Symmetry Propagation

Jo Devriendt
Bart Bogaerts
Broes De Cat
Marc
Denecker,
Christopher
Mears

Background

Algorithm

Optimisatio

Results

Symmetry Propagation Improved Dynamic Symmetry Breaking in SAT

Jo Devriendt, Bart Bogaerts, Broes De Cat, Marc Denecker, Christopher Mears

KU Leuven and Monash University

SymCon'12

Outline

Symmetry Propagation

Bart Bogaert Broes De Ca Marc Denecker, Christopher Mears

Background

Algorithm

Ontimicati

Poculto

1 Background

2 Algorithm

3 Optimisations

SAT

Symmetry Propagation

Jo Devriendt, Bart Bogaerts, Broes De Cat, Marc Denecker, Christopher

Background

Aigoritiiii

Optimisations

Result

■ SAT theory: conjunction of clauses

• e.g.
$$T = (a \lor b \lor c) \land (d \lor e) \land \dots$$

• (or
$$T = \{a, b, c\} \land \{d, e\} \land ...$$
)

- Assignment α : set of literals currently true
 - e.g. $\alpha = \{a, \neg b, \neg e, d, g\}$
- Decision literals $\delta \subseteq \alpha$: choices made by search
 - e.g. $\delta = \{a, \neg e\}$
- **E**xplanations: why is $\ell \in \alpha$?
 - = $expl(\ell) = clause$
 - e.g. $expl(d) = \{d, e\}$
 - Only for propagated literals (those in $\alpha \setminus \delta$)

Symmetries

Symmetry Propagation

Jo Devriendt, Bart Bogaerts, Broes De Cat, Marc Denecker, Christopher Mears

${\sf Background}$

Ориннация

Results

lacksquare A **symmetry** of T is a permutation on the literals of T...

• e.g.
$$\sigma = (ab \neg c)(de)$$

- ... that satisfies these conditions:
 - \bullet $\sigma(\alpha)$ is a model of $T \Leftrightarrow \alpha$ is a model of T
 - $\sigma(\neg \ell) = \neg \sigma(\ell)$
- Symmetries lift naturally to clauses and theories.

Symmetries

Symmetry Propagation

Jo Devriendt, Bart Bogaerts, Broes De Cat, Marc Denecker, Christopher Mears

${\sf Background}$

Algorithm

Optimisatio

Populto

- If S is the symmetry group of theory T, and T entails the clause $\alpha \to \ell$, then T also entails the clause $\sigma(\alpha) \to \sigma(\ell)$.
- There are many such $\sigma(\alpha) \to \sigma(\ell)$ clauses (too many!)
- We use a **weak activity** heuristic to detect useful $\sigma(\alpha) \to \sigma(\ell)$ clauses: ones that propagate.

Activity

Symmetry Propagation

Jo Devriendt, Bart Bogaerts, Broes De Cat, Marc Denecker, Christopher Mears

${\sf Background}$

Algorithm

Optimisation

Result

Symmetry σ is **active** under α if:

- $\sigma(\alpha) = \alpha$
- During search:
 - lacksquare α is the set of true literals,
 - ullet $\delta\subseteq lpha$ is the set of search decisions.
- **Symmetry** σ is **weakly active** for δ under α if:
 - $\sigma(\delta) \subseteq \alpha$
- **Asymmetric** literal: literal $\ell \in \alpha$ where $\sigma(\ell) \notin \alpha$
 - \bullet (σ is not active, but might be weakly active)

Overview

```
Symmetry
Propagation
```

Jo Devriendt, Bart Bogaerts, Broes De Cat, Marc Denecker, Christopher Mears

Backgroun

Algorithm

Optimisation:

```
Results
```

```
repeat
   while there is a unit clause do
        run unit propagation
   end while
   for each weakly active symmetry \sigma in S do
        if there is an asymmetric literal \ell for \sigma then
            add \sigma(\ell) to \alpha
            define expl(\sigma(\ell)) = \sigma(expl(\ell))
            add expl(\sigma(\ell)) to T
            break and go back to unit propagation
        end if
   end for
until conflict, or no new literals propagated
```

