, but on
others the performance is not that convincing. Results vary for other network
types, but the overall impression is quite the same. The results for the aggregate
cascade-correlation networks are shown in Table 4.2. From these results, it is
clear that most concepts can be learned reasonably well, some very well. Only
the even concept seems really impossible to learn. It should be noted that this
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Figure 4.9: Comparison between aggregate cascade-correlation networks
(ACCN) and the RELAGGS system on the aggregate classification datasets.
Two different possibilities are considered: RELAGGS in combination with a
support vector machine (RELAGGS-SVM) and RELAGGS with a decision
tree (RELAGGS-J48).

concept can be seen as the aggregate version of the XOR concept, which is
known to pose problems for neural networks with only one layer. A similar
situation occurs here, which explains the bad performance for this dataset. For
the distr concept, the number of vectors must be large to be able to learn it
well. This makes sense because it is easier to say whether a bag of values comes
from a normal or uniform distribution if the bag is larger than when it is rather
small. Compared with the results for the fully recurrent networks, it is clear
that ACCNs perform better. One of the major problems with the recurrent
networks, is the decreasing performance on larger bags. Looking at the results
for the select datasets for instance, the accuracy on the dataset with small
bags is still reasonable for the recurrent networks, although the accuracy for
the ACCNs is better. But for the datasets with larger bags, the accuracy goes
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Figure 4.10: Comparison between aggregate cascade-correlation networks
(ACCN) and first-order random forests (FORF) on the aggregate classification
datasets. Two different possibilities are considered: FORF with simple
aggregates (FORF-SA) and FORF with more complex, refined aggregates
(FORF-RA).

down for the recurrent networks while it remains about the same for the ACCNs.
Overall, it is clear that ACCNs are a better choice than the recurrent networks
or the other simple network types. This is clearly illustrated in Figure 4.8
where the accuracies are plotted for both ACCNs and fully recurrent networks.

A comparison can also be made with other methods, e.g. RELAGGS or
ILP methods. For RELAGGS, the Weka [19] implementation is used and
two different machine learning algorithms are considered, i.e., support vector
machines (the SMO algorithm in Weka, using an RBF kernel) and decision
trees (the J48 algorithm in Weka). The performances are shown in Figure 4.9.
Results vary somewhat, but in general ACCNs perform very well compared
with RELAGGS. Only for the distr dataset it is clear that RELAGGS-SVM is
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a better choice. For the conj datasets on the other hand, ACCNs perform a
lot better than RELAGGS. These large differences in performance are typical
when the propositionalization is not very suitable for the considered problem.
As these datasets only consider simple aggregate concepts in which only one
vector component is involved, RELAGGS still performs quite well overall, but
this will probably no longer be the case when more complicated aggregate
concepts are considered.

Another comparison is made with an ILP system that includes aggregate
predicates. The considered system is based on TILDE [5], which builds decision
trees with predicates in the nodes. Here, an extended version of TILDE is used
in which aggregate predicates are added to the system and random forests
are built instead of single trees. Two different options are considered, i.e.
first-order random forests with simple aggregates (FORF-SA) and first-order
random forests with refined aggregates (FORF-RA) [50, 49]. The results are
shown in Figures 4.10 and 4.11. Overall, ACCNs perform better than FORFs,
in many cases the difference is even quite large. The difference also tends to
grow for the datasets with larger bags of vectors. It is not really clear why
FORFs have more problems dealing with this than ACCNs. It is clear however,
that in general, the learning problem becomes more difficult when the bags are
larger, because more data means more noise and more irrelevant information.

4.3.2 Trains

The trains datasets are also artificially created datasets representing trains and
their direction. Every train consists of a number of cars, carrying some loads.
Some of the trains are eastbound, the others are westbound. The direction of
the trains is what has to be predicted and this target concept is based on the
properties of the cars of a train and their loads. The cars of the train constitute
a bag of tuples for each train. A data generator [34] for this train problem was
used to create 12 datasets with different properties. Sets 1 to 4 consist of short
trains, having 2 to 6 cars. Datasets 5 to 8 are similar to sets 1 to 4, except
that they contain longer trains. Each of these trains consists of 20 to 29 cars.
The used concepts are the same as for sets 1 to 4, except that the numbers
in the aggregations are adapted to the longer length of the trains. Datasets
9 to 12 contain noisy data. This means that a number of samples have been
mislabeled. The used concepts for the different datasets are as follows:

1. Trains having at least one circle load are eastbound, the others are
westbound.



EXPERIMENTS 63

2. Trains having at least one circle or rectangle load and at least one car
with peaked roof or 3 wheels are eastbound, the others are westbound.

3. Trains having more than 8 wheels in total are eastbound, the others are
westbound.

4. Trains having more than 3 wheels in total and at least 2 rectangle loads
and maximum 5 cars are eastbound, the others are westbound.

5. Same concept as for set 1.

6. Same concept as for set 2.

7. Trains having more than 53 wheels in total are eastbound, the others are
westbound.

8. Trains having more than 45 wheels in total and at least 10 rectangle loads
and maximum 27 cars are eastbound, the others are westbound.

9. Same concept as for set 1, but with 5% noise.

10. Same concept as for set 1, but with 15% noise.

11. Same concept as for set 3, but with 5% noise.

12. Same concept as for set 3, but with 15% noise.

The training setup is the same as for the simple aggregate datasets. The results
for ACCNs and fully recurrent networks are given in Figures 4.12 and 4.13. It
is clear that most concepts can be learned well with ACCNs. Most of the
datasets without noise have an accuracy very close to 100%. Only for set 8,
which has the most difficult concept, it is impossible to get close to perfect
accuracy. For the datasets with noise, the accuracies are all close to 100%
minus the percentage of noise, which means that the method is noise-resistant.
Compared with the fully recurrent networks, the results for ACCNs are always
better again. Sometimes the difference is quite spectacular. For these datasets,
the size of the bags also has an important influence on the accuracy of the
recurrent networks.

Again, a comparison is made with other methods. In Figure 4.14, accuracies
for ACCNs and RELAGGS are compared with each other. In general, ACCNs
perform better than RELAGGS. The difference can be quite large, e.g. for
dataset 6 where ACCNs have an accuracy of almost 100% while the RELAGGS
accuracy is below 80%. For one dataset, number 8, RELAGGS performs better
than ACCNs, but overall ACCNs seem to be the better choice.
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Figure 4.13: Accuracies on the train datasets for aggregate cascade-correlation
networks (ACCN) and the best simple network structure.

Just as for the aggregate datasets, a comparison with first-order random forests
(FORF) is made in Figure 4.15. Overall, ACCNs perform better than FORFs.
For most datasets, the accuracies are very close to each other, but for dataset 6
for instance, the accuracy of FORFs is between 80 and 90%, while the accuracy
of ACCNs was almost 100%. So again, ACCNs seem to be the better choice.

4.3.3 Musk

Musk is a well-known multi-instance dataset [11]. Each data instance stands
for a molecule, represented by a bag of all its possible conformations. A
conformation is described by 166 numerical features. The molecules have to
be classified as musk or non-musk. Because it is a multi-instance problem, the
target value is determined by the existence of a specific conformation. If there is
at least one conformation in the bag with certain properties, then the molecule
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Figure 4.14: Comparison between aggregate cascade-correlation networks
(ACCN) and the RELAGGS system on the train datasets. Two different
possibilities are considered: RELAGGS in combination with a support vector
machine (RELAGGS-SVM) and RELAGGS with a decision tree (RELAGGS-
J48).

can be classified as positive, otherwise it is negative. The dataset consists of
two parts. The first part contains 92 molecules, the second part 102. In each
bag, there are between 2 and 40 conformations for the first part, and between
1 and 1044 for the second part.

Experiments are carried out using 10-fold cross-validation. For the ACCNs,
a pool of 20 neurons and 500 training iterations are used in every step. The
value of the correlation is used as stopping criterion. The results for the musk
datasets can be found in Table 4.3 and Figures 4.16 and 4.17.

For the simple network structures, the results vary quite a lot. Overall, the best
accuracies seem to be achieved with aggregate networks with max functions
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Figure 4.15: Comparison between aggregate cascade-correlation networks
(ACCN) and first-order random forests (FORF) on the train datasets. Two
different possibilities are considered: FORF with simple aggregates (FORF-
SA) and FORF with more complex, refined aggregates (FORF-RA).

after the hidden units (HMAX and HSMX). This makes sense because this
would be the natural choice in the case of multi-instance problems. The
accuracies for the ACCNs are not bad but not excellent either compared with
the other methods. Some of these methods were specifically designed for multi-
instance problems while the neural networks described here are more general.
This makes the multi-instance methods better suited for this task and so it is
normal that their performance is better. The neural networks might also suffer
from poor learning because of relatively few data or skewness in the data. The
final ACCNs are for instance very small, in most cases with just one hidden unit,
because training is stopped early. The selected unit during training is almost
always a MAX or SMX unit, the most logical choice in case of a multi-instance
problem.
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Figure 4.16: Accuracies and 95% confidence intervals for the musk dataset 1.
Results are the same as in Table 4.3. For the sake of clarity, methods are sorted
from highest to lowest accuracy. It can be seen that ACCNs lie somewhere in
the middle.
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Figure 4.17: Accuracies and 95% confidence intervals for the musk dataset 2.
Results are the same as in Table 4.3. For the sake of clarity, methods are sorted
from highest to lowest accuracy. It can be seen that ACCNs lie somewhere in
the middle.
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musk 1 musk 2

iterated discrim APR 92.4 [87.0-97.8] 89.2 [83.2-95.2]

GFS elim-kde APR 91.3 [85.5-97.1] 80.4 [72.7-88.1]

GFS elim-count APR 90.2 [84.2-96.3] 75.5 [67.1-83.8]

GFS all-positive APR 83.7 [76.2-91.2] 66.7 [57.5-75.8]

all-positive APR 80.4 [72.3-88.5] 72.6 [63.9-81.2]

backpropagation 75.0 [66.2-83.8] 67.7 [58.6-76.7]

C4.5 (pruned) 68.5 [40.9-61.3] 58.8 [49.3-68.4]

SYM 75.8 [74.1-77.5] 71.1 [68.8-73.4]

LRC 77.2 [75.6-78.8] 75.2 [72.7-77.7]

FRC 74.9 [73.4-76.4] 73.3 [70.8-75.8]

SUM 56.6 [54.2-59.0] 49.0 [46.3-51.7]

HSUM 78.2 [76.6-79.8] 65.5 [63.9-67.1]

MAX 73.1 [71.5-75.7] 65.6 [63.4-67.8]

HMAX 79.0 [77.9-80.1] 77.4 [75.7-79.1]

SMX 72.2 [71.0-73.4] 62.8 [60.8-64.8]

HSMX 77.3 [75.7-78.9] 78.1 [76.7-79.5]

ACCN 85.3 [83.1-87.5] 75.5 [72.6-78.4]

Table 4.3: Accuracies and 95% confidence intervals for the musk datasets using
10-fold crossvalidation. Results for other methods than ACCN are obtained
from [11].

4.3.4 Thioredoxin-Fold Proteins

In this classification task, proteins have to be classified as belonging to the
Thioredoxin-fold family or not [51]. It is difficult to do this based on the primary
sequence of the proteins, for instance by using hidden Markov models, because
there is a low conservation of the primary sequence in this family of proteins.
One approach to deal with this problem has been to transform the data into
bags of vectors. In [51], this transformation is done in three steps. First,
the primary sequence motif, which is known to exist in all Thioredoxin-fold
proteins, is identified. Around this motif, aligned subsequences are extracted.
Finally, these windows are mapped to 8-dimensional numerical properties. For
further details about this transformation, see [51]. The relevant transformation
is referred to as motif-based alignment.

The result of this transformation is a dataset containing 193 proteins, each
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TP TN

MIL 0.74 0.88

ACCN 0.614 (0.147) 0.838 (0.071)

Table 4.4: Results for 3-fold cross-validation on the Thioredoxin-fold proteins
dataset. True positive and true negative rates are given, together with the
standard deviation over ten runs for ACCNs. MIL denotes a multi-instance
learner and this result was reported in [51].

described by a bag of 8-dimensional feature vectors. Of these 193 proteins, 25
are labeled positive and 168 negative. The bags contain 35 to 189 vectors. Two
different experiments were carried out, using the same settings as in [51]. In the
first, simple setting, the dataset is divided in three parts, using two of them for
training and one for testing. It is clear by now that the results obtained with
ACCNs are as good or better than the results obtained with the simple network
structures, so the focus is on ACCNs only here. The training setup is the same
as for the musk datasets. The results are given in Table 4.4. One can see that
the results are worse than for a multi-instance learner. Standard deviations
are also quite large, especially for the true positive rate. The skewness of the
dataset is probably the cause of these problems.

Results were also obtained for a second, more difficult experiment carried out
in [51], in which 5 of the 25 positive proteins were removed, retaining only
the 20 most dissimilar ones. The negative examples are divided in 8 folds, the
positive examples in 20 folds of 1 example each. A jack-knife test is performed,
taking one of the negative folds and one of the positive folds as test set, the
other 19 positive folds and one of the negative folds as training set. This yields
a total of 160 different runs. Results for this experiment are shown in Table
4.5. The true positive rate is better now than for MIL, but the true negative
rate is worse. Overall, the situation seems to be more or less the same as for
the musk datasets where it was also not possible to achieve the same accuracy
as multi-instance methods.

