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Abstract 

 

Single point incremental sheet forming is an emerging sheet metal prototyping process that can 

produce parts without requiring dedicated tooling per part geometry. One of the major issues with 

the process concerns the achievable accuracy of parts, which depends on the type of features present 

in the part and their interactions with one another. In this study, the authors propose a solution to 

improve the accuracy by using Multivariate Adaptive Regression Splines (MARS) as an error 

prediction tool to generate continuous error response surfaces for individual features and feature 

combinations. Two feature types, viz.: planar and ruled, and two feature interactions, viz.: 

combinations of planar features and combinations of ruled features are studied in detail, with 

parameters and algorithms to generate response surfaces presented. Validation studies on the 

generated response surfaces show average deviations less than 0.3 mm.  The predicted response 

surfaces are then used to generate compensated tool paths by systematically translating the 

individual vertices in a triangulated surface model of the part available in STL file format 

orthogonal to the surface of the CAD model, and using the translated model to generate the 

optimized tool paths. These tool paths bring down the accuracy for most test cases to less than 0.4 

mm of average absolute deviations. By further combining the MARS compensated surfaces with a 

rib offset strategy, the accuracy of planar features is improved significantly with average absolute 

deviations less than 0.25 mm. 
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1. Introduction  

 

Single Point Incremental Forming (SPIF) is a sheet metal prototyping process that can produce a 

wide array of sheet metal parts without the need for expensive dies and tools [1]. The process is 

based on the concept of incrementally deforming a sheet metal blank into a desired shape with the 

help of a CNC tool, usually a stylus with a hemispherical end, that follows a specified tool path. 

The generation of the tool path is of particular interest as it is directly related to the dimensional 

accuracy of the manufactured part and also defines other attributes, such as surface finish, forming 

limits, processing time and thickness variation [2, 3]. In particular, Rauch et al. have proposed an 

intelligent CAM tool path optimization method where process data are evaluated by CNC 

controllers to modify the basic CAM tool path in real time [2]. Skjoedt et al. proposed the use of 

helical tool paths for eliminating scarring caused by step downs in a z-level contouring tool path 

[4]. 

 

One of the key issues in incremental forming is that of the achievable accuracy. Jeswiet et al. report 

that, while most industrial parts require an accuracy of ± 0.5 mm, it is observed that parts produced 

by SPIF have significantly higher dimensional inaccuracies [1]. Several strategies to overcome 

shape and dimensional errors in incremental forming have been summarized by Micari et al., 

including the use of flexible support, use of counter pressure, multipoint and backdrawing 

incremental forming and use of optimized trajectories [5]. Bambach et al. proposed a combination 

of multi-stage forming and stress-relief annealing to improve the accuracy of a car fender section 

[6]. The accuracy of parts with areas containing positive curvature or planar faces can be improved 
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by reprocessing the workpiece [7] or using a reverse finishing operation [8]. However, this leads to 

a significant increase in the production time, and also yields a poor surface finish. Another method 

that has been proposed involves using measurements of the part to iteratively correct the CAD 

model by translating it by a scaled measure of the deviations for each individual point [9]. The 

drawback of using such a strategy lies in its lack of suitability for parts that need to be manufactured 

only once or in small batches, and the application of such a strategy would require making test 

parts, measuring them and then applying the correction strategy, possibly in an iterative procedure. 

Likewise, although Rauch et al. propose an online tool path optimization technique [2], the scope of 

their work in terms of accuracy is limited to the depth of the manufactured part and the surface 

roughness. 

 

To overcome the limitations of the above techniques for improving the accuracy of parts produced 

by SPIF, Verbert et al. proposed the FSPIF (Feature Assisted Single Point Incremental Forming) 

method [7]. This method is based on the premise that different part features behave differently 

during incremental forming. A first level classification of features consists of planes, ribs, ruled and 

freeform features [7]. A more extensive taxonomy, taking into account geometric, orientation, 

location and process parameters, is provided by Behera at al. [10]. The FSPIF method generates an 

optimal single pass tool path for each feature in a part taking into account knowledge of the 

behavior of each feature.  

 

The generation of an optimal tool path depends on the ability to predict the errors using an 

uncompensated tool path for the original CAD model of the part. Micari et al. have tried to model 

the errors at the bottom corner (illustrated in the SPIF process schematic in Fig. 1) and under 

forming of the bottom using geometrical parameters such as sheet thickness, part geometry and 

process variables such as tool diameter and step down [11]. However, in order to compensate tool 

paths for the entire part, it is necessary to have a mathematical tool in place that can predict 

deviations at individual vertices of the CAD model of the part. Several studies in incremental 

forming have involved the use of finite element analysis to predict the final shape and dimensional 

deviations [12, 13, 14]. Hadoush et al. have mentioned computation times for such analyses to vary 

from 16 hours to a few days for a simple pyramidal part of depth 20 mm with 40 incremental steps 

of 0.5 mm each, using implicit iterative algorithms [14]. The computation time for convergence is 

also dependent on the geometry and size of the part, and is a major limitation to the application of 

finite elements as a quick prediction tool. 
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Fig.1. Schematic of single point incremental forming setup 

 

In this paper, the authors propose the use of Multivariate Adaptive Regression Splines (MARS) as a 

fast and robust prediction tool. The use of MARS as a regression tool makes it possible to analyze 

accuracy data from measured parts available as a large dataset (~ (100, 000 - 500,000) points x (5-

10) parameters), and automatically select the right variables for modeling the dimensional 



 

deviations at individual vertices of the triangulated surface (STL) model of the part [15]. The 

models evolve as an expansion in product basis spline functions, which are automatically selected 

from the nature of variations within the dataset.      

 

Response surfaces are predicted for individual features and feature combinations based on data 

collected from training sets. Compensated tool paths are then generated from the predicted response 

surfaces by systematically translating the individual vertices in the STL model of the part 

orthogonal to the STL model as suggested by Hirt et al. [9], and using the translated STL model to 

generate the optimized tool paths. Next, we present a set of tests performed on parts different from 

the training sets which show systematic improvement in accuracy behavior of features and their 

combinations.  