Symmetry Propagation

Jo Devriendt Bart Bogaert: Broes De Cat Marc Denecker, Christopher Mears

Backgroun

Algorithm

Optimisatio

$$T = \{\neg f, a\} \land \{\neg f, b\} \land \{\neg a, d\} \land \{\neg b, e, c\} \land \{\neg c, \neg g\}, \{\neg c, g\}$$

$$S = \{\sigma\} = \{(ab)(de)\}$$

$$\alpha = \emptyset$$

$$\delta = \emptyset$$

Symmetry Propagation

Jo Devriendt Bart Bogaert: Broes De Cat Marc Denecker, Christopher Mears

Backgroun

Algorithm

Reculte

$$T = \{\neg f, a\} \land \{\neg f, b\} \land \{\neg a, d\} \land \{\neg b, e, c\} \land \{\neg c, \neg g\}, \{\neg c, g\}$$

$$S = \{\sigma\} = \{(ab)(de)\}$$

$$\alpha = \{a\}$$

$$\delta = \{a\}$$

Search chooses a

Symmetry Propagation

Jo Devriendt, Bart Bogaerts, Broes De Cat, Marc Denecker, Christopher

Backgroun

Algorithm

Optimisatio

$$T = \{\neg f, a\} \land \{\neg f, b\} \land \{\neg a, d\} \land \{\neg b, e, c\} \land \{\neg c, \neg g\}, \{\neg c, g\}$$

$$S = \{\sigma\} = \{(ab)(de)\}$$

$$\alpha = \{a, \mathbf{d}\}$$

$$\delta = \{a\}$$

- Unit propagation infers d
- lacksquare σ is not weakly active (because $\sigma(\delta) \not\subseteq \alpha$)
- a is first asymmetric literal for σ (because $\sigma(a) \notin \alpha$)

Symmetry Propagation

Jo Devriendt Bart Bogaerts Broes De Cat Marc Denecker, Christopher Mears

Backgroun

Algorithm

O-+:--:--

Results

$$T = \{\neg f, a\} \land \{\neg f, b\} \land \{\neg a, d\} \land \{\neg b, e, c\} \land \{\neg c, \neg g\}, \{\neg c, g\}$$

$$S = \{\sigma\} = \{(ab)(de)\}$$

$$\alpha = \{a, d, \mathbf{f}\}$$

$$\delta = \{a, \mathbf{f}\}$$

Search chooses f

Symmetry Propagation

Jo Devriendt Bart Bogaert: Broes De Cat Marc Denecker, Christopher Mears

Backgroun

Algorithm

Ŭ

$$T = \{\neg f, a\} \land \{\neg f, b\} \land \{\neg a, d\} \land \{\neg b, e, c\} \land \{\neg c, \neg g\}, \{\neg c, g\}$$

$$S = \{\sigma\} = \{(ab)(de)\}$$

$$\alpha = \{a, d, f, \mathbf{b}\}$$

$$\delta = \{a, f\}$$

Unit propagation infers b

Symmetry Propagation

Jo Devriendt Bart Bogaerts Broes De Cat Marc Denecker, Christopher Mears

Backgroun

Algorithm

Optimisatio

Doculto

$$T = \{\neg f, a\} \land \{\neg f, b\} \land \{\neg a, d\} \land \{\neg b, e, c\} \land \{\neg c, \neg g\}, \{\neg c, g\} \}$$

$$S = \{\sigma\} = \{(ab)(de)\}$$

$$\alpha = \{a, d, f, b\}$$

$$\delta = \{a, f\}$$

- lacksquare σ is now weakly active (but not active)
- lacksquare First asymmetric literal for σ is now d