4.3.5 Financial

For this last experiment, the financial dataset of the discovery challenge
organized at PKDD’99 and PKDD’00 is used [3]. The dataset contains 8
different relations in total and the goal is to classify loans as good or bad.
There are 234 loans, 203 of which are good and 31 bad. This means that the
default accuracy is already 86.8%. Each loan is linked to an account and for
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TP TN

MIL 0.75 0.75

ACCN 0.850 (0.035) 0.681 (0.028)

Table 4.5: Results for jack-knife tests on the Thioredoxin-fold proteins dataset.
True positive and true negative rates are given, together with the standard
deviation over all 160 experiments for ACCNs. MIL stands for a multi-instance
learner and this result was reported in [51].

accuracy

FORF-LA 90.8 (1.7)

DINUS-C 85.1 (10.3)

RELAGGS 88.0 (6.5)

PROGOL 86.3 (7.1)

ACCN 87.2 (2.3)

Table 4.6: Results on the financial dataset using 10-fold cross-validation.
Results for FORF-LA, DINUS-C, RELAGGS and PROGOL are obtained from
[50] and [29].

every account there is a bag of transactions. The number of transactions varies
between 93 and 594. Only these bags will be used by the ACCNs to learn a
classification of the loans, all the other information is ignored because we only
work with a single bag for each data instance. It is clear that this approach will
only work if these transactions contain the most important information to learn
the target function. The experiments were done using 10-fold cross-validation.
Results are summarized in Table 4.6. The accuracy for the ACCNs is not
significantly higher than the default accuracy, but neither is the accuracy of
the other methods, except FORF-LA. It should also be noted that these other
methods use more information than only the bags of transactions. Overall, it
is hard to draw final conclusions from this experiment.

4.4 Conclusions

At the start of this chapter, a number of simple network structures were
proposed, adapting standard neural networks to enable them to process bags
of vectors. After that, the ideas behind these simple network structures were
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combined in a cascade-correlation approach. The general idea was to create a
learning method with parameterized aggregate features that can be tuned, with
the right parameters, to the appropriate aggregate features to predict targets
on bags of vectors. The experiments that were carried out, showed three things.
First of all, the cascade-correlation approach outperformed the simple network
structures convincingly. The results were almost always at least as good or
better than with the best simple network structure. Second, the results with
ACCNs turned out to be as good or better in most cases than the results for
other methods such as RELAGGS and FORFs. These results were mainly
achieved on artificial datasets, because there were not that many real-world
datasets of this kind available. Third, for multi-instance problems, the ACCNs
do perform reasonably well but not as good as some other methods. This is
however not a surprise as these other methods are designed specifically for this
class of problems while ACCNs are more general and have a broader scope.





Chapter 5

Neural Networks for

Structured Data

In the previous chapters, the focus was on largely unstructured data, with input
domains consisting of bags of unordered tuples. The topic of this chapter will be
neural networks for structured data like graph structures. Contrary to learning
from bags, this topic has received a lot of attention in neural network research.
Therefore, three existing approaches will be discussed, starting from recurrent
networks for sequences, to recursive networks for directed, acyclic graphs and
graph neural networks for graphs in general. Each of these approaches can be
seen as an extension of the previous one. This chapter contains no novel work by
the author, but it provides an overview of some existing methods for structured
and relational domains, as this is in some regards closely related to the methods
discussed in the previous and the next chapters. The given overview is not
meant as a survey and it is not exhaustive, as the literature on this topic is
quite extensive and varied, but it should provide sufficient background and
context. It should also help to understand connections between these methods
and the ones discussed in the next chapters.

5.1 Recurrent Networks

Recurrent networks are the most straightforward extension of feedforward
networks to structural domains. They are simply created by adding recurrent
connections to the feedforward networks, enabling them to process sequences.
Recurrent networks and the folding procedure were already used in the previous
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chapter, but these concepts are first restated here because they serve as the
starting point of the discussion in this chapter.

5.1.1 Unfolding Networks

The simplest form of structured data a neural network can deal with, are
sequences. For this, a recurrent network is needed. A recurrent network is
a network in which the connections between the neurons introduce at least one
cycle in the network. This means that the computation of the activation values
of some neurons depends on previous activation values of one or more neurons.
It implies that the network gets some kind of memory. Only discrete time
recurrent networks are considered here, where in each time step one vector of
the sequence is presented to the network, followed by a new computation of
the activation values, proceeding from inputs to outputs. The last activation
values are also the final output values for the sequence as a whole.

The recurrent network can be split up in two parts. The part with the recurrent
connections is the transition network, implementing a transition function fw,
with w the weight parameters. This part of the network must be updated for
each tuple in the sequence. The activation values of the units in this part can
be gathered in a state vector. For each tuple presented to the network, a new
state vector is computed. Then the transition network computes the transition
from one state to another. The other part is the feedforward output network,
implementing an output function gw. This part only has to be updated after
the last tuple has been presented to the network, because it is only used to
compute the final output for the total sequence.

This procedure can also be looked at as unfolding the network for a given
input sequence. This involves creating folds or copies of the network, at least
the transition part of the network, without the recurrent connections. There
is one fold for each input vector in the sequence. The recurrent connections
are then turned into feedforward connections between the successive network
copies. This yields a standard feedforward network, with the constraint that the
connection weights are shared between the copies in the unfolded network. So
when backpropagation is used to train the unfolded network, weight adaptation
made to the weights of one copy should also be made to the other copies.
Training in this way corresponds to the backpropagation through time (BPTT)
algorithm that is often used to train these networks [52]. All the folds of the
transition network fw together will be referred to as the function Fw in the
remainder of the text.

Example 5.1. An example of an input sequence, represented as a linear graph,
is given in Figure 5.1. The unfolding procedure for this example is shown in
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1 0 1

Figure 5.1: Example of an input sequence, represented as a linear graph. Each
node stands for one tuple or vector in the sequence and to each node a label
is attached representing the attributes of that node. In this case, only one
attribute is given. The edges in the graph are drawn from the last tuple in the
sequence towards the first one.

q−1

yt y3

xt
x0 x1 x2 x3

ut u1 u2 u3

Figure 5.2: The unfolding procedure for a simple network. The original
recurrent network is shown at the left with one input unit, one recurrent hidden
unit and one output unit. The unfolded network for a sequence with three input
vectors is shown at the right. Each input vector has only one attribute so there
is only one input. The units ut and xt belong to the transition network, yt

to the output network. For this reason, there are multiple copies of xt in the
unfolding network, and only one for yt.

w3 + ∆w3

w1 + ∆w11 + ∆w12 + ∆w13

∆w21

∆w11

∆w22

∆w12

∆w23

∆w13

∆w3

w2 + ∆w21 + ∆w22 + ∆w23

Figure 5.3: The backpropagation through time training algorithm. At the left,
the recurrent network is shown with formulas for the new weights, at the right
the corresponding unfolded network for a sequence with three input vectors.
The delta values can be computed for each connection in the unfolded network
with standard backpropagation, and then applied to the weights of the original
network.
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Figure 5.2. The corresponding weight updating with backpropagation through
time is illustrated in Figure 5.3.

5.1.2 Shift Operator

With regard to the unfolding procedure, the recurrent connections actually
correspond to a shift operator, a discrete-time operator that can be applied to
a temporal variable.

Definition 5.1 (Shift Operator). If x0, . . . , xT is a sequence of T +1 values
for a variable X at successive times, then the shift operator q−1 applied to xt

returns xt−1, the value for the variable x at time t− 1, i.e., q−1xt = xt−1.

When considering the sequence as a directed graph, this shift operator can be
regarded as an operator that returns the child node when applied to a node.
Shift operators can be composed, for instance q−2 = q−1q−1, and q0 = 1 is the
neutral operator defined as q0xt = xt.

In the case of recurrent networks, the considered variable is the output of
a neuron in the network. The sequence of values are the activation values.
Recurrent connections correspond to a shift operator on this sequence of
activation values.

5.2 Recursive Networks

Recurrent networks can only be applied to sequences, but they can easily be
extended to graphs without a strictly linear structure. Networks for these
graphs are called recursive networks.

5.2.1 Directed Positional Acyclic Graphs

Recurrent networks can be generalized to recursive networks that operate on
directed positional acyclic graphs (DPAGs), a superset of sequences. The edges
in these graphs are directed, just as for the sequences, but in a DPAG each
node can have more than one incoming or outgoing edge. The only limitation
is that the graph should be without cycles. The graph is also positional, which
means that all outgoing edges of each node are ordered.

Definition 5.2 (Directed Positional Acyclic Graph). A directed posi-
tional acyclic graph (DPAG) G(V, E) is a graph with vertices V and edges E
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1 1 2 1 2

1 2 3

1

1

1 2

21

Figure 5.4: Examples of directed positional acyclic graphs. The numbers on the
edges indicate the position of the edge. To each node a vector with attributes
is attached, just as for the sequences, but they are left out in this picture.

where there is no directed path in E that connects any vertex v ∈ V to itself,
and where all outgoing edges (v1, v2) ∈ out(v1) of each vertex v1 are ordered.
So there exists an ordering function pos(v1, v2) : E 7→ N

+
0 which maps an edge

(v1, v2) to its position within out(v1), the set of all outgoing edges of v1.

Example 5.2. Figure 5.4 shows some examples of DPAGs. All trees and
sequences are also DPAGs.

Definition 5.3 (Supersource). A supersource of a graph G(V, E) is a vertex
v1 ∈ V from which all other vertices v2 ∈ V can be reached and that has no
incoming edges.

Definition 5.4 (Supervised DPAG). A DPAG G(V, E) is supervised if it
has at least one supervised node, i.e., a node that has a target vector.

For the classification and regression tasks under consideration, all data
instances can now be represented by DPAGs instead of sequences. Only graphs
with a single supervised node will be considered, because there is only one target
vector for each data pattern. The supervised node must also be a supersource.

Moreover, the considered DPAGs are also bounded. This means that for all
vertices the number of outgoing edges is limited to a certain number m.

Definition 5.5 (Bounded DPAG). A graph G(V, E) is an m-bounded DPAG
if G(V, E) is a DPAG and #out(v) ≤ m for all vertices v ∈ V .
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1 2 1 2 1 2

1 2 3

q
−1

2
q

−1

1
q

−1

1
q

−1

2

Figure 5.5: Example of the generalized shift operator on a DPAG. The gray
nodes are the nodes given by the shift operators below them when applied
to the root node of the graph. Note that the order of the shift operators is
important.

5.2.2 Generalized Shift Operator

The shift operator for sequences, discussed in Section 5.1.2, can be generalized
to an operator for DPAGs. The following example illustrates how this works.

Example 5.3. If a binary tree structure is considered, q−1
1 would refer to the

left child of a node and q−1
2 would refer to the right child. Combinations are

also possible, q−1
1 q−1

2 refers to the left child of the right child for instance. See
Figure 5.5.

The generalized shift operator is not defined on a sequence anymore, but on a
graph. This means that the variable X to which the operator is applied, does
not have a sequence of values but a value for each vertex of the graph. So let xv

be the value of the variable X for vertex v of the graph. Then the generalized
shift operator can be defined as follows:

Definition 5.6 (Generalized Shift Operator). If xv1
is the value of a

variable X for vertex v1 of a graph G with vertices V and edges E, then the
generalized shift operator q−1

k gives the value of X for the k-th outgoing vertex
as a result, so q−1

k xv1
= xv2

with (v1, v2) ∈ E and pos(v1, v2) = k.

5.2.3 Encoding Network

Using the generalized shift operator, recursive networks can be defined that
are very similar to recurrent networks. In recurrent networks, all recurrent
connections represented the q−1 shift operator. In recursive networks, all
recursive connections will represent a generalized shift operator.
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Definition 5.7 (Recursive Network). A recursive network is a feedforward
network extended with a number of recursive connections that introduce cycles
in the network and are all labeled with a q−1

k generalized shift operator.

Example 5.4. An example of a recursive network is shown in Figure 5.6, in
the top left corner.

A recursive network can be unfolded on a graph just as a recurrent network
was unfolded on a sequence. The network, without the recursive connections, is
copied for all nodes in the graph. Then the recursive connections are replaced
by feedforward connections between the different copies. Suppose there is a
recursive connection from neuron n1 to neuron n2, labeled with a generalized
shift operator q−1

k . Then, for a DPAG G(V, E) each vertex v1 ∈ V with a vertex
v2 ∈ out(v1) for which pos(v1, v2) = k, results in a feedforward connection
between the neuron n1 in the copy for vertex v2 and neuron n2 in the copy for
vertex v1. As a result, the graph structure is mirrored in the unfolded network
in a way defined by the recursive network. The unfolded network is also called
encoding network.

Example 5.5. An example of a recursive network and its corresponding
encoding network on a given input graph is shown in Figure 5.6. To keep the
example simple, there is only one hidden unit and all recursive connections are
therefore from that unit to itself, but more complicated settings with recurrent
connections between different units are perfectly possible.

It should be noted that the encoding network is again a feedforward network.
Weights are also shared between the different copies of the same original
connections, in the same way as for the recurrent networks. This means that
the same backpropagation through time training algorithm can be applied as
before.

5.3 Graph Neural Networks

The third approach discussed here, is also the most general. It is called graph
neural networks (GNNs) and is explained in depth in [45]. It can be seen
as a further extension of recursive networks. The key ideas behind it will be
discussed in this section.
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Figure 5.6: Example of network encoding for a 2-bounded DPAG. In the top
left corner, the recursive network is shown, in the right corner the input graph
and at the bottom the corresponding encoding network. The gray nodes in the
encoding network are nodes with a default value x0 for positions where there
is no child present.
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5.3.1 Encoding Network

For graph neural networks (GNNs), the basic approach is not that different
from recursive networks. But some of the restrictions of recursive networks
will no longer hold. The goal is to create an extension and generalization of
the recursive networks of the previous section, just as recursive networks were
an extension and generalization of the recurrent networks.

First of all, the input graphs do no longer have to be acyclic. This means
that, if the procedure for creating the encoding network is the same as for
the recursive networks, then the encoding network will contain cycles for some
input graphs. This raises some problems for computing the activation values
and gradient information, which will be addressed in the next sections. But
essentially, it does not change the procedure of unfolding a recursive network
structure on the input graph.