 

All tests reported in this work are performed using standard, unidirectional contouring z-level tool 

paths, as shown in Fig. 2. A uniform increment in depth is provided at the end of each contour of 

the tool path, which is termed as a ‘step down’. Besides, results are presented for a single material 

with a specified thickness. The proposed accuracy response surfaces can be calibrated for new 

materials and thicknesses with a limited set of new experiments following the procedure outlined in 

the paper for generating MARS response surfaces. 

 

Further, the methodology outlined in this article can be used for carrying out accuracy 

compensation in complex 3D shapes as well. However, this requires an integrated approach such as 

the use of a graph topological framework, which can capture the effects of the presence of multiple 

features in a part and their interactions. Further, additional process steps such as tool path continuity 

aspects will need to be addressed for such shapes, which are beyond the scope of the present work. 

 

 
Fig.2. Contouring tool path for incremental forming of a two angled pyramid (from left to right: 

isometric, side and top views); starting points for each contour and the step down are marked with a 

green line 

2. Relevance of features in incremental forming 

 

A distinct set of features which exhibit a certain behavior during the forming process can be 

identified for parts formed by single point incremental forming. At the first level of the taxonomy 

developed for incrementally formed parts, part features may be classified as planes, ruled surfaces, 

freeform surfaces and ribs by considering the principal curvatures [16]. A more detailed 

classification takes into account orientation, location, curvature and process related parameters, 

which also affect the behavior of a feature [10]. A CAD package built in house on the Visual C # 

programming platform and discussed below in Section 2.1 is used to first detect features. The 

detected features can then be transformed to generate a compensated STL file which is used for 

generating the optimized tool paths. 

 

   



 

2.1 Feature detection  

 

The detection of features on a part is dependent on the CAD file format. While certain 

representations, such as those for analytic surfaces support the availability of feature related 

information, others such as surface meshes defined in a triangulated stereolithography (STL) or 

stereolithography contour (SLC) format, do not carry feature information. In analytic surfaces, a 

feature is composed of feature points, and as a matter of definition, normal directions are 

discontinuous at the surface boundary [17]. The feature points at the surface boundary can be 

connected to form a feature curve [17]. However, in a surface mesh, a collection of 0-dimensional 

cells (vertices), 1-dimensional cells (edges) and 2-dimensional cells (facets) in
3
 is used to create 

the surface definition. Of all the file formats for surface mesh representation, the STL format is one 

of the most commonly used [18]. It is a tessellated model of the outer surface of an object defined 

with the help of triangular facets. The work presented here is based on the STL file format. As the 

STL file format does not have provisions for storing feature types and feature IDs, the feature 

specific information is typically lost in the process of conversion from an analytic surface 

representation. An algorithm is therefore, needed for detection, which is presented below.      

 

The first step in the feature detection algorithm involves calculation of the principal curvatures and 

normal at each individual vertex in the STL model of the part. This is done by following the 

procedure outlined by Lefebvre et al. [16]. The curvature tensor at a vertex v can be calculated as: 
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where A  is the surface area of the spherical zone of influence of the tensor and )(e is the signed 

angle between the normal vectors of the STL facets connected by the edge e, as illustrated in Fig. 3. 

)(e is positive for a concave surface and negative for a convex surface. The weight for the 

contribution by each edge is given by the factor Ae . The normal at each vertex is estimated as 

the eigenvector of )(v  evaluated by the eigenvalue of minimum magnitude. The other two 

eigenvalues, kmin and kmax provide estimates of the minimum and maximum principal curvatures at 

v. 
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Fig.3. Estimation of curvature tensor using integration over a region A; the region Ae is the part 

of the edge e common to the region A and is indicated by a bold red line; the figure on the right 

indicates the signed angle between the normal vectors, 1n


and 2n


, of  the STL facets 1f and 2f  , 

connected by the edge e 

 

The second step in the feature detection algorithm is a segmentation and classification phase. A 

region growing algorithm with a combination of face based and edge based segmentation is used 



 

following the procedure discussed by Varady et al. [19]. First, the edge based segmentation is used 

to find all vertices belonging to a rib. Vertices with the maximum principal curvature greater than a 

maximum threshold value max , or the minimum principal curvature lower than a minimum 

threshold value, min , are classified as rib vertices. Next, a face based algorithm is applied to the 

remaining vertices, where a feature object is created and allowed to accumulate vertices with 

similar curvature. The average curvature of the vertices in the feature object is then used to 

determine the classification of the feature object as a planar, ruled or freeform feature. A feature 

object with both principal curvatures equal to zero is classified as a plane, while a ruled feature is 

identified by having only one of the principal curvatures equal to zero. A freeform feature is 

identified as having non-zero principal curvatures, with the maximum principal curvature less than 

max and the minimum principal curvature greater than min . 

 

The feature detection capabilities of the developed package enable the detection of 33 different 

types of features, as covered in the extensive taxonomy provided in [10]. This has enabled a 

framework for the mathematical compensation of these features and feature interactions.       

 

2.2 Feature behavior 

 

The behavior of different features during incremental forming is governed by their geometry, 

location on the workpiece, orientation, curvature and process parameters in use during incremental 

forming. To illustrate how the classified feature categories behave differently, a set of distinct 

feature behaviors, whose accuracy is later modeled in this work, is discussed below (the 

nomenclature used for the different features follows the taxonomy described by Behera et al. [10]): 

 

Ordinary Non Horizontal Planar: An ordinary non horizontal planar feature is a planar feature that 

is oriented at an angle to the plane of the backing plate. The angle of the orientation is called the 

wall angle of the feature, denoted by ‘α’ in Fig. 1, and is below a critical wall angle for failure for 

the given material and sheet thickness. These planar faces show significant under forming as a 

result of bulging inwards caused by material spring back, as depicted in Fig. 4(a). The planar 

features are bounded by semi-vertical ribs on both sides and the deviations increase in magnitude 

towards the center of the feature and reduce to a minimum close to the ribs. This effect is also 

illustrated in Fig. 6. 

Positive General Semi-vertical Ruled: A positive general semi-vertical ruled feature is a ruled 

surface with positive curvature. This feature is characterized by under forming induced due to the 

positive curvature and material spring back, as observed in Fig. 4(b). The magnitude of the 

deviations is different from ordinary non horizontal planar features for parts with the same 

dimensions. 

Positive General Semi-vertical Ribs: Ribs are generally found at the intersection of two features. 