Symmetry Propagation

Algorithm

$$T = \{\neg f, a\} \land \{\neg f, b\} \land \{\neg a, d\} \land \{\neg b, e, c\} \land \{\neg c, \neg g\}, \{\neg c, g\}$$

$$S = \{\sigma\} = \{(ab)(de)\}$$

$$\alpha = \{a, d, f, b, e\}$$

$$\delta = \{a, f\}$$

- σ is now weakly active (but not active)
- **First asymmetric literal for** σ **is now** d
- Symmetric propagation infers $\sigma(d)$, which is e
- \bullet expl(e) = $\sigma(\exp(d)) = {\neg b, e}$

Symmetry Propagation

Bart Bogaerts, Broes De Cat, Marc Denecker, Christopher

Backgroun

Algorithm

Optimisation

Doculto

$$T = \{\neg f, a\} \land \{\neg f, b\} \land \{\neg a, d\} \land \{\neg b, e, c\} \land \{\neg c, \neg g\}, \{\neg c, g\} \}$$

$$S = \{\sigma\} = \{(ab)(de)\}$$

$$\alpha = \{a, d, f, b, e\}$$

$$\delta = \{a, f\}$$

- Unit propagation resumes (but nothing to do)
- lacksquare σ is still weakly active
- No more asymmetric literals in α (σ is active)
- Search continues

Tracking weak activity

Symmetry Propagation

Jo Devriendt, Bart Bogaerts, Broes De Cat, Marc Denecker, Christopher Mears

Background Algorithm

оринначини

- Symmetry σ is weakly active if $\sigma(\delta) \subseteq \alpha$.
- Each symmetry has a counter, initialised to zero.
- When a literal ℓ is added to α , for each symmetry σ :
 - if $\ell \in \delta$ and $\sigma(\ell) \notin \alpha$, increment counter
 - if $\sigma^{-1}(\ell) \in \delta$, decrement counter
- Symmetry is weakly active if counter is zero.
- **Constant time per symmetry that involves** ℓ .

Properties

Symmetry Propagation

Jo Devriendt, Bart Bogaerts Broes De Cat, Marc Denecker, Christopher Mears

Background

Algorithm

Optimisations

- Symmetry propagation preserves completeness (never loops infinitely).
- Symmetry propagation preserves soundness, and does not choose solutions a priori.
- Choosing a choice literal can decrease or increase the set of weakly active symmetries.
- Propagating a literal only increases the set of weakly active symmetries.
- After propagation, all weakly active symmetries are active again
 - i.e. for all weakly active symmetries σ we have $\sigma(\alpha) = \alpha$

Optimisation 1: Inverting Symmetries

Symmetry Propagation

Jo Devriendt, Bart Bogaerts, Broes De Cat, Marc Denecker, Christopher Mears

Background

Optimisations

- An symmetry σ is *inverting* if $\sigma(\ell) = \neg \ell$ for some ℓ .
 - Such a literal ℓ is *inverting* for σ .
- When an inverting literal ℓ is propagated, symmetry propagation will cause $\sigma(\ell) = \neg \ell$ to be propagated, causing a conflict.
- When an inverting literal ℓ becomes a decision literal, then σ will become weakly inactive *permanently* (until backtracking undoes the choice of ℓ).
- Optimisation: make the search avoid choosing inverting literals as its decisions.

Optimisation 2: Inactive propagation

Symmetry Propagation

Jo Devriendt, Bart Bogaerts, Broes De Cat, Marc Denecker, Christopher Mears

Background

Algorithm

Optimisations

- Symmetry propagation is about finding implied unit clauses.
 - We find an explanation clause c such that weak activity guarantees $\sigma(c)$ is unit.
- In addition: generate clauses from existing explanations and weakly inactive symmetries and propagate with them if they are unit.

```
\begin{array}{l} \textbf{for each literal } \ell \in \alpha \setminus \delta \ \textbf{do} \\ \textbf{for each weakly inactive symmetry } \sigma \ \textbf{do} \\ \textbf{if } \sigma(expl(\ell)) \ \text{is unit then} \\ \textbf{Propagate with it and resume unit propagation} \\ \textbf{end if} \\ \textbf{end for} \\ \textbf{end for} \end{array}
```

Results Overview

Symmetry Propagation

Jo Devriendt, Bart Bogaerts, Broes De Cat, Marc Denecker, Christopher Mears

Background

. . . .