The graphs do no longer have to be directed either. Directed as well as
undirected edges can be used in the graph. Typically, in GNNs all edges of
the input graph are replaced by directed edges going in both directions. Extra
attributes can be added to the edges to indicate the type of edge, although this
will be ignored here for the sake of simplicity.

Definition 5.8 (Bounded Positional Graph). A graph G(V, E) is an m-
bounded positional graph if #out(v1) ≤ m for all vertices v1 ∈ V and the
vertices v2 ∈ out(v1) are ordered.

Example 5.6. Figure 5.7 shows an example of how the encoding network is
created for a GNN applied to a bounded positional graph containing cycles.

A last extension is that it is also possible now that the graphs are not positional.
In this case, the generalized shift operator q−1

k is not needed anymore because
referring to the k-th child does no longer make sense. The simpler shift operator
q−1 will be used again, this time referring to all children together. Because
the order among the outgoing vertices is no longer important, contributions
from the different children can simply be summed up and used as one value.
When the contributions are summed up, the upper bound m on the number of
outgoing edges is also no longer relevant and so these graphs do no longer have
to be bounded.

Example 5.7. Figure 5.8 shows an example of the encoding network for a
non-positional graph.
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Figure 5.7: Example of an encoding network when a recursive network structure
is applied to a 3-bounded positional graph to create a GNN. The recursive
network structure is shown at the top left corner, the input graph at the top
right corner and the encoding network at the bottom. Note that all connections
in the GNN go in both directions, whether the corresponding edge in the input
graph is unidirectional or bidirectional.
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Figure 5.8: Example of an encoding network when a recursive network structure
is applied to a non-positional graph to create a GNN. The recursive network is
shown at the top left corner, the input graph at the top right corner and the
encoding network at the bottom.
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5.3.2 Contraction Mappings

The introduction of cycles in the encoding network creates a problem. It implies
that there is no topological order any more between the neurons in the encoding
network, and so the updating sequence of the neurons can no longer be defined
as before. The activation values of some neurons will mutually depend on each
other, which means that it is impossible to calculate these values in a serial
order.

An elegant solution to this problem is to compute the activation values not
in one step, but iteratively in many updating steps. The key idea is that the
activation values will gradually evolve to stable values, regardless of the order
in which the activation values are computed in each step. However, this only
works if there is indeed convergence, which is not automatically guaranteed.
Mathematically, it means that the function represented by the network needs
to be a contraction mapping.

Definition 5.9 (Contraction Mapping). A function φ : M 7→ M on a
metric space M is a contraction mapping with regard to a vector norm ‖ · ‖, if
there exists a real value 0 ≤ η < 1 such that ‖φ(x)− φ(y)‖ ≤ η‖x− y‖ for any
x, y ∈ R

n.

Functions that are contraction mappings have interesting properties. They
have a stable state and they are even guaranteed to converge to that state
when the function is applied iteratively.

Theorem 5.1 (Banach Fixed Point Theorem). If φ is a contraction
mapping on a complete metric space, then the equation x = φ(x) has one
and only one solution x∗. Moreover, for any initial state x0, the sequence
xk = φ(xk−1) converges exponentially to x∗, i.e., ‖x∗ − xk‖ ≤ ηk‖x∗ − x0‖ for
any k ≥ 0, where η is the contraction constant.

This means that if the transition function Fw implemented by the encoding
network is a contraction mapping, then the states can simply be computed
iteratively by updating them until they have reached stable values.

5.3.3 Training Algorithm

As long as the network implementing the function Fw is a contraction mapping,
convergence will be guaranteed for any initial state. Whether Fw is a
contraction mapping depends of course on the choice of weights w. The weights
are determined by the training algorithm, so it will be the responsibility of the
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training algorithm to ensure that Fw is a contraction mapping. There exists a
condition that guarantees that a function is a contraction mapping.

Theorem 5.2 (Contraction Mapping Condition). If φ is a function in
C1(Rn,Rn), ‖ ·‖v is a vector norm and ‖ ·‖m is the corresponding matrix norm

‖M‖m = maxx∈Rn

‖Mx‖v

‖x‖v

, (5.1)

then φ is a contraction mapping with regard to ‖ · ‖v if and only if there exists
some 0 ≤ η < 1 such that

∥

∥

∥

∥

∂φ

∂x
(x)

∥

∥

∥

∥

m

≤ η (5.2)

with ∂φ
∂x

the Jacobian matrix of φ.

A typical way to enforce an additional constraint on a neural network, is to add
a penalty term to the error expression that is minimized during training. In
this case, the extra penalty term has to ensure that the norm of the Jacobian
is kept smaller than 1. The formula for the error becomes:

e =
n
∑

i=1

(ti − yi)
2 + βL

(∥

∥

∥

∥

∂Fw

∂x

∥

∥

∥

∥

)

(5.3)

The first part of this expression is the sum of all squared errors between
output and target values, which is typically minimized when training a network,
the second part is an added penalty term to keep the Jacobian small. The
parameter β defines the balance between the error on the patterns and the
penalty term, L(y) equals (y−µ)2 if y > µ and 0 otherwise, and the parameter
µ defines the desired contraction constant of Fw.

For computing the gradient information, backpropagation through time is
combined with the Almeida-Pineda training algorithm [1, 36]. This latter
algorithm relies on the settling behavior of recurrent networks, which implies
that computation of the activation and δ values can be carried out in an
iterative fashion, until convergence to stable values occurs. In principle, because
the activation values of the transition network are computed in multiple time
steps, the total encoding network should be unfolded in time to compute the
gradient with backpropagation through time. But since the system has reached
a stable point x∗ ≈ xT ≈ xT −1, it can be assumed that the state of the units
remains more or less constant for each time step and backpropagation through
time can be carried out using only the last, stable state values. This saves
memory and makes the computation more efficient.
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Figure 5.9: Example network to illustrate the vanishing gradient problem. At
the left, a very simple recurrent network is shown, at the right the unfolded
network for an input sequence of three inputs. The node x1(0) is just the initial
value for the recurrent unit.

5.4 Problems

There are also some general problems associated with these neural networks
for structural data. Two limitations will be discussed here. The first one is the
vanishing gradient problem, which is a problem concerning the training of the
networks with gradient descent. The second limitation is about what kind of
functions can be approximated by this kind of networks.

5.4.1 Vanishing Gradient Problem

Although recurrent networks are in principle able to learn from sequences,
there is a problem that occurs during training these networks that can make it
difficult to learn the right model. This is usually called the vanishing gradient
problem, and it has been explained for instance in [2]. It does not only apply to
recurrent nets, but also to networks on graph structures because it is related to
the unfolding procedure. In this section, the basic problem will be explained.

With standard backpropagation, the weight update ∆wij between unit i and j
is computed as ∆wij = δjxi. The δ value is the gradient information computed
for each network unit, according to the following formula:

δj =

{

σ′(netyj
)(tj − yj) if j is an output unit

σ′(netxj
)
∑M

k=1 δyk
wjk if j is a hidden unit

(5.4)
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It is illustrative to look at how this calculation works in practice when applied
to a very simple recurrent network. The considered network is shown in Figure
5.9, it consists of one input and only one recurrent unit. Suppose that this
network is unfolded for a sequence of three inputs. This implies that the
recurrent connection is converted into three feedforward connections in the
unfolded network. The different copies of a unit xi will be denoted as xi(j),
with j indicating the fold to which this unit belongs, the weights will be indexed
in the same way. Now the weight updates can be computed for the unfolded
recurrent connections:

∆w∗
11(3) = (t− x1(3)) σ′(netx1

(3)) x1(2) (5.5)

∆w∗
11(2) = (t− x1(3)) σ′(netx1

(3)) σ′(netx1
(2)) w∗

11(3) x1(1) (5.6)

∆w∗
11(1) = (t− x1(3)) σ′(netx1

(3)) σ′(netx1
(2)) σ′(netx1

(1)) (5.7)

w∗
11(3) w∗

11(2) x1(0)

If the value for x1(0), the initial state value, is zero, then ∆w∗
11(1) = 0. With

n the number of folds, these weight updates can be written as:

∆w∗
11(j) = (t−x1(3)) x1(j−1) σ′(netx1

(n))
n−1
∏

k=j

σ′(netx1
(k)) w∗

11(k+1) (5.8)

The problem here is the product term. If ρk = |σ′(netx1
(k)) w∗

11(k + 1)| < 1,
then this product term will decrease exponentially with respect to n. So the
weight updates for the folds further away from the final output unit, will tend
to go to zero. Giving large initial values to the weights does not help to avoid
this problem because the σ′ function goes to zero for large values, neutralizing
the effect of larger weights. Increasing the learning rate does not help either,
because it does not change the ratio between the errors for the first and the
last fold. So for long sequences, the more recent inputs will have a substantial
impact on the weight update, while the influence of the older inputs will be
negligible.

The same effect applies to recursive and graph networks. When learning
from tree structures for instance, it will only be possible to train the network
effectively on trees that are not too deep. Backpropagation of the error signal
only succeeds for the top of the tree, for the leaves that are far away at the
bottom of the tree, the error signal will disappear as well.
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Figure 5.10: An example graph for which it can be a problem to learn the right
function. This is for instance the case if the target is the number of vertices in
the whole graph.

5.4.2 Approximation Capabilities

An interesting question is what models can be learned with these networks. For
recursive networks, it has been proven that they are able to approximate any
function on trees up to any degree of precision [20]. The problem is that this
result only holds for tree structures. For input graphs that are not trees, it can
not always be guaranteed that the desired model can be learned correctly. The
following example illustrates this.

Example 5.8. Suppose that the input graphs are acyclic directed graphs, but
not trees, like the example graph shown in Figure 5.10. The target is the total
number of vertices in the graph. For the example graph, this is 6. When the
unfolded network is created, all vertices are replaced by a network implementing
the function fw. So the question is whether there is any such function that can
compute the desired result. It could for instance be a function that adds up
the numbers from the children of that node and gives that sum plus one as a
result. But in this case the problem is that vertex e will be counted twice. It
will be included in the result both at vertex b and c and so the final result will
be 7 instead of 6. Unfortunately, there is no way to avoid this at vertex b
and c because there is no information available that indicates that vertex e is
already counted at another vertex. These kind of problems do not occur with
tree structures.

To discuss this problem more formally, some concepts need to be defined. First
of all, the unfolding tree of a graph G(V, E), denoted as T d

v where d is the depth
of the tree and v the root vertex.
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Definition 5.10 (Unfolding Tree). An unfolding tree T d
v of a graph G(V, E)

is a tree starting from vertex v and with depth d, defined recursively as

T d
v =

{

tree(lv, ∅) if d = 1
tree(lv, {T d−1

v′ : (v, v′) ∈ E}) if d > 1
(5.9)

with tree(v, S) an operator that creates a tree from a given vertex v and a set
S of subtrees and lv the vector attached to vertex v.

One should take care here whether positional or non-positional graphs are
considered. For positional graphs, the position of the subtrees will have to be
the same as the position of the vertices for which they were constructed. So in
this case, two unfolding trees are only equal if they have the same vector and
subtrees, and these subtrees also have the same positions. For non-positional
graphs, the positions of the subtrees are not important and they are not taken
into account for the equality between trees. In a second step, the definition of
unfolding trees leads to an equivalence relationship on vertices.

Definition 5.11 (Unfolding Equivalence). Two vertices v1 and v2 of a
graph G(V, E) are unfolding equivalent, denoted as v1 ∼ v2, if and only if
T d

v1
= T d

v2
for all d ≥ 1.

A third definition is about preserving unfolding equivalence. Functions that
have this property will compute the same output values for all equivalent input
graphs.

Definition 5.12 (Unfolding Equivalence Preservation). A function f :
G 7→ R

n, with G the domain of input graphs, preserves the unfolding equivalence
on G if v1 ∼ v2 implies that f(Gv1

) = f(Gv2
) for all vertices v1 and v2 from

an input graph G(V, E), where Gv1
is the graph G with vertex v1 as root and

Gv2
the same graph G but now with vertex v2 as root.

Considering the set of all functions that preserve the unfolding equivalence on
G, denoted as F(G), it turns out that this is exactly the set of functions that
can be learned by GNNs.

Theorem 5.3 (Approximation Capability of GNNs). For any function f :
G 7→ R

n which preserves the unfolding equivalence and is measurable on G, any
probability measure P on G and any ǫ > 0, there exists a GNN implementing
a function φ so that P (‖f(G)− φ(G)‖ ≥ ǫ) ≤ ǫ.

A proof of this theorem is not given here but can be found in [44].
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5.5 Conclusions

The explanation of recurrent, recursive and graph networks clearly showed how
neural networks can be used on graph domains. The networks were gradually
extended with regard to the input domain, starting from linear graphs over
acyclic graphs to cyclic graphs. The key idea in the first transition was to
generalize the recurrent connection of the recurrent networks. The transition
from acyclic to cyclic graphs could be made by using contraction mappings.

The vanishing gradient problem, which possibly occurs for all these networks on
structured domains, makes it difficult to learn on large graphs where relevant
information is at large distances. This is why methods like recursive or graph
networks must be seen as local learning methods. They can learn a function
that relies on information close to the supervised node of the graph, but not
on information that is too far away from the supervised node. However, for
many problems, the assumption that information nearby is most important,
is reasonable. There is also a limit on what models can be learned by these
methods. Not all structural information can be taken into account.

The discussion of these existing neural network approaches for dealing with
structured data serves as an introduction and background for the next chapter,
which presents a novel approach for dealing with similar relational data. This
new approach resembles the discussed methods but will be more focused on
the aggregation aspect.

The overview given in this chapter is not exhaustive. There are for
instance contextual cascade-correlation networks [33], an extension of cascade-
correlation networks to structured domains, and neural networks for graphs
(NN4G) [32]. There are also many different kernels for graphs [17, 16]. Because
they typically focus on structural features only, being based on substructure
matching for instance, they have less in common with the methods proposed
in this dissertation.