Positive general semi-vertical ribs are characterized by a positive curvature and observed to have 

high accuracy, typically less than 0.5 mm of under forming. 



 

(a)

(b)

Over formed regions close to 

backing plate

Under formed 

bottom

Limited under forming due to 

positive curvature

Inwards bulging of 

planar faces

 
Fig.4. Accuracy behavior of different features during incremental forming: (a) Ordinary Non 

Horizontal Planar (b) Positive General Semi-vertical Ruled (Isometric views of the part are shown 

on the left and color plots of accuracy are shown on the right) 

 

2.3 Interaction between features 

 

Features in a sheet metal part are usually found together with neighboring features that can interact 

with them and thereby influence their final shape and accuracy. A set of selected interactions 

between features is discussed below (a matrix for these interactions showing feasible and infeasible 

interactions is described by Behera et al. [10]): 

 

Combination of Ordinary Non Horizontal Planar features: A combination of two ordinary non 

horizontal planar features in the vertical direction (defined by the axis of the CNC stylus), with 

different wall angles and separated by an rib, is seen to produce the so-called ‘tent effect’, as shown 

in Fig. 5(a)). This results in the top planar feature being significantly under formed due to the 

inward pull generated by the lower planar feature in the case where the wall angle of the top planar 

face exceeds the lower planar feature. The top planar feature is over formed for the case where the 

top planar face wall angle is lower than the bottom face. Figure 5(a) shows an intermediate planar 

feature in green dotted lines just before the forming of the bottom planar feature. This intermediate 

planar feature has deviations only due to material spring back. On forming the bottom planar 

feature, the top planar feature is pulled further inwards. The intermediate horizontal rib is also seen 

to be displaced from its expected location, as is found at a lower depth.   

Combination of Positive General Semi-vertical Ruled surfaces: Positive general semi-vertical ruled 

surfaces are more rigid than planar faces, and hence, the effect of the lower surface pulling the 

upper surface is less pronounced, as seen in Fig. 5(b). Besides, feature borders in the form of semi-

vertical ribs may be absent for shapes such as combination of two quasi-identical cones or two 

closed ruled surfaces, which means that the inaccuracy at each sectional contour is a mere offset 

from the expected curve at the section. 
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Fig.5. Accuracy behavior of feature interaction combinations (a) Combination of Ordinary Non 

horizontal Planar features (b) Combination of Positive General Semi-vertical Ruled surfaces 

(Isometric views of the part are shown on the left and color plots of accuracy are shown on the 

right)    

3. MARS as a predictive tool for study of feature behavior and feature interactions  

Generating optimized tool paths that reduce the errors due to geometry and material flow is 

facilitated by predicting the surface in an uncompensated single tool path pass procedure. Sectional 

views and close observation of the surface accuracy contour plots reveal the dependence on a 

significant number of parameters and parameter combinations that influence the final dimensional 

errors and shape of the part. Fig. 6 shows the sectional view of a pyramid taken at various depths 

depicting the nominal CAD model and the measured part in an uncompensated single pass tool path 

test. It can be seen that the errors, represented for individual points as ex,y,z, vary as a function of the 

depth, and also as a function of the distance from the semi-vertical ribs that define the boundaries of 

the four faces of the pyramid. 

Likewise, it is seen that the wall angle has a significant influence on the accuracy profile. This is 

illustrated in Fig. 7(a) for four different planar faces with wall angles varying between 20° – 50° in 

a pyramid of depth 22.5 mm. It is seen that the accuracy is lower for higher wall angles, with 

increased under forming, while low wall angle features show areas of significant over forming. For 

a combination of non horizontal planar features, the difference in wall angle between the top planar 

face and bottom planar face, affects the accuracy, as shown in Fig. 7 (b) for planar faces with wall 

angle differences varying between 5° – 30° in a two angled pyramid of depth 67.5 mm. For other 

geometries, the curvature becomes an important parameter as well, as discussed in Sections 2.2 and 

2.3. 

 



 

3.1 Accuracy modeling using MARS 

To model the accuracy for a given geometry or feature interaction combination with the most 

important parameters and their combinations, a statistical tool is required that enables flexible 

regression analysis of large data sets. Leathwick et al. have outlined the capabilities of Multivariate 

Adaptive Regression Splines or MARS for fitting complex, nonlinear relationships and in particular 

for incorporating interactions between variables [20]. The use of MARS also provides two 

immediate advantages that are relevant to the process, viz.:  

i) MARS is a non-parametric regression technique, and hence does not assume a relationship 

between the predictor variables and response variable a priori. Rather it sifts through the 

data set and finds out the best possible relationship. 

ii) MARS produces a continuous response surface with continuous first order derivative which 

is essential for predicting the final shape of a sheet metal surface. 

MARS models take the form: 
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 The response variable is a weighted sum of basis functions Bn(x), and the coefficients cn are 

constants. The basis function Bn(x) evolves as one of three possible forms: i) a constant, ii) a hinge 

function of the type max(0,x − k) or max(0,k − x), where k is a constant and max(p, q) gives the 

maximum of the two real numbers  p and q or iii) a product of two or more hinge functions that 

models interactions between two or more variables. The hinge functions thus have knots given by 

the constants which are determined by a forward pass operation that initially over-fits the given 

data, and is followed by a backwards pruning step which identifies terms that are to be retained in 

the model. MARS models generated in this paper were fitted in R, a statistical software suite 

developed as a GNU project, with functions present in the ‘Earth’ library of R [21, 22]. 
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Fig.6. Dependence of accuracy in a pyramidal part with ordinary non horizontal planar faces made 

of AA 3103 of thickness 1.5 mm as a function of the depth and distance from the semi-vertical ribs 

(ex,y,z denotes the error at the nominal CAD model point (x, y, z) between the CAD model and the 

measured part made with an uncompensated tool path) 

 

(a)                                                                          (b) 

Fig.7. Dependence of accuracy on (a) wall angle and nominal depth for a simple pyramid with non 

horizontal planar features and (b) wall angle difference for a two angled pyramid with combination 

of non horizontal planar features (location of transition rib shown as a dash-dot line), shown as a 

function of the depth of the part 
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3.2 Methodology of generation of MARS models 

An integrated approach that combines experimental techniques with analysis on software tools that 

include a dedicated, customized CAD geometric modeler developed specifically for incremental 

forming applications, is used to generate the MARS models. The first step of the developed 

procedure involves identification of the parameters that are relevant to a given feature or feature 

combination. Once these parameters are identified, experimental tests with variation of the 

parameters are performed to manufacture parts on a 3-axis NC controlled milling machine. The 

obtained test results serve as training sets for the MARS models.  