Results

 Compared Minisat, Minisat+Shatter, Minisat+SP, Minisat+SP+optimisations.

- Symmetric problems from SAT2011 competition and standard symmetric benchmarks.
- On satisfiable problems:
 - All methods work well.
 - Minisat+Shatter best.
- On unsatisfiable problems:
 - Symmetry breaking much more important.
 - Minisat+SP+optimisations best.

Results Examples

Symmetry Propagation

Jo Devriendt, Bart Bogaerts Broes De Cat Marc Denecker, Christopher Mears

Backgroun

Algorithm

Optimisation

Results

■ Satisfiable problem

	Solve Time (s)				
Problem name	Minisat	+SP ^{reg}	+SP ^{opt}	+Shatter	
battleship-07-13-sat	0.0	0.4	0.4	0.4	
battleship-08-15-sat	0.0	0.0	0.0	0.0	
battleship-09-17-sat	0.0	0.1	0.1	0.1	
battleship-10-17-sat	3.9	1.4	2.2	5.4	
battleship-10-18-sat	0.0	0.0	0.1	0.1	
battleship-10-19-sat	0.0	0.1	0.1	0.1	
battleship-12-23-sat	0.0	0.1	0.1	0.1	
battleship-14-26-sat	718.2	1060.2	546.1	14.3	
battleship-15-29-sat	386.0	16.5	296.6	88.1	
battleship-24-57-sat	16.5	2.8	21.9	34.3	

Results Examples

Symmetry Propagation

Jo Devriendt, Bart Bogaerts Broes De Cat, Marc Denecker, Christopher Mears

Backgroun

Algorithm

Optimisation

 ${\sf Results}$

Unsatisfiable problem

	Solve Time (s)			
Problem name	Minisat	+SP ^{reg}	+SP ^{opt}	+Shatter
battleship-05-08-uns	0.0	0.0	0.0	0.0
battleship-06-09-uns	0.1	0.0	0.0	0.0
battleship-07-12-uns	485.1	17.3	2.0	1.4
battleship-10-10-uns	1.6	1.1	0.2	0.0
battleship-12-12-uns	402.3	45.6	0.7	1.3
battleship-14-14-uns	-	-	1372.2	736.6
battleship-15-15-uns	-	-	149.0	-
battleship-16-16-uns	-	-	32.9	-

Results Examples

Symmetry Propagation

Jo Devriendt, Bart Bogaerts, Broes De Cat, Marc Denecker, Christopher Mears

Background

Algorithm

Optimisation

Results

■ Inverting Literals

	Solve Time (s)				
Problem name	Minisat	+SP ^{reg}	+SP ^{opt}	+Shatter	
Urq3_5-uns	139.7	0.0	0.0	0.1	
Urq4_5-uns	-	0.0	0.0	39.0	
Urq5_5-uns	-	7.0	0.2	3810.3	
Urq6_5-uns	-	-	0.6	-	
Urq7_5-uns	-	-	1.3	-	
Urq8_5-uns	-	-	3.3	-	

Conclusions and Future Directions

Symmetry Propagation

Jo Devriendt, Bart Bogaerts, Broes De Cat, Marc Denecker, Christopher Mears

Background

Algorithm

Optimisation Results

New approach to dynamic symmetry breaking

■ Better than existing methods on unsatisfiable instances

- Application to general constraint programming
- Search heuristics to maximise weakly active constraints

Thank you!

Symmetry Propagation

Jo Devriendt, Bart Bogaerts, Broes De Cat, Marc Denecker, Christopher Mears

Background

Algorithm

Optimisation

Results

Questions?