Chapter 6

Relational Neural Networks

In the previous chapter, existing approaches for learning from structured data
with neural networks were discussed. In this chapter, a neural network method
for learning from relational data is proposed. This method resembles recursive
networks, but it includes the possibility of multiple types and it focuses on
aggregation, something that was never considered on itself in recursive networks.
A number of experiments to determine the capabilities of this new type of
networks are discussed as well.

6.1 Relational Neural Networks

The new type of networks introduced in this chapter are relational neural
networks (RelNNs). First, the kind of relational data for which these networks
are developed, is discussed, then the encoding network is explained and how
these networks work with regard to input feeding and training.

6.1.1 Relational Data

The goal is to create neural networks that can deal with relational input
data. Relational data can be represented as graphs, but the graphs will be
heterogeneous, meaning that there are different types of nodes or edges. Each
type can have different attributes. This case was not considered in the networks
for structured domains discussed in the previous chapter. The data type of the
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ACCOUNT A LOAN A CARD

AgeGender

Amount Class

Type

Amount

Type

Limit

0..N 1 1 0..N

Figure 6.1: ER schema for a simple relational dataset. The entities are loan,
account and card. For each entity, the attributes are shown: gender, age,
amount and class for loan, type and amount for account, and type and limit
for card. Between loan and account, a relationship is defined with exactly one
loan for each account and zero, one or more accounts for each loan. A similar
relationship is defined between loan and card.

input structures can be described using an entity-relationship (ER) diagram,
as is common in the field of relational databases.

Example 6.1. Reconsider example 3.7, in which a relational dataset was
described with loans which had to be classified, and accounts and cards tuples
attached to each loan. The ER schema for this dataset is given in Figure 6.1.

In general, the ER schema consists of the following elements:

• The entities are depicted as rectangular nodes in the schema.

• The attributes are attached to the entity with oval nodes.

• Between the entities, relationships can be defined. These are shown as
diamond shaped nodes between two entities.

• For each relationship, the connectivity is shown on the edges with the
entities. These connectivities indicate how many instances of one entity
can be connected to an instance of the other entity.

Now each input graph must follow the structure of this ER schema:

• Each node of the graph is an instance of one entity from the ER schema.
As a result, the node has a tuple attached to it with attributes that
correspond to the attributes associated with that specific entity in the
ER schema.
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• Each edge in the graph is an instance of one of the relationships given
in the ER schema. This means that it must be an edge between nodes
having the right type, as described by the ER schema. The connectivity
constraints of the relationship also have to be obeyed.

6.1.2 Encoding Network

The ER schema of the input graphs is used for the construction of the encoding
network. This encoding network is built as a tree structure, in a top-down
fashion. The root of the tree is a feedforward network with inputs for the
attributes of the target entity. The target or root entity is the entity that
has the target attribute attached to it. After that, relationships in which this
root entity participates are explored, adding network structures for the related
entities to the tree. How this is done, depends on the kind of relationship under
consideration. All possibilities are discussed below:

• The situation for the root node is depicted in Figure 6.2. In this example,
a feedforward network is created for the two input attributes U1 and U2

of the root entity. The target attribute T is used at the output of this
network to train it. This situation is the starting point.

• Another entity B could be related to the root entity A through a strict
one-to-one or many-to-one relationship. This means that there is exactly
one B tuple connected to each A tuple. In the other direction, one B
tuple could be connected to more than one A tuple though. In this case,
the solution is very simple. The inputs for the attributes of the related
B tuple are just added to the feedforward network. See Figure 6.3.

• A very similar situation occurs when there is a non-strict one-to-one or
many-to-one relationship, where there could be at most one tuple related
to the root tuple. So in this case, there can be zero or one tuple connected
to the root tuple through the considered relationship. The root network
is now expanded with inputs for the attributes of the related entity B, as
before, but also with an extra dummy attribute to indicate whether the
related tuple is present or not. Figure 6.4 shows this.

• The last situation involves a one-to-many or many-to-many relationship
between root entity A and another entity B. This situation is obviously
more complicated because it is possible that there are multiple tuples
related to the root tuple through the same relationship. To deal with this,
networks with the capability to process bags of tuples, like the network
structures from Chapter 4, need to be used. This situation is depicted in
Figure 6.5, in this example with a locally recurrent network.
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ENTITYA

U1 U2 T

→

Y

U1 U2

Figure 6.2: Example of an encoding network for the root entity alone. The root
entity A is shown at the left with two input attributes, U1 and U2, and a target
attribute T . The encoded network is shown at the right. It is a feedforward
network with two inputs and one output.

ENTITYA

U1 U2 T

ENTITYB

U4U3

*

1

→

Y

U1 U2 U3 U4

Figure 6.3: Example of an encoding network for a strict one-to-one or many-to-
one relationship. The root entity A has a related entity B with two attributes,
U3 and U4. They are added to the network for A as extra inputs.
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ENTITYA

U1 U2 T

ENTITYB

U4U3

*

0..1

→

Y

U1 U2 U3 U4 V

Figure 6.4: Example of an encoding network for a non-strict one-to-one or
many-to-one relationship. The two attributes U3 and U4 of entity B are added
to the network for A as extra inputs, plus an extra input V to indicate whether
a B tuple is present or not.

ENTITYA

U1 U2 T

ENTITYB

U4U3

*

0..N

→

Y

U1 U2 V

U3 U4

Figure 6.5: Example of an encoding network for a one-to-many or many-to-
many relationship. To process the bag of B tuples related to the A tuple, a
recurrent network is added to the network for entity A, plus an extra input V
to indicate whether at least one B tuple is present or not.
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This process can of course be repeated for other entities than the root entity.
In practice, a breadth-first encoding is conducted, starting from the root entity,
down to a given depth d. The encoding network is built step by step by adding
extra elements to the network for each new related entity. This results in
Algorithm 6.1.

Algorithm 6.1 The algorithm for constructing the encoding network for
relational neural networks. Construction happens top down. X is the root
entity in the ER schema from which construction starts, Relationships is the
set of all relationships in the ER schema, R(A,B) is the relationship R between
entities A and B in the ER schema and #attr(A) is the number of attributes
of an entity A.

Root = new feedforward network with #attr(X) inputs and label X
Nodes = [Root]
for i = 1 to d do

NewNodes = []
for each N in Nodes do

let A be the label of N
for each R(A, B) in Relationships do

if R is strict one-to-one or many-to-one then
add #attr(B) inputs to N
add N labeled with B to NewNodes

else if R is non-strict one-to-one or many-to-one then
add #attr(B) + 1 inputs to N
add N labeled with B to NewNodes

else if R is one-to-many or many-to-many then
G = new aggregate network with #attr(B) inputs and labeled B
add an extra input to N
add G to NewNodes

end if
end for

end for
Nodes = NewNodes

end for

Example 6.2. In Figures 6.6 and 6.7, an ER schema and its corresponding
encoding networks for depths 1, 2 and 3 is shown, according to Algorithm 6.1.
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ENTITYA R3 ENTITYD R5 ENTITYE

R1 R2 R4

ENTITYB ENTITYC

U1

U2 U3

U4 U5

1

0..1

1

0..N

1 0..N

0..N

1

1 1

Figure 6.6: The ER schema that serves as a basis for the example encoding
networks of Figure 6.7.

6.1.3 Feeding and Training

As the encoding network is a tree based on the ER schema, the input graphs
will also have to be transformed into tree structures, similar to the encoding
network.

Example 6.3. An example of how an input graph is transformed in the right
input structure, is shown in Figure 6.9. The input graph is shown in Figure
6.8, the corresponding ER schema in Figure 6.6.

Feeding the input structures into the encoding network happens in a bottom-up
way. The bags at the leaves of the input structure are fed into the lowest parts
of the encoding network. The state values of these lower network parts are then
combined with the inputs from the bags in the nodes one level higher in the tree
structure, and so on towards the top of the network. Finally, the output values
of the network are computed. This procedure is very similar to the unfolding
of the network in the case of recurrent or recursive networks. In this case, the
encoding network is unfolded according to the input tree structure.

Training of the network happens in the opposite direction. As long as there
are no cycles, standard backpropagation can be used. In this case, there is an
order in which the units should be updated to propagate the signals from inputs
to outputs. Going in the reverse direction, from outputs to inputs, makes it
possible to backpropagate the error signal and compute the gradient. Since
the encoding network for RelNNs is a tree and therefore acyclic, the unfolded
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U1 U2 V1 V2 V3

U3 U4

U1 U2 V1 V2 V3

V4U3 U4 U5U4

U3

U1 U2 V1 V2 V3

V4U3 U4 U5U4

U3

U5 U1

U1

Figure 6.7: Example of how the ER schema of Figure 6.6 can be encoded into
networks of different depths. At the top, the corresponding encoding network
of depth 1 is shown, in the middle the encoding network of depth 2 and at the
bottom the encoding network of depth 3.
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1:A

2:B

3:C

4:C

5:C

6:D

7:D

8:E

9:E

R1

R2

R2

R2

R3

R3

R5

R5

R4

R4

R4

Figure 6.8: Example of an input graph according to the ER schema of Figure
6.6. The numbers in the nodes identify the tuples while the letters denote the
types of the tuples.

encoding network turns out to be a large feedforward neural network. Applying
backpropagation to this unfolded network results in a backpropagation through
structure algorithm [46, 15], similar to the algorithm used for recursive neural
networks. Since the parameters are shared among nodes of the same type, the
corresponding gradients are accumulated.

6.1.4 Relational versus Recursive and Graph Networks

RelNNs look very similar to recursive networks because they use tree input
structures, similar to the DAG input structures of recursive networks. There
are two main differences however. First of all, the input trees can contain
different types of nodes. Therefore, different networks are used for the nodes of
the encoding network, according to the type of the node. In recursive networks,
all nodes in the encoding network are assigned the same network structure.
But more important is the second difference. In RelNNs, special aggregate
networks are used to combine the contributions from the different child nodes.
As explained in the previous section, the child nodes of the input graph are
grouped in bags per type, depending on the relationship involved. Each of these
bags is collapsed into a single state vector by the aggregate network. This can
be done in different ways, as explained in Chapter 4. In recursive networks,
this process of aggregating bags of child nodes is not considered as such. The



102 RELATIONAL NEURAL NETWORKS

1:A ⊕ 2:B

3:C

4:C

5:C

6:D

7:D

1:A ⊕ 2:B

3:C ⊕ 7:D

4:C ⊕ 7:D

5:C ⊕ 6:D

6:D ⊕ 8:E

7:D ⊕ 9:E

5:C

3:C

4:C

1:A ⊕ 2:B

3:C ⊕ 7:D ⊕ 9:E ⊕ 1:A

4:C ⊕ 7:D ⊕ 9:E ⊕ 1:A

5:C ⊕ 6:D ⊕ 8:E ⊕ 1:A

6:D ⊕ 8:E

7:D ⊕ 9:E

5:C ⊕ 1:A

3:C ⊕ 1:A

4:C ⊕ 1:A

Figure 6.9: Example of a transformation of an input graph into the input
pattern. The corresponding input patterns for depths 1, 2 and 3 are shown for
the example given in Figure 6.8. The operator ⊕ indicates that the vectors of
two tuples are concatenated.
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cardinality of the bags is assumed to be small and recursive connections are
used to process the state vectors for the children in the bag directly.

The most important difference between RelNNs and GNNs is that GNNs can
process graphs with cycles directly while RelNNs cannot. But even though
cyclic graphs cannot be elaborated directly by RelNNs, they can be transformed
into trees by the preprocessing step. As shown, the procedure consists of
unfolding the graphs into trees according to a breadth-first visit. The visit
starts from the node for which the output is evaluated and may traverse the
nodes several times in the case of cycles. The resulting tree is the one defined
by the visited edges and nodes, and thus it may contain several copies of the
original nodes. The depth of the tree may change according to the depth of
the visit. It might look as if this is a limitation of the representational power of
RelNNs that does not apply to GNNs. But, as explained in Section 5.4.2, GNNs
have the same kind of problem even though they can handle cycles directly.

Like recursive networks, GNNs do not take into account the possibility of
different types. Although in principle, it is possible to incorporate this in the
GNNs, it has not been considered in the original GNN method. With regard
to the aggregation of bags of child nodes, two possibilities were considered in
GNNs. The first one is to use the same method as in the recursive networks.
An alternative is to make the sum of all contributions of the child nodes. This
is more similar to the aggregation methods used in RelNNs, where summing
up contributions was also one of the possibilities, among others. In principle,
it is also possible to use some of these other methods in GNNs, but it has not
been considered so far.

6.2 Experiments

A first experiment is conducted on an artificial dataset to examine the
ability of RelNNs to learn to recognize small substructures in relational data.
Furthermore, experiments on two relational datasets are conducted to make a
comparison between GNNs and RelNNs, and also to compare them with other
machine learning methods. The considered datasets contain descriptions of
molecular structures and a target property of these molecules which has to be
predicted by the model. A variety of methods has already been applied to the
datasets, so these problems can serve as some kind of benchmark.
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6.2.1 Subtrees

A first, simple experiment is to test whether RelNNs are able to detect simple
subtree structures in relational data. This is the counterpart of the simple
aggregate datasets of Chapter 4. Artificial data is generated according to the
ER schema of Figure 6.10. For each tuple in the input pattern, a vector
containing five values is generated. Only the first value is important, the
other four are generated randomly, from a uniform distribution in the interval
[−1, 1]. The first value is also generated randomly in the interval [−1, 1], but
it is important whether the value falls in the [−1, 0.75[ or the [0.75, 1] interval
because this will determine the target class.