The manufactured parts are scanned with a laser scanner. The measurement accuracy of the scanner 

is specified as 15 μm. Focus Inspection v9.3, provided by Nikon Metrology NV, is used as the 

software platform for this purpose. The scanned point cloud serves as the measured model, which is 

then meshed in the software and compared to the nominal CAD model. This method for 

determining accuracy generates an accuracy file which contains details of the individual points in 

the nominal and measured point clouds, and deviations along x-, y-, and z- axes and the 3D 

deviation measured in a direction normal to the nominal model. The accuracy file, thus generated, 

can now be analyzed in the dedicated ‘FSPIF’ CAD platform developed specifically for incremental 

forming. FSPIF is an in-house software developed in Microsoft Visual C# 2008 Express Edition 

that enables several functionalities such as importing and manipulating STL files, point clouds and 

tool paths, detecting part features in STL files, generating relevant graphs such as thickness and 

accuracy variation within a part etc. Figure 8 shows a screenshot of the software depicting features 

detected on a two angled pyramidal part.         

 

Fig.8. Feature detection in FSPIF CAD package interface for incremental forming 

The accuracy file generated in Focus Inspection is imported within the FSPIF interface and linked 

to the STL model of the part. The linking is done for each vertex in the nominal model and a vertex 



 

on the measured CAD model closest to the nominal vertex is found using KDTrees, which are 

multidimensional binary search trees for carrying out quick spatial comparisons using an associative 

searching technique [23, 24]. Features are detected on the STL model of the part, and each 

individual feature is now exported as an ASCII text file, and contains the accuracy data for the 

nominal CAD model vertices within the feature, and the value of the various parameters for each 

individual vertex, such as the wall angle, distance from the borders etc. These text files, containing 

the feature based accuracy data, are then analyzed within the GNU program, R, to generate the 

required MARS models. Figure 9 shows a schematic of the process for generating the training sets 

containing accuracy data for building the MARS models, while Figure 10 illustrates the subsequent 

steps for generating the MARS models and then using them to carry out accuracy improvement 

studies for specific test cases. The training sets generated in Fig. 9 create a generic MARS model 

for the specific feature, which can then be used for parts with new part designs containing the same 

feature type. 

 

Fig.9. Methodology for generation of training sets containing accuracy data for building MARS 

models 

3.3 MARS model for ordinary non horizontal planar features 

The initial set of parameters influencing the accuracy of planar features at each vertex based on 

observations from experiments are: normalized distance from the point to the edge of the feature in 

the tool movement direction (db = D/(C+D) in Fig. 11), normalized distance from the point to the 

bottom of the feature (do = B/(A+B) in Fig. 11), total vertical length of the feature at the vertex (dv 

= (A + B) in Fig. 11), total horizontal length of the feature at the vertex (dh = (C + D) in Fig. 11), 

wall angle at the vertex (in radians), α and angle of the tool movement with respect to the rolling 

direction of the sheet (in radians), ω. 

The determination of the distances to the feature borders in the horizontal and vertical directions 

requires the detection of the feature borders in the form of ribs, and intersecting the normal to the 

plane at the given STL vertex with the feature border. A set of three uncompensated tests was 

performed to train the MARS model. Two truncated pyramids with four faces as shown in Fig. 12 

(a,b) with wall angles 60° and 65° respectively, and a part with planar faces as shown in Fig. 12 (c), 

were manufactured in AA 3103 sheet material with nominal thickness of 1.5 mm. A hemispherical 



 

tool of radius 5 mm was used for all the tests along with a feedrate of 2 m/min, a tool rotation speed 

set to approximate rolling contact [1]. An oil based lubricant was applied during the process. 
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Fig.10. Flowchart illustrating the procedure for generation of MARS models and use of these 

models to improve accuracy of parts 

 

 

 

 

 

   

Fig.11. Geometrical input parameters for the MARS model of a non horizontal planar feature 
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The MARS model was trained with accuracy values of faces 1-4 of Fig. 12 (a) and Fig. 12 (c) and 

face 4 of Fig. 12 (b) yielding the following equation.  

e = 2.4 - 0.76 * max(0, db - 0.4)- 1.2 * max(0, 0.4 - db)- 2.3 * max(0, db - 0.78) + 2.8 * max(0, db - 0.44) - 3.4 * max(0, 

0.44 - do) - 3.3 * max(0, do - 0.65) - 0.058 * max(0, dh - 113) - 0.0082 * max(0, dh - 127) + 0.034 * max(0, dh - 143) + 

0.055 * max(0, dv - 71) + 0.010 * max(0, 71 - dv) - 3.5 * max(0, 1.1 - α)     (3) 

where, e = deviation at STL vertex 

The model is independent of the angle of the tool movement with respect to the rolling direction of 

the sheet, which indicates that the sheet anisotropy did not significantly affect the accuracy of the 

planar features in the training sets used. 

 
 

(a)                                                (b)                                       (c) 

 

Fig.12. Training sets for generating the MARS model of a non horizontal planar feature 

 

3.4 MARS model for positive general semi-vertical ruled features 

 

Positive general semi-vertical ruled features, that are not in interaction with other features, can form 

closed surfaces without semi-vertical ribs as bounding features (e.g. a conical part) and hence, here, 

the input parameters for the model do not include the normalized distance from the STL vertex to 

the rib of the feature in the tool movement direction and the total horizontal distance. The model 

was trained with a ruled feature that was constructed by generating a ruled surface with the top 

circle having a center located at (0,0) and a bottom circle at a depth of 60 mm from the top circle 

with center located at (-10,-20), thereby varying the curvature and wall angle with upper and lower 

limits at 36° and 60°, as shown in Fig. 13. 