Datasets with different concepts are generated. For instance, if the concept is
‘A’, an input pattern is a positive example if and only if the first attribute value
of the A tuple falls in the [0.75, 1] interval. If the concept is ‘A&B’, a pattern is
a positive example if and only if the first attribute for the A tuple is in [0.75, 1]
and there is at least one B tuple connected to the A tuple for which the first
attribute also falls in that same interval. If the concept is ‘A&B&C’, then a
pattern is positive if and only if the first attributes of the A tuple, at least one
of the connected B tuples and at least one of the C tuples connected to that B
tuple, are all in the [0.75, 1] interval. An example of an input pattern is shown
in Figure 6.11.

For these experiments, datasets for a range of different concepts were generated.
Each dataset contains 3000 patterns. The datasets were generated in such a
way that the different bags of B, C and D tuples contain between 5 and 10
tuples. They are also generated in such a way that the number of positive and
negative examples are equal.

The experiments are conducted using ten-fold cross-validation. Seven folds
are used for training, two for validation and one for testing. Three hidden
units are used in the network, on all levels. Results for RelNNs using locally
recurrent networks (LRC) and aggregate networks with maximum (MAX) and
sum (SUM) units are shown in Table 6.1 and Figure 6.12. The LRC, MAX and
SUM network structures correspond to the networks discussed in Section 4.1.
From these results, it is clear that the more a concept depends on information
far away from the root tuple, the more difficult it becomes to learn it. The
concept ‘A’ is of course easy to learn, for ‘B’ it is still possible to achieve
good accuracy, but concepts involving C or D are much harder. This confirms
the hypothesis that this kind of method is only suitable for learning local
concepts, depending only on a root tuple and information coming from its
direct environment. Learning structural concepts spanning over very distant
tuples in the structure is much harder.



EXPERIMENTS 105

R2 C

A R1 B

R3 D

1 0..N

1

0..N

1 0..N

Figure 6.10: ER schema for the subtrees dataset. A, B, C and D are entities,
R1, R2 and R3 are relationships. The attributes have been omitted from the
schema, but every entity has five attributes. Entity A also has an extra target
attribute.
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Figure 6.11: Example of an input pattern of the subtrees dataset. It is a
positive example for the concept ‘A&B&C&D’ because of the subtree with first
values greater than or equal to 0.75. This subtree consists of the gray nodes.
The question marks stand for values that are not important.
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Figure 6.12: Accuracies on the subtrees dataset for RelNNs using LRC, MAX
and SUM networks.

6.2.2 Mutagenesis

The mutagenesis dataset [10] is a small dataset, publicly available and often
used as a benchmark in the ILP literature [31]. It contains the descriptions of
230 nitroaromatic compounds that are common intermediate subproducts of
many industrial chemical reactions. The goal is to predict whether compounds
are mutagenic on Salmonella typhimurium or not. In the original dataset, the
value to be predicted was a real-valued measure of the mutagenicity of each
compound. However, the problem considered in the literature is typically a
classification problem where it has to be predicted whether a compound is
mutagenic (mutagenicity is larger than one) or not (mutagenicity is smaller
than one). In [10] it is shown that 188 molecules out of 230 are amenable
to a regression analysis. This subset is called regression–friendly, while the
remaining 42 compounds are named regression–unfriendly.
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LRC MAX SUM

A 99.80 [0.16] 100.00 [0.00] 99.80 [0.16]

B 66.47 [1.02] 99.27 [0.33] 95.13 [1.42]

C 63.40 [1.65] 61.93 [1.93] 62.93 [0.44]

A&B 76.13 [1.24] 78.53 [10.26] 95.47 [0.75]

B&C 53.93 [1.55] 75.20 [1.51] 82.60 [4.29]

C&D 58.20 [1.85] 60.80 [3.10] 61.20 [3.95]

A&B&C 74.60 [1.45] 77.53 [4.66] 84.60 [1.95]

B&C&D 58.60 [2.04] 73.07 [9.17] 77.67 [5.14]

A&B&C&D 74.47 [0.62] 82.13 [6.28] 86.73 [2.58]

Table 6.1: Accuracies on the subtrees datasets for RelNNs using LRC, MAX
and SUM networks. Standard deviations on the results for the different folds
are shown between brackets.

Despite the fact that the dataset is rather small, it has been used intensively to
evaluate statistical and relational learning techniques. For historical reasons,
many authors have reported their results only on the regression–friendly part,
that is often referred to as the mutagenesis dataset. Moreover, the comparison
is complicated by the fact that there are different possibilities with regard to
the knowledge base, i.e., the set of attributes used for building the model.

The ER schema of the dataset is given in Figure 6.13. Each compound has
four global attributes [10]. Two of these attributes are chemical measurements
(denoted as C), namely LUMO, the lowest unoccupied molecule orbital1, and
log P, the water/octanol partition coefficient2. The other two attributes are
pre-coded structural attributes (denoted as PS). Besides these global attributes
of the compounds, the dataset also contains information about the atoms and
bonds in each compound (denoted as AB). There are two relationships, one
between molecules and atoms to represent that an atom is part of a compound
and one between different atoms to represent a bond between two atoms. For
the atoms, the type and the charge of the atom are given. For the bonds, the
type of bond is given. Finally, attributes indicating the presence of functional
groups, e.g., methyl groups, have been used in some papers as higher level
attributes (denoted as FG). However, these functional groups will not be used
in the experiments conducted here. For these experiments, discrete values are

1The LUMO of a molecule is the lowest energy orbital that has room to accept electrons.
2Octanol is a fatty alcohol with eight carbon atoms that is immiscible with water.

Water/octanol partitioning, measured in logarithmic scale, is a relatively good approximation
of the partitioning between the cytosol and lipid membranes of living systems.
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MOLECULE A ATOM A

LumoLogP

PS1 PS2
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Type
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Figure 6.13: The ER schema for the mutagenesis dataset.

represented by a one–hot encoding of the different possible values. All other
attributes are represented by the corresponding real values, scaled to the [−1, 1]
interval.

The experiments are conducted with relational neural networks as well as graph
neural networks, which makes it possible to compare both approaches. The
results are also compared with previously reported results on this dataset.
The experimental settings for RelNNs and GNNs are the same as much as
possible, but in some respects the two methods require different setups. The
most important difference exists with regard to the encoding of the information:

• RelNNs: different types of nodes can be represented in RelNNs. Each
compound is first of all represented by a top node that stands for the
compound as a whole and contains the global attributes. Besides this
top node, a different type of nodes is used to represent the atoms
belonging to the compound. These atom nodes contain the type and
charge of the atom. They can be further connected to other nodes
representing the atoms that have a bond with the considered atom.
Because RelNNs cannot process cycles in the relational information, the
atom–bond structure is unfolded down to a certain depth, as explained
in Section 6.1.2. Depths 0, 1 and 2 will be considered for the experiments.
The target value is associated with the compound node.

• GNNs: with the current implementation of GNNs, it is not possible to
have different types in the encoding network. Therefore, the compound
should be represented as a graph with a single type of nodes. The nodes
in the graph are chosen to represent the atoms of the compound. The
global attributes of the compound are then added to each atom tuple for
all atoms in the compound. So the global compound is not represented
as a separate node in the graph, but its information is added to all the
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nodes in the input graph. The supervised node is just the first node of
each compound in the dataset.

RelNNs and GNNs also differ with regard to the types of neural networks
used for the different parts of the encoding network. This results in further
differences between both methods concerning the internal structure of the
network nodes after the encoding step:

• RelNNs: the top node for the global compound is a feedforward
network. The nodes for processing the atom information are locally or
fully recurrent networks or aggregate networks, like the simple network
structures from Chapter 4. All networks use sigmoid activation functions.

• GNNs: two different functions need to be implemented, i.e., the
transition and the output function. The output function is a standard
feedforward neural networks. The transition function is a feedforward
network for which the output values are accumulated for the different
contributing nodes. Both networks have one hidden layer. Hyperbolic
tangent activation functions are used for the hidden units and linear
activation functions for the output units.

Following the most common experimental procedure for this dataset, a 10-fold
cross-validation scheme is used. The dataset is randomly split into 10 folds
of equal size. Ten different experiments are run, each experiment using one
fold for testing, one fold for validation and 8 folds for training. Throughout
these 10 experiments, each fold should have been used once as test set, once
as validation set and 8 times as part of the training set. The final results are
averages on all 10 folds and on 3 different runs of the whole experiment.

The validation sets are used to select the optimal GNN and RelNN parameters,
i.e., the number of units in the different parts of the network. There are three
different numbers that have to be chosen:

• The number of hidden units in the top node of the RelNN, which
corresponds to the number of hidden units in the output network of the
GNN.

• The number of output units of the atom node network of the RelNN,
which corresponds to the number of output units of the transition network
of the GNN.

• The number of hidden units of the atom node network of the RelNN,
which corresponds to the number of hidden units of the transition network
of the GNN.
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All these numbers are chosen to be 2, 5 or 10. In order to keep the number
of experiments small, the number of hidden units in the top node and the
atom node network are required to be the same. This yields a total of 9
possible configurations. For RelNNs, the unfolding depth and the type of the
atom node network should also be determined. The unfolding depth will be
restricted to be 0, 1 or 2 and the considered network types are locally recurrent
networks (LRC), fully recurrent networks (FRC) and aggregate networks using
sum units (SUM). Another issue is the number of training iterations. For this,
two different possibilities are considered:

• A fixed number of 500 iterations is used.

• Every 20 iterations, the network is evaluated on the validation set. After
500 iterations, training is stopped and the network corresponding to the
iteration with the best performance on the validation set is selected.

The first strategy may be better, provided there is no overfitting. The second
strategy is preferable when a sufficiently large validation set is available and it
provides a good estimation of the error on the test set. Table 6.2 shows the
performance of GNNs and RelNNs on the two parts of the mutagenesis dataset
and on the whole dataset. The average accuracy and the sample standard
deviation are displayed. Several conclusions can be drawn from these results.

The results indicate that a fixed number of 500 iterations works better than
using the validation set for GNNs, whereas the converse holds for RelNNs. In
this case, both the validation and the training sets are probably too small.
In GNNs this gives rise to an early stop of the learning, whereas in RelNNs
overfitting is observed. That RelNNs suffer from overfitting, can be confirmed
by observing the difference between the performance on the training set and
on the test set. This difference is small for GNNs but large for RelNNs (see
Tables 6.3 and 6.4). The reason why overfitting occurs for the RelNNs and not
for the GNNs is hard to determine with certainty. It might be due to the number
of parameters, which is larger than for GNNs, but it could also be caused by
differences with regard to information encoding or training. GNNs use for
instance some form of regularization to ensure that the network implements
a contraction mapping. Using different parameters for GNNs and RelNNs
or increasing the number of folds might improve the performance, but such
possibilities have not been explored further.

Table 6.2 shows results for different knowledge bases. More precisely, three
cases are considered: AB (only atom and bond information is used), AB+C
(atom and bond information is used but also the global chemical measurements
of the compound) and AB+C+PS (atom and bond information, chemical
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measurements and the precoded structural attributes of the compound are
used). It is important to notice that the relational information is in AB while
the propositional information is in C and PS. The results indicate that GNNs
and RelNNs can merge the propositional and relational information. The best
performances are achieved when pure graph information (AB) is combined with
global information (C and PS).

The results for AB alone are interesting because they indicate whether RelNNs
and GNNs are able to learn from relational information, which is the most
important question here. The results for AB are worse than the results for
AB+C+PS, but they are not that bad. The baseline accuracy, which is
computed by always predicting majority class, on the regression-friendly, the
regression-unfriendly and the whole dataset is 66.49%, 69.05% and 60.00%,
respectively. This means that both methods are effective in learning from the
atom and bond information alone, without using any pregenerated features.
Also note that the sample standard deviations are for the most part small,
suggesting that the network initialization has a small effect on the accuracy
and that the results are statistically significant. The results for AB are also
interesting because in this case, the data representations for RelNNs and GNNs
are closest to each other, because the GNNs do not attach global information
to the atom nodes. The accuracies of GNNs and RelNNs are closer in this
case, which suggests that the better GNN results may be partially due to the
different information encodings used by the two models.

Tables 6.3 and 6.4 compare the performance of the models when different
numbers of hidden and state units are used. The table displays the performance
on the whole mutagenesis dataset using the knowledge base AB+C+PS. Similar
results were obtained using the separate parts of the dataset and different
knowledge bases. The results show that the number of hidden and state units
does affect the performance somewhat, but most results are close to each other.

A review of the published results on the regression–friendly part can be found
in [31], whereas [39] and [48] present a selection of results using the full set of
compounds. Tables 6.5, 6.6 and 6.7 report the accuracies achieved by different
techniques on the regression–friendly part, the regression–unfriendly part and
the whole mutagenesis dataset, respectively. The best results for RelNNs and
GNNs are shown as well.

The comparison is not straightforward because different methods use different
knowledge bases. However, focusing on the best performance of each method
and disregarding the used knowledge base, it turns out that GNNs outperform
other methods on the regression-unfriendly part, while RelNN results are in
line with other results. For the regression–friendly part and the whole dataset,
best results for GNNs are very similar to the best results for other methods,
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model KB

best architecture accuracy

state hidden unf. agg. 500 best

dim. dim. depth type epochs on val.

whole dataset

GNN AB 10 10 – – 81.74 [2.42] 79.13 [1.99]

GNN AB+C 5 2 – – 88.12 [0.50] 85.51 [0.66]

GNN AB+C+PS 10 2 – – 87.54 [1.00] 86.38 [0.25]

RelNN AB 2 10 2 SUM 79.57 [2.01] 78.26 [0.64]

RelNN AB+C 5 10 2 SUM 77.10 [1.47] 79.57 [1.70]

RelNN AB+C+PS 5 2 2 SUM 80.87 [2.51] 83.04 [1.13]

regression–friendly part

GNN AB 10 10 – – 80.49 [0.81] 79.59 [0.63]

GNN AB+C 2 5 – – 94.83 [0.83] 93.61 [1.07]

GNN AB+C+PS 2 2 – – 95.92 [0.32] 93.06 [0.93]

RelNN AB 2 10 2 SUM 87.77 [2.48] 84.75 [1.82]

RelNN AB+C 2 2 1 SUM 87.77 [1.22] 88.30 [0.45]

RelNN AB+C+PS 10 10 1 SUM 88.30 [1.27] 91.49 [0.53]

regression–unfriendly part

GNN AB 10 5 – – 79.67 [2.75] 79.83 [1.44]

GNN AB+C 2 10 – – 95.83 [1.44] 89.83 [1.61]

GNN AB+C+PS 2 10 – – 95.83 [1.44] 94.33 [1.15]

RelNN AB 2 2 2 SUM 78.57 [7.72] 79.37 [2.71]

RelNN AB+C 5 10 2 SUM 70.63 [4.64] 80.95 [2.71]

RelNN AB+C+PS 5 10 2 SUM 73.02 [4.26] 80.16 [3.98]

Table 6.2: The performance of RelNNs and GNNs on the mutagenesis dataset.
KB is the knowledge base. The best architecture is the one selected by using
the validation set. The number of state units, the number of hidden units, the
unfolding depth (only for RelNNs) and the type of aggregate network (only
for RelNNs) are shown for this architecture. The accuracy is shown for a
fixed number of 500 training iterations as well as for the optimal number of
iterations, as determined by using the validation set. Standard deviations on
the accuracies are shown between brackets.



EXPERIMENTS 113

architecture training acc. test acc.

state hidden agg. 500 best 500 best

dim. dim. type epochs on val. epochs on val.

2 2 LRC 89.62 83.37 81.01 80.72

2 2 FRC 89.64 87.54 81.30 81.45

2 2 SUM 86.81 82.54 78.70 81.01

2 5 LRC 94.28 83.71 76.67 81.30

2 5 FRC 95.49 84.24 79.13 82.17

2 5 SUM 92.36 83.24 79.13 80.72

2 10 LRC 96.88 82.64 76.38 80.58

2 10 FRC 98.24 85.92 74.78 79.86

2 10 SUM 94.71 85.63 77.25 78.99

5 2 LRC 91.18 82.14 80.87 80.29

5 2 FRC 89.75 86.41 80.87 83.04

5 2 SUM 85.43 83.55 78.26 77.97

5 5 LRC 95.24 89.15 80.29 81.16

5 5 FRC 97.26 83.93 77.83 81.45

5 5 SUM 91.68 84.22 78.70 78.70

5 10 LRC 98.15 88.91 76.81 82.61

5 10 FRC 99.31 84.67 76.38 81.74

5 10 SUM 95.07 84.67 78.55 80.72

10 2 LRC 90.25 87.21 81.30 81.30

10 2 FRC 90.14 86.39 78.99 81.30

10 2 SUM 76.18 74.35 71.88 71.88

10 5 LRC 95.05 85.07 79.28 81.88

10 5 FRC 96.92 88.03 78.99 82.46

10 5 SUM 84.20 80.20 76.09 76.23

10 10 LRC 98.39 84.91 77.68 82.46

10 10 FRC 99.37 84.31 75.65 80.43

10 10 SUM 91.74 85.38 77.68 79.13

Table 6.3: Overview of the performance of RelNNs on the whole mutagenesis
dataset for different network types and dimensions. Accuracies are shown on
both training and test set for a fixed number of 500 training iterations as well
as for the optimal number of training iterations as determined by using the
validation set.
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architecture training acc. test acc.

state hidden 500 best 500 best

dim. dim. epochs on val. epochs on val.

2 2 89.84 86.90 87.97 87.25

2 5 90.96 87.67 88.70 87.10

2 10 91.57 87.68 88.70 86.38

5 2 90.17 87.63 87.39 85.80

5 5 91.07 88.22 88.41 86.81

5 10 91.72 87.54 87.97 86.09

10 2 89.82 87.48 87.54 86.38

10 5 90.94 87.41 88.99 87.10

10 10 91.56 88.08 89.13 86.23

Table 6.4: Overview of the performance of GNNs on the whole mutagenesis
dataset for different network dimensions. Accuracies are shown on both training
and test set for a fixed number of 500 training iterations as well as for the
optimal number of training iterations as determined by using the validation
set.

RelNNs perform a bit worse but still in line with the majority of the results.

6.2.3 Biodegradability

In this section, results of experiments on the biodegradability dataset [12]
are presented. Since the experimental procedure is very similar to the one
for mutagenesis, only the differences are discussed. The reader is referred
to the previous section for the representation of the compounds, the model
architectures and any other detail that is not explicitly reported here.

The biodegradability dataset is very similar to the mutagenesis dataset. The
aim is to predict the degree of biodegradability of 328 chemical compounds.
The compounds are described by their atom and bond structure, and some
global information, i.e., molecular weight and log P. This information gives
a full description of the molecules, but in earlier experiments conducted on
this dataset, extra descriptors were built. These extra descriptors include a
vector with occurrences of functional groups and a vector with counts of small
substructures in the molecules.
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model KB reference accuracy

GNN AB 80.49

GNN AB+C 94.83

GNN AB+C+PS 95.92

RelNN AB 84.75

RelNN AB+C 88.30

RelNN AB+C+PS 91.49

RS AB [31] 88.9

RDBC AB [23] 84

1nn(dm) AB [39] 83

FOIL AB [38] 76

MFLOG AB+C [26] 95.7

1nn(dm) AB+C [39] 91

RDBC AB+C [23] 83

P-Progol AB+C [47] 82.0

RS AB+FG [31] 89.9

Neural Networks C+PS [47] 89.0

RSD AB+C+FG [28] 92.6

RELAGGS AB+C+FG [28] 88.0

P-Progol AB+C+FG [47] 88.0

SINUS AB+C+FG [28] 84.5

RS AB+C+PS+FG [31] 95.8

boosted-FOIL not available [37] 88.3

Table 6.5: A comparison of the performance of GNNs and RelNNs with other
techniques on the regression–friendly part of the mutagenesis dataset. KB is
the used knowledge base.
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method KB reference accuracy

GNN AB 79.67

GNN AB+C 95.83

GNN AB+C+PS 95.83

RelNN AB 79.37

RelNN AB+C 80.95

RelNN AB+C+PS 80.16

TILDE AB [9] 85

RDBC AB [23] 79

1nn(dm) AB [39] 72

TILDE AB+C [9] 79

RDBC AB+C [23] 79

1nn(dm) AB+C [39] 72

Table 6.6: A comparison of the performance of GNNs and RelNNs with other
techniques on the regression–unfriendly part of the mutagenesis dataset. KB
is the used knowledge base.

method KB reference accuracy

GNN AB 81.74

GNN AB+C 88.12

GNN AB+C+PS 87.54

RelNN AB 78.26

RelNN AB+C 79.57

RelNN AB+C+PS 83.04

RDBC AB [23] 83

1nn(dm) AB [39] 81

TILDE AB [9] 77

1nn(dm) AB+C [39] 88

RDBC AB+C [23] 82

TILDE AB+C [9] 82

Table 6.7: A comparison of the performance of GNNs and RelNNs with other
techniques on the whole mutagenesis dataset. KB is the used knowledge base.
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This means that five different knowledge bases can be used for learning. Three
of them (P0, P1 and P2) contain global information of the whole molecule, two
of them (R0 and R1) contain relational information of the molecule atoms:

• P0: contains the molecular weight and log P.

• P1: consists of the counts of functional groups in the molecule.

• P2: consists of the counts of common substructures in the molecule.

• R0: consists of raw atom and bond information.

• R1: consists of predicates detecting the presence of functional groups
and substructures. They are only relevant for ILP systems and they are
defined on top of R0, so they are considered to be part of the relational
information.

A more detailed description of the information encoded by these knowledge
bases can be found in [12]. For the experiments, atom and bond types are
represented by one–hot encoded vectors. Other features are represented directly
by their respective values. P0 is a 2–dimensional vector, and P1 and P2 are
30-dimensional sparse vectors.

For this dataset, both regression and classification problems are considered.
For the regression problem, the half–life time has to be predicted directly. For
the classification problem, four categories are defined by using thresholds on
the half–life time. This results in four classes: chemicals that degrade fast,
moderately fast or slowly, and chemicals that are resistant.

For the classification task, RelNNs and GNNs with four output units are used,
one for each biodegradability class. A one–hot encoding schema is used to
represent each class, i.e., the vector t1 = [1,−1,−1,−1] stands for the first
class, t2 = [−1, 1,−1,−1] stands for the second class, etcetera. The models are
trained to output the vector that represents the class to which the processed
molecule belongs to. During testing, the predicted class is determined by
looking at the output with the highest value. The performance is measured with
two different measures. The first measure is standard accuracy, the percentage
of the correctly classified compounds. The other measure is accuracy up to
one error (accuracy ±1), which consists of the percentage of examples whose
classification is at most one class up or down from the correct classification. For
instance, a molecule that belongs to the class fast and is classified as moderately
fast, still counts as correctly classified for accuracy ±1. For the regression task,
the RelNN and GNN models have only one output and are trained using the
half-life time value as target. Just as in the original paper [12], the performance
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is evaluated using the correlation score between the output of the model and
the target to be predicted.

Tables 6.8 and 6.9 show the results for the biodegradability dataset. It must
be noted that the biodegradability dataset is not an easy learning task so the
performance is not that great in general. The best accuracy on the classification
task and the best correlation on the regression task are obtained by GNNs
with knowledge base R0+P0. On the other hand, the accuracy ±1 on the
classification task is close to 90% for almost all the methods and the differences
are not very significant from a statistical point of view.

Interestingly, the maximal knowledge base R0+P0+P1+P2 is not automat-
ically the knowledge base that yields the best performance. This can be
explained by the fact that a larger number of attributes requires a larger number
of parameters and makes the networks prone to overfitting problems. Actually,
the fact that P1 and P2 are sparse vectors, since some of the substructures are
rather infrequent in the data, can worsen the problem. It is also interesting
to note that in some cases the performance of the models is reasonably good
without any precoded attributes, i.e., using R0 alone, which includes only the
graph connectivity and the atom and bond types.

Whether it is best to use a fixed number of training iterations or the validation
set to determine the optimal number of validations, depends. A fixed number
of iterations gives best results for GNNs on the classification task. Using the
validation set seems to be the better choice for RelNNs on the regression task.
In the other cases, there is no clear difference between both settings.

Table 6.10 illustrates the effect of using different numbers of hidden and state
units. The table shows results for the classification task using features R0+P0.
For RelNNs, only sum networks are considered. For the GNNs, it is clear that
it is best to use a fixed number of training iterations. The results also improve
when the number of hidden units is larger, the number of state units is less
important. For RelNNs, the number of iterations and the number of hidden and
state units do not have a decisive impact on the results, but most importantly,
the accuracy is significantly lower than for GNNs.

Tables 6.11 and 6.12 show a comparison with other results achieved on the
classification and regression task, as published in [12]. Note that R0, which
contains the graph connectivity, is needed by GNNs and RelNNs and has always
been used in the experiments, whereas such information is not useful for most
of the other methods, since R0 can not be used by propositional methods and
is partially and implicitly contained in some of the propositional attributes.
The results show that the performance of the GNNs and some of the RelNNs
is comparable to the other results, but not better. GNNs achieve the second
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architecture train accuracy test accuracy test acc. ±1

state hidden 500 best 500 best 500 best

dim. dim. epochs on val. epochs on val. epochs on val.

GNNs on the classification task using R0+P0

2 2 66.96 56.33 53.11 49.10 92.26 90.22

2 5 74.57 58.03 56.79 48.27 92.16 92.25

2 10 78.39 58.86 57.09 47.48 91.64 91.03

5 2 67.03 57.75 53.33 51.42 90.22 89.61

5 5 75.61 61.06 57.82 49.97 92.56 90.92

5 10 79.52 64.58 58.34 53.66 92.96 91.65

10 2 66.75 54.72 52.93 48.87 90.63 91.02

10 5 75.71 59.96 57.30 49.49 92.46 89.80

10 10 79.12 64.71 56.71 52.64 93.17 91.35

RelNNs on the classification task using R0+P0

2 2 50.79 45.43 43.23 43.60 91.95 92.99

2 5 61.71 46.10 41.16 42.50 88.29 93.66

2 10 69.43 47.33 42.87 43.29 86.28 91.95

5 2 51.49 46.33 43.60 43.54 91.71 93.66

5 5 62.82 46.06 42.68 43.96 87.80 93.23

5 10 73.40 45.56 39.02 42.50 85.85 93.05

10 2 52.23 46.18 42.56 42.93 92.62 93.60

10 5 65.71 47.93 44.39 43.17 88.66 92.99

10 10 78.82 46.62 39.09 41.71 85.67 92.68

Table 6.10: Performance of RelNNs and GNNs on the biodegradability dataset
for different dimensions. Experiments for the RelNNs were all carried out using
SUM networks and an unfolding depth of 2. The number of state units, the
number of hidden units, and the accuracy after 500 iterations and after the
optimal number of iterations as determined by using the validation set, are
shown. For the training set, accuracy is shown, for the test set accuracy and
accuracy up to one error (acc. ±1).



122 RELATIONAL NEURAL NETWORKS

best performance on the classification and regression task. The performance of
the RelNNs varies a lot and depends on the used knowledge base. The good
results obtained by methods that do not exploit R0 suggest that the counts of
functional groups and substructures are probably a good propositionalization
of the relational data, as already mentioned in [12]. On the other hand, the
relatively good performance obtained by GNNs on the classification task and by
RelNNs on the regression task, using only R0, suggests that these methods can
actually extract a large part of the information in P0, P1, P2 and R1 directly
from the original graph.