 

The MARS model obtained by using the above training set is given below. 
e = 1.2 - 1.9 * max(0, do - 0.13) + 1.5 * max(0, do- 0.26) + 0.0024 * max(0, dv -13) - 0.054 * max(0, 13-dv) -0.0021* 

max(0, dv-30) +0.0042 * max(0, dv - 78) - 5.6 * max(0, km  -(-0.012)) -6.9 * max(0, -0.012 - km) - 0.4 *max(0, α - 2.3) + 

0.72*max(0,  α-2.4) -1.1*max(0, 2.4-α) -1.6*max(0, α -2.4)+3.1 * max(0, α - 2.5)    (4) 

where, e = deviation at STL vertex, km = maximum principal curvature at the vertex, do = 

normalized distance from point to the bottom of the part, dv = total vertical feature distance at the 

point, α = wall angle expressed in radians 



 

The model is independent of the angle of the tool movement with respect to the rolling direction of 

the sheet, just as in the case of non horizontal planar features. 

 

 

 

 

 

 

 

 

 

 

  
 
 
 
 
 
 

Fig.13. Training set for generating the MARS model of a positive general semi-vertical ruled 

feature 

 

3.5 MARS model for a combination of ordinary non horizontal planar features 

 

For a combination of non horizontal planar features in the direction of the tool-axis, as illustrated in 

Section 2.3, experimental tests reveal that the difference in wall angles between the top and bottom 

planar features decides the magnitude of the errors caused by the tent effect that is observed in the 

feature combination. The combination of these features is referred to as a ‘combined feature’ 

henceforth. It is also seen that the location of the transition rib also affects the shape and magnitude 

of the accuracy. Besides, the inaccuracy at a STL vertex is also seen to be dependent on the total 

length of the combined feature below it. 

 

Keeping these physical effects in mind, three new distance parameters (as compared with the model 

for non horizontal planar features) are introduced as a function of: i) vertical distance from the STL 

vertex to the top of the feature, A, ii) the vertical distance from the STL vertex to the bottom of the 

feature, B, iii) vertical distance of the STL vertex in the top planar feature to the bottom of the 

combined feature, E and iv) vertical distance of the STL vertex in the bottom planar feature to the 

top of the combined feature, F, as shown in Fig. 14. A fourth new parameter is expressed as a 

function of the wall angles of the features. These parameters are given as: i) normalized vertical 

combined feature distance below the vertex, df, given by E/(A+E) for the top planar feature and 

B/(B+F) for the bottom planar feature, ii) total vertical combined feature length at the vertex, dt, 

given by (A+E) for the top feature and (B+F) for the bottom feature, iii) normalized distance to 

transition horizontal rib, de, given by B/(A+B) for the top planar feature and A/(A+B) for the 

bottom planar feature, iv) wall angle difference, ∆α, given by (α-β) where α is the wall angle of the 

top planar feature, β is the wall angle of the bottom planar feature and α is greater than β. Besides, 

two parameters are dropped from the model in Section 3.3, viz.: i) normalized distance from the 

point to the bottom of the feature, do, and ii) total vertical length of the feature at the vertex, dv.  

 

The new normalized parameters, df and de, are introduced so as to be continuous functions of the 

depth of the part, which ensures proper training of the model using the accuracy data, and follows 

the physical observation that the manufactured part is a continuous surface. While df varies from a 

value of 1 at the top of the combined feature to a value of 0 at the bottom rib, de varied from a value 

of 1 at the top of the combined feature to 0 at the transition rib, and increases to 1 at the bottom of 

10 

20 

60 mm 



 

the combined feature. On the other hand, do would have yielded a value of 0 for a point in the top 

feature infinitesimally close to the transition rib and a value of 1 for a point in the bottom feature 

infinitesimally close to the transition rib, while the accuracy value to be mapped for both these 

points very close to each other should be approximately the same. Likewise, dt is a continuous 

function, while dv is discontinuous at the rib. To generate the above parameters for the feature 

combination, calculations need to be carried out as explained in Algorithm 1 (see Appendix). 

 

The MARS model for the feature interaction combination was trained with accuracy results from a 

two-angled truncated pyramid, with four different wall angle combinations, as illustrated in Fig. 15. 

The model generated with the four training sets from this experiment is given as: 

 
e = 1.2 - 0.018 * max(0, db - 109)- 0.0028 * max(0, 109 – db)+ 3.1 * max(0, ∆α – 0.35) + 0.15 * max(0, 0.35 - ∆α) + 4.5 

* max(0, df – 0.28) – 7.8 * max(0, df – 0.57) – 2.1 * max(0, 0.57 – df) - 30 * max(0, df – 0.93) + 0.018 * max(0, dt - 46) 

- 0.0068 * max(0, 46 – dt) – 2.6 * max(0, de – 0.18) + 4 * max(0, 0.18- de)+ 2.4* max(0, de – 0.51) + 7.3 * max(0,  de – 

0.89) – 5.6 * max(0, 0.87 - α)          (5) 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.14. Geometrical input parameters for the MARS model of a combination of ordinary non 

horizontal planar features 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.15. Training sets for generating the MARS model of a combination of ordinary non horizontal 

planar features 
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3.6 MARS model for a combination of positive general semi-vertical ruled features 

 

The MARS model for a combination of positive general semi-vertical ruled features was trained 

with a set of six feature combinations formed by two angled cones with different top and bottom 

half wall angles and depths, as listed in Table 1. The set of parameters used for a combination of 

non horizontal planar features was also used here with only the horizontal distance parameters 

dropping out as explained in Section 3.4, viz.: normalized distance from the STL vertex to the edge 

of the feature in the tool movement direction and the total horizontal distance. The MARS model 

generated for the combination of ruled surfaces is given as: 

e = 1.3 - 13 * max(0, df – 0.94) + 0.4 * max(0, 0.94 – df) – 0.04 * max(0, dt – 81) + 0.027 * max(0, dt – 134) – 0.041 * 

max(0, 134 – dt) + 7.8 * max(0, α – 2.2) – 18 * max(0, α – 2.6) - 12 * max(0, α – 2.7) + 3.4 * max(0, 2.7 - α) - 36 * 

max(0, ∆α – 0.44) + 32 * max(0, ∆α – 0.52) – 2.6 * max(0, 0.52- ∆α) + 4.1* max(0, ω – 0.98) - 16 * max(0, ω – 1.1) + 