6.3 Conclusions

The relational neural networks presented in this chapter are a logical extension
of the networks for bags from Chapter 4 to relational domains. They are very
similar in structure to recursive neural networks but focus much more on the
aggregation aspect than on learning structural features. The first experiments
on the subtrees datasets showed that these RelNNs work well on datasets with
shallow tree structures, but performance degrades when datasets with deeper
tree structures are considered. This was to be expected and it confirms the
assumption that these models are best suited for learning in local environments,
i.e., in situations where the relevant information is concentrated and extensive
structural information is not relevant for the learning task at hand. On the
mutagenesis and biodegradability datasets, performances can be achieved that
are more or less in line with other approaches, but not better. Overall, GNNs
seem to do better on these datasets. It might be that their preservation of cycles
in the data pays off, but there are also some other differences in data encoding
and network training that might account for this difference in performance. To
enable a fair comparison between methods, experiments were all carried out
in settings that are as similar as possible for the different methods. But these
settings might advantage or disadvantage one method with regard to the others
and might not be optimal for all methods.

In general, one should also be careful to draw definitive conclusions from
experiments with this kind of real-world datasets, because these datasets tend
to have very peculiar characteristics. It might also be the case that these
problems depend too much on structural features while the focus, at least for
RelNNs, should definitely be on aggregation. But it is hard to find datasets
like that, datasets also for which a fair number of results have been reported
and that can be used as a benchmark. But at least the experiments show that
RelNNs are capable of extracting relational information.
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models KB accuracy accuracy ±1

GNN R0 52.60 89.42

GNN R0+P0 58.34 92.96

GNN R0+P0+P1 54.85 91.55

GNN R0+P0+P2 53.31 88.60

GNN R0+P0+P1+P2 51.09 87.38

RelNN R0 40.00 92.26

RelNN R0+P0 43.60 92.99

RelNN R0+P0+P1 50.73 92.01

RelNN R0+P0+P2 47.62 90.67

RelNN R0+P0+P1+P2 51.46 91.22

C4.5 P0+P1 55.2 86.2

C4.5 P0+P2 56.9 82.4

RIPPER P0+P1 52.6 89.8

RIPPER P0+P2 57.6 93.9

M5’ P0+P1 53.8 94.5

M5’ P0+P2 59.8 94.7

FFOIL P0+R0 53.0 88.7

ICL P0+R1 55.7 92.6

SRT-C P0+P1 50.8 87.5

SRT-C P0+P1+R1 55.0 90.0

SRT-R P0+P1 49.5 91.9

SRT-R P0+P1+R1 51.6 92.8

TILDE-C P0+R1 51.0 88.6

TILDE-C P0+P1+R1 52.0 89.0

TILDE-R P0+R1 52.6 94.0

TILDE-R P0+P1+R1 52.4 93.9

Table 6.11: A comparison of the performance of GNNs and RelNNs with
other methods on the classification task of the biodegradability dataset. The
performance is measured using accuracy and accuracy up to one error (accuracy
±1). KB is the used knowledge base.
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models KB correlation

GNN R0 0.6023

GNN R0+P0 0.6823

GNN R0+P0+P1+P2 0.4449

RelNN R0 0.6511

RelNN R0+P0 0.6329

RelNN R0+P0+P1 0.6253

RelNN R0+P0+P2 0.5228

RelNN R0+P0+P1+P2 0.5515

M5’ P0+P1 0.666

M5’ P0+P2 0.693

SRT-R P0+P1 0.580

SRT-R P0+P1+R1 0.632

TILDE-R P0+R1 0.622

TILDE-R P0+P1+R1 0.623

Table 6.12: A comparison of the performance of GNNs and RelNNs with other
methods on the regression task of the biodegradability dataset. KB is the used
knowledge base.



Chapter 7

Relational

Cascade-Correlation Networks

The relational networks from the last chapter can be seen as an extension of
the simple aggregate network types from Chapter 4 to relational domains. It
is only a logical step to try to extend the cascade-correlation approach from
that chapter to relational domains as well and that is exactly the topic of this
chapter. Also, experimental results for the same datasets as in the previous
chapter will be discussed.

7.1 Relational Cascade-Correlation Networks

The goal is to create a cascade-correlation approach for relational domains,
RelCCNs, similar to RelNNs. This is however not straightforward with the
treelike network structure considered in the previous chapter, so a somewhat
alternative approach will be developed.

7.1.1 Cascade-Correlation for Relational Domains

Using cascade-correlation turned out to be quite successful for learning from
bags, as discussed in Chapter 4. It would also be a useful technique to apply to
relational data, for the same reasons, i.e., it allows the algorithm to choose the
right number and types of neurons and to construct hybrid network structures
in a step by step fashion. In fact, it could be even more useful for learning from
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ENTITYA R1 ENTITYB R2 ENTITYC

U1 U2 U3

1 0..N 1 0..N

Figure 7.1: ER schema for Example 7.1.

relational domains because the choices to be made about numbers and types
of units depend on the number of entity and relationship types, as explained
in the previous chapter. The number of possibilities grows rapidly when the
number of tuple and relationship types increases, so it becomes impracticable
to try out all possibilities. A method to choose the right option automatically
during training would be very helpful.

Using cascade-correlation in this setting is complicated however by the fact
that it is unclear how to train units deep in the network with this method. The
problem is that for each trained unit the correlation with the output error needs
to be maximized, but for the deeper levels of the network, this correlation also
depends on the units in between the trained unit and the output unit. The
following example will make this more clear.

Example 7.1. Consider the ER schema in Figure 7.1. The corresponding
relational network would consist of three parts, one feedforward part for entity
A, and two aggregation parts for entities B and C. When a unit is added
to the network part for C, the question is how to maximize the correlation of
this unit with the output error signal. First of all, there are multiple output
values for this new unit within the same data pattern, because each B tuple of
the data pattern can have its own bag of related C tuples. For each of these
bags, there is a different output value for the C network part. To maximize the
correlation of a new unit, it is necessary to determine its final, total effect on the
output of the network. But this effect can only be determined by combining the
different output values for the C tuple bags in the network layers above. In this
case, it means that the network part for B should be involved in maximizing
the correlation. To maximize that correlation, the B network part should be
retrained during the training of the new unit, but this defeats the basic idea of
the cascade-correlation approach to train the network one unit at a time.

It is clear from this example that using cascade-correlation is getting more
complicated with this kind of relational networks. The original simplicity of the
cascade-correlation approach is lost. And the problem related to the training
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of deep networks persists. Therefore, a different solution is chosen here. The
treelike structure is given up and a linearized data format, more similar to the
bag data of Chapter 4, is adopted. After that, an algorithm similar to the
cascade-correlation algorithm for the bag data can be used.

7.1.2 Linearizing Relational Data

The first step is to linearize the relational data. This means that each input
pattern is converted into a simpler pattern, removing part of the structural
information. The chosen format has one single vector and a number of bags of
vectors.

Definition 7.1 (Linearized Relational Dataset). A linearized relational
dataset is a collection of pairs of input and target patterns, where the target
patterns are simple vectors and the input patterns are given by a tuple
〈V, B1, . . . , BN 〉, with V a single vector and B1 to BN bags of vectors. All
vectors in a bag are of the same type and the types of V and B1 to BN are the
same for all input patterns.

In practice, this means that an input pattern is described by a single vector for
all the global information of the pattern and a number of bags of vectors for
information that is related to the data example but that cannot be transformed
into a single attribute. How the transformation of an input pattern is carried
out in practice, is deliberately left open. In general, it depends on the
considered problem which transformation is most appropriate for that problem.
It will become more clear how this is done in the experiments section.

Sometimes it will be possible to transform data into this format without loss
of information, but in other cases, some of the structural information will not
be preserved during the transformation. This can be a problem when learning
some kind of concepts, but even with models such as RelNNs and GNNs, which
try to preserve the structural information, some kind of concepts turn out to
be impossible to learn. In any case, the focus is, again, more on aggregation
than on structural aspects.

7.1.3 Relational Cascade-Correlation Algorithm

Using cascade-correlation on this linearized relational data is quite straight-
forward. It is a combination of the standard cascade-correlation method
for feedforward networks and the aggregate cascade-correlation algorithm of
Chapter 4. In each iteration step, units are generated for the single vector
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Algorithm 7.1 The relational cascade-correlation training algorithm. The
input patterns for this algorithm are the linearized data patterns consisting of
a single vector and a number of bags of vectors.

N = new cascade-correlation network with no hidden units
train output weights of N
for i = 1 to maxNbOfNeurons do

Pool = {}
add m feedforward units to Pool for the single input vector
for j = 1 to nbOfBags do

for bag j, add m aggregate units of each type to Pool
end for
for each unit x in Pool do

maximize correlation for x
end for
select unit x with the highest correlation
add unit x to N
retrain output weights of N

end for

and all the bags of vectors. The unit with the highest correlation is chosen to
be added to the network. A more formal description is given in Algorithm 7.1.
Besides the fact that multiple bags are used instead of a single one, the cascade-
correlation approach works exactly the same as the approach described in
Chapter 4.

7.2 Experiments

To compare RelCCNs with RelNNs, experiments on the same datasets as in
Chapter 6 are conducted, i.e., the subtrees dataset and the mutagenesis and
biodegradability datasets.

7.2.1 Subtrees

First of all, the subtrees experiment is repeated, but with RelCCNs instead of
RelNNs. The considered datasets are exactly the same as the ones in Section
6.2.1, but the tree data needs to be transformed in the linearized relational
data format. The single vector for each input pattern is of course the single
tuple of type A for that input pattern. Moreover, three bags are added for each
input pattern. The first bag contains all B tuples, the second bag is filled with
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0.8;?;?;?;?

0.3;?;?;?;?

0.2;?;?;?;?

0.9;?;?;?;?

0.3;?;?;?;?;0.1;?;?;?;?

0.3;?;?;?;?;0.5;?;?;?;?

0.2;?;?;?;?;0.3;?;?;?;?

0.9;?;?;?;?;0.6;?;?;?;?

0.9;?;?;?;?;0.8;?;?;?;?

0.9;?;?;?;?;0.5;?;?;?;?

0.3;?;?;?;?;0.1;?;?;?;?

0.3;?;?;?;?;0.3;?;?;?;?
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A

B

B-C

B-D

Figure 7.2: Example of a transformed input pattern of the subtrees dataset.
This pattern is the transformed version of the example depicted in Figure 6.11
and has one simple input vector and three bags of input vectors. It is a positive
example for the concept ‘A&B&C&D’ because of the subtree with first values
greater than or equal to 0.75. This subtree consists of the gray nodes. The
question marks stand for values that are not relevant for the concept under
consideration.

RelNN/LRC RelNN/MAX RelNN/SUM RelCCN

A 99.80 [0.16] 100.00 [0.00] 99.80 [0.16] 99.63 [0.38]

B 66.47 [1.02] 99.27 [0.33] 95.13 [1.42] 99.27 [0.55]

C 63.40 [1.65] 61.93 [1.93] 62.93 [0.44] 97.03 [0.80]

A&B 76.13 [1.24] 78.53 [10.26] 95.47 [0.75] 98.57 [0.67]

B&C 53.93 [1.55] 75.20 [1.51] 82.60 [4.29] 90.77 [2.29]

C&D 58.20 [1.85] 60.80 [3.10] 61.20 [3.95] 67.23 [3.87]

A&B&C 74.60 [1.45] 77.53 [4.66] 84.60 [1.95] 91.33 [1.56]

B&C&D 58.60 [2.04] 73.07 [9.17] 77.67 [5.14] 87.80 [2.32]

A&B&C&D 74.47 [0.62] 82.13 [6.28] 86.73 [2.58] 89.23 [1.40]

Table 7.1: Results for RelCCNs on the subtrees dataset compared with different
types of RelNNs. Average accuracies are shown with standard deviations
between brackets.
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Figure 7.3: Accuracies for relational cascade-correlation networks on the
subtrees datasets. Results for relational networks with the sum network type
are also shown for comparison.

the Cartesian product of the B and C tuples and the third bag consists of the
Cartesian product of the B and D tuples. An example is shown in Figure 7.2.

With this transformation, some structural information has been lost. It will
be difficult to learn the concept ‘C&D’ for instance, because the information
in the bags does not tell which C and D tuples are connected to the same B
tuple. This could be solved by adding a bag with the Cartesian product of the
B, C and D tuples, but this kind of solution tends to add quite large bags to
the input pattern and may become practically infeasible if there are a lot of
relationships in the data. Therefore, this possibility is not explored any further
here and only the simple transformation is considered. After all, the focus is
not so much on learning from the structural information, but on learning from
the bag data. Apart from the data transformation, the experimental setup is
similar to the setup for RelNNs.
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model KB

best architecture accuracy

state hidden unf. agg. 500 best

dim. dim. depth type epochs on val.

GNN AB 10 10 – – 81.74 [2.42] 79.13 [1.99]

GNN AB+C 5 2 – – 88.12 [0.50] 85.51 [0.66]

GNN AB+C+PS 10 2 – – 87.54 [1.00] 86.38 [0.25]

RelNN AB 2 10 2 SUM 79.57 [2.01] 78.26 [0.64]

RelNN AB+C 5 10 2 SUM 77.10 [1.47] 79.57 [1.70]

RelNN AB+C+PS 5 2 2 SUM 80.87 [2.51] 83.04 [1.13]

RelCCN AB – – 2 – 78.42 [3.05] 79.31 [3.68]

RelCCN AB+C – – 2 – 77.89 [2.69] 78.21 [2.81]

RelCCN AB+C+PS – – 2 – 80.54 [2.68] 79.89 [3.01]

Table 7.2: Results on the whole mutagenesis dataset for GNNs, RelNNs and
RelCCNs. The best architecture is the one selected by using the validation
set. The number of state units, the number of hidden units, the unfolding
depth (only for RelNNs and RelCCNs) and the type of aggregate network
(only for RelNNs) are shown for this architecture. The accuracy is shown for
a fixed number of 500 training iterations as well as for the optimal number of
iterations, as determined by using the validation set. Standard deviations on
the accuracies are shown between brackets.

The network is trained with a maximum of 10 hidden units. In each iteration,
3 units of each type are constructed and trained for each bag in the data and
the single vector. Each unit is trained for 500 iterations to maximize its output
correlation. Experimental results are obtained using 10-fold cross-validation.
If a validation set is used, 7 folds are used for training, 2 for validation and
1 for testing. Results are shown and compared with RelNNs in Table 7.1
and Figure 7.3. From these results, similar conclusions can be drawn as in
Chapter 4. The cascade-correlation approach performs at least as good as the
simple network approach, and in some cases substantially better. As long as no
crucial information is lost in the transformation, the linearized data also enables
to learn from more distant data tuples because they can be converted into more
nearby data by the transformation. The results for dataset ‘C’ illustrate this
clearly.
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model KB

best architecture accuracy

state hidden unf. agg. 500 best

dim. dim. depth type epochs on val.

regression–friendly part

GNN AB 10 10 – – 80.49 [0.81] 79.59 [0.63]

GNN AB+C 2 5 – – 94.83 [0.83] 93.61 [1.07]

GNN AB+C+PS 2 2 – – 95.92 [0.32] 93.06 [0.93]

RelNN AB 2 10 2 SUM 87.77 [2.48] 84.75 [1.82]

RelNN AB+C 2 2 1 SUM 87.77 [1.22] 88.30 [0.45]

RelNN AB+C+PS 10 10 1 SUM 88.30 [1.27] 91.49 [0.53]

RelCCN AB – – 2 – 86.30 [2.76] 86.95 [2.54]

RelCCN AB+C – – 2 – 85.31 [2.26] 87.44 [2.89]

RelCCN AB+C+PS – – 2 – 89.30 [2.25] 91.05 [2.77]

regression–unfriendly part

GNN AB 10 5 – – 79.67 [2.75] 79.83 [1.44]

GNN AB+C 2 10 – – 95.83 [1.44] 89.83 [1.61]

GNN AB+C+PS 2 10 – – 95.83 [1.44] 94.33 [1.15]

RelNN AB 2 2 2 SUM 78.57 [7.72] 79.37 [2.71]

RelNN AB+C 5 10 2 SUM 70.63 [4.64] 80.95 [2.71]

RelNN AB+C+PS 5 10 2 SUM 73.02 [4.26] 80.16 [3.98]

RelCCN AB – – 2 – 80.65 [3.46] 79.93 [3.29]

RelCCN AB+C – – 2 – 78.87 [2.11] 80.21 [2.86]

RelCCN AB+C+PS – – 2 – 76.19 [3.76] 80.24 [3.47]

Table 7.3: Results on the mutagenesis dataset for GNNs, RelNNs and RelCCNs.
The best architecture is the one selected by using the validation set. The
number of state units, the number of hidden units, the unfolding depth (only
for RelNNs and RelCCNs) and the type of aggregate network (only for RelNNs)
are shown for this architecture. The accuracy is shown for a fixed number of 500
training iterations as well as for the optimal number of iterations, as determined
by using the validation set. Standard deviations on the accuracies are shown
between brackets.
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7.2.2 Mutagenesis

Experiments with RelCCNs on the mutagenesis dataset are also conducted.
The dataset itself and experiments with RelNNs and GNNs were already
discussed in Section 6.2.2. The experimental setup is as similar as possible
to the one used in Section 6.2.2, only the differences will be stated explicitly.

One issue that needs further explanation, is the transformation of the data
for use with the RelCCNs. As explained before, the input patterns consist
of some global molecular information and the atom-bond structure of the
considered molecule. This has to be transformed into a single attribute vector
and a number of bags of attribute vectors. It follows naturally that the global
molecular information is encoded in the single attribute vector. A first bag can
be constructed by encoding all atoms that are part of the molecule. For each
atom, type and charge can be encoded in a vector. This yields a first bag of
vectors for each input pattern. Another bag can be constructed containing all
bonded atom couples in the molecule. For each couple, a vector is constructed
by concatenating the attributes of the first atom, the attributes of the bond
and the attributes of the second atom. Which atom is the first and which the
second is not important, each combination is only represented once. The same
process can be carried out with all combinations of three atoms and two bonds,
etcetera. Each time a new bag is created. The user needs to determine the
maximal combination of atoms that is still considered. As a result, this will
also be the number of bags in the transformed input pattern and it corresponds
to the depth of the RelNNs in Section 6.2.2. For the experiments, the network
is trained with a maximum of 10 hidden units. In each iteration, 3 units of each
type are constructed and trained for each bag in the data and the single vector.
Each unit is trained for 500 iterations to maximize its output correlation.

Results are shown in Tables 7.2 and 7.3. The results for RelCCNs are very
similar to those for RelNNs. There is still a difference with the best results
for GNNs. As in Section 6.2.2, an explanation for that difference could be the
peculiarities of GNNs with regard to data representation and network encoding
and training.

7.2.3 Biodegradability

Experiments on the biodegradability are also repeated. This dataset has
already been discussed in Section 6.2.3, all details about the data can be found
there. The data transformation is similar to the one for the mutagenesis data in
the previous section. The molecule information is encoded in the global vector,
the atom-bond information in the bags. For the experiments, the network is
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trained with a maximum of 10 hidden units. In each iteration, 3 units of each
type are constructed and trained for each bag in the data and the single vector.
Each unit is trained for 500 iterations to maximize its output correlation.

The results are summarized in Tables 7.4 and 7.5. In general, RelCCNs perform
at least as good or better than RelNNs. For the regression task, there seem
to be less problems with overfitting when using RelCNNs. Compared to the
GNNs, it depends on the setting which method performs best, there is no
overall best.

7.3 Conclusions

The relational cascade-correlation approach discussed in this chapter completes
the range of methods developed to process relational data. This method is the
equivalent of the cascade-correlation method for learning from simple bags in
Chapter 4. It can be seen as an extension from the single bag setting to
a multiple bag setting. With a simple transformation, relational data can
be converted to this format if it does not directly correspond to this format.
Some structural information will be lost in most cases, but, for the considered
problem setting which focuses on aggregation, the most relevant information
that is spread out over multiple tuples should be preserved.

Experimental results confirm the conclusions already drawn in Chapter 4. Es-
pecially for the artificial subtrees dataset, it is clear that the cascade-correlation
approach works better. For the mutagenesis and the biodegradability datasets,
this is not so clear. It should be noted again that these datasets serve as a
good benchmark because there are many other results available, but that they
are not necessarily the most suited datasets for the methods developed in this
dissertation.
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Chapter 8

Conclusions

To conclude, a brief summary of the dissertation is given, followed by an
evaluation of the developed ideas and some pointers for future work.

8.1 Summary

The dissertation consists of two main parts. In the first part, the discussion
focused on aggregation, considering learning from bags of tuples. In the second
part, this was broadened to more diverse and complex relational learning
settings.

8.1.1 Aggregation

The use of aggregate features in machine learning algorithms was the starting
point of this dissertation. It is motivated by the need to process bags of data
tuples instead of single tuples. Since the early years of machine learning, there
has been interest in extending the input data patterns from the simple and well-
known propositional domain to more complex and expressive data domains. It
can be argued that the step from single to multiple tuples, without considering
other aspects like structural relationships, is one of the most fundamental steps
in this process.

In Chapter 3, an important distinction was made between propositionalization
and direct approaches. In a propositionalization approach, aggregate features
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are constructed before the actual learning process takes place, while in a direct
approach these features are constructed during learning. Propositionalization
has often been the first and natural choice in the past because it allows to
use familiar propositional methods. It reduces a more complicated setting to a
simpler one. But how this reduction is done and whether it will be a reduction
that results in good performance or not, will depend entirely on the chosen
propositionalization. This can be a very hard choice to make, especially when
little is known about the considered problem and the targeted concept. Direct
approaches are more advanced, but, as a consequence, also more complicated.
They will typically involve traversing some search space, but this can be far
from trivial for these aggregate features.

Another distinction was made between the aggregation and the selection part of
aggregate features. When the general form of aggregate features is considered,
it can be split up into two different aspects. There is typically a part of the
feature that operates on single tuples. This is the selection part, which is not
that different from the type of features found in propositional methods. The
second part is an aggregate function that collects and aggregates the results of
this selection operator on all tuples of a bag of data. This is the aggregation
part and this is what distinguishes these features from propositional features.

In Chapter 4, several adaptations of known neural network structures were
created to enable them to process bags of data. The advantage of using
neural networks is that they can easily be adapted for such a setting. Different
network structures were considered based on feedforward networks, networks
with special aggregate units and recurrent networks.

Each of these structures has its own advantages and disadvantages. They will
work well in some cases, but not in others. Therefore, a combined approach
is desirable in which different types of structures are available to the learning
algorithm. This is possible with aggregate cascade-correlation networks. These
networks follow the cascade-correlation network approach, in which the network
is constructed one unit at a time. At each step, several types of units can be
considered and the best unit is selected to be added to the network. This allows
a hybrid network structure that should deliver a more robust performance.

All these different methods were tested on several datasets, artificial and real-
world, to assess them and to compare them with other approaches. The
artificial datasets turned out to be most insightful. Results confirmed that
in general, the cascade-correlation approach performs better than the simple
networks. On multi-instance datasets, specialized methods turned out to have
a better performance, but that is not a surprise. Nevertheless, the cascade-
correlation approach achieves a reasonable performance on these problems as
well. From the other experiments on real-world datasets, it is hard to draw
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definitive conclusions. The main problem is that there are not that many real-
world datasets readily available that focus on this particular learning setting
and that can serve as a benchmark.

8.1.2 Relational Domains

In the second part of the dissertation, the focus shifted towards relational
domains that still rely heavily on learning from bags of data but also involve
some other aspects. In Chapter 5, known approaches are discussed that use
neural networks on structured data like sequences, trees and graphs. An
extensive literature on this topic already exists. There are however problems
associated with the use of neural networks for this kind of domains, because
of learning problems and limitations of the approximation capabilities in some
cases.

These neural networks for structured data are however in some respects similar
to the relational networks proposed in Chapter 6. Instead of focusing on
learning structural features, as these existing approaches mostly did, the
relational networks are meant in the first place to deal with the aggregation
aspect of learning from relational domains. They provide an extension to the
networks for bag data because they allow for heterogenous input patterns
with multiple types of tuples and relationships. This allows to process data
from relational domains like the data domain used in typical inductive logic
programming settings.

Experiments with relational networks on an artificial dataset confirmed the
presumption that these networks are less suited for learning from data when
structural features should be learned or when the relevant information is further
away from the target tuple. Results for the real-world datasets mutagenesis and
biodegradability are reasonable, often within the same range as results obtained
with different methods, but not outstanding. Better results were achieved
with graph neural networks, the most advanced neural network approach for
structured data. There does not seem to be a clear reason why graph neural
networks perform better, but they do not seem to be plagued by the potential
problems mentioned earlier, at least for these datasets.

In a similar way as for the bag learning setting, a cascade-correlation approach
was created in Chapter 7 for the relational domain. Essentially, this can be
seen as a multi-bag approach where the relational data is considered to be an
input pattern consisting of multiple bags of tuples. On these multiple bags, a
cascade-correlation approach can be used that is almost identical to the one
for single bag data.
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Experiments on the artificial dataset showed that the relational cascade-
correlation approach yields better results than the relational networks. It turns
out the cascade-correlation is a more robust method again, just as for the simple
bag setting. For the mutagenesis and biodegradability datasets, results are close
to previous results with relational networks, though the cascade-correlation
approach seems to be slightly better overall.

8.2 Evaluation

The key idea behind this research was to develop a method for dealing with
relational data, from simple bags of tuples to more heterogenous collections
of tuples. Two basic principles are important here. First of all, the approach
should focus on the aggregation aspect of this learning setting. Second, the
aggregate features involved in the process should be constructed during learning
and not in advance. It is clear that constructing these features before learning
is not desirable because it relies heavily on prior knowledge about the problem
at hand. In this sense, the new method stands clearly apart from approaches
like propositionalization or kernels.

With respect to the two basic principles, the new method resembles existing
work in the context of inductive logic programming. The approach taken here
is however radically different with regard to the model that is learned and
the learning algorithm. The model is not expressed in logic but in numerical
parameters and learning is done by numerical optimization instead of traversing
a search space. Both methods have their advantages and disadvantages. What
is most attractive about a numerical model is that it is flexible. When the model
is expressed in logic, the construction of the model still depends on predefined
aggregate functions that are provided in the background knowledge. Numerical
models can be more flexible and adaptable. In the case the aggregate feature
form is not perfectly suited for the problem at hand, it can still be stretched
and adapted to fit as well as possible. This results in a method that is more
gradual and smooth in its performance and does not suffer too much from blind
spots.

8.3 Future Work

The question remains whether the proposed approach can be further improved.
Embedding the construction of aggregate features in the learning process is
definitely an interesting and valuable idea. Doing this with some general,
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parameterized feature form that is adapted during the learning process, is
also the most promising way to do it. But there might be better ways to
express these features than by using neural networks. Ideally, a more general
and flexible aggregate feature form should be found that can be integrated in
machine learning methods and fits seamlessly in the learning process.

One of the problems encountered throughout the research, is that real-world
datasets suitable for the considered problems are often hard to find. Obviously,
a lot of research has focused on propositional data, which encourages data
representation in this format, even if the underlying problem is not optimally
represented in this way. On the other hand, there has also been a lot of interest
in structured data, and as a consequence, there are some interesting datasets for
this setting. But the focus there has always been on structural aspects and there
has not been that much consideration for the aggregation aspect. Experiments
on artificial datasets do provide good insights about the performance of the
developed methods and they confirm many of the a priori assumptions with
empirical evidence, but it remains a challenge to identify real-world problems
for which this approach would be a perfect choice.
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