3.3 * max(0, 1.1 - ω)           (6) 

 

where, dt = total vertical combined feature length at the point, df = normalized distance from point 

to bottom of combined feature, α = wall angle expressed in radians, ∆α = wall angle difference 

between top and bottom ruled features expressed in radians, ω = angle with rolling direction 

expressed in radians 
 

Table 1. Training sets for MARS model for combination of semi-vertical ruled features 

Top Cone Wall 

Angle (°) 

Bottom Cone 

Wall Angle (°) 

Top Cone 

Depth (mm) 

Bottom Cone 

Depth (mm) 

20 10 15 7 

35 20 30 12 

45 40 50 20 

50 25 50 20 

60 30 50 20 

65 55 50 20 

4. Validation of MARS models 

 

The MARS equations were used to predict formed surfaces made of AA 3103 of 1.5 mm thickness 

in uncompensated tests to verify their suitability for application to new parts. The prediction 

accuracies of the four models presented earlier are discussed in the sections below. 

 

4.1 Ordinary non horizontal planar features 

   

The MARS model for ordinary non horizontal planar features was used to predict the response 

surface for a pyramid with a wall angle of 55°. The predicted surface was compared to the measured 

surface from an uncompensated tool path test yielding an average positive deviation of 0.15 mm, 

and an average negative deviation of -0.25 mm. The average deviation was recorded as -0.13 mm, 

with outliers of 0.37 mm and -0.72 mm, and a standard deviation of 0.22 mm. Sectional views of 

the pyramid at Y= 0 are shown in Fig. 16. 

 

4.2 Positive general semi-vertical ruled features 

 

The response surface for a ruled surface part of depth 60 mm with continuously varying curvature 

and wall angle was predicted with Equation (4). The average positive deviation of the predicted 

surface with respect to the measured surface was observed to be 0.10 mm and the average negative 

deviation was seen at -0.07 mm. A mean deviation of 0.04 mm with outliers of -0.57 mm and 0.34 



 

mm and a standard deviation of 0.10 mm were recorded. Sectional views of the part at Y= 0 are 

shown in Fig. 17. It may be noted that predictions are made only for the semi-vertical ruled feature. 

The rib close to the backing plate located between the depths z = 0 mm to z = -3 mm and the rib 

close to the horizontal bottom planar surface located between z = -57 mm to z = -60 mm are not 

predicted by the model as they are a different feature and detected as such within FSPIF. 

 
Fig.16. Sectional views of a pyramidal part taken at Y=0, showing nominal CAD, MARS predicted 

and measured part sections 

 
Fig.17. Sectional views of a generic ruled surface part taken at Y=0, showing nominal CAD, MARS 

predicted and measured part sections 

 

 



 

4.3 Combination of ordinary non horizontal planar features 

 

A planar face with a wall angle of 55° and depth 60 mm in combination with another planar face 

with a wall angle of 30° and depth 30 mm was used as to verify the model given in Equation (5). 

The average positive deviation observed was 0.25 mm and the average negative deviation was -0.37 

mm, with a mean of -0.23 mm and a standard deviation of 0.34 mm. The maximum outliers were 

recorded as 0.65 mm and -0.99 mm. Sectional views of the two angled pyramid at Y= 0 are shown 

in Fig. 18. 

 

 
Fig.18. Sectional views of a two angled pyramidal part taken at Y=0, showing nominal CAD, 

MARS predicted and measured part sections 

  

4.4 Combination of positive general semi-vertical ruled features 

 

Predictions for a two angled cone with a top half wall angle of 55° and depth 50 mm and bottom 

half wall angle of 30° and depth 20 mm using Equation (6) showed an average positive deviation of 

0.14 mm and an average negative deviation of -0.24 mm with a mean of 0.06 mm. Outliers were 

seen at -0.46 mm and 0.33 mm with a standard deviation of 0.18 mm. Sectional views of the two 

angled cone at Y= 0 are shown in Fig. 19. 

5. Tool path compensation results 

 

5.1 CAD Model adjustment and generation of compensated tool paths 

 

The generation of compensated tool paths that increase the accuracy of parts manufactured by 

incremental forming can be achieved, in many cases, by adjustment of the CAD model of the part. 

This adjustment is done by taking individual vertices in the STL model of the part and translating 

them proportional to the deviation corresponding to that vertex as predicted by the MARS model. 

Consider a nominal point vector n


 and a corresponding predicted point by the MARS model p


as 

illustrated in Fig. 20. The predicted point is generated in the direction of the normal to the feature. 



 

Given that the deviation vector between the nominal and predicted points is denoted as d


, we can 

then generate a translated point in the opposite direction of the feature normal t


( = n


- k. d


) [9], 

using the deviation d


 scaled by a compensation factor ‘k’ which can be adjusted for individual 

features or feature combinations based on experimental knowledge.   The adjusted model is now 

used to generate compensated tool paths. 

 

 
 

Fig.19. Sectional views of a two angled conical part taken at Y=0, showing nominal CAD, MARS 

predicted and measured part sections (part is shown in set) 
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Fig.20. Translating vertices in STL model using MARS prediction and nominal CAD model 

 

5.2 Results of application of compensated tool paths 

 

Compensated tool paths were generated using Equations (3)-(6) for predicting the uncompensated 

response surface followed by model adjustment with appropriate compensation factors. All tests 

were performed on AA 3103 sheets of thickness 1.5 mm on a stiff three axis CNC milling machine 



 

at a feed rate of 2 m/min and constant step down depth of 1 mm. Fig. 21 shows an example of tool 

path compensation for ordinary non horizontal planar features. Results for different features and 

feature interactions are discussed below.  

 

5.2.1 Tool path compensation for ordinary non horizontal planar features 

 

A pyramid of wall angle 55° was made using an uncompensated tool path and using the MARS 

prediction of Equation (3). Results shown in Fig. 22 indicate that the under forming of the planar 

faces is significantly reduced. Table 2 lists the deviations recorded in both tests.  

 
Fig.21. Generation of compensated tool path for ordinary non horizontal planar features (contours at 

depth Z= -18.6 mm are shown along with the MARS predicted section) 

 

 
(a)                                                                               (b) 

Fig.22. Top view of accuracy color plots showing results of (a) uncompensated tool path test and 

(b) compensated tool path test using MARS predictions for ordinary non horizontal planar features  

 

 



 

5.2.2 Tool path compensation for positive general semi-vertical ruled features 

 

The MARS model in Equation (4) was used to manufacture a ruled surface similar to Fig.13 but 

with different offsets, viz. 15 mm and 25 mm for the lower circle, giving wall angles between 32° 

and 66°. A compensation factor (‘k’) of +1 was used. The tool paths at a specific depth are seen to 

be an offset from the nominal uncompensated cross-section, with the offset determined by the 

prediction for the deviation at each individual vertex, as illustrated in Fig. 23. The shape of the 

compensated tool path follows the shape of the cross-section at that depth. On applying the tool 

path, the maximum deviation found on the part was observed as 0.42 mm, thereby indicating that 

the under forming is significantly removed. Color plots illustrating this improvement are shown in 

Fig. 24. 

 
Fig.23. Generation of compensated tool path for positive general semi-vertical ruled features 

(contours at depth Z= -20 mm are shown along with the MARS predicted section) 

 
 

(a)                                                                            (b) 

Fig.24. Top view of accuracy color plots showing results of (a) uncompensated tool path test and 

(b) compensated tool path test using MARS predictions for positive general semi-vertical ruled 

features 



 

5.2.3 Tool path compensation for a combination of ordinary non horizontal planar features 

 

The MARS model in Equation (5) was used to manufacture a two angled pyramid with a top half 

wall angle of 55° and depth 45 mm and bottom half wall angle of 25° and depth 22.5 mm. A 

compensation factor of +1 was used. On applying the tool path, the average positive deviation 

shows an improvement of approximately 1 mm, thereby indicating that the under forming is mostly 

removed. Fig. 25 shows a color plot comparing the two test results. 

 
 

(a)    (b) 

Fig.25. Top view of accuracy color plots showing results of (a) uncompensated tool path test and 

(b) compensated tool path test using MARS predictions for a combination of ordinary non 

horizontal planar features 

 

5.2.4 Tool path compensation for a combination of positive general semi-vertical ruled features 

 

The MARS model in Equation (6) is used to manufacture a two angled cone with a top half wall 

angle of 55° and depth 50 mm and bottom half wall angle of 30° and depth 25 mm with a 

compensation factor of +1. While the uncompensated test shows significant under forming in both 

the top and bottom surfaces, the compensated test shows mild over forming in the top surface and 

fairly good geometrical accuracy in the bottom feature.  

 
(a)                                                                                 (b) 

Fig.26. Top view of accuracy color plots showing results of (a) uncompensated tool path test and 

(b) compensated tool path test using MARS predictions for a combination of positive general semi- 

vertical ruled features 

 



 

5.2.5 Rib offset tool path compensation strategy 

 

The accuracy plots of the pyramids show that inaccuracies can be observed in the regions close to 

the semi-vertical and horizontal ribs. The average deviation in these ribs was observed to be 0.2 

mm. Hence, a strategy to improve the continuity of the tool paths near the ribs and to account for 

the inaccuracy of the ribs was devised. This involves offsetting the CAD model of the part first by a 

magnitude equal to the average deviations found in the ribs. The MARS compensation is then 

performed on this offset section as illustrated in Fig. 27.  By using this strategy, the maximum 

deviations of the non horizontal planar features in both a simple pyramid and a two angled pyramid 

were brought down to less than 1 mm, as visible from the accuracy color plots in Fig. 28. 

  

Table 2. Comparison of accuracies with different tool path strategies (All dimensions are in mm) 

 
Part type Features/ 

Feature 
interactions 

Tool path 

strategy 

Average 

Positive 
Deviation 

Average 

Negative 
Deviation 

Maximum 

Deviation 

Minimum 

Deviation 

Average 

Deviation 

Standard 

Deviation 

Simple 

Pyramid 

ONHP Uncompensated 0.748 -0.223 1.596 -0.843 0.632 0.507 

Simple 
Pyramid 

ONHP MARS 
compensation 

(Equation 3) 

0.440 -0.141 1.039 -0.466 0.242 0.364 

Ruled 
surface 

PGSVR Uncompensated 0.673 -0.688 1.843 -1.563 0.533 0.457 

Ruled 

surface 

PGSVR MARS 

compensation 
(Equation 4) 

0.027 -0.115 0.429 -0.381 -0.081 0.100 

Two angled 

pyramid 

ONHP-

ONHP 

Uncompensated 1.377 -0.450 4.126 -1.349 0.764 1.268 

Two angled 
pyramid 

ONHP-
ONHP 

MARS 
compensation 

(Equation 5) 

0.362 -0.222 1.099 -0.690 0.076 0.378 

Two angled 

cone 

PGSVR-

PGSVR 

Uncompensated 1.669 -0.389 2.379 -1.462 1.614 0.495 

Two angled 

cone 

PGSVR-

PGSVR 

MARS 

compensation 

(Equation 6) 

0.349 -1.112 0.661 -1.512 -0.737 0.677 

Simple 
Pyramid 

ONHP Offset MARS  0.248 -0.158 0.570 -0.535 0.160 0.222 

Two angled 

pyramid 

ONHP-

ONHP 

Offset MARS 0.218 -0.151 0.669 -0.790 0.042 0.230 

 
ONHP – Ordinary Non Horizontal Planar 

ONHP-ONHP – Combination of ordinary non horizontal planar features 

PGSVR – Positive General Semi-Vertical Ruled 
PGSVR-PGSVR – Combination of positive general semi-vertical ruled surfaces 

 

X (mm)

X (mm)
 

Fig.27. Applying the MARS method on an offset section to compensate for the inaccuracy of ribs; 

section shown is located at z=-20 mm on a planar face with wall angle of 45° 

 



 

 
 

(a)                                                                           (b) 

Fig.28. Accuracy plots of (a) a simple pyramid of wall angle 55° and (b) a two angled pyramid with 

wall angles 55° and 45° using an offset MARS tool path as illustrated in Fig. 27 

6. Limitations and Future scope 

 

One of the basic issues in Single Point Incremental Forming is the process limits for part 

manufacture. For a given material and thickness, when using simple contouring tool paths, parts can 

be manufactured with a maximum achievable wall angle as discussed by Jeswiet et al. [1]. The 

process limits for part manufacture also limit the applicability of the MARS technique. For parts 

with wall angles slightly below the critical wall angle for failure, the compensation of the STL file 

for improving accuracy results in a compensated geometry that has a zone with wall angle greater 

than the critical wall angle for failure. This issue is illustrated in Fig. 29, where it is seen that the 

wall angle at a depth close to the top of the part, α
C
, is larger than the wall angle of the nominal 

CAD section, α
N
. 

x

z

y

Nominal CAD section

Predicted MARS 

section

Compensated section

αN

α
C

 
 

Fig.29. Compensated section showing wall angle higher than the wall angle of the nominal section 



 

 

One of the solutions to this problem is to make the part in multiple steps as suggested by Duflou et. 

al [25]. However, in that case, the MARS model equations developed for single step tool paths will 

no longer be valid, and new training sets will have to be used that use the accuracy data from multi-

step tool paths to predict the response surface. Nevertheless, the methodology used for doing so will 

still follow the guidelines outlined in this work. 

 

Experiments also show that the accuracy of an incrementally formed part also depends on the 

material properties and thickness. In the current work, the response surface MARS methodology 

was illustrated for a specific material and thickness. As part of future research targets, the response 

surfaces can be calibrated to generate generic error correction functions, as functions of well-chosen 

material properties and sheet thickness.    

7. Conclusions 

 

This article presents the use of Multivariate Adaptive Regression Splines or MARS as a tool to 

predict the formed surface in single point incremental forming without actually forming the part. 

The prediction of the formed surface depends on the type of feature and interaction between 

features. The detection of features is the first step in the proposed method. A custom CAD package 

has been built that enables feature detection on the triangulated STL model of a part and 

implementation of the MARS method.  

 

Models have been built to predict the formed surface for planar and positive curvature ruled 

features and combinations thereof. These models are dependent on several variables in the part 

geometry and process parameters. The evaluation of distance parameters in these models requires 

identification of feature borders, which typically are ribs. Further, the combination of features poses 

the additional problem of generation of distance parameters for the combined feature. This 

necessitates an algorithm which determines the correct points of intersection of the feature normal 

with the feature borders for the evaluation of the distance parameters. 

 

It is possible to generate compensated single pass tool paths using MARS predictions by 

appropriate translation of the vertices in the STL model of the part. A compensation factor of +1 

has proved useful for a number of case studies, and thus provides a good case for the application of 

this technique in a fast and robust manner with little user input. Besides, the compensated tool paths 

have helped bring down the average positive and negative deviations to less than 0.4 mm for several 

test cases. Further, the MARS tool paths can be combined with intelligent offsetting of the part 

features to further improve the accuracy. 

 

One of the primary limitations of the MARS method lies in the manufacture of parts that are very 

close to failure, where the compensated surface may have zones with wall angles greater than the 

critical wall angle for failure. This limitation may be overcome by the use of multi-step tool paths in 

conjunction with the MARS technique. However, this requires additional research, and offers 

potential for further improving tool paths for incremental forming.     

Acknowledgements 

The authors gratefully acknowledge financial support from the Fonds Wetenschappelijk Onderzoek 

(FWO) – Vlaanderen, and the collaboration on this project with Prof. Hugo Sol, Jun Gu and Ioannis 

Vasilakos of the Vrije Universiteit Brussels (VUB) and Hans Vanhove of the Katholieke 

Universiteit Leuven. 



 

Appendix 

 

Algorithm 1: Evaluation of MARS model parameters for feature interaction between two ordinary 

non horizontal planar features 

 

Identify top and bottom planar features, <Plane-Top> and <Plane-Bottom> using the Z (depth) co-

ordinate of the center of the planes 

Set <Wall Angle Difference> as the difference in the angles of the normal of <Plane-Top>, <Nt> 

and normal of <Plane-Bottom>, <Nb> with z-axis 

Find outer borders of the selected features as <Outer-Border-Top> and <Outer-Border-Bottom> 

for each Feature <F> in selected features { 

 for each point vector <V> with normal <Nv> in <F> { 

  Create normal plane <Np> to <F> at the point using three points, i) <V>  

ii) <V>+<Nv>*m iii) <Np3>=Vx î + Vy ĵ + (Vz+n) k̂ , where m, n are constants 

  Intersect outer border of <F> with <Np> to find intersection points <P1> and <P2> 

  Sort <P1> and <P2> by Z co-ordinate to find upper intersection point <Pu> and  

  lower intersection point <Pl> 

  Set Total Vertical Feature Distance = Distance from <V> to <Pu> + Distance from 

  <V> to  <Pl> 

  if plane is <Plane-Top> { 

Create normal plane <Npb> to <Plane-Bottom> at the point <Pl> using 

three points, i) < Pl > ii) < Pl >+<Nb>*m iii) <Npb3>=Plx î + Ply ĵ + 

(Plz+n) k̂  

    Intersect outer border of <Plane-Bottom> with <Npb> to find intersection 

   points <P3> and <P4> 

Sort <P3> and <P4> by Z co-ordinate to find upper intersection point <Pbu>  

and lower intersection point <Pbl> 

Set Vertical Combined Feature Distance = Distance from <V> to <Pl> + 

Distance from <Pl> to  <Pbl> 

Set Total Vertical Combined Feature Length = Distance from <V> to <Pu> + 

Vertical Combined Feature Distance  

  }   

 

    if plane is <Plane-Bottom> { 

   Create normal plane <Npu> to <Plane-Top> at the point < Pu > using three 

   points, i) < Pu > ii) < Pu >+<Nt>*m iii) <Npu3>=Pux î + Puy ĵ + (Puz+n) k̂  

    Intersect outer border of <Plane-Top> with <Npu> to find intersection 

   points <P5> and <P6> 

Sort <P5> and <P6> by Z co-ordinate to find upper intersection point <Ptu>  

and lower intersection point <Ptl> 

Set Vertical Combined Feature Distance = Distance from <V> to <Pl> 

Set Total Vertical Combined Feature Length = Distance from <V> to <Pu> + 

Vertical Combined Feature Distance + Distance from <Pu> to <Ptu>   

  } 

} 